
USENIX Association

Proceedings of the
2002 USENIX Annual Technical

Conference

Monterey, California, USA
June 10-15, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Using Cohort SchedulingUsing Cohort SchedulingUsing Cohort SchedulingUsing Cohort Scheduling to Enhance Server Perforto Enhance Server Perforto Enhance Server Perforto Enhance Server Performmmmanceanceanceance

James R. Larus and Michael Parkes
{larus, mparkes}@microsoft.com

Microsoft Research
One Microsoft Way

Redmond, WA 98052

AbstractAbstractAbstractAbstract
A server application is commonly organized as a

collection of concurrent threads, each of which executes
the code necessary to process a request. This software
architecture, which causes frequent control transfers
between unrelated pieces of code, decreases instruction
and data locality, and consequently reduces the effec-
tiveness of hardware mechanisms such as caches,
TLBs, and branch predictors. Numerous measurements
demonstrate this effect in server applications, which
often utilize only a fraction of a modern processor’s
computational throughput.

This paper addresses this problem through cohort
scheduling, a new policy that increases code and data
locality by batching the execution of similar operations
arising in different server requests. Effective implemen-
tation of the policy relies on a new programming ab-
straction, staged computation, which replaces threads.
The StagedServer library provides an efficient imple-
mentation of cohort scheduling and staged computation.
Measurements of two server applications written with
this library show that cohort scheduling can improve
server throughput by as much as 20%, by reducing the
processor cycles per instruction by 30% and L2 cache
misses by 50%.

1111 IntroductionIntroductionIntroductionIntroduction
A server application is a program that manages ac-

cess to a shared resource, such as a database, mail store,
file system, or web site. A server receives a stream of
requests, processes each, and produces a stream of re-
sults. Good server performance is important, as it de-
termines the latency to access the resource and con-
strains the server’s ability to handle multiple requests.
Commercial servers, such as databases, have been the
focus of considerable research to improve the underly-
ing hardware, algorithms, and parallelism, as well as
considerable development to improve their code.

Much of the hardware effort has concentrated on
the memory hierarchy, where rapidly increasing proces-
sor speed and parallelism and slowly declining memory
access time created a growing gap that is a major per-
formance bottleneck in many systems. In recent proces-

sors, loading a word from memory can cost hundreds of
cycles, during which three to four times as many in-
structions could execute. High performance processors
attempt to alleviate this performance mismatch through
numerous mechanisms, such as caches, TLBs, and
branch predictors [27]. These mechanisms exploit a
well-known program property—spatial and temporal
reuse of code and data—to keep at hand data that is
likely to be reused quickly and to predict future pro-
gram behavior.

Server software often exhibits less program locality
and, consequently achieves poorer performance, than
other software. For example, many studies have found
that commercial database systems running on-line
transaction processing (OLTP) benchmarks incur high
rates of cache misses and instruction stalls, which re-
duce processor performance to as low as a tenth of its
peak potential [4, 9, 20]. Part of this problem may be
attributable to database systems’ code size [28], but
their execution model is also responsible.

These systems are structured so that a process or
thread runs for a short period before invoking a block-
ing operation and relinquishing control, so processors
execute a succession of diverse, non-looping code seg-
ments that exhibit little locality. For example, Barroso
et al. compared TPC-B, an OLTP benchmark whose
threads execute an average of 25K instructions before
blocking, against TPC-D, a compute-intensive decision-
support system (DSS) benchmark whose threads exe-
cute an average of 1.7M instructions before blocking
[9]. On an AlphaServer 4100, TPC-B had an L2 miss
rate of 13.9%, an L3 miss rate of 2.7%, and overall per-
formance of 7.0 cycles per instruction (CPI). By con-
trast, TPC-D had an L2 miss rate of 1.2%, an L3 miss
rate of 0.32%, and a CPI of 1.62.

Instead of focusing on hardware, this paper takes
an alternative—and complementary—approach of
modifying a program’s behavior to improve its per-
formance. The paper presents a new, user-level soft-
ware architecture that enhances instruction and data
locality and increases server software performance. The
architecture consists of a scheduling policy and a pro-
gramming model. The policy, cohort scheduling, con-

secutively executes a cohort of similar computations
that arise in distinct requests on a server. Computations
in a cohort, because they are at roughly the same stage
of processing, tend to reference similar code and data,
and so consecutively executing them improves program
locality and increases hardware performance. Staged
computation, the programming model, provides a pro-
gramming abstraction by which a programmer can
identify and group related computations and make ex-
plicit the dependences that constrain scheduling. Staged
computation, moreover, has the additional benefits of
reducing concurrency overhead and the need for expen-
sive, error-prone synchronization.

We implemented this scheduling policy and pro-
gramming model in a reusable library (StagedServer).
In two experiments, one with an I/O-intensive server
and another with a compute-bound server, code using
StagedServer performed significantly better than
threaded versions. StagedServer lowered response time
by as much as 20%, reduced cycles per instruction by
30%, and reduced L2 cache misses by more than 50%.

The paper is organized as follows. Section 2 intro-
duces cohort scheduling and explains how it can im-
prove program performance. Section 3 describes staged
computation. Section 4 briefly describes the Staged-
Server library. Section 5 contains performance meas-
urements. Section 6 discusses related work.

 Threaded ExecThreaded ExecThreaded ExecThreaded Execuuuutiontiontiontion

 Cohort ScheduCohort ScheduCohort ScheduCohort Schedullllinginginging
Figure 1. Cohort scheduling in operation. Shaded boxes indicate
different computations performed while processing requests on a
server. Cohort scheduling reorders the computations, so that simi-
lar ones execute consecutively on a processor, which increases
program locality and processor performance.

2222 CoCoCoCohort Schedulinghort Schedulinghort Schedulinghort Scheduling
Cohort scheduling is a technique for organizing the

computation in server applications to improve program
locality. The key insight is that distinct requests on a
server execute similar computations. A server can defer
processing a request until a cohort of computations ar-
rive at a similar point in their processing and then exe-
cute the cohort consecutively on a processor (Figure 1).

This scheduling policy increases opportunities for
code and data reuse, by reducing the interleaving of
unrelated computations that causes cache conflicts and
evicts live cache lines. The approach is similar to loop
tiling or blocking [19], which restructures a matrix
computation into submatrix computations that repeat-
edly reference data before turning to the next subma-
trix. Cohort scheduling, however, is a dynamic process
that reorganizes a series of computations on items in an
input stream, so that similar computations on different
items execute consecutively. The technique applies to
uniprocessors and multiprocessors, as both depend on
program locality to achieve good performance.

Figure 2 illustrates the results of a simple experi-
ment that demonstrates the benefit of cohort scheduling
on a uniprocessor. It reports the cost, per call, of exe-
cuting different sized cohorts of asynchronous writes to
random blocks in a file. Each cohort ran consecutively
on a system whose cache and branch table buffer had
been flushed. As the cohort increased in size, the cost of
each call decreased rapidly. A single call consumed
109,000 cycles, but the average cost dropped 68% for a
cohort of 8 calls and 82% for a cohort of 64 calls. A
direct measure of locality, L2 cache misses, also im-
proved dramatically. With a cohort of 8 calls, L2 misses
per call dropped to 17% of the initial value and further
declined to 4% with a cohort of 64 calls. These im-
provements required no changes to the operating sys-
tem code; only reordering operations in an application.
Further improvement requires reductions in OS self-
conflict misses (roughly 35 per system call), rather than
amortizing the roughly 1500 cold start misses.

