USENIX Association

Proceedings of the
2002 USENIX Annua Technical
Conference

Monterey, California, USA
June 10-15, 2002

THE ADVANCED COMI

PUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Providing Process Origin Information to Aid in Network
Traceback

Florian P. Buchholz
CERIAS
Purdue University
florian@cerias.purdue.edu

Abstract

It is desirable to hold network attackers ac-
countable for their actions in both criminal
investigations and information warfare situa-
tions. Currently, attackers are able to hide
their location effectively by creating a chain
of connections through a series of hosts. This
method is effective because current host audit
systems do not maintain enough information
to allow association of incoming and outgo-
ing network connections. In this paper, we
introduce an inexpensive method that allows
both on-line and forensic matching of incom-
ing and outgoing network traffic. Our method
associates origin information with each pro-
cess in the system process table, and en-
hances the audit information by logging the
origin and destination of network sockets. We
present implementation results and show that
our method can effectively record origin in-
formation about the common cases of step-
ping stone connections and denial of service
zombies, and describe the limitations of our
approach.

1 Introduction

As the Internet has become a widely ac-
cepted part of the communications infrastruc-
ture there has been an increase in the num-
ber of network attacks [18]. One factor in
the growth of attacks is that network attack-
ers are only rarely caught and held account-
able for their actions, giving them relative im-
punity in action. This situation has arisen,
in part, because of the relative ease that at-
tackers have in hiding their location, making
it difficult and expensive for investigators to
determine the origin of an attack.

Clay Shields

Department of Computer Science

Georgetown University
clay@cs.georgetown.edu

In general, attackers use two different
methods to hide their location [16]. One
method, common in denial-of-service attacks,
is to spoof the source address in IP packet
headers so that recipients cannot easily de-
termine the true source. As discussed further
below, this has been an area of significant re-
search in recent years. The other method,
which has received significantly less attention
from the research community, is for attackers
to sequentially log into a number of (typically
compromised) hosts. These forwarding hosts,
often called stepping-stone hosts [40], effec-
tively disguise the origin of the connection,
as each host on the path sees only the previ-
ous host on the connection chain. A victim of
an attack would not be able to determine the
source of an attack without tracing the path
back through all intermediate stepping-stone
hosts. The audit data currently maintained
at hosts is generally insufficient to correlate
incoming and outgoing network traffic, so re-
search about this problem has concentrated
only on what can be deduced from network-
level data. However, streams can be modified
or delayed in a host so that a correlation is
no longer possible from a network-level point
of view, necessitating a host-based solution.

In this paper we will discuss a simple and
inexpensive method for maintaining the nec-
essary information to correlate data entering
a host with data leaving a host. The goal of
this work is to provide additional audit data
that can help determine the source of net-
work attacks. We include results from an im-
plementation for the FreeBSD 4.1 kernel that
show the technique is effective in providing
information useful in tracing common attack
situations, particularly for tracing stepping
stones and denial-of-service attack zombies.

The next section provides a complete back-
ground of related work in the area and pro-
vides our view of the problem and design
criteria to be addressed in providing a solu-
tion. Section 3 describes the technique we
use to obtain and maintain location informa-
tion for each process, and the logging mech-
anisms that can be used to provide forensic
access to the data. Section 4 describes the
specific application of the technique to the
FreeBSD 4.1 kernel, and is followed in Sec-
tion 5 by examples of the implementation in
action. Section 6 outlines the limitations of
our approach, and how these limitations can
be addressed in future work. Finally, Sec-
tion 7 provides a summary of our work.

2 Background

The goal of network traceback research is to
allow determination of the source of attack
traffic, so that a particular host used by a
human to initiate an attack can be identified,
and real-world investigative techniques used
to locate the person responsible.

In order to accomplish this, the two prob-
lems described above — locating the source
of IP packets and determining the first node
of a connection chain — need to be solved. As
described below, there has been significant re-
search in locating the source of IP packets,
and there have been efforts made to iden-
tify connection chains sources by examining
network traffic. What is lacking is a reliable
method of correlating incoming network traf-
fic to a host with outgoing network traffic em-
anating from the host. This paper presents a
mechanism for doing this. While our method
is not always reliable, as discussed in Sec-
tion 6, we believe that with further research
and community involvement, this work can
help address what is a serious problem.

2.1 Packet Source Determination

In normal operation, a host receiving pack-
ets can determine their source by direct ex-
amination of the source address field in the IP
packet header. Unfortunately, this address is
easy to falsify, making it simple for attack-
ers to send packets that have their source ef-
fectively hidden. This is more common for
one-way communication, such as the UDP
and ICMP packets used in denial-of-service

attacks, but has been of use in attacks us-
ing TCP streams [21, 2]. There has been
significant recent research in how to locate
the source of such packets, primarily moti-
vated by distributed denial-of-service (DDoS)
attacks in early February of 2000. While
it is generally recommended that routers be
configured to perform ingress or egress rout-
ing [11], it is clear from continuing denial-
of-service attacks [20] that this is not widely
done. There have been other methods pro-
posed to perform filtering to limit the effect
of such attacks [24, 14].

As it is currently not possible to prevent
such attacks, recent work has focused on how
to locate the source of attacks. Some meth-
ods add or collect information at routers to
allow traceback of DoS traffic [6, 27, 35, 7, 30].
Other methods add markings to the pack-
ets to probabilistically allow determination of
the source given sufficient packets [28, 31, 23,
8, 9], or forward copies of packets, encapsu-
lated in ICMP control messages, directly to
the destination [1, 37]. A more innovative
method uses counter-DoS attacks to locate
the source of on-going attacks [4]. While we
do not require that these schemes be avail-
able, we can make effective use of the trace-
back information they provide.

