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Abstract

The buffer-cache replacement policy of the OS can
have a significant impact on the performance of I/O-
intensive applications. In this paper, we introduce a
simple fingerprinting tool, Dust, which uncovers the re-
placement policy of the OS. Specifically, we are able to
identify how initial access order, recency of access, fre-
quency of access, and long-term history are used to de-
termine which blocks are replaced from the buffer cache.
We show that our fingerprinting tool can identify popu-
lar replacement policies described in the literature (e.g.,
FIFO, LRU, LFU, Clock, Random, Segmented FIFO,
2Q, and LRU-K) as well as those found in current sys-
tems (e.g., NetBSD, Linux, and Solaris).

We demonstrate the usefulness of fingerprinting the
cache replacement policy by modifying a web server to
use this knowledge; specifically, the web server infers
the contents of the OS file cache by modeling the re-
placement policy under the given set of page requests.
We show that by first servicing those web pages that are
believed to be resident in the OS buffer cache, we can
improve both average response time and throughput.

1 Introduction

Although the specific algorithms used to manage the
buffer cache can significantly impact the performance of
I/O-intensive applications [8, 13, 27], this knowledge is
usually hidden from user processes. Currently, to de-
termine the behavior of the buffer cache, implementors
are forced to rely on available documentation, access to
source code, or general knowledge of how buffer caches
behave.

Rather than relying on these ad hoc methods, we pro-
pose the use of fingerprinting to automatically uncover
characteristics of the OS buffer cache. In this paper, we
describe Dust, a simple fingerprinting tool that is able
to identify the buffer-cache replacement policy; specif-
ically, we identify whether it uses initial access order,
recency of access, frequency of access, or historical in-
formation.

Fingerprinting can be described as the use of micro-
benchmarking techniques to identify the algorithms and
policies used by the system under test. The idea behind

fingerprinting is to insert probes into the underlying sys-
tem and to observe the resulting behavior through visible
outputs. By carefully controlling the probes and match-
ing the resulting output to the fingerprints of known al-
gorithms, one can often identify the algorithm of the sys-
tem under test. The key challenge is to inject probes
to create distinctive fingerprints such that different algo-
rithmic characteristics can be isolated.

There are several significant advantages to using fin-
gerprints for automatically identifying internal algo-
rithms. First, fingerprinting eliminates the need for a
developer to obtain documentation or source code to un-
derstand the underlying system. Second, fingerprinting
enables all programmers, not just those with sophisti-
cated experience, to use algorithmic knowledge and thus
improve performance. Third, fingerprinting can uncover
bugs, or hidden complexities, in systems either under de-
velopment or already deployed. Finally, fingerprinting
can be used at run-time, allowing an adaptive application
to modify its own behavior based on the characteristics
of the underlying system.

In this paper, we investigate a new use of algorith-
mic knowledge: its use in exposing the current con-
tents of the OS buffer cache. Recent work has shown
that I/O-intensive applications can improve their perfor-
mance given information about the contents of the file
cache [3, 33]; specifically, applications that can handle
data from disk in a flexible order should first access those
blocks in the buffer cache and then those on disk. How-
ever, current approaches suffer from one of two limita-
tions: they either require changes to the underlying OS
to export this information or cannot accurately identify
the presence of small files in the buffer cache.

We observe that an application can model (or simu-
late) the state of the buffer cache if it knows the replace-
ment policy used by the OS and can see most file ac-
cesses. A dedicated web server can greatly benefit from
knowing the contents of the buffer cache and servic-
ing first those requests that will hit in the buffer cache.
We have implemented a cache-aware web server based
on the NeST storage appliance [6] and show that this
web server improves both average response time and
throughput.

In this paper we make the following contributions:



� We introduce Dust, a fingerprinting tool that au-
tomatically identifies cache replacement policies
based upon how they prioritize between initial ac-
cess order, recency of access, frequency of access,
and historical information.

� We demonstrate through simulations that Dust can
distinguish between a variety of replacement poli-
cies found in the literature: FIFO, LRU, LFU, Ran-
dom, Clock, Segmented FIFO, 2Q, and LRU-K.

� We use our fingerprinting software to identify the
replacement policies used in several operating sys-
tems: NetBSD 1.5, Linux 2.2.19 and 2.4.14, and
Solaris 2.7.

� We show that by knowing the OS replacement pol-
icy, a cache-aware web server can first service those
requests that can be satisfied within the OS buffer
cache and thereby obtain substantial performance
improvements.

The rest of this paper is organized as follows. We
begin in Section 2 by describing our fingerprinting ap-
proach. In Section 3 we show via simulation that we
can identify a range of popular replacement policies.
In Section 4 we identify the replacement policies used
in several current operating systems. In Section 5 we
show how a web server can exploit knowledge of the
buffer-cache replacement policy for improved perfor-
mance. We briefly discuss related work in Section 6,
and conclude in Section 7.

2 Fingerprinting Methodology

We now describe Dust, our software for identifying
the page replacement policy employed by an operating
system. By manipulating how blocks are accessed, forc-
ing evictions, and then observing which blocks are re-
placed, Dust can identify the parameters used by the
page replacement policy and the corresponding algo-
rithm.

Dust relies upon probes to infer the current state of
the buffer cache. By measuring the time to read a byte
within a file block, one can determine whether or not that
block was previously in the buffer cache. Intuitively, if
the probe is “slow”, one infers that the block was previ-
ously on disk; if the probe is “fast”, then one infers that
the block was already in the cache.

For Dust to correctly distinguish between different re-
placement polices, we must first identify the file block
attributes used by existing policies to select a victim
block for replacement. From a search of the OS and
database research literature and the documentation of
existing operating systems, we have identified four at-
tributes that are often used for replacement: the order

of initial access to the block (e.g., FIFO), the recency
of accesses (e.g., LRU), the frequency of accesses (e.g.,
LFU) and historical accesses to blocks (e.g., 2Q [12]).
Thus, we can correctly identify the use of combinations
of these four attributes within a replacement policy.

We note that some operating systems use replacement
policies that consider attributes beyond what Dust con-
siders. For example, some replacement policies consider
whether or not pages are dirty [16], the size of the file
the page is from, or replacement cost [10]. Further, re-
placement of pages can be performed on either a global
or per process basis [14]. Finally, in real systems, not
only are file pages cached, but file meta-data as well,
and some systems prefer to evict pages from files whose
meta-data is no longer cached. It is also possible that fu-
ture replacement policies may utilize new attributes that
we do not currently fingerprint. Although Dust can not
currently identify these parameters, we believe that the
basic framework within Dust can be extended to do so.

Given our goal of identifying replacement policies,
there are three primary components to Dust. First, the
size of the buffer cache is measured with a simple mi-
crobenchmark; this value is used as input to the remain-
ing steps. Second, the short-term replacement algorithm
is fingerprinted, based upon initial access, recency of ac-
cess, and frequency of access. Third, Dust determines
whether or not long-term history is used by the replace-
ment algorithm.

2.1 Microbenchmarking Buffer Cache Size

To manipulate the state of the buffer cache and inter-
pret its contents, Dust must first know the size of the
buffer cache. Since this information is not readily avail-
able through a common interface on most systems, Dust
contains a simple microbenchmark. Dust accesses pro-
gressively larger amounts of file data until it notices that
some blocks no longer fit the cache. For each increase in
the tested size, there are two steps. In the first step, Dust
touches the file blocks up through the newly increased
size to fetch them into the buffer cache. In the second
step, Dust probes each block again, measuring the time
per probe to verify if the block is still in the cache. This
technique is similar to the technique used to determine
available memory in NOW-Sort [4].

