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Abstract but has obvious flaws in concurrent accesses by multiple tasks.
Even if we restrict the domain to single-writer semantics, which

Concurrency management is a basic requirement for intgfcommon in embedded systems and sensor networks, data cor-
process communication in any multitasking system. This U$Uption can occur.

ally takes the form of lock-based or other blocking algorithms.

. . . . To avoid reading corrupted data from a concurrent object,
In real-time and/or time-sensitive systems, the less-predictabls . . .
o . . ... _cflfical sections are often used to coordinate accesses from dif-
timing behavior of lock-based mechanisms and the additiotial ) : ) -
. o . _ferent tasks. The simplest approach to implementing critical
task-execution dependency make synchronization undesirable; . . : LT .
. . . sections is to disallow task preemption inside of the critical
Recent research has provided non-blocking and wait-free algg= ;.\, "y’ can be done by disabling and enabling interrupts
rithms for interprocess communication, particularly in the do- i one by 9 0ling up
. . . : . In the CPU at the beginning and end of the critical sections,
main of single-writer, multiple-reader semantics, but these al- ; = . )
. . . . . .~ respectively. These are privileged operations and require ker-
gorithms typically incur high costs in terms of computation or_". . . . .
. . nel intervention. The read and write operations must be imple-
space complexity, or both. In this paper, we propose a gen- . .
. . mented in the kernel, or the application must be wholly trusted,
eral transformation mechanism that takes advantage of tempo- : I :
- . Ince any task running with interrupts disabled cannot be pre-
ral characteristics of the system to reduce both time and space . - : )
. . . .. empted and may, either maliciously or inadvertently, disrupt the
overheads of current single-writer, multiple-reader algorlthms.Stem Moreover. disabling interrunts does not suffice to man
We show a 17-66% execution time reduction along with a 130 ) ' 9 P

70% memory space reduction when three wait-free algorithﬁ%e concurrency in multiprocessor systems.
are improved by applying our transformation. We present threefhe most common way to implement critical sections
new algorithms for wait-free, single-writer, multiple-readd$ to use software locks — typically through mutexes and
communication along with detailed performance evaluation¥maphores. A task has to acquire the necessary locks before
nine algorithms under various experimental conditions. it can access shared objects. If the needed lock is already held
by another task, the task blocks, and the operating system will

) resume it when the resource becomes available. Using locks
1 Introduction serializes concurrent tasks that try to access the shared objects
si(multaneously, thus preventing corruption. In a multiprocessor

A key benefit provided by operating systems is a task . . . -
. . -environment, this reduces parallelism and decreases the utiliza-
or thread abstraction to manage the complexity that rapi :
10n of available resources.

evolves even in very small embedded systems. A task/thréad _
model mitigates the complexity growth of large monolithic pro- Locks can also cause more serious problems such as unpre-
grams, and simplifies the sharing of computing resources Bigtable blocking times and deadlocks. If a task is blocked
tween the disparate functions of the system. However, the tak#e still holding the lock (e.g., a page fault occurred, or it
of a system very rarely work independently of each other, herig@reempted by a higher-priority task), any other tasks waiting
needing interprocess communication (IPC) between tasks. for the lock are unable to make progress until the lock is sub-
The simplest method of IPC is through global, shared v squently released. In th? wor.st' case, the ta;k may fail while
2 .~ _..holding the lock, or block indefinitely due to circular lock de-
ables. This is a very low-overhead method of communication : . .
péndencies, causing deadlock and blocking other tasks from
*The work reported in this paper is supported in part by the U.S. Agver making progress.

force Office of Scientific Research under Grant No. F49620-01-1-0120, and . . .
by DARPA administered under AFRL contract F30602-01-02-0527. Even with safeguards to avoid deadlock, locks are particu-




larly unattractive in real-time and embedded systems. Due to Controlled System Sensors
blocking and switching to other tasks, using locks can incur

high and unpredictable execution time overheads, and cause l
many other problems, including priority inversion, convoying Sensor Task
of tasks, more difficult schedulability analysis, and increased (_ Environment )

susceptibility to faults. In real-time systems, tasks are usu- IPC
ally assigned fixed or deadline-based priorities, according to

which they are scheduled. Priority inversion can occur when

a high-priority task is blocked waiting for a lock, but the lock hewators convolTaske

holder does not make progress due to its low priority. This is

such a serious issue that many algorithms have been developedrigure 1:A schematic block diagram of a real-time system.

_to Iimit the effects of priority ir_1versi_o_n, including the priori_tySection 5, before concluding in Section 6.

inheritance protocol, the priority ceiling protocol, and the im-

mediate priority ceiling protocol [3, 28, 29]. Furthermore, pro-

viding real-time execution guarantees becomes more difficdt. Motivation

The simple, classical real-time analysis techniques [21] assume

independently-executing tasks, which is clearly violated when!n this paper, we are primarily concerned with communica-

locks are used. More complex analysis [29] may be used to pt,ign between a single writer and multiple readers. This is a

vide real-time guarantees by accounting for worst-case blo¥RY common scenario in embedded systems — ranging from

ing times, but this may result in poorer utilization of syste@ cOmplex as automotive and industrial control systems to as

resources. simple as the controllers in kitchen appliances. Figure 1 shows
Due to the above problems associated with lock-based S%%r)'r/r?;(t:?olnr?g;]t:Theesgosr?tergl.lezh: sensors are used to acqire in-

ystem. A sensor task reads the

chronization IPC approaches, several algorithms that perfor " I : .
non-blocking and wait-fréecommunication with single-writer, dg{a, performs any preprocessing, and distributes the informa

multiple-reader semantics have been pronosed. These aHOvr\]/ to the various control tasks. The control tasks perform
pe-| prop ' . m?utations and set the actuators based on this information,
tasks to independently access the shared message area WI@E)OH

locks and the problems introduced by blocking. These algo- 's important that they obtain uncorrupted, most-recently
) A : oduced data from the sensor task.
rithms, however, are not perfect. Although blocking is avoided,

the operations may become quite complex and can incur nonlraditionally, the writer (i.e., sensor task) must pass the data
negligible computational overheads. More importantly, the 4® the readers (i.e., control tasks) by means of mailboxes, one
gorithms all use multiple buffers to avoid corruption, so the®f which is associated with each reader. However, if there is

severely limited in small, embedded systems. pecially if the sensor read rate is higher than the actuator con-
. . . rol output rates, as is common, data messages will queue up
In this paper, we present three new wait-free algorithms. \We

. ) . in"the mailboxes. The reader will obtain outdated messages,
develop a generalized transformation mechanism that can |m

rove existing wait-free algorithms by exoloiting the tem orapa will either have to process these or discard them to acquire
P 9 9 y exp 9 PO'e most current information. Generating multiple copies of

characteristics of communicating tasks, significantly reducmgCh message incurs overheads in processor cycles and mem-

both space and execution time overheads. For some ex'sﬁpﬁspace, both of which are scarce resources in an embedded

