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Abstract

Compression and differencing techniques can greatly improve storage and transmission of files and file
versions. Since files are often transported across machines with distinct architectures and performance
characteristics, compressed data should be encoded in a form that is portable and efficient to decode. This
paper describes the Vcdiff encoding format for differencing and compression data and presents an empirical
study showing its effectiveness.

1 Introduction

Data differencingcomputes a compact transformation to
take a source file to a target file based on their differ-
ences. Data compressioncompresses data in a single file.
The UNIX utility diff is an example data differencing
tool while compressand gzipare well-known data com-
pressors. Differencing and compressed data are good for
storage and transmission as they are often much smaller
than the originals. Differencing and compression tech-
niques are traditionally treated as distinct forms of data
processing. Our work on the Vdelta compressor [3, 4]
showed that compression and differencing can be treated
uniformly by unifying the Lempel-Ziv’77 string pars-
ing scheme [14] and Tichy’s block-move technique [12].
This unification is called delta compression.

Compressed data need to be encoded in a portable and
efficient format so that they can be transported across a
network such as the Internet which consists of diverse
hardware and software platforms. Many compressors are
available, each with its own way to represent data. How-
ever, little has been published on the encoding formats
used by these compressors. A notable exception is gzip
whose encoding format is published in the IETF Stan-
dard Deflate[1]. Data differencing is much less devel-
oped than data compression so there are few tools avail-
able. The diff utility only works on text files and outputs
editing commands to be processed by the UNIX line ed-
itor ed. The only published format for differencing of
binary data is the W3C Standard Gdiff [13]. Outside of
this work, there is no published encoding format for delta
compression, i.e., a format suitable for both compression
and differencing. Given the intended applications, we
stipulate that such a data encoding format should have
the following attributes:

� Algorithm independence: The encoding format
must be independent from the algorithms used to
compress data. This allows a receiver to decode
compressed data without having to know how it was
computed.

� Data portability: The encoding format must be free
from hardware architecture issues such as byte or-
der and word size. This allows a receiver to decode
data without knowing the architecture of the encod-
ing machine.

� Output compactness: The encoding format must
compactly represent compressed and delta data. It
should also be transparently extensible by encoders
to maximize compression efficiency.

� Decoding efficiency: The encoding format must be
decodable on machines with limited computational
power and memory. This is important for web-
based applications with small clients such as PCs
or hand-held devices.

The mentioned Vdelta software was instrumental in
the work to extend HTTP1.1 for Delta Encoding [9, 10].
However, the encoding format used by Vdelta was not
sufficiently compact for compression data (i.e., when sin-
gle files are compressed) and not easily extensible. Since
then, we have designed a new format Vcdiff for delta
compression. This format incorporates a number of in-
novations that enable compact data representation with
extensibility to exploit application-specific knowledge in
gaining further compression. This paper discusses the
essential elements of the Vcdiff encoding format and
presents performance data showing its effectiveness. A
full description of the format is given in a current IETF
Proposed Standard [6].



2 Algorithm independence

Techniques such as Vdelta, Lempel-Ziv and block-move
are based on string matching algorithms[4, 7, 8] to find
matches either across files or in the same file. Each such
match can then be compactly encoded by its location and
length. Different string matching algorithms will typi-
cally find different matches.

String matching algorithms often stress memory re-
sources so, on current computers, they are not effective
for processing large files in the order of hundreds of
megabytes or gigabytes. To deal with this, a target file
can be partitioned into sufficiently small contiguous seg-
ments of data called target windows, each of which is
to be compressed separately. To improve compression,
such a target window may be compared against some
source window, a contiguous segment of data from ei-
ther the source file or the target file itself. In the latter
case, the source window is required to come from some
part of the target file preceding the current target window
so that, during decoding, the data for such a window is
well-defined. Finding the right matching source window
for a given target window is crucial for compressing data.
Algorithms to do this are called windowing algorithms.