There are two important features of this approach.
First, by probing every file block in the second step,
this algorithm is independent of the replacement policy
used to manage the buffer cache. Second, this algorithm
works even when the buffer cache is integrated with the
virtual memory system, assuming that Dust uses little
memory and the buffer cache is able to grow to its max-
imum size. Further, as we will show, our fingerprinting
algorithm is robust to slight inaccuracies in our estima-
tion of the buffer cache size.
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Figure 1: Short-Term Attributes of Blocks. The three graphs show the priority of each block within the test region according to
the three metrics: order of initial access, recency of access, and frequency of access. The x-axis indicates the block number within
the file forming the test region. The y-axes indicates the initial accesses order (left), recency of access (center) and frequency of
access (right).

2.2 Fingerprinting Replacement Attributes

Once the buffer cache size is known, Dust determines
the attributes of file blocks that are used by the OS short-
term replacement policy. This fingerprinting stage in-
volves three simple steps. First, Dust reads file blocks
into the buffer cache while simultaneously controlling
the replacement attributes of each block (e.g., by ac-
cessing blocks in different initial access, recency, and
frequency orders). Second, Dust forces some of these
blocks to be evicted from the buffer cache by accessing
additional file data. Finally, the contents of the buffer
cache are inferred by probing random sets of blocks; the
cache state of these file blocks is then plotted to illustrate
the replacement policy. We now describe each of these
three steps in detail.

2.2.1 Configuring Attributes

The first step moves the buffer cache into a known and
well-controlled state – both the data blocks that are res-
ident and the initial access, recency, and frequency at-
tributes of each resident block. This control is imposed
by performing a pattern of reads over blocks within a
single file; we refer to these blocks as the test region.
To ensure that all of this data is resident, the size of this
test region is set slightly smaller than the estimate of the
buffer cache size (precisely, we use only 90% of the es-
timated cache size and adjust the size such that each of
ten stripes discussed below are page aligned).

Controlling the initial access parameter of each block
allows Dust to identify replacement policies that are
based on the initial access order of blocks (e.g., FIFO).
To exert this control, our access pattern begins with a
sequential scan of the test region. The resulting initial
access queue ordering is shown in the first graph of Fig-
ure 1; specifically, the blocks at the end of the file are
those that are given priority (i.e., remain in the buffer
cache) given a FIFO-based policy.

Dust is able to identify replacement policies that are

based on temporal locality (e.g., LRU) by controlling
how recently each block is accessed and ensuring that
this ordering does not match the initial access order-
ing. To ensure this criteria, a pattern of reads across ten
stripes within the file are performed. Specifically, two
indices into the file are maintained: a left pointer, which
starts at the beginning of the file, and a right pointer,
which starts at the center of the test region. The work-
load alternates between reading one stripe as indicated
by the left pointer and then one stripe as indicated by
the right pointer. The pattern continues until the left
pointer reaches the center of the test region and the right
pointer reaches the end. This controlled pattern of ac-
cess induces the recency queue order shown in the mid-
dle graph of Figure 1; specifically, the blocks at the end
of the left and right regions are those given priority with
an LRU-based policy.

Finally, to identify policies that have a frequency
based component, Dust ensures that stripes in the test
region have distinctive frequency counts. When read-
ing stripes for recency ordering, Dust touches each stripe
multiple times for a frequency ordering as well. In our
pattern, stripes near the center of the test region are read
the most often, and those near the beginning and end of
the test region are read the least. The number of reads
for each area of the test region is shown in the right-most
graph of Figure 1, where blocks in the middle are given
priority with an LFU-based policy.

The need to impose different frequencies on differ-
ent parts of the file is part of the motivation for divid-
ing the test region into a fixed number of stripes. If, for
instance, each block of the test region were given a dif-
ferent frequency count, the runtime of Dust would be
exponential in the size of the file. In our simulation ex-
periments, we determined ten to be a good number. The
more stripes used, the more precise the fingerprint be-
comes since there is a greater variety of frequency and
recency regimes. However, a greater number of stripes
makes each stripe smaller thus making the data more



susceptible to noise.

2.2.2 Forcing Evictions

Once the state of the buffer cache is configured, Dust
performs an eviction scan in which more file data is read
to cause some portion of the test region to be evicted
from the cache. Since the goal of evicting pages is to
give us the most information and ability to differentiate
across replacement policies, Dust tries to evict approxi-
mately half of the cached data.1

We note that the eviction scan must read each page
multiple times such that the frequency counts of its
pages are higher than those of the pages in the test re-
gion. Otherwise, Dust is not able to identify a frequency-
based replacement policies since the eviction region
would replace its own pages. This illustrates one of
the limitations of our approach: we do not differentiate
between LIFO, MRU, and MFU replacement policies,
since all replace the eviction region with itself. How-
ever, we feel that this limitation is acceptable, given that
such policies are used when streaming through large files
and all tend to behave similarly under such conditions.

2.2.3 Probing File-Buffer Contents

To determine the state of the buffer cache after the evic-
tion scan, we perform several probes, measuring the time
to read one byte from selected pages. If the read call re-
turns quickly, we assume the block of the file was resi-
dent in the cache; if the read returns slowly, we assume
that a disk access was required. As noted elsewhere [3],
it is not possible to perform a probe of every block to de-
termine its state since this changes the state of the buffer
cache; specifically, if Dust probes a block that was on
disk, then this block will replace a block previously in
the buffer cache, changing its state. Thus, we perform
probes selectively.

To obtain an appropriate number of samples, we probe
each stripe two times, for a total of twenty probes. The
probes are spaced evenly across the test region, but the
location of the first is chosen randomly from the first
half of the first stripe. By keeping the probes relatively
far apart, we ensure that they do not interfere with a
later probe due to prefetching. Choosing a random offset
for the probes allows one to run the benchmark multiple
times to generate a better picture of the cache state. By
running Dust multiple times on a platform, one is then
able to accurately determine how the cache replacement
policy chooses victim pages based on initial access, re-
cency of access, and frequency of access.

1Precisely, the size of the eviction scan is set equal to the differ-
ence between the size of the cache and the size of the test region (i.e.,
0.1*cache size) plus one half the size of the cache.
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Figure 2: Access Pattern to Fingerprint History. Four dis-
tinct regions of file blocks (i.e., hot, cold, evict1, and evict2)
are accessed to set attributes and cause evictions in order to
identify whether or not history is being used by the replace-
ment algorithm. Each arrow indicates a region that is being
accessed; reads later in time move down the page. The width
of each arrow along with a number, shows the number of times
each block is read to set the frequency attributes.

2.3 Fingerprinting History

The fingerprinting tool described thus far can identify
replacement policies containing a single queue ranking
blocks based upon the three attributes. However, the
previous step controls only the short-term attributes of
blocks and thus cannot identify algorithms that track ref-
erences to blocks that are no longer in memory (e.g.,
2Q [12]) or that track the recency of references other
than the last reference to each block (e.g., LRU-K [19]).
To determine if long-term tracking is performed, Dust
observes if preference is given to pages that have been
referenced and then evicted before.

We now describe how the use of long-term history is
identified. As shown in Figure 2, there are four regions
of file blocks that are now accessed. The test region is
now divided into two separate regions that are one half
the total cache size, a hot and a cold portion. The algo-
rithm begins by touching all of the hot pages and then
evicting them by twice touching the evict1 region; the
evict1 region contains sufficient blocks to entirely fill
the buffer cache. Thus, the hot pages are no longer in
the cache, but historical information about them is now
tracked. Dust then touches the hot and cold regions three
times and then touches cold two more times. At this
point, evict1 has been evicted entirely and cold is pre-
ferred whether initial access, recency or frequency at-
tributes are being used by the replacement policy. Then
cold is touched twice. This causes the cold region to
be preferred by traditional LRU and LFU. Hot is then
retouched, this additional reference gives the hot region
preference in policies which use history. The last step
prior to eviction is to rereference both the hot and cold
regions sequentially. Notice that at this point the hot re-
gion has been touched the same number of times as the
cold region but, it has been touched in such a way that it
will have migrated into the long-term queue of a 2Q or
LRU-2 cache, while the cold region will have not.

