
USENIX Association

Proceedings of the 17th Large Installation
Systems Administration Conference

San Diego, CA, USA
October 26–31, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Splat: A Network Switch/Port
Configuration Management Tool

Cary Abrahamson, Michael Blodgett, Adam Kunen, Nathan Mueller, and David Parter –
University of Wisconsin – Madison

ABSTRACT
We present the design and implementation of Splat, a tool for managing network edge switch

ports and port-to-host configurations. We discuss the need for such a tool as part of a major
network upgrade, and our discovery that most existing tools ignore this area or approach it from a
core network point of view.

Important design considerations include the current procedures and habits of our system
administration team, using open source components, and the tool’s incremental development and
deployment. In particular, the requirement for accurate configuration information in a database
proves to be an effective means of enforcing correct procedures.

Splat enables us to administer an increasingly complex network by providing a simple
interface for routine tasks as well as better diagnostics, reporting, and monitoring. Its reliable
configuration management enhances the security and performance of our network.

Introduction

Modern network switches continue to become
more complex to configure and manage as functionality
is moved from the network core to edge devices. As a
result, administrators of large Local Area Networks
(LANs) face significant challenges, particularly if they
utilize features such as Virtual LANs (VLANs) or per
host Quality of Service. Most existing network manage-
ment systems do not focus on the edge devices of
LANs. Instead, they are designed for network specialists
administrating the core devices of Wide Area Networks
(WANs). This has left many desktop and server admin-
istrators who are responsible for moves, adds, and
changes involving edge devices to manually configure
and maintain them because they lack adequate tools.

There are several well-known problems with
manually configuring devices. First, the amount of
time the network specialist must devote to reconfigur-
ing switch ports for each workstation or server change
is significant. This can also lead to bottlenecks as
other administrators wait for each network reconfigu-
ration to be completed. A large volume of manual
changes also increases the probability of error with the
resultant increase in downtime and troubleshooting.

In this paper, we discuss the design and implemen-
tation of Splat – a switch port configuration manage-
ment tool.1 Unlike most existing network management
tools, Splat focuses on the configuration management of
edge devices, applying a traditional system administra-
tion configuration management approach to this area.
Configuration Management

In recent years, large scale infrastructure config-
uration management has been a topic of interest to
many system administrators [3, 4, 30, 15, 6].

1During design discussions, we needed a name for the sys-
tem. The placeholder name ‘‘Splat’’ stuck.

Organizations are now deploying comprehensive con-
figuration management systems for many areas of
their infrastructure such as workstations, servers, and
account management. In the traditional network man-
agement community, the emphasis has been on provi-
sioning, bandwidth, core devices, inter-device links,
and fault management [9, 24, 29, 23, 16].

Those who address the network management of
LANs have tried to take a similar approach. As Kevin
Dooley states in Designing Large-Scale LANs [10]:

However, remember the physical tracking side of
configuration management, especially if you deal
with the configurations of Layer 2 devices such
as hubs and switches. If network managers have
accurate information about physical locations,
MAC addresses, and cabling for end devices
such as user workstations, then they can easily
handle hardware moves, adds, and changes. In
most organizations, business requirements force
network administration to respond quickly and
efficiently to requests for end-user moves and
service changes. However, the cabling and hard-
ware records are usually out-of-date, so every
small move requires a technician to visit the site
and carefully document the equipment and
cabling. This process is expensive and slow.

Having out-of-date records is a problem, but not
one that is unique to network management. System
administrators deal with the same issue in designing and
deploying configuration management systems for work-
stations and servers. As Dooley points out, if the data is
not current it cannot be used. If it is not being used then
overworked system administrators have no incentive to
update the data. This chicken-and-egg situation is the
bane of every system administrator trying to introduce
system configuration management to a site.

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 247

Splat: A Network Switch/Port Configuration Management Tool Abrahamson, et al.

The best way to break this cycle is to integrate a
single definitive data source into operational tools.
When accurate data is necessary for the operation of a
site it reverses the situation. This poses a twofold chal-
lenge for the system designer: 1) Data updates must be
as easy and painless as possible for the staff. 2) The
benefits of the new system must be significant.

