
USENIX Association

Proceedings of the
2002 USENIX Annual Technical

Conference

Monterey, California, USA
June 10-15, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

The JX Operating System

Michael Golm, Meik Felser, Christian Wawersich, Jürgen Kleinöder
University of Erlangen-Nürnberg

Dept. of Computer Science 4 (Distributed Systems and Operating Systems)
Martensstr. 1, 91058 Erlangen, Germany

{golm, felser, wawersich, kleinoeder}@informatik.uni-erlangen.de

Abstract
This paper describes the architecture and performance

of the JX operating system. JX is both an operating system
completely written in Java and a runtime system for Java
applications.

Our work demonstrates that it is possible to build a com-
plete operating system in Java, achieve a good perfor-
mance, and still benefit from the modern software-technol-
ogy of this object-oriented, type-safe language. We explain
how an operating system can be structured that is no longer
build on MMU protection but on type safety.

JX is based on a small microkernel which is responsible
for system initialization, CPU context switching, and low-
level protection-domain management. The Java code is
organized in components, which are loaded into domains,
verified, and translated to native code. Domains can be
completely isolated from each other.

The JX architecture allows a wide range of system con-
figurations, from fast and monolithic to very flexible, but
slower configurations.

We compare the performance of JX with Linux by using
two non-trivial operating system components: a file system
and an NFS server. Furthermore we discuss the perfor-
mance impact of several alternative system configurations.
In a monolithic configuration JX achieves between about
40% and 100% Linux performance in the file system bench-
mark and about 80% in the NFS benchmark.

1 Introduction

The world of software production has dramatically
changed during the last decades from pure assembler pro-
gramming to procedural programming to object-oriented
programming. Each step raised the level of abstraction and
increased programmer productivity. Operating systems, on
the other hand, remained largely unaffected by this process.
Although there have been attempts to build object-oriented
or object-based operating systems (Spring [27], Choices
[10], Clouds [17]) and many operating systems internally
use object-oriented concepts, such as vnodes [31], there is a
growing divergence between application programming and
operating system programming. To close this semantic gap

between the applications and the OS interface a large mar-
ket of middleware systems has emerged over the last years.
While these systems hide the ancient nature of operating
systems, they introduce many layers of indirection with sev-
eral performance problems.

While previous object-oriented operating systems dem-
onstrated that it is possible and beneficial to use object-ori-
entation, they also made it apparent that it is a problem
when implementation technology (object orientation) and
protection mechanism (address spaces) mismatch. There
are usually fine-grained “language objects” and large-
grained “protected objects”. A well-known project that tried
to solve this mismatch by providing object-based protection
in hardware was the Intel iAPX/432 processor [37]. While
this project is usually cited as a failure of object-based hard-
ware protection, an analysis [14] showed that with a slightly
more mature hardware and compiler technology the iAPX/
432 would have achieved a good performance.

We believe that an operating system based on a dynam-
ically compiled, object-oriented intermediate code, such as
the Java bytecode, can outperform traditional systems,
because of the many compiler optimizations (i) that are only
possible at a late time (e.g., inlining virtual calls) and (ii)
that can be applied only when the system environment is
exactly known (e.g., cache optimizations [12]).

Using Java as the foundation of an operating system is
attractive, because of its widespread use and features, such
as interfaces, encapsulation of state, and automatic memory
management, that raise the level of abstraction and help to
build more robust software in less time.

To the best of our knowledge JX is the first Java operat-
ing system that has all of the following properties:
• The amount of C and assembler code is minimal to sim-

plify the system and make it more robust.
• Operating system code and application code is separated

in protection domains with strong isolation between the
domains.

• The code is structured into components, which can be col-
located in a single protection domain or dislocated in sep-
arate domains without touching the component code. This

reusability across configurations enables to adapt the
system for its intended use, which may be, for example,
an embedded system, desktop workstation, or server.

• Performance is in the 50% range of monolithic UNIX
performance for computational-intensive OS opera-
tions. The difference becomes even smaller when I/O
from a real device is involved.

Besides describing the JX system, the contribution of
this paper consists of the first performance comparison
between a Java OS and a traditional UNIX OS using real
OS operations. We analyze two costs: (i) the cost of using
a type-safe language, like Java, as an OS implementation
language and (ii) the cost of extensibility.

The paper is structured as follows: In Section 2 we
describe the architecture of the JX system and illustrate
the cost of several features using micro benchmarks. Sec-
tion 3 describes two application scenarios and their per-
formance: a file system and an NFS server. Section 4
describes tuning and configuration options to refine the
system and measures their effect on the performance of
the file system. Section 5 concludes and gives directions
for future research.

2 JX System Architecture

The majority of the JX system is written in Java. A
small microkernel, written in C and assembler, contains
the functionality that can not be provided at the Java level
(system initialization after boot up, saving and restoring
CPU state, low-level protection-domain management,
and monitoring).

Figure 1 shows the overall structure of JX. The Java
code is organized in components (Sec. 2.4) which are
loaded into domains (Sec. 2.1), verified (Sec. 2.6), and
translated to native code (Sec. 2.6). Domains encapsulate
objects and threads. Communication between domains is
handled by using portals (Sec. 2.2).

The microkernel runs without any protection and
therefore must be trusted. Furthermore, a few Java com-
ponents must also be trusted: the code verifier, the code
translator, and some hardware-dependent components
(Sec. 2.7). These elements are the minimal trusted com-
puting base [19] of our architecture.

2.1 Domains

The unit of protection and resource management is
called a domain. All domains, except DomainZero, con-
tain 100% Java code.

DomainZero contains all the native code of the JX
microkernel. It is the only domain that can not be termi-
nated. There are two ways how domains interact with
DomainZero. First, explicitly by invoking services that
are provided by DomainZero. One of these services is a
simple name service, which can be used by other
domains to export their services by name. Secondly,
implicitly by requesting support from the Java runtime
system; for example, to allocate an object or check a
downcast.

Every domain has its own heap with its own garbage
collector (GC). The collectors run independently and
they can use different GC algorithms. Currently, domains
can choose from two GC implementations: an exact,
copying, non-generational GC or a compacting GC.

Every domain has its own threads. A thread does not
migrate between domains during inter-domain commu-
nication. Memory for the thread control blocks and
stacks is allocated from the domain’s memory area.

Domains are allowed to share code - classes and
interfaces - with other domains. But each domain has its
own set of static fields, which, for example, allows each
domain to have its own System.out stream.

2.2 Portals

Portals are the fundamental inter-domain communi-
cation mechanism. The portal mechanism works similar
to Java’s RMI [43], making it easy for a Java programmer
to use it. A portal can be thought of as a proxy for an
object that resides in another domain and is accessed
using remote procedure call (RPC).

An entity that may be accessed from another domain
is called service. A service consists of a normal object,
which must implement a portal interface, an associated
service thread, and an initial portal. A service is accessed
via a portal, which is a remote (proxy) reference. Portals
are capabilities [18] that can be copied between domains.
The service holds a reference counter, which is incre-
mented each time, the portal is duplicated. A domain that
wants to offer a service to other domains can register the
service’s portal at a name server.

Domain A

Heap

Java-Stacks

Components

Thread Control Blocks

Classes

Objects

Portals

Threads

Domain B

DomainZero (Microkernel)

Stacks
Thread Control Blocks

ThreadsC Code
Assembler

Figure 1: Structure of the JX system

When a thread invokes a method at a portal, the
thread is blocked and execution is continued in the ser-
vice thread. All parameters are deep copied to the target
domain. If a parameter is itself a portal, a duplicate of the
portal is created in the target domain.

