
USENIX Association

Proceedings of the 17th Large Installation
Systems Administration Conference

San Diego, CA, USA
October 26–31, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



An Analysis of Database-
Driven Mail Servers

Nick Elprin and Bryan Parno – Harvard College

ABSTRACT

This paper compares the performance of three different IMAP servers, each of which uses a
different storage mechanism: Cyrus uses a database built on BerkeleyDB, Courier-IMAP uses
maildirs, and UW-IMAP uses mbox files. We also use a mySQL database to simulate a relational-
database-driven IMAP server. We find that Cyrus and mySQL outperform UW and Courier in
most tests, often dramatically beating Courier. Cyrus is particularly efficient at scan operations
such as retrieving headers, and it also does particularly well on searches on header fields. UW and
Cyrus perform similarly on full-text searches, although Cyrus seems to scale slightly better as the
size of the mailbox grows. mySQL excels at full-text searches and header retrieval, but it performs
poorly when deleting messages. In general, we believe that a database system offers better email
storage facilities than traditional file systems.

Introduction

Most IMAP and POP3 servers, even ones com-
monly used in environments with many users, store
mail data in flat text files. This suffices when the
quantity of email is small, but when an email applica-
tion must sift through hundreds of megabytes of inef-
ficiently stored data, server performance can suffer
dramatically. A recent analysis of a typical university
file system found ‘‘a population of users who spend
the majority of their file system accesses reading
email’’ [1]. The paper concludes by noting: ‘‘While it
may have been obvious a priori, flat-file mailboxes are
quite inefficient. Anecdotal evidence suggests that
database-driven mail servers are faster and consume
fewer resources than file-system based ones, and we
have no reason to dispute this.’’

Despite the alleged a priori obviousness of the
benefits of a database-driven mail storage system – or
perhaps because of it – there has been little empirical
exploration of the potential for database use in mail
servers. Yet the problem of email storage seems per-
fectly suited for a database solution [2]. Databases
allow for more advanced and efficient content queries
(particularly sorting and searching data) than flat files
and, moreover, a cleanly structured database schema
for email would better mediate the transfer and
exchange of mail data to other applications and formats.

Background And Related Work

To our knowledge, little work exists comparing
the performance of traditional file-based email servers
with that of a database-driven system, although sev-
eral papers do propose and defend various types of
file-based email systems. Sam Varshavchik, for exam-
ple, compares mbox with maildir mail storage [3]. The
mbox system concatenates every message together
and stores the result in a single file, while the maildir

format stores each message in a separate file. Even
though Varshavchik concludes that maildirs will
match or outperform mbox systems in all but a few
isolated cases, he admits that maildirs still contain
inherent flaws. Among them, he mentions that
maildirs will perform poorly if used for specific con-
tent searches on large folders, particularly if the server
runs on a machine with an inefficient file system.

Mark Crispin also highlights the shortcomings of
file-based mail storage [4]. He notes that most operat-
ing systems synchronize file creation. As a result, any
attempt to create or delete email runs into a narrow
bottleneck at the level of the file system. Furthermore,
a text search requires opening and closing every file in
the mail directory, placing a considerable strain on the
file system. In the end, Crispin concludes that a
database-driven solution would result in superior per-
formance, but he offers no arguments to support his
position, other than his comments on the shortcomings
of file-based systems.

Several companies offer email server products
based on database storage. DBMail offers programs that
‘‘ e n a b l e the possibility of storing and retrieving mail
messages from a database’’ [5]. The site claims the sys-
tem performs faster queries, scales better, and provides
better flexibility than file-based storage, but it offers lit-
tle reasoning or evidence to support these claims.

Openwave Email Mx (formerly Intermail), a prod-
uct from Software.com, uses Berkeley DB, an embedded
data store, to archive messages. But again, aside from its
claim that Email MX sets ‘‘new standards of excellence
with its massive scalability, unrivaled performance, and
superior architecture,’’ the company provides no informa-
tion on the server’s performance compared to traditional
mail systems [6]. Similarly, Citadel also bases its mail
storage on a database, but offers no evidence to support
this decision [7]. In fact, the only argument advanced in

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 15



An Analysis of Database-Driven Mail Servers Elprin & Parno

favor of using a database relies on creating a single
instance of each email that enters the system, so that if
multiple users receive the same email, the system stores
only one copy. Without evidence to support the conjec-
tured performance improvement, we learn little about the
relative merits of database versus file-system storage.