Dooley continues:

Unfortunately, no software can solve this prob-
lem; it is primarily a procedural issue. Techni-
cians making changes have to keep the records
up-to-date, and the cabling and patch panels have
to be periodically audited to ensure accuracy of
the records.

We agree that this area of network management
is primarily a procedural one. However, such proce-
dures are best implemented using software tools that
validate input data and ensure integrity through tradi-
tional system administration practices.

Background

The University of Wisconsin’s Computer Sci-
ences Department network consists of approximately
1500 computers using 2000 IP addresses on 50 routed
subnets. All system administration tasks (including
desktop support, software installation, account man-
agement, and network management) are handled by
one group. This group has nine full-time staff and 12
part-time undergraduate students. There is some spe-
cialization in both the full-time staff and the student
staff. But, everyone is expected to be able to perform
some common tasks. For example, all of the student
staff are expected to do routine tasks such as moving
workstations from one office to another, which often
involves IP address changes.

We previously had a small number of routers and
a large number of relatively simple (and ‘‘mostly
unmanaged’’) 100base-T ethernet switches with no
VLANs. In that situation, it was reasonable to not use
any network configuration tools since the only devices
that needed ongoing configuration were the routers
and firewalls, each of which was a special case.
Router and firewall configurations were manually pre-
served using RCS [28].

Motivation and Requirements Identification

We began a major network infrastructure
upgrade in the summer of 2002. All routers and the
‘‘mostly unmanaged’’ ethernet switches were to be
replaced with new routers and switches.

The new network consists of three core routers and
edge switches in the data center and edge switches in
Intermediate Distribution Frames (IDFs)2 throughout the

2Network jargon for a wiring closet. More specifically, in a
structured wiring system, the rack where end devices are
cross-connected into the rest of the network.

building. Multiple routed networks enable traffic separa-
tion and functional grouping of computers. Each edge
switch has redundant uplinks to the core routers. IEEE
802.1Q [17] VLANs are used to implement the separate
routed networks on one set of equipment.

The previous network had only three managed
devices; the new network would have over 50 devices
that required active management. It became clear that
we needed a switch configuration management tool.

Requirements
A switch configuration management tool must

satisfy a number of requirements to be useful to our
staff:

1. It must enable administrators with little net-
working experience to perform routine tasks
without having to log into edge switches and
make manual configuration changes. These
tasks include adding, removing, and swapping
workstations in offices throughout the depart-
ment and making hardware changes such as
replacing ethernet cards.

2. The tool should provide live port status and
statistics from switches without requiring
administrators to log into devices manually.

3. It should report reliable, up-to-date information
on which host is connected to which switch
port for troubleshooting and general auditing.
Previously this would have been done by send-
ing a staff person to an IDF and computer loca-
tion to manually take an inventory of the switch
ports, patch panels, and data jacks.

4. The tool should track network device configu-
ration changes using a version control system
such as CVS [7].

5. It must allow for different policies and configu-
rations on different VLANs.

6. It must be possible to configure any VLAN in
our network on any edge port of any switch.

7. The tool should be easy to integrate with our
existing site configuration management infras-
tructure, and it must be scalable and extendable
for additional features as our network continues
to evolve.

8. Use of the tool should be easily integrated with
existing staff procedures and habits, causing as
little disruption as possible.

Additional Features
Although not strictly required, some additional

features would enhance the functionality of the tool:
1. Allowing only a specified MAC address on a

given switch port would enhance the security of
the network.

2. The tool should automatically generate config-
uration files for other network tools.

Alternatives Considered
System administrators have a propensity for rein-

venting the wheel. Before creating a new system, we

248 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Abrahamson, et al. Splat: A Network Switch/Port Configuration Management Tool

looked for existing solutions. A number of proprietary
and open source options were investigated.

As previously noted, most network management
systems do not support the type of edge-device port
configuration management we were looking for. Sys-
tems such as HP OpenView, IBM Tivoli NetView, and
GxSNMP are best suited for management of WANs or
campus core networks, not edge device ports. Open-
NMS is primarily a fault and performance manage-
ment system. We found that the LANdb project (‘‘The
Network Management Database’’) [18] addresses sim-
ilar areas as Splat, but it appears that development has
been idle since July 2000.

