
USENIX Association

Proceedings of the
2002 USENIX Annual Technical

Conference

Monterey, California, USA
June 10-15, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Simple and General Statistical Profiling with PCT

Charles Blake Steve Bauer
Laboratory for Computer Science Laboratory for Computer Science

Massachusettes Institute of Technology Massachusettes Institute of Technology
cb@mit.edu bauer@mit.edu

Abstract

The Profile Collection Toolkit (PCT) provides a
novel generalized CPU profiling facility. PCT en-
ables arbitrarily late profiling activation and ar-
bitrarily early report generation. PCT usually re-
quires no re-compilation, re-linking, or even re-
starting of programs. Profiling reports gracefully de-
grade with available debugging data.

PCT uses its debugger controller, dbctl, to drive
a debugger’s control over a process. dbctl has a
configuration language that allows users to specify
context-specific debugger commands. These com-
mands can sample general program state, such as
call stacks and function parameters.

For systems or situations with poor debugger sup-
port, PCT provides several other portable and flex-
ible collection methods. PCT can track most pro-
gram code, including code in shared libraries and
late-loaded shared objects. On Linux, PCT can
seamlessly merge kernel CPU time profiles with
user-level CPU profiles to create whole system re-
ports.

1 Introduction

Profiling is the art and science of understanding
program performance. There are two main families
of profiling techniques, automatic code instrumen-
tation and statistical sampling. Code instrumenta-
tion approaches use a high-level language compiler
or linker to incorporate new instructions into ob-
ject file outputs. These instructions count how many
times various parts of a program get executed. Some
instrumentation systems [12] count function activa-
tions while others [1, 21] count more fine-grained
control flow transitions. Sampling approaches mo-

mentarily suspend programs to sample execution
state, such as the value of the program counter. How
frequently certain locations occur during an execu-
tion estimates the relative fraction of time incurred
by those parts of the program.

PCT is a sampling-based profiling system that
shows a new way to construct effective perfor-
mance investigation tools. PCT demonstrates that
the same tools programmers are familiar with for
answering questions about correctness can be used
for effective performance analysis. The philosophy
of PCT is that profiling is a particular type of de-
bugging and that the same preparations should be
adequate. The focus of PCT is CPU-time profiling
rather than real-time profiling, though, in principle,
sampling may be applied to either.

PCT is also flexible and easy to use. Enabling profile
collection rarely requires re-compiling, re-linking, or
even re-starting a program. In its simplest usage,
adding a one word prefix to the command-line can
activate collection over entire process subtrees and
emit a basic analysis report at the end. PCT can
track CPU time spent in the main program text,
shared libraries, late-loaded dynamic objects and in
kernel code on Linux. PCT works with a variety of
programming languages.

A novel aspect of PCT is that it allows sam-
pling semantically rich data such as function call
stacks, function parameters, local or global vari-
ables, CPU registers, or other execution context.
This rich data collection capability is achieved via a
debugger-controller program, dbctl. Using debug-
gers to probe program state allows PCT to sam-
ple a wide variety of values. Statistical patterns in
these values may explain program performance. For
example, statistically typical values of a function’s
parameters may explain why a program spends a lot
of time in that function.

Additionally, dbctl can drive parallel non-

Feature Description
Causally Informative Maximize ability to explain performance characteristics
Extensible Sample many kinds of user-defined program state
Late-binding Defer as long as possible the decision of whether to profile
Early-reporting Make profile reports available as soon as possible
Non-invasive Require no extra program build steps or copies of objects
Low-overhead Minimize extra program run time
Portable Support informative profiles on any OS and CPU
Robust Do not rely on program correctness, in particular clean exits
Tolerant Report quality should gracefully degrade with worse system support,

poorer profile data, and less rich debugging data in object files.
Exhaustive Track as much relevant CPU activity as possible
Multilingual Support different programming languages, multi-language environments

Table 1: Desirable profiling system features.

interactive debugging sessions. As the original
process creates children, dbctl can spawn off
new debugger instances, reliably attaching them
to those children. Using a debugger-controller
allows a portable implementation of process subtree
execution tracing tools, such as function call
tracers.

The functionality of PCT gracefully degrades with
the available support in the system and the executa-
bles of interest. Debugging data or symbol tables are
needed for highly meaningful reports. Nevertheless
even stripped binaries allow some analysis. For ex-
ample, one can track the usage of dynamic library
functions or emit annotated disassembly. In concert
with instrumentation-based basic block-level profil-
ing such as gcov, PCT can even estimate CPU cy-
cles per instruction. Sampled data can be windowed
in time to isolate different CPU intensive periods of
a program’s execution. The various report formats
are available through a set of composable primitive
programs and shell pipelines.

Profile reports may be generated at any time, even
prior to program termination and several times over
the life of one process. Several granularities are
available for data aggregation and report formats.
Depending on the debugging data available in ex-
ecutables, users can select how to display program
locations. This may be at the level of individual in-
structions, line numbers, functions, source files, or
even whole object files or libraries.

The organization of this paper is as follows. Sec-
tion 2 discusses our design objectives. To make
PCT’s capabilities more concrete, Section 3 shows a
few examples. Section 4 then elaborates upon PCT’s
implementation of data collection. Section 5 details

report generation strategies. Section 6 evaluates the
overhead and accuracy of the toolkit. Section 7 dis-
cusses some other approaches to profiling. Section 8
describes how to obtain the software. Finally, Sec-
tion 9 concludes.

2 Design Objectives

The design goals of PCT were driven by user needs
and the inadequacies or inaccessibility of prior sys-
tems. Table 1 highlights these objectives. The fol-
lowing section argues for the importance of each in
turn, and the approach of PCT in general.

Programmers use profiling systems to understand
what causes performance characteristics. E.g., if cer-
tain functions dominate an execution, then a profile
should tell us why those calls are made, and why
they might be slow. If functions are called with ar-
guments implying quite different “job sizes”, then
a profile should be able to capture this for analy-
sis. Exactly how causally informativeprofiling can or
should be is an open issue. More information is bet-
ter up until some point where overhead and analysis
tractability concerns become a problem. Program-
mers currently have far more a priori knowledge
about what to look for than any automatic system
can hope to have. A practical answer is an exten-
sible collection system that lets users decide what
program variables are most relevant to subsequent
performance analysis.