Thus, although researchers have argued over the
advantages and disadvantages of different file-based
mail storage systems, they have neglected the subject
of database-driven solutions. A few companies do
offer such solutions, but as far as we could find, none
provides any evidence to justify the alleged benefits of
this alternative.

Experimental Setup

We tested IMAP servers with three different stor-
age mechanisms. Courier IMAP (v. 1.4.2) uses
maildirs, UW-IMAP-2002 uses mbox files, and Cyrus
(v. 2.1.9) uses BerkeleyDB; additionally, we created
an email database in mySQL (v. 3.23.49) and used it
to model a relational-database-driven IMAP server.
Other mailbox formats, such as the more performance-
oriented mbx format, do exist, but we believe the pop-
ularity of mbox and maildirs justifies their use in these
tests. And although other database-driven servers also
exist – the few noted earlier, as well as more widely
known applications from Microsoft and Sun Microsys-
tems – we chose to include only non-commercial servers
in our comparison. All servers were run on a machine
running NetBSD 1.6 with a 200 Mhz Pentium processor,
128 MB of RAM, and a 1.5 GB IDE hard drive.

Our benchmark consists of seven basic requests,
and we perform each on three different mailbox sizes:1

Test Mailbox Sizes
Small Medium Large

Size 5 MB 30 MB 100 MB
Number Messages 1,046 8,734 21,282

All users have a single folder named ‘INBOX’.

Our setup attempts to model email usage and
configuration of users from three different categories.
The small user represents a typical webmail user with
a relatively small quota. The medium user represents
the average size for a commercial or academic email
account. The large mailbox typifies a high-volume
account which regularly accumulates thousands of
emails, such as a corporate account. Our basic config-
uration models the typical naïve user who saves every
message in the inbox.

Our mySQL database schema consists of a table of
messages for each account size, small, medium, and

1In addition to the three user accounts described above, we
also tested a tiny account consisting of 105 messages (0.5
MB). In virtually every test, the results paralleled those of
our other three accounts. However, the time differences be-
tween servers proved trivial, so we chose to omit them from
our results for the sake of brevity.

large. Each table stores header information and the mes-
sage body in separate fields. We strategically defined
indices on properties we expected to be particularly rele-
vant to typical IMAP usage. For instance, we created a
full-text index on subject, body, sender, and recipient.
Thus the mySQL model and Cyrus used storage mecha-
nisms designed to structure data intelligently, while UW
and Courier used standard file system structures.
Arguably, the playing field would have been more level
with a standard IMAP server altered to use a mySQL
database rather than a database model independent of
the rest of the IMAP server. We chose the latter option
for a number of reasons: we wanted to test publicly
available software rather than customized versions; we
believe overhead of accessing the data source will out-
weigh other factors necessary to run an IMAP server;
and our time and resource constraints made it difficult to
integrate mySQL storage into an existing IMAP server.

To generate a large collection of diverse email, we
created an email alias (namely emagnet@hein.eecs.
harvard.edu) to the three accounts on each server and
then subscribed emagnet to a large variety of mailing
lists. Thus, each account received exactly the same
email. This approach allowed us to measure each
server ’s performance on real email, rather than artifi-
cially created messages. It also guaranteed diversity in
the mail headers, so that we could accurately test the
servers’ searching abilities.

The benchmark times the following requests:
1. Retrieve all headers in the user’s INBOX.

All mail clients must routinely perform this
operation to download new mail and refresh
cached information, so the server’s response
should be quick and efficient. This procedure is
analogous to a scan operation that returns a sin-
gle field’s value for every tuple in a relation.

2. 2a. Retrieve a list of messages whose full text
(subject and body) contains ‘‘happy’’ (cho-
sen to match approximately 1 percent of the
messages).

2b. Retrieve a list of messages whose full text
contains ‘‘free’’ (chosen to match approxi-
mately 25 percent of the messages).