We did not find any systems that met our
requirements, so we decided to develop Splat.

DATABASE

RANCID

CVS

REPOSITORY

SWITCH
SYSADMIN
INPUT

SPLAT

(future development)

Figure 1: Splat processes and related components.

Tool Design and Implementation

Splat is a command line tool, written in Perl [25],
and a related set of Perl modules. It interfaces with a
PostgreSQL [26] network configuration database
using the Perl Database Interface module (DBI) [8]. It
was implemented without any special PostgreSQL
features and it would be easy to use a different rela-
tional database system in its place.

Splat interacts with switches using the RANCID
[27] configuration tool. It has been tested and used on
Linux and Solaris systems. Splat has not been tested
on Windows.

Splat generates the appropriate switch configura-
tion commands from templates and uses RANCID to
apply those commands to the switches. RANCID then
retrieves the complete configuration from the switch
and stores it in a CVS repository (see Figure 1). This
enables administrators to view and retrieve previous
configuration versions.

Network Configuration Database

Managing site configuration information with a
relational database has been a common strategy of
system administrators for some time [12, 13, 14].
Splat applies this strategy in managing the edge

devices of a network. Its network configuration
database contains both static information (such as data
jack locations) and dynamic information (such as cur-
rent hostname/data-jack assignments). The details of
the database design are covered in the next section.

Ideally, the network configuration database is part
of a larger configuration management system, including
a parts inventory of workstations components (for
example, ethernet cards) and other information such as
operating system and security policies. We import
inventory data from our existing inventory database.

Sites without an inventory database need to enter
ethernet card and hostname information into the Splat
database. Splat includes scripts to initialize other
information in the database (such as IDFs and jack-
numbers) according to the naming conventions of the
site.
Tables and Data Relationships

The major data tables and relationships are
shown in Figure 2. The primary abstraction in Splat is
the relationship between a particular host network
interface and a particular data jack – ‘‘where the host
meets the network.’’ It is entered in the hosts table in
the Splat database. The computer’s network adapter is
represented as an inventory part number and interface
number (to support multi-port network cards). The
data jack is represented as an (IDF, jacknumber) pair.
At our site, data jacks are numbered per IDF. Other
naming schemes will work as long as the (IDF, jack-
number) pair is unique.

In the IDF, each switch port is patched to a data
jack. This is represented in the port_mapping table.
The jacks table reflects the building installed wire
between the IDF patch panel and office data jack. If
enough switch ports are available, the use of VLANs
and trunking reduces the need for re-patching between
switch ports and the IDF patch panel. To generate a
generic port configuration script, Splat consults the
mac_address and vlans database tables. Splat also
needs the IP address, which could be stored in the con-
figuration database or retrieved by a Domain Name
System query on the hostname.

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 249

Splat: A Network Switch/Port Configuration Management Tool Abrahamson, et al.

Additional database tables hold IDF data (names
and locations), switch data (names, locations, and
interface inventory), and ‘‘glue’’ to interface to our
existing inventory database.

part

interface_number

idf

jacknum

C012345

0

2300E

101

table hosts:

DOMAIN NAME SYSTEM

name

network

vlan

wisc−outernet

192.168.42.0/24

1210

table vlans:

part

interface_number

mac_address

C012345

0

00:11:22:33:44:55

table mac_addresses:

part

interface_number

hostname

C012345

0

host1.cs.wisc.edu

table hostnames:

INVENTORY DATABASE
(external)

idf

room

jacknum

2300E

2327

101

table jacks:

device

interface

idf

2300E−sw−3

FastEthernet0/10

table port_mapping:

jacknum

2300E

101

HOST
OFFICE JACK

IDF PATCH PANEL

Office Patch Cable

Building Installed Wire

IDF SWITCH
(2300E−sw−3)

(ip address)

...
switchport access vlan 1210

switchport port−security mac−address 00:11:22:33:44:55

...

IDF Patch Cable

generated configuration
script:

��
��
��

��
��
��

����������������������

Figure 2: Data relationships.