. o S o
algorithms, we .ShO.W up to 66% rgducuon n execunop t'mse stem. Therefore, the mailbox approach is neither appropriate
and 70% reduction in memory requirements after applying our

transformation. The transformed algorithms preserve all of tglo;tifrfrllc;ent for typical IPC needed in real-time and embedded

benefits of wait-free communication along with significant tim _
and space savings. State messages are used to alleviate such problems. They
In the following section, we present some background inf yere proposed in the MARS project [16] and implemented in

Y ' P g RCOS [25]. The state messages approach associates mail-

matlon_ and f“”hef mthate t.h's work. We presgnt our trarbc’éxeS with the writer instead of the readers, so only the writer
formation mechanism in Section 3, and illustrate it using som

actual IPC algorithms. Detailed evaluations are done in Sect?gr?OCiated with a particular mailbox can write to it. Further-
~alg e ) .r%ore, each message is assumed to include all data that needs to
4. We will put our work in the perspective of related work in . .
be communicated, so that the single, most current message con-

LA concurrent object implementation is non-blocking if at least one procégeys all information. Since data are time-sensitive, a new mes-
that is accessing the object can complete an operation within a finite numbesgfje can simply overwrite the previous one, effectively present-
steps regardless of failures. Furthermore, it is wait-free if every process th?h:gthe readers with the most up—to-date information. However
accessing the object can complete an operation within a finite number of ste . o !
[13]. Wait-free is a stronger form of non-blocking as it ensures starvation-fred1C€ the writer and readers can access the writer's mailbox

access. concurrently, the readers can potentially read corrupted data if




| tion. Ry, represents the maximum time the reader can take
1 ‘ } = to perform a read operation. Note in Figure 2 that the read op-
= Cr?f § eration is placed at the end of the reader task’s execution. It is
‘ cC— | : only drawn there to show the relationship betwé®i,., Cx,

Pr andC more clearly, but, in general, the read operation can
be anywhere within the reader’s execution ti¢ieThe bottom
timeline represents 4 writer periods. The writer's period and
relative deadline are denoted By and Dy, respectively.

writer | - . — —h
e Ry Ryt Ry——t=—Ry—==
<Dy—= =Dy= =Dy=I =Dy—=l = 22 Temporal Concurrency Control

P
P

Figure 2:Reader and writer execution timelines, and eacdtlenotes Since Ry, includes the time the reader is preempted by
a write operation performed by the writer. higher-priority tasks, it determines the maximum time the
the writer simultaneously writes new data. writer process may interfere with the reader within the reader’s
riod without the reader missing its deadlid®,; . is calcu-

There are many synchronization-based algorithms [9,
v sy g : Igfed as follows:

designed to ensure that reader tasks will always access
corrupted messages. As mentioned earlier, synchronization,

up >Sag y , Rtz = Pr — (C = Ch).
particularly with locks, can cause many problems of its

own. Therefore, in this paper, we focus on wait-free, single-Assuming that all deadlines are met, Figure 2 illustrates the
writer, multiple-reader IPC algorithms [7,8,17, 24, 31]. HoWyorst-case scenario in terms of the maximum number of pre-
ever, these algorithms have higher space overheads thanefitions of the reader by the writer task. This occurs when
synchronization-based algorithms. Even though the worst-c@g€ first interfering-write happens as late as possible within
time overhead of these algorithms is significantly lower thaRe writer's period (first vertical dotted line — just before the

that of the synchronization-based ones, the execution overheggigr's deadline) and the last interfering-write happens as early

can still be significant. Later in this paper, we present a transfgé possible within the writer's period (second vertical dotted
mation mechanism that takes advantage of the real-time pngs — just after the writer is released).

erties of the communicating tasks to reduce both the time an

space overheads of this class of algorithms. First, however, vvle
present a brief overview of real-time systems and tasks in g@eq
next section. M

et Nyrq. denote the maximum number of times the writer
ht interfere with the reader process during a read operation.
«z Can be calculated as:

’VRMG.W - ;I:VW - DW)-‘ N 1) .

2.1 Attributes of Real-Time Tasks Niar = maz (27

Tasks in a typical real-time system are periodically in- Therefore, if we use an\us,. + 1)-deep circular buffer in-
voked/released and execufedach taskl” is associated with Stead of a single message buffer, the writer can post messages
various attributes, including its perid®, relative deadling>,® cyclically without ever interfering with the reader process, as-
and worst-case execution time (WCE®) The task must be suming that the real-time constraints are met. This allows the
run once each period, and needs to receive enough procégader and writer to access the message area independently of
ing time to complete execution by its relative deadline. Ti&ch other without blocking, using only temporal characteris-
real-time scheduler uses these attributes to decide when totiggguaranteed by the real-time scheduling and a sufficiently-
tasks, and can guarantee that all tasks will meet their deadlii@gp circular buffer to manage concurrency. With multiple
as long as they require no more than their specified WCETgaders, we simply choose &, value large enough to work
From high-level program flow analysis and low-level timinépr all readers, i.e., compute it using the task with lardegt.. .
information, a task’'s WCET can be determined statically. Figinally, we keep a pointer to the most recently written mes-
ure 2 shows the relationship between these values for a tg@ge. This is updated by the writer, and subsequently used by
ical scenario with one reader and one writer processes. Th@readers to retrieve the latest message. This concept was first
top timeline represents the reader’s period. For simplicity, tigroduced in [16] and later implemented in the Non-Blocking
reader’s relative deadline is assumed to be equal to its periodMrite (NBW) protocol [17].
our discussion and not shown here. In general, it is less thamhis algorithm is very efficient in terms of execution time,
or equal toPr, wherePy, is the reader’s period”’ denotes the j.e., almost as fast as using global variables with no protection.
reader's WCET, and’g is the time to perform a read operaThe only overhead associated with this algorithm is the cost of

2Aperiodic tasks can be handled by a periodic server [18], so the perioHi]camtammg_ the pointer for the m_OSt recen_tly ertten message'
task model is not a limiting assumption. Therefore, it is easy to see that it has optimal timing behavior

3This equals the deadline minus the release time of the task. among wait-free algorithms.