The IMAP protocol allows users to retrieve
mail that matches conditions a user can specify
in a simple query. Performance of this opera-
tion must scale well with the size of the mail
data and the number of successful matches.

3. 3a. Retrieve a list of messages whose sender is
‘‘parno@fas.harvard.edu’’

3b. Retrieve a list of messages received on
November 30, 2002

Searches on the header fields may be faster if
the mail server does not need to open an entire
message file to perform the search. A storage
system that allows selective access to only
those parts of the message that the search
requires should outperform a flat-file system on
tests like this.

16 2003 LISA XVII – October 26-31, 2003 – San Diego, CA



Elprin & Parno An Analysis of Database-Driven Mail Servers

4. 4a. Expunge 1 percent of the user’s mail.
4b. Expunge 20 percent of the user’s mail.
Deleting mail is routine maintenance that all
email users must perform regularly. This test
measures the time necessary to fully purge all
mail flagged for deletion. The flagging of mes-
sages for deletion was done randomly.

Search on ‘‘happy’’ (times in seconds)
Small Medium Large

Cyrus 4.04 25.64 65.6†
UW 2.92 17.76 64.22
Courier 7.76† 52.2† 209.1‡
mySQL 0.71 5.49 15.28

Cyrus UW Courier MySQL

T
im

e
 (

m
s
)

Account type

small med large

Full-text Search 2

1

10

100

1000

10000

100000

1000000

Search on ‘‘free’’ (times in seconds)
Small Medium Large

Cyrus 3.81 24.55 62.4†
UW 2.79 17.43 64.19
Courier 6.56† 50.5† 193.6†
mySQL 1.62 11.32 35.77

Cyrus UW Courier MySQL

T
im

e
 (

m
s
)

Full-text Search 1

1

10

100

1000

10000

100000

1000000

Account type

small med large

Figure 1: Retrieval times for searching on ‘‘happy’’ and ‘‘free’’.

We measured times from the perspective of the
mail client application. That is, the time necessary for
the request is the difference between the time at which
the client sends the request and the time at which it
receives data back from the server. We ran each of our
tests cold, i.e., the server had not previously accessed
the data we queried. To avoid network-related timing
delays, our benchmark client runs on the server. We ran
each test (except expunging deleted messages) three
times; results are the average of the three numbers.

Results

Header Retrieval Times
First, the header retrieval times in tabular format:

Header Retrieval Times (in seconds)
Small Medium Large

Cyrus 2.36 39.3 98.2
UW 6.83 61.9 263.7
Courier 14.37 119.4 356.7
mySQL 1.16 7.08 44.79

All of the standard deviations were less than 1.0 .
More graphically, this looks like:

Cyrus UW Courier MySQL

Header Retrieval

1

10

100

1000

small med large

T
im

e
 (

s
e
c
s
)

Account type

For this benchmark, a retrieval of all message
headers in a user’s inbox, both database-solutions out-
perform the file-based servers, with the performance
differential increasing as the size of the mailbox
grows. An intelligent index on the header field makes
this a simple sequential scan for both Cyrus and
mySQL. Furthermore, our SQL schema gives mySQL
an advantage over Cyrus: mySQL isolates each user’s
messages into a unique table, while Cyrus must scan
through all messages to select only those from the
account requested. In contrast to both of these, UW
must search through the entire mbox file. Worse still,
Courier must open and close hundreds – thousands for
medium and large – of files and then scan through
each file to find the relevant information.

Full-Text Searches
Figure 1 show the tabular and graphic results of

searching on ‘‘happy’’ and ‘‘free.’’ All of the standard
deviations less than 0.3 except as noted: † standard
deviations less than 1; ‡ standard deviation = 26.8.

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 17



An Analysis of Database-Driven Mail Servers Elprin & Parno

This test measures the speed of a full-text search
on messages’ subjects and bodies. On the small and
medium accounts, UW responds slightly faster than
Cyrus, though both outperform Courier by a signifi-
cant margin. Cyrus’s somewhat disappointing statistics
may result from the fact that it must first isolate the
specific user’s mail from all stored messages, and only
then can it perform a full-text search. Meanwhile, UW
performs a relatively simple text search through a sin-
gle file. Simple file searches such as these can often
outperform databases by avoiding the extra overhead
dictated by a DBMS. As the account size grows how-
ever, Cyrus’s database scales better than UW’s flat
files: Cyrus’s times on the large-account search are
faster than, or about equal to, UW’s times.