As in the short-term fingerprint, the next phase of Dust
is to probe the test region to determine which blocks
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Figure 3: Fingerprints of Basic Replacement Policies (FIFO, LRU, LFU). The three graphs show the time required to probe
blocks within the test region of a file depending upon the buffer cache replacement policy. The x-axis shows the offset of the probed
block. The y-axis shows the time required for that probe; where low times (2 ��� ) indicate the block was in cache, whereas high
times (7 ��� ) indicate the block was not in cache. From left to right, the graphs simulate FIFO, LRU, and LFU.

have been kept in the file cache. If the hot region re-
mains in the cache, then we infer that history is being
used. If the cold region remains in the cache, then we
infer that history is not being used. Given that further
identification of history attributes is likely to be specific
to each replacement algorithm, we focus on only this
simple historical fingerprint.

3 Simulation Fingerprints

To illustrate the ability of Dust to accurately finger-
print a variety of cache replacement policies, we have
implemented a simple buffer cache simulator. In this
section, we describe our simulation framework and then
present a number of results. Our first simulation re-
sults verify the distinctive short-term replacement fin-
gerprints produced for the pure replacement policies of
FIFO, LRU, and LFU [23], as well as for other simple
replacement policies such as Random and Segmented
FIFO [31]. To explore the impact of internal state within
the replacement policy, we investigate Clock [18] and
Two-handed Clock [32]. We then demonstrate our abil-
ity to identify the use of historical information in the re-
placement policy, focusing on 2Q [12] and LRU-K [19].
We conclude this section by showing that Dust is robust
to some inaccuracy in its estimate of buffer-cache size.

3.1 Simulation methodology

Given that our simulator is meant only to illustrate the
ability of Dust to identify different OS buffer cache re-
placement policies, we keep the rest of the system as
simple as possible. Specifically, we assume that the only
process running is our fingerprinting software, and thus
ignore irregularities due to scheduling interference. We
currently model only a buffer cache of a fixed size and
do not consider any contention with the virtual memory
system. For most of our simulations, we model a buffer
cache containing approximately 80 MB (or 20,000 4 KB
pages). Finally, we assume that reads that hit in the file

cache require a constant time of 2 ��� , whereas reads that
must go to disk require 7 �	� .

3.2 Basic Replacement Policies

We begin by showing that the simulation results for
strict FIFO, LRU, and LFU replacement policies pre-
cisely matches what one can derive from the ordering
graphs shown in Figure 1. The fingerprints from these
three simulations are shown in Figure 3. We further
show that Dust can identify Random replacement and
Segmented FIFO [14]. These fingerprints are shown in
Figure 4. Across all the graphs, one can observe the two
levels of probe times, corresponding to blocks that are in
cache and those that are not. Also, one can verify that
approximately half of the test data remains in cache.

We now examine these basic policies in turn. The
FIFO fingerprint shows that the second half of the test
region remains in cache; this matches the initial access
ordering shown in Figure 1 where blocks at the end of
the file have priority. The LRU fingerprint shows that
roughly the second quarter and the fourth quarter of the
test region remains in the buffer cache; once again, this
is the expected behavior since those blocks have been
accessed the most recently. Finally, the LFU fingerprint
shows that middle half of the file remains resident, as
expected, since those blocks have the highest frequency
counts. In the LFU fingerprint, one can see two small
discontinuous regions that remain in cache to the left
and right of the main in-cache area; this behavior is due
to the fact that within each stripe, blocks have the same
frequency count and these in-cache regions are part of a
stripe that was beginning to be evicted.

Fingerprinting a Random replacement policy stresses
the importance of running Dust multiple times. With a
single fingerprint run of twenty probes, there exists some
probability that Random replacement behaves identi-
cally to FIFO, LRU, or LFU. Therefore, by fingerprint-
ing the system many times, we can definitively see that
random pages are selected for replacement. This is illus-
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Figure 4: Fingerprints of Random and Segmented FIFO. The left-most graph shows that a Random page replacement policy
has a distinctive fingerprint; that each run of the fingerprint causes different pages to be evicted from the buffer cache. The middle
graph shows Segmented FIFO with 30% of the buffer cache devoted to the secondary queue; the resulting fingerprint is a cyclic
shift of the FIFO fingerprint. The right-most graph shows Segmented FIFO with at least 50% of the buffer cache devoted to the
secondary queue; since this queue is managed with LRU, the fingerprint is identical to LRU.

trated in the first graph of Figure 4 with two horizontal
lines indicating the “fast” and “slow” access times.

The original VMS system implemented the Seg-
mented FIFO (SFIFO) page replacement policy [14].
SFIFO divides the buffer cache into two queues. The pri-
mary queue is managed by FIFO. Non-resident pages are
faulted into the primary queue. When a page is evicted
from the primary queue, it is moved to the secondary
queue. If a page is accessed while in the secondary
queue, it moves back into the primary queue. The key
parameter in SFIFO is the fraction of the buffer cache
devoted to the secondary queue, denoted � (thus, �����
is the fraction devoted to the primary queue).

A value of �����	��
 is the traditional choice and is
fingerprinted in the middle graph of Figure 4. The re-
sulting SFIFO fingerprint is a cyclic shift of the pure
FIFO fingerprint. The reason for this pattern is as fol-
lows. The initial read of the test area sets the contents
of the primary and secondary queues such that the first
pages accessed (i.e., the left portion of the test area) are
shifted down to the secondary queue and the tail of the
primary queue; the right portion is at the head of the
primary queue. When the pages are touched to set the
recency and frequency attributes, the left portion of the
test area is moved back to the head of the primary queue
while the right portion is shifted down into the secondary
queue and end of the primary queue. Thus, as blocks are
evicted, the right portion is evicted first, followed by the
first blocks of the left portion. Thus, with these queue
sizes, SFIFO produces a distinctive fingerprint which
can be used to uniquely identify this policy.

As � increases, SFIFO behaves more like LRU. When
�
����� � the fingerprint becomes identical to that of
LRU, as shown in Figure 4. When the secondary queue
is that large, by the time a page is touched for the sec-
ond time, it has already progressed into the secondary
queue. Thus, the fingerprint reveals the LRU behavior
of the policy and matches the LRU fingerprint. We feel

that since Segmented FIFO is used to approximate LRU
(especially with this high value of � ), it is acceptable,
and even appropriate, that its fingerprint cannot be dis-
tinguished from that of LRU.

3.3 Replacement Policies with Initial State

The Clock replacement algorithm is a popular ap-
proach for managing unified file and virtual memory
caches in modern operating systems, given its ability
to approximate LRU replacement with a simpler imple-
mentation. The Clock algorithm is an interesting policy
to fingerprint because it has two pieces of internal initial
state: the initial position of the clock hand and whether
or not each use bit is set. Thus, we must ensure that
Clock can be identified by its fingerprint regardless of
its initial state. We now describe small modifications to
our methodology to guarantee this behavior.

In the basic implementation of Clock, the buffer cache
is viewed as a circular buffer starting from the current
position of the clock hand; a single use bit is associated
with each page frame. Whenever a page is accessed,
its use bit is set. When a replacement is needed, the
clock hand cycles through page frames, looking for a
frame with a cleared use bit and also clearing use bits as
it inspects each frame. Thus, Clock approximates LRU
by replacing pages that do not have their use bit set and
have not been accessed for some time.

Since Clock treats the buffer cache as circular, the ini-
tial position of the clock hand does not affect our current
fingerprint. The initial position of the clock hand sim-
ply determines where the first block of the test region is
placed. Since all subsequent actions are relative to this
initial position, this position is transparent to Dust. Thus,
we do not need to modify our fingerprinting methodol-
ogy to account for hand position.