Performance problems often arise only on inputs by
end users unanticipated by the programmer or in
very late stages of testing. These issues are thus

discovered at the worst possible time for rebuild-
ing a program and all its dependencies. Long run-
ning programs such as system services often have
phased behavior. That is, sections of the program
with quite distinct performance characteristics ex-
ecute over various windows in time. Profiles over
entire program executions can introduce unwanted
averaging over this phased behavior, making results
more difficult to interpret. A direct and flexible way
to address this problem is to allow late-binding. Ide-
ally, activating and deactivating profile collection
should be possible at any stage in the life cycle of
a program. As an immediate correspondent, early-
reporting is also desirable so that long running pro-
grams with highly active phases do not need to ter-
minate before a profile can be examined. Together,
these let programmers apply whatever knowledge
they have about phased behavior.

Classic instrumentation techniques raise a num-
ber of administrative, theoretical, and practical is-
sues. Instrumentation usually requires extra steps to
build two versions of executables and libraries, or-
dinary and instrumented. It is often problematic to
require recompilation of all objects in all libraries
or to require commercial vendors to provide mul-
tiple versions of their libraries. Providing multiple
library versions can be a burden even on the var-
ious contemporary open source platforms. For in-
stance, profiling instrumented libraries in /usr/lib
on open source distributions are scarce or entirely
absent. Also, it is possible to instrument code long
after linking it. For example, binary rewriting tech-
niques along the lines of Pixie [23] or Quantify [14]
allow this. Completely dynamic instrumentation is
also possible.[18]

Nonetheless, instrumentation, at whatever time,
raises several issues. Instrumented code really is not
the same as the original code. Subtle microarchi-
tectural effects can make it hard to understand the
overhead of new instructions. Beyond theoretical ac-
curacy issues, there is also a more practical concern
in that getting the instrumentation correct is a chal-
lenging problem in itself. Profiling instrumentation
can interact badly with “new” compiler features, op-
timization strategies, or uncommon language usage
patterns. In the worst case, which is all too frequent,
the produced executable may not even run correctly.
Finally, with the possible exception of fully dynamic
instrumentation, this strategy is inherently less ex-
tensible. Only a priori data types can be extracted,
and this is usually limited to simple counts of ex-
ecutions to avoid re-implementing a good deal of

compiler technology.

While instrumentation has the virtue of precision,
the above considerations suggest that we should go
as far as possible with systems that are non-invasive
to the stream of instructions the CPU encounters.
In essence, this implies a sampling-based approach.
Sampling also has the virtue of incurring tunably
low overhead.

Performance problems often arise only when pro-
grams are used in very different environments from
where they were developed. Platform-specific profil-
ing packages can be more efficient and occasionally
more capable. However, they do not help if perfor-
mance problems cannot be reproduced on supported
platforms or environments. Programmers also have
a rational resistance to learning and relying upon
multiple, disparate system-specific tools and inter-
faces. Therefore, a more portable system is more
valuable.

Portability concerns also suggest a sampling ap-
proach. Any preemptive multi-tasking OS already
suspends and resumes programs as a matter of
course. The only missing pieces for profile collection
are a means to suspend frequently and a mecha-
nism to inspect the state of a program. Reading a
program’s state is inherently simpler than re-writing
its code. Thus, sampling is typically no more intru-
sive than ordinary preemption and requires simpler,
less specialized system support than automatic in-
strumentation.

Some past profiling systems have used in-core
buffers that are written to disk in atexit() handlers
at the end of a clean program shutdown. A system
should not mandate clean termination in order to
diagnose performance problems. One phase of a pro-
gram may warrant performance investigation even
if other phases are buggy. Inputs needed to trigger
performance pathologies may also instigate incor-
rect behavior. Conversely, performance pathologies
can easily trigger failure modes not ordinarily en-
countered. Thus, profile collection should ideally be
robustagainst program failure. Many existing imple-
mentations could be adapted to be more cautious in
this regard.

Bottleneck code can potentially hide anywhere in a
program. Restricting profiling coverage to only code
compiled or linked into the address space in certain
ways leads to many “holes” in the accounting of
where execution time was spent. The more exhaus-

tive code coverage is, the more likely a profile will
unravel performance mysteries.

Mixed programming language systems have become
pervasive in modern software development environ-
ments. While C and C++ are a canonical exam-
ple, it can be the case that a wider range of lan-
guages, e.g. FORTRAN, Ada are supported within
one program. If unified source-level debugging ex-
ists for these multilingual environments then source-
level profiling should also be supported. A profiling
system wedded to a particular programming lan-
guage or code generation system is too inflexible.

PCT is the first profiling system known to the au-
thors to possess all of these properties simultane-
ously. Extensible and informative data collection is
achieved through the ability of source-level debug-
gers to compute arbitrary expressions and do de-
tailed investigation of program state. PCT is non-
invasive and low-overhead since sampling does lit-
tle more than what the OS ordinarily does during
task switching. The sampling rate can be changed
to trade-off overhead with accuracy. Late-binding
is achieved by delaying activation of sampling code
or having it instigated by an entirely different pro-
cess, namely the debugger. Portability derives from
relying only on old, well-propagated system facili-
ties dating back to the mid-1980s. Robustness en-
sues from the earliest possible commitment of data
to the OS buffer cache, which is closely related to
producing reports as soon as any data has been col-
lected. The system is as multi-lingual as the exe-
cutable linking environment allows. PCT is as ex-
haustive as the debugger, OS, and build environ-
ment allows. The very small report generation mod-
ules enable tolerating various levels of debugging
data, customizing reports, and porting PCT to a
new platform.

PCT is also a small system. The code for PCT is
only 3,500 commented lines of C code and 300 lines
of shell scripts. This compact delivery of function-
ality is possible only because PCT greatly leverages
common system facilities.