2.12.12.12.1 AssemblingAssemblingAssemblingAssembling Cohort Cohort Cohort Cohortssss
Cohort scheduling is not irreparably tied to staged

computation, but many benefits may be lost if a pro-
grammer cannot explicitly form cohorts. For example,
consider transparently integrating cohort scheduling
with threads. The basic idea is simple. A modified
thread scheduler identifies and groups threads with
identical next program counter (nPC) values. Threads
starting at the same point are likely to execute similar
operations, even if their behavior eventually diverges.
The scheduler runs a cohort of threads with identical
nPCs before turning to the next cohort.

Time

Se
rv

er
R

eq
ue

st

1

2

3

4

Cohorts

Computation
A

Computation
B

Time

Se
rv

er
R

eq
ue

st

1

2

3

4

Processor
Execution

Figure 2. Performance of cohorts of WriteFileEx system calls in
Window 2000 Advanced Server (Dell Precision 610 with an Intel
Pentium III processor). The chart reports the cost per call—in proc-
essor cycles and L2 cache misses—of an asynchronous write to a
random 4K block in a file.

It is easy to believe that this scheme could some-
times improve performance, and it requires only minor
changes to a scheduler and no changes to applications.
It, however, has clear shortcomings. In particular, nPC
values are a coarse and indirect indicator of program
behavior. Only threads with identical nPCs end up in a
cohort, which misses many pieces of code with similar
behavior. For example, several routines that access a
data structure might belong in a cohort. Simple exten-
sions to this scheme, such as using the distance between
PCs as a measure of similarity, have little connection to
logical behavior and are perturbed by compiler linking
and code scheduling. Another disadvantage is that co-
horts start after blocking system calls, rather than at
application-appropriate points. In particular, compute-
intensive applications or programs that use asynchro-
nous I/O cannot use this scheme, as they do not block.

To correct these shortcomings and properly assem-
ble a cohort, a programmer must delimit computations
and identify the ones that belong in a cohort. Staged
computation provides a programming abstraction that
neatly captures both dimensions of cohorts.

3333 Staged ComputationStaged ComputationStaged ComputationStaged Computation
Staged computation is a programming abstraction

intended to replace threads as the construct underlying
concurrent or parallel programs. Stages offer compel-
ling performance and correctness advantages and are
particularly amenable to cohort scheduling. In this
model, a program is constructed from a collection of
stages, each of which consists of a group of exported
operations and private data. An operation is an asyn-
chronous procedure call, so its invocation, execution,
and reply are decoupled. Moreover, a stage has schedul-
ing autonomy, which enables it to control the order and
concurrency with which its operations execute.

A stage is conceptually similar to a class in an ob-
ject-based language, to the extent that it is a program
structuring abstraction providing local state and opera-
tions. Stages, however, differ from objects in three ma-
jor respects. First, operations in a stage are invoked
asynchronously, so that a caller does not wait for a
computation to complete, but instead continues and
rendezvouses later, if necessary, to retrieve a result.
Second, a stage has autonomy to control the execution
of its operations. This autonomy extends to deciding
when and how to execute the computations associated
with invoked operations. Finally, stages are a control
abstraction used to organize and process work, while
objects are a data representation acted on by other enti-
ties, such as functions, threads, or stages.

A stage facilitates cohort scheduling because it
provides a natural abstraction for grouping operations
with similar behavior and locality and the control
autonomy to implement cohort scheduling. Operations
in a stage typically access local data, so that effective
cohort scheduling only requires a simple scheduler that
accumulates pending operations to form a cohort.

Stages provide additional programming advantages
as well. Because they control their internal concur-
rency, they promote a programming style that reduces
the need for expensive, error-prone explicit synchroni-
zation. Stages, moreover, provide the basis for specify-
ing and verifying properties of asynchronous programs.
This section briefly describes the staged programming
model. Section 4 elaborates an implementation in a
C++ class library.

3.13.13.13.1 Stage DesignStage DesignStage DesignStage Design
Programmers group operations into a stage for a

variety of reasons. The first is to regulate access to pro-
gram state (“static” data) by wrapping it in an abstract
data type. Operations grouped this way form an obvious
cohort, as they typically have considerable instruction
and data locality. Moreover, a programmer can control
concurrency in a stage to reduce or eliminate synchro-
nization for this data (Section 3.4).

The second reason is to group logically related op-
erations to provide a well-rounded and complete pro-
gramming abstraction. This reason may seem less com-
pelling than the first, but logically related operations
frequently share code and data, so collecting them in a
stage identifies operations that could benefit from co-
hort scheduling.

The third is to encapsulate program control logic in
the form of a finite-state automaton. As discussed be-
low, a stage’s asynchronous operations easily imple-
ment the reactive transitions in an event-driven state
machine.

WriteFileEx vs Cohort Size

0

20000

40000

60000

80000

100000

120000

0 20 40 60 80 100 120 140

Consecutive Calls in Cohort

Co
st

 o
f C

al
l (

Cy
cl

es
)

0
200
400
600
800
1000
1200
1400
1600
1800

L2
 M

is
se

s
pe

r C
al

l

Cycles L2 Misses

Figure 3. Example of stages and operations. Stage-A runs op-a,
which invokes two operations in Stage-B and waiting until they
complete before running op-a’s continuation.

In practice, designing a program with stages fo-
cuses on partitioning the tasks into sub-tasks that are
self-contained, have considerable code and data local-
ity, and have logical unity. In many ways, this process
is the control analogue of object-oriented design.

3.23.23.23.2 OperationsOperationsOperationsOperations
Operations are asynchronous computations ex-

ported by a stage. Invocation of an operation only re-
quires its eventual execution, so the invoker and opera-
tion run independently. When an operation executes, it
can invoke any number of child operations on any
stage, including its own. A parent can wait for its chil-
dren to finish, retrieve results from their computation,
and continue processing. Figure 3 shows an operation
(op-a) running in Stage-A that invokes two operations
(op-x and op-y) in Stage-B, performs further computa-
tion, and then waits for its children. After they complete
and return their results, op-a continues execution and
processes the children’s results.

The code within an operation executes sequentially
and can invoke both conventional (synchronous) calls
and asynchronous operations. However, once started,
an operation is non-preemptible and runs until it relin-
quishes the processor. Programmers, unfortunately,
must be careful not to invoke blocking operations that
suspend the thread running operations on a processor.
An operation that relinquishes the processor to wait for
an event—such as asynchronous I/O, synchronization,
or operation completion—instead provides a continua-
tion to be invoked when the event occurs [14].