However, the state of the use bits does impact our fin-
gerprint. Depending upon the fraction of set use bits, � ,
the Clock fingerprint can look like FIFO or LRU. Specif-
ically, when � is near the two extremes of 0 or 1, the
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Figure 5: Fingerprints of the Clock Replacement Policy. To
identify Clock, the basic fingerprinting algorithm is run twice.
The first time it is run after the use bits have been all set; in
this case, Clock behaves identically to FIFO as shown in the
graph on the left. The second time it is run after half of the use
bits have been set; in this case, Clock has the same fingerprint
as LRU, as shown in the graph on the right.

fingerprint looks like FIFO; when � is near 0.5, the fin-
gerprint looks like LRU. We now describe the intuition
behind this behavior.

In the simplest case, when � � � , each frame starting
with the clock hand is allocated to sequential pages of
the test region. As a result, the clock hand wraps back
to the beginning of the buffer cache after this allocation
and as Dust touches each page to set attributes, the use
bit of every page is set. During eviction, the first pages
of the test region are replaced, matching both the behav-
ior and fingerprint of a FIFO policy. Note that � ���
results in identical behavior, except the clock hand must
first sweep through all frames clearing use bits before it
allocates the test region sequentially.

When � � �	��� , the left and right portions of the test
region data are randomly interleaved in memory. This
interleaving occurs because pages are allocated in two
passes. In the first pass, those frames with cleared use
bits are allocated to the left-hand portion of the test re-
gion; the use bits of these frames are then set and the
use bits of the remaining frames are cleared. In the sec-
ond pass, the remaining frames are allocated to the right-
hand portion of the test region. In the accesses to set the
locality and frequency attributes of the pages, the use
bits of all frames are again set. Thus, when the evic-
tion phase begins, the first half of pages from both the
left and right portions of the test region are replaced. If

the frames with set use bits are uniformly distributed,
this coincidentally matches the evictions of the LRU pol-
icy. If the distribution of use bits were not uniform, the
fingerprint would show those blocks whose frames had
their use bits initially clear as having been replaced. We
consider the case where they are uniformly distributed as
this provides a consistent and recognizable fingerprint.

Thus, to identify Clock, Dust brings the initial state
of the use bits into each of these two configurations and
observes the resulting two fingerprints. The following
steps can be followed to configure the use bits from out-
side of the OS. Dust sets all of the use bits (i.e., � � � )
by allocating a warmup region of pages that fills the en-
tire buffer cache and then touching all pages again (with
no intervening allocations) so that their use bits are set.

Setting half of the use bits (i.e., � � �	��� ) is slightly
more complex. The first step is to set all the use bits as in
the previous scenario. In the second step, Dust allocates
a few more pages to the warmup region; since all of the
reference bits are set at this point, the clock hand must
pass through the entire buffer cache, clearing all of the
reference bits, to find a page to evict. The final step is to
randomly touch half of the pages, setting their use bits.
In this way, Dust can configure the state of the use bits.

In summary, we modify Dust slightly to account for
internal state. Before running any fingerprint, Dust first
allocates the warmup region, which has the effect of set-
ting use bits if the replacement policy implements them.
If the resulting fingerprint looks like FIFO, then Dust
runs again with half the use bits set. If the fingerprint
still looks like FIFO, then we conclude that there are no
use bits and the underlying policy is FIFO. If the second
fingerprint looks like LRU, we conclude that Clock is the
underlying policy. The result of running these two steps
on the Clock replacement policy is shown in Figure 5.

3.4 Replacement Policies with History

We now show that Dust is able to distinguish those re-
placement policies that use long-term history from those
that do not. We begin by briefly showing that the poli-
cies examined above (FIFO, LRU, LFU, Random, Seg-
mented FIFO, and Clock) do not use history. We then
discuss in more detail the behavior of those policies
(LRU-K and 2Q) that do use history.

Figure 6 shows the long-term fingerprints of three rep-
resentative policies that do not use history. The graph
on the left is that for LRU; FIFO, LFU, and Segmented
FIFO look identical and are not shown. The graph shows
the results of probing the hot and cold regions of the
test data. As expected, the hot data has been entirely
evicted, as shown by its high probe times; although the
initial portion of the cold data is also evicted due to the
size of the eviction region, the cold data is clearly pre-
ferred by these policies. The middle graph shows that
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Figure 6: History Fingerprint of Short-term Policies. Probes are performed on only pages in the hot (i.e., the blocks on the
left) and cold (i.e., the blocks on the right) test regions. The graph on the left shows the fingerprint for FIFO, LRU, LFU, and
Segmented FIFO. Since the cold test region remains in the buffer cache, these policies do not prefer pages with history. The graph
in the middle shows that Random also has no preference for pages with history and thus does not use history. Finally, the graph on
the right shows that the historical fingerprint of Clock is ambiguous if the use bits are not set; after the use bits have been properly
set, the fingerprint is identical to leftmost graph.
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Figure 7: Fingerprints of LRU-2. The first graph shows the short-term fingerprint of LRU-2 when the correlated reference count
is set to zero; in this case, LRU-2 displaces those pages with a frequency count less than 2 and those whose second-to-last reference
is the oldest. The second graph shows the short-term fingerprint of LRU-2 when the correlated reference count is increased; here,
no pages in the eviction with a frequency count higher than two are evicted. Finally, the last graph shows the history fingerprint
of LRU-2, verifying that it prefers the hot pages.

Random has no preference for either hot or cold data.
Finally, the graph on the right shows that the historical
behavior of Clock is difficult to determine when the use
bits are not explicitly controlled. In this graph, the use
bits are set to � � ����� ; as a result, the hot and cold
regions are interleaved in the file buffer and then each
region is replaced sequentially. To illustrate that Clock
does not use history, Dust must again ensure that the use
bits are all first cleared (or set); with this initialization
step, the history fingerprint of Clock is identical to the
first graph in the figure. Thus, FIFO, LRU, LFU, Seg-
mented FIFO, Random, and Clock do not use history in
making replacements.

The LRU-K replacement policy was introduced by the
database community to address the problem that LRU is
not able to discriminate between frequently and infre-
quently accessed pages [19]. The idea behind LRU-K
is that it tracks the

�
-th reference to each page in the

past, and replaces the page with the oldest
�

-th refer-
ence (or a page that does not have a

�
-th reference);

thus, traditional LRU is equivalent to LRU-1. Given that� ��� exhibits most of the benefits of the general case,
and is the most commonly used value, we only consider

LRU-2 further. LRU-2 is sensitive to another parame-
ter as well, the correlated reference period, � ; the intu-
ition is that accesses to a page within this period should
not be counted as distinct references. Since setting �
correctly is a non-trivial task, the default value for � is
zero. Given that LRU-2 is complex, we note that our
implementation is derived from the version provided by
the original authors [20].

We begin by briefly exploring the sensitivity of LRU-
2 to the correlated reference period; the short-term fin-
gerprints of LRU-2 are shown in the first two graphs of
Figure 7. When � � � (i.e., the default value) the re-
sulting fingerprint is a variation of pure LRU, as shown
in the left-most graph. Specifically, the last stripe of the
test region is evicted with LRU-2; since this stripe was
accessed only twice, its second-to-last reference is very
old (i.e., when the page was initially referenced). As the
correlated reference period is increased such that ��� � ,
the fingerprint looks more similar to LFU, as shown in
the middle graph. With this setting, pages in the evic-
tion region are classified as having only correlated ref-
erences and thus replace mostly themselves; thus, all of
those pages that have a frequency count greater than two
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Figure 8: Fingerprints of 2Q. The first fingerprint of 2Q shows that the short-term replacement policy used is FIFO. The second
fingerprint shows that 2Q uses history, preferring pages that have been accessed and then evicted. The third fingerprint shows that
the replacement policy used for pages in the main queue is LRU.

are kept in memory. Finally, when � is very large, all
accesses are treated as correlated and thus no pages have
a second-to-last reference; in this case the behavior de-
generates to pure LRU (not shown). In summary, LRU-2
produces a distinctive fingerprint that uniquely identifies
it and also indicates the approximate setting of the cor-
related reference period.