3 Examples

On many systems getting a quick profile is as simple
as: profile myprogram args...

More concretely:

$ profile ./fingerprint /bin | head

13.9% /u/cblake/hashfp/binPoly64.C:101

7.6% /u/cblake/hashfp/binPoly64.C:86

7.3% /lib/libc-2.1.2.so:getc

5.3% /u/cblake/hashfp/fingerprint.C:112

4.3% /u/cblake/hashfp/binPoly64.C:80

4.2% /u/cblake/hashfp/binPoly64.C:70

4.0% /u/cblake/hashfp/binPoly64.C:96

3.7% /u/cblake/hashfp/binPoly64.C:102

3.0% /u/cblake/hashfp/fingerprint.C:116

2.8% /u/cblake/hashfp/fingerprint.C:104

By default line numbers are used for source coordi-
nates. If only symbols are available they are used.
Finally, raw objectfile:address pairs are printed when
there is no debugging data at all.

Profiling mixed kernel and user code on Linux is
similar. Below is a quick profile of the disk usage
utility which recurses down a directory tree sum-
ming up file allocations:1

$ profile -k du -s /disk/pa0 | head

30.4% /usr/src/linux/vmlinux:iget4

12.4% /usr/src/linux/vmlinux:ext2_find_entry

5.4% /usr/src/linux/vmlinux:try_to_free_inodes

3.5% /usr/src/linux/vmlinux:ext2_read_inode

3.3% /usr/src/linux/vmlinux:unplug_device

2.4% /usr/src/linux/vmlinux:lookup_dentry

2.0% /usr/src/linux/vmlinux:system_call

1.8% /usr/src/linux/vmlinux:getblk

1.0% /lib/libc-2.1.2.so:open

0.9% /lib/libc-2.1.2.so:__lxstat64

Note the call hierarchy in the following program:

int worker(unsigned n) { while (n--) /**/ ; }

int dispatch_1(unsigned a) { worker(a); }

int dispatch_2(unsigned b) { worker(b); }

int main(int ac, char **av) {

dispatch_1(10000000);

dispatch_2(20000000);

return 0;

}

Before doing any profiling it is obvious that essen-
tially all run time is in the function worker(). There
are two paths to this function, as shown clearly via
the debugger-based hierarchical profile:

$ profile -gdb -l3 hier-test

67.6% worker <- dispatch_2 <- main

32.4% worker <- dispatch_1 <- main

1Directory and i-node data was pre-read to make the re-
sults reflect CPU time spent in the 2.2 kernel.

Finally, consider sampling more semantically rich
data. In general this requires amending a 10 line
dbctl script similar to the following:

1 EXEC() ".*" {

2 #include "gdbprof_prologue.dbctl"

3 PAT_GROUP(default) {

4 PAT(1) "signal=\"SIGVTALRM\"" | OUT("pc") {

5 "backtrace 4" | OUT("stack");

6 # OTHER DEBUGGER EXPRESSIONS

7 "continue";

8 }

9 #include "gdbprof_epilogue.dbctl"

10 }

11 }

A full description of the pattern-driven state ma-
chine language is beyond the scope of this paper.
The main EXEC pattern on line 1 restricts which
executables the entire rule applies to. Lines 4, 5,
and 6 simply capture the pc in the output file ”pc”,
and four levels of stack backtrace in the output file
”stack”. Adding more debugger commands and data
files is just a matter of adding a line to the dbctl
script. Depending on the expressions sampled, var-
ious post-processing steps may be needed.

We provide a simpler interface for the common case
of sampling scalar numbers. Below shows how to
sample values of n, inside the function worker()
where it is meaningful.

$ profile -gdb \

-expr ’hier-test@worker@n’ ’int-avg’ \

hier-test

8.38e+06

The -expr option takes two arguments – a context-
specific expression to generate data in the debugger,
and a program to format the collected data. The
context specific expression is an ‘@’ separated tuple
of strings: a program pattern, a function pattern, a
debugger expression.

4 Data Collection

The general implementation philosophy of PCT is to
support a full set of options for every aspect of pro-
filing. This minimizes the chance that some system
limitation will prevent any profiling outright and
enables “best effort” profiling. Small, composable

primitives also ease tailoring PCT behavior. Ba-
sic users generally use several generic driver scripts,
while more advanced users create their own tailored
script wrappers.

4.1 Activating Sampling Code

PCT has three basic collection strategies: debug-
gers, timer signal handlers, and profil().[5] The
first never requires re-starting or re-linking a pro-
gram, but can have substantial real-time over-
head. The latter two are fall-back, library-based
strategies which can be used when low overhead
is preferrable or when debugger support is inade-
quate. The library-based samplers are, however, less
portable. They require linker support for C++-style
global initializers and also require either a dynamic
library pre-loading facility or manual re-linking. Dy-
namic pre-loading is commonly available with mod-
ern dynamic linkers [3], though not all programs are
dynamically linked. In the worst case, if C++-style
linking is unavailable, programmers can manually
invoke the initializer inside their main() routine. We
now examine these samplers in more detail.

The oldest portable profiling primitive is profil().
This system call directs kernel-resident code to ac-
cumulate a histogram of program counter locations
in a user-provided buffer. While the call interface
does potentially allow multiple executable regions,
the authors know of no operating systems that can
activate more than one region at a time. To ensure
robustness, PCT allocates the userspace buffer as
an mmap()-ed file. This also allows the profile to
be accessible at any time to other processes, such
as report generators. The profil() call to acti-
vate kernel-driven collection can be done with ei-
ther a dynamically pre-loaded or statically linked-in
library.

A source-level debugger affords a more general
sampling activation strategy. The debugger uses
the ptrace() facility and catches all signals deliv-
ered to the process, including virtual timer alarms.
ptrace() can be used to attach and detach from
processes at any time and any number of times over
the lifetime of a process. PCT uses a debugger-
controller program to implement this procedure
portably.

