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Abstract

Content Distribution Networks (CDNs) attempt to im-
prove Web performance by delivering Web content to
end-users from servers located at the edge of the net-
work. An important factor contributing to the perfor-
mance improvement is the ability of a CDN to select
servers in the proximity of the requesting clients. Most
CDNs today use the Domain Name System (DNS) to
make such server selection decisions. However, DNS
provides only the IP address of the client’s local DNS
server to the CDN, rather than the client’s IP address.
Therefore, CDNs using DNS-based server selection as-
sume that clients are “close” to their local DNS servers.

To quantify the proximity between clients and their local
DNS servers, we propose a novel, precise, and efficient
technique for finding the associations of client to local
DNS servers. We collected more than 4.2 million such
unique associations in three months. From this data, we
study the impact of proximity on DNS-based server se-
lection using four different proximity metrics. We con-
clude that DNS is good for very coarse-grained server
selection, since 64% of the associations belong to the
same Autonomous System. DNS is less useful for finer-
grained server selection, since only 16% of the client and
local DNS associations are in the samenetwork-aware
cluster [13] (based on BGP routing information from a
wide set of routers). As an application of this method-
ology, we evaluate DNS-based server selection in three
of the largest commercially deployed CDNs to study its
accuracy.

1 Introduction

Creating and managing a high-performance, Internet-
scale Web service is a formidable challenge involving
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deployment of multiple Web servers in strategic loca-
tions throughout the network. The introduction of Con-
tent Distribution Networks (CDNs) has allowed organi-
zations to overcome this challenge by outsourcing the
distribution of their Web content. With CDNs, content
providers need only to supply an origin Web server —
the CDN distributes the content to end users through a
set of CDN servers it has deployed in the network. Ide-
ally, this reduces Web response time and download la-
tencies in addition to providing overload protection and
bandwidth savings.

In a well-designed CDN, servers are placed to avoid con-
gested links and slow network paths. When a Web client
requests content, the CDN dynamically chooses a server
to route the request to, usually one that is appropriately
close to the client. Note that this dynamic CDN re-
quest routing is an extra step that is not necessary for
stand-alone Web servers. Efficient CDN server selec-
tion allows CDNs to overcome the extra overhead of the
dynamic routing step by taking advantage of improved
connectivity to the end user. CDN server selection ap-
plies for both static and dynamic content. In the latter
case, content can be dynamically assembled at the edge
servers [1].

CDNs typically perform dynamic request routing using
the Internet’s Domain Name System (DNS) [11]. The
DNS is a distributed directory whose primary role is to
map fully qualified domain names (FQDNs) to IP ad-
dresses. To determine an FQDN’s address, a DNS client
sends a request to its local DNS server. The local DNS
server resolves the request on behalf of the client by
querying a set of authoritative DNS servers. When the
local DNS server receives an answer to its request, it
sends the result to the DNS client and caches it for future
queries. Each DNS record has a time-to-live (TTL) field
that tells the local DNS server how long it may cache the
result.

Normally, an authoritative DNS server’s association
from FQDNs to IP addresses is static. However, CDNs



use modified authoritative DNS servers for CDN server
selection. The results of a DNS query to one of these
DNS servers may vary dynamically depending on fac-
tors such as the source of the request and the condition
of the network. Typically, the CDN’s authoritative DNS
server maps the client’s local DNS server address to a
geographic region within a particular network and com-
bines that with network and server load information to
perform CDN server selection. To enable fast reaction
to dynamic resource changes, the answer returned by the
CDN’s DNS server has a small TTL. This approach is
largely transparent to the client, and works for any Web
content (including both HTML and streaming media).

Although DNS-based server selection is transparent and
general, it has two inherent limitations [15, 4]. First, it
is based on the implicit assumption that clients are close
to their local DNS servers. The CDN DNS server per-
forming dynamic request routing only has access to the
client’s local DNS server’s IP address—it does not know
the client’s own IP address. However, the assumption
that clients are close to their local DNS server may not
be valid. For example, the client might be using a lo-
cal DNS server hierarchy in which the outermost local
DNS server that communicates with authoritative DNS
servers may be far removed from clients; the client may
have been configured with a local DNS server which is
far away; or the client may be using a secondary local
DNS server that is more distant from it than its primary
local DNS server. Therefore, using only the local DNS
server information to select CDN servers has the inher-
ent risk of selecting a server farther away from the client
than other available CDN servers.

The second inherent limitation of DNS-based server se-
lection is that a single request from a local DNS server
can represent differing numbers of Web clients — this
is called thehidden load factor[8]. The hidden load
has implications on a CDN’s load balancing algorithm.
For example, a DNS request from a local DNS server
of a large ISP may result in many more Web requests
than a DNS request from a local DNS server of a small
site. CDNs need to be able to properly weigh individual
DNS requests to distribute Web requests among its CDN
servers. If the hidden load factors are known, load bal-
ancing algorithms described by Colajanni, et al. [7, 8]
can be easily deployed to achieve better load distribu-
tion. On the other hand, if the hidden load factors are
not known, fine-grained request distribution may be dif-
ficult.