Next, we verify that LRU-2 uses history. The last
graph in Figure 7 shows the historical fingerprint of
LRU-2. As desired, the hot region is given preference
over data in the cold region; this occurs because the
second-to-last reference of pages in the hot region is
more recent than the second-to-last reference to those
in the cold region. Further, when a replacement must be
made within the hot region, those with the oldest second-
to-last reference are chosen.

The 2Q algorithm was proposed as a simplification to
LRU-2 with less run-time overhead yet similar perfor-
mance [12]. The basic intuition behind 2Q is that instead
of removing cold pages from the main buffer, it only ad-
mits hot pages to the main buffer. Thus, the buffer cache
is divided into two buffers, a temporary queue for short-
term accesses, A1in which is managed with FIFO, and
the main buffer, Am, which is managed with LRU. Pages
are initially admitted into the A1in queue and only after
they have been evicted and reaccessed are they admitted
into Am. Thus, 2Q has another structure to remember
the pages that have been accessed but are no longer in
the buffer cache, A1out. In our experiments, we set
A1in to use 25% of the buffer cache (with Am using the
other 75%); A1out is able to remember a number of
past references equal to 50% of the number of pages in
the cache.

We show the fingerprints for 2Q in Figure 8. The
first graph shows that the short-term fingerprint of 2Q
is identical to FIFO. Given that the A1in queue is man-
aged with FIFO and the short-term fingerprint does not
access pages after they have been evicted, this is the ex-
pected result. However, 2Q can be easily distinguished
from pure FIFO from observing the history fingerprint

shown in the second graph. In the historical fingerprint,
we can see that the hot region remains entirely in the
buffer cache, since these are the only accesses that are
moved to the Am buffer. Finally, we are able to iden-
tify the replacement policy employed by the long-term
buffer, Am, by setting the initial access, recency, and fre-
quency attributes of the hot region and then forcing evic-
tions from it. Since this methodology is more specific to
the 2Q replacement policy, we do not describe it in more
detail. This fingerprint is shown as the last graph of Fig-
ure 8 and correctly identifies the LRU policy of the Am
buffer. We note that for LRU-2 or other policies that use
history, a similar technique could be used to determine
the replacement strategy of the long-term queue. How-
ever, explicitly setting the state of the long-term queue
requires knowledge of the policy of the short-term queue
and the policy for moving a block from one queue to the
other. Hence a fingerprinting technique for the long-term
queue is by nature specific to the policy of the short-term
queue.

3.5 Sensitivity to Buffer Size Estimate

In our last set of experiments we verify the robustness
of Dust to inaccuracies in its estimate of the size of the
buffer cache. If the estimate of the buffer cache size is
significantly different than its actual value, then the re-
sulting fingerprints are not identifiable. If the estimate
of the cache is much too small, then Dust does not touch
enough pages to force evictions to occur; if the estimate
is much too large, then Dust evicts the entire region.

The short-term fingerprint is more sensitive to this es-
timate than the historical fingerprint: in the short-term
fingerprint we must observe the presence or absence of
stripes that use only 1/10th of the buffer cache, whereas
in the historical fingerprint we must observe a hot or
cold region that uses half of the buffer cache. However,
as Figure 9 shows, the short-term fingerprint of LRU is
distinguishable even with estimates that are either 20%
under or over the real sizes. The other replacement poli-
cies, with the exception of Clock, are robust to a similar
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Figure 9: Sensitivity of LRU Fingerprint to Cache Size Estimate. These graphs show the short-term fingerprints of LRU as
the estimate of the size of the buffer cache is varied. In the first graph the estimate is too high by 20%, in the second graph the
estimate is perfect, and in the third graph the estimate is too low by 20%. However, all fingerprints still uniquely identify LRU.
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Figure 10: Sensitivity of Clock Fingerprint to Cache Size Estimate. These graphs show the short-term fingerprints of Clock
with half of the use bits set as the estimate of the size of the buffer cache is varied. With ��������� , Clock is expected to look like
LRU. In the first graph the estimate is too high by 10%, in the second graph the estimate is perfect, and in the third graph the
estimate is too low by 10%. Thus, the Clock fingerprint is not as robust to inaccuracies in this estimate as the other algorithms.

degree.
The Clock replacement algorithm is more sensitive to

this estimate due to our need to configure the state of
the use bits. Specifically, the size of the warm-up region
used by Dust to fill the buffer cache must be accurate as
well. Figure 10 shows that Dust is still reasonably tol-
erant to errors in cache-size estimate when identifying
Clock but not as robust as when identifying other algo-
rithms.

4 Platform Fingerprints

Buffer caching in modern operating systems is often
much more complex than the simple replacement poli-
cies described in operating systems textbooks. Part of
this complexity is due to the fact that the filesystem
buffer cache is integrated with the virtual memory sys-
tem in many current systems; thus the amount of mem-
ory dedicated to the buffer cache can change dynami-
cally based on the current workload. To control this ef-
fect, Dust minimizes the amount of virtual memory that
it uses, and thus tries to maximize the amount of memory
devoted to the file buffer cache. Further, we run Dust on
an otherwise idle system to minimize disturbances from
competing processes.

In this section, we describe our experience fin-

gerprinting three Unix-based operating systems:
NetBSD 1.5, Linux 2.2.19 and 2.4.14, and Solaris 2.7.
As we will see, the fingerprints of real systems contain
much more variation than those of our simulations. In
addition to fingerprinting the replacement policy of the
buffer cache, Dust also reveals the cost of a hit versus
a miss in the buffer cache, the size of the buffer cache,
and whether or not the buffer cache is integrated with
the virtual memory system.

Dust takes a considerable amount of time to run on
a real system. Generating a sufficient number of data
points requires running many iterations of test scan,
eviction scan, and probes. In our experiments we always
allowed at least 300 iterations. We found that one itera-
tion can take anywhere from 30 seconds to three minutes
depending on the system under test. Note that systems
with smaller buffer caches can be tested in a shorter pe-
riod of time since the test region becomes smaller. We
feel this relatively long running time is acceptable since,
for any given system configuration, Dust need only be
run once; the results can be stored and made available to
applications and programmers.

All of the experiments described in the section were
run on systems with dual Pentium III-Xeon processors,
1 GB of physical RAM and a SCSI storage subsystem
with Ultra2, 10000 RPM disks.
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Figure 11: Fingerprints of NetBSD 1.5. The first graph
shows the short-term fingerprint of NetBSD, indicating the
LRU replacement policy. The second graph shows the long-
term fingerprint, indicating that history is not used.

4.1 NetBSD 1.5

Given that NetBSD 1.5 [16] has the most straight-
forward replacement policy of the systems we have ex-
amined, we begin with its fingerprint, shown in Fig-
ure 11. As in the simulations, we examine both short-
term and long-term fingerprints. The first graph in Fig-
ure 11 shows the expected pattern for pure LRU replace-
ment; given that Dust produces this same fingerprint re-
gardless of whether it attempts to manipulate use bits,
we can infer that NetBSD implements strict LRU, and
not Clock. This conclusion is further verified by the sec-
ond graph of Figure 11 showing that NetBSD does not
use history. Documentation [16] and inspection of the
source code [17] confirm our finding.

From the fingerprints we can also infer other param-
eters. Specifically, we can see that the time for reading
a byte from a page in the buffer cache is on the order
of 10 ��� , whereas the time for going to disk varies be-
tween about 1 � � and 10 �	� . Further, even on this ma-
chine with 1 GB of physical memory, NetBSD devotes
only about 50 MB to the buffer cache (most easily shown
by the fact that the history fingerprint devotes this much
memory to the hot and cold regions); this allows us to in-
fer that the file buffer cache is segregated from the VM
system.
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Figure 12: Fingerprints of Linux 2.2.19. The first graph
shows the short-term fingerprint of Linux 2.2.19 when the use
bits are all set; the second graph shows the fingerprint when
the use bits are untouched.