2.2 Correlating Streams

Research addressing determination of the
source of a connection chain has mainly fo-
cused on correlating streams of TCP connec-
tions observed at different points in the net-
work. Figure 1 shows an example of a con-
nection chain.

The initial work in matching streams con-
structed thumbprints of each stream based on
content [32]. While this technique could ef-
fectively match streams, it would be ineffec-
tive in compressed or encrypted streams as
are common today. Other work compared
the rate of sequence number increase in TCP
streams as a matching mechanism, which can
work as long as the data is not compressed at
different hops and does not see excessive net-
work delay [38]. Another technique, which
relies solely on the timing of packets in a
stream, is effective against encrypted or com-
pressed streams of interactive user data [40].
This work was originally intended for intru-

ssh

Evil Bliss

ssh

attak
. data ..
Final Victim

Figure 1: A sample connection chain

sion detection purposes but was also pro-
posed as an effective method for finding the
source of connection chains. While perform-
ing stream matching might be effective in
some cases, such methods rely on examin-
ing network information, and might be vul-
nerable to the same methods that can be
used to defeat network intrusion detection
systems [26].

2.3 Forensic System Analysis

One of the objectives of computer foren-
sics is the reconstruction of events that oc-
curred on a system. Tools like the Coroner’s
Toolkit [10] attempt to discover hidden and
deleted files and use access times to deduce
system activities. A more formal model for
file and event reconstruction is given by An-
drew Gross [13].

In order to solve the host causality prob-
lem using forensic tools, it is necessary that
network traffic is logged in some fashion on
the host. Usually the essential information
needed to associate incoming and outgoing
traffic is not provided as the default on a
system. While tools like TCP wrappers do a
fine job logging incoming network traffic for
the essential services, usually outgoing traf-
fic is not logged at all. Furthermore, at best
network activity can be tied to a particular
user on the system. Exactly which processes
and programs are involved may be obscured
if there is a large amount of activity by that
user.

2.4 Host causality

Though certain aspects of the network
traceback problem have been addressed by
the approaches described above, a new area
of research that is concerned with data trans-
formations or data flow tracking through a
host is needed for a complete picture for at-
tack origin traceback. We call this new area
host causality, because we are attempting to

determine what network input causes other
network output.

Common operating systems do not cur-
rently provide information that can match in-
coming and outgoing network traffic. While
there has been some work that attempts to
use existing system information to match ac-
tive incoming and outgoing streams [15, 5],
this work has been either shown to be imprac-
tical to securely implement [3], or requires
an external trigger to store forensic informa-
tion. Ideally, it should be possible to deter-
mine whether network traffic was originated
directly from a particular host, or occurred as
a result of a connection from some other re-
mote machine, and, if possible, which remote
machine is involved. This would not only help
in tracing back to the source of a network at-
tack, but could be useful in showing due dili-
gence, so that the owner of a machine used
in attack could demonstrate that the attack
originated elsewhere.

A solution that addresses the problem of
tracing connections through a host is neces-
sary because a host on the network can trans-
form data passing through it in such a way
that, from the network’s point of view, it can
no longer be easily related to traffic leaving
it. This might be the case in a stepping stone
scenario, if the traffic is delayed, or differently
compressed or encrypted. Also, in attacks
like a distributed denial-of-service (DDoS) at-
tack [39], control traffic cannot be linked to
the resulting attack traffic. In such an attack,
packet source-location techniques might iden-
tify the source of a particular attack stream,
but will not allow identification of the master
or the controlling host. This is due to the fact
that the datagrams that are used to perform
the attack are seemingly unrelated to those
that control the client. What is missing is in-
formation within the host that can be used
to associate an incoming control packet with
outgoing attack data.

2.4.1 Desired Properties

The following properties either need to be ful-
filled or seem desirable in order to achieve a
practical solution to the host causality prob-
lem:

1. It must be possible to determine whether
a given process on the host was started
by a local user or remotely.

2. If a process was started by a user at a
remote location, information about that
source must be maintained and associ-
ated with the process.

3. An audit facility must exist that allows
the logging of incoming network traffic
and processes that receive it. This will
allow correlation between the source of a
process and the source of incoming net-
work packets.

4. An audit facility must exist that allows
the logging of individual outgoing net-
work traffic and processes that send it.
Combined with the facility above, one
could then relate incoming and outgoing
traffic processed by the same process.

5. The logs maintained about origin infor-
mation should be resistant to modifica-
tions by attackers.

6. Processes that spawn other processes
need to pass on their source information
to their children, or, if they provide a re-
mote login service, pass on the remote
location as the child’s new source.

7. The modifications to a system should be
minimal so that they do not interfere
with existing software.

8. Due to restricted logging space, it should
be possible to use rules to control what
data the audit system collects.

9. It should be possible to quickly identify
processes that were not started locally
together with their remote location.

3 Description of Model

A process on a computing host is an exe-
cuting instance of a program [34]. Processes
are therefore, among many other things, re-
sponsible for receiving and generating net-
work data on a host that is connected to a
network.

Processes can be started:
e explicitly by a human being
e by the system
A human being can start processes:

e while physically present at the host
e from a remote location

e indirectly through some other process he
or she started

The system can start processes:
e through startup scripts (including init)

e through scheduling services like cron
and at

e through system services like inetd

The origin of a process is the information
about how any process running on the system
was started in regard to the above possibili-
ties. For the purpose of this paper only a dis-
tinction between a process that was started
by a human being from a remote location (re-
mote origin) and the other ways (local origin)
is of importance, with the exception of the
special case of indirectly started processes.

