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Abstract

Building a flexible kernel from components is a promis-
ing solution for supporting various embedded systems.
The use of components encourages code re-use and re-
duces development time. Flexibility permits the system
to be configured at various stages of the design, up to run
time. In this paper, we propose a software framework,
called THINK, for implementing operating system ker-
nels from components of arbitrary sizes. A unique fea-
ture of THINK is that it provides a uniform and highly
flexible binding model to help OS architects assemble
operating system components in varied ways. An OS
architect can build an OS kernel from components us-
ing THINK without being forced into a predefined ker-
nel design (e.g. exo-kernel, micro-kernel or classical OS
kernel). To evaluate the THINK framework, we have im-
plemented KORTEX, a library of commonly used kernel
components. We have used KORTEX to implement sev-
eral kernels, including an L4-like micro-kernel, and ker-
nels for an active network router, for the Kaffe Java vir-
tual machine, and for a Doom game. Performance mea-
surements show no degradation due to componentization
and the systematic use of the binding framework, and
that application-specific kernels can achieve speed-ups
over standard general-purpose operating systems such as
Linux.

1 Introduction

Embedded systems, such as low-end appliances and net-
work routers, represent a rapidly growing domain of sys-
tems. This domain exhibits specific characteristics that
impact OS design. First, such systems run one or only
a small family of applications with specific needs. Sec-
ond, for economic reasons, memory and CPU resources
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are scarce. Third, new hardware and software appear at
a rapid rate to satisfy emerging needs. Finally, systems
have to be flexible to support unanticipated needs such
as monitoring and tuning.

Implementing an operating system kernel for such sys-
tems raises several constraints. Development time
should be as short as possible; this encourages system-
atic code re-use and implementation of the kernel by as-
sembling existing components. Kernel size should be
minimal; only services and concepts required by the ap-
plications for which the kernel is targeted should be em-
bbeded within the kernel. Efficiency should be targeted;
no specific hardware feature or low-level kernel func-
tionality should be masked to the application. Finally,
to provide flexibility, it must be possible to instantiate
a kernel configuration at boot time and to dynamically
download a new component into the kernel. To support
these features, it should be possible to resolve the bind-
ings between components at run time.

Building flexible systems from components has been
an active area of operating system research. Previous
work includes micro-kernel architectures [2, 14, 25],
where each component corresponds to a domain bound-
ary (i.e. server), extensible systems such as SPIN [3]
that support dynamic loading of components written in
a type-safe language, and more recently the OSKit [7]
or eCos [5] which allow the re-use of existing system
components. One problem with the existing component-
based approaches lies in the predefined and fixed ways
components can interact and be bound together. While
it is possible to create specific components to implement
a particular form of binding between components, there
are no supporting framework or tools to assist this devel-
opment, and little help to understand how these different
forms of binding can be used and combined in a consis-
tent manner.

By binding we mean the end result of the general process
of establishing communication or interaction channels
between two or more objects. Bindings may take sev-
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eral forms and range from simple pointers or in-address-
space references, to complex distributed channels estab-
lished between remote objects involving multiple lay-
ers of communication protocols, marshalling and unmar-
shalling, caching and consistency management, etc. As
argued in [27], the range and forms of bindings are so
varied that it is unlikely that a single generic binding
process or binding type can be devised. This in turn calls
for framework and tool support to help system develop-
ers design and implement specific forms of binding.

The attention to flexible binding is not new. Several
works, e.g. [4, 10, 27], have proposed flexible bind-
ing models for distributed middleware platforms. The
Nemesis operating system [13] introduces bindings for
the handling of multimedia communication paths. The
path abstraction in the Scout operating system [19]
can be understood as an in-system binding abstraction.
And channels in the NodeOS operating system interface
for active routers [22] correspond to low-level packet-
communication-oriented bindings. None of these works,
however, has considered the use of a general model of
component binding as a framework for building differ-
ent operating system kernels.

This paper

This paper presents the THINK1 framework for build-
ing operating system kernels from components of arbi-
trary sizes. Each entity in a THINK kernel is a compo-
nent. Components can be bound together in different
ways, including remotely, through the use of bindings.
Bindings are themselves assemblies of components that
implement communication paths between one or more
components. This structuring extends to the interaction
with the hardware, which is encapsulated in Hardware
Abstraction Layer (HAL) components.

The contributions of this paper are as follows. We pro-
pose a software architecture that enables operating sys-
tem kernels to be assembled, at boot-time or at run-time,
from a library of kernel components of arbitrary size.
The distinguishing feature of the framework is its flexi-
ble binding model that allows components to be bound
and assembled in different and non-predefined ways.

We have designed and implemented KORTEX, a li-
brary of kernel components that offers several models
of threads, memory management and process manage-
ment services. KORTEX implements different forms of
bindings, including basic forms such as system calls

1THINK stands for Think Is Not a Kernel

(syscalls), up-calls, signals, IPC and RPC calls. We have
used KORTEX to implement L4-like kernel services. Our
benchmarks show excellent performance for low-level
system services, confirming that applying our compo-
nent model and our binding model does not result in de-
graded performance compared to non component-based
kernels.

We have used KORTEX to implement operating system
kernels for an active network router, the Kaffe Java vir-
tual machine, and a Doom game. We have evaluated the
performance of these kernels on a Macintosh/PowerPC
machine. Our benchmarks show that our kernels are at
least as efficient than the implementations of these ap-
plications on standard monolithic kernels. Additionally,
our kernels achieve small foot-prints. Finally, although
anecdotal, our experience in using the THINK frame-
work and the KORTEX library suggests interesting bene-
fits in reducing the implementation time of an operating
system kernel.