String matching and windowing algorithms clearly af-
fect compression effectiveness. However, from the point
of view of designing an encoding format, it is prefer-
able to abstract away the details of such algorithms. In
this way, simple and generic decoders can be constructed
without knowing how the data was encoded. An addi-
tional benefit is that software vendors and/or researchers
can continue improving the encoding algorithms without
affecting the receivers of compressed data. We discuss
how to design such an encoding format next.

2.1 Windowing data

Source and target windows may have different sizes but
their sizes are chosen so that they can be processed en-
tirely in memory. For data differencing, the traditional
method simply aligns source and target windows by file
offsets. For data compression, the popular rolling win-
dow method uses a small data segment immediately be-
fore the target window as the source window. These al-
gorithms work well with small files since the window
choices are limited (so they are mostly right by fiat) but
they are suboptimal for large files as matching data may
occur randomly and much further apart. In a work-in-
progress, Vo explored a content-based method [11] to
find source windows that would likely match well with
given target windows (Section 5). Regardless of what
window selection algorithm is used, a decoder does not
need to know about it as long as the encoding format
records the following data about source windows:

� An indication of whether the source window is from
the source file or the target file,

� The starting position of the source window in the
respective file, and

� The length of the source window.

Given this basic data, a decoder can obtain the appro-
priate source data to be used with the compressed data to
decode a target window. Next we discuss what comprises
compressed data.

2.2 String matching and delta instructions

When a target window T with size t is compressed given
a source window S of size s, we shall think of S and T

as substrings of a superstring U formed by concatenating
them like this:

S0S1:::Ss�1T0T1:::Tt�1

The addressof a byte in S or T is referred to by its
location in U . Thus, for any k � t, the address of Tk
is s + k. The compressed data consists of a sequence
of instructions called delta instructions. There are three
types:

� ADD: This instruction has two arguments, a size �
and a sequence of � bytes to be copied.

� COPY: This instruction has two arguments, a size �
and an address � in the string U . These arguments
specify the substring of U that must be copied into
the target window being constructed. For program-
ming convenience, we assert that such a substring
must be entirely contained in either S or T .

� RUN: This instruction has two arguments, a size �

and a byte that will be copied � times.

Let �(i) be the size of any delta instruction i and �(i)
the associated address if i is a COPY. Let I = i1i2:::in
be a sequence of delta instructions. Then each instruc-
tion ik encodes a data segment �(ik) of size �(ik). Let
p =

P
1�m�k�1 �(im). We say that I is a faithful rep-

resentation of T if:

� For all k, �(ik) is equal to the substring of T starting
at p with size �(ik);

� If ik is a COPY, then �(ik) < p+ s; and

�
P

1�m�n �(im) is equal to the size of T .



1. Set p = 0 and k = 0.

2. If ik is a RUN instruction, copy the associated data
byte �(ik) times to T starting at p.

3. If ik is an ADD instruction, copy the associated data
to T starting at p.

4. If ik is a COPY instruction,

(a) If �(ik) < s, copy �(ik) bytes from S starting
at �(ik) to T starting at p;

(b) Else, copy �(ik) bytes from T starting at
�(ik)� s to T starting at p.

5. Set p = p+ �(ik) and k = k + 1.

6. If k � n, go to 2.

Figure 1: Decoding delta instructions

Let S be a source string of size s, T a target window
of size t and I a faithful representation of T . Figure 1
shows the algorithm to reconstruct T from I and S. A
string copy operation is assumed to be carried out from
left to right so that Step 4.b is well-defined. Since the
total running time of the algorithm is proportional to the
number of bytes copied, the below result immediately
follows from the definition of a faithful representation:

Theorem 1 A target window encoded with a faithful se-
quence of delta instructions can be decoded inO(t) time
and space wheret is the size of the window.