In case of a remote origin for a process,
the origin information should include that re-
mote location. If the system tracks the origin
of a process and a process sends out network
traffic and is of remote origin, then the sys-
tem can make a connection between the traf-
fic that was sent out and the traffic that was
received from the origin of the process over
the network. The traffic could be individual
datagrams, or they can be part of an estab-
lished connection.

In order to gain access to a system from
a remote location and start new processes
there, a user has to make use of a service of-
fered on that particular system. Usually most
systems provide well-known services such as
telnet, rsh, or ssh that will give a remote
user a shell on the system. However, there
are other possibilities to create new processes
that do not involve an interactive shell. In
fact, any process listening on an open port
on the system may be used or misused for
such purposes. Our solution does not address
these problems, and they are a topic for fu-
ture investigation.

As the only legitimate remote access to
a system is through its well-known services,
it is feasible to store information about the
existing connection with the newly created
child process. After a successful login pro-
cedure, the source of the new process should
reflect the information stored about the con-
nection. Note that the origin of a process
and its subsequent children is set at the time
a user gains access to the system. All pro-
grams that will be started during that remote
session will inherit that origin. At this point
time delays become irrelevant, as origin infor-
mation is stored with the processes no matter
whether or not processes become dormant for
any amount of time.

3.1 Information Storage

From the viewpoint of a host, all that can
be deduced about the origin of an arriving
network packet is the interface that it arrived
on and the information that is contained in
the packet itself. A host on its own cannot
determine whether a network datagram was
spoofed or not. Therefore, for IP packets,
the five-tuple consisting of source and desti-
nation IP addresses and source and destina-
tion ports and the protocol number must suf-
fice to distinguish source information main-
tained about processes on a host. If packet
traceback schemes are deployed and can pro-
vide additional information, it is possible to
maintain that information as well.

While storing information about active
processes can be useful, for complete analysis
of attacks, some additional information needs
to be logged as well. The logging mechanism
can maintain more explicit information than
simply storing the IP five-tuples. Along with
the five-tuple and timestamp, the system can
also store the interface on which the packet
arrives and the process id. If the system logs
individual packets, it can also store a check-
sum of the non-changing parts of each packet
header that is logged in case the need for a
more detailed post-analysis matching arises.

Furthermore, it would be expensive and
impractical to log an entire stream of packets
that make up the entirety of a TCP stream.
Since TCP is a connection oriented trans-
port layer protocol, it is sufficient to only
regard incoming and outgoing SYN requests

for the purposes of logging. Unfortunately,
UDP is a connection-less protocol. Thus for
UDP, all packets need to be logged. Log-
reducing mechanisms that group the same
kind of UDP packets together can certainly
be applied here, but this is out of the scope
of this paper.

3.2 Limitations on Information

Availability

For well-known services we can assume that
there will only be one open network connec-
tion for each child process spawned as they
adhere to the common style of running Unix
servers that fork for each new request [33].
Non-standard server programs might behave
differently, however, and there might be mul-
tiple open connections when we try to de-
termine the origin information. In this case,
it is impossible to be sure which connection
should be considered as the origin of the pro-
cess. Because of this, there can be a problem
with using the latest data from the accept
system call as the origin information. If a
server program allows multiple open sockets
before the call to login, then there is a pos-
sibility that the wrong origin information is
stored with the process. It is possible to de-
sign a program that after accepting a con-
nection opens another listening socket to re-
ceive a decoy connection from a completely
different remote site or, even worse, from the
local host itself. This would set the infor-
mation obtained from the accept call to the
new socket’s source data, before login was in-
voked. After a successful login procedure, the
origin information would be incorrect. If a
local user installs such a program, then any
attacks originating from it can be viewed as
originating from the host, which is consistent
with our definition of local origin.

Another problem is that a remote user may
still hide his real origin by creating a connec-
tion from the system to itself. In this case the
origin information of the process gets changed
to the source information of the local host.
While the process is still being considered of
remote origin, it is of no value from a trace-
back perspective. If many remote processes
“change” their origin in such a fashion, one
cannot determine anymore what the “real”
origin of any of those was. In order to pre-
vent this obscuring of the origin of a process,

one needs to keep track of an inheritance line
for remote processes. That is, for any given
process of remote origin, one must be able
to determine its parent process if that parent
process also was of remote origin.

4 Implementation

The model described above was imple-
mented in the FreeBSD 4.1 operating system
on an 1386 based PC. While the implemen-
tation is therefore specific to the UNIX op-
erating system, the general principles of the
model should be applicable to other systems
as well.

All processes that accept network connec-
tions do need to make use of the socket sys-
tem calls provided by the system. Stevens
[33] describes the necessary steps to set up
a TCP or UDP server. They involve sys-
tem calls to bind, listen, and accept, in
that order. Thus any connection between two
systems must have successfully undergone a
call to accept on the server side. In the
case of TCP, accept returns after a success-
ful three-way handshake. In the case of UDP,
accept returns upon reception of a packet
that matches the socket characteristics.

As a successful connection implies a suc-
cessful return from the accept system call,
it seems reasonable to make modifications
there in order to obtain location information.
Specifically, with the assumption of only one
open network connection, it is sufficient to
record the data from the last call to accept.
This information will then be accessible to the
child process created by the fork system call.
Finally, after a successful login procedure, the
source of the new process should reflect the
information stored about the connection. As
the login program lies in user space and not
all well-known servers utilize it, it will be nec-
essary to perform this step through one of the
system calls such as setlogin.