2.3 Restricting Memory Use We can transform IPC algorithms to use this concept of fast
and slow readers. The fast readers will basically employ the

With a deep enough buffer, the above algorithm will a|Wa)LgBW read mechanism, and will require sufficient buffers tq
guarantee that the readers will not acquire corrupted data. H&RSUre temporal concurrency control. The slow readers will
ever, whenR ., is large orPyy is small,Nas,, can get quite US€ the existing IPC mechanism, although slight changes may
large and would require a large buffer space. This is unde&§if: required because of the parallel approach employed by the

able, especially in embedded systems where memory is usuffg} readers. The writer requires more significant changes in
a scarce resource. order to interact with both types of readers. The precise nature

. . fth h h | algorith f .
EMERALDS's state message algorithm [35] improves upgnt ese changes depends on the actual algorithm transformed

the NBW protocol. To limit memory usage, EMERALDS sim- [N general, we can make some predictions about the resulting
ply sets a static maximum buffer threshold for the state m@grformance. First, the average-case execution time (ACET)
sage. The reader tasks are divided into two grotass,and will decrease, since the highest-frequency readers will use the
dow readers. Tasks that havé,;,, values less than this max-very efficient NBW mechanism. Worst-case execution time

imum buffer threshold are classified as fast readers, while ff¢CET) is also often reduced, since for most algorithms, ex-
others are classified as slow readers. ecution time depends on the number of simultaneous readers

uTing the mechanism, which is reduced to only the slow read-

SirT e tESt reradzrsr e>r<1e<\:/ute ri;;rd":/g Ito th?hNBWr prg)tg:: &'s. With the proper division of tasks into fast and slow readers
i ce dese ca eﬁs : ater | ar adues, EMeéRifDSO Section 3.4), the transformed algorithm should require much
Ime- and space- etlicient. For slow readers, X Plidss memory on average than the original algorithm, and in the
vides a system call mechanism that (i) disables interrupts, 'Srst case, require no more than the original

copies the message from the shared buffer to the slow reader’s ] . .

rupts. The overhead of this system call is quite high; howeveietely by showing how we apply it to some actual algorithms.
according to the definition of slow readers, this call is invok&{e first apply our transformation to the algorithm proposed by

relatively infrequently, so it was claimed not to greatly impaéthenet al. in [7]. We then show how to transform the Dou-

ection 3.2. Chen'’s algorithm has a relatively high execution

.AS we will seein 'Se.c'gon 4, the amount of o.verhead duet?%e overhead and low space overhead, so we expect our trans-
this system call is significant enough to make its average-cgse

execution time much higher than the non-blocking algorith ?SSZOSJ?fgr”gggrlmmpg\ée:)ﬁgﬁ tfpnaté?%‘Vg]rﬁgggzsrfatrl]:w
We would like to have the low execution ov_erheads of the NB ecution time overhead. We expect this algorithm to bene-
protocpl and the IO.W memory usage ach|eved by the_EM it primarily from memory usage reduction after transforma-

ALDS implementation, but W'.thO.Ut resorting to locks, disabl P The following subsections detail the improved algorithms,

interrupts, or other synchronization-based concurrency Con%%ich are evaluated in Section 4

mechanisms. The following section details how to achieve this '

by transforming existing wait-free IPC mechanisms. . .
3.1 Improving Chen’s Algorithm

3 Improving Wait-Free IPC Chenet al. [7] proposed a single-writer, multiple-reader
wait-free algorithm using the Compare-And-Swap (CAS) in-

In order to gain the benefits of wait-free IPC along with lowtruction. This instruction is used to atomically modify the
memory usage, and low average- and worst- case execusitates of control variables used to ensure that the writer never
times, we first generalize the concept of fast and slow readtites to a buffer currently in use by some readers. The CAS
ers (to reduce the memory requirements) introduced in EMEBRstruction is commonly used in non-blocking algorithms to co-
ALDS. We then devise a transformation mechanism that candsdinate accesses to shared buffers and is supported on most
applied to existing wait-free algorithms, preserves all of theirodern microprocessors. Even if an architecture does not sup-
inherent benefits, and simultaneously improves their perfportthis instruction, it can be synthesized by using other system
mance. primitives or system support [5]. The instruction CAS(A,B,C)

Here, fast readers are defined as those tasks for which tihflefined to be equivalent to atomically executing “if A equals
poral concurrency control suffices to ensure uncorrupted reRd&hen set Ato C and return true, else return false.”
without excessive memory usage. Slow readers consist of all o€hen’s algorithm requires + 2) message buffers, where
the other reader tasks, which would require too much memdpyis the number of reader tasks. There is a global variable,
to employ temporal concurrency control alone. The actual diat est , that indexes to the most recently written message
vision of tasks would depend on the requirements of the fitmiffer. Additionally, each reader has an entry in a usage ar-
system, as we will see later. ray indicating the buffer it is using. When the reader reads, it



sage buffers shared between the writer and reatdatsest is

int NSReader; # Number of slow readers . _ X S N
int NBuffer; # Number of buffers a control variable that indexes this array, indicating the most re-
int L " # Ind he | H H :
'nﬂgsz;?é BuNBuffer]: #',\‘A:;ng; b st message cently written message buffeReadi ng[ ] is the usage array
char Reading[NSReader]; # Usage count associated with the slow readers such Raadi ng[ ] indi-
SlowReader() { cates which buffer entry th&" slow reader is currently reading.
3 Readingll - NEufler The slow readers operate identically to the readers in Chen’s
3: CAS( Readi_r'mg[i_], NBuffer, ridx ); algorithm. Just before thé" slow reader reads from the mes-
ps {f;‘dzBFflffﬁ?c;Z?[']? sage buffer,Readi ng[i] is set to a value between 0 and
} ' NBuf f er - 1 to indicate the index of the buffer it will be read-
int GetBuff() { ; B : ; R
boolean InUse[NBufer] ing. The writer WI|! not overwrite this buffer slot as_long
6 for (i=0; i < NBuffer; i++) InUse[i] = false; as the slow reader is still using it. The slow reader first as-
7 InUse[Latest] = true; H ; 1 — i o 1
s for (1=0: | < NSReader: i++ signsReadi ng[ z]—NB_uf fer to |_nd|cate that it is preparing
o: j = Reading]i; _ to make a read operation. Then, it reddd est , and attempts
1o ) i # NBuffer) InUse[] = true; to setReadi ng[ i] to this value atomically using CAS. If the
12: for (i=((Latest + 1) mod NBuffer); ; writer has preempted the reader and completed a buffer write
= . (:”fﬂs"eﬁ]) :‘:Oggs)”“e”){ before this instruction, it would have already Beadi ng[ i]
15: return i; to the newLat est value, and the reader’s CAS would fail.
} t In any case, by line Readi ng[ i] would have been atomi-
Writer() { cally set to a buffer index that the writer will not use. So the
16: widx = GetBuff(); P ;
17 wite Buffwidx]. ;onv reader simply reads the index and can now read from the
18  Latest= widx; indicated buffer safely.
19: for (i = 0; i < NSReader; i++) . .
20: CAS(Reading]i], NBuffer, widx); The fast reader (not shown) is the same as in the NBW pro-
b tocol. It relies only on temporal concurrency control, so it just

readd_at est and uses the indicated buffer.