Copying parameters poses several problems. It leads
to duplication of data, which is especially problematic
when a large transitive closure is copied. To avoid that a
domain is flooded with parameter objects, a per-call
quota for parameter data is used in JX. Another problem
is that the object identity is lost during copying.
Although parameter copying can be avoided in a single
address space system, and even for RPC between address
spaces by using shared communication buffers [7], we
believe that the advantages of copying outweigh its dis-
advantages. The essential advantage of copying is a
nearly complete isolation of the two communicating pro-
tection domains. The only time where two domains can
interfere with each other is during portal invocation. This
makes it easy to control the security of the system and to
restrict information flow. Another advantage of the copy-
ing semantics is, that it can be extended to a distributed
system without much effort.

In practice, copying posed no severe performance
problems, because only small data objects are used as
parameters. Objects with a large transitive closure in
most cases are server objects and are accessed using por-
tals. Using them as data objects often is not intended by
the programmer.

As an optimization the system checks whether the
target domain of a portal call is identical to the current
domain and executes the call as a function invocation
without thread switch and parameter copy.

When a portal is passed as a parameter in a portal
call, it is passed by-reference. As a convenience to the
programmer the system also allows an object that imple-
ments a portal interface to be passed like a portal. First it
is checked, whether this object already is associated with
a service. In this case, the existing portal is passed. Oth-
erwise, a service is launched by creating the appropriate
data structures and starting a new service thread. This
mechanism allows the programmer to completely ignore
the issue of whether the call is crossing a domain border
or not. When the call remains inside the domain the
object is passed as a normal object reference. When the
call leaves the domain, the object automatically is pro-
moted to a service and a portal to this service is passed.

When a portal is passed to the domain in which its
service resides, a reference to the service object is passed
instead of the portal.

When two domains want to communicate via portals
they must share some types. These are at least the portal
interface and the parameter types. When a domain

obtains a portal, it is checked whether the correct inter-
face is present.

Each time a new portal to a service is created a refer-
ence counter in the service control block is incremented.
It is decremented when a portal is collected as garbage or
when the portal’s domain terminates. When the count
reaches zero the service is deactivated and all associated
resources, such as the service thread, are released.

Table 1 shows the cost of a portal invocation and
compares it with other systems. This table contains very
different systems with very different IPC mechanisms
and semantics. The J-Kernel IPC, for example, does not
even include a thread switch.

Fast portals. Several portals which are exported by
DomainZero are fast portals. A fast portal invocation
looks like a normal portal invocation but is executed in
the caller context (the caller thread) by using a function
call - or even by inlining the code (see also Sec. 4.2.2).
This is generally faster than a normal portal call, and in
some cases it is even necessary. For example, Domain-
Zero provides a portal with which the current thread can
yield the processor. It would make no sense to implement
this method using the normal portal invocation mecha-
nism.

2.3 Memory objects

An operating system needs an abstraction to repre-
sent large amounts of memory. Java provides byte arrays
for this purpose. However, arrays have several shortcom-
ings, that make them nearly unsuitable for our purposes.
They are not accessed using methods and thus the set of
allowed operations is fixed. It is, for example, not possi-
ble to restrict access to a memory region to a read-only
interface. Furthermore, arrays do not allow revocation
and subrange creation - two operations that are essential
to pass large memory chunks without copying.

To overcome these shortcomings we developed
another abstraction to represent memory ranges: memory
objects. Memory objects are accessed like normal
objects via method invocations. But such invocations are
treated specially by the translator: they are replaced by
the machine instructions for the memory access. This
makes memory access as fast as array access.

System IPC
(cycles)

L4Ka (PIII, 450MHz) [32] 818

Fiasco/L4 (PIII 450 MHz) [42] 2610

J-Kernel (LRMI on MS-VM, PPro 200MHz) [28] 440

Alta/KaffeOS (PII 300 MHz) [5] 27270

JX (PIII 500MHz) 650

Table 1: IPC latency (round-trip, no parameters)

Memory objects can be passed between domains like
portals. The memory that is represented by a memory
object is not copied when the memory object is passed to
another domain. This way, memory objects implement
shared memory.

Access to a memory range can be revoked. For this
purpose all memory portals that represent the same range
of memory contain a reference to the same central data
structure in DomainZero. Among other information this
data structure contains a valid flag. The revocation
method invalidates the original memory object by clear-
ing the valid flag and returns a new one that represents
the same range of memory. Memory is not copied during
revocation but all memory portals that previously repre-
sented this memory become invalid.

When a memory object is passed to another domain,
a reference counter, which is maintained for every mem-
ory range, is incremented. When a memory object -
which, in fact, is a portal or proxy for the real memory -
is garbage collected, the reference counter is decre-
mented. This happens also for all memory objects of a
domain that is terminated. To correct the reference
counts the heap must be scanned for memory objects
before it is released.

ReadOnlyMemory. ReadOnlyMemory is equivalent to
Memory but it lacks all the methods that modify the
memory. A ReadOnlyMemory object can not be con-
verted to a Memory object.

DeviceMemory. DeviceMemory is different from Mem-
ory in that it is not backed by main memory: It is usually
used to access the registers of a device or to access mem-
ory that is located on a device and mapped into the CPU’s
address space. The translator knows about this special
use and does not reorder accesses to a DeviceMemory.
When a DeviceMemory is garbage collected the memory
is not released.

2.4 Components

All Java code that is loaded into a domain is orga-
nized in components. A component contains the classes,
interfaces, and additional information; for example,
about dependencies from other components or about the
required scheduling environment (preemptive, nonpre-
emptive).

Reusability. An overall objective of object orientation
and object-oriented operating systems is code reuse. JX
has all the reusability benefits that come with object ori-
entation. But there is an additional problem in an operat-
ing system: the protection boundary. To call a module
across a protection boundary in most operating system is
different from calling a module inside the own protection
domain. Because this difference is a big hindrance on the

way to reusability, this problem has already been investi-
gated in the microkernel context [22].

Our goal was a reuse of components in different con-
figurations without code modifications. Although the
portal mechanism was designed with this goal the pro-
grammer must keep several points in mind when using a
portal. Depending on whether the called service is
located inside the domain or in another domain there are
a few differences in behavior. Inside a domain normal
objects are passed by reference. When a domain border
is crossed, parameters are passed by copy. To write code
that works in both settings the programmer must not rely
on either of these semantics. For example, a programmer
relies on the reference semantics when modifying the
parameter object to return information to the caller; and
the programmer relies on the copy semantics when mod-
ifying the parameter object assuming this modification
does not affect the caller.

In practice, these problems can be relieved to a cer-
tain extent by the automatic promotion of portal-capable
objects to services as described in Section 2.2. By declar-
ing all objects that are entry points into a component as
portals a reference semantics is guaranteed for these
objects.

Dependencies. Components may depend on other com-
ponents. We say that component B has an implementa-
tion dependence on component A, if the method imple-
mentations of B use classes or interfaces from A. Com-
ponent B has an interface dependence on component A
if the method signatures of B use classes or interfaces
from A or if a class/interface of B is a subclass/subinter-
face of a class/interface of A, or if a class of B imple-
ments an interface from A, or if a non-private field of a
class of B has as its type a class/interface from A.

Component dependencies must be non-cyclic. This
requirement makes it more difficult to split existing
applications into components (Although they can be
used as one component!). A cyclic dependency between
components usually is a sign of bad design and should be
removed anyway. When a cyclic dependency is present,
it must be broken by changing the implementation of one
component to use an interface from an unrelated compo-
nent while the other class implements this interface. The
components then both depend on the unrelated compo-
nent but not on each other. The dependency check is per-
formed by the verifier and translator.