Searching ‘from’ Header (times in seconds)
Small Medium Large

Cyrus 0.03 0.25 0.55
UW 1.02 6.67 20.33†
Courier 5.37 45.4 164.9‡
mySQL 0.52 0.85 3.51

Cyrus UW Courier MySQL

T
im

e
 (

m
s
)

Account type

small med large

'from' Search

1

10

100

1000

10000

100000

1000000

Searching ‘date’ Header (times in seconds)
Small Medium Large

Cyrus 0.06 0.18 0.36
UW 0.026 0.39 1.21
Courier 0.35 3.78 56.1
mySQL 0.27 0.32 0.8

Cyrus UW Courier MySQL

T
im

e
 (

m
s
)

Account type

small med large

'date' Search

1

10

100

1000

10000

100000

Figure 2: Timing for searching header fields.

Beating UW and Courier by a much wider mar-
gin, mySQL clearly demonstrates the advantage of
intelligent indexing. Although it takes initial overhead
to precompute2, the full-text index allows mySQL to
find text in message bodies much more quickly than
all three other solutions. Overall, this suggests that a
database solution will be most efficient when indexing
is utilized or a user’s mailbox constitutes a majority of
the total mail stored on the server. The disadvantage of
a database solution is that the combined size of all
accounts affects its performance on each account, so
the worst-case scenario is when a user’s account is
small but the server stores a large quantity of mail in
other accounts.

2One could argue that the cost of maintaining a full-text in-
dex would also slow the speed with which the server could
store incoming messages. Even if the cost of indexing a sin-
gle message were significant, however, it would not be rele-
vant to our benchmarks, which time queries from the per-
spective of the end user. It is unlikely that indexing incom-
ing messages would affect the perceived speed of a user try-
ing to search messages, for example.

Searching Specific Header Fields

See Figure 2 for the graphical results of search-
ing the ‘From’ and ‘Date’ header fields. All standard
deviations were less than 0.1, except as noted: † stan-
dard deviation = 3.6; ‡ standard deviation = 0.93 .

On a search over specific header fields, Cyrus
and mySQL once again outperform both file-based
servers on all three accounts, with the exception of
UW’s superior performance on the date search on the
small account. Given that the database solutions still
scale in a far superior manner, this exception seems
negligible. An index on the header information makes
this search an extremely simple database problem,
though without the overhead of a traditional relational
database, Cyrus can execute these queries more
quickly than mySQL. UW, while still slower than
Cyrus, outperforms Courier – UW merely performs
the equivalent of a grep on a single file, while Courier
must open and close every single message file.

Expunging

Figure 3 shows the times for expunging 1 and 20
percent of the box’s mail.

Expunging messages flagged for deletion proved
to be a particularly elucidating test. Cyrus dramati-
cally beats UW when purging a relatively small num-
ber of messages but takes much longer than UW when
the number of deleted messages grows to 20 percent.
Opening the mbox file and rewriting it are the most
costly disk operations UW must perform; identifying
messages for deletion once the file is open should be
relatively quick, and the more messages UW deletes,
the less data it must write back to disk. In contrast,
although Cyrus seems to have quicker access to the
messages it must delete, it scales more slowly when it

18 2003 LISA XVII – October 26-31, 2003 – San Diego, CA



Elprin & Parno An Analysis of Database-Driven Mail Servers

deletes a large number of messages. Cyrus must also
update its indices as it deletes, and this can be a costly
operation for a deletion as large as 20 percent. Data
for mySQL further demonstrates the cost of maintain-
ing extensive indices: although our SQL schema
allows mySQL to perform queries quickly, its perfor-
mance suffers severely when it must delete messages.
Courier ’s deletion times scale approximately linearly
with the number of messages. Courier’s deletion pro-
cess requires no significant overhead, it is simply a
matter of deleting one file for each message.