A continuation consisting of a function and enough
saved state to permit the computation to resume at the
point at which it suspended. Explicit continuations are
the simplest and least costly approach, as an operation
saves only its live state in a structure called a closure.
The other alternative, implicit continuations, requires
the system to save the executing operation’s stack, so
that it can be resumed. This scheme, similar to fibers,
simplifies programming, at some performance cost [2].

Asynchronous operations provide low-cost paral-
lelism, which enables a programmer to express and
exploit the concurrency within an application. The
overhead, in time and space, of invoking an operation is
close to a procedure call, as it only entails allocating
and initializing a closure and passing it to a stage.
When an operation runs to completion, it does not re-
quire its own stack or an area to preserve processor
state, which eliminates much of the cost of threads.
Similarly, returning a value and re-enabling a continua-
tion are simple, inexpensive operations.

3.33.33.33.3 Programming StylesProgramming StylesProgramming StylesProgramming Styles
Staged computation supports a variety of pro-

gramming styles, including software pipelining, event-
driven state machines, bi-directional pipelines, and
fork-join parallelism. Conceptually, at least, stages in a
server are arranged as a pipeline in which requests ar-
rive at one end and responses flow from the other. This
form of computation is easily supported by representing
a request as an object passed between stages. Linear
pipelining of this sort is simple and efficient, because a
stage retains no information on completed computa-
tions.

However, stages are not constrained to this linear
style. Another common programming idiom is bi-
directional pipelining, which is the asynchronous ana-
logue of call and return. In this approach, a stage passes
subtasks to one or more other stages. The parent stage
eventually suspends its work on the request, turns its
attention to other requests, and resumes the original
computation when the subtasks produce results. This
style requires that an operation be broken into a series
of subcomputations, which run when results appear.
With explicit continuations, a programmer partitions
the computation by hand, although a compiler could
easily produce this code, which is close to the well-
known continuation-passing style [6, 12]. With implicit
continuations, a programmer only needs to indicate
where the original computation suspends and waits for
the subtasks to complete.

A generalization of this style is event-driven pro-
gramming, which uses a finite state automaton (FSA) to
control a reactive system [26, 29]. The FSA logic is
encapsulated in a stage and is driven by external events,
such as network messages and I/O completions, and
internal events from other asynchronous stages. An
operation’s closure contains the FSA state for a particu-
lar server request. The FSA changes state when a child
operation completes or external events arrive. These
transitions invoke computations associated with edges
in the FSA. Each computation runs until it blocks and
specifies the next state in the FSA.

Wait for
children

Stage-A Stage-B
invoke op-x

invoke op-y

op-x done

op-y done

op-x

op-y

op-a

86

2053
135 3825

2732

2189

993

191

2

1

11

886

977

1721

1897

1221

1336

921

1015

673

689

100 197

651

1328

614

105 269

480

966

471

106

222

841

1088

838

101

200

100

100

100

105

199

105

105

106

191

106

106

101

186

101

101

83

100

160

105

114

106

34
87

101

1395

7

3342

5

2560

4531328

[2] Aggregate

2
.9

0.0
162

143787

63.6
19979
31896

18.2
19981

111891

2
.9

0.0
437

143991

63.3
18132
32103

18.2
18134

111888

2
.9

0.1
210

144385

67.2
18273
32519

19.7
18313

111866

2
.9

0.0
155

143826

64.3
20306
32008

18.6
20321

111818

[1] FileCache

3
.5

1.1
10477

623959

14.7
22410

155930

6.4
24094

468010

3
.6

1.2
13186

571800

16.1
20519

141832

6.9
22583

429959

3
.5

1.4
12877

493762

20.8
21685

118989

8.3
23181

374765
3

.8
1.2

13511
716325

12.6
21892

183892

6.0
24367

532409

3

[4] Network

3
.9

3.9
16917

834769

114.7
963600

370464

98.2
968400

464136

3
.9

4.6
15742

712898

120.9
692580

317115

104.3
699020

395647

4
.1

4.4
17050

711512

108.3
697590

315537

94.7
703690

395885

3
.9

5.2
18288

767838

113.1
695780

342085

98.9
701860

425635

1

34209

[0] Web

2
.7

1.5
15524

692566

1118338.4
34800888500

691962

30906.1
549356

189

2
.8

1.4
12537

632337

2174874.8
40600595460

631780

35637.7
714204

186

2
.8

1.5
13076

575098

1463461.1
29000687770

574692

22186.0
790000

129

2
.9

1.4
15348

705170

2426046.1
34800683760

704457

22321.5
789000

311

11

[3] Disk

2
.4

7.8
13674

108131

43.4
12934
30313

28.4
22345
77818

2
.5

7.8
12391

105343

43.9
12931
30292

29.4
20016
75051

2
.5

8.5
14162

102281

43.6
12252
30316

31.2
21005
71965

2
.4

8.1
13639

109100

43.8
12519
30315

28.8
21196
78785

Figure 4 Profile of staged web server (Section 5.1). The performance metrics for each stage are broken down by processor (the system is
running on four processors). The first column is the average queue length. The second column contains three metrics on operations at the
stage: the quantity, the average wait time (millisecond), and the maximum wait time. The third column contains corresponding metrics for
operations that are suspended and restarted. The fourth column contains corresponding metrics for completed operations. The numbers
on arcs are the number of operations started or restarted between two stage-processor pairs.

For example, the web server used in Section 5.1 is
driven by a control-logic stage consisting of a FSA with
fifteen states. The FSA describes the process by which
a HTTP GET request arrives and is parsed, the refer-
enced file is found in the cache or on disk, the file
blocks are read and transmitted, and the file and con-
nection are closed.

Describing the control logic of a server as a FSA
opens the possibility of verifying many properties of the
entire system, such as deadlock freedom, by applying
techniques, such as model checking [15, 22], developed
to model and verify systems of communicating FSAs.

3.43.43.43.4 Scheduling Policy RefinementsScheduling Policy RefinementsScheduling Policy RefinementsScheduling Policy Refinements

The third attribute of a stage is scheduling auton-
omy. When a stage is activated on a processor, the stage
determines which operations execute and their order.
This scheduling freedom allows several refinements of
cohort scheduling to reduce the need for synchroniza-
tion. In particular, we found three policies useful:

• An exclusive stage executes at most one of its op-
erations at a time. Since operations run sequentially
and completely, access to stage-local data does not
need synchronization. This type of a stage is similar
to a monitor, except that its interface is asynchro-
nous: clients delegate computation to the stage,
rather than block to obtain access to a resource.
When this strict serialization does not cause a per-
formance bottleneck, this policy offers fast, error-
free access to data and a simple programming
model. This approach works well for fine-grained
operations, as the cost of acquiring and releasing the

stage’s mutex can be amortized over a cohort of op-
erations [25].

• A partitioned stage divides invocations (based on a
key passed as a parameter), to avoid sharing data
among operations running on different processors.
For example, consider a file cache stage that parti-
tions requests using a hash function on the file
number. Each processor maintains its own hash ta-
ble of in-memory disk blocks. Each hash table is ac-
cessed by only one processor, which enhances local-
ity and eliminates synchronization. This policy,
which is reminiscent of shared-nothing databases,
permits parallel data structures without fine-grain
synchronization.