We used Sun’s JRE 1.3.1_02 for Linux to obtain the
transitive closure of the depends-on relation starting with
java.lang.Object. The implementation dependency con-
sists of 625 classes; the interface dependency consists of
25 classes. This means, that each component that uses
the Object class (i.e., every component) depends on at
least 25 classes from the JDK. We think, that even 25

classes are a too broad foundation for OS components
and define a compatibility relation that allows to
exchange the components.

Compatibility. The whole system is build out of compo-
nents. It is necessary to be able to improve and extend
one component without changing all components that
depend on this component. Only a component B that is
compatible to component A can be substituted for A. A
component B is binary compatible to a component A, if
• for each class/interface CA of A there is a correspond-

ing class/interface CB in component B
• class/interface CB is binary compatible to class CA

according to the definition given in the “Java Language
Specification” [26] Chapter 13.

When a binary compatible component is also a
semantic superset of the original component, it can be
substituted for the original component without affecting
the functionality of the system.

JDK. The JDK is implemented as a normal component.
Different implementations and versions can be used.
Some classes of the JDK must access information that is
only available in the runtime system. The class Class is
an example. This information is obtained by using a por-
tal to DomainZero. In other words, where a traditional
JDK implementation would use a native method, JX uses
a normal method that invokes a service of DomainZero
via a portal. All of our current components use a JDK
implementation that is a subset of a full JDK and, there-
fore, can also be used in a domain that loads a full JDK.

Interface invocation. Non-cyclic dependencies and the
compilation of whole components opens up a way to
compile very efficient interface invocations. Usually,
interface invocations are a problem because it is not pos-
sible to use a fixed index into a method table to find the
interface method. When different classes implement the
interface, the method can be at different positions in their
method tables. There exists some work to reduce the
overhead in a system that does not impose our restric-
tions [1]. In our translator we use an approach that is sim-
ilar to selector coloring [20]. It makes interface invoca-
tions as fast as method invocations at the cost of (consid-
erably) larger method tables.

The size of the x86 machine code in the complete JX
system is 1,010,752 bytes, which was translated from
230,421 bytes of bytecode. The method tables consume
630,388 bytes. These numbers show that it would be
worthwhile to use a compression technique for the
method tables or a completely different interface invoca-
tion mechanism. One should keep in mind, that a tech-
nique as described in [1] has an average-case perfor-
mance near to a virtual invocation, but it may be difficult

to analyze the worst-case behavior of the resulting sys-
tem, because of the use of a caching data structure.

2.5 Memory management

Protection is based on the use of a type-safe lan-
guage. Thus an MMU is not necessary. The whole sys-
tem, including all applications, runs in one physical
address space. This makes the system ideally suited for
small devices that lack an MMU. But it also leads to sev-
eral problems. In a traditional system fragmentation is
not an issue for the user-level memory allocator, because
allocated, but unused memory, is paged to disk. In JX
unused memory is wasted main memory. So we face a
similar problem as kernel memory allocators in UNIX,
where kernel memory usually also is not paged and
therefore limited. In UNIX a kernel memory allocator is
used for vnodes, proc structures, and other small objects.
In contrast to this the JX kernel does not create many
small objects. It allocates memory for a domain’s heap
and the small objects live in the heap. The heap is man-
aged by a garbage collector. In other words, the JX mem-
ory management has two levels, a global management,
which must cope with large objects and avoid fragmen-
tation, and a domain-local garbage-collected memory.
The global memory is managed using a bitmap allocator
[46]. This allocator was easy to implement, it automati-
cally joins free areas, and it has a very low memory foot-
print: Using 1024-byte blocks and managing about
128MBytes or 116977 blocks, the overhead is only
14622 bytes or 15 blocks or 0.01 percent. However, it
should not be too complicated to use a different allocator.

To give up the MMU means that several of their
responsibilities (besides protection) must be imple-
mented in software. One example is the stack overflow
detection, another one the null pointer detection. Stack
overflow detection is implemented in JX by inserting a
stack size check at the beginning of each method. This is
feasible, because the required size of a stack frame is
known before the method is executed. The size check has
a reserve, in case the Java method must trap to a runtime
function in DomainZero, such as checkcast. The null
pointer check currently is implemented using the debug
system of the Pentium processor. It can be programmed
to raise an exception when data or code at address zero is
accessed. On architectures that do not provide such a fea-
ture, the compiler inserts a null-pointer check before a
reference is used.

A domain has two memory areas: an area where
objects may be moved and an area where they are fixed.
In the future, a single area may suffice, but then all data
structures that are used by a domain must be movable.
Currently, the fixed area contains the code and class
information, the thread control blocks and stacks. Mov-

ing these objects requires an extension of the system: all
pointers to these objects must be known to the GC and
updated; for example, when moving a stack, the frame
pointers must be adjusted.

2.6 Verifier and Translator

The verifier is an important part of JX. All code is
verified before it is translated to native code and exe-
cuted. The verifier first performs a standard bytecode
verification [48]. It then verifies an upper limit for the
execution times of the interrupt handlers and the sched-
uler methods (Sec. 2.8) [2].

The translator is responsible for translating bytecode
to machine code, which in our current system is x86
code. Machine code can either be allocated in the
domain’s fixed memory or in DomainZero’s fixed mem-
ory. Installing it in DomainZero allows to share the code
between domains.

2.7 Device Drivers

An investigation of the Linux kernel has shown that
most bugs are found in device drivers [13]. Because
device drivers will profit most from being written in a
type-safe language, all JX device drivers are written in
Java. They use DeviceMemory to access the registers of a
device and the memory that is available on a device; for
example, a frame buffer. On some architectures there are
special instructions to access the I/O bus; for example,
the in and out processor instructions of the x86. These
instructions are available via a fast portal of Domain-
Zero. As other fast portals, these invocations can be
inlined by the translator.

DMA. Most drivers for high-throughput devices will use
busmaster DMA to transfer data. These drivers, or at
least the part that accesses the DMA hardware, must be
trusted.

Interrupts. Using a portal of DomainZero, device driv-
ers can register an object that contains a handleInterrupt
method. An interrupt is handled by invoking the han-
dleInterrupt method of the previously installed interrupt
handler object. The method is executed in a dedicated
thread while interrupts on the interrupted CPU are dis-
abled. This would be called a first-level interrupt handler
in a conventional operating system. To guarantee that the
handler can not block the system forever, the verifier
checks all classes that implement the InterruptHandler
interface. It guarantees that the handleInterrupt method
does not exceed a certain time limit. To avoid undecid-
able problems, only a simple code structure is allowed
(linear code, loops with constant bound and no write
access to the loop variable inside the loop). A handleIn-
terrupt method usually acknowledges the interrupt at the

device and unblocks a thread that handles the interrupt
asynchronously.

We do not allow device drivers to disable interrupts
outside the interrupt handler. Drivers usually disable
interrupts as a cheap way to avoid race conditions with
the interrupt handler. Code that runs with interrupts dis-
abled in a UNIX kernel is not allowed to block, as this
would result in a deadlock. Using locks also is not an
option, because the interrupt handler - running with
interrupts disabled - should not block. We use the
abstraction of an AtomicVariable to solve these problems.
An AtomicVariable contains a value, that can be changed
and accessed using set and get methods. Furthermore, it
provides a method to atomically compare its value with
a parameter and block if the values are equal. Another
method atomically sets the value and unblocks a thread.
To guarantee atomicity the implementation of Atomic-
Variable currently disables interrupts on a uniprocessor
and uses spinlocks on a multiprocessor. Using Atomic-
Variables we implemented, for example, a producer/con-
sumer list for the network protocol stack.