MAC Address Locking

On most of our production networks, the gener-
ated configuration includes commands to ‘‘lock’’ the
switch port to the MAC address of the attached work-
station. This serves as an integrity check on the con-
figuration and also makes it more difficult for the
casual ‘‘bandwidth borrower’’ to unplug a supported
workstation and use the data jack for their laptop.

Not all switches feature the ability to lock a port
to a specific MAC address. For those that do, the com-
mands to configure MAC-locking vary from vendor to
vendor. Splat can handle this by using different con-
figuration templates for each vendor to generate com-
mand scripts to run on the appropriate switch.

Once the port is configured for only one MAC
address, the switch handles violations depending on the
switch and the specific configuration options used. In
our case, the Cisco switches are configured to re s t r i c t,
which means that packets from other MAC addresses
are dropped, and SNMP traps and syslog messages are
generated about the event (monitoring SNMP traps and
syslog messages is outside the scope of Splat).

Generating a MAC-lock configuration uses the
mac_address table, as shown in the middle and bottom
of Figure 2.

Port Policies

Uplink ports use a different configuration tem-
plate than edge-device ports. The port configuration
does not use MAC address locking or assign a VLAN,
but instead sets the port to trunk mode and DOT1Q
encapsulation. Other port policies are broken,
reserved, and generic (available for use).

250 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Abrahamson, et al. Splat: A Network Switch/Port Configuration Management Tool

Per-switch-interface (port) policies are in the
switch_interfaces table (not shown in Figure 2).

VLAN Table

We use a vlans table instead of an IP address to
VLAN scheme (such as using a ‘‘subnet’’ number) to
eliminate any assumptions about IP network address
allocation and avoid conflicts with reserved VLAN
numbers. This is shown at the bottom of Figure 2.

VLAN Policies

Not all of our VLANs use the same configura-
tion policy. For example, the ‘‘laptop’’ network is des-
ignated for laptop use. It is available in certain loca-
tions for transient laptops. The VLAN policy for the
laptop network does not specify ‘‘MAC-locking’’.3

Also, on general-purpose networks, data jacks that are
not currently attached to a computer are disabled in
the configuration. Laptop network public data jacks
are enabled, although they are not attached to a spe-
cific computer.

VLAN policy assignments are in the vlan_policy
table (not shown in Figure 2).

RANCID

Splat utilizes RANCID to securely communicate
with network devices, execute device commands, and
maintain device configurations with CVS. Although
RANCID is the ‘‘Really Awesome New Cisco confIg
Differ,’’ it actually supports a number of well known
network devices in addition to Cisco switches running
IOS [5]. As of RANCID version 2.2.2, this includes Bay
routers, Juniper routers, Cisco Catalyst switches,
Foundry switches, Redback NASs, ADC EZT3 muxes,
MRTd, Alteon switches, and HP ProCurve switches.
This flexibility is important as we do not know what
devices we will need to support in the future.

To run commands on a device, Splat first gener-
ates a device configuration script from a template. The
commands are then run on the switch via RANCID’s
clogin utility. Clogin is an Expect [19] script that auto-
mates the process of logging into devices using the
facilities available on the device such as SSH [31].

For each device configuration change, RANCID
makes a revision entry in CVS. It is important to note
that we do not use CVS for classic revision control.
While it is possible to load a previous configuration
revision directly to a switch, the Splat database would
not be synchronized. Instead, we use CVS revisions
for logging changes and as a backup for disaster
recovery if the switch needs to be reinstalled or com-
pletely reconfigured.

Using Splat

The Splat command syntax is described in
Appendix A. Output from these commands are shown

3Laptop network authentication and authorization are not
part of Splat. We use authipf [2].

in Appendix B. The two most common commands are
attach and detach to update which computer is con-
nected to a particular data jack.

Desktop and Server Administrators
Splat enables desktop and server administrators

to make network configuration changes that are
needed when doing routine tasks such as moving or
reconfiguring a computer without intervention from
network specialists. When attaching a computer to a
data jack, the system administrator does not need to
know the MAC addresses or VLAN number, just the
hostname and data jack number.

When replacing an ethernet card in a computer,
the system administrator only needs to update the
inventory database. Splat will see the new MAC
address the next time the computer is attached to a
data jack. The same applies when a computer changes
hostname, is moved from one room to another, or is
replaced by a new computer.