S: abcdefghijklmnop
T: abcdwxyzefghefghefghefghzzzz

COPY 4, 0
ADD 4, wxyz
COPY 4, 4
COPY 12, 24
RUN 4, z

Figure 2: Delta instructions transforming S into T

Figure 2 shows example source and target windows
and a sequence of delta instructions encoding the target
data. It is easy to verify that this sequence is a faithful
representation of T . The first COPY instruction copies 4
bytes from address 0, i.e., the string abcd in the source
window S. Next is an ADD instruction that adds the 4

specified bytes wxyz. Note that the fourth instruction
copies data from T itself since address 24 is position 8 in
T . This instruction also shows that the data to be copied
can overlap with the data being copied from as long as
the latter starts earlier. This enables efficient encoding
of periodic sequences, i.e., sequences with regularly re-
peated subsequences. The final RUN instruction com-
pactly encodes the last four bytes of T .

Given a pair of target and source windows, there are
usually many different faithful representations of the tar-
get data. For example, the target data in Figure 2 can
also be faithfully represented with a single ADD instruc-
tion that includes all the data. From a compression point
of view, it is desirable to find the representation that
requires the least number of bytes to encode. Unfor-
tunately, this problem is NP-hard even when sizes and
addresses are encoded with some fixed number of bits
(SR22 and SR23 in Garey and Johnson [2]). This sit-
uation improves when relaxed to just finding the min-
imum number of delta instructions without worrying
about whether or not their encoding minimizes the com-
pressed output. In this case, greedy approaches such as
Lempel-Ziv parsing or Tichy block-move [12] do com-
pute the minimal number of delta instructions in linear
time and space given appropriate string matching algo-
rithms [7, 8]. The Vdelta algorithm [4] relaxes this min-
imality to trade for faster string matching and less work-
ing memory. In any case, the point with delta instruc-
tions is that, no matter how they are computed, Theorem
1 guarantees that a generic decoder can be written that
always runs in linear time and space.

3 Data portability

The Vcdiff encoding format is byte-oriented. Each byte
is limited to its lower eight bits for portability. The bits
in a byte are ordered from right to left so that the least
significant bit (LSB) has value 1, and the most significant
bit (MSB), has value 128.

Sizes and file offsets are unsigned integers encoded
via a portable variable-sized format (originally intro-
duced in the Sfio library [5]). This encoding treats an
unsigned integer as a number in base 128. Then, each
digit in this representation is encoded in the lower seven
bits of a byte. Except for the least significant byte, other
bytes have their most significant bit turned on to indicate
that there are still more digits in the encoding. The two
key properties of this integer encoding that are beneficial
to a data compression format are:

� The encoding is portable among systems using 8-bit
bytes, and

� Small values are encoded compactly.



Below is the encoding of the integer 123456789 in
four 7-bit digits whose values are 58, 111, 26, 21 in order
from most to least significant. In the 8-bit representation
of these digits, the MSBs of 58, 111 and 26 are on.

10111010 11101111 10011010 00010101

MSB+58 MSB+111 MSB+26 0+21

4 Encoding delta instructions

The delta instructions represent string matching results.
In data differencing applications of text files, changes be-
tween source and target data are often small, resulting
in long common substrings. When that is the case, any
straightforward representation of the delta instructions
would be adequate. However, for differencing of binary
files or general compression, matched substrings are of-
ten short so that the delta instructions must be encoded
well to achieve good compression rates. The key to com-
pact encoding revolves around the questions of how to
encode addresses of COPY instructions efficiently and
how to deal with instructions having small sizes or lim-
ited number of sizes. This leads to the ideas of address
encoding modesand instruction code tableswhich are
discussed next.

4.1 Address caches and encoding modes

Data in local regions are often replicated with minor
changes. This is especially true in data differencing
where target files are created from small changes in
source files. Thus, the addresses of successive COPY
instructions often occur close by or even exactly equal
to one another. To take advantage of this phenomenon,
Vcdiff maintains two types of address caches:

� A nearcache is an array with s near slots of previ-
ously matched addresses. An address p can be en-
coded against a cached address q as p� q if p � q.