2.8 Scheduling

There is a common experience that the scheduler has
a large impact on the system’s performance. On the other
hand, no single scheduler is perfect for all applications.

Instead of providing a configuration interface to the
scheduler we follow our methodology of allowing a user
to completely replace an implementation, in this case the
scheduler. Each domain may also provide its own sched-
uler, optimized for its particular requirements.

The scheduler can be used in several configurations:
• First, there is a scheduler that is build into the kernel.

This scheduler is only used for performance analysis,
because it is written in C and can not be replaced at run
time.

• The kernel can be compiled without the built-in sched-
uler. Then all scheduling decisions lead to the invoca-
tion of a scheduler implementation which is written in
Java. In this configuration there is one (Java) scheduler
that schedules all threads of all domains.

• The most common configuration, however, is a two-
level scheduling. The global scheduler does not sched-
ule threads, as in the previous configuration, but
domains. Instead of activating an application thread, it
activates the scheduler thread of a domain. This
domain-local scheduler is responsible for selecting the
next application thread to run. The global scheduler
knows all domain-local schedulers and a domain-local
scheduler has a portal to the global scheduler. On a
multiprocessor there is one global scheduler per pro-

cessor and the domains posses a reference to the global
schedulers of the processors on which they are allowed
to run.

The global scheduler must be trusted by all domains.
The global scheduler does not need to trust a domain-
local scheduler. This means, that the global scheduler can
not assume, that an invocation of the local scheduler
returns after a certain time.

To prevent one domain monopolizing the processor,
the computation can be interrupted by a timer interrupt.
The timer interrupt leads to the invocation of the global
scheduler. This scheduler first informs the scheduler of
the interrupted domain about the pre-emption. It
switches to the domain scheduler thread and invokes the
scheduler’s method preempted(). During the execution
of this method the interrupts are disabled. An upper
bound for the execution time of this method has been ver-
ified during the verification phase. When the method pre-
empted() returns, the system switches back to the thread
of the global scheduler. The global scheduler then
decides, which domain to run next activates the domain-
local scheduler using the method activated(). For each
CPU that can be used by a domain the local scheduler of
the domain has a CPU portal. It activates the next runna-
ble thread by calling the method switchTo() at the CPU
portal. The switchTo() method can only be called by a
thread that runs on the CPU which is represented by the
CPU portal. The global scheduler does not need to wait
for the method activated() to finish. Thus, an upper time
bound for method activated() is not necessary. This
method makes the scheduling decision and it can be arbi-
trarily complex.

If a local scheduler needs smaller time-slices than the
global scheduler, the local scheduler must be interrupted
without being pre-empted. For this purpose, the local
scheduler has a method interrupted() which is called
before the time-slice is fully consumed. This method
operates similar to the method activated().

Because our scheduler is implemented outside the
microkernel and there are operations of the microkernel
that affect scheduling, for example, thread handoff dur-
ing a portal invocation, we face a similar situation as a
user-level thread implementation on a UNIX-like sys-
tem. A well-known solution are scheduler activations
[3], which notify the user-level scheduler about events
inside the kernel, such as I/O operations. JX uses a simi-
lar approach, although there are very few scheduling
related operations inside the kernel. Scheduling is
affected when a portal method is invoked. First, the
scheduler of the calling domain is informed, that one
thread performs a portal call. The scheduler can now
delay the portal call, if there is any other runnable thread
in this domain. But it can as well handoff the processor
to the target domain. The scheduler of the service domain

is notified of the incoming portal call and can either acti-
vate the service thread or let another thread of the domain
run. Not being forced to schedule the service thread
immediately is essential for the implementation of a non-
preemptive domain-local scheduler.

This extra communication is not for free. The time of
a portal call increases from 650 cycles (see Table 1) to
920-960 cycles if either the calling domain or the called
domain is informed. If both involved domain schedulers
are informed about the portal call the required time
increases to 1180 cycles.

2.9 Locking and condition variables

Kernel-level locking. There are very few data structures
that must be protected by locks inside DomainZero.
Some of them are accessed by only one domain and can
be locked by a domain-specific lock. Others, for exam-
ple, the domain management data structures, need a glo-
bal lock. Because the access to this data is very short, an
implementation that disables interrupts on a uniproces-
sor and uses spinlocks on a multiprocessor is sufficient.

Domain-level locking. Domains are responsible for
synchronizing access to objects by their own threads.
Because there are no objects shared between domains
there is no need for inter-domain locking of objects. Java
provides two facilities for thread synchronization: mutex
locks and condition variables. When translating a com-
ponent to native code, an access to such a construct is
redirected to a user-supplied synchronization class. How
this class is implemented can be decided by the user. It
can provide no locking at all or it can implement mutexes
and condition variables by communicating with the
(domain-local) scheduler. Every object can be used as a
monitor (mutex lock), but very few actually are. To avoid
allocating a monitor data structure for every object, tra-
ditional JVMs either use a hashtable to go from the
object reference to the monitor or use an additional
pointer in the object header. The hashtable variant is slow
and is rarely used in today’s JVMs. The additional
pointer requires that the object layout must be changed
and the object header be accessible to the locking system.
Because the user can provide an own implementation,
these two implementations, or a completely application-
specific one, can be used.

Inter-domain locking. Memory objects allow sharing
of data between domains. JX provides no special inter-
domain locking mechanisms. When two domains want to
synchronize, they can use a portal call. We did not need
such a feature yet, because the code that passes memory
between domains does it by explicitly revoking access to
the memory.

3 Application Scenarios: Comparing JX to
a Traditional Operating System

JX contains a file system com-
ponent that is a port of the Linux
ext2 file system to Java [45]. Fig-
ure 2 shows the configuration,
where file system and buffer
cache are cleanly separated into
different components. The gray
areas denote protection domains
and the white boxes components.
The file system uses the Buffer-
Cache interface to access disk
blocks. To read and write blocks
to a disk the buffer cache imple-
mentation uses a reference to a
device that implements the
BlockIO interface. The file system
and buffer cache components do
not use locking. They require a
non-preemptive scheduler to be installed in the domain.

To evaluate the performance of JX we used two
benchmarks: the IOZone benchmark [44] to assess file
system performance and a home brewed rate benchmark
to assess the performance of the network stack and NFS
server. The rate benchmark sends getattr requests to the
NFS server as fast as possible and measures the achiev-
able request rate. As JX is a pure Java system, we can not
use the original IOZone program, which is written in C.
Thus we ported IOZone to Java. The JX results were
obtained using our Java version and the Linux results
were obtained using the original IOZone.

The hardware consists of the following components:
• The system-under-test: PIII 500MHz with 256 MBytes

RAM and a 100 MBit/s 3C905B Ethernet card running
Suse Linux 7.3 with kernel 2.4.0 or JX.

• The client for the NFS benchmark: a PIII 1GHz with a
100 MBit/s 3C905B Ethernet card running Suse Linux
7.3.