Information commands available to the system
administrator can aid in preliminary diagnosis of host
specific network problems.

Network Specialists
Compared to desktop and server administrators,

network specialists often have a different view of the
network and have different needs from a network
management system.

Long-term and short-term planning tasks are
served by the variety of information Splat makes
available. For example, it is easy for network special-
ists to check the inventory of available switch ports
and data jacks. When a research group decides to add
additional computers to their desks, it is easy to check
the availability of data jacks in their offices. When
planning the budget, it is easy to get a site-wide inven-
tory of available switch ports.

When troubleshooting network problems (short
of total connectivity failure) it is helpful to have infor-
mation about a computer’s switch port connection, the
switch port status and statistics, and the switch global
status and statistics. The same holds true for all of the
switches in the data path between the problem com-
puter and the ‘‘other ’’ end. Splat can present all of this
information based on only one unique element of the
configuration (typically either a hostname, data jack,
or switch port). So, the network specialist does not
have to untangle all of the different aspects of the con-
figuration for that element.

We make extensive use of Cricket [1] for gather-
ing and presenting network performance and utiliza-
tion data, and NetSaint [22] for status/fault monitor-
ing. Using the Splat database, we have automated the
generation of configuration files for both4

4Note: Nagios [21] is the successor to NetSaint, and we
will generate Nagios configuration files when we switch
from NetSaint.

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 251

Splat: A Network Switch/Port Configuration Management Tool Abrahamson, et al.

Deployment and Experiences

Splat was developed on a test network composed
of a subset of the switch setup that was to be used
department-wide. It was deployed one network at a
time as existing switches were replaced. As each of
the first few networks were converted, we assessed the
process and made appropriate adjustments to the code.

There was some hesitation by the staff when they
started using Splat. During the transitional phase, it was
unclear which networks were under Splat configuration,
and which were to be done ‘‘the old way.’’ This was a
communication problem, not a Splat problem.

Networks were converted to Splat by a handful
of student staff (including, of course, the students who
specialize in the network and had been involved in
planning and designing Splat). They soon became
very familiar with Splat, and were willing to work
around any bugs they found (which were usually fixed
within hours). The vast majority of the time the only
command being used was attach, as workstations
moved from the old (unmanaged) network to the new
network with Splat.

Using Splat requires that the inventory database
be correct and current. As can be expected, a number
of data entry errors were found when Splat either
refused to make a connection (no network part in the
inventory) or configured the wrong MAC address
(wrong part in the inventory). Once the staff became
aware of the problem, these data errors were fairly
easy to fix on a case-by-case basis.

The requirement that the inventory database be
current also caused some issues, as staff who were not
in the habit of updating the inventory in a timely man-
ner were forced to make the update before being able
to attach a computer to the network.

We experienced a few interesting events through-
out the deployment. For example, during a rack cleanup
in the data center, it was necessary to move the database
server that included the Splat database from one net-
work switch to another. It was immediately apparent
that detaching the Splat database server was a mistake,
as it was no longer possible to run the Splat commands
necessary to re-attach it to the network.

Also, we had been aware for some time that a few
rogue users had been occasionally disconnecting work-
stations from the network in order to use the data jacks
for other computers (most likely laptops). We did not
have adequate tools to catch them and it was not consid-
ered a major problem. But, it served as a catalyst for the
MAC-locking feature. As soon as we deployed Splat
with MAC-locking, a few MAC-lock violation alerts
were generated, but no one ever complained or even
asked about the change in functionality.

Additional Splat Tools and Future Development

We are continuing the development of Splat and
related tools. An existing related tool is splat2cricket

which generates configuration files for monitoring
switches with Cricket. We are in the process of creat-
ing DNS [20] and DHCP [11] scripts that will auto-
matically generate DNS and DHCP configuration files
from the Splat network configuration database.

Needs we expect to address in the near future
include multi-level access control, configuration of
our core routers (in addition to edge switches), and
better support for reinstalling a complete switch con-
figuration.