The rest of the paper is structured as follows. Section 2
discusses related work on component-based kernels and
OSes. Section 3 details the THINK software framework,
its basic concepts, and its implementation. Section 4
describes the KORTEX library of THINK components.
Section 5 presents several kernels that we have assem-
bled to support specific applications and their evaluation.
Section 6 assesses our results and concludes with future
work.

2 Related Work

There have been several works in the past decade on
flexible, extensible, and/or component-based operating
system kernels. Most of these systems, however, be
they research prototypes such as Choices and �-Choices
[31], SPIN [3], Aegis/Xok [6], VINO [26], Pebble [8],
Nemesis [13], 2K [12], or commercial systems such as
QNX [23], VxWorks [34], or eCos [5], still define a
particular, fixed set of core functions on which all of
the extensions or components rely, and which implies
in general a particular design for the associated family
of kernels (e.g. with a fixed task or thread model, ad-
dress space model, interrupt handling model, or commu-
nication model). QNX and VxWorks provide optional
modules that can be statically or dynamically linked to
the operating system, but these modules rely on a basic
kernel and are not designed according to a component-
based approach. eCos supports the static configuration
of components and packages of components into embed-



ded operating systems but relies on a predefined basic
kernel and does not provide dynamic reconfiguration ca-
pabilities.

In contrast, the THINK framework does not impose a
particular kernel design on the OS architect, who is free
to choose e.g. between an exo-kernel, a micro-kernel
or a classical kernel design, a single or multiple ad-
dress space design. In this respect, the THINK approach
is similar to that of OSKit [7], which provides a col-
lection of (relatively coarse-grained, COM-like) com-
ponents implementing typical OS functionalities. The
OSKit components have been used to implement sev-
eral highly specialized OSes, such as implementations of
the programming languages SML and Java at the hard-
ware level [15]. OSKit components can be statically
configured using the Knit tool [24]. The Knit compiler
modifies the source code to replace calls across compo-
nent boundaries by direct calls, thus enabling standard
compiler optimizations. Unlike THINK however, OS-
Kit does not provide a framework for binding compo-
nents. As a result, much of the common structures which
are provided by the THINK framework have to be hand-
coded in an ad-hoc fashion, hampering composition and
reuse. Besides, we have found in practice that OSKit
components are much too coarse-grained for building
small-footprint, specific kernels that impose no partic-
ular task, scheduling or memory management model on
applications. Other differences between THINK and OS-
Kit include:

� Component model: THINK has adopted a compo-
nent model inspired by the standardized Open Dis-
tributed Processing Reference Model (ODP) [1],
whereas OSKit has adopted Microsoft COM com-
ponent model. While the two component models
yield similar run-time structures, and impose as few
constraints on component implementations, we be-
lieve that the THINK model, as described in section
3.1 below, provides more flexibility in dealing with
heterogeneous environments.

� Legacy code: OSKit provides several libraries
that encapsulate legacy code (e.g. from FreeBSD,
Linux, and Mach) and has devoted more attention
to issues surrounding the encapsulation of legacy
code. In contrast, most components in the KORTEX

library are native components, with the exception
of device drivers. However, techniques similar to
those used in OSKit (e.g. emulation of legacy envi-
ronments in glue code) could be easily leveraged
to incorporate in KORTEX coarse-grained legacy
components.

� Specialized frameworks: in contrast to OSKit,

the KORTEX library provides additional software
frameworks to help structure kernel functionality,
namely a resource management framework and a
communication framework. The resource manage-
ment framework is original, whereas the communi-
cation framework is inspired by the x-kernel [11].

Other operating system-level component-based frame-
works include Click [18], Ensemble [15] and Scout [19].
These frameworks, however, are more specialized than
THINK or OSKit: Click targets the construction of mod-
ular routers, Ensemble and Scout target the construction
of communication protocol stacks.

We thus believe that THINK is unique in its introduction
and systematic application of a flexible binding model
for the design and implementation of component-based
operating system kernels. The THINK component and
binding models have been inspired by various works
on distributed middleware, including the standardized
ODP Reference Model [1], ANSA [10], and Jonathan
[4]. In contrast to the latter works, THINK exploits flexi-
ble binding to build operating system kernels rather than
user-level middleware libraries.

3 THINK Software Framework

The THINK software framework is built around a small
set of concepts, that are systematically applied to build
a system. These concepts are: components, interfaces,
bindings, names and domains.

A THINK system, i.e. a system built using the THINK

software framework, is composed of a set of domains.
Domains correspond to resource, protection and isola-
tion boundaries. An operating system kernel executing
in privileged processor mode and a set of user processes
executing in unprivileged processor mode are examples
of domains. A domain comprises a set of components.
Components interact through bindings that connect their
interfaces. Domains and bindings can themselves be
reified as components, and can be built by composing
lower-level components. The syscall bindings and re-
mote communication bindings described in section 4 are
examples of composite bindings, i.e. bindings composed
of lower-level components. Bindings can cross domain
boundaries and bind together interfaces that reside in
different domains. In particular, components that con-
stitute a composite binding may belong to different do-
mains. For example, the aforementioned syscall and re-
mote communication bindings cross domain boundaries.