• A 100MBit/s hub that connects the two systems.
Figure 3 shows the results of running the IOZone

reread benchmark on Linux.
Our Java port of the IOZone contains the write,

rewrite, read, and reread parts of the original benchmark.
In the following discussion we only use the reread part of
the benchmark. The read benchmark measures the time
to read a file by reading fixed-length records. The reread
benchmark measures the time for a second read pass.
When the file is smaller than the buffer cache all data
comes from the cache. Once a disk access is involved,
disk and PCI bus data transfer times dominate the result
and no conclusions about the performance of JX can be
drawn. To avoid these effects we only use the reread
benchmark with a maximum file size of 512 KBytes,
which means that the file completely fits into the buffer
cache. The JX numbers are the mean of 50 runs of
IOZone. The standard deviation was less than 3%. For
time measurements on JX we used the Pentium times-
tamp counter which has a resolution of 2 ns on our
system.

Figure 2 shows the configuration of the JX system
when the IOZone benchmark is executed. Figure 4 shows
the results of the benchmark. Figure 5 compares JX per-
formance to the Linux performance. Most combinations
of file size and record size give a performance between
20% and 50% of the Linux performance. Linux is espe-
cially good at reading a file using a small record size. The
performance of this JX configuration is rather insensitive
to the record size. We will explain how we improved the
performance of JX in the next section.

Another benchmark is the rate benchmark, which
measures the achievable NFS request rate by sending
getattr requests to the NFS server. Figure 6 shows the
domain structure of the NFS server: all components are
placed in one domain, which is a typical configuration

JavaFS

iozone

Cache

IDE

BufferCache

BlockIO

BlockIO

FileSystem

FileSystem

Figure 2: IOZone
configuration

Figure 3: Linux IOZone performance Figure 4: JX IOZone: multi-domain configuration

0

80

160

240

320

400

480

560

filesize in KBytes

th
ro

ug
hp

ut
 in

 M
B

yt
es

/s
ec

4 8 16 32 64 128 256 512
0

80

160

240

320

400

480

560

filesize in KBytes

th
ro

ug
hp

ut
 in

 M
B

yt
es

/s
ec

4 8 16 32 64 128 256 512

4
8
16
32
64
128
256
512

record size in KBytes

4
8
16
32
64
128
256
512

record size in KBytes

for a dedicated NFS server. Figure 8 shows the results of
running the rate benchmark with a Linux NFS server
(both kernel and user-level NFS) and with a JX NFS
server. There are drops in the JX request rate that occur
very periodically. To see what is going on in the JX NFS
server, we collected thread switch information and cre-
ated a thread activity diagram. Figure 7 shows this dia-
gram. We see an initialization phase which is completed
six seconds after startup. Shortly after startup a periodic
thread (ID 2.12) starts, which is the interrupt handler of
the real-time clock. But the important activity starts at
about 17 seconds. The CPU is switched between
“IRQThread11”, “Etherpacket-Queue”, “NFSProc”, and
“Idle” thread. This is the activity during the rate bench-
mark. Packets are received and put into a queue by the
first-level interrupt handler of the network interface
“IRQThread11” (ID 2.14). This unblocks the “Ether-
packet-Queue” (ID 2.19), which processes the packet

and finally puts it into a UDP packet queue. This
unblocks the “NFSProc” (ID 2.27) thread, which pro-
cesses the NFS packet and accesses the file system. This
is done in the same thread, because the NFS component
and the file system are collocated. Then a reply is sent
and all threads block, which wakes up the “Idle” thread
(ID 0.1). The sharp drops in the request rate of the JX
NFS server in Figure 8 correspond to the GC thread (ID
2.1) that runs for about 100 milliseconds without being
interrupted. It runs that long because neither the garbage
collector nor the NFS server are optimized. Especially
the RPC layer creates many objects during RPC packet
processing. The GC is not interrupted, because it disables
interrupts as a safety precaution in the current implemen-
tation. The pauses could be avoided by using an incre-
mental GC [6], which allows the GC thread to run con-
currently with threads that modify the heap.

Figure 5: JX vs. Linux: multi-domain configuration

0

10

20

30

40

50

60

70

80

90

100

filesize in KBytes

ac
hi

ev
ed

 t
hr

ou
gh

pu
t

in
 p

er
ce

nt

4 8 16 32 64 128 256 512

4
8
16
32
64
128
256
512

record size in KBytes

Figure 7: Thread activity during the rate benchmark

Idle 0.1
DomainZero:InitialThread 0.3

SVC-jx/zero/BootFS 0.4
SVC-jx/zero/ComponentManager 0.5

SVC-jx/zero/DebugSupport 0.6
SVC-jx/zero/DomainManager 0.7

SVC-jx/zero/DebugSupport 0.8
SVC-jx/zero/Naming 0.9

Init-main 1.2
GC 2.1

NFS-main 2.2
jx/devices/pci/PCIGod 2.3

timerpc/StartTimer 2.4
jx/net/StartNetDevice 2.5

jx/net/protocols/StartNetworkProtocols 2.6
test/fs/IDEDomain 2.7

FSDomain-Main 2.8
test/nfs/NFSDomain 2.9

SVC-jx/devices/pci/PCIAccess 2.10
TimerManager 2.11

IRQThread8 2.12
SVC-jx/timer/TimerManager 2.13

IRQThread11 2.14
IDE-2nd-IRQ ide0 2.15
IDE-2nd-IRQ ide1 2.16

IRQThread14 2.17
SVC-jx/devices/net/NetworkDevice 2.18

Etherpacket-Queue 2.19
SVC-jx/net/NetInit 2.20

RPC-Receiver 2.21
SVC-bioide/Partition 2.23

SVC-jx/fs/FS 2.24
SVC-jx/fs/FileSystem 2.25

MountProc 2.26
NFSProc 2.27
RPCBind 2.28

0 2 4 6 8 10 12 14 16 18 20 22
Time in Seconds

JavaFS

Cache

IDE

BlockIO

BlockIO

FileSystem

FileSystem

NFS RPC

UDP

IP

Ether

3C905

UDPSender

IPSender

EtherSender

NetworkDevice

Figure 6: JX NFS configuration

BufferCache

Figure 8: JX NFS performance (rate benchmark)

0

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 1

re
qu

es
t/s

ec
on

d

Time in seconds

JX

Linux (kernel NFS)

Linux (user NFS)

4 Optimizations

JX provides a wide range of flexible configuration
options. Depending on the intended use of the system
several features can be disabled to enhance performance.

Figures 9 through 14 show the results of running the
Java IOZone benchmark on JX with various configura-
tion options. These results are discussed in further detail
below. The legend for the figures indicates the specific
configuration options used in each case. The default con-
figuration used in Figure 3 was MNNSCR, which means
that the configuration options used were multi-domain,
no inlining, no inlined memory access, safety checks
enabled, memory revocation check by disabling inter-
rupts, and a Java round-robin scheduler. At the end of this
section we will select the fastest configuration and repeat
the comparison to Linux.

The modifications described in this sections are pure
configurations. Not a single line of code is modified.

4.1 Domain structure

How the system is structured into domains deter-
mines communication overheads and thus affects perfor-
mance. For maximal performance, components should
be placed in the same domain. This removes portal com-
munication overhead. Figure 9 shows the improvement
of placing all components into a single domain. The per-
formance improvement is especially visible when using
small record sizes, because then many invocations
between the IOZone component and the file system com-
ponent take place. The larger improvement in the 4KB
file size / 4KB record size can be explained by the fact
that the overhead of a portal call is relatively constant and
the 4KB test is very fast, because it completely operates
in the L1 cache. So the portal call time makes up a con-
siderable part of the complete time. The contrary is true
for large file sizes: the absolute throughput is lower due
to processor cache misses and the saved time of the por-
tal call is only a small fraction of the complete time.
Within one file size the effect also becomes smaller with
increasing record sizes. This can be explained by the
decreasing number of performed portal calls.