We study the extent of the first limitation and its impact
on CDN server selection. To this end, we developed a
simple, non-intrusive, and efficient mapping technique

to determine the associations between clients and local
DNS servers. We deployed this technique on several
sites to collect an extensive data set which we use to
study the impact of proximity on DNS-based server se-
lection using four different proximity metrics. We con-
clude that DNS is good for very coarse-grained server
selection, since 64% of the associations belong to the
same Autonomous System (AS). DNS is less useful for
finer-grained server selection, since only 16% of clients
use DNS servers in the samenetwork-aware cluster[13]
(based on BGP routing information). We also measure
the CDN server distribution of several real-world CDNs
to evaluate whether the proximity of a client to its local
DNS server leads to potentially suboptimal CDN server
selection decisions in practice. Our technique could also
be used to determine hidden load factors by associating
the HTTP request pattern in the Web server logs with the
DNS request information.

Our work makes the following contributions. We devel-
oped a novel measurement methodology and architec-
ture for accurately collecting local DNS server IP ad-
dresses of Web clients. We demonstrated its successful
deployment on several sites including a large commer-
cial site and through the collection of a huge database
of associations. Based on this data, we did an extensive
analysis of the proximity between clients and their local
DNS servers and discovered that significant improve-
ment in proximity is possible by configuring clients to
use a closer local DNS server. Finally, we evaluated the
impact of the proximity between clients and their local
DNS servers on server selection in three of the largest
commercially deployed CDNs. We conclude that DNS
is good for very coarse-grained server selection, but less
suitable for fine-grained request distribution.

The rest of the paper is organized as follows. Section 2
describes our methodology and measurement setup for
gathering DNS client associations. In Section 3, the as-
sociation results are analyzed in detail to evaluate the
proximity between the client and its local DNS server.
Then, in Section 4 we study the impact of proximity
evaluation on DNS-based server selection in three of the
largest commercially deployed CDNs. Related work is
covered in Section 5. In section 6, we discuss future
work. Section 7 concludes.

2 Experimental methodology

In this section we describe our novel technique for de-
termining a Web client’s local DNS server. This is a
necessary first step in measuring the closeness of clients
to their local DNS servers. We also evaluate the impact



of our technique on end user performance. Later, in Sec-
tion 5, we will explain how our technique is a significant
improvement over related previous work in terms of ef-
ficiency, nonintrusiveness, and accuracy.

2.1 Measurement setup

There are three main components necessary to use our
technique: a specialized authoritative DNS server, an
HTTP redirector, and a one-pixel embedded transparent
GIF image. To obtain a client population we solicited
volunteer Web sites. All the volunteers had to do to par-
ticipate in our study was to add a link to our one-pixel
transparent GIF to the end of one or more of their com-
monly accessed Web pages. Assuming the experiment is
hosted by us atexample.com, this involves adding the
following HTML code towards the end of a web page:

<img src="http://xxx.rd.example.com/tr.gif"
height=1 width=1>

To allow us to easily account for hits from different sites,
each participant replacesxxx in the URL with a site
identifier1. This allows us to easily add additional vol-
unteer sites without having to make any changes to our
Web or DNS server configuration.

When a Web client loads the one-pixel embedded im-
age, our technique allows us to match the address of
the local DNS server resolving host names on behalf
of the client with the address of the client itself. This
process is shown in Figure 1. First, the client attempts
to get the image fromxxx.rd.example.com —
our HTTP redirector. Rather than serving the image,
the redirector determines the client’s IP address and is-
sues an HTTP redirect toipCLI.cs.example.com,
whereCLI is replaced with a string encoding the IP
address of the client (step 2). Next, the client contacts
its local DNS server to resolve this domain name (step
3). The client’s local DNS server attempts to resolves
ipCLI.cs.example.comby sending a DNS request
to our authoritative DNS server (step 4). At this point
our authoritative DNS server logs the IP address of the
local DNS server and the client IP address embedded
within the query. It then sends the address of the con-
tent server hosting the image back to the client’s local
DNS server (step 5). This resolution is passed on to the
client (step 6), which retrieves the image from the con-
tent server (steps 7 and 8).

1Our authoritative DNS server [6] allows host names to be wild-
carded, so we can set an address for*.rd.example.com.
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Figure 1: Embedded image request sequence

This measurement methodology has a limitation for
clients that do not fetch inlined images and those that
abort the page download process before the DNS resolu-
tion is made for the embedded image. In these cases, we
are unable to collect their local DNS server information.