Figure 3:improved Chen's Algorithm. The Wi ter () process looks just like the one in Chen’'s

algorithm. It callsGet Buf f () to determine which buffer slot
first clears its entry, and then uses CAS to atomically set thisdasafe to use next. After it writes the next message, it updates
Lat est ifitis still cleared. It then reads back the value fromat est and then modifies eadReadi ng[ i] using CAS if
its entry, and can then safely read from the indicated buffggcessary.
The writer has slightly more work to do. It first scans the usagery. key difference lies irget Buf f () function, which is

array and selects a free buffer. It performs the write, uDda}ﬁgdified to allow temporal concurrency control for fast read-

Lat est,, and then must scan and set each reader entry tha&r? First, to prevent the writer from interfering with slow read-

cleared td_at est using CAS. This has been proven to ensure . .
: L ,Cet Buf f ks a bufferm, h that I d
correct non-blocking IPC behavior in [7]. eTs uf'f () picks a bufferm, such that no slow reader is

using it (i.e., for alli, Readi ng[ i] # m). To protect the fast
By taking into account the real-time properties of the corfeaders, as with the NBW protocol, we must ensure that there
municating tasks, we can divide the reader set into two seifé at leasty — 1) writes between two consecutive writes to
fast and slow reader sets. By separating the reader set, wegi@nparticular buffer, wher#' is the buffer depth required for
reduce the space requirement frétt 2 to M + max(2, N), temporal concurrency control (Section 2.@gt Buf f () pre-
wherel is thenumber of slow readers andy’ is thenumber of  vents the writer from interfering with the fast readers by cycli-
buffersneeded by the fast readers. Section 3.4 describes howdfly choosing buffer entries starting frotrat est. When
computeM and N in order to optimize for space. Because NBuf f er is chosen correctly (Section 3.4), even if each slow
is chosen to be less than, or equal to, the number of fast reag@essgler is using a unique buffer, there will be enough buffers
(i.e., N < P — M), the improved algorithm requires no morgj.e., NBuf f er — NSReader) left so that the cyclic selec-
buffer space than the original algorithm. In the worst case (i.gon will ensure sufficient time between two consecutive writes
all readers are slow readers), the improved algorithm simply ¢€-the same buffer, satisfying the requirements for temporal
generates to the original algorithm. Furthermore, the executighcurrency control. Thus, the writer will not interfere with
time overheads will be greatly reduced, since fast readers gBRer fast or slow readers.
the very efficient NBW mechanism and the writer overhead S| ot us illustrate this using the example shown in Figure 4.

linear to the number of slow readers only, rather than all re%g ume that there are 20 readers, of which 3 are identified as

ers. Therefore, both space and time overheads can be redugd; o aders. Assume further that relative execution frequen-

The Improved Chen’s algorithm is shown in Figure ies of the fast readers and the writer are such that they require
NSReader is the number of slow readerd\Buf f er is the a 4-deep buffer to ensure temporal concurrency control. In this
total number of message buffeBuf f [ ] is the array of mes-



Buff [M+N] Reading [M] Buff [M+N] Reading [M] Buff [P+1] [2] CL [P+1] ReaderCnt [P+1]

T 1 1 e o] 2]
—— — - 1 1
M i M i —1. | T 6
p— Latest — —
l 3 3 Ll oo 0 0
Latest — X [ ] Y]
\ 4 4 il R 10 0]
T = =
N L Latest 5 [ R 0] 0
6 ‘ 6 S 1 ol
= | M: number of slow readers - (1] [3]
K 7| N: number of butfers for fast readers| 7 =1 11 ﬁ
— E— [ R et et 1] 0
(a) (b) P: number of readers
Figure 4:An example for Improved Chen'’s algorithm. Figure 5:Constructs in the Double Buffer algorithm.

system, therefore, we need 7 message buffers (4 for the fast

readers, and 1 for each of the slow readers), as compared tb@pest , points to the row containing the most recently written
buffers needed with the original Chen’s algorithm. Figure 4(ejta. A reader task first reatlait est , and indicates it is us-
shows a particular execution state of the task set éthest ing the row by incrementing the usage count. It then reads the
points to the4” buffer slot. SinceReadi ng[ 0] andRead- buffer indicated by the row'sl flag, and decrements the row’s

i ng[ 2] point to the4t” and5t* buffer slots, the writer knows usage count when it finishes reading. Note that the increment
these may be in use, and will not use these buffers. Insteaitid decrement operate directly on memory variables and must
it will cyclically select and write to the next available slot afbe atomic. This is commonly available on modern processors,
ter Lat est, the 6" buffer. The worst-case scenario occuigcluding the x86 architecture.

when the last slow reader now makes a read operation. It Willrhe writer is fairly straightforward. It first scafReader -
now prevent the writer from using ti&" buffer. Even if the cnt[], and selects a row that is not being used by the readers.
three slow readers never relinquish their buffers, the writer ggfhen writes to the buffer that was least recently written in the
continue to write cyclically to the remaining 4 buffers, with thgelected row (i.e., opposite to the one indicated by the row’s
repeating access pattefid, 1, 2, 3, 7, ..}. This ensures thatq flag). We will see why this is necessary shortly. Finally, it
no buffer is used more frequently than every fourth write, satigndates the row's! flag to point to the newly-written buffer,
fying the conditions for the fast readers. and setd at est to the row that contains this buffer. In case
The biggest drawback of Chen’s algorithm lies in the corgach reader is concurrently reading from a unique row, this al-
plexity of the Get Buf f () function and the expensive CASgorithm requiresP + 1) rows for the writer to work correctly,
instruction itself. As shown in Figure 3, there are three loopdereP is the number of readers. As each row has 2 buffers,
inside of this function. The first one loopdBuf f er times, the space required for the message buffer arragis+ 1).

and the second one loopiSReader times. Finally, the last  To see the correctness of the algorithm, let us consider the
one can potentially loopiBuf f er times again. Furthermore possible interference scenarios. The writer can only interfere
the writer has a loop that executes CASReader times. As wjith the reader when they both choose to use the same row.
the number of slow readers decreases, we expect the peffis can only occur in two cases. The first case can occur when
mance enhancement from the Improved Chen’s algorithm,ageader is interrupted after it has chosen a row (after line 1),

compared to the original Chen’s algorithm. but before it updates the use count (before line 2). The writer
_ then executes, and can potentially choose the same row as the
3.2 Double Buffer Algorithm reader. The second case occurs when the writer is interrupted

after it has chosen a row (after line 7). If this row happens to be
We have devised a new wait-free IPC mechanism that is lésg est , then the reader can also choose to read from this same
computationally complex than Chen’s algorithm. It, howevengw. So, it is possible for the readers and the writer to select
trades off time for space complexity, requiring approximatetlge same row. However, the reader will read from the buffer
twice the buffer space. Hence, it is called theuble Buffer indicated byCl [ 7] , while the writer will use the opposite one.
algorithm. As the writer update§! [ 7] only after the complete message is

The basic constructs of the Double Buffer algorithm al¥ritten, and the reader always increments the use count before
shown in Figure 5, and the algorithm is summarized in Fifgadingd [i] , we can guarantee that the writer and readers
ure 6. A two-dimensional shared message bufer,f [ ][], cannot interfere with each other in this algorithm, even if they
has (P + 1) rows, whereP is the number of reader tasks. Each@PPen to use the same row.
row has two buffers. Associated with each révs a usage The Double Buffer algorithm is less computationally com-
count, Reader Cnt [ i] , representing the number of readeglex than Chen’s algorithms, but has a space requirement twice
currently using either buffer in the row, and a fl&d,[ /] , in- that of the original Chen’s algorithm. In the next section, we
dicating which of the two buffers is more current. A variableise our transformation technique to improve the Double Buffer