4.2 Translator configuration

The translator performs several optimizations. This
section investigates the performance impact of each of
these optimizations. The optimizations are inlining,
inlining of fast portals, and elimination of safety checks.

4.2.1 Inlining

One of the most important optimizations in an object-
oriented system is inlining. We currently inline only non-
virtual methods (final, static, or private). We plan to

inline also virtual methods that are not overridden, but
this would require a recompilation when, at a later time,
a class that overrides the method is loaded into the
domain. Figure 10 shows the effect of inlining.

4.2.2 Inlining of fast portals

A fast portal interface (see Sec. 2.2) that is known to
the translator can also be inlined. To be able to inline
these methods that are written in C or assembler the
translator must know their semantics. Since we did not
want to wire these semantics too deep into the translator,
we developed a plugin architecture. A translator plugin is
responsible for translating the invocations of the methods
of a specific fast portal interface. It can either generate
special code or fall back to the invocation of the Domain-
Zero method.

We did expect a considerable performance improve-
ment but as can be seen in Figure 11 the difference is
very small. We assume, that these are instruction cache
effects: when a memory access is inlined the code is
larger than the code that is generated for a function call.
This is due to range checks and revocation checks that
must be emitted in front of each memory access.

4.2.3 Safety checks

Safety checks, such as stack size check and bounds
checks for arrays and memory objects can be omitted on
a per-domain basis. Translating a domain without checks
is equivalent to the traditional OS approach of hoping
that the kernel contains no bugs. The system is now as
unsafe as a kernel that is written in C. Figure 12 shows
that switching off safety checks can give a performance
improvement of about 10 percent.

4.3 Memory revocation

Portals and memory objects are the only objects that
can be shared between domains. They are capabilities
and an important functionality of capabilities is revoca-
tion. Portal revocation is implemented by checking a flag
before the portal method is invoked. This is an inexpen-
sive operation compared to the whole portal invocation.
Revocation of memory objects is more critical because
the operations of memory objects - reading and writing
the memory - are very fast and frequently used opera-
tions. The situation is even more involved, because the
check of the revocation flag and the memory access have
to be performed as an atomic operation. JX can be con-
figured to use different implementations of this revoca-
tion check:
• NoCheck: No check at all, which means revocation is

not supported.

Figure 9: Domain structure: SNNSCR vs. MNNSCR Figure 10: Inlining: SINSCR vs. SNNSCR

Figure 11: Memory access inlining:SIFSNR vs. SINSNR Figure 12: Safety checks: SIFNCR vs. SIFSCR

Figure 13c: ATOMIC revocation: SINSAR vs. SIFSCR

Figure 14a: Simple Java Scheduler: MIFSNI vs. MIFSNR

Figure 14b: Kernel scheduler: MIFSNC vs. MIFSNI

Figure 13a: No revocation: SIFSNR vs. SIFSCR

Figure 13b: SPIN revocation: SIFSSR vs. SIFSCR

0

5
10

15

20

25

30

35
40

45

filesize in KBytes

im
pr

ov
em

en
t

in
 p

er
ce

nt

4 8 16 32 64 128 256 512 0

5
10

15

20

25

filesize in KBytes
im

pr
ov

em
en

t
in

 p
er

ce
nt

4 8 16 32 64 128 256 512

0

5
10

15

filesize in KBytes

im
pr

ov
em

en
t

in
 p

er
ce

nt

4 8 16 32 64 128 256 512

-10

-5

filesize in KBytes

im
pr

ov
em

en
t

in
 p

er
ce

nt

4 8 16 32 64 128 256 512

-20

-15
-10

-5

filesize in KBytes

im
pr

ov
em

en
t

in
 p

er
ce

nt

4 8 16 32 64 128 256 512

0

5

filesize in KBytesim
pr

ov
em

en
t

in
 p

er
ce

nt

4 8 16 32 64 128 256 512

-10

-5
0

5

filesize in KBytesim
pr

ov
em

en
t

in
 p

er
ce

nt

4 8 16 32 64 128 256 512

-5

0
5

filesize in KBytes

im
pr

ov
em

en
t

in
 p

er
ce

nt

4 8 16 32 64 128 256 512

0

5
10

15

20

filesize in KBytes

im
pr

ov
em

en
t

in
 p

er
ce

nt

4 8 16 32 64 128 256 512

4
8
16
32
64
128
256
512

record size in KBytes

Legend for all figures on this page:
Encoding of the measured configuration:
1. domain structure: S (single domain), M (multi domain)
2. inlining: I (inlining), N (no inlining)
3. memory access: F (inlined memory access), N (no inlined memory access)
4. safety checks: S (safety checks enabled), N (safety checks disabled)
5. memory revocation: N (no memory revocation), C (disable interrupts), S (spinlock), A (atomic code)
6. scheduling: C (microkernel scheduler), R (Java RR scheduler), I (Java RR invisible portals)

• CLI: Saves the interrupt-enable flag and disables inter-
rupts before the memory access and restores the inter-
rupt-enable flag afterwards.

• SPIN: In addition to disabling interrupts a spinlock is
used to make the operation atomic on a multiprocessor.

• ATOMIC: The JX kernel contains a mechanism to
avoid locking at all on a uniprocessor. The atomic code
is placed in a dedicated memory area. When the low-
level part of the interrupt system detects that an inter-
rupt occurred inside this range the interrupted thread is
advanced to the end of the atomic procedure. This tech-
nique is fast in the common case but incurs the over-
head of an additional range check of the instruction
pointer in the interrupt handler. It increases interrupt
latency when the interrupt occurred inside the atomic
procedure, because the procedure must first be fin-
ished. But the most severe downside of this technique
is, that it inhibits inlining of memory accesses. Similar
techniques are described in [9], [36], [35], [41].

Figure 13a shows the change in performance when no
revocation checks are performed. This configuration is
slightly slower than a configuration that used the CLI
method for revocation check. We can only explain this by
code cache effects.

Using spinlocks adds an additional overhead (Figure
13b). Despite some improvements in a former version of
JX using atomic code could not improve the IOZone per-
formance of the measured system (Figure 13c).

4.4 Cost of the open scheduling framework

Scheduling in JX can be accomplished with user-
defined schedulers (see Sec. 2.8). The communication
between the global scheduler and the domain schedulers
is based on interfaces. Each domain scheduler must
implement a certain interface if it wants to be informed
about special events. If a scheduler does not need all the
provided information, it does not implement the corre-
sponding interface. This reduces the number of events
that must be delivered during a portal call from the
microkernel to the Java scheduler.

In the configurations presented up to now we used a
simple round-robin scheduler (RR) in each domain. The
domain scheduler is informed about every event, regard-
less whether being interested in it or not. Figure 14a
shows the benefit of using a scheduler which implements
only the interfaces needed for the round-robin strategy
(RR invisible portals) and is not informed when a thread
switch occurred due to a portal call.

As already mentioned, there is a scheduler built into
the microkernel. This scheduler is implemented in C and
can not be exchanged at run time. Therefore this type of
scheduling is mainly used during development or perfor-
mance analysis. The advantage of this scheduler is that

there are no calls to the Java level necessary. Figure 14b
shows that there is no relevant performance difference in
IOZone performance between the core scheduler and the
Java scheduler with invisible portals.

4.5 Summary: Fastest safe configuration

After we explained all the optimizations we can now
again compare the performance of JX with the Linux
performance. The most important optimizations are the
use of a single domain, inlining, and the use of the core
scheduler or the Java scheduler with invisible portals. We
configured the JX system to make revocation checks
using CLI, use a single domain, use the kernel scheduler,
enabled inlining, and disabled inlining of memory meth-
ods. With this configuration we achieved a performance
between about 40% and 100% of Linux performance
(Figure 15). By disabling safety checks we were even
able to achieve between 50% and 120% of Linux
performance.