� A samecache is an array with s same � 256 slots
of previously matched addresses. If an address p is
equal to same[p%(s same � 256)], then p can be
encoded with the single byte value p%256.

It is clear that an encoder and a decoder must be in
synch with respect to maintaining the address caches.
The protocol to enforce this is as follows:

1. Before processing (i.e., encoding or decoding) a tar-
get window, all cache slots are initialized to zero.

2. After processing each COPY instruction, its address
p is used to update the caches as follows:

(a) The slots in the near cache are managed as
a circular buffer with a current index. The
address p is first added to near[index], then
index is incremented modulo s near.

(b) The same cache is a hash table of size
s same � 256. The address p is added to
same[p%(s same � 256)].

In the above cache usage, the address encoding mode,
i.e., the manner in which the address p of a COPY in-
struction is encoded must be recorded in the encoding
data. Let here be the current position in the target data
(i.e., the start of the data about to be encoded or de-
coded). Below are the address modes:

� VCD SELF: This mode has value 0 and indicates
that p was encoded as itself.

� VCD HERE: This mode has value 1 and indicates
that p was encoded as here� p.

� Near: There are s near modes in the range
[2; s near + 1]. If m is the mode of the address
encoding then p was encoded as p� near[m� 2].

� Same: There are s same modes in the range
[s near+2; s near+s same+1]. Ifm is the mode
of the encoding then p was encoded as a single byte
b such that same[(m� (s near+ 2)) � 256+ b] is
equal to p.

By default, Vcdiff uses 4 for s near and 3 for s same

resulting in a total of 9 different addressing modes.

4.2 Instruction code tables

Successive delta instructions often represent short
matches separated by small amounts of unmatched data.
So the sizes of the COPY and ADD instructions are often
small. This is particularly true of binary data such as ex-
ecutable files or semi-structured data such as HTML or
XML. In such cases, it is beneficial to combine sizes, in-
struction types and even successive pairs of instructions.
The effectiveness of such combinations depend on many
factors including the data being processed and the string
matching algorithm in use. For example, in a case where
many COPY instructions with the same data sizes are
generated, it may be worth encoding these instructions
more compactly than others.

To maintain independence from the choices made in
encoding algorithms, we introduce the notion of instruc-
tion code tables, each of which consists of 256 entries.
These entries describe combinations of sizes, instruction
types and pairs of instructions. The encoder and de-
coder(s) of a compressed dataset must share the same



table. Then, the encoding only records the indices of the
table entries, each of which fits in a single byte.

As depicted below, an entry in an instruction code ta-
ble conceptually consists of two triples, each of the form
(inst,size,mode):

inst1 size1 mode1 inst2 size2 mode2

� inst: This field can be one of: NOOP, ADD, RUN
or COPY to indicate the instruction types. NOOP
means that no instruction is specified.

� size: This field is either zero or positive. Zero means
that the size associated with the instruction is en-
coded separately in the encoding data. A positive
value defines the actual data size so the encoding
data will omit it.

� mode: This field is significant only when the in-
struction type is COPY. It defines the encoding
mode used to encode the associated address.

Thus, each entry in the instruction code table can en-
code a single instruction (one of the triples is a NOOP)
or two successive instructions. Vcdiff itself defines a de-
fault instruction code tablefor the case when the near

cache has 4 slots and the same cache has 3 � 256 slots.
Thus, there are 9 address modes for COPY instructions.
The first two are VCD SELF(0) and VCD HERE(1).
Modes 2, 3, 4 and 5 are for addresses coded against the
near cache. And, modes 6, 7 and 8 are for addresses
coded against the samecache. This default table is as-
sumed to be available with each encoder and decoder.
The Vcdiff encoding format also allows an encoder to
define its own custom code table but then it has to en-
code this table in the data itself [6].