All the necessary information described in
Section 3 is available within data structures
used by the accept system call. Once the
connection has been established, the socket
descriptor contains the source IP address and
the source port of the purported source of
the traffic. To determine the destination IP

address and port that was used to establish
the connection, the system also has to access
the protocol control block (PCB) that is as-
sociated with the socket and that is pointed
to from the socket data structure'. The in-
formation can be obtained through simple
pointer lookups.

4.1 Where to store source infor-
mation

We decided to maintain the information di-
rectly in the process table itself, because it
is simple to add another field that contains
the necessary information, and creation and
termination of processes is handled automat-
ically. The inheritance problem is taken care
of as well, as the fork system call causes cer-
tain fields of the process table to be copied to
the child. The only time we therefore need to
access the field in the process table is when
origin information changes. The disadvan-
tage of this approach is that some auxiliary
programs such as top and ps might have to
be adjusted to accommodate the changes.

It is possible to utilize existing logging fa-
cilities, such as syslog to record the data, or
a logging program can develop its own format
and location to store the information [25].
Ideally, there would be some mechanism to
ensure the integrity of the logs. Write-once,
read-many media, or a secure logging facility
could be used [29].

4.2 Data structures and kernel
modifications

For the source information, a new data
type, struct porigin, was created as shown
in Figure 2.

The type field denotes whether the source
is local (0) or remote (1). If the type is 0,
all other fields are undefined and can be ig-
nored. The next five fields are the typical
four-tuple for a TCP or UDP connection, con-
sisting of source and destination IP addresses
as well as source and destination ports, plus
the protocol number. The last parameter is a
timestamp, which denotes the time the con-
nection was established in network time for-
mat [19]. Note that the network interface is

1See McKusick et al. [17] or Wright and Stevens
[36] for further details.

struct porigin {
char type;
struct in_addr source_ip;
struct in_addr dst_ip;

u_short source_port;
u_short dst_port;
u_short proto;
time_t tstamp;

Figure 2: The process origin data structure

not included here but can be obtained with
the information stored if necessary.

In order to keep track of the correspond-
ing source information for each process, the
process table data structure (struct proc)
was modified in two locations. It is neces-
sary to retain the actual source information
as well as information about the last accepted
connection of a process. The latter is needed
because all common TCP/IP based network
services that provide a remote login facility
first accept the connection and then fork off
a child process where login is called.

Hence, two fields, origin and lastaccept
were added to the process table structure,
both of type struct porigin. The fields are
located in the area that gets copied in the
fork system call.

The copying of the origin field provides
a simple and elegant solution for the inheri-
tance mechanism. All it takes is a few more
bytes to be copied in the fork system call, as
the process structure is copied anyway. Thus,
a child process always inherits the source in-
formation from its parent.

This leaves the question of where the two
fields, lastaccept and origin are to be set.
As the name already suggests, lastaccept
is set in the accept system call, after a
successful accept of an incoming connection.
The modified accept system call was imple-
mented as shown in Figure 3, which shows
how to retrieve information from the PCB.

Note that acceptl is called from the ac-
tual accept system call. The connection will
be accepted in the procedure soaccept. If
the call is successful, the type is set to 1, and
the four-tuple is obtained from the PCB as-
sociated with the socket via the pointer inp.

Note that this will only work for a TCP con-
nection, which is used by services which pro-
vide a shell. For future work, other protocol
types need to be considered. For instance, in
the case of UDP, the recvfrom system call
may be modified in a similar fashion.

The origin field will be copied from a par-
ent process to its child. However, as discussed
above, each time a login is performed within
a process, the source information of the last
accepted socket should become the new ori-
gin information for that process. Thus, at
an invocation of login, the lastaccept field
should be copied into the origin field. How-
ever, as discussed above, login is only a pro-
gram in user space that simply utilizes sev-
eral system calls to perform the actual user
login. One could supply a separate system
call to have the lastaccept field copied to
the origin field, but that would imply that
every program that supplies a login service
to be changed and use it. Therefore, one of
the system calls used by every login service,
setlogin was modified so that the field is
copied after a successful call.

To keep track of the inheritance line for a
remote process, it is necessary to modify the
fork system call, as well. It is sufficient to
record the process IDs of the parent and child
processes in case the parent is of remote ori-
gin. From this information, it is possible to
reconstruct the entire inheritance line for a re-
mote process up to the first parent that was of
remote origin. The syslog facility provides
an easy way to log kernel messages, and was
chosen to record the information out of rea-
sons of simplicity. Figure 4 shows the modi-
fications made to fork. In future work, this
recording mechanism needs to be refined and
optimized.

acceptl(p, uap, compat)

(void) soaccept(so, &sa);
inp = sotoinpcb(so); // pointer to protocol control block
populate fields in p->lastaccept from information
pointed to by inp;
p->lastaccept.type = 1;
}

Figure 3: The modified accept system call (pseudo-code)

4.3 System calls

In order to access the source informa-
tion for a given process, a new system call,
getorigin was added to the system. It
takes as parameters a process identifier and
a buffer, into which the source information is
copied.

Note that there is no system call to set or
reset the origin field. With the getorigin
system call, it is now possible to design log-
ging facilities and administrative programs
within user space that make use of the source
information of a process. For reasons of sim-
plicity, the call was implemented to be unre-
stricted.