3.1 Core software framework

The concepts of component and interface in the THINK

framework are close to the concepts of object and in-
terface in ODP. A component is a run-time structure
that encapsulates data and behavior. An interface is a
named interaction point of a component, that can be of
a server kind (i.e. operations can be invoked on it) or of
a client kind (i.e. operations can be invoked from it). A
component can have multiple interfaces. A component
interacts with its environment, i.e. other components,
only through its interfaces. All interfaces in THINK are
strongly typed. In the current implementation of the
THINK framework, interface types are defined using the
Java language (see section 3.2). Assumptions about the
interface type system are minimum: an interface type
documents the signatures of a finite set of operations,
each operation signature containing an operation name,
a set of arguments, a set of associated results (including
possible exceptions); the set of interface types forms a
lattice, ordered by a subtype relation, allowing multiple
inheritance between interface types. The strong typing
of interfaces provides a first level of safety in the assem-
bly of component configurations: a binding can only be
created between components if their interfaces are type
compatible (i.e. are subtypes of one another).

An interface in the THINK framework is designated by
a name. Names are context-dependent, i.e. they are rel-
ative to a given naming context. A naming context en-
compasses a set of created names, a naming convention
and a name allocation policy. Naming contexts can be
organized in naming graphs. Nodes in a naming graph
are naming contexts or other components. An edge in
a naming graph is directed and links a naming context
to a component interface (which can be another naming
context). An edge in a naming graph is labelled by a
name : the name, in the naming context that is the edge
source, of the component interface that is the edge sink.
Given a naming graph, a naming context and a compo-
nent interface, the name of the component interface in
the given naming context can be understood as a path in
the naming graph leading from the naming context to the
component interface. Naming graphs can have an arbi-
trary forms and need not be organized as trees, allowing
new contexts to be added to a naming graph dynami-
cally, and different naming conventions to coexist (a cru-
cial requirement when dealing with highly heterogenous
environments as may be the case with mobile devices).

Interaction between components is only possible once
a binding has been established between some of their
interfaces. A binding is a communication channel be-

tween two or more components. This notion covers both
language-level bindings (e.g. associations between lan-
guage symbols and memory addresses) as well as dis-
tributed system bindings (e.g. RPC or transactional bind-
ings between clients and possibly replicated servers). In
the THINK framework, bindings are created by special
factory components called binding factories. A binding
typically embodies communication resources and imple-
ments a particular communication semantics. Since sev-
eral binding factories may coexist in a given THINK sys-
tem, it is possible to interact with a component accord-
ing to various communication semantics (e.g. local or
remote; standard point-to-point at-most once operation
invocation; component invocation with monitoring, with
access control, with caching; event casting à la SPIN;
etc). Importantly, bindings can be created either implic-
itly, e.g. as in standard distributed object systems such
as Java RMI and CORBA where the establishment of a
binding is hidden from the component using that bind-
ing, or explicitly, i.e. by invocation of a binding fac-
tory. Explicit bindings are required for certain classes
of applications such as multimedia or real-time applica-
tions, that impose explicit, application-dependent qual-
ity of service constraints on bindings. Creating a binding
explicitly results in the creation of a binding component,
i.e. a component that reifies a binding. A binding com-
ponent can in turn be monitored and controlled by other
components.

interface Top { }
interface Name {

NamingContext getNC();
String toByte();

}
interface NamingContext {

Name export(Top itf, char[] hint);
Name byteToName(String name);

}
interface BindingFactory {

Top bind(Name name, char[] hint);
}

Figure 1: Framework for interfaces, names and bindings

These concepts of naming and binding are manifested
in the THINK software framework by the set of Java in-
terface declarations shown in Figure 1. The type Top
corresponds to the greatest element of the type lattice,
i.e. all interface types are a subtype of Top (all inter-
face types in THINK “extend” Top). The type Name
is the supertype of all names in THINK. The operation
getNC yields the naming context to which the name be-
longs (i.e. the naming context in which the name has
been created through the export operation). The op-
eration toByte yields a simple serialized form of the



name instance.

The type NamingContext is the supertype of all nam-
ing contexts in THINK. The operation export creates
a new name, which is associated to the interface passed
as a parameter (the hint parameter can be used to pass
additional information, such as type or binding data, re-
quired to create a valid name). As a side-effect, this
operation may cause the creation of (part of) a binding
with the newly named interface (e.g. creating a server
socket in a standard distributed client-server setting).
The operation byteToName returns a name, upon re-
ceipt of a serialized form for that name. This opera-
tion is guaranteed to work only with serialized forms of
names previously exported from the same naming con-
text. The type NamingContext sets minimal require-
ments for a naming context in the framework. More spe-
cific forms of naming contexts can be introduced if nec-
essary as subtypes of NamingContext (e.g. adding a
resolve operation to traverse a naming graph).

The type BindingFactory is the supertype of all
binding factories in THINK. The operation bind cre-
ates a binding with the interface referenced by the name
passed as a parameter (the hint parameter can be used
to pass additional information required to establish the
binding, e.g. type or quality of service information). Ac-
tual binding factories can typically add more specialized
bind operations, e.g. adding parameters to characterize
the quality of service required from the binding or re-
turning specific interfaces for controlling the newly con-
structed binding.