Expunge 1% of mail (times in seconds)
Small Medium Large

Cyrus 0.68 4.52 12.13
UW 0.82 6.14 53.69
Courier 0.41 4.72 13.69
mySQL 2.84 29.47 120.56

Cyrus UW Courier MySQL

T
im

e
 (

m
s
)

1

10

100

1000

10000

100000

1000000

Account type

small med large

Expunge 1 percent

Expunge 20% of mail (times in seconds)
Small Medium Large

Cyrus 6.17 64.63 156.50
UW 0.93 8.25 69.25
Courier 15.18 61.83 195.76
mySQL 7.71 155.14 1086.39

Cyrus UW Courier MySQL

Expunge 20 percent

1

10

100

1000

10000

100000

1000000

10000000

T
im

e
 (

m
s
)

Account type

small med large

Figure 3: Expunge times.

General Analysis

In general, the database solutions, Cyrus and
mySQL, consistently outperform the file-based servers
in both response time and scalability, often by orders
of magnitude. Moreover, Cyrus and mySQL have
buffer caches that enable even faster performance than
our results indicate.3 Executing queries on the same
data sequentially yielded significantly faster results for
both Cyrus and mySQL. For example, although Cyrus
requires four seconds to perform the first-full-text
search, running a second full-text search immediately
after the first one requires only one second. Similarly,
a search on recently queried data in mySQL often
takes less than a tenth of a second.

For Cyrus, warm runs only yielded faster times
on the full-text searches. It presumably has indices on
header fields, so caching records would not help it per-
form searches on these data. Warm runs yielded a sim-
ilar performance increase on the medium account but

3Client-side caching is also important for performance
from the end-user’s point of view, but it is not germane to
our current discussion. Please see Varshavchik’s analysis [3]
for a more thorough discussion of performance and client-
side caching.

had no effect on Cyrus’s large account, probably for
the simple reason that the large account has too much
data to cache. MySQL, in contrast, exhibited signifi-
cant performance improvements on all accounts and
all queries when using warm data. UW-IMAP and
Courier ’s times remained unchanged on warm runs,
however, so clearly caching endows database imple-
mentations with a significant advantage over file-
based storage mechanisms in certain contexts.

Compared with UW and Courier, Cyrus does
perform poorly on our twenty-percent deletion test,
and mySQL performs embarrassingly on both dele-
tions. We do not believe this is a significant problem,
however, as users rarely delete such large quantities of
mail at once; instead, we suspect the one-percent dele-
tion occurs far more regularly. Furthermore, deleting a
large amount of email can happen, by nature, only
infrequently, while header retrieval takes place con-
stantly, so it is far more important that a mail server
handle the latter task efficiently.

Although mySQL outperforms the other solu-
tions in header retrieval and full-text searches, it has
the advantage of avoiding the overhead of an actual
IMAP server implementation. For example, mySQL
avoids network connections, message-wrapper data
structures, and IMAP command parsing. In general,
however, the majority of the time processing each
benchmark consists of executing the query rather than
performing quick operations like parsing the IMAP
commands. Furthermore, since none of our bench-
marks measured the time needed to connect to the
servers, adding an actual IMAP server on top of the
mySQL database would not add to the overhead of a
connection. Thus, our simulation presents a reasonable
approximation of a relational-database solution.

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 19



An Analysis of Database-Driven Mail Servers Elprin & Parno

Our results differed dramatically from Var-
shavchik’s [3], the only other empirical data we have
found. Varshavchik concludes that ‘‘using maildirs
will be just as fast – and in sometimes [sic] much
faster – than mbox files,’’ while our results indicate
that Courier’s maildirs scale terribly compared to the
storage mechanisms of Cyrus and UW. We believe at
least two factors contribute to this discrepancy. First,
according to Varshavchik, ‘‘Maildirs will not scale
very well on servers that use old, slow, hardware.’’
Indeed, his ‘‘low-end’’ configuration, on which UW
did outperform Courier, is similar to our hardware
configuration. Also, we tested accounts with both
more messages and a greater aggregate size than the
accounts in Varshavchik’s benchmarks. Instead of
upper limits of 10,000 messages and 40 MB, we tested
accounts up to over 20,000 messages and 100 MB.
Similarly, Varshavchik’s benchmarks automatically
generated batches of homogeneous messages while we
used real email from an eclectic mix of sources; our
email contained heterogeneous content and significant
variance among message sizes.