5 Related work

There are several areas of related work. The first two
areas are concerned with general principals of structur-
ing an operating system: extensibility and reusability
across system configurations. The other areas are lan-
guage-based operating systems and especially Java oper-
ating systems.

Extensibility. With respect to extensibility JX is similar
to L4 [33], Pebble [25], and the Exokernel [24] in that it
tries to reduce the fixed, static part of the kernel. It is dif-
ferent from systems like SPIN [8] and VINO [40],
because these systems only allow a gradual modification
of the system service, using spindles (SPIN) or grafts
(VINO). JX allows its complete replacement. This is
necessary in some cases and in most cases will give a bet-
ter performance, because more suitable algorithms can

Figure 15: JX vs. Linux: Fastest configuration (SINSCC)

0

10

20

30

40

50

60

70

80

90

100

filesize in KBytes

ac
hi

ev
ed

 t
hr

ou
gh

pu
t

in
 p

er
ce

nt

4 8 16 32 64 128 256 512

4
8
16
32
64
128
256
512

record size in KBytes

be used inside the service. A system service with an
extension interface will only work as long as the exten-
sions fit into a certain pattern that was envisioned by the
designer of the interface. A more radical change of the
service is not possible.

An important difference between JX and previous
extensible systems is, that in JX the translator is part of
the operating system. This allows several optimizations
as described in the paper.

Modularity and protection. Orthogonality between
modularity and protection was brought forward by Lipto
[22]. The OSF [15] attacked the specific problem of col-
locating the OSF/1 UNIX server, which was run on top
of the Mach microkernel, with the microkernel. They
were able to achieve a performance only 8% slower than
a monolithic UNIX. The special case of code reuse
between the kernel and user environment was investi-
gated in the Rialto system [21]. Rialto uses two inter-
faces, a very efficient one for collocated components (for
example the mbuf [34] interface) and another one when
a protection boundary must be crossed (the normal read/
write interface). We think that this hinders reusability
and complicates the implementation of components,
especially as there exist techniques to build “unified”
interfaces in MMU-based systems [23], and, using our
memory objects, also in language-based systems.

There is a considerable amount of work in single
address space operating systems, such as Opal [11] and
Mungi [29]. Most of these systems use hardware protec-
tion, depend on the mechanisms that are provided by the
hardware, and must structure the system accordingly,
which makes their problems much different from ours.

Language-based OS. Using a safe language as a protec-
tion mechanism is an old idea. A famous early system
was the Pilot [38], which used a language and bytecode
instruction set called Mesa [30], an instruction set for a
stack machine. Pilot was not designed as a multi-user
operating system. More recent operating systems that
use safe languages are SPIN [8], which uses Modula3,
and Oberon [47], which uses the Oberon language, a
descendant of Modula2.

Java OS. The first Java operating system was JavaOS
from Sun [39]. We do not know any published perfor-
mance data for JavaOS, but because it used an inter-
preter, we assume that it was rather slow. Furthermore, it
did only provide a single protection domain. This makes
sense, because JavaOS was planned to be a thin-client
OS. However, besides JX, JavaOS is the only system that
tried to implement the complete OS functionality in Java.
JKernel [28], the MVM [16], and KaffeOS [4] are sys-
tems that allow isolated applications to run in a single
JVM. These systems are no operating systems, but con-

tain several interesting ideas. JKernel is a pure Java pro-
gram and uses the name spaces that are created by using
different class loaders, as a means of isolation. JKernel
concentrates on the several aspects how to implement a
capability mechanism in pure Java. It relies on the JVM
and OS for resource management. The MVM is an exten-
sion of Sun’s HotSpot JVM that allows running many
Java applications in one JVM and give the applications
the illusion of having a JVM of their own. It allows to
share bytecode and JIT-compiled code between applica-
tions, thus reducing startup time. There are no means for
resource control and no fast communication mechanisms
for applications inside one MVM. KaffeOS is an exten-
sion of the Kaffe JVM. KaffeOS uses a process abstrac-
tion that is similar to UNIX, with kernel-mode code and
user-mode code, whereas JX is more structured like a
multi-server microkernel system. Communication
between processes in KaffeOS is done using a shared
heap. Our goal was to avoid sharing between domains as
much as possible and we, therefore, use RPC for inter-
domain communication. Furthermore, KaffeOS is based
on the Kaffe JVM, which limits the overall performance
and the amount of performance optimizations that are
possible in a custom-build translator like ours.

These three systems do not have the robustness
advantages of a 100% Java OS, because they rely on a
traditional OS which is written in a low-level language,
usually C.

6 Conclusion and future work

We described the JX operating system and its perfor-
mance. While being able to reach a performance of about
50% to 100% of Linux in a file system benchmark in a
monolithic configuration, the system can be used in a
more flexible configuration with a slight performance
degradation.

To deliver our promise of outperforming traditional,
UNIX-based operating systems, we have to further
improve the translator. The register allocation is still very
simple, which is especially unsatisfactory on a processor
with few registers, like the x86.

We plan to refine the memory objects. Several addi-
tional memory semantics are possible. Examples are
copy-on-write memory, a memory object that represents
non-continuous chunks of memory as one memory
object, or a memory object that does not allow revoca-
tion. All these semantics can be implemented very effi-
ciently using compiler plugins. The current implementa-
tion does not use an MMU because it does not need one.
MMU support can be added to the system to expand the
address space or implement a copy-on-write memory.
How this complicates the architecture and its implemen-
tation remains to bee seen.

7 Acknowledgements

We wish to thank the anonymous reviewers and our
shepherd Jason Nieh for the many comments that helped
to improve the paper. Franz Hauck and Frank Bellosa
read an earlier version of the paper and suggested many
improvements.

8 References

[1] B.Alpern,A.Cocchi,S.J.Fink,D.P.Grove,andD.Lieber.Efficient Implemen-
tationofJavaInterfaces: invokeinterfaceConsideredHarmless. InOOPSLA01',
Oct. 2001.

[2] M.Alt.EinBytecode-Verifier zurVerifikationvonBetriebssystemkomponenten.
Diplomarbeit, available as DA-I4-2001-10, Univ. of. Erlangen, Dept. of Comp.
Science, Lehrstuhl 4, July 2001.

[3] T. Anderson, B. Bershad, E. Lazowska, and H. Levy. Scheduler Activations:
Effective Kernel Support for the User-Level Management of Parallelism. In
ACM Trans. on Computer Systems, 10(1), pp. 53-79, Feb. 1992.

[4] G. Back, W. C. Hsieh, and J. Lepreau. Processes in KaffeOS: Isolation,
Resource Management, and Sharing in Java. In Proc. of 4th Symposium on
Operating Systems Design & Implementation, Oct. 2000.

[5] G. Back, P. Tullmann, L. Stoller, W. C. Hsieh, and J. Lepreau. Techniques for
theDesignofJavaOperatingSystems. In2000USENIXAnnualTechnicalCon-
ference, June 2000.

[6] H. G. Baker. List processing in real time on a serial computer. In Communica-
tions of the ACM, 21(4), pp. 280-294, Apr. 1978.

[7] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy. Lightweight
remote procedure call. In Operating Systems Review, 23(5), pp. 102-113, Dec.
1989.

[8] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, D. Becker, M. Fiuczynski, C.
Chambers, and S. Eggers. Extensibility, safety and performance in the SPIN
operating system. In Proc. of the 15th Symposium on Operating System Princi-
ples, pp. 267-284, Dec. 1995.