3.2 Implementing the THINK framework

In our current prototype, THINK components are written
in C for efficiency reasons. An interface is represented
by an interface descriptor structure, whose actual size
and content are unknown to the client, and which con-
tains a pointer to the code implementing the interface
operations, as shown, in figure 2. This layout is similar
to a C++ virtual function table.

tation
implemen

reference
interface

tation
implemen

descriptor
interface

bar

foo

meth

interface
methods

Figure 2: Run-time interface representation

The exact location of private component data is the re-
sponsiblity of the component developer. Depending on
the nature of the target component, the implementation
supports several optimizations of the structure of the in-
terface representation. These optimizations help reduce,
for instance, memory and allocation costs when han-
dling interface descriptors. They are depicted in figure
3. If the component is a singleton, i.e. there is no other
component in the given domain implementing the same
interface, then the interface descriptor and the compo-
nent private data can be statically allocated by the com-
piler. If the component is not a singleton but has only
one interface, then the private data of the component can
be allocated directly with the interface descriptor. Fi-
nally, in the general case, the interface descriptor is a
dynamic structure containing a pointer to the interface
operations and an additional pointer to the component’s
private data. In the component library described in sec-
tion 4, most components are either singletons or have a
single interface, and are implemented accordingly.

data

data

meth
object

general component

component with one interfacesingleton

meth meth

Figure 3: Optimization on interface representation

This implementation abides by C compiler ABI calling
conventions [35]. Thus, arguments in a PowerPC im-
plementation are passed on the stack and in registers to
improve performance. It is important to notice that all
calls to a component interface are expressed in the same
way, regardless of the underlying binding type and the
location of the component. For example, a server com-
ponent in the local kernel domain is called in the same
way as a server component in a remote host; only the
binding changes2.

3.3 Code generation and tools

Building a particular kernel or an application using the
THINK framework is aided by two main off-line tools.

� An open interface compiler, that can be specialized
2This does not mean that the client code need not be prepared to

handle the particular semantics associated with a binding, e.g. han-
dling exceptions thrown by a remote binding component in case of
communication failures.



to generate code from interface descriptions written
in Java. For instance, it is used to generate C dec-
larations and code that describe and produce inter-
face descriptors, and to generate components (e.g.
stub components) used by binding factories to cre-
ate new bindings. This generated code can contain
assembly code and exploit the specific features of
the supporting hardware.

� An off-line configurator, that creates kernel images
by assembling various component and binding li-
braries. This tool implicitly calls a linker (such
as ld) and operates on a component graph spec-
ification, written in UML by kernel developpers,
which documents dependencies between compo-
nents and component libraries. Dependencies han-
dled by the configurator correspond to classical
functional component dependencies resulting from
provides and requires declarations (provides means
that a component supports an interface of the given
type, requires mean that a component requires an
interface of the given type to be present in its en-
vironment in order to correctly operate). An ini-
tialization scheduler, analogous to the OSKit’s Knit
tool [24], can be used to statically schedule compo-
nent initialization (through calls to component con-
structors) at boot-time. The configurator also in-
cludes a visual tool to browse composition graphs.

Using the open interface compiler, interface descriptions
written in Java are mapped onto C declarations, where
Java types are mapped on C types. The set of C types
which are the target of this mapping constitutes a subset
of possible C signatures. However, we have not found
this restriction to be an impediment3 for developing the
KORTEX library.

Code generation takes place in two steps. The first step
compiles interface descriptions written in Java into C
declarations and code for interface descriptors. These
are then linked with component implementation code.
Binding components are also generated from interface
descriptions but use a specific interface compiler (typ-
ically, one per binding type), built using our open in-
terface compiler. The second step assembles a kernel
image in ELF binary format from the specification of a
component graph.

During execution, a kernel can load a new component,
using the KORTEX dynamic linker/loader, or start a new
application, by using the KORTEX application loader.

3Note that, if necessary, it is always possible to specialize the open
interface compiler to map designated Java interface types onto the re-
quired C types.

4 KORTEX, a component library

To simplify the development of operating system ker-
nels and applications using THINK, we have designed
a library of services that are commonly used in operat-
ing system construction. This library, called KORTEX, is
currently targeted for Apple Power Macintoshes4. KOR-
TEX currently comprises the following major compo-
nents:

� HAL components for the PowerPC that reify ex-
ceptions and the memory management unit.

� HAL components that encapsulate the Power Mac-
intosh hardware devices and their drivers, including
the PCI bus, the programmable interrupt controller,
the IDE disk controller, the Ethernet network card
(mace, bmac, gmac and Tulip), and the graphic card
(frame-buffer).

� Memory components implementing various mem-
ory models, such as paged and flat memory.

� Thread and scheduler components implementing
various scheduler policies, such as cooperative,
round-robin and priority-based.

� Network components, architected according to
the x-kernel communication framework, including
Ethernet, ARP, IP, UDP, TCP and SunRPC proto-
cols.

� File system components implementing the VFS
API, including ext2FS and NFS.

� Service components that implement a dynamic
linker/loader, an application loader and a small
trader.

� Interaction components that provide different types
of bindings.

� Components implementing part of the Posix stan-
dard.