Areas For Future Research

Varying some of the benchmark parameters
could yield additional interesting and illustrative
results. For example, no sane email user would keep
21,000 messages in one folder, so it would be more
realistic to run tests with mail distributed among mul-
tiple folders. Since the IMAP protocol allows a user to
work with only one folder at a time, we felt the results
from such tests would not differ significantly from our
other results, but this is certainly open to further inves-
tigation. In general, more advanced queries, such as a
search over multiple header fields, would also offer
room for more exploration.

With fewer hardware limitations it would be
much easier to run our benchmarks on scales that
more accurately resemble large corporate and aca-
demic computing environments. It would be interest-
ing, for example, to see how well the different storage
systems perform when the server has hundreds of
users and must store over a gigabyte of email. Simi-
larly, an investigation of server performance during
concurrent access from multiple clients could reveal
other advantages of a database storage system; unfor-
tunately, limitations in our experimental setup pre-
vented us from pursuing this inquiry.

Additionally, although our study examines email
server performance from the client’s perspective, a
system administrator may care more about the mem-
ory, processor time or disk I/O usage of the mail
server, all of which may vary based on the storage sys-
tem selected.

Finally, we believe that database storage systems
will allow mail servers to evolve more advanced fea-
tures, and an analytic investigation of these possibilities

could be a fruitful endeavor. For example, advanced
queries could allow for server-side junk mail filtering.
More generally, client email applications can be more
compact and efficient if they can rely on the server for
additional mail-management features, and this could
stimulate the development of truly practical email
clients on small mobile devices such as cellular phones.

Conclusion

Many features of a DBMS are highly advanta-
geous from the point of view of an IMAP server. The
obvious performance differential between the database
options and both UW and Courier indicates that email
storage is indeed a problem well suited for a database
solution. Indexing capabilities give Cyrus and mySQL
an advantage over Courier and UW when scanning
headers and searching header fields. mySQL’s full-text
index provides a particularly expedient method for
searching through message text, although it adds sig-
nificant maintenance cost to operations such as adding
and removing messages. A server-side buffer cache
also improves performance by speeding up searches
on recently accessed data. Although UW outperforms
Cyrus by a small margin on some full-text searches,
mySQL demonstrates clearly that a DBMS can search
email much more quickly than a file-based solution.
Most importantly, these results offer desperately
needed empirical data comparing the performance of
these three storage implementations.

Acknowledgements

We would like to thank David Holland and
Noam Zeilberger for their technical assistance and
UNIX troubleshooting, as well as Stuart Schechter for
suggesting this line of research. Dan Ellard and Margo
Seltzer were both indispensable for their thoughtful
criticism and willingness to help.

Author Information

Nick Elprin (elprin@fas.harvard.edu) is a third-
year computer science undergraduate at Harvard Col-
lege. Bryan Parno (parno@fas.harvard.edu) is a
fourth-year computer science undergraduate at Har-
vard College.

References

[1] Ellard, Daniel, Jonathan Ledlie, Pia Malkani, and
Margo Seltzer, ‘‘Passive NFS Tracing of Email
and Research Workloads,’’ Second Annual
USENIX File and Storage Technologies Confer-
ence, pp. 203-216, San Francisco, CA, March,
2003.

[2] Silberschatz, Avi and Stan Zdonik, et al.,
‘‘Strategic Directions in Database Systems-
Breaking Out of the Box,’’ ACM Computing Sur-
veys, Vol. 28, Num. 4, pp. 764-778, December,
1996.

20 2003 LISA XVII – October 26-31, 2003 – San Diego, CA



Elprin & Parno An Analysis of Database-Driven Mail Servers

[3] Varshavchik, S., http://courier-mta.org/mbox-vs-
maildir/ , 2001.

[4] Crispin, M., Mailbox Format Characteristics, http://
washington.edu/imap/documentation/formats.txt.
html , 1999.

[5] DBMail, http://dbmail.org .
[6] Openwave Email Mx, http://openwave.com .
[7] Citadel, http://uncensored.citadel.org/citadel/ .

2003 LISA XVII – October 26-31, 2003 – San Diego, CA 21



22 2003 LISA XVII – October 26-31, 2003 – San Diego, CA