• A shared stage runs its operations concurrently on
many processors. Since several operations in a stage
can execute concurrently, shared data accesses must
be synchronized.

Other policies are possible and could be easily imple-
mented within a stage.

It is important keep in mind that these policies are
implemented within the more general framework of
cohort scheduling. When a stage is activated on a proc-
essor, it executes its outstanding operations, one after
another. Nothing in the staged model requires cohort
scheduling. Rather the programming model and sched-
uling policy naturally fit together. A stage groups logi-
cally related operations that share data and provides the
freedom to reorder computations. Cohort scheduling
exploits scheduling freedom by consecutively running
similar operations.

3.53.53.53.5 UnderstandingUnderstandingUnderstandingUnderstanding Performance Performance Performance Performance
A compelling advantage of the Staged model is

that the performance of the system is relatively easy to
visualize and understand. Each stage is similar to a
node in a queuing system. Parameters, such as average
and maximum queue length, average and maximum
wait time, and average and maximum processing time,
are easily measured and displayed (Figure 4). These
measurements provide a good overview of system per-
formance and help identify bottlenecks.

3.63.63.63.6 Stage Computation ExampleStage Computation ExampleStage Computation ExampleStage Computation Example
As an example of staged computation, consider the

file cache used by the web server in Section 5.1. A file
cache is an important component in many servers. It
stores recently accessed disk blocks in memory and
maps a file identifier and offset to a disk block.

The staged file cache consists of three partitioned
stages (Figure 5). The cache is logically partitioned
across the processors, so each one manages a unique
subset of the files, as determined by the hashed file
identifier. Alternatively, for large files, the file identi-
fier and offset can be hashed together, so a file’s disk
blocks are stripped across the table. Within the stage,
each processor maintains a hash table that maps file
identifiers to memory-resident disk blocks. Since a
processor references only its table, accesses require no
synchronization and data does not migrate between
processor caches.

If a disk block is not cached in memory, the cache
invokes an operation on the I/O Aggregator stage,
whose role is to merge requests for adjacent disk blocks
to improve system efficiency. This stage utilizes cohort
scheduling in a different way, by accumulating I/O re-
quests in a cohort and combining them into a larger I/O
request on the operating system.

The Disk I/O stage reads and writes disk blocks. It
issues asynchronous system calls to perform these op-
erations and, for each, invokes an operation in the Event
Server stage describing a pending I/O. This operation
suspends until the I/O completes. This stage interfaces
the operating system’s asynchronous notification
mechanism to the staged programming model. It util-
izes a separate thread, which waits on an I/O Comple-
tion Port that the system uses to signal completion of
asynchronous I/O. At each notification, this stage
matches an event with a waiting closure, which it re-
enables and passes the information from the Comple-
tion Port. The Disk I/O stage, in turn, returns disk
blocks to the I/O Aggregator, which passes them to the
FileCache stage, where the data are recorded and
passed back to the client.

Figure 5. Architecture of staged file cache. Requests for disk
blocks are partitioned across processors to avoid sharing the hash
table. If a block is not found, it is requested from an I/O aggrega-
tor, which combines requests for adjacent blocks and passes
them to a disk I/O stage that asynchronously reads the files. When
an I/O completes, an event server thread is notified, which passes
the completion back to the disk I/O stage.

4444 SSSStagedServer LibrarytagedServer LibrarytagedServer LibrarytagedServer Library
The StagedServer library is a collection of C++

classes that implement staged computation and cohort
scheduling on either a uniprocessor or multiprocessor.
This library enables a programmer to define stages,
operations, and policies by writing only application-
specific code. Moreover, StagedServer implements an
aggressive and efficient version of cohort scheduling.
This section briefly describes the library and its primary
interfaces.

The library’s functionality is partitioned between
two principal classes. The first is the Stage class, which
provides stage-local storage and mechanisms for col-
lecting and scheduling operations. The second is the
Closure class, which encapsulates an operation and its
continuations, provides per-invocation state, and sup-
ports invoking an operation and returning its result. The
fundamental action in a StagedServer system is to in-
voke an operation by creating and initializing a closure
and handing it to a stage.

4.14.14.14.1 Stage ClassStage ClassStage ClassStage Class
The Stage class is a templated base class that an

application uses to derive classes for its various stages.
The base class provides the basic functionality for man-
aging closures and for scheduling and executing opera-
tions on processors.

FileCacheFileCacheFileCacheFileCache Disk I/ODisk I/ODisk I/ODisk I/OI/OI/OI/OI/O
AggregatorAggregatorAggregatorAggregator

FileCacheFileCacheFileCacheFileCache Disk I/ODisk I/ODisk I/ODisk I/OI/OI/OI/OI/O
AggregatorAggregatorAggregatorAggregator

FileCacheFileCacheFileCacheFileCache Disk I/ODisk I/ODisk I/ODisk I/OI/OI/OI/OI/O
AggregatorAggregatorAggregatorAggregator

EventEventEventEvent
ServerServerServerServer

CPU 1CPU 1CPU 1CPU 1

CPU 2CPU 2CPU 2CPU 2

CPU 3CPU 3CPU 3CPU 3

DD DD
ee ee mm mm

uu uu ll ll
tt tt ii ii

pp pp
ll ll ee ee

xx xx ee ee
rr rr

FileCacheFileCacheFileCacheFileCache
StageStageStageStage

I/OI/OI/OI/O
AggregatorAggregatorAggregatorAggregator

StageStageStageStage

Disk I/ODisk I/ODisk I/ODisk I/O
StageStageStageStage

Event ServerEvent ServerEvent ServerEvent Server
StageStageStageStage

4.1.14.1.14.1.14.1.1 Scheduling PolicyScheduling PolicyScheduling PolicyScheduling Policy

StagedServer implements a cohort scheduling pol-
icy, with enhancements to increase the processor affin-
ity of data. The assignment of operations to processors
occurs when an operation is submitted to a stage. By
default, an operation invoked by code running on proc-
essor p executes on processor p in subsequent stages.
This affinity policy enhances temporal locality and re-
duces cache traffic, as the operation’s data tend to re-
main in the processor’s cache. However, a program can
override the default and execute an operation on a dif-
ferent processor when: the processor to execute the
operation is explicitly specified, a stage partitions its
operations among processors, or a stage uses load bal-
ancing to redistribute operations.

A stage maintains a stack and queue for each proc-
essor in the system. In general, operations originating
on the local processor are pushed on the stack and op-
erations from other processors are enqueued on the
queue. When a stage starts processing a cohort, it first
empties its stack in LIFO order, before turning to the
queue. This scheme has two rationales. Processing the
most recently invoked operations first increases the
likelihood that an operation’s data will reside in the
cache. In addition, the stack does not require synchroni-
zation, since it is only accessed by one processor, which
reduces the common-case cost of invoking an opera-
tion.