While many of these components are standard (for in-
stance, the thread and memory components have been
directly inspired by the L4 kernel [9]), several points
about KORTEX are worth noting. First, KORTEX sys-
tematically exploits the core THINK framework pre-
sented above. In particular, KORTEX interaction compo-
nents presented in section 4.5 all conform to the THINK

binding model. The diversity of interaction semantics
already available is a testimony to the versatility of this

4The choice of PowerPC-based machines may seem anecdotal, but
a RISC machine does offer a more uniform environment for operating
system design.



model. Second, KORTEX remains faithful to the over-
all THINK philosophy which is to not impose specific
design choices to the OS architect. This is reflected in
the fact that most KORTEX components are very fine-
grained, including interaction components. For instance,
syscall bindings (whose structure and semantics are typ-
ically completely fixed in other approaches) are built
as binding components in KORTEX. Another example
can be found with the HAL components in KORTEX,
which strictly reflect the capabilities of the supporting
hardware. Third, KORTEX provides additional optional
frameworks to help OS architects assemble specific sub-
systems. KORTEX currently provides a resource man-
agement framework and a communication framework.
The former is applied e.g. to implement the thread and
scheduling components, while the latter is applied to im-
plement remote bindings. Finally, we have strived in im-
plementing KORTEX to minimize dependencies between
components. While this is more a practical than a de-
sign issue, we have found in our experiments that fine-
grained, highly independent components facilitate com-
prehension and reuse, while obviously yielding more ef-
ficient kernels, with smaller footprints. This is an advan-
tage compared to the current OSKit library, for instance.

4.1 HAL components for the PowerPC

KORTEX provides HAL components for the PowerPC,
including a HAL component for PowerPC exceptions
and a HAL component for the PowerPC Memory Man-
agement Unit (MMU). The operations supported by
these components are purely functional and do not mod-
ify the state of the processor, except on explicit demand.

The KORTEX HAL components manifest strictly the ca-
pabilities of the supporting hardware, and do not try to
provide a first layer of portability as is the case, e.g. with
�Choices’ nano-kernel interface [31].

Exceptions

The PowerPC exceptions HAL component supports a
single interface, which is shown in Table 4. The goal
of this interface is to reify exceptions efficiently, with-
out modifying their semantics. In particular, note that,
on the PowerPC, processing of exceptions begins in su-
pervisor mode with interrupts disabled, thus preventing
recursive exceptions.

When an exception id occurs, the processor invokes

interface Trap {
void TrapRegister(int id, Handler handler);
void TrapUnregister(int id);
void TrapSetContext(int phyctx, Context virtctx);
Context TrapGetContext();
void TrapReturn();

}

Figure 4: Interface for PowerPC exception

one of the internal component methods TrapEnter id.
There is an instance of this method in each exception
vector table entry. These methods first save the gen-
eral registers, which form the minimal execution con-
text of the processor, at a location previously specified
by the system using the method TrapSetContext.
This location is specified by both its virtual and phys-
ical addresses, because the Power PC exceptions HAL
component is not aware of the memory model used by
the system. TrapEnterid also installs a stack for
use during the handling of the exception. A single
stack is sufficient for exception handling because the
processor disables interrupts during the handling of an
exception. Next, TrapEnterid invokes the handler
previously registered by the system using the method
TrapRegister. When this handler finishes, the han-
dler calls TrapReturn to restore the saved execution
context. The cost for entering and returning from an ex-
ception on a PowerPC G4 running at 500 Mhz is shown
on table 1.

Operation instructions time (�s) cycles
TrapEnterid 57 0.160 80
TrapReturn 48 0.110 55

total 105 0.270 135

Table 1: Cost for handling a exception

Although minimal, this interface provides enough func-
tionality, e.g. to directly build a scheduler, as shown in
section 4.4. The exceptions HAL component is com-
pletely independent of the thread model implemented by
the system that uses its service.

Memory Management Unit

The PowerPC Memory Management Unit (MMU) HAL
component implements the software part of the Pow-
erPC MMU algorithm. This component can be omitted
in appliances that need only flat memory. Table 5 shows
the interface exported by this component.



interface MMU {
void MMUsetpagetable(int virt,

int phys, int sz);
void MMUaddmapping(int vsid, int virt,

int phys, int wimg, int pp);
void MMUremovemapping(int vsid, int virt);
PTE MMUgetmapping(int vsid, int virt);
void MMUsetsegment(int vsid, int vbase);
void MMUsetbat(int no, int virt, int phys,

int size, int wimg, int pp);
void MMUremovebat(int no);

}

Figure 5: Interface for PowerPC MMU

The MMUsetpagetable method is used to specify the
location of the page table in memory. Since the Pow-
erPC is a segmented machine, the MMUsetsegment
method is used to set the sixteen 256 MB seg-
ments, thus providing a 4 GB virtual address space.
The MMUaddmapping, MMUremovemapping and
MMUgetmapping methods add, remove and obtain in-
formation about page translation.

The methods MMUsetbat and MMUremovebat reify
the PowerPC Block Address Translation (BAT) regis-
ters. These registers provide a convenient way to build a
single flat address space, such as can be used in low-end
appliances. The two main benefits are speed of address
translation and economy of page table memory use.

4.2 Resource management framework

KORTEX provides a resource management framework
which can be applied to all resources in the system
at various levels of abstraction. The framework com-
prises the resource and manager concepts as given in
Figure 6. A resource manager controls lower-level re-
sources and uses them to construct higher-level ones.
New resources (e.g. threads) can be created through op-
eration create, whereas resource allocation is effected
through the bind operation which creates a binding to
a given resource. In other words, a resource is allocated
to a component when a binding has been created by the
resource manager between the component and the re-
source. In this case, the hint parameter of the bind
operation can contain managing information associated
with the resource (e.g. scheduling parameters to be as-
sociated with a thread).

Several KORTEX components are architected accord-
ing to the resource framework: threads and schedulers,

interface AbstractResource {
void release();

}
interface ResourceManager extends BindingFactory {

AbstractResource create(...);
}

Figure 6: Resource management framework

memory and memory managers, network sessions (re-
sources) and protocols (resource managers).