Buff [[3] +M] [2] CL 3] +M] ReaderCnili3] +M]

int NReader; # Number of readers Latest
int NRows = NReader + 1; # Number of rows in the message buffer 4» il
int Latest; # Index to the row with the latest message L i Al R
message BufffNRows][2]; # Message buffer l I
int ReaderCnt[NRows]; # Reader count for each row 1 -l
boolean CI[NRows]; # Column with more up-to-date message M
[ Bl el e
Reade[() { x Qﬁrwt?:g?gﬂfo:sr:sdgzior fastreades
1: ridx = Latest;
2: inc ReaderCnt[ridx]; . ) )
3 cl=Cl[ridx]; Figure 7:Constructs in the Improved Double Buffer algorithm.
4: read Buff[ridx][cl].;
5 ) dec ReaderCnfridx]; ral isolation from the writer. With Improved Double Buffer,
Writer() { we need 18 message buffer slots, while the original needs 42,
6: for (i = Latest; ; i++) H - H
> it (Readercnt] mod NRows] == 0) break; a s!gnlflcant memory reduction. Moreover, the other control
8  cl=notCI[; variables are proportional to the number of rows, so they, too,
91’10_ ‘gﬂ}]e_B;ff['l["”? are reduced. With the new algorithm, the slow readers and the
11 Latest=i writer remain virtually unchanged, but the fast readers have less
¥ computation than the original readers, so the overall execution
_ overheads will decrease as well. Generally, as the number of
Figure 6:Double Buffer algorithm. fast readers increases, the execution performance increases, but

algorithm. As we will see in Section 4, the number of buffef§iS is not necessarily the case for space requirements. In the
required by the transformed Double Buffer algorithm is usuafij!lowing section, we will determine how to partition a reader
comparable to, if not less than, the original Chen’s algorithmset into fast and slow readers, optimizing for space.

3.3 Improved Double Buffer Algorithm 3.4 Identification of Fast Readers

Applying the same techniques used in devising the ImprovedVe now present a simple algorithm for partitioning the reader
Chen’s algorithm, we now try to improve the Double Buffer aket into fast and slow readers, optimizing for minimum memory
gorithm. Again, we divide the reader tasks into fast and slawgage. The algorithm is shown in Figure 9, and can be used
readers. The fast readers need a minimumVobuffers to with any single-writer, multiple-reader IPC scheme improved
ensure temporal concurrency control, while fhfeslow read- with our transformation by simply changing a few constants to
ers use the original Double Buffer scheme. The total messaggtch the algorithm.

buffer requirements will now b2(M + maz(1, {%1)) buffers,  The algorithm initially sets all reader tasks to be slow read-
which is less than or equal to the original algorith®(#> + 1)  grs |t keeps the tasks sorted by non-decreasing order of
b_uffers, assuming correct_ partitioning of the readers (see Slﬁ‘é“erMm values, computed as with the NBW protocol (Sec-
tion 3.4). As before, the highest-frequency readers now use §8g » ) |t tries to move one task at a time from the slow reader
very low overhead NBW read mechanism, so execution timgs g the fast reader set, and recomputes the number of buffers
should be improved as well. needed,§ + F), whereS is the requirement for the slow read-
The data structures and algorithm for Improved Doubdes, andF’ for the fast readers. By keeping track of the setting
Buffer are shown in Figures 7 and 8, respectively. The slawth lowest memory use so far, after a single pass through all
readers are unmodified from the original readers. Fast reafithe tasks, we obtain thgpl i t poi nt , which indicates the
ers simply read from the buffer indicated bat est and the last fast reader. All tasks with lowéY,,,. values are also part
corresponding row'sdl entry. The writer, too, is mostly un-of the fast reader set.
modified. To ensure temporal concurrency control for the fastrp;g partitioning of the reader set is optimal with respect to
readers, the writer should not reuse any particular buffer ugtil number of message buffers. This is easy to show: take
at leastv - 1 subsequentwrites have occurred. This i_s ensurﬁ‘ﬂ)artitioning that is space-optimal, and let taske the fast
by changing the buffer selection loop to search startm_g at reMi der with the largesV .. value. Now, all tasks with lower
(Latest+1) mod NRows. The rows are used cyclically,,, values than task must also be part of the fast reader
and the buffers within a row alternate on subsequent writgg; (otherwise, we can move them to the fast reader set; they
so [ ] rows suffice to ensure temporal concurrency contigh| not affect the number of buffers needed for the fast read-
for the fast readers. Therefore, the improved algorithm neggls (i.e., largesN ., value), but will reduce the slow reader
2(M + maz (1, [F])) buffers. set’s buffer requirements, and the optimality assumption would
To illustrate overhead improvements, let us consider a spg-invalid). Since the above algorithm considers all partitions
tem with 20 reader tasks, of which 5 are classified as slawwhich all tasks with less than a particuldm,,. value are
readers. Assume further that based onhg,, calculations in the fast reader set, the optimal partition will be found by the
(Section 2.2), the fast readers need 7 buffers to ensure tenglgerithm.



int Latest; # Index to the row with the latest message

int NRows; # Number of rows in the message buffer
message Buff[NRows][2]; # Message buffer
int ReaderCnt[NRows]; # Reader count for each row

boolean CI[NRows]; # Column with more up-to-date message

SlowReaden() {

Order reader tasks by 74, from smallest to largest;

# Note: Sy is the no. of buffers needed if all tasks are slow readers
S = So; # no. of buffers for slow readers
F =0; # no. of buffers for fast readers
MinNumBuff = Sg;
Splitpoint = NULL;

1: (idx =Latest; For each reader taskg, (ordered byNasqz)
2 |nc_Rea_derf3nt[rldX]2 Move T, from theRsIow reader sejt\/{o the fast reader set;
3: cl = Cl[ridx]; S = V x sizeof(slow reader set);
4: read Buff[ridx][cl]; F =Tr'S(Nvmae + 1);
5: ) dec ReaderCnt[ridx]; if (S + F < MinNumBuff)
Splitpoint =Tr;
FastReade() { M'i)r:rx?msuﬁis + F;
6: ridx = Latest;
7: boolean cl = Cl[ridx]; .
8: , read Buff[ridx][cl]; Figure 9: Algorithm to find space-optimal division of fast and slow
Writer() { readers and the amount space required.
9: i = (Latest + 1) mod NRows;
10:  for (;;i=((i + 1) mod NRows)) Process Pw Dw
11: if (ReaderCnt[i] == 0) break; H
12:  cl=not CI[i]; Writer 10 !
13 wite Bufffijlcl]; Pr | C | Rvae | Nuao
14 Clfi] =cl; Reader O 8 4 4 2
15: Latest=i;
} Reader 1 12 7 5 2
Reader 2 23 14 9 2
Figure 8:Improved Double Buffer algorithm. Reader 3 | 22 9 14 3
Reader 4 50 30 20 3
Reader 5 | 150 25 125 14
Reader 6 | 500 25 475 49

Figure 10:Task set with one writer and seven reader processes.