4.2 Linux 2.2.19

Linux 2.2.19 is a very popular version of the Linux
kernel in production environments. In Section 5 we will
run the NeST web server on top of this OS; thus, it is
important for us to understand this fingerprint.

The short-term fingerprint of Linux 2.2.19 is shown
in Figure 12. The graph on the left shows the results
when Dust attempts to set all of the use bits. Since this
graph looks like FIFO, we must investigate further to
determine if Clock is actually being used. The graph
on the right shows the fingerprint when the use bits are
left in a random state. Although this fingerprint is very
noisy, one can see that priority is given to pages that are
most recently referenced (i.e., pages near the second and
fourth quarters); further, after filtering the data, we are
able to verify that more pages in the first and third quar-
ters are out of cache than in cache. Thus, this fingerprint
is similar to the LRU fingerprint expected for a Clock-
based replacement algorithm. Examination of the source
code and documentation confirms that the replacement
policy is Clock based [15, 34]. Finally, since the buffer
cache size is very close to the amount of physical RAM
in the system, we conclude a buffer cache that is inte-
grated with the VM.



4.3 Linux 2.4.14

The memory management system within Linux un-
derwent a large revision between version 2.2 and 2.4,
thus we see a very different fingerprint for Linux 2.4.14,
which uses a more complex replacement scheme than
either Linux 2.2.19 or NetBSD. The short-term finger-
print, shown as the first graph in Figure 13, suggests that
Linux 2.4 uses both a recency and frequency component,
and does not use Clock. Further, the second graph of
Dust shows that Linux 2.4 does use history in its deci-
sion.

Examination of the Linux 2.4.14 source code and ex-
isting documentation confirms these results [15, 34].
Linux maintains two separate queues: an active and
an inactive list. When memory becomes scarce, Linux
shrinks the size of the buffer cache. In doing this, pages
that have not been recently referenced (as indicated by
their reference bit) are moved from an active list to an
inactive list. The inactive list is scanned for replace-
ment victims using a form of page aging, in which an
age counter is kept for each frame, indicating how desir-
able it is to keep this page in memory. When scanning
for a page to evict, the page age is decreased as it is con-
sidered for eviction; when the page age reaches zero, the
page is a candidate for eviction. The age is incremented
whenever the page is referenced.

4.4 Solaris 2.7

Solaris presented us with the greatest challenge of the
platforms we studied. The VM subsystem of Solaris
has not been thoroughly studied; it is believed to use
a two-handed, global Clock algorithm [7], but some re-
searchers have noted non-intuitive behavior [3]. In two-
handed Clock, one hand clears reference bits while the
second hand follows some fixed distance behind, select-
ing a page for replacement if its reference bit is still clear.
The hands are advanced in unison such that once the ref-
erence bit on a page is cleared, it has some opportunity
to be re-referenced before it is a candidate for eviction.
When implemented in our simulator, the fingerprint of
two-handed Clock looks identical to FIFO (not shown).

The short-term fingerprint of Solaris 2.7 is shown in
the first graph of Figure 14. The out-of-cache areas on
both the far right and left of the fingerprint strongly sug-
gests that Solaris is using a frequency (or aging) com-
ponent in its eviction decision in addition to Clock. The
second graph of Figure 14 shows the historical finger-
print for Solaris. Though the data is again noisy, it shows
a clear preference for the hot region, again suggesting
that history or page aging is also used in Solaris. The
fingerprint also shows that the time to service a buffer
cache hit is significantly higher in Solaris than in Linux.
The fingerprint shows a hit time of over 10 ��� , whereas
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Figure 13: Fingerprints of Linux 2.4.14. The first graph
shows the short-term fingerprint of Linux 2.4.14, indicating
that a combination of LRU and LFU is used. The second graph
shows the long-term fingerprint, indicating that history is used.

the hit time for Linux 2.4 on the same platform is under
10 ��� .

5 Cache-Aware Web Server

In this section, we describe how knowledge of the
buffer cache replacement algorithm can be exploited to
improve the performance of a real application. We do
so by modifying a web server to re-order its accesses to
first serve requests that are likely to hit in the file system
cache, and only then serve those that are likely to miss.
This idea of handling requests in a non-FIFO service or-
der is similar to that introduced in connection scheduling
web servers [9]; however, whereas that work scheduled
requests based upon the size of the request, we sched-
ule based upon predicted cache content. As we will see,
re-ordering based on cache content both lowers average
response time (by emulating a shortest-job first schedul-
ing discipline) and improves throughput (by reducing to-
tal disk traffic).

5.1 Approach

The key challenge in implementing the cache-aware
server is to use our gray-box knowledge of the file
caching algorithm to determine which files are in the
cache. By keeping track of the file access stream be-
ing presented to the kernel, the web server can simulate
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Figure 14: Fingerprint of Solaris 2.7. The first graph shows
the short-term fingerprint of Solaris; the second graph shows
the history fingerprint.

the operating system’s buffer cache and thus predict at
any given time what data is in cache. We term this al-
gorithmic mirroring, and believe that it is a general and
powerful manner in which to exploit gray-box knowl-
edge.

One important assumption of algorithmic mirroring
is that the application induces most or all of the traffic
to the file system, and thus the mirror cache is likely
to accurately represent the state of the real OS cache.
Although this assumption may not hold in the general
case within a multi-application environment, we believe
it is feasible when a single application dominates all file-
system activity. Server applications such as a web server
or database management system are thus a perfect match
for such mirroring methods.

The NeST storage appliance [6] supports HTTP as
one of its many access protocols. NeST allows a con-
figurable number of requests to be serviced simultane-
ously. Any requests received beyond that number are
queued until one of the pending requests completes. By
default, NeST services queued requests in FIFO order.
We term this default behavior as cache-oblivious NeST.

We have modified the NeST request scheduler to keep
a model of the current state of the OS buffer cache. The
model is updated each time a request is scheduled. NeST
bases its model of the underlying file cache on the algo-
rithm exposed by Dust. NeST uses this model to reorder

requests such that those requests for files believed to be
in cache are serviced first. Note that NeST does not per-
form caching of files itself, but relies strictly upon the
OS buffer cache.

For the cache mirror to accurately reflect the internal
state of the OS, NeST must have a reasonable estimate
of the cache size. In our current approach, NeST uses
the static estimate produced by Dust; the disadvantage
of this approach is that this estimate is produced with-
out contention with the virtual memory system, and thus
may be larger than the amount available when the web
server is actually running. To increase the robustness of
our estimate, we plan to modify NeST to dynamically
estimate the size of the buffer cache by measuring the
time for each file access. If the time is “low”, the file
must have been in the cache, and if it is “high”, the file
was likely on disk. By comparing these timings with
the prediction provided by the mirror cache, NeST can
adjust the size of the mirror cache.

5.2 Performance

To evaluate the performance benefits of cache-aware
scheduling, we compare the performance of cache-
aware NeST to cache-oblivious NeST for two different
workloads. In all tests, the web server is run on a dual
Pentium III-Xeon machine with 128 MB of main mem-
ory and Ultra II disks. For clients, we use four machines
(identical to the server, except containing 1 GB of main
memory) each running 36 client threads. The clients are
connected to the server with Gigabit Ethernet.

The server and clients are running Linux 2.2.19,
which was shown in Section 4.2 to use the Clock re-
placement algorithm; therefore, cache-aware NeST is
configured to model the Clock algorithm as well. In
our configuration, the server has approximately 80 MB
of memory dedicated to the buffer cache. In our ex-
periments, we explore the performance of cache-aware
NeST as we vary its estimate of the size of the buffer
cache.