Table 1 depicts the default instruction code table.
Each numbered line represents one or more entries (re-
call that an entry in the instruction code table may rep-
resent up to two combined delta instructions). The last
column (“Index”) shows which index value or range of
index values of the entries covered by that line. The first
6 columns of a line in the depiction describe the pairs of
instructions used for the corresponding index value(s).
For example, line 1 shows the single RUN instruction
with index 0. As the size field is 0, this RUN instruc-
tion always has its actual size encoded separately in the
encoding data. Line 2 shows the 18 single ADD instruc-
tions. The ADD instruction with size field 0 (i.e., the ac-
tual size is coded separately) has index 1. ADD instruc-
tions with sizes from 1 to 17 use code indices 2 to 18 and
their sizes are as given (so they will not be separately en-
coded). Lines 12 to 21 show the pairs of instructions that
are combined together. For example, line 12 depicts the
12 entries in which an ADD instruction is combined with

an immediately following COPY instruction. The entries
with indices 163, 164, 165 represent the pairs in which
the ADD instructions all have size 1 while the COPY in-
structions have mode VCD SELF(0) and sizes 4, 5 and 6
respectively.

Table 2 shows two different encodings of the delta in-
structions from Figure 2: Plain and Optimized. In the
Plain encoding, each instruction was simply encoded.
For example, the first COPY instruction used code in-
dex 19 so its size and address were separately encoded
entailing a total cost of three bytes. Similarly, the ADD
instruction used index 1 with separately encoded size so
the cost was 6 bytes. Altogether, the Plain coding used
18 bytes which substantially improved over the original
data size of 28 but was not optimal.

In the Optimized encoding, the first COPY instruction
used code index 20 with implicit size 4. Thus, its encod-
ing took only two bytes. The second and third instruc-
tions, ADD and COPY, were combined via code index
172 with both sizes implicitly defined. Thus, both in-
structions were encoded in 6 bytes instead of the original
9 bytes in the Plain encoding. Altogether, the size of the
Optimized encoding improved to 13 bytes.

The Optimized encoding shows that judicious use of
instructions with implicitly defined sizes and combined
instructions can substantially improve the compression
rate. We discuss next how to compute the optimal en-
coding given a fixed code table.

4.3 Optimizing instruction encoding

Section 4.2 showed that an encoder has a wide latitude
in choosing when and how to combine and encode delta
instructions. In fact, for any fixed instruction code table,
one can optimize the encoding of a sequence of delta in-
structions using dynamic programming. Toward this end,
let I = i1i2:::in be a sequence of delta instructions. We
shall use Ik to denote the subsequence of I starting from
the kth instruction and extending to the end of I . For ex-
ample, I = I1. We define Ik to be the empty sequence
whenever k > n.

The code entries in an instruction code table assumes
that the addresses of COPY instructions and the data of
ADD and RUN instructions are always coded separately.
Thus, to optimize the encoding, we only need to con-
sider the sizes of the instructions and their types, i.e.,
ADD, RUN, COPY and any addressing modes. Now, for
each instruction i, let the cost of i, c(i), be the number
of bytes required to encode i and its size using the best
choice from the instruction code table. We assume that
the instruction code table has been defined so that there
is at least one way for doing this. Likewise, for any two
consecutive instructions i and j, let the cost c(i; j) be the
number of bytes required using the best table entry that