4.1.24.1.24.1.24.1.2 Processor SchedulingProcessor SchedulingProcessor SchedulingProcessor Scheduling

StagedServer currently uses a simple, wavefront
algorithm to supply processors to stages. A programmer
specifies an ordering of the stages in an application. In
wavefront scheduling, processors independently alter-
nate forward and backward traversals of this list of
stages. At each stage, a processor executes operations
pending in its stack and queue. When the operations are
finished, the processor proceeds to the next stage. If the
processor repeatedly finds no work, it sleeps for expo-
nentially increasing periods of time interval. If a proc-
essor cannot gain access to an Exclusive stage, because
another processor is already working in the stage, the
processor skips the stage.

The alternating traversal order in wavefront sched-
uling corresponds to a common communications
pattern, in which a stage passes requests to its succes-
sors, which perform a computation and produce a re-
sult. It is easy to imagine other scheduling policies, but
we have not evaluated them, as this approach works
well for the applications we have studied. This topic is
worth further investigation.

4.1.34.1.34.1.34.1.3 ThresholdsThresholdsThresholdsThresholds
An orthogonal attribute of a stage is a pair of

thresholds that force StagedServer to activate a stage if
more than a given number of operations are waiting or
after a fixed interval. When either situation arises,
StagedServer stops the currently running stage (after it
completes its operation), runs the threshold-exceeding
stage, and then returns to the suspended stage. For sim-
plicity, an interrupting stage cannot be interrupted, so
that other stages that exceed their thresholds are de-
ferred until processing returns to original stage. Thresh-
olds are particularly useful for latency-sensitive stages,
such as those interacting with the operating system,
which must be regularly supplied with I/O requests to
ensure that devices do not go idle.

Another useful refinement is a feedback mecha-
nism, by which a stage informs other stages that it has
sufficient tasks. These other stages can suspend proc-
essing, effectively turning the processor over to the first
stage. So far, voluntary cooperation, rather than hard
queue limits, has sufficed.

4.1.44.1.44.1.44.1.4 Partitioned DataPartitioned DataPartitioned DataPartitioned Data
A partitioned stage typically divides its data, so

that the operations running on a processor access only a
non-shared portion. Avoiding sharing eliminates the
need to synchronize access to the data and reduces the
cache traffic that results when data are accessed from
more than one processor. The current system partitions
a variable—using the well-known technique of privati-
zation [30]—by storing its values in a vector with an
entry for each processor. Code uses the processor id to
index this vector and obtain a private value.

4.24.24.24.2 Closure ClassClosure ClassClosure ClassClosure Class
Closure is a templated base class for defining clo-

sures, which are a combination of code and data.
StagedServer uses closures to implement operations and
their continuations. When an operation is first invoked
on a stage, the invoker creates a closure and initializes
it with parameter values. Later, the stage executes the
operation by invoking one of the closure’s methods, as
specified by the operation invocation. This method is an
ordinary C++ method. When it returns, the method
must state whether the operation is complete (and op-
tionally returns a value), if it is waiting for a child to
finish, or if it is waiting for another operation to resume
its execution.

An operation can invoke operations on other
stages—its children. The original operation waits for its
children by providing a continuation routine that the
system runs when the children finish. This continuation
routine is simply another method in the original closure.

The closure passes arguments between a parent and its
continuation and results between a child and its parent.
This process may repeat multiple times, with each con-
tinuation taking on the role of a parent. In other words,
these closures are actually multiple-entry closures, with
an entry for the original operation invocation and en-
tries for subsequent continuations. In practice, a stage
treats these methods identically and does not distin-
guish between an operation and its continuation.

5555 Experimental EvaluationExperimental EvaluationExperimental EvaluationExperimental Evaluation
To evaluate the benefits of cohort scheduling and

the StagedServer library, we built two prototypical
server applications. The first—a web server—is I/O-
bound, as its task consists of responding to HTTP GET
requests by retrieving files from a disk or file cache and
sending them over a network. The second—a publish-
subscribe server—is compute bound, as the amount of
data transferred is relatively small, but the computation
to match an event against a database of subscriptions is
expensive and memory-intensive.

5.15.15.15.1 I/OI/OI/OI/O----Intensive ServerIntensive ServerIntensive ServerIntensive Server
To compare threads against stages, we imple-

mented two web servers. The first is structured using a
thread pool (THWS) and the second uses StagedServer
(SSWS). We took care to make the two servers efficient
and comparable and to share common code. In particu-
lar, both servers use Microsoft Window’s asynchronous
I/O operations. The threaded server was organized in a
conventional manner as a thread accepting connections
and passing them to a pool of 256 worker threads, each
of which performs the server’s full functionality: pars-
ing a request, reading a file, and transmitting its con-
tents. This server used the kernel’s file cache. The
SSWS server also can process up to 256 simultaneously
requests. It was organized as a control logic stage, a
network I/O stage, and the disk I/O and caching stages
described in Section 3.6. The parameters were chosen
by experimentation and yielded robust performance for
the benchmark and hardware configuration.

As a baseline for comparison, we also ran the ex-
periments on Microsoft’s IIS web server, which is a
highly tuned commercial product. IIS performed better
than the other servers, but the difference was small,
which partially validates their implementations.

Our test configuration consisted of a server and
three clients. The server was Compaq Proliant DL580R
containing four 700MHz Pentium III-Xeon processors
(2MB L2 cache) and 4GB of RAM. It had eight

10000RPM SCSI3 disks, connected to a Compaq Smart
Array controller. The clients ran on Dell PowerEdge
6350s, each containing four 400MHz Pentium II Xeon
processors with 1GB of RAM. The clients and server
were connected by a dedicated Gigabit Ethernet net-
work and both ran Windows 2000 Server (SP1).

We used the SURGE benchmark, which retrieves
web pages, whose size, distributions, and reference
pattern are modeled on actual systems [8]. SURGE
measures the ability of a web server to process HTTP
GET requests, retrieve pages from a disk, and send
them back to a client. This benchmark does not attempt
to capture the full behavior of a web server, which must
handle other types of HTTP requests, execute dynamic
content, perform server management, and log data. To
increase the load, we run a large configuration, with a
web site of 1,000,000 pages (20.1GB) and a reference
stream containing 6,638,449 requests. A SURGE work-
load is characterized by User-Equivalents (UEs), each
of which models one user accessing the web site. We
found that we could run up to 2000 UEs per client. All
tests were run with the UE workload balanced across
the client machines. The reported numbers are for 15
minutes of client execution, starting with a freshly ini-
tialized server.

Figure 6 shows the bandwidth and latency of the
thread (THWS) and StagedServer (SSWS) servers, and
compares them against a commercial web server (IIS).
The first chart contains the number of pages retrieved
by the clients per second (since requests follow a fixed
sequence, the number of pages is a measure of band-
width) and the second chart contains the average la-
tency, perceived by a client, to retrieve a page.

Several trends are notable. Under light load,
SSWS’s performance is approximately 6% lower than
THWS, but as the load increases, SSWS responds to as
many as 13% more requests per unit time. The second
chart, in part, explains this difference. SSWS’s latency
is higher than THWS’s latency under light load (by a
factor of almost 20), but as the load increases, SSWS’s
latency grows only 2.3 times, but THWS’s latency in-
creases 45 times, to a level equal to SSWS’s.