In our first experiment, we consider a workload in
which each client thread repeatedly requests a random
file from a set of 200 1 MB files. Figures 15 and
16 show the average response time and throughput, re-
spectively for three different web servers: the Apache
web server [1], cache-oblivious NeST, and cache-aware
NeST as a function of its estimate of cache-size. We
begin by comparing the response time and the through-
put of NeST and Apache; from the two figures, we see
that although NeST incurs some overhead for its flexible
structure (e.g., NeST can handle multiple transfer pro-
tocols, such as FTP and NFS), it achieves respectable
performance as a web server and is a reasonable plat-
form for studying cache-aware scheduling. Second, and
most importantly, adding cache-aware scheduling signif-
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Figure 15: Response Time as a Function of Cache Size
Estimate. Response time in cache-aware NeST is lowest when
the estimate of cache size is closest to the true size of the cache.

icantly improves both the response time and the through-
put of NeST. By first servicing requests that hit in the
cache, cache-aware scheduling improves average re-
sponse time by servicing short requests first. More dra-
matically, cache-aware scheduling improves throughput
by reducing the number of disk reads (verified through
the /proc interface): in-cache requests are handled be-
fore their data is evicted from the cache. Finally, the per-
formance of cache-aware NeST improves when its esti-
mate of the cache size is closer to the real value, but is
robust to a large range of cache size estimates.

In our second experiment, we consider a workload
created by the SURGE HTTP workload generator [5].
The SURGE workload uses approximately 12,000 dis-
tinct files with sizes taken from a Zipf distribution with
a mean of approximately 21 KB. SURGE is thus a more
representative web workload than is presented above.

With the SURGE workload, we measure qualitatively
similar results to those above, except with two main
differences. First, the performance of cache-oblivious
NeST relative to Apache degrades slightly more; for ex-
ample, the average response time for cache-oblivious
NeST is 0.80 seconds and for Apache is 0.65 seconds.
This result is expected, given that NeST is designed
for staging data in the Grid, and is thus optimized for
large files and not the small files more typical in web
workloads. Second, the performance of cache-aware
NeST is not as sensitive to its estimate of the cache size;
for example, performance improves from 4.27 MB/s to
4.69 MB/s (approximately 10%) as the cache size es-
timate is improved from 10 MB to 80 MB. Apache
achieves 4.91 MB/s. In the future, we plan to experi-
ment with other web servers and workloads.

6 Related Work

The idea of using algorithmic knowledge of the under-
lying operating system to improve performance has been
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Figure 16: Sensitivity to Cache Estimate Accuracy. The
performance of cache aware NeST improves as the estimate of
cache size approaches the true size of the buffer cache. The
buffer cache is approximately 80 MB. Cache-oblivious NeST
and Apache are shown for comparison.

recently explored in the context of gray-box systems [3].
This work showed that an “OS-like” service can be im-
plemented as an Information and Control Layer (ICL)
outside of the OS, given algorithmic knowledge of the
OS, probes of the OS, and statistical analysis. However,
no concrete solutions were proposed for how developers
of ICLs can obtain this algorithmic knowledge. In this
paper, we show that fingerprinting can obtain this gray-
box knowledge in a simple and automatic manner.

Fingerprinting system components to determine their
behavior is not new and has been used successfully
in other contexts, notably in networking and storage.
Specifically, fingerprinting has been used to uncover key
parameters within the TCP protocol and to identify the
likely OS of a remote host [11, 21]. The primary differ-
ence between fingerprinting within TCP and in our con-
text is that we are trying to identify policies that can have
arbitrary behavior, rather than implementations that are
expected to adhere to given specifications. In [25, 35]
techniques similar to those used in Dust were used to de-
termine various characteristics of disks, such as size of
the prefetch window, prefetching algorithm and caching
policy.

Fingerprinting also shares much in common with
microbenchmarking. Specifically, both perform requests
of the underlying system in order to characterize its be-
havior. For example, with simple probes in microbench-
marks, one can determine parameters of the the memory
hierarchy [2, 24], processor cycle time [28], and charac-
teristics of disk geometry [26, 30]. In our view, the key
difference between fingerprinting and microbenchmark-
ing is that a fingerprint is used to discover the policy
or algorithm employed by the underlying layer, whereas
a microbenchmark is typically used to uncover specific
system parameters.

The idea of discovering characteristics of lower layers



of a system and using that knowledge in higher layers to
improve performance is not new. In traxtents [26] the
file system layer of the operating system was modified
to avoid crossing disk track boundaries so as to mini-
mize the cost incurred due to head switching and exploit
“zero-latency” access. Yu, et al. developed a method of
predicting the position of the disk head without hardware
support and used that information to determine which of
several rotational replicas to use to service a given re-
quest [36], thus giving software expanded knowledge of
hardware state.

Our approach involves informing the application of
the buffer cache replacement policy in use by the oper-
ating system. SLEDs [33] and dynamic sets [29] seek to
increase the knowledge that the application and operat-
ing system have of each other. Both take the approach
of embellishing the interface between the OS and the ap-
plication to allow the explicit exchange of certain types
of information. In the case of dynamic sets, the applica-
tion has the ability to provide more knowledge about its
future access patterns. This allows the OS to reorder the
fetching of data to improve cache performance. SLEDs
allows the OS to export performance data to the appli-
cation, enabling the application to modify its workload
based on the performance characteristics of the underly-
ing system.

The idea of servicing requests within a web server in a
particular order was explored in connection-scheduling
web servers [9]. The main thesis of that research is that
better performance can be obtained by controlling the
scheduling of requests within the web server, rather than
with the OS. While their approach used static file size
to schedule requests, cache-aware NeST uses a dynamic
estimate of the contents of the buffer cache. In future
work, we hope to investigate the interactions of schedul-
ing requests based on both file size and cache content.

Our cache-aware web server has similarities to
locality-aware request distribution (LARD) cluster-
based web servers [22]. In LARD, the front-end node
directs page requests to a specific back-end node based
upon which back-end has most recently served this page
(modulo load-balancing constraints); thus, the front-end
has a simple model of the cache contents of each back-
end and tries to improve their cache hit rates. Our ap-
proaches are complementary, as LARD partitions re-
quests across different nodes, whereas we use cache con-
tent to service requests in a different order on a single
node.

7 Conclusions and Future Work

We have shown that various buffer cache replacement
algorithms can be uniquely identified with a simple fin-
gerprint. Our fingerprinting tool, Dust, classifies al-

gorithms based upon whether they consider initial ac-
cess, locality, frequency, and/or history when choosing
a block to replace. With a simple simulator, we have
shown that FIFO, LRU, LFU, Clock, Random, Seg-
mented FIFO, 2Q, and LRU-K all produce distinctive
fingerprints, allowing them to be uniquely identified. We
have also begun to address the more challenging prob-
lem of fingerprinting real systems. By running Dust on
NetBSD, Linux, and Solaris, we have shown that we can
determine which attributes are considered by each page
replacement algorithm. Finally, we have shown that the
algorithmic knowledge revealed by Dust is useful for
predicting the contents of the file cache. Specifically,
we have implemented a cache-aware web server that ser-
vices first those requests that are predicted to hit in the
file cache, improving both response time and bandwidth.

In the near future, we would like to extend the range
of policies which Dust is able to recognize. Specifi-
cally, we would like to see how adaptive policies such
as EELRU [27] and LRFU [13] can be identified, as well
as policies that use other attributes such as the size of a
page or the cost of replacing a page. In our current sys-
tem, one must visually interpret the fingerprint graphs
produced by Dust; we would like to automate this pro-
cess for the well-known replacement policies.