Table 1: The default instruction code table

Type Size Mode Type Size Mode Index

1 RUN 0 0 NOOP 0 0 0

2 ADD 0, [1,17] 0 NOOP 0 0 [1,18]

3 COPY 0, [4,18] 0 NOOP 0 0 [19,34]

4 COPY 0, [4,18] 1 NOOP 0 0 [35,50]

5 COPY 0, [4,18] 2 NOOP 0 0 [51,66]

6 COPY 0, [4,18] 3 NOOP 0 0 [67,82]

7 COPY 0, [4,18] 4 NOOP 0 0 [83,98]

8 COPY 0, [4,18] 5 NOOP 0 0 [99,114]

9 COPY 0, [4,18] 6 NOOP 0 0 [115,130]

10 COPY 0, [4,18] 7 NOOP 0 0 [131,146]

11 COPY 0, [4,18] 8 NOOP 0 0 [147,162]

12 ADD [1,4] 0 COPY [4,6] 0 [163,174]

13 ADD [1,4] 0 COPY [4,6] 1 [175,186]

14 ADD [1,4] 0 COPY [4,6] 2 [187,198]

15 ADD [1,4] 0 COPY [4,6] 3 [199,210]

16 ADD [1,4] 0 COPY [4,6] 4 [211,222]

17 ADD [1,4] 0 COPY [4,6] 5 [223,234]

18 ADD [1,4] 0 COPY 4 6 [235,238]

19 ADD [1,4] 0 COPY 4 7 [239,242]

20 ADD [1,4] 0 COPY 4 8 [243,246]

21 COPY 4 [0,8] ADD 1 0 [247,255]

Table 2: Encoding the delta instructions in Figure 2

Delta Inst. Plain Optimized

COPY 4, 0 19 4 0 20 0

ADD 4, wxyz 1 4 wxyz 172 wxyz 4

COPY 4, 4 19 4 4

COPY 12, 24 19 12 24 28 24

RUN 4, z 0 4 z 0 4 z

combines both instructions. If there is no way to com-
bine i and j, we let c(i; j) be infinite. Finally, let C(I)
be the cost of encoding the sequence I . Then, C(I) can
be obtained by solving the following dynamic program:

C(I) =

8><
>:

0 if I = �;

c(i1) if jI j = 1; otherwise,

minfc(i1) + C(I2); c(i1; i2) + C(I3)g:

The first case states that the cost of encoding an empty
sequence is 0. The second case states the cost of encod-
ing a sequence with a single instruction. The last case
computes the optimal cost by minimizing between two
alternatives: encoding the first instruction by itself or
combining the first two instructions. In each alternative,

recursion is used to deal with the rest of the sequence.
Since each C(Ik) is uniquely determined by the se-

quence Ik, we can keep track of all processed subse-
quences in O(jI j) space so that the recursion can be
pruned whenever it arrives at a processed subsequence.
We have shown:

Theorem 2 Given a fixed instruction code table, any se-
quence of delta instructionsI can be encoded optimally
in O(jI j) time and space.

In addition to optimizing delta instruction encoding
given a fixed code table, it is also possible for an ap-
plication to define its own code tables inside the encod-
ing data [6]. This enables an application to gain further
compression by specially treating certain instructions or



pairs of instructions that are much more popular than oth-
ers. We are investigating the question of how to compute
such an optimal instruction code table. The mentioned
IETF Proposed Standard [6] also discusses the use of
secondary compressors to further compress the instruc-
tion encoding.

5 Performance

We show the effectiveness of the Vcdiff encoding format
in two ways. The first set of experiments was based on
three different source code archives of the Gnu C com-
piler, gcc-2.95.1.tar, gcc-2.95.2.tar and gcc-2.95.3.tar.
We used the Vcodex/Vcdiff software (Section 8) to com-
pare various options of Vcdiff against the gzipand com-
presstools. These files were very large so that some win-
dowing scheme must be used. In the second set of ex-
periments, we collected the home page of www.cnn.com
every hour for 10 days and computed the deltas using
various methods.

5.1 Comparing with compressand gzip

We compared Vcdiff against compressand gzip using
the mentioned three source code archives of the GNU C
compiler. The experiments were done on an SGI-MIPS3,
400MHZ. Timing results were obtained by running each
program three times and taking the average of the total
cpu+system times. Below are the different Vcdiff runs:

� Vcdiff-c: Vcdiff was used for compression only.
That is, no source file was used. This directly com-
pared Vcdiff, gzipand compressas compressors.