The PCT debugger controller drives the debugger
which in turn controls the process via ptrace().
The debugger calls the POSIX setitimer() sys-

tem call in the context of the target process. This
installs virtual time interval timers for the target
process. Once these timers are installed, the kernel
will deliver VTALRM signals periodically to the tar-
get process. At each signal delivery, control will be
transferred to the debugger. At this point the debug-
ger driver issues whatever debugger commands are
necessary to collect informative data and then con-
tinue program execution. For example a backtrace
or where command typically produces a sample of
function call stack data. The real time of the sam-
ple can also be recorded. Section 4.3 discusses the
details of debugger control.

When library code can be used, a pre-main() ini-
tializer sets up interval timers, signal handling, and
data files. gcc-specific, C++, or system-dependent
library section techniques can be used to install the
library initializer. Library code may be statically or
dynamically linked, or preloaded for dynamically-
linked executables via the $LD PRELOAD environ-
ment variable.

PCT collection behavior is controlled through the
$PCT environment variable. It controls options such
as output directories, histogram granularity, data
format, and so on. It also provides a convenient
switch for whether profiling happens at all. $PCT and
$LD PRELOAD can both be inherited across fork()
and exec(). This conveniently enables profile col-
lection activation on whole process subtrees.

4.2 Collecting Data

4.2.1 Types of Code

The debugger collector supports tracing whatever
code the debugger can recognize. All debuggers han-
dle the main program text. Most modern debuggers,
e.g. gdb, can debug code in shared libraries and late-
loaded object files on most operating systems.

PCT library-based collectors have more specific re-
strictions. They can collect data on several kinds of
code:

• One contiguous region – usually the main pro-
gram text. This is the oldest style of profiling
and works in almost any OS and scenario.

• Shared libraries. On Linux the instantaneous
bindings of virtual memory regions to files are

exposed. Reading /proc/PID/maps reveals ex-
ecutable regions and corresponding object files.

On most BSD OSes ldd reports load addresses
of shared libraries. These addresses may be
cached in files similar to /proc/PID/maps and
read in by the global initializer.

• Late-loaded (e.g. dlopen()ed) code: On Linux
whenever a PC cannot be mapped to a known
memory region, the signal handler re-scans
/proc/PID/maps to attempt to discover new
regions. If it succeeds, the region table is up-
dated and the counts processed. When an ob-
ject file for the PC cannot be found, further
re-scanning is inhibited to suppress repetitive
failed searches.

• Kernel code: Linux provides a /proc/profile
buffer for the main text of the kernel. Currently,
Linux does not support profiling loadable ker-
nel modules.

As mentioned in Section 4, profil()-based collec-
tion is generally only available for a single contigu-
ous region of address space. These other types of
code are all supported by the more general library-
based collector. Profiling kernel modules could be
added to Linux or other OS’s using the same tech-
niques that PCT uses for managing shared libraries
and late-loaded code.

4.2.2 Types of Profiling Data

Collection methods based on profil() or
/proc/profile afford little choice as to the
type or format of data collected. Other sampling
methods, such as $LD PRELOAD and debuggers
allow collecting a variety of data. This flexibility
creates choices as to what data is collected for later
analysis, how and where it is stored.

PCT provides several data storage formats. The spe-
cific profiling situation will usually determine which
is best. The choices are:

• Debugger output files: a different log file is used
to save the output of each user-specified sam-
pling expression.

• Histogram file: stores frequency counts for var-
ious code regions. This guarantees bounded
space, but cannot window data.

• Sample-ordered log file: allows simple time-
windowing of collection events, post facto his-
tograms, but can grow in size indefinitely.

• Circular log file: This is similar to the sample-
ordering except that the user bounds the size,
which effectively saves only the last N samples.

4.3 Controlling Debuggers

The PCT toolkit includes a controller program
dbctl for driving debugger tools such as gdb. The
controller program is a state machine described by
user specified files. A transition in the state diagram
occurs when the controller recognizes a regular ex-
pression in the output of the debugger. For each
transition, there is a set of debugger commands to
issue as well as a series of controller actions. The de-
bugger commands can be any command appropriate
for the debugger tool being controlled. For example,
controller actions might include logging debugger
output, spawning new debuggers to attach to child
processes, and capturing specified debugger outputs
in internal controller variables.

In the case of profiling, the dbctl tool sets up the
interval timers in the processes to be profiled. When
the timers expire a signal is raised which transfers
control to the debugger and generates output indi-
cating the context of suspension. The controller rec-
ognizes various process contexts and issues context-
specific instructions. These can include writing out
the call stack, local variables and function argu-
ments, or any arbitrary debugger expression.

Profiling is not the only application of dbctl. The
tool can also be used to implement a portable
strace [7] or ltrace [11] facility. While many de-
buggers have function call tracing capabilities, trac-
ing an entire process tree is more challenging.

The Unix ptrace() mechanism has traditionally
had rather weak support for following both a parent
and child process across a fork(). Typically, there is
a constraint of one-to-one binding between a traced
process and a tracing process. After a fork() only
one of the potentially traced processes can remain
under external control. The other is released to be
scheduled by the OS. Breakpoints left in a untraced
process cause a SIGTRAP that causes the process
to die since it has no debugger to catch the signal
on its behalf. Therefore a debugger arranges things
so that breakpoints are disabled across a fork() for

one of the two processes.

For dbctl this means that if we arrange to follow
the parent, then a fork()ed child could “run away”
from the controller, possibly fork()-ing grandchil-
dren before dbctl can attach a new debugger to
it. Similarly, if we arrange to follow the child, the
parent could run away forking other children be-
fore a new debugger can be attached. Ideally, kernels
would provide a standard interface to “fork and sus-
pend” ptrace()d processes. Lacking a natural in-
terface to avoid this race condition, PCT developed
an interesting work around. Our fork()-following
protocol guarantees that no child process is ever lost
and that breakpoints can be re-enabled immediately
after the call to fork().

The protocol works as follows. First, we set a break-
point at all fork() calls to catch the spawning of
children. When the fork() breakpoint is hit, the
debugger disables all breakpoints so that the un-
traced process will not get spurious SIGTRAP sig-
nals. It then installs pause() as a signal handler
for SIGTRAP. Finally, it sets a breakpoint for the in-
struction following the call to fork().