In the long-term, we plan to continue exploring fin-
gerprinting of other subsystems within the OS (e.g., the
CPU scheduler). We would also like to determine how
algorithmic knowledge can be used across several user
processes; the main challenge is performing a model or
simulation in which access to all OS inputs is not re-
quired for accuracy. Finally, we are investigating how
algorithmic knowledge can be used not only to infer the
contents of the file cache, but to change its contents as
well.

8 Acknowledgments

We would like to thank Brian Forney, Tim Denehy,
Muthian Sivathanu and Florentina Popovici for help-
ful discussion and comments on the paper. We would
also like to thank our shepherd, Greg Ganger and the
anonymous reviewers for their many helpful comments.
This work is sponsored by NSF CCR-0092840, NGS-
0103670, CCR-0133456, CCR-0098274, ITR-0086044,
and the Wisconsin Alumni Research Foundation.

References

[1] Apache Foundation. Apache web server. http://www.apache.org.

[2] R. H. Arpaci, D. E. Culler, A. Krishnamurthy, S. G. Steinberg,
and K. Yelick. Empirical Evaluation of the CRAY-T3D: A



Compiler Perspective. In The 22nd Annual International Sym-
posium on Computer Architecture (ISCA-22), pages 320–331,
Santa Margherita Ligure, Italy, June 1995.

[3] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Information
and Control in Gray-Box Systems. In The 18th Symposium on
Operating Systems Principles (SOSP), October 2001.

[4] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, D. E. Culler, J. M.
Hellerstein, and D. A. Patterson. High-Performance Sorting on
Networks of Workstations. In SIGMOD ’97, Tucson, AZ, May
1997.

[5] P. Barford and M. Crovella. Generating Representative Web
Workloads for Network and Server Performance Evaluation. In
Proceedings of the SIGMETRICS ’98 Conference, June 1998.

[6] J. Bent, V. Venkataramani, N. LeRoy, A. Roy, J. Stanley, A. C.
Arpaci-Dusseau, R. H. Arpaci-Dusseau, and M. Livny. Flexi-
bility, Manageability, and Performance in a Grid Storage Appli-
ance. In To appear in HPDC-11, 2002.

[7] J. L. Bertoni. Understanding solaris filesystems and paging.
Technical Report TR-98-55, Sun Microsystems, 1998.

[8] P. Cao, E. W. Felten, and K. Li. Implementation and Perfor-
mance of Application-Controlled File Caching. In Proceedings
of the First Symposium on Operating Systems Design and Imple-
mentation, pages 165–177, 1994.

[9] M. Crovella, R. Frangioso, and M. Harchol-Balter. Connection
Scheduling in Web Servers. In USENIX Symposium on Internet
Technologies and Systems, 1999.

[10] B. Forney, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Storage-Aware Caching: Revisiting Caching For Heterogeneous
Storage Systems. In The First USENIX Symposium on File and
Storage Technologies (FAST ’02), Monterey, CA, January 2002.

[11] T. Glaser. TCP/IP Stack Fingerprinting Princi-
ples. http://www.sans.org/newlook/resources/IDFAQ/
TCP fingerprinting.htm, October 2000.

[12] T. Johnson and D. Shasha. 2Q: A Low Overhead High Perfor-
mance Buffer Management Replacement Algorithm. In Pro-
ceedings of the 20th International Conference on Very Large
Databases, pages 439–450, September 1994.

[13] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho,
and C. S. Kim. On The Existence Of A Spectrum Of Policies
That Subsumes The Least Recently Used (LRU) And Least Fre-
quently Used (LFU) Policies. In SIGMETRICS ’99, Atlanta,
Georgia, May 1999.

[14] H. Levy and P. Lipman. Virtual Memory Management in the
VAX/VMS Operating System. IEEE Computer, 15(3):35–41,
March 1982.

[15] Linux Kernel Archives. Linux source code.
http://www.kernel.org/.

[16] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarterman.
The Design and Implementation of the 4.4BSD Operating Sys-
tem. Addison Wesley, 1996.

[17] NetBSD Kernel Archives. NetBSD 1.5 Source Code.
http://www.netbsd.org/.

[18] V. F. Nicola, A. Dan, and D. M. Dias. Analysis of the gener-
alized clock buffer replacement scheme for database transaction
processing. In SIGMETRICS and PERFORMANCE, 1992.

[19] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K page re-
placement algorithm for database disk buffering. In Proceedings
of the 1993 ACM SIGMOD Conference, pages 297–306, 1993.

[20] P. O’Neil. Lru-2 source code. ftp://ftp.cs.umb.edu/pub/lru-k/lru-
k.tar.Z.

[21] J. Padhye and S. Floyd. Identifying the TCP Behavior of Web
Servers. In SIGCOMM, June 2001.

[22] V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum. Locality-Aware Request Dis-
tribution in Cluster-based Network Servers . In Eighth Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems, San Jose, California, 1998.

[23] J. T. Robinson and M. V. Devarakonda. Data Cache Manage-
ment Using Frequency-Based Replacement. In Proceedings of
the 1990 ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 134–142, 1990.

[24] R. H. Saavedra and A. J. Smith. Measuring Cache and TLB
Performance and Their Effect on Benchmark Runtimes. IEEE
Transactions on Computers, 44(10):1223–1235, 1995.

[25] J. Schindler and G. R. Ganger. Automated disk drive charac-
terization. Technical Report CMU-CS-99-176, Carnegie Mellon
University, 1999.

[26] J. Schindler, J. L. Griffin, C. R. Lumb, and G. R. Ganger. Track-
aligned Extents: Matching Access Patterns to Disk Drive Char-
acteristics. In Proceedings of the First USENIX Conference on
File and Storage Technologies (FAST), Monterey, CA, 2002.

[27] Y. Smaragdakis, S. F. Kaplan, and P. R. Wilson. EELRU: Sim-
ple and Effective Adaptive Page Replacement. In SIGMETRICS
Conference on the Measurement and Modeling of Computer Sys-
tems, Atlanta, GA, May 1999.

[28] C. Staelin and L. McVoy. mhz: Anatomy of a micro-benchmark.
In Proceedings of the 1998 USENIX Annual Technical Confer-
ence, pages 155–166, Berkeley, CA, June 1998.

[29] D. C. Steere. Exploiting the non-determinism and asynchronyof
set iterators to reduce aggregate file I/O latency. In Proceedings
of the 16th ACM Symposium on Operating Systems Principles
(SOSP ’97), pages 252–263, Saint-Malo, France, October 1997.

[30] N. Talagala, R. H. Arpaci-Dusseau, and D. Patterson.
Microbenchmark-based Extraction of Local and Global Disk
Characteristics. Technical Report CSD-99-1063, University of
California, Berkeley, 1999.

[31] R. Turner and H. Levy. Segmented FIFO Page Replacement. In
1981 ACM SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems, 1981.

[32] U. Vahalia. UNIX Internals: The New Frontiers. Prentice Hall,
1996.

[33] R. Van Meter and M. Gao. Latency Management in Storage Sys-
tems. In Proceedings of the Fourth Symposium on Operating
Systems Design and Implementation (OSDI ’00), October 2000.

[34] R. van Riel. Page replacement in linux 2.4 memory management.
http://www.surriel.com/lectures/linux24-vm.html, June 2001.

[35] B. L. Worthington, G. R. Ganger, Y. N. Patt, and J. Wilkes. On-
Line Extraction of SCSI Disk Drive Parameters. In Proceedings
of the 1995 ACM SIGMETRICS and PERFORMANCE Confer-
ence on Measurementand Modeling of Computer Systems, pages
146–156, May 1995.

[36] X. Yu, B. Gum, Y. Chen, R. Y. Wang, K. Li, A. Krishnamurthy, ,
and T. E. Anderson. Trading Capacity for Performance in a Disk
Array. In Proceedings of the Fourth Symposium on Operating
Systems Design and Implementation (OSDI ’00), San Diego, CA,
2000.