Multi-level Access Control
Multi-level access control will be necessary in

our department. At least one of our research projects
needs the flexibility to frequently reconfigure several
test networks without intervention from the system
administration staff. Sites with a different system/net-
work administration organizational model, or sharing
administration of a network between different organi-
zations, would also need it.

One approach is to control access based on the
set (network device, VLAN, host). Splat, as currently
implemented, directly accesses the database and con-
figuration files. Database and file system access con-
trols limit access to the system administration staff.
Multi-level access control will require finer-grained
controls than are provided by either, so it will have to
be implemented in Splat.

Most likely, this will require a client-server
implementation, with the server enforcing fine-grained
access control. This may be the basis for web or other
graphical user interfaces.

Core Routers
Our core routers are currently configured manu-

ally using RCS [11] to preserve configuration revi-
sions. We would like to adapt Splat to manage these
devices as well. This would require adding a new
router port type to the switch_interfaces table and the
code and templates to support it.

Reconfiguration
Currently, we can manually retrieve a switch

configuration from the CVS repository when it is nec-
essary to completely reconfigure a switch (for exam-
ple, when a switch is replaced). We would like to add
automated configuration recovery and initial switch
configuration for new switches.

Availability

Splat is available for download from http://www.
cs.wisc.edu/csl/projects/splat .

Conclusion

We presented a method for managing network
edge switch ports and port-to-host configurations in
the form of a relatively simple tool. Most network
configuration management tools do not cover this
area. Instead of relying on manual procedures, a better

252 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Abrahamson, et al. Splat: A Network Switch/Port Configuration Management Tool

way to approach this problem is by applying tradi-
tional configuration management techniques. In par-
ticular, the requirement for accurate configuration
information in a database proves to be an effective
means of enforcing correct procedures.

Considering the existing procedures of a site in
the tool’s design, and providing a simple interface,
makes it possible for administrators of varying net-
work experience to perform routine tasks. This tool
enhances our ability to monitor and troubleshoot prob-
lems as our network continues to evolve.

Acknowledgements

This work would not have been possible without
the help and support of the Computer Systems Lab staff.

Author Information

All of the authors work for the Computer Sys-
tems Lab at the University of Wisconsin Computer
Sciences Department.

Cary Abrahamson is a System Administrator at
the Computer Systems Lab. His professional interests
include network management and security. You can
reach him at cary@cs.wisc.edu .

David Parter is a Senior Systems Administrator
and Associate Director of the Computer Systems Lab.
He also serves on the SAGE Executive Committee,
and was program chair for LISA ’99. His professional
interests include network systems, security, configura-
tion management, and System Administration educa-
tion. You can reach David at dparter@cs.wisc.edu .

Michael Blodgett is an undergraduate student
and System Administrator with the student staff.
Michael can be reached at mblodget@cs.wisc.edu .

Adam Kunen is an undergraduate student and
System Administrator with the student staff. Adam
can be reached at ajkunen@cs.wisc.edu .

Nathan Mueller is a System Administrator with
the student staff who recently graduated with a degree
in Computer Science from the University of Wiscon-
sin. You can reach him at nate@cs.wisc.edu.

References

[1] Allen, Jeff R., ‘‘Driving by the Rear-View Mir-
ror: Managing a Network with Cricket,’’ First
Conference on Network Administration (NETA
’99), pp. 1-10, Santa Clara, CA, USENIX, April
7-10, 1999.

[2] Beck, Robert, ‘‘Dealing with Public Ethernet
Jacks – Switches, Gateways, and Authentica-
tion,’’ 13th Systems Administration Conference
(LISA ’99), pp. 149-154, USENIX, December,
1999.

[3] Burgess, Mark, ‘‘A Site Configuration Engine,’’
Computing Systems, Volume 8, pp. 309-337,
USENIX, Summer, 1995.

[4] Burgess, Mark, ‘‘Computer Immunology,’’
Twelfth Systems Administration Conference
(LISA ’98), p. 283, Boston, Massachusetts,
USENIX, December 6-11, 1998.

[5] Cisco Systems, Inc., Cisco IOS, http://www.
cisco.com/univercd/cc/td/doc/product/software/
ios123/index.htm .