4.3 Memory management components

KORTEX provides memory management components
that implement various memory models, such as paged
memory and flat memory. A paged memory model can
be used by systems that need multiple address spaces,
for example to provide a process abstraction. The flat
memory component can by used by systems that need
only a kernel address space, as can be the case e.g. in
low-end appliances. KORTEX also provides a compo-
nent that implements the standard C allocator. Compo-
nents implementing the two memory models and the al-
locator are described below.

The flat memory components implement a single ker-
nel address space component that includes all of phys-
ical memory. This address space is provided by using
MMUsetbat exported by MMU HAL (see Section 4.1).
This component supports an address space interface pro-
viding methods to map and unmap memory in this ad-
dress space. The implementation of this component is
essentially void but the address space interface it sup-
ports is useful to provide a transparent access to mem-
ory for components, such as drivers, that need to map
memory and that can operate similarly with either flat
memory or paged memory.

Components providing the paged memory create, dur-
ing initialization, a page table in memory and an address
space for the kernel. An address space manager compo-
nent provides an interface for creating new address space
components. Address space components support inter-
faces of the same type as that of the flat memory address
space component. Physical memory page allocation is
provided by a standard buddy system component.

Finally, a dynamic memory allocator component pro-
vides the implementation of the standard GNU memory
allocator.



4.4 Thread and scheduler components

KORTEX provides three preemptive schedulers that pro-
vide an same interface of the same type: a cooperative
scheduler, a simple round-robin scheduler and a priority-
based scheduler. They allow the usual operations on
threads: creating and destroying threads, as well as al-
lowing a thread to wait on a condition and to be notified.
If threads are not running in the same address space,
then the scheduler performs the necessary address space
switch in addition to the thread context switch.

These schedulers are implemented using the Pow-
erPC exceptions HAL component described in section
4.1. They can be implemented by simply installing
a timer interrupt handler, in fact the PowerPC decre-
menter. On a decrementer exception, the handler uses
TrapSetContext to replace the pointer to the execu-
tion context of the current thread with a pointer to the
execution context of the newly scheduled thread. Due
to the simplicity of the HAL, these schedulers can be
very efficient. Table 2 presents context switching costs
on a PowerPC G4 at 500 Mhz. For example, a context
switch between two threads in the same address space
costs 0.284 �s, and between two threads in different ad-
dress spaces costs 0.394 �s. This permits the use of ex-
tremely small time slices, which can be useful e.g. for a
real-time kernel.

instructions time (�s) cycles
thread switch 111 0.284 142
process switch 147 0.394 197

Table 2: Context switching costs

4.5 Interaction components

KORTEX provides many different types of bindings be-
tween components, which may be localized in differ-
ent domains (e.g. the kernel, an application, or a remote
host).

Local binding

This binding type is the simplest form of binding and is
used for interactions between components in the same
domain. It is implemented by a simple pointer to an in-
terface descriptor.

Syscall binding

This binding type can be used by systems that support
multiple address spaces to provide application isolation.
The syscall binding allows an application to use ser-
vices provided by the kernel. A syscall binding is im-
plemented using a client stub that performs a hardware
syscall instruction sc, thus triggering an exception. The
syscall trap handler then calls the target interface com-
ponent. The application can pass up to seven arguments
in registers (r4 through r10) to the target. The remain-
ing arguments, if any, must be passed in shared memory
or on the user stack.

An optimization of the syscall binding can exploit the
System V ABI specification calling conventions [35].
Registers (r1, r14 to r31) are non volatile between
method calls and it is not necessary to save them in the
calling stub. Other registers (r0, r3 to r13) are lost
during method calls, and it is not necessary to save them
either. Obviously this optimisation assumes that the ABI
call conventions are obeyed. This optimization can save
about 70 cycles per syscall.

Upcall and Signal binding

The upcall and signal bindings allow the kernel to in-
teract with an application. A signal binding is used to
propagate an exception to the currently running appli-
cation, while an upcall binding is used to propagate an
exception to an application running in a different address
space than the current one. Upcall and signal bindings
are very efficient because they merely invoke a dedicated
handler in the application. The binding first updates the
instruction and stack pointers, and then invokes the han-
dler in the application using the special instruction rfi.
The exception context is also propagated. This handler
then calls the target component interface, which is des-
ignated by its memory address stored in the r3 register.

Because the exception context is propagated, the upcall
binding is not completely secure: an upcalled compo-
nent may never return, thus monopolizing the proces-
sor. Several standard solutions can be used to build a
secure upcall binding, for instance activating a timeout
(unmasked prior to switching control to the upcalled ad-
dress space) or using shared memory and a yield mech-
anism to implement a software interrupt.



Synchronous LRPC binding

An LRPC binding implements a simple synchronous in-
teraction. It uses the syscall and upcall bindings. The
syscall binding stub directly calls the upcall stub which
calls the target application component interface.

Remote RPC binding

A remote binding implements a simple remote opera-
tion invocation protocol, which provides transparent ac-
cess to components on a remote host. The binding di-
rectly builds and sends Ethernet packets, using the net-
work protocol components. Although the binding is de-
signed to work between kernels, it can support interac-
tion between remote applications when combined with
the syscall and upcall bindings.

5 Evaluation

In this section, we describe several experiments in
assembling different operating system kernels using
THINK. We have implemented a minimal extensible dis-
tributed micro-kernel, a dedicated kernel for an active
router, one for a Java virtual machine, and another for
running a DOOM game on a bare machine.