The partitioning algorithm uses certain constants that dep%”ug Transformation Mechanism
on the specific IPC mechanism used. For the initialization,

Spl 1 t poi nt is always set to NULL and" always set io 0, We have shown here how two different single-writer,

bu“:;] gNunBuf_f atradf aﬁ bokth set tol the nurc?ber O,i buIfher?puItiple—reader wait-free IPC mechanisms can be modified to
neede assu,mlng 1at all tasks are slow readers. For € dlPe 5nig account real-time characteristics of tasks to reduce
proved Chen’s _al_gorlthm, this 19X+ 2)_’ and for the Improved both memory and execution time overheads. In general, we
Dou_b_le Buffer, 'F is2(P + 1), whereP s the number of taSkS'can apply our transformation to other such IPC algorithms with
Additionally, V' is the number of buffers used for each add he following steps
tional slow reader, and is set to 1 and 2, for Chen’s and the '

Double Buffer mechanisms, respectively. . .
P y Step 1. Identify fast and slow readers for a particular system:

We illustrate the partitioning algorithm using the sample task simply apply the algorithm in Section 3.4. This will min-
setin Figure 10, which indicates the writer’s period and relative  jmize the number of message buffers needed, while still
deadline, as well as the readers’ periods (relative deadlines) and ensuring temporal isolation between the writer and the fast
computation timesR ;.. and Ny, values, assuming'y is readers.
negligible and the readers’ relative deadlines are equal to their
periods, are also shown. Assuming Double Buffer algorithi@tep 2. Fine-tune reader sets: we may not always want to opti-
initially S = M nNunBuf f = 16, F' = 0, and all readers are mize for space, so we can adjust the partitioning obtained
in the slow reader set. Tasks are moved one at a time accord- in Step 1 if needed.
ing to their Ny, values, so first, Reader 0 is moved to th
fast reader set. Now = 14 andF' = 3, so (F' + S) is not
the lowest value seen, ai@pl i t poi nt is not changed. We
continue with Reader 1, resulting 1 = 12 and F' = 3, so
S+ F <M nNunBuf f holds. Spl i t poi nt is updated t0 gtep 4. Introduce fast reader code: The fast readers are triv-
Reader 1, antl nNunBuf f is set toS + F. We repeat this ially implemented — they just read the pointer indicating
with all of the readers, in order. By the enpl i t poi nt the most recently written message buffer, and then read
points to Reader 4, and nNunBuf f = 10. So, with the first from that buffer.
five readers as fast readers, we achieve the minimum number of
buffers required for this example, a 37.5% reduction from tisep 5. Modify writer code to ensure temporal isolation with
original algorithm. fast readers: this is the most significant change required.

gtep 3. Convert reader code to slow reader code: Typically,
there are no modifications needed for slow readers, so this
is just a renaming step.



Since most algorithms have some code for selecting @lass| Subclass| Percentage | Relative Frequency to the

buffer to write, this step usually only requires modifyin within Class | Writer Process

the selector to ensure that the same buffer is not reusédst | Fastest | 15-25% twice as frequent

within N consecutive writes. Sometimes, this can simply Fast 75-85% 1-15 times less frequent

be done by using the available buffers in a cyclic fashign$low | Slow 75-85% 15-50 times less frequent

and having enough total buffers. Slowest | 15-25% 50-100 times less frequent
Applying these steps, we can modify existing wait-free Figure 11:Reader task set distribution.

singlt_e-v_vriter,fmrl]JItipIe—kreadeC: alg(;)rithms to use real-tig‘ne char-o will different message sizes affect the results?
igtscigstlcs of the tasks and reduce processing and memory Will the size of the reader set affect the results?
We evaluate the algorithms for memory usage and execu-
4 Performance Evaluation tion time overheads, in both average and worst cases, and for
both uniprocessor and symmetric multiprocessor (SMP) envi-

The goal of our transformation mechanism is to redug@nments. The only exception is for the EMERALDS IPC
the time and space overheads when applied to single-wrifgégchanism, which is evaluated only for uniprocessors. Be-
multiple-reader algorithms. We now evaluate how much irfiause it assumes that operations are atomic if interrupts are dis-
provement we can achieve with the proposed transformatigfled, it will not work correctly with SMP architectures where
Specifically, we will compare a total of 9 different IPC mech4his assumption does not hold.
nisms, including Chen'’s, Improved Chen’s, Double Buffer, and .

Improved Double Buffer algorithms. 4.1 Experiment Setup

We also consider another wait-free, single-writer, multiple- The algorithms we evaluate in this section are imple-

e e T e o i and executed under ENERALDS 05 135 uing on
‘ 9 * ~a Pentium-Ill 500Mhz processor. The experiments use a syn-

reader determines if its read is corrupted, and may have to RRGtic reader task set, which is divided into two sets — fast

form the read up t0 3 t_imes. The Wri_ter may also have to Writ‘?gaders and slow readers, where ‘fast’ and ‘slow’ are defined
?ﬁj?‘gﬁ;ﬂ:ﬁ??;gii’ rV;C?sr:; '[zi?il'}é'r:n t?; ?;;Zae(:grzra%!ative to the writer’s period. In a real system, there are usu-
a g?asks that are executed very frequently, and tasks that run

message at most 2 times, and the writer writes a messag\(/aery infrequently. To model this behavior, we further divide

most ( + 1) imes to avoid corruption. We only consider th(t:he fast and slow reader sets into finer-grained categories, as

revised version here. We derive the Improved Peterson’s algﬁbwn in Figure 11. By making approximately 20% of fast and

rsltégot;ysagplylng our general transformation as descr|beds|rbw readers either very fast or very slow, the resulting task set

represents realistic range of task periods that may occur in a
For the purpose of comparison, we also evaluate the NBWAl-time embedded system. A random reader task set is gen-

protocol and the EMERALDS variant of this. As discussegtated for each experiment according to the desired division of

earlier, NBW is the most efficient algorithm in terms executiq@aders into the four categories.

time, but may induce high space overheads. The EMERALDS

IPC mechanism tries to limit memory use at some cost to pdt2 Average vs. Worst-case Execution Time

formance. Finally, we also include a very efficient implementa-

tion of synchronization-based IPC, using a lock algorithm thatThe average-case (ACET) and worst-case execution times

relies on the atomic Test-And-Set instruction, to show the trag@/CET) to perform an IPC read/write operation are both im-

offs between synchronization-based and synchronization-fgegtant factors in the performance of an IPC algorithm. A low

mechanisms. ACET would indicate that the algorithm generally incurs low

To make fair and comprehensive comparisons between thé@@putation overheads. However, to provide timeliness guar-

algorithms, we have considered various parameters tryingafiees in embedded real-time systems, the scheduler must ac-
answer the f0||owing questions_ count for the WCET. An algorithm with low ACET but hlgh

WCET may result in poor system utilization.
e How much does the transformation reduce the averageThe ACET and WCET of the SMP versions of the eight eval-

case and worst-case execution times? uated algorithms are shown on the top and bottom rows, re-
e How much does the transformation reduce the buffer spageectively, in Figure 12. The SMP versions of the algorithms
requirement? include bus-lock operations to ensure the atomic operation of

« Is the transformation applicable in both uniprocessor al¢ critical CAS and TAS instructions with multiple proces-
multiprocessor environments? How do they differ? sors. The message size is 8 bytes, and the task set consists



O Double Buffer [ Improved Double Buffer E1Chen Olmproved Chen H Peterson

B Improved Peterson NBW  OLock-Based

0.50 4

I

~

S
L

e

w

S
L

Execution time (usec)

0.00 -

(a) 16 slow, 4 fast readers

2.50 4

g

f=}

S
L

1.50 A

1.00 4

Execution time (usec)

o

o

S
L

0.00 -

6.9w

(e) 16 slow, 4 fast reader:

to perform an |PC read / write operation with 8-byte message size.