[6] Cons, Lionel and Piotr Poznanski, ‘‘Pan: A
High-Level Configuration Language,’’ Sixteenth
Systems Administration Conference (LISA ’02),
pp. 83-98, USENIX,, November 2002.

[7] The Concurrent Versions System, http://ccvs.
cvshome.org .

[8] Descartes, Alligator and Tim Bunce, Program-
ming the Perl DBI, O’Reilly, February, 2000.

[9] Dooley, Kevin, Designing Large-Scale LANs,
O’Reilly, January, 2002.

[10] Dooley, Kevin, Designing Large-Scale LANs,
Chapter 9.1.1, p. 274, O’Reilly, January, 2002.

[11] Droms, Ralph, Dynamic Host Configuration
Protocol, RFC 2131, March, 1997.

[12] Finke, Jon, ‘‘Automating Printing Configura-
tion,’’ LISA VIII Conference Proceedings, pp.
175-183, San Diego, CA, USENIX, September
19-23, 1994.

[13] Finke, Jon, ‘‘Institute White Pages as a System
Administration Problem,’’ 10th Systems Admin-
istration Conference (LISA ’96), pp. 233-240,
Chicago, IL, Usenix, September 29-October 4,
1996.

[14] Finke, Jon, ‘‘Automation of Site Configuration
Management,’’ Eleventh Systems Administration
Conference (LISA ’97), p. 155, San Diego, CA,
USENIX, October 26-31, 1997.

[15] Finke, Jon, ‘‘Monitoring Application Use with
License Server Logs,’’ Eleventh Systems Admin-
istration Conference (LISA ’97), p. 17, San
Diego, CA, USENIX, October 26-31, 1997.

[16] GxSNMP, http://www.gxsnmp.org/ .
[17] ‘‘IEEE Standards for Local and Metropolitan

Area Networks: Virtual Bridged Local Area Net-
works,’’ IEEE Standard 802.1Q-1988, 1998.

[18] LANdb: The Network Management Database,
http://landb.sourceforge.net/about.shtml .

[19] Libes, Don, ‘‘expect: Curing Those Uncontrol-
lable Fits of Interaction,’’ USENIX Summer 1990
Conference Proceedings, pp. 183-192, USENIX,
1990.

[20] Mockapetris, P., Domain Names – Concepts and
Facilities, STD 13, RFC 1034, November, 1987.

[21] Nagios, http://www.nagios.org/ .
[22] NetSaint, http://www.netsaint.org .
[23] openNMS, http://www.opennms.org .
[24] hp OpenView, http://www.managementsoftware.

hp.com/ .
[25] Perl, http://www.perl.com .

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 253

Splat: A Network Switch/Port Configuration Management Tool Abrahamson, et al.

[26] PostgreSQL, http://www.postgresql.org .
[27] RANCID – Really Awesome New Cisco confIg

Differ, http://www.shrubbery.net/rancid/ .
[28] Tichy, Walter F., ‘‘RCS – A System for Version

Control,’’ Software – Practice and Experience,
Vol. 15, Num. 7, pp. 637-654, 1985.

[29] IBM Tivoli NetView, http://www.tivoli.com/
products/index/netview/ .

[30] Traugott, Steve and Joel Huddleston, ‘‘Boot-
strapping an Infrastructure,’’ In Twelfth Systems
Administration Conference (LISA ’98), p. 181,
Boston, MA, USENIX, December 6-11, 1998.

[31] Ylonen, Tatu, ‘‘SSH – Secure Login Connections
Over the Internet,’’ 6th USENIX Security Sympo-
sium, pages 37-42, USENIX, San Jose, CA, July
22-25 1996.

254 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

Abrahamson, et al. Splat: A Network Switch/Port Configuration Management Tool

Appendix A: Splat Syntax

As stated earlier, Splat is a command line tool. In order to meet the requirement of enabling administrators with
little networking experience to make routine changes to the LAN, a simple syntax was employed. The basic opera-
tions are:

• Attaching a host to a jack.
• Detaching a host from a jack.
• Swapping two hosts.
• Getting information on a hostname, jacknumber, IDF, switch, or room.