Another system call, portpid, was added
to give support for the logging facility de-
scribed below. If one wants to associate in-
coming TCP or UDP packets with the receiv-
ing process, one needs to find the process id of
the socket that will handle an IP packet. The
same is true for sockets that are responsible
for outgoing packets. Those sockets are iden-
tified in the network layer by the four-tuple
of source and destination addresses and ports,
but, unfortunately, there is no mechanism in
FreeBSD to obtain that information within
user space. Thus the system call portpid
will take such a four-tuple as well as a proto-
col identifier (TCP or UDP) and will return
the process id of the process that belongs to
the listening socket that will accept packets
matching the four-tuple, or belonging to the
socket that sent the packet. If there is no such
socket, an error will be returned. A weakness
of this design is that a process may exit and
be removed from the process table before the
portpid call occurs. More verbose logging
could offset this problem.

The FreeBSD operating system uses proto-
col control blocks (PCBs) to demultiplex in-
coming IP packets. The PCBs are chained
together in a linked list and contain IP source
and destination addresses and TCP or UDP
ports or wildcard entries for incoming packets
to match against. Each PCB also contains a
pointer to the socket that is destined to re-
ceive a packet, should it match the four-tuple
specified in the PCB. From the socket, one
can then look in the receive or write buffer to
obtain the actual process id of the receiving
or sending process, respectively. In order to
determine which process will receive a packet
or which process sent a packet, one needs to
traverse the list of PCBs until the best match
is found, and then obtain the process id of the
socket associated with the PCB.

4.4 Logging facility

The logging facility that was implemented
is merely a proof of concept, and there are
many feasible ways to design and implement
one. Our implementation of the logging facil-
ity uses the 1ibpcap library, which is part of
the Berkeley Packet Filter (BPF). The BPF
will make a copy of each incoming and outgo-
ing network packet that matches given filter
criteria and supply that copy to the process
utilizing the filter.

This prototype logging facility can there-
fore be considered as a network sniffer, but
a more robust and efficient implementation
would be one that is part of the kernel it-
self. For each TCP SYN or UDP packet seen
by the sniffer, the portpid system call is in-
voked to obtain the process id of the process
responsible for the packet. Once the process
id is obtained, getorigin is called for that
process id to determine whether the process
is of remote origin or not. If it is of remote
origin, then the packet as well as the origin

int
fork(p, uap) {

error = forkl(p, RFFDG | RFPROC, &p2);
if (error == 0) {
p->p_retval[0] = p2->p_pid;
p->p_retval[l] = 0;
if (p->origin.type)
log (LOG_INFO,

"remote process %d spawned child %d\n",

p->p_pid, p2->p_pid);

Figure 4: The modified fork system call

information is printed out. Figure 5(a) shows
the interaction of the different parts of the
system with the logging facility, and Figure 6
shows the important parts of the routine that
processes the packets passed on by the BPF.

There is a problem with logging outgoing
UDP packets. The portpid system call re-
lies on the socket that sent the packet to be
still open so that it can find it in the PCB
list. If an application opened a socket, wrote
one UDP packet, and immediately closed the
socket again, there is a chance that the socket
no longer exists when the packet is examined
by the logging facility. DDoS clients usually
keep the socket they send packets from open
so that packets can be sent at a faster rate,
but for outgoing control packets, this is a
problem. For TCP, this is not a serious is-
sue, as there is either a three-way handshake
or a time-wait period at the end of each con-
nection.

One method to solve the outgoing UDP
packet problem could entail further modifica-
tion of the kernel, keeping the process ids of
sending processes in a cache and making that
information available to the portpid system
call. A similar approach could also improve
lookup performance for incoming packets. In-
stead of duplicating the de-multiplexing effort
made in the networking stack, modifications
to the stack could result in a new data struc-
ture that returns the correct process id for a
given five-tuple.

5 Implementation Results

The modified kernel was installed on an In-
tel Pentium III 866 MHz Celeron PC. The
machine used is part of a small networking

lab. We will discuss the effects of the changes
on the normal system behavior as well as give
two examples of processes of remote origin
handling traffic.

5.1 Effects on normal system be-
havior

As the changes to the system were only
few and cheap, the impact on the system is
minimal. The getorigin copies a few bytes
from the process table and is only executed
for TCP SYN and UDP packets. For those
packets, the call to portpid causes a linked-
list traversal of the protocol control blocks in
the same manner the networking stack does
its de-multiplexing. In every call to accept,
the lastaccept field is set from the socket
information. These operations are very few
and inexpensive compared to the entire set
of operations within accept. In every call to
fork, an extra few bytes need to be copied
to pass on the origin information to a pro-
cess’s child. The way the syslog facility was
used to keep record of an inheritance line is
very inefficient. On a system where processes
spawn many children, the logs may quickly
wrap around. That and the fact that the in-
heritance line needs to be reconstructed man-
ually from the logs suggests the need for a re-
design of the inheritance line for future work.

5.2 Examples

5.2.1 Stepping Stone

In this example, bliss was used as a stepping
stone. A user from evil (10.0.0.1) logged
into bliss (192.168.0.1) via ssh. From
there, he used ssh again, to log into final
(172.16.0.1). The actual host names and
IP addresses have been replaced by fictitious

Logging facility

datagram 4-tuple pid origin
Kernel
network portpid]| |98
Stack origin
| access |
[1
1
copy process
table
BPF

network packets

(a) The logging facility

DDoS
Master

install

DDoSclient client

DDoS
Client

DosS attack

victim Victim

(b) Setup for the DDoS attack

Figure 5: The logging facility and DDoS attack experimental setup

ones. This setup is equal to the example given
in Figure 1 with the exception of the very last
host.