Execution time (usec)

Execution time (usec)

2.50 4

N
I=}
S

-
o
S

o
o
t=}

0.00 -

0.50 q

I

~

S
L

0.30 1

0.20 4

0.10 4

0.00 -

(b) 12 dow, 8 fast readers

697

(f) 12 slow, 8 fast readers
Figure 12: The top and bottom rows show the average-case and worst-case execution times, respectively, of the SMP version of the algorithms,

Execution time (usec)

Execution time (usec)

0.00
(c) 8 dlow, 12 fast readers

2.50 4 697 |

~

o

S
L

—

w1

=}
L

1.00 4

o

o

i<}
L

0.00
(g) 8 dlow, 12 fast readers

0.50 4

[

~

S
L

0.30 -

Execution time (usec)

e

i

o
L

0.00-
(d) 4 slow, 16 fast readers

250 697 |

1.00 4

Execution time (usec)

o
o
S

0.00
(h) 4 low, 16 fast readers

[ Double Buffer 0 Improved Double Buffer EChen O Improved Chen H Peterson B Improved Peterson EINBW COEMERALDS [Lock-Based

0.20 §

o

s

(52
L

o

o

kel
L

Execution time (usec)
o
i
o
|

0.00 +

041

(a) 16 slow, 4 fast readers

2.00 1

1.50 4

1.00 4

0.50 -

Execution time (usec)

0.00 -

A

6'79l\i

(e) 16 slow, 4 fast readers

Figure 13: The top and bottom rows show the average-case and worst-case execution times, respectively, of the uniprocessor version of the
algorithms, to perform an |PC read / write operation with 8-byte message size.
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Figure 14: These graphs show the space requirements for different algorithms with 8-byte messages (note that the space requirement is

architecture-independent).

of 1 writer and 20 readers, of which a varying fraction are
fast readers. Specifically, we evaluated these algorithms when
the reader set contains 20%, 40%, 60% and 80% fast readers.
The first three pairs of columns on the graphs are for the three
single-writer, multiple-reader algorithms and their correspond-
ing transformed algorithms. We can see significant reductions
in both the ACET and WCET from comparison of the trans-
formed algorithmswith the original ones. Asthe number of fast
readers in the reader set increases, the reduction in computa-
tion timefor the transformed algorithms gets more pronounced.
ACETsfor Double Buffer and Chen’salgorithmsimproveby as
much as 66%, and for Peterson’s algorithm by as much as 38%.
Thistrend is shown in Figure 15(a).

Although the amount of improvement is a non-decreasing
function of the percentage of fast readersin the reader set, the
magnitude of thisimprovement depends on the particular algo-
rithm. In these experiments, al of the transformed algorithms
perform better than the original versions except for the WCET
of the Double Buffer algorithm. This can be attributed to the
fact that the WCET for the Double Buffer algorithm occursin
the slow readers. Asthistimeis not affected by the number of
dow readers in the system, the WCET does not improve. For
the other algorithms, the WCETSs occur in the writers, whose
overheads are functions of the number of slow readers, and,
therefore, improve greatly.

It is interesting to note that even though the ACET of the
lock-based algorithm is only up to 4 times larger than those of
the transformed wait-free algorithms, its WCET is much higher
— 4to 30 times higher. Thisisin fact an underestimate of the
true overhead of the lock-based mechanism, since we assume
no blocking time here. In actual systems, unless the system
employs mechanisms to limit blocking times, the lock-based
execution time may be unbounded.

4.3 Uniprocessor vs. SMP

The correctness of some asynchronousalgorithmsrely onthe
fact that certain instructions will be executed atomically. For

example, Chen's algorithm requires that the CAS instruction
be performed atomically. For SMP architectures, this requires
that expensive bus-locking (e.g., by using the LOCK prefix in
the x86 architecture) be performed to ensure an atomic read-
modify-write of memory. Under uniprocessor environments,
however, such measures are generally not needed. In most ar-
chitectures, including x86, these instructions are already guar-
anteed to be atomic with respect to uniprocessor systems with-
out incurring any additional overheads. As a result, we can
reduce the costs of CAS for Chen’s algorithm, atomic inc and
dec for Double Buffer, and TAS for the |ock-based mechanism.
We now repeat the above experiments, but using code restricted
to uniprocessor machines. The results, including eval uations of
the EMERALDS IPC mechanism, are shown in Figure 13.

As expected, the ACET and WCET of these algorithms are
lower than their counterparts for SMP. Even in this case, we
can still save a significant percentage of execution time over-
heads. It is worth noting how close the ACETSs of the trans-
formed algorithms are to the optimal NBW protocol execution
time. WCET improvements after transformation are even more
pronounced than for ACET, except with the Double Buffer a-
gorithm. This anomaly is due to the complexity we have intro-
duced in the writer to handle both kinds of readers. Nonethe-
less, the WCET of the Double Buffer agorithm is still very
closeto that of NBW.

We summarize the reduction in ACET as the percentage of
fast readers changesin Figure 15(b). Compared to the SMP re-
sultsin Figure 15(a), the ACET reduction in uniprocessor envi-
ronments is less pronounced. Nonetheless, our transformation
till reduces a good amount in execution time.

4.4 Savings in Space

Thusfar, we have shown that our transformation mechanism
enhances the performance of algorithmsin terms of the ACET
and the WCET in both SMP and uniprocessor environments.
Here, we present results to support our claim that the trans-
formation mechanism not only reduces the time overheads but
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Figure 15: Varying the percentage of fast readers in the reader set, (a) and (b) show the percentage of savings in ACET for SMP and
uniprocessor versions of the algorithms, respectively. (c) shows the percentage of savings in space.

also the space overheads of the algorithms. This is shown in
Figure 14. Again, we varied the percentage of fast readersin
the reader set. As expected, the amount of improvement in-
creases as the number of fast readers increases. Moreover, the
synchronization-based algorithm requires the least space, since
it only needs a single shared message buffer. The NBW proto-
col and lock-based IPC, therefore, represent the extreme cases
for the tradeoff between space requirements and WCET. The
non-blocking IPC mechanisms, especially with our transforma-
tion, provide a good compromise, balancing WCET and mem-
ory usage.