[9] B. N. Bershad, D. D. Redell, and J. R. Ellis. Fast Mutual Exclusion for Unipro-
cessors. In Fifth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS-V), pp. 223-233, Sep.
1992.

[10] R. Campbell, N. Islam, D. Raila, and P. Madany. Designing and Implementing
Choices :AnObject-OrientedSysteminC++. InCommunicationsof theACM,
36(9), pp. 117-126, Sep. 1993.

[11] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska. Sharing and Protec-
tion inaSingleAddressSpaceOperatingSystem. InACMTrans.onComputer
Systems, 12(4), pp. 271-307, Nov. 1994.

[12] T. M. Chilimbi. Cache-Conscious Data Structures - Design and Implementa-
tion. Ph.D. thesis, University of Wisconsin-Madison, 1999.

[13] A.Chou, J.-F.Yang,B.Chelf,S.Hallem,andD.Engler.AnEmpiricalStudyof
Operating System Errors. In Symposium on Operating System Principles 01',
2001.

[14] R. P. Colwell, E. F. Gehringer, and E. D. Jensen. Performance effects of archi-
tectural complexity in the intel432. InACMTrans.onComputerSystems,6(3),
pp. 296-339, Aug. 1988.

[15] M.Condict,D.Bolinger,E.McManus,D.Mitchell,andS.Lewontin.Microker-
nel modularity with integrated kernel performance. Technical Report, OSF
Research Institute, Cambridge, MA, Apr. 1994.

[16] G. Czajkowski and L. Daynes. Multitasking without Compromise: A Virtual
Machine Evolution. In Proc. of the OOPSLA, pp. 125-138, Oct. 2001.

[17] P. Dasgupta, R. J. LeBlanc, M. Ahamad, and U. Ramachandran. The Clouds
distributedoperating system. In IEEEComputer,24(11), pp.34-44,Nov.1991.

[18] J. B. Dennis and E. C. Van Horn. Programming Semantics for Multipro-
grammed Computations. In Communications of the ACM, 9(3), pp. 143-155,
Mar. 1966.

[19] Department of Defense. Trusted computer system evaluation criteria (Orange
Book). DOD 5200.28-STD, Dec. 1985.

[20] R.Dixon,T.McKee,P.Schweizer,andM.Vaughan.AFastMethodDispatcher
for Compiled Languages with Multiple Inheritance. In Proc. of the Conference
on Object-Oriented Programming Systems, Languages, and Applications, pp.
211-214, 1989.

[21] R.DravesandS.Cutshall. Unifying theUserandKernelEnvironments.Techni-
cal Report MSR-TR-97-10, Microsoft Research, Mar. 1997.

[22] P.Druschel,L.L.Peterson,andN.C.Hutchinson.Beyondmicro-kerneldesign:
DecouplingmodularityandprotectioninLipto.InProc.ofTwelfthInternational
Conference on Distributed Computing Systems, pp. 512-520, 1992.

[23] P. Druschel and L. Peterson. Fbufs: A highbandwidth cross-domain transfer
facility.In14thACMSymp.onOperatingSystemPrinciples,pp.189-202,1993.

[24] D. Engler, F. Kaashoek, and J. OToole.Exokernel:AnOperatingSystemArchi-
tectureforApplication-LevelResourceManagement.In'Proc. of the 15th Sympo-
sium on Operating System Principles, pp. 251-266, Dec. 1995.

[25] E. Gabber, C. Small, J. Bruno, J. Brustoloni, and A. Silberschatz. The Pebble
Component-BasedOperatingSystem.InUSENIX1999AnnualTechnicalCon-
ference, pp. 267-282, June 1999.

[26] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Aug. 1996.
[27] G. Hamilton and P. Kougioris. The Spring Nucleus: a Micro-kernel for objects.

In Proc. of Usenix Summer Conference, pp. 147-159, June 1994.
[28] C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu, and T. v. Eicken. Imple-

menting Multiple Protection Domains in Java. In Proc. of the USENIX Annual
Technical Conference, pp. 259-270, June 1998.

[29] G. Heiser, K. Elphinstone, J. Vochteloo, S. Russell, and J. Liedtke. The Mungi
single-address-space operating system. In Software: Practice and Experience,
28(9), pp. 901-928, Aug. 1998.

[30] R.K.JohnssonandJ.D.Wick.AnoverviewoftheMesaprocessorarchitecture.
In ACM Sigplan Notices, 7(4), pp. 20-29, Apr. 1982.

[31] S.R.Kleiman.Vnodes:AnArchitecture forMultipleFileSystemTypes inSun
Unix. In USENIX Association: Summer Conference Proceedings, 1986.

[32] L4Ka Hazelnut evaluation, http://l4ka.org/projects/hazelnut/eval.asp.
[33] J. Liedtke. Towards Real u-Kernels. In CACM, 39(9), 1996.
[34] M. K. McKusick, K. Bostic, and M. J. Karels. The Design and Implementation

of the 4.4BSD Operating System. Addison-Wesley, May 1996.
[35] M. Michael and M. Scott. Nonblocking Algorithms and Preemption-Safe

LockingonMultiprogrammed SharedMemoryMultiprocessors. InJournalof
Parallel and Distributed Computing, 54(2), pp. 162-182, 1998.

[36] D. Mosberger, P. Druschel, and L. L. Peterson. Implementing Atomic
Sequences on Uniprocessors Using Rollforward. In Software---Practice and
Experience, 26(1), pp. 1-23, Jan. 1996.

[37] E. I.Organick.AProgrammersViewoftheIntel432System'.McGraw-Hill, 1983.
[38] D. D. Redell, Y. K. Dalal, T. R. Horsley, H. C. Lauer, W. C. Lynch, P. R.

McJones, H. G. Murray, and S. C. Purcell. Pilot: An operating system for a per-
sonalcomputer. InCommunicationsof theACM,23(2),pp.81-92,ACMPress,
New York, NY, USA, Feb. 1980.

[39] T. Saulpaugh and C. Mirho. Inside the JavaOS Operating System . Addison
Wesley Longman, 1999.

[40] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing With Disaster: Sur-
viving Misbehaved Kernel Extensions. In 2nd Symposium on Operating Sys-
tems Design and Implementation, 1996.

[41] O. Shivers, James W. Clark, and Roland McGrath. Atomic heap transactions
and fine-grain interrupts. In ACM Sigplan International Conference on Func-
tional Programming (ICFP99)', Sep. 1999.

[42] Status page of the Fiasco project at the Technical University of Dresden, http://
os.inf.tu-dresden.de/fiasco/status.html.

[43] Sun Microsystems. Java Remote Method Invocation Specification. 1997.
[44] Webpage of the IOZone filesystem benchmark, http://www.iozone.org/.
[45] A. Weissel. Ein offenes Dateisystem mit Festplattensteuerung fuer metaXaOS.

Studienarbeit, available as SA-I4-2000-02, Univ. of. Erlangen, Dept. of Comp.
Science, Lehrstuhl 4, Feb. 2000.

[46] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic storage allo-
cation: A survey and critical review. In. In Proc. of International Workshop on
Memory Management, Sep. 1995.

[47] N.WirthandJ.Gutknecht.ProjectOberon:TheDesignofanOperatingSystem
and Compiler. Addison-Wesley, 1992.

[48] F.Yellin.Lowlevel security in Java. InProc.of the4thWorldWideWebConfer-
ence, pp. 369-379, OReilly,1995.'