All measurements given in this paper are performed on
Apple Power Macintoshes containing a PowerPC G4
running at 500Mhz (except for the PlanP experiment,
which has been done on a PowerPC G4 at 350Mhz),
with 1MB external cache and 128MB memory. Net-
work cards used in our benchmarks are Asanté Fast PCI
100Mbps cards based on a Digital 21143 Tulip chip.

5.1 An extensible, distributed micro-kernel

We have built a minimal micro-kernel which uses L4
address space, and thread models. Instead of L4 IPC,
we used KORTEX LRPC binding. The resulting ker-
nel size is about 16KB, which can be compared with
a 10KB to 15KB kernel size for L4 (note that L4 has
been directly hand-coded in assembly language). Figure
7 depicts the component graph associated with this min-
imal micro-kernel. The figure shows the relationships
between resources and resource managers, interfaces ex-
ported by components, as well as language bindings and

local bindings used for combining the different compo-
nents into a working kernel.

Table 3 summarizes the performance of synchronous
bindings provided by the KORTEX library. Each call has
a single argument, the this pointer, and returns an in-
teger. An interaction via a local binding takes 6 cycles.
This shows that a basic interaction between THINK com-
ponents does not incur a significant penalty. The KOR-
TEX syscall binding takes 150 cycles, which can be re-
duced to only 81 cycles when applying the optimisation
described in section 4.5. By comparison, the Linux 2.4
syscall for implementing the getpid syscall takes 217
cycles.

Interaction instructions time(�s) cycles
local 6 0.016 8

syscall 115 0.300 150
optimized syscall 50 0.162 81

signal 35 0.128 64
upcall 107 0.346 173
LRPC 217 0.630 315

optimized LRPC 152 0.490 245

Table 3: Performance of KORTEX bindings

Adding a dynamic loader component to this small
micro-kernel yields a dynamically extensible kernel, al-
though one without protection against faulty compo-
nents and possible disruptions caused by the introduc-
tion of new components. The size of this extensible
kernel is about 160KB with all components, including
drivers and managers needed for loading code from a
disk.

By adding remote RPC components to the extensible
kernel, we obtain a minimal distributed system kernel,
which can call previously exported resources located on
remote hosts.

Table 4 shows the costs of interaction through our re-
mote RPC binding. The table gives the time of com-
pletion of an operation invocation on a remote compo-
nent, with null argument and an integer result. The mea-
surements were taken with an Ethernet network at 10
Mbps and at 100 Mbps. A standard reference for low-
latency RPC communication on a high speed network is
the work done by Thekkath et al. [32]. Compared to
the 25Mhz processor used in their test, a back of the en-
velope computation5 would indicate that our results are
on a par with this earlier work6. Furthermore, the KOR-

5���������������	� 
 ��� microsecond at 10Mbps to compare
with 296 microsecond found in [32].

6Especially since the breakdown of the costs is consistent with
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Figure 7: An example kernel configuration graph

TEX remote RPC binding can be compared with vari-
ous ORBs such as Java RMI. Here, the 40 microsecond
synchronous interaction performance (even adding the
costs of syscalls at both sites) should be compared with
the typical 1 millisecond cost of a similar synchronous
interaction.

Network Time (�s)
type total network marshall.

link driver +null call
10baseT 180 164.7 11.3 4

(91.5%) (6.3%) (2.2%)
100baseT 40 24.7 11.3 4

(61.7%) (28.3%) (10%)

Table 4: Performance of synchronous remote binding

These figures tend to validate the fact that the THINK

framework does not preclude efficiency and can be used
to build flexible, yet efficient kernels.

those reported in [32].

5.2 PlanP

PlanP [33] is a language for programming active net-
work routers and bridges, which has been initially pro-
totyped as an in-kernel Solaris module, and later ported
to the Linux operating system (also as an in-kernel mod-
ule). PlanP permits protocols to be expressed concisely
in a high-level language, yet be implemented efficiently
using a JIT compiler. While PlanP programs are some-
what slower than comparable hand-coded C implemen-
tations, a network intensive program such as an Ethernet
learning bridge has the same bandwidth in PlanP as in
the equivalent C program. This suggests that the Solaris
and Linux kernels must be performance bottlenecks. 7

To show that we can get rid of this bottleneck in a THINK

system, we took as an example a learning bridge proto-
col Plearn, programmed in PlanP, and we measured
throughput on Solaris, Linux and a dedicated kernel built
with KORTEX. The configurations used in our four ex-

7PlanP runs in the kernel in supervisor mode; there is no copy of
packets due to crossing kernel/user domain boundaries.



periments were as follows. In all experiments, the hosts
were connected via a 100Mbps Ethernet network, and
the two client hosts were Apple Power Macintoshes con-
taining a 500Mhz PowerPC G4 with 256Mb of main
memory and running the Linux 2.2.18 operating sys-
tem. In the first experiment we measured the through-
put obtained with a null bridge, i.e. a direct connection
between the two client hosts. In the second experiment,
the bridge host was a 167Mhz Sun Ultra 1 Model 170s
with 128Mb of main memory running Solaris 5.5. In the
third experiment, the bridge host was an Apple Power
Macintosh G4 350Mhz with 128Mb of main memory
running Linux 2.2.18. In the fourth experiment, the
bridge host was the same machine as in the third ex-
periment but running KORTEX. Throughput was mea-
sured using ttcp running on client hosts. Table 5 shows
the throughput of the Plearn PlanP program running
on Solaris, Linux and KORTEX. As we can see, using
the KORTEX dedicated kernel increased the throughput
more than 30% compared to Linux (from 65.5MBps for
Linux to 87.6Mbps for KORTEX).