The logging facility recorded the following
entry from this:

192.168.0.1:1022->172.16.0.1:22 sent by pid 285
Origin: 10.0.0.1:1022-192.168.0.1:22

One can observe, that the origin informa-
tion indicates the connection from evil, port
1022, to bliss, port 22 (ssh). The logging
mechanism didn’t log the connection from
evil to bliss, as sshd is a local process.
However, evil is clearly shown as the ori-
gin for the process that connected to final.
Therefore one can now associate the stream
from bliss to final to the one from evil to
bliss for traceback purposes.

5.2.2 DDoS Client

In this example, a DDoS trinoo client, ob-
tained from the Packet Storm archive [22],
was installed on bliss from evil. The cor-
responding master was installed on another
machine, master (192.168.0.2). Bliss was
then used via master to perform a denial of
service attack against victim (172.16.0.2),
a third machine in the test network. Fig-
ure 5(b) shows the setup for the attack.

Again, host names and IP addresses have
been changed.

A sample of the logging output is presented
in Figure 7.

The first logged event is a UDP packet from
bliss to master, notifying the trinoo mas-
ter that a client is active. The next event is
then a UDP packet from master to bliss,
triggering the DoS attack. The rest of the
log shows UDP packets sent from bliss to
victim as part of the attack.

All the traffic can be unambiguously associ-
ated with the process 3760, the DDoS client.
From the origin, one can see that the process
was started from evil. In this example, it
is clear that the attack was controlled from
master. This might not always be possible,
as multiple packets from different locations
could be received by the process just before
an attack. However, by examining the logs
a good estimate might be derived. At the
very least it will give a list of possible hosts
from where the attack was launched. Net-
work traceback mechanisms can now be used
to determine the location from where the soft-
ware was set up and master could now be
investigated in the same manner as bliss to
determine more information about the attack

if (protocol is TCP) {
set pointer to TCP header within the packet;
remember source and destination ports;
if (this is the start of a new connection)
set log flag;
}
else if (protocol is UDP) {
set pointer to UDP header within the packet;
remember source and destination ports;
set log flag;
}
if (log flag is set) {
if (packet is coming in)

invoke portpid with parameters for incoming packets;

else if (packet is going out)

invoke portpid with parameters for outgoing packets;

else
set error;

if (portpid returned successfully) {
call getorigin with pid returned by portpid;
if (origin is remote) {
if (packet is coming in)
print log for incoming packets;
else if (packet is going out)
print log for outgoing packets;

Figure 6: The packet processing routine of the logging facility (pseudo-code)

192.168.0.1:1117->192.168.0.2:31335 (17) sent by pid 3760

Origin: 10.0.0.1:32155-192.168.0.1:13419

192.168.0.2:39805->192.168.0.1:27444 (17) received by pid 3760

Origin: 10.0.0.1:32155-192.168.0.1:13419

192.168.0.1:1135->172.16.0.2:12865 (17) sent by pid 3760

Origin: 10.0.0.1:32155-192.168.0.1:13419

192.168.0.1:1135->172.16.0.2:59850 (17) sent by pid 3760

Origin: 10.0.0.1:32155-192.168.0.1:13419

192.168.0.1:1135->172.16.0.2:10435 (17) sent by pid 3760

Origin: 10.0.0.1:32155-192.168.0.1:13419

192.168.0.1:1135->172.16.0.2:4577 (17) sent by pid 3760

Origin: 10.0.0.1:32155-192.168.0.1:13419

Figure 7: Output of the logging facility

and the location of the attacker.

6 Limitations and Future Work

This paper presents a first attempt at a
mechanism designed to address the problem
of determining host causality. While it is
progress in a forward direction, it is not a
complete solution to a problem, though its
use could prove beneficial in many cases. We
hope that discussion of the limitations will
foster other research on the problem.

While available origin information is main-
tained for processes that utilize setlogin,
there are other mechanisms that attackers
can use to start processes on a system. Re-
motely, attackers might gain access to a sys-
tem using processes that service network re-
quests, such as mail, web, or ftp servers. Ex-
ploits such as buffer overflows against these

processes can produce user shells for the at-
tacker, bypassing the system call. In these
cases, origin information will not be properly
recorded. For these cases the question arises
when exactly to set the origin information so
that it is meaningful. Furthermore, an at-
tacker who gains access to a system might
use a cron or at job to create a process after
the attacker has logged off; this would also
result in processes that lack the correct ori-
gin information. A solution to this problem
might be to include origin information in the
file system so that when the new process was
started the appropriate location information
was available.

Sometimes login servers can open a second
connection to the client for out-of-band data.
Currently this scenario is not handled in the
design. However, its seems that in the worst

case the wrong port is recorded for the origin
within the modified accept system call.

An attacker also might use a covert chan-
nel between processes to obscure the proper
location information. In this scenario, an at-
tacker, who perhaps enters the system though
a mechanism that invokes setlogin and
whose processes therefore have correct origin
information, uses some form of IPC to cause
a process that has other origin information
to send data into the network. This is a dif-
ficult problem to deal with, as it has always
been [12], and we do not have an immediate
solution for it. Any process that listens on a
covert channel needs to have been started ei-
ther locally or remotely, however, and in the
case of an external attacker, most likely re-
motely. Thus, any outgoing traffic from that
process will still be logged.

While our implementation only operates on
TCP and UDP packets, any protocol could
be used by an attacker. For example, some
DDoS tools use ICMP messages to send con-
trol messages over the network. In this case,
an attacker would either have to modify the
routines for ICMP processing in the kernel or
may have to sniff the incoming traffic using a
library like 1ibpcap. If the attacker has mod-
ified the kernel to listen to and process these
messages, there seems to be little that can be
done to establish the origin information for a
process, because if the kernel can been mod-
ified by the attacker, the origin information
can be tampered with as well. In the latter
case one can check for open BPF filters and
also be aware of processes that utilize other
protocols or do not receive network packets
from the networking stack but rather through
the packet filter.