The commercial server, Microsoft’s IIS, outper-
formed SSWS by 4–9% and THWS by 0–22%. Its la-
tency under heavy load was up to 45% better than the
other servers’ latency.

Figure 6. Performance of web servers. These charts show the
performance of the threaded server (THWS), StagedServer server
(SSWS), and Microsoft’s IIS server (IIS). The first records the num-
ber of web pages received by the clients per second. The second
records the average latency, as perceived by the client, to retrieve
a page. The error bars are the standard deviation of the latency.

Figure 7. Processor performance of servers. These charts show
the processor performance of the threaded (THWS) and Staged-
Server (SSWS) web server. The first chart shows the cycles per
instruction (CPI) and the second shows the rate of L2 cache
misses.

SSWS performance, which is more stable and pre-
dictable under heavy load than the threaded server, is
appropriate for servers, in which performance chal-
lenges arise as offered load increases. SSWS server’s
overall performance was relatively better and its proc-
essor performance degraded less under load than the
THWS server. The improved processor performance
was reflected in a measurably improved throughput
under load.

5.25.25.25.2 ComputeComputeComputeCompute----Bound ServerBound ServerBound ServerBound Server

To evaluate the performance of StagedServer on a
compute-bound application, we also built a simple pub-
lish-subscribe server. The server used an efficient,
cache-friendly algorithm to match events against an in-
core database of subscriptions [16]. A subscription is a
conjunction of terms comparing variables against inte-
ger. An event is a set of assignments of values to vari-
ables. An event matches a subscription if all of its terms
are satisfied by the value assignments in the event.

Both the threaded (THPS) and StagedServer
(SSPS) version of this application shared a common

publish-subscribe implementation; the only difference
between them was the use of threads or stages to struc-
ture the computation. The benchmark was the Fabret
workload: 1,000,000 subscriptions and 100,000 events.
The platform was the same as above.

The response time of the StagedServer version to
events was better under load (Figure 8). With four or
more clients publishing events, the THPS responded in
an average of 0.57 ms to each request. With four cli-
ents, SSPS responded in an average time of 0.53 ms,
and its response improved to 0.47 ms with 16 or more
clients (21% improvement over the threaded version).

In large measure, this improvement is due to im-
proved processor usage (Figure 8). With 16 clients,
SSPS averaged 2.0 cycles per instruction (CPI) over the
entire benchmark, while THPS averaged 2.7 CPI (26%
reduction). Over the compute-intensive event matching
portion, SSPS averaged 1.7 CPI, while THPS averaged
2.5 CPI (33% reduction). In large measure, this im-
provement is attributable to a greater than 50% reduc-
tion in L2 caches misses, from 58% of user-space L2
cache requests (THPS) to a 26% of references (SSPS).

CPICPICPICPI

0.00.00.00.0
0.50.50.50.5
1.01.01.01.0
1.51.51.51.5
2.02.02.02.0
2.52.52.52.5
3.03.03.03.0
3.53.53.53.5
4.04.04.04.0

1000100010001000 2000200020002000 3000300030003000 4000400040004000 5000500050005000 6000600060006000

U EsU EsU EsU Es

Cy
cl

es
/I

ns
tr

uc
ti

on
Cy

cl
es

/I
ns

tr
uc

ti
on

Cy
cl

es
/I

ns
tr

uc
ti

on
Cy

cl
es

/I
ns

tr
uc

ti
on

THW STHW STHW STHW S
SSWSSSWSSSWSSSWS

L2 Cache MissesL2 Cache MissesL2 Cache MissesL2 Cache Misses

0%0%0%0%

2%2%2%2%

4%4%4%4%

6%6%6%6%

8%8%8%8%

10%10%10%10%

12%12%12%12%

14%14%14%14%

1000100010001000 2000200020002000 3000300030003000 4000400040004000 5000500050005000 6000600060006000

U EsU EsU EsU Es

M
is

s
R

at
e

M
is

s
R

at
e

M
is

s
R

at
e

M
is

s
R

at
e

THW S L2 KernelTHW S L2 KernelTHW S L2 KernelTHW S L2 Kernel
SSW S L2 KernelSSW S L2 KernelSSW S L2 KernelSSW S L2 Kernel

THW S L2 U serTHW S L2 U serTHW S L2 U serTHW S L2 U ser
SSW S L2 U serSSW S L2 U serSSW S L2 U serSSW S L2 U ser

HTTP GET LatencyHTTP GET LatencyHTTP GET LatencyHTTP GET Latency

0000

200200200200

400400400400

600600600600

800800800800

1000100010001000

1200120012001200

1000100010001000 2000200020002000 3000300030003000 4000400040004000 5000500050005000 6000600060006000

U EsU EsU EsU Es

Av
g.

 L
at

en
cy

 (
m

ill
is

ec
.)

Av
g.

 L
at

en
cy

 (
m

ill
is

ec
.)

Av
g.

 L
at

en
cy

 (
m

ill
is

ec
.)

Av
g.

 L
at

en
cy

 (
m

ill
is

ec
.)

THW STHW STHW STHW S
SSW SSSW SSSW SSSW S
IISI ISI ISI IS

HTTP GET Bandw idthHTTP GET Bandw idthHTTP GET Bandw idthHTTP GET Bandw idth

0000

500500500500

1,0001,0001,0001,000

1,5001,5001,5001,500

2,0002,0002,0002,000

2,5002,5002,5002,500

3,0003,0003,0003,000

3,5003,5003,5003,500

1000100010001000 2000200020002000 3000300030003000 4000400040004000 5000500050005000 6000600060006000

U EsU EsU EsU Es

Pa
ge

s/
Se

c
Pa

ge
s/

Se
c

Pa
ge

s/
Se

c
Pa

ge
s/

Se
c

THW STHW STHW STHW S
SSW SSSW SSSW SSSW S
IISI ISI ISI IS

Processor Performance (16 Clients)

0.00

1.00

2.00

3.00

4.00

1 3 5 7 9 11 13 15 17 19 21 23

Interval

Av
er

ag
e

CP
I

Threaded StagedServer

Figure 8, Performance of Publish-Subscribe server. The top chart
records the average response time to match publish events
against subscriptions. The bottom chart compares average cycles
per instruction (CPI) of the thread and StagedServer versions over
25 second intervals. The initial part of each curve is the construc-
tion of internal data structures, while the flat part of the curves is
the event matching.

This application references a large data structure
(approximately 66.7MB for the benchmark). When
matching an event against subscriptions, Fabret’s algo-
rithm, although cache-efficient, may access a large
amount of data, and the particular locations are data
dependent. StagedServer’s performance advantage re-
sults from two factors. First, its code is organized so
that only one processor references a given subset of the
subscriptions, which reduces the number of distinct
locations a processor references, and hence increases
the possibility of data reuse. Without this locality opti-
mization, SSPS runs at the same speed as THPS. Sec-
ond, StagedServer batches cohorts of event matches in
this data structure. We measured the benefit of cohort
scheduling by limiting cohort size. Cohorts of four
items reduced SSPS performance by 21%, ten items
reduced performance by 17%, and twenty items re-
duced performance by 9%.