The parent remains ptrace()d all along, and imme-
diately traps to the debugger because of the fork()-
return breakpoint. All normal breakpoints are re-
enabled. The child process id can be found on the
stack as the return value from the fork(). dbctl
uses this pid to attach a new instance of the debug-
ger to the child process.

Concurrently, the fork()-return breakpoint causes
a SIGTRAP to be delivered to the child. Since it no
longer has a tracing process, the process’ own sig-
nal handler is invoked. In this case that function is
pause, a system call which simply waits until some
signal is delivered. When a newly spawned debugger
successfully attaches to the process it interrupts the
ongoing pause. The procedure of attaching a new
debugger is now complete. dbctl then re-establishes
any necessary breakpoints and so on in both pro-
cesses and lets them run again.

4.4 Limitations

Library-based histogram collectors face a problem
with fork()d processes/threads which truly run in
parallel (i.e. on multiple CPU systems). The paral-
lel processes can potentially overwrite each other’s
counter updates. The result is a missed counter in-

crement with the last writer winning the counter
bump. This is rare and is probably not an issue in
practice. In any event, one can assess the number of
lost counts by the total scheduling time given and
the total counts collected. If there is a major dis-
crepancy one can switch to log-file profile collection
which does not share this problem.

Hierarchical samples are currently only supported
with the debugger collector. The code to walk back
a stack frame is conceivably simple enough for some
CPUs to embed directly into our signal handler li-
brary. This could drastically reduce overhead at the
cost of sacrificing some CPU portability and prob-
ably some language neutrality.

Our debugger controller requires that executables
either be dynamically linked to the C library, or if
statically linked contain a few critical symbols, such
as pause, that may not be strictly required to be
present. Of course the debugger can also do very
little with executables stripped of all symbol data.

Sampling rates are limited by maximum VTALRM de-
livery rates. These typically range from 1 to 10 ms.
Some systems allow increasing this rate. Depend-
ing on the richness of collected data, it may not be
desirable to increase this rate, as that would entail
more real-time overhead.

5 Data Analysis

PCT data collection strategies produce files with
quite different information. Designing one mono-
lithic way of reducing this data to programmer in-
terpretable relationships is hard. Instead PCT pro-
vides a toolkit of data aggregation and transforma-
tion programs. These can be easily composed via
Unix shell pipelines. Their usage is simple enough
that users can tailor simple scripts toward individ-
ual circumstances and preferences.

5.1 Source Coordinate Resolution

Debuggers emit high-level source coordinates as a
matter of course. They are constrained by how much
debugging data was been compiled into the executa-
bles and libraries being used. If these object files
have been compiled with the full complement of
debugging data then source and line number-level,

function-level, and address-level coordinates are all
available. Usually, all are present in the textual de-
bugger output PCT records. This mode of data col-
lection then yields a lot of choices. PCT lets users
select the coordinates to be used in reports.

On the other hand, library-based collectors do not
resolve program counter addresses to source co-
ordinates while the program is running. Instead
they record only program counter addresses and
defer higher-level coordinate translation to report
generation-time. These addresses are saved in com-
pact binary data formats that keep logs small and
minimize IO overhead. There is usually one binary
data file for each independently mapped region of
program address space. Embedded within these files
are the path names and in-memory offsets of the
memory-mapped object files. This provides the key
information for deferred translation to understand
how addresses in memory correspond to addresses
in the object files.

Translation of program addresses to more meaning-
ful source coordinates can be awkward. Object file
formats vary substantially. The GNU binary file de-
scriptor library gives some relief, allowing the writ-
ing of programs which directly access debugging
data and symbol tables. This library may be un-
available, out of date, or not support the necessary
object file formats. As the examples in Section 3
show, PCT makes a best-effort attempts to trans-
late coordinates.

At the least, if executable files retain their symbol
table, the system nm program or the debugger can
interpret it. If there is no debugger, the GNU binu-
tils package provides a convenient addr2line pro-
gram which can map PCs to file:line source coordi-
nates. If there is a debugger installed, then a debug-
ger script can operate just as addr2line in the re-
stricted capacity of address translation. If there is no
debugging data at all, as for stripped binaries, then
a disassembly procedure is always an option. Indeed,
for instruction-level optimization, it may even be de-
sired to produce count-annotated disassembly files
as reports. Of course, assembly-level expertise is re-
quired to interpret such reports.

PCT provides a printing program pct-pr which
bridges the gap between PCT binary data files and
programs which affect address translation. pct-pr
assumes a simple and convenient protocol for shell
pipeline syntax. Translators are run as co-processes
to pct-pr. I.e., programs read a series of PCs on

their standard input and emit corresponding source
coordinates to their standard output.

This co-process setup allows fine-tuning of the pro-
tocol with pct-pr command-line arguments. For ex-
ample, printf()-style format strings allow tailor-
ing the object file PC stream to input requirements,
and also allow customizing the output stream. Users
can stamp PCT binary data files with particular PC
translation requirements, or simply describe which
translators to use on the pct-pr command line.

PCT also provides a program addr2nm to translate
PCs using only the system nm and symbol tables
in executables. This program first dumps nm output
into a cache directory if it is not already there. Once
this file exists, addr2nm does an approximate binary
search on each inbound PC, discovering the symbol
with the greatest lower address.

5.2 Data Aggregation

One often wants to aggregate profile data over var-
ious uses of the same programs or libraries. The
canonical example is combining many runs of short-
lived programs. In the context of profiling a pro-
cess tree, one may want to examine many distinct
processes as one aggregate set of counts. For ex-
ample, a libc developer might be interested in
all the usages of some particular function, e.g.
printf(), throughout a process tree. PCT supports
these various styles of aggregation via simple file-
name conventions and traditional Unix filename
patterns. A user can select collections of data files
by common filename substrings such as the name
of the object files of interest. For example, pct-pr
/tmp/pct/ct/myprogram.*/libc* would generate
source coordinates for all samples of the libc code
used by myprogram.