The mechanism for keeping track of the in-
heritance line for a process needs to be im-
proved. The current mechanism, while very
simple to implement, is the only part of the
modifications we made that affects the sys-
tem in a noticeable fashion. One problem is
that with each new child process, more in-
formation needs to be stored, even though
it is small. Once a separate data structure
for keeping inheritance lines is used, a simple
improvement would be to delete inheritance
lines or parts of it where all the processes

involved have terminated. However, overall
management of the inheritance lines remains
as future work.

In the event of a system compromise, in
which an attacker gains root capabilities, the
origin information in the kernel and recorded
information in the file system is just as vul-
nerable to modification or deletion as any
other kernel or file system information. We
consider this outside of the scope of our
work, but point to other work that attempts
to make audit information survive such at-
tacks [29], and suggest that current forensics
tools could be modified to recover the altered
origin information in some cases.

Finally, as mentioned above, the packet
logging system is a prototype only; a more
effective design would be to include the log-
ging mechanism in the kernel itself. Instead
of sniffing for outgoing packets, writes to
a network socket would cause the outgoing
packet to be logged before the socket could
be closed, alleviating the problem with trying
to find the source of UDP packets mentioned
above. Additionally, the current mechanism
logs all TCP SYN and UDP packets, creating
a denial-of-service opportunity for attackers
to fill up disk space, so a more selective ap-
proach to recording packets is clearly in order,
where possible.

6.1 Future work in Host Causality

Even though the origin information was de-
signed with network traceback in mind, there
are other applications or foundations for new
modifications of the system:

e A system administrator can use the ori-
gin information to determine the ori-
gins of all running processes and iden-
tify ones that have a very unusual source.
This can lead to the discovery of running
DDoS clients on a machine, for example.

e The origin information can be incorpo-
rated into the file system. By storing a
process’s origin information with a file
whenever the process writes to the file
system. Not only can this help in solv-
ing the problem with cron and startup
scripts, but it can also aid in locating
suspicious programs in users’ home di-
rectories. This would be especially ef-

fective with logging file systems, so that
the changes in files could be tracked by
location as well.

e Origin information adds another dimen-
sion to access control. Access control
mechanisms can be altered so that they
take origin information into account and
grant certain privileges only when cer-
tain origin conditions are met.

o Statistics based on origin of processes
can be gathered, which can be used to
profile normal system behavior or to lo-
cate trends that may help in better sys-
tem administration.

Origin information may well benefit in
other security related fields. The prospect
of access control in combination with origin
information seems to be an especially inter-
esting area. Research in that direction may
well improve overall robustness of the origin
mechanism itself.

7 Conclusion

In this paper, we have introduced the no-
tion of host causality as a mechanism to com-
plement current research in network trace-
back. With the addition of origin information
to a process, we have developed a mechanism
that, with only minor changes to the given
system, works well under the simple circum-
stances. The two examples show that impor-
tant information for network traceback can be
obtained with origin information and the new
logging possibilities that result from that.

The work we presented here is only the
start of work in the overall area. We have
identified many limitations of our mechanism,
and outlined what future work needs to be
done to better address the problem. Host
causality is not a complete solution to all the
problems that faced in tracing connections
through a network, but providing solutions
could prove a valuable tool to help improve
security in a future networking environment.

References

[1] S. Bellovin. ICMP Traceback Messages.
Technical report, IETF Internet draft,
March 2000. Work in progress.

2]

3]

[10]

[11]

[12]

[13]

S. M. Bellovin. Security Problems in the
TCP-IP Protocol Suite. Computer Commu-
nications Review, 19(2):32-48, April 1989.

F. Buchholz, T. Daniels, B. Kuperman, and
C. Shields. Packet tracker final report. Tech-
nical Report 2000-23, CERIAS, Purdue Uni-
versity, 2000.

H. Burch and B. Cheswick. Tracing Anony-
mous Packets to their Approximate Source.
In Proceedings of the 14th Conference on
Systems Administration (LISA-2000), New
Orleans, LA, December 2000.

B. Carrier and C. Shields. A Recursive Ses-
sion Token Protocol for use in Computer
Forensics and TCP Traceback. In Proceed-
ings of the IEEE Infocomm 2002, 2002. To
appear.

H. Chang and D.Drew. DoSTracker. This
was a publicly available PERL script that
attempted to trace a denial-of-service at-
tack through a series of Cisco routers. It was
released into the public domain, but later
withdrawn., June 1997.

Characterizing and Tracing Packet Floods
Using Cisco Routers. http://www.cisco.
com/warp/public/707/22.html.

D. Dean, M. Franklin, and A. Stubblefield.
An Algebraic Approach to IP traceback. In
Proceedings of the 2001 Network and Dis-
tributed System Security Symposium, San
Diego, CA, February 2001.

T. W. Doeppner, P. N. Klein, and A. Koyf-
man. Using Router Stamping to Identify the
Source of IP Packets. In 7th ACM Con-
ference on Computer and Communications
Security, pages 184-189, Athens, Greece,
November 2000.

The Coro-
http://www.fish.

D. Farmer and W. Venema.
ner’s Toolkit (TCT).
com/tct/.

P. Ferguson and D. Senie. Network Ingress
Filtering: Defeating Denial of Service At-
tacks which employ IP Source Address
Spoofing. Technical Report RFC 2827, In-
ternet Society, May 2000.