Both optimizations would be beneficial in threaded
code, but the structure of the resulting server would be
isomorphic to the StagedServer version, with a thread
bound to each processor performing event lookups on a

subset of the data structure, and a queue in front of each
process to accumulate a cohort.

6666 Related WorkRelated WorkRelated WorkRelated Work

The advantages and disadvantages of threads and
processes are widely known [5]. More recently, several
papers have investigated alternative server architec-
tures. Chankhunthod et al. described the Harvest web
cache, which uses an event-driven, reactive architecture
to invoke computation at transitions in its state-machine
control logic [13]. The system, like StagedServer, uses
non-blocking I/O; careful avoidance of page faults; and
a non-blocking, non-preemptive scheduling policy [7,
26]. Pai proposed a four-fold characterization of server
architectures: multi-process, multi-threaded, single-
process event driven, and asymmetric multi-process
event driven [26]. These alternatives are orthogonal to
the task scheduling policy, and as the discussion in Sec-
tion 2 illustrates, cohort scheduling could increase their
locality. Pai’s favored event-driven programming style
offers many opportunities for cohort scheduling, since
event handlers partition a computation into distinct,
easily identifiable subcomputations with clear operation
boundaries. On the other hand, ad-hoc event systems
offer no obvious way to group handlers that belong in
the same cohort or to associate data with operations.
Section 3 describes staged computation, a programming
model that provides a programmer with control over the
computation in a cohort.

Welsh recently described the SEDA system, which
is similar to the staged computation model [29]. SEDA,
unlike StagedServer, does not use explicit cohort
scheduling, but instead uses stages as an architecture
for structuring event-driven servers. His performance
results are similar for I/O intensive server applications.

Blackwell used blocked layer processing to im-
prove the instruction locality of a TCP/IP stack [10]. He
noted that the TCP/IP code was larger than the MIPS
R2000 instruction cache, so that when the protocol
stack processed a packet completely, no code from the
lower protocol layers remained in cache for the next
packet. His solution was to process several packets to-
gether at each layer. The modified stack had a lower
cache miss rate and reduced processing latency. Black-
well related his approach to blocked matrix computa-
tions [19], but his focus was instruction locality. Cohort
scheduling, whose genesis predates Blackwell, is a
more general scheduling policy and system architec-
ture, which is applicable when a computation is not as
cleanly partionable as a network stack. Moreover, co-
hort scheduling improves data, not just instruction, lo-
cality and reduces synchronization as well.

Average Response Time

0.0
0.2
0.4
0.6
0.8
1.0

0 20 40 60 80

Number of Clients

R
es

po
ns

e
Ti

m
e

(m
s)

Threaded StagedServer

A stage is similar in some respects to an object in
an object-based language, in that it provides both local
state and operations to manipulate it. The two differ
because objects are, for the most part, passive and their
methods are synchronous—though asynchronous object
models exist. Many object-oriented languages, such as
Java [17], integrate threads and synchronization, but the
active entity remains a thread synchronously run a
method on a passive object. By contrast, in staged com-
putation, a stage is asked to perform an operation, but is
given the autonomy to decide how and when to actually
execute the work. This decoupling of request and re-
sponse is valuable because it enables a stage to control
its concurrency and to adopt an efficient scheduling
policy, such as cohort scheduling.

Stages are similar in some respects to Agha’s Ac-
tors [3]. Both start with a model of asynchronous com-
munication between autonomous entities. Actors have
no internal concurrency and do not give entities control
over their scheduling, but instead presume a reactive
model in which an Actor responds to a message by in-
voking a computation. Stages, because of the internal
concurrency and scheduling autonomy, are better suited
to cohort scheduling. Actors are, in turn, an instance of
dataflow, a more general computing model [23, 24].
Stages also can be viewed as an instance of dataflow
computation.

Cilk is language based on a provably efficient
scheduling policy [11]. The language is thread, not ob-
ject, based, but it shares some characteristics with
stages. In both, once started, a computation is not pre-
empted. While running, a computation can spawn off
other tasks, which return their results by invoking a
continuation. However, Cilk’s work stealing scheduling
policy does not implement cohort scheduling, nor is it
under program control. Recent work, however, has im-
proved the data locality of work stealing scheduling
algorithms [1].

JAWS is an object-oriented framework for writing
web servers [18]. It consists of a collection of design
patterns, which can be used to construct servers adapted
to a particular operating system by selecting an appro-
priate concurrency mechanism (processes or threads),
creating a thread pool, reducing synchronization, cach-
ing files, using scatter-gather I/O, or employing various
http and TCP-specific optimizations. StagedServer is a
simpler library that provides a programming model that
directly enhances program locality and performance.

An earlier version of this work was published as a
short, extended abstract [21].

7777 ConclusionConclusionConclusionConclusion

Servers are commonly structured as a collection of
parallel tasks, each of which executes all the code nec-
essary to process a request. Threads, processes, or event
handlers underlie the software architecture of most
servers. Unfortunately, this software architecture can
interact poorly with modern processors, whose per-
formance depends on mechanisms—caches, TLBs, and
branch predictors—that exploit program locality to
bridge the increasing processor-memory performance
gap. Servers have little inherent locality. A thread typi-
cally runs for a short and unpredictable amount of time
and is followed by an unrelated thread, with its own
working set. Moreover, servers interact frequently with
the operating system, which has a large and disruptive
working set. The poor processor performance of servers
is a natural consequence of their threaded architecture.

As a remedy, we propose cohort scheduling, which
increases server locality by consecutively executing
related operations from different server requests. Run-
ning similar code on a processor increases instruction
and data locality, which aids hardware mechanisms,
such as cache and branch predictors. Moreover, this
architecture naturally issues operating system requests
in batches, which reduces the system’s disruption.

This paper also describes the staged computation
programming model, which supports cohort scheduling
by providing an abstraction for grouping related opera-
tions and mechanisms through which a program can
implement cohort scheduling. This approach has been
implemented in the StagedServer library. In a series of
tests using a web server and publish-subscribe server,
the StagedServer code performed better than threaded
code, with a lower level of cache misses and instruction
stalls and better performance under heavy load.

AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgements

This work has on going for a long time, and count-
less people have provided invaluable insights and feed-
back. This list is incomplete; and we apologize for
omissions. Rick Vicik made important contributions to
the idea of cohort scheduling and the early implementa-
tions. Jim Gray has been a ceaseless supporter and ad-
vocate of this work. Kevin Zatloukal helped write the
web server and run many early experiments. Trishul
Chilimbi, Jim Gray, Vinod Grover, Mark Hill, Murali
Krishnan, Paul Larson, Milo Martin, Ron Murray, Luke
McDowell, Scott McFarling, Simon Peyton-Jones,
Mike Smith, and Ben Zorn provided many helpful
questions and comments. The referees and shepherd,
Carla Ellis, provided many helpful comments.