The output of source coordinate translation for
each file in a collection is a simple pair of sam-
ple counts and labels for that location in the pro-
gram. The granularity of these labels, e.g. function
or source:linenumber, will determine the notion of
similarity for later tabulation. This stream can be
sorted with both PCT-specific and standard Unix

filters to produce a stream where text lines refer-
ring to “similar” code locations are adjacent. A fil-
ter can then aggregate counts over text lines with
these “similar” suffixes, and hence the similarity de-
termines the level of aggregation. These aggregates
are effectively histograms of program counter sam-

ples over the address space of the programs. The
histogram bins are determined by the granularity of
labels. E.g., function-granularity source coordinates
will result in a report of the time spent in various
functions.

Users often find it easier to think about time frac-
tions rather than raw sample counts. PCT supports
this with a filter that totals the whole text stream
and then re-emits it with counts converted to per-
centages. These percentages are normalized to what-
ever particular selection of counts is under consid-
eration – either over multiple runs or over multiple
objects or other combinations.

The interface for users to these capabilities are sim-
plified by simple shell script wrappers. For example,
pct sym% /tmp/pct/ct/myprogram.*/libm* will
create a function-level profile of time spent in the
math library.

There are a few PCT report styles that provide
more context around the sampled program loca-
tions. PCT can create entire copies of source-code
files annotated with either counts or time frac-
tions. We also have an Emacs mode much like
grep-mode or compile-mode to drive examination
of filename:line number profile reports. This mode
allows a user to select report lines of high time frac-
tion and automatically loads a buffer and warps the
cursor to that spot in the code.

6 Evaluation

A few concerns arise in evaluating any profiling sys-
tem. First, one must ask if profiling overhead is ob-
trusive relative to real-time events. Large overhead
could make results inaccurate. Bearing in mind that
programs being profiled may be quite slow, exces-
sive real-time overhead could dissuade programmers
from using the system. A second concern is the ac-
curacy of profiling numbers produced by the system.
The following subsections discuss these issues.

6.1 Overhead

The overhead of any sampling system is tunably
small (or large). There is a fundamental overhead-
accuracy trade-off. The more frequently samples are
taken, the more overhead incurred by interrupting

the program and recording the samples. However,
the larger the sample rate the more accurate a pic-
ture one acquires in a given amount of time.

Large sample rates may be desirable. Some pro-
grams run only briefly, but are CPU intensive while
they run. Accurate probabilities may also motivate
a fast sample rate.

On modern CPUs, the cost of signal delivery and
resumption of execution system call is typically less
than 20 µsec. Thus library-based sampling proce-
dures are very low overhead.

We have measured a gdb-based sampling as taking
500..1000 µsec on 700..1300 MHz Pentium III and
Athlon-based systems running Linux, FreeBSD, and
OpenBSD. The precise time varies depending on the
complexity of parameter lists being decoded, the
depth of the stack, the efficiency of the OS, and
the CPU. However almost all of this overhead is
gdb making many calls to ptrace()to reconstruct
the argument lists of functions in the backtrace. It
is possible to arrange a more minimally informative
gdb sampling which does no address translation or
decoding. This resulted in under 100 µsec, including
the round-trip context switch.

These numbers are still relatively encouraging. For
10 ms sampling granularities the overhead is almost
unnoticeably small unless quite rich samples are be-
ing taken. At 1 ms sampling rates the overhead
starts to become near a factor of two, but over-
head is not prohibitive until near 100 µsec rates.
This also suggests that a debugging library could
result in substantial overhead reduction by comput-
ing only the necessary output. Alternately, debugger
features could control the verbosity of output more
finely.

Also note that, at least on uniprocessors, it does not
matter how many processes are being traced. Only
one process has the CPU at a time. So some frac-
tional overhead applies to the real time consumed
by the entire system of processes.

6.2 Accuracy

Sampling overhead does not directly impact the ac-
curacy of time estimates. Any constant amount of
sampling overhead has the effect of simply increas-
ing the sampling period. Hence the variance of time
spent handling signals and recording samples might

impact the accuracy of program counts. In practice,
with code that has known time fractions, sampling
time variance seems to have a negligible effect.

Assessing precise time fractions of a program creates
a need for large sample sizes. The statistics of loca-
tion counts are approximately binomial. The pro-
gram is suspended at some location, i, with prob-
ability pi. The mean of a binomial random vari-
able for N trials each of which has probability
pi is simply Npi, while the standard deviation is√
Npi(1− pi). The frequency, pi = ni/N thus has

a fractional error proportional to 1/
√
N . Suppose,

for example, location 1 has count n1 and location
2 has count n2. It is easy to show that a two stan-
dard deviation test for the condition p1 > p2 is ap-
proximately n1 − n2 > 2

√
n1 + n2. E.g., to decide

p1 > p2 for n2 = 1 requires n1 ≥ 5. Fortunately,
precise probabilities are usually less important than
just identifying the expensive areas of a computa-
tion.

Reduced real-time performance is the most signifi-
cant down-side of overhead. For very high sampling
rates and very rich data collection a program can
run much slower than in its native mode.

Correlations between the time of sampling and
paths in the program are more problematic. Con-
sider the specific example of a function which takes
almost exactly as long to execute as the time be-
tween timer expirations. Also assume this function
is repeatedly invoked and dominates the execution
time. It should be clear that the program will al-
ways be suspended near the same location. Compu-
tation is distributed over all the code implementing
this function. [17] discusses this problem in the con-
text of CPU usage statistics. DCPI [8] addresses this
problem by randomizing the size of the time interval
between samples.

While profil() is inflexible in this regard, any
other PCT collection method optionally uses one-
shot timers and re-installs timers with randomly
spaced delays in the alarm handler. Using large mul-
tiples of a typical 10 ms time quantum are likely to
seriously reduce the achieved sample size. However
provided that successive periods are unpredictable,
even a random alternation between 10ms and 20ms
guards against a little accidental synchronization.
The fixed underlying timer clock makes truly pre-
venting synchronization effects difficult. One cannot
build a random interval from even random multiples
of a coarse intervals. Synchronization at the scale

of the underlying time quantum could still cause
problems. Truly random sample-to-sample intervals
clearly require specialized OS support.