� Vcdiff-d: Vcdiffwas used for differencing only. That
is, matching was allowed only between source and
target data. Windows were simply matched by po-
sitions across target and source files.

� Vcdiff-dc: This is similar to Vcdiff-d but matching
within target data, was allowed, i.e., delta compres-
sion was used.

� Vcdiff-dcw: This is similar to Vcdiff-dc but a
content-based windowing algorithm [11] was used
to select source windows more likely to match with
given target windows. Thus, file offsets of source
and target windows would seldom align.

Table 3 shows the experimental results. Note that
compression times were typically dominated by the
string matching and encoding algorithms. For example,
the large time variation in the Vcdiffrows was strictly due
to the windowing and string matching algorithms used in
the Vcodex/Vcdiff software. Such measurements were

somewhat irrelevant from the point of view of evaluat-
ing an algorithm-independent encoding format. How-
ever, the decompression times were indicative of how the
different formats would perform in practice.

The pure compressor Vcdiff-c gave worse compres-
sion rate than gzip but better than compress. How-
ever, it always decompressed fastest. Version gcc.2.95.2
was similar to version gcc.2.95.1. Thus, compressing
gcc.2.95.2 given gcc.2.95.1 gained up to a factor of 500
in size reduction as shown in the last three rows. On the
other hand, the files in the archive gcc.2.95.3 were were
sufficiently changed and rearranged from gcc.2.95.2 so
that simply matching source and target windows by file
positions were ineffective. As a result, Vcdiff-d and
Vcdiff-dcdid not perform well even though delta com-
pression did help Vcdiff-dc to beat Vcdiff-c and come
close to gzip. Vcdiff-dcwstill worked well due to the
content-based windowing algorithm. There was a clear
time cost for using such an algorithm during encoding
but decoding time was not affected.

Finally, the cat row of the table shows the times
required to just copy the files gcc.2.95.2.tar and
gcc.2.95.3.tar, respectively 1.08 and 1.05 seconds. Thus,
in the best case of Vcdiff-dcw, decompression times were
only about 70-90% worst than plain copying of the data.
The dramatic size reduction meant that, with an appropri-
ate encoder, the Vcdiff encoding format presented a good
mechanism for transporting data without taxing client
machines on decoding.

5.2 Compressing a set of web pages

We collected the home pages of www.cnn.com every
hour starting at 12:00AM on 10/23/2001 and ending at
11:00PM 11/01/2001. The below methods for delta com-
pression were used:

� diff+gzip: This method runs the diff -e program to
compute the differences, then pipes the result to
gzipfor further compression.

� gdiff: We instrumented the Vcodex/Vcdiff software
to run the Vcdiff string matching algorithm but out-
put results in the Gdiff format.

� gdiff+gzip: This is like the above but the result is
piped to gzipfor further compression.

� vcdiff: This uses the Vcdiff encoding format.

We ran two different experiments. In the First exper-
iment, each file is compressed against the first file col-
lected while, in the Successiveexperiment, each file is
compressed against the one in the previous hour. Table 4
summarizes the compression results. The raw row shows



Table 3: Comparing Vcdiff to gzipand compressusing the gcc-2.95.[123] archives

2.95.2 (55,797,760) 2.95.3 (55,787,520)
Compressor Size Comp.(s) Decomp.(s) Size Comp.(s) Decomp.(s)

cat 55,797,760 1.08 1.08 55,787,520 1.05 1.05
compress 19,939,390 13.85 7.09 19,939,453 13.54 7.00

gzip 12,973,443 42.99 5.35 12,998,097 42.63 5.62
Vcdiff-c 15,358,786 20.04 4.65 15,371,737 20.09 4.74

2.95.2 given 2.95.1 (55,746,560) 2.95.3 given 2.95.2 (55,797,760)
Vcdiff-d 100,971 10.93 1.92 26,383,849 71.41 6.41
Vcdiff-dc 97,246 20.03 1.84 14,461,203 42.48 4.82