Interestingly, the percentage of space reduction for all three
transformed algorithms is the same, as shown in Figure 15(c).
This does make sense since the memory requirements of the
three original agorithms are all proportional to the number of
readers in the reader set. So, the memory used by the trans-
formed algorithms decreases proportionally to the number of
dow readers. The dight variations in Figure 15(c) are due to
some of the control variables that do not scale with the num-
ber of reader tasks. Overall, we achieve areduction in memory
usage that ranges from 14 to 70%.

4.5 Effects of Message and Reader Set Size

The experimentsin the previous sections all use 8-byte mes-
sages. To see how varying the message size affects the savings
in time and space, we have performed the same set of experi-
ments with larger messages (64 bytes). The measurementsfol-
low a similar trend, but the percentage reduction in execution
time is less than when using 8-byte messages. Thisis because
the execution overhead of the actual message buffer read/write
operation, which cannot be reduced, becomes a more dominant
part of the total execution overheads. The percentage reduc-
tionsin space overheadsare the same, or slightly better than for
the 8-byte message case, since the constant overheads of some
of the control variables are less apparent. Due to the substan-
tially similar results, the 64-byte message measurementsare not
presented here.

We have a so conducted experiments while varying the total

size of the reader set. Running the previous experiments with
10 reader tasks resulted in nearly identical relative performance
improvements with our transformation mechanism. Of course,
with fewer readers, any complexity increase in the writer task
has greater weight in the average execution time, but thisis off-
set by the performance gains in the fast readers. Space reduc-
tion, as before, is basicaly linear to the percentage reduction
in the number of slow readers. Again, dueto their substantially
similar results, the datafor the 10 readers case are omitted here.

5 Related Work

Some earlier work [17, 20] on lock-free objectswas done us-
ing read-and-check loops. The reader is required to check if
its reading was interfered with by the writer, in which case it
performs the read operation again until it succeeds. Optimiza-
tion techniques to reduce the number of loops were proposed
in [15], using an exponential backoff policy. Kopetz et al. [17]
and Anderson et al. [2] later demonstrated how to bound the
number of retries by either increasing the buffer size or through
judicious scheduling.

To reducethe time overheads associated with read-and-check
loops, algorithms that make space and time tradeoffs were | ater
proposed [6-8, 17, 24, 31, 35]. Thesea gorithmsprovideagood
middle-ground between the purely lock-based approach (high
WCET) and the purely buffer-based approach (large buffer re-
quirement). The benefit of these algorithms is that less time
is wasted in read-and-check loops and the timing behavior is
more predictable, improving schedulability of task sets as well
as system utilization. Although the timing behavior is more
predictable, the computational complexity of these algorithms
is gtill high. Moreover, they may still incur alarge buffer space
requirement, and may be difficult to use in small-memory em-
bedded systems. This difficulty can be overcome by our trans-
formation mechanism, which makes significant reductions in
both time and space overheads.

Most non-blocking algorithms rely on the availability of
some form of atomic memory update instructions, such



as Compare-And-Swap or Load-Linked/Store-Conditional in
hardware. A few modern hardware platforms, however, do
not implement some of these instructions. The author of [23]
demonstrated how to emulate these instructions by synthesiz-
ing more commonly-implemented instructions to close the gap
between the primitives that the algorithm designers rely upon,
and the primitives provided by the hardware. Bershad [5] pro-
posed how to implement CAS instruction in software by using
operating system support, and Greenwald et al. [12] general-
ized thistechniqueto implement Double-Word CAS and Multi-
Word CAS ingtructions. Similar work was done in Synthesis
[22] and Cache kernel [12]. Our transformation mechanism
does not use such operations, so it is not directly affected by
whether the atomic operations used by the origina |PC algo-
rithms are supported by the hardware or are emulated. How-
ever, the degree of performance improvement will be different.
All of the algorithms we evaluated use atomic update instruc-
tions supported natively by the x86 architecture. We expect an
even greater improvement with our transformation if these in-
structions are emulated since the overheads for emulation will
most likely be higher.

Herlihy [13] proposed the first general methodol ogy to trans-
form sequential data objects to the equivalent non-blocking
structures. Alemany et al. [1] and LaMarca[19] proposed tech-
nigquesto reduce theinefficienciesin applying this methodology
to large objects at the cost of more communication between the
application process and the operating system. Other methodsto
improve this were proposed in [4, 32]. Prakash et al. [26] and
Turek et al. [32] presented techniques to transform multiple-
lock concurrent objects into lock-free objects. However, it was
shown that their transformed algorithms are less efficient than
the corresponding lock-based algorithms [15,19,30]. These
authors are concerned with transforming sequential objects to
non-blocking objects, and the related performance issues. We
take the next logical step by transforming non-blocking ob-
jects, in particular, those with single-writer, multiple-reader se-
mantics, to better-performing and less space-consuming non-
blocking objects.

Some interesting work [14, 15, 27] has also been donein the
construction of more complex concurrent objects. Concurrent
non-blocking array-based stacks, FIFO queues and multiple
lists were implemented using Double-Compare-And-Swap in
[12]. Vdois introduced non-blocking algorithms for queues,
linked-lists, and arraysin [33]. Eliot et al. [11] proposed non-
blocking algorithms for garbage collection. We do not look at
these complex structures, but focus instead on the more com-
mon, single-writer, multiple-reader state message construct,
used for IPC in embedded systems.

6 Conclusions

In this paper, we have argued for efficient IPC mechanisms,
particularly for memory- and processing-power- constrained

embedded real-time systems. Traditional and synchronization-
based IPC methods incur too much time overhead and follow
incorrect semantics for most of such systems. Instead, we
considered wait-free, single-writer, multiple-reader |PC ago-
rithms, which are more appropriate for these systems, but still
can incur substantial overheads.

By taking advantage of the temporal characteristics of the
tasks in these systems, we have proposed a general transfor-
mation mechanism that can significantly reduce both space and
time overheads of the wait-free IPC agorithms. This alows
the most frequently-executing reader tasks to use very low-
overhead operations, while reducing the total number of buffers
needed to ensure corruption-free message passing. We have
demonstrated our transformation on the existing Chen's ago-
rithm and the new Double Buffer algorithm that we have intro-
duced here.

Our extensive experiments show a 17-66% reduction in
ACET, and a 14-70% reduction in memory requirements for
the IPC agorithms improved with our transformation. For al-
gorithms with relatively high WCETS, these are shown to be
improved greatly as well. The experiments also demonstrate
the tradeoff between time and space in IPC mechanisms: the
NBW protocol istime-optimal, but requireslarge buffers, while
alock-based approach requiresjust a single message buffer, but
suffers from very high worst-case execution overheads. Over-
all, the single-writer, multiple-reader non-blocking algorithms
are good intermediate solutions, balancing WCET and space
requirements. With our transformation, we can do even better,
reducing both time and space requirements of these algorithms.

This transformation mechanism can be applied to other non-
blocking | PC algorithmsthat are not considered here, and make
them better optimized for systems with real-time characteris-
tics. In the future, we would like to extend our methodology
to reduce synchronization overheads in more general IPC al-
gorithms with multiple-writer semantics and to extend this to
more general communication channels aswell.
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