Virgil Gligor. A guide to understanding
covert channel analysis of trusted systems.
Technical Report NCSC-TG-030, National
Computer Security Center, Ft. George G.
Meade, Maryland, U.S.A., November 1993.

Approved for public release: distribution
unlimited.
A. H. Gross. Analyzing Computer Intru-

sions. PhD thesis, University of California,
San Diego, 1997.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

J. Toannidis and S. M. Bellovin. Push-
back: Router-Based Defense Against DDoS
Attacks. In Proceedings of the 2002 Net-
work and Distributed System Security Sym-
posium, San Diego, CA, February 2002.

H. T. Jung, H. L. Kim, Y. M. Seo, G. Choe,
S. L. Min, C. S. Kim, and K. Koh. Caller
Identification System in the Internet Envi-
ronment. In UNIX Security Symposium IV
Proceedings, pages 69-78, 1993.

S. C. Lee and C. Shields. Tracing the Source
of Network Attack: A Technical, Legal, and
Societal Problem. In Proceedings of the 2001
IEEE Workshop on Information Assurance
and Security, West Point, NY, June 2001.

M.K. McKusick, K. Bostic, M.J. Karels, and
J.S. Quarterman. The Design and Imple-
mentation of the 4.4 BSD Operating System.
Addison Wesley, Boston, MA, 1996.

B. McWilliams. CERT: Cyber Attacks
Set To Double In 2001. http://www.
sercurityfocus.com/news/266.

D.L. Mills. Network Time Protocol.
1059, July 1988.

D. Moore, G. Voelker, and S. Savage. In-
ferring Internet Denial of Service Activity.
In Proceedings of the 2001 USENIX Secu-
rity Symposium, Washington D.C., August
2001.

R.T. Morris. A Weakness in the 4.2BSD
Unix TCP-IP Software. Technical Re-
port 17, AT&T Bell Laboratories, 1985.
Computing Science Technical Report.

Distributed =~ Attack Tools Section.
http://packetstorm.securify.com/
distributed/.

K. Park and H. Lee. On the effectiveness
of probabilistic packet marking for IP trace-
back under denial of service attack. In Pro-
ceedings IEEE INFOCOM 2001, pages 338—
347, April 2001.

K. Park and H. Lee. On the Effectiveness
of Route-Based Packet Filtering for Dis-
tributed DoS Attack Prevention in Power-
Law Internets. In Proceedings of the 2001
ACM SIGCOMM, San Diego, CA, August
2001. To Appear.

J. Picciotto. The Design of An Effective
Auditing Subsystem. In Proceedings of the
IEEE Symposium on Security and Privacy,
pages 1322, 1987.

T. Ptacek and T. Newsham. Insertion, Eva-
sion, and Denial of Service: Eluding Net-
work Intrusion Detection. Technical report,
Secure Networks, Inc., January 1998.

RFC

[27]

[29]

[30]

32]

[40]

J. Rowe. Intrusion Detection and Isolation
Protocol: Automated Response to Attacks.
Presentation at Recent Advances in Intru-
sion Detection (RAID), 1999.

S. Savage, D. Wetherall, A. Karlin, and
T. Anderson. Practical Network Support for
IP Traceback. In Proceedings of the 2000
ACM SIGCOMM Conference, August 2000.

B. Schneier and J. Kelsey. Secure Au-
dit Logs to Support Computer Forensics.
ACM Transactions on Information and Sys-
tem Security, 1(3), 1999.

A. C. Snoeren, C. Partridge, L. A.
Sanchez, C. E. Jones, F. Tchakountio, and
W. T. Strayer S. T. Kent. Hash-Based IP
Traceback. In Proceedings of the 2001 ACM
SIGCOMM, San Diego, CA, August 2001.

D. X. Song and A. Perrig. Advanced
and Authenticated Marking Schemes for IP
Traceback. In Proceedings of the IEEE In-
focomm 2001, April 2001.

S. Staniford-Chen and L.T. Heberlein. Hold-
ing Intruders Accountable on the Internet.
In Proceedings of the 1995 IEEE Symposium
on Security and Privacy, pages 39-49, Oak-
land, CA, May 1995.

W. R. Stevens. Uniz Network Programming,
volume 1. Prentice Hall PTR, second edi-
tion, 1998.

W.R. Stevens.
the UNIX Environment.
Reading, MA, 1993.

R. Stone. CenterTrack: An IP Overlay Net-
work for Tracking DoS Floods. In Proceed-
ings of the 9th USENIX Security Sympo-
stum, Denver, CO, August 2000.

G.R. Wright and W.R. Stevens. TCP/IP
Hllustrated Volume 2, The Implementation.
Addison Wesley, Boston, MA, 1995.

S. F. Wu, L. Zhang, D. Massey, and
A. Mankin. Intention-Driven ICMP Trace-
Back. IETF Internet draft, February 2001.
Work in progress.

K. Yoda and H. Etoh. Finding a Connection
Chain for Tracing Intruders. In Proceedings
of the 6th European Symposium on Research
in Computer Security (ESORICS 2000), Oc-
tober 2000.

ZDNet Special Report: It’s War!l Web
Under Attack. http://www.zdnet.com/
zdnn/special/doswebattack.html, Febru-
ary 2000.

Y. Zhang and V. Paxson. Detecting Step-
ping Stones. In Proceedings of the 9th
USENIX Security Symposium, Denver, CO,
August 2000.

Advanced Programming in
Addison-Wesley,