Syntax Summary:
splat [-a|--attach [-b|--brief] [-n|--nolock] hostname jacknumber [vlan]]

[-c|--commands switch]
[-d|--detach [-b|--brief] hostname]
[-h|--help]
[-s|--swap [-b|--brief] hostname1 hostname2]
[-i|--info [-b|--brief] [hostname | idf | jacknumber | switch]]

Appendix B: Examples

Host Information

When given the name of an attached host, splat -i prints the data jack connection information and available
switch port statistics for the host. Switch port statistics vary depending on the switch type. Below is an example
involving a Cisco 3500 switch.
$ splat -i host1.cs.wisc.edu
--
SPLAT NETWORK DATABASE Mon Jun 30 10:39:55 2003
--
Hostname: host1.cs.wisc.edu

Part: C013317 Bldg: CS
Interface: 0 Room: 2327

MAC: 00:e0:18:71:91:0b Note: NA

IDF Jack Switch Portnumber
--
2300E 218 2300E-sw-3.cs.wisc.edu FastEthernet0/42
--

Available Switch Statistics
--
FastEthernet0/42 is up, line protocol is up (connected)

Hardware is Fast Ethernet, address is 000a.8aac.73aa (bia 000a.8aac.73aa)
Description: host1.cs.wisc.edu via 2300E-218
MTU 1500 bytes, BW 100000 Kbit, DLY 100 usec,

reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
Keepalive set (10 sec)
Full-duplex, 100Mb/s
input flow-control is off, output flow-control is off
ARP type: ARPA, ARP Timeout 04:00:00
Last input never, output 00:00:01, output hang never
Last clearing of "show interface" counters never
Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
Queueing strategy: fifo
Output queue :0/40 (size/max)
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute ouxtput rate 0 bits/sec, 0 packets/sec

1167225 packets input, 545465471 bytes, 0 no buffer
Received 66 broadcasts, 0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
0 watchdog, 0 multicast, 0 pause input
0 input packets with dribble condition detected
1338665 packets output, 968728968 bytes, 0 underruns
0 output errors, 0 collisions, 1 interface resets
0 babbles, 0 late collision, 0 deferred
0 lost carrier, 0 no carrier, 0 PAUSE output
0 output buffer failures, 0 output buffers swapped out

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 255

Splat: A Network Switch/Port Configuration Management Tool Abrahamson, et al.

Switch Information
2300E-sw-3.cs.wisc.edu is the hostname of an IDF edge switch. When given a switch name, the splat -i com-

mand shows information about the switch:
$ splat -i 2300E-sw-3.cs.wisc.edu
--
SPLAT NETWORK DATABASE Mon Jun 30 10:42:09 2003
--

Switch: 2300E-sw-3.cs.wisc.edu

Interface Jacknum Hostname
--
FastEthernet0/1 2300E-201 chopin.cs.wisc.edu
FastEthernet0/2 2300E-210 tonic.cs.wisc.edu
FastEthernet0/3 2300E-211 lime.cs.wisc.edu
FastEthernet0/4 2300E-212 NA
FastEthernet0/5 2300E-213 vodka.cs.wisc.edu
FastEthernet0/6 2300E-214 ojuice.cs.wisc.edu
FastEthernet0/7 2300E-215 NA
. . .

Attach
The -a option is used to attach a computer to a data jack. The -b option requests brief output. Otherwise, each

command and the resultant switch output (if any) is printed.

If the hostname is not a fully qualified domain name, an attempt is made to find one in the current domain
using gethostbyname().

In this example, the host host1.cs.wisc.edu is moved to data jack 2300E-218:
$ splat -a -b host1 2300E-218
Use fully qualified domain name host1.cs.wisc.edu? [n]/y : y

Updating the network database...
WARNING - Hostname host1.cs.wisc.edu is currently attached to jack 2300E-319.
OK to detach this connection? [n]/y : y
Host host1.cs.wisc.edu detached from jacknumber 2300E-319 in the splat database.

Updating the switch...
Host host1.cs.wisc.edu attached to jacknumber 2300E-218.

Running RANCID to collect switch config...
CVS commit for 2300E-sw-3.cs.wisc.edu config successful.

256 2003 LISA XVII – October 26-31, 2003 – San Diego, CA