7 Related Work

Profiling is as old an art as writing programs. As
with debugging, there has been a large amount of
tool-building and research devoted to automating
tasks that were originally done with hand-coded
instrumentation. These prior profiling systems all
take a more narrow view of profiling than the PCT
philosophy of profiling as a type of debugging in
which programmers apply the same familiar tools
and preparations.

Automatic instrumentation introduced the possibil-
ity of collecting richer data than classic profil()-
style samples, such as dynamic call graphs, ba-
sic block activations, and control flow arc tran-
sitions. Increasing complexity of software systems
has driven a need for multi-process and even whole
system profiling systems. Both static and dynamic
profile-driven optimization have become a focus for
those interested in performance.

Additionally, some have considered limited notions
of higher-level profiling [22] such as the implemen-
tation of abstract data types or other alternative al-
gorithm selection. This approach instrumented pro-
grams to record, for example, where data is typi-
cally inserted into an ordered list. It used this data
to decide between array or linked-list representa-
tions. Inserts at the beginning favor linked repre-
sentations while those at the end favor arrays. PCT
might be leveraged to answer similar questions with-
out modifying the program to use an instrumented
data structure library.

There have been a large number of compile-time au-
tomatic instrumentation systems, all of which are
invasive, early-bound, and non-extensible. An early
hierarchical profiler was gprof.[12] The programs
tcov [6] and gcov [1] are similar to gprof, but
instrument basic blocks instead of function calls.
Many implementations of these types of profiler are
not robust to improper program exits and are not
tolerant of inadequate data in some objects.

Many systems have also implemented some form of
link-time instrumentation or post-link-time binary
re-writing.[23, 14, 9, 15, 24, 20] These address re-

building issues somewhat and have some weak ex-
tensibility. A significant invasion of foreign code may
remain, though. The code must be inserted to count
executions, or, in more involved cases, log procedure
arguments.

Recently, a number of researchers have begun inves-
tigating the limits of dynamic instrumentation – the
re-writing of running executables. IBM has a system
called DProbes [18, 10] which enables generic kernel-
based late-bound instrumentation. This is similar to
our debugger-controller based approach, but aims to
build up a toolset for various machines and architec-
tures rather than relying on the existing debugger
infrastructure. Much lower overhead would likely be
possible via this approach, but a great deal more
work would need to be done to allow the sort of
arbitrary expressions collectible with debuggers.

Beyond instrumentation systems, there has been
significant prior progress in PC-sampling-style pro-
filing as well. There is the classic prof [4], and
many latter-day counterparts. The most sophisti-
cated system along these lines is probably the Dig-
ital Continuous Profiling Infrastructure (DCPI).[8]
DCPI has focuses on understanding how the mi-
croarchitectural features of Alpha processors play
out in full system applications. This system is un-
fortunately proprietary and non-portable as many of
its most impressive features rely upon CPU and OS
support. The focus on low-level CPU behavior in-
stead of high-level semantics of programs makes this
system more useful for compiler writers and other
assembly-level optimizations. For instance it does
not support hierarchical call path samples along the
lines of.[13]

SGI’s IRIX-specific SpeedShop [2] system is proba-
bly the closest system in spirit to PCT, though it
stops short of a full debugger-profiler. It does sam-
pled hierarchical profiling, has graceful report degra-
dation, and is late-binding. However, in addition to
being specific to IRIX on MIPS, it is restricted to
dynamically linked executables, and fails to be ex-
haustive in terms of kernel-resident and late-loaded
code. Being proprietary, it is difficult to evaluate its
extensibility.

There have been many kernel-level profiling tools
as well. Some system call tracers like strace -c
support simple system call profiling.[7] Yaghmour’s
Linux Trace Toolkit [25] is a useful kernel-level
event monitoring facility. PCT can leverage eas-
ily accessible /proc/profile data on Linux. PCT’s

ptrace()-based techniques do not easily extend to
kernel code since the necessary process control fea-
tures are not typically available on the kernel itself.

The type of non-interactive debugging PCT does
is similar to the Expect system for controlling
interaction.[16] Our debugger-controller is similar,
but with configuration syntax tailored to profiling
and the ability to handle large subtrees of processes
simultaneously. dbctl also does not rely on the rel-
atively slow logic and string processing of Tcl.[19]
As noted earlier, dbctl also allows non-interactive
process control other than state sampling.

8 Availability

PCT is freely available under an open source license.
More information and current software releases can
be obtained at the PCT web page:

http://pdos.lcs.mit.edu/~cblake/pct

In the realm of simple profiling, every Unix after
AT&T version 7 has support for profil() func-
tionality, which provides at least some capability.
Kernel profile integration is currently only avail-
able on Linux. The ldd command on OpenBSD and
FreeBSD is informative enough to allow tracking
shared library usage and process tree profiling.

Generalized profiling should be available on any
system with a good source-level debugger for the
programming languages of interest. Currently, gdb
works well on the above mentioned systems as well
as Solaris, HP-UX 9,10,11, AIX, Irix, SunOS, var-
ious other BSD’s and probably many more plat-
forms. Ports of our interaction scripts to dbx and
other debuggers are under way.

9 Conclusion

Each year software systems grow in complexity from
multiple code regions per address space to multi-
process programs. Correctness becomes harder to
achieve, and conventional wisdom is to postpone
performance analysis as long as possible. PCT re-
quires no more preparation than for debugging. This
allows programmers to interleave the optimization

and debugging of their program however they see
fit.

PCT unifies access to a number of existing profil-
ing features that have been available for some time
and extends profiling in new directions. The PCT
debugger-based profiling architecture substantially
extends the sort of data that automatic profiling
can collect. One can sample programmer-definable,
context specific data. Such samples can often more
readily expose higher-level algorithmic issues, such
as a mismatch between program structures and user
inputs. The overhead of PCT scales reasonably with
the complexity of the program data being sampled
and with sampling rates.