ReferencesReferencesReferencesReferences
[1] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe, "The
Data Locality of Work Stealing," in Proceedings of the Twelfth ACM
Symposium on Parallel Algorithms and Architectures (SPAA). Bar
Harbor, ME, July 2000.

[2] Atul Adya, Jon Howell, Marvin Theimer, William J. Bolosky,
and John R. Douceur, "Cooperative Tasking without Manual Stack
Management," in Proceedings of the 2002 USENIX Annual Techni-
cal Conference. Monterey, CA, June 2002.

[3] Gul A. Agha, ACTORS: A Model of Concurrent Computation
in Distributed Systems. Cambridge, MA: MIT Press, 1988.

[4] Anastassia G. Ailamaki, David J. DeWitt, Mark D. Hill, and
David A. Wood, "DBMSs on a Modern Processor: Where Does Time
Go?," in Proceedings of 25th International Conference on Very
Large Data Bases. Edinburgh, Scotland: Morgan Kaufmann, Septem-
ber 1999, pp. 266-277.

[5] Thomas E. Anderson, "The Performance Implications of Thread
Management Alternatives for Shared-Memory Multiprocessors,"
IEEE Transactions on Parallel and Distributed Systems, vol. 1, num.
1, pp. 6-16, 1990.

[6] Andrew W. Appel, Compiling with Continuations. Cambridge
University Press, 1992.

[7] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul, "Better
Operating System Features for Faster Network Servers," in Proceed-
ings of the Workshop on Internet Server Performance. Madison, WI,
June 1998.

[8] Paul Barford and Mark Crovella, "Generating Representative
Web Workloads for Network and Server Performance Evaluation," in
Proceedings of the 1998 ACM SIGMETRICS Joint International
Conference on Measurement and Modeling of Computer Systems.
Madison, WI, June 1998, pp. 151-160.

[9] Luiz André Barroso, Kourosh Gharachorloo, and Edouard
Bugnion, "Memory System Characterization of Commercial Work-
loads," in Proceedings of the 25th Annual International Symposium
on Computer Architecture. Barcelona, Spain, June 1998, pp. 3-14.

[10] Trevor Blackwell, "Speeding up Protocols for Small Messages,"
in Proceedings of the ACM SIGCOMM '96 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer
Communication. Palo Alto, CA, August 1996, pp. 85-95.

[11] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou, "Cilk: An
Efficient Multithreaded Runtime System," Journal of Parallel and
Distributed Computing, vol. 37, num. 1, pp. 55-69, 1996.

[12] Satish Chandra, Bradley Richards, and James R. Larus, "Teapot:
A Domain-Specific Language for Writing Cache Coherence Proto-
cols," IEEE Transactions on Software Engineering, vol. 25, num. 3,
pp. 317-333, 1999.

[13] Anawat Chankhunthod, Peter Danzig, Chuck Neerdaels, Mi-
chael F. Schwartz, and Kurt J. Worrell, "A Hierarchical Internet Ob-
ject Cache," in Proceedings of the USENIX 1996 Annual Technical
Conference. San Diego, CA, January 1996.

[14] Richard P. Draves, Brian N. Bershad, Richard F. Rashid, and
Randall W. Dean, "Using Continuations to Implement Thread Man-
agement and Communication in Operating Systems," in Proceedings
of the Thirteenth ACM Symposium on Operating System Principles.
Pacific Grove, CA, October 1991, pp. 122-136.

[15] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled,
Model Checking. Cambridge, MA: MIT Press, 1999.

[16] Françoise Fabret, H. Arno Jacobsen, François Llirbat, Joao
Pereira, Kenneth A. Ross, and Dennis Shasha, "Filtering Algorithms
and Implementation for Very Fast Publish/Subscribe Systems," in
Proceedings of the 2001 ACM SIGMOD International Conference on
Management of Data and Symposium on Principles of Database
Systems. Santa Barbara, CA, May 2001, pp. 115-126.

[17] James Gosling, Bill Joy, and Guy Steele, The Java Language
Specification: Addison Wesley, 1996.

[18] James Hu and Douglas C. Schmidt, "JAWS: A Framework for
High-performance Web Servers," in Domain-Specific Application
Frameworks: Frameworks Experience By Industry, M. Fayad and R.
Johnson, Eds.: John Wiley & Sons, October 1999.

[19] F. Irigoin and R. Troilet, "Supernode Partitioning," in Proceed-
ings of the Fifteenth Annual ACM Symposium on Principles of Pro-
gramming Languages. San Diego, CA, January 1988, pp. 319-329.

[20] Kimberly Keeton, David A. Patterson, Yong Qiang He, Roger
C. Raphael, and Walter E. Baker, "Performance Characterization of a
Quad Pentium Pro SMP Using OLTP Workloads," in Proceedings of
the 25th Annual International Symposium on Computer Architecture.
Barcelona, Spain, June 1998, pp. 15-26.

[21] James R Larus and Michael Parkes, "Using Cohort Scheduling
to Enhance Server Performance (Extended Abstract)," in Proceedings
of the Workshop on Optimization of Middleware and Distributed
Systems. Snowbird, UT, June 2001, pp. 182-187.

[22] James R. Larus, Sriram K. Rajamani, and Jakob Rehof, "Behav-
ioral Types for Structured Asynchronous Programming," Microsoft
Research, Redmond, WA, May 2001.

[23] Edward A. Lee and Thomas M. Parks, "Dataflow Process Net-
works," Proceedings of the IEEE, vol. 83, num. 5, pp. 773-799, 1995.

[24] Walid A. Najjar, Edward A. Lee, and Guang R. Gao, "Advances
in the Dataflow Computation Model," Parallel Computing, vol.
251907-1929, 1999.

[25] Yoshihiro Oyama, Kenjiro Taura, and Akinori Yonezawa,
"Executing Parallel Programs with Synchronization Bottlenecks
Efficiently," in Proceedings of International Workshop on Parallel
and Distributed Computing for Symbolic and Irregular Applications
(PDSIA '99). Sendai, Japan: World Scientific, July 1999, pp. 182-
204.

[26] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel, "Flash: An
Efficient and Portable Web Server," in Proceedings of the 1999
USENIX Annual Technical Conference. Monterey, CA, June 1999,
pp. 199-212.

[27] David A. Patterson and John L. Hennessy, Computer Architec-
ture: A Quantitative Approach, 2 ed. Morgan Kaufmann, 1996.

[28] Sharon Perl and Richard L. Sites, "Studies of Windows NT
Performance using Dynamic Execution Traces," in Proceedings of the
Second USENIX Symposium on Operating Systems Design and
Implementation (OSDI). Seattle, WA, October 1997, pp. 169-183.

[29] Matt Welsh, David Culler, and Eric Brewer, "SEDA: An Archi-
tecture for Well-Conditioned, Scalable Internet Services," in Proceed-
ings of the 18th ACM Symposium on Operating Systems Principles
(SOSP '01). Alberta, Canada, October 2001, pp. 230-243.

[30] Michael J. Wolfe, High Performance Compilers for Parallel
Computing. Addison-Wesley, 1995.