bridge throughput

none 91.6Mbps
PlanP/Solaris, Sparc 166Mhz 42.0Mbps

PlanP/Linux, PowerPC 350Mhz 65.5Mbps
PlanP/KORTEX, PowerPC 350Mhz 87.6Mbps

Table 5: Performance of the THINK implementation ver-
sus Solaris and Linux implementation

5.3 Kaffe

Kaffe is a complete, fully compliant open source Java
environment. The Kaffe virtual machine was designed
with portability and scalability in mind. It requires
threading, memory management, native method inter-
facing and native system calls. Kaffe was ported to
a dedicated THINK kernel by mapping all system de-
pendencies to KORTEX components. For example, ex-
ception management makes direct use of the excep-
tions HAL component, whereas preemptive threads have
been implemented on both the priority-based scheduler,
which provides a native thread like semantics, and the
cooperative scheduler which provides a Java thread like
semantics. Thanks to our binding and component frame-
work, making this change requires no modification in
the threading code. Table 6 compares the performance
of Kaffe when running on Linux and when running on
our dedicated kernel. As we can see, exception manage-
ment is better on the dedicated kernel due to the reduced

cost of signals, whereas native threads perform as well
as Java threads.

When porting a JVM, most of the time is spent in adapt-
ing native methods. Thanks to the reuse of KORTEX

components, implementing the Kaffe dedicated kernel
took one week.

When executing standard Java applications with small
memory needs, the memory footprint is 125KB for
KORTEX components, plus 475KB for Kaffe virtual ma-
chine, plus 1MB for bytecode and dynamic memory, for
a total of 1.6MB.

5.4 Doom

An interesting experiment is to build a dedicated ker-
nel that runs a video game (simulating e.g. the situation
in a low-end appliance). To this end, we have ported
the Linux Doom, version LxDoom [16], to THINK, us-
ing the KORTEX flat memory component. The port took
two days, which mainly consisted in understanding the
graphic driver. The memory footprint for this kernel
is only 95KB for KORTEX components, 900KB for the
Doom engine and 5MB for the game scenario (the WAD
file).

The THINK implementation is between 3% and 6%
faster than the same engine directly drawing on the
frame-buffer and running on Linux starting in single user
mode, as shown in table 7. Since there are no system
calls during the test, and the game performs only compu-
tation and memory copy, the difference is due to residual
daemon activity in Linux and to the use of the flat mem-
ory which avoids the use of the MMU. To pinpoint the
cost of the latter, we have built the same application by
simply switching to the use of the KORTEX paged mem-
ory management component. As we can see, the use of
the MMU adds about 2% on the global execution time.
While the performance benefits are barely significant in
this particular case, this scenario illustrates the potential
benefits of the THINK approach in rapidly building opti-
mized, dedicated operating system kernels.

external resolution
320x200 640x480 1024x768

KORTEX(flat) 1955 491 177
KORTEX(MMU) 1914 485 171

Linux 1894 483 167

Table 7: Doom frames per second



Benchmark Kaffe/Linux Kaffe/KORTEX Kaffe/KORTEX

(java-thread) (java-thread) (native-thread)

synchronized(o) {} 0,527 �s 0,363 �s 0,363 �s
try {} catch(...) {} 1,790 �s 1,585 �s 1,594 �s

try {null.x()} catch(...) {} 12,031 �s 5,094 �s 5,059 �s
try {throw} catch(...) {} 3,441 �s 2,448 �s 2,434 �s

Thread.yield() 6,960 �s 6,042 �s 6,258 �s

Table 6: Evaluation of the Kaffe dedicated THINK kernel

6 Assessment and Future Work

We have presented a software framework for building
flexible operating system kernels from fine-grained com-
ponents and it associated tools, including a library of
commonly used kernel components. We have evaluated
our approach on a PowerPC architecture by implement-
ing components providing services functionally similar
to those implemented in the L4 kernel, and by assem-
bling specific kernels for several applications: an ac-
tive network router, a Java virtual machine, and a Doom
game. The micro-benchmarks (e.g. context switching
costs and binding costs) of our component-based micro-
kernel show a level of performance that indicates that,
thanks to our flexible binding model, building an op-
erating system kernel out of components need not suf-
fer from performance penalties. The application bench-
marks for our example dedicated kernels show improved
performances compared to monolithic kernels, together
with smaller footprints. We have also found that de-
veloping specific operating system kernels can be done
reasonably fast, thanks to our framework, component li-
brary, and tools, although our evidence in this area re-
mains purely anecdotal.

This encourages us to pursue our investigations with
THINK. In particular, the following seem worth pursu-
ing:

� Investigating reconfiguration functions to support
run-time changes in bindings and components at
different levels in a kernel while maintaining the
overall integrity of the system.

� Investigating program specialisation techniques to
further improve performance following examples
of Ensemble [15] and Tempo [20].

� Developing other HAL components, in particular
for low-end appliances (e.g. PDAs), as well as
ARM-based and Intel-based machines.

� Developing a real-time OS component library and
exploiting it for the construction of an operating
system kernel dedicated to the execution of syn-
chronous programming languages such as Esterel
or Lustre.

� Exploiting existing OS libraries, such as OSKit,
and their tools, to enhance the KORTEX library
and provide a more complete development environ-
ment.

Availability

The KORTEX source code is available free of charge for
research purposes from the first two authors.
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