Vcdiff-dcw 256,445 44.81 1.84 1,248,543 61.18 1.99

Table 4: Delta compression of www.cnn.com

First Successive
Method Min. Max. Avg. Min. Max. Avg.

raw 44,602 50,033 46,036 44,602 50,033 46,036
diff+gzip 20 6,257 4,955 20 3,146 1,017

gdiff 11 5,597 4,277 11 1,767 458
gdiff+gzip 31 4,335 3,336 31 1,496 434

vcdiff 23 4,249 3,274 23 1,423 385

the Minimum, Maximum and Average sizes of the col-
lected files. Later rows show the same statistics for the
compressed data. Delta compression was effective in re-
ducing the data sizes overall. The best method, vcdiff
reduced data by a factor of about 15 in the First experi-
ment and about 120 in the Successiveexperiment.

Figure 3 shows in detail the sizes of the compressed
data in the First experiment. The order of the methods
from worst to best was diff+gzip, gdiff, gdiff+gzip and
vcdiff. Since gdiff and vcdiffwere based on the same un-
derlying algorithms to compute delta instructions, the re-
sults compared directly the effectiveness of the different
encoding formats. Even with the additional compression
step using gzip (i.e., the Deflateformat) the gdiff+gzip
results were still slightly worse than vcdiff. The fact that
delta compression was still effective after a fairly long
duration of 10 days suggested that these pages were gen-
erated from some large template that seldom changed.

Figure 4 shows results from the Successiveexperi-
ment. The diff+gzip data fluctuated wildly because diff
was line-oriented and could not handle small changes
made on many lines. Due to this large fluctuation, the
format used in Figure 3 did not show the data well.
Therefore, we plotted all data points relative to the ones
from vcdiffby simply dividing each data point by the cor-
responding value from vcdiff. Thus, the flat horizontal

line at 1 represented vcdiffdata. The encoding formats of
gzip, gdiffand vcdiffrequired fixed overhead sets of bytes
(shown in the Min. columns in Table 4 as the compared
files were identical in that case). We subtracted such
overheads from the data points before dividing to remove
the large distortion in the ratios when files changed little.
Vcdiffwas again the best encoding format for delta com-
pression in this experiment. In fact, Table 4 showed that
it typically reduced data by more than 2 orders of mag-
nitude since files changed very little in successive hours.

Timing results were not shown in the above exper-
iments but diff+gzip and gdiff+gzip were much slower
than vcdiff and gdiff because of the use of multiple pro-
cesses and, in the case of diff+gzip, slow text alignment
algorithms. For vcdiff and gdiff, it was also hard to ob-
tain meaningful measurements since the files were small
and the encoding algorithms were sufficiently fast so that
process start-up time became the dominating factor.

6 Summary

We described Vcdiff, a general and portable encoding
format for delta compression, i.e., combined compres-
sion and differencing. This is the first fully described
encoding format for this type of data processing. Vcd-
iff introduced the novel idea of an instruction code ta-



ble to allow combining delta instructions to optimize
compression rate. We showed how to compute minimal
encodings given a fixed code table using dynamic pro-
gramming. More importantly, the nature of the encoding
format enables construction of decoders free from any
knowledge of encoders and guaranteed to run in linear
time and space. Thus, Vcdiff is suitable for web-based
client-server applications in which a big server can send
data to much smaller clients with different hardware ar-
chitectures. We presented performance results showing
that Vcdiff compares favorably to other formats for data
differencing including the W3C Gdiff Standard and the
use of diff and gzip. Vcdiff is the subject of a current
IETF Proposed Standard [6].
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8 Code availability

The Vcdiff data format described here is free from
any patent claims. An implementation of Vcdiff
is available as a part of the Vcodex package writ-
ten by Phong Vo. The code can be obtained from
http://www.research.att.com/sw/tools.
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Figure 3: Delta compression of www.cnn.com against a fixed first page
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Figure 4: Delta compression of www.cnn.com in successive hours