Finally, PCT is very portable by design, requiring no
special CPU or OS features or support. Informative
data can be gathered on most code in flexible ways.
Reports can be generated flexibly based on various
data aggregations while the program is still running.
These features usually require no recompiling, re-
linking, or even re-starting of users’ programs.

References

[1] gcov: a test coverage program. http://gcc.
gnu.org/onlinedocs/gcc-3.0.

[2] Irix 6.5 speedshop user’s guide. http://
techpubs.sgi.com/.

[3] ld(1). Unix man pages.

[4] prof(1). AT&T Bell Laboratories, Murray Hill,
N.J., UNIX Programmer’s Manual, January
1979.

[5] profil(2). Unix man pages.

[6] tcov(1). AT&T Bell Laboratories, Murray Hill,
N.J., UNIX Programmer’s Manual, January
1979.

[7] W. Akkerman. strace home page. http://www.
liacs.nl/~wichert/strace/.

[8] J. Anderson, L. Berc, J. Dean, S. Ghemawat,
M. Henzinger, S.-T. Leung, R. Sites, M. Van-
dervoorde, C. Waldspurger, and W. Weihl.
Continuous profiling: Where have all the cycles
gone? ACM Transactions on Computer Sys-
tems, 15(4), Nov. 1997.

http://pdos.lcs.mit.edu/~cblake/pct
http://gcc.gnu.org/onlinedocs/gcc-3.0
http://gcc.gnu.org/onlinedocs/gcc-3.0
http://techpubs.sgi.com/
http://techpubs.sgi.com/
http://www.liacs.nl/~wichert/strace/
http://www.liacs.nl/~wichert/strace/

[9] T. Ball and J. R. Larus. Optimally profil-
ing and tracing programs. ACM Transac-
tions on Programming Languages and Systems,
16(4):1319–1360, July 1994.

[10] B. Buck and J. K. Hollingsworth. An API
for runtime code patching. The International
Journal of High Performance Computing Ap-
plications, 14(4):317–329, Winter 2000.

[11] B. Driehuis. ltrace home page. http://
utopia.knoware.nl/users/driehuis/.

[12] S. Graham, P. Kessler, and M. McKusick.
gprof: a call graph execution profiler. SIG-
PLAN Notices, 17(6):120–126, June 1982.

[13] R. J. Hall and A. J. Goldberg. Call path profil-
ing of monotonic program resources in UNIX.
In Proceedings of the Summer 1993 USENIX
Conference: June 21–25, 1993, Cincinnati,
Ohio, USA, pages 1–13, Berkeley, CA, USA,
Summer 1993. USENIX.

[14] R. Hastings and B. Joyce. Purify: Fast detec-
tion of memory leaks and access errors. In Proc.
of the Winter 1992 USENIX Conference, pages
125–138, San Francisco, California, 1991.

[15] J. R. Larus and E. Schnarr. EEL: Machine-
independent executable editing. In Proceedings
of the ACM SIGPLAN’95 Conference on Pro-
gramming Language Design and Implementa-
tion (PLDI), pages 291–300, La Jolla, Califor-
nia, 18–21 June 1995.

[16] D. Libes. expect: Curing those uncontrol-
lable fits of interaction. In Proceedings of the
USENIX Summer 1990 Technical Conference,
pages 183–192, Berkeley, CA, USA, June 1990.
Usenix Association.

[17] S. McCanne and C. Torek. A randomized
sampling clock for CPU utilization estimation
and code profiling. In Proceedings of the Win-
ter 1993 USENIX Conference: January 25–29,
1993, San Diego, California, USA, pages 387–
394, Berkeley, CA, USA, Winter 1993. USENIX
Association.

[18] R. J. Moore. A universal dynamic trace for
linux and other operating systems. In Proceed-
ings of the FREENIX Track (FREENIX-01),
pages 297–308, Berkeley, CA, June 2001. The
USENIX Association.

[19] J. K. Ousterhout. Tcl: An embedable command
language. In Proceedings of the USENIX Asso-
ciation Winter Conference, 1990.

[20] T. Romer, G. Voelker, D. Lee, A. Wolman,
W. Wong, H. Levy, B. Bershad, and J. B. Chen.
Instrumentation and optimization of Win32/
Intel executables using etch. In The USENIX
Windows NT Workshop 1997, August 11–13,
1997. Seattle, Washington, pages 1–7, Berke-
ley, CA, USA, Aug. 1997. USENIX.

[21] A. D. Samples. Profile-driven compila-
tion. Technical Report UCB//CSD-91-627,
UC Berkeley, Department of Computer Sci-
ence, 1991.

[22] A. D. Samples. Compiler implementation of
ADTs using profile data. 641, 1992.

[23] M. D. Smith. Tracing with pixie. Techni-
cal Report CSL-TR-91-497, Stanford Univer-
sity, Computer System Lab, Nov. 1991.

[24] A. Srivastava and A. Eustace. ATOM: A sys-
tem for building customized program analysis
tools. ACM SIGPLAN Notices, 29(6):196–205,
June 1994. ACM SIGPLAN ’94 Conference on
Programming Language Design and Implemen-
tation (PLDI).

[25] K. Yaghmour and M. R. Dagenais. Measur-
ing and characterizing system behavior using
kernel-level event logging. In Proceedings of
the 2000 USENIX Annual Technical Confer-
ence (USENIX-00), pages 13–26, Berkeley, CA,
June 18–23 2000. USENIX Association.

http://utopia.knoware.nl/users/driehuis/
http://utopia.knoware.nl/users/driehuis/

	1 Introduction
	2 Design Objectives
	3 Examples
	4 Data Collection
	4.1 Activating Sampling Code
	4.2 Collecting Data
	4.2.1 Types of Code
	4.2.2 Types of Profiling Data

	4.3 Controlling Debuggers
	4.4 Limitations

	5 Data Analysis
	5.1 Source Coordinate Resolution
	5.2 Data Aggregation

	6 Evaluation
	6.1 Overhead
	6.2 Accuracy

	7 Related Work
	8 Availability
	9 Conclusion