Note that in some cases, a local DNS server hierar-
chy may exist. The local DNS server recorded in our
measurement is the outermost local DNS server which
directly contacts the authoritative DNS server for the
example.com domain. In DNS-based server selec-
tion, the CDN’s DNS server only sees the outermost lo-
cal DNS server. In this study, this outermost DNS server
is what we refer to as the “ local DNS server.”

This measurement approach is fully deterministic. It col-
lects one association each time a new client visits a site
with the embedded image. Multiple pages on the same
site, or subsequent visits to the same page, may result
in repeated retrievals of the calibrating image depending
on the client’s caching policy.

Note that the redirector also logs client requests — this
information can be correlated with the DNS and web
server logs to obtain the hidden load factors. Statistics
on client browsing characteristics can also be gathered
from the HTTP headers in the redirector log.



Table 1: Keynote image overhead measurements

Location Avg download latency (sec) Increased
without image with image overhead

World wide 1.17 1.31 12%
US 1.04 1.14 10%

2.2 Measurement impact

Because we propose to use our measurement infrastruc-
ture on a production Web site, it is important to evaluate
its impact on the server performance and other aspects of
its operation. The additional overhead our measurement
technique imposes on Web client performance is the re-
trieval of the transparent image, including the HTTP
redirect and extra DNS requests. Because the image is
transparent, it does not visually affect the page. Fur-
thermore, the image is small in size—43 bytes—which
keeps the added delay to a minimum. We also encourage
participants to include the image at the end of the HTML
page containing it; therefore, browsers will normally re-
quest it last. Thus, the extra latency associated with the
image is usually hidden from the user’s Web browsing
experience. Another advantage of the small size of the
image is that when the image is not available for down-
load, it does not affect the visual appearance of the Web
page at all.

Our custom HTTP redirector is a single-threaded, non-
blocking, 300-line C program. The redirector responds
to all Web requests with a “302 Moved Temporarily”
HTTP redirect to a URL with the client’s IP address em-
bedded in it. Due to the small size and overhead of the
redirector, we found it to be highly reliable and more
responsive than a standard Web server.

To validate the claim of a small increase in latency, we
measured a simple Web page with Keynote [2] to com-
pare the download time with and without the embed-
ded calibrating image. Keynote probes are located in
25 cities within the US and 10 cities outside the US. The
Web page we measured had a total size of 39 Kbytes in-
cluding 13 images and was accelerated by a CDN. The
increased overhead percentage is therefore higher than
we would expect for a regular unaccelerated Web page
with more embedded images. Table 1 shows that the in-
creased overhead averages less than 140 ms, which is
10–12% of the total download time.

We also tested our system to see what would happen
in the event of a failure of the redirector, image con-
tent server, or DNS server. We found that the impact

Table 2: Participating sites in the study

Site Type # of 1-pixel Duration
image hits

1 att.com 20,816,927 2 months
2,3 Personal pages

(commercial domain) 1,743 3 months
4 Research lab 212,814 3 months

5-7 University sites 4,367,076 3 months
8-19 Personal pages

(university domain) 26,563 3 months

Table 3: DNS and HTTP log statistics for all sites

Type Count

Client-LDNS associations 4,253,157
HTTP requests 25,425,123
Unique client IPs 3,234,449
Unique LDNS IPs 157,633
Client-LDNS associations where
client and LDNS have the same IP address 56,086

of failure on the user is minimal. We tested the failure
of these three components using Microsoft Internet Ex-
plorer (MSIE) 6 and Netscape Navigator 6 and found
that those browsers will first load the rest of the Web
page and then time out while trying to fetch the im-
age.2 There is no visible change to the Web page or
any pop-up error message; however, the Netscape logo
or MSIE browser logo will provide visual feedback until
the browser times out.

3 Analysis results

We conducted our measurement study for about three
months, and nineteen Web sites participated, as de-
scribed in Table 2. We classify these sites into two cate-
gories: commercial(sites 1-3) and educational(sites 4-
19). As we show in Section 3.1, the client and local DNS
associations visiting these two sites have very different
characteristics. For ease of discussion, we use LDNS
to represent a local DNS server. A total of 4,253,157
unique client and LDNS associations were collected. Ta-
ble 3 presents the statistics of the DNS server and the
redirector log for all sites.

To study the proximity between the client and its local

2We tested with the default setting without any special options.
Some older versions of both browsers were also tested giving the same
behavior.



DNS server, we use the following four metrics.

� AS clustering. Autonomous System (AS) cluster-
ing refers to observing whether a client is in the
same AS as its local DNS server. An AS is a re-
gion under a single administrative control. A sin-
gle AS might contain an entire backbone or a large
corporation which might span multiple continents.
Therefore, AS-based clustering is the most coarse-
grained metric we use.

� Network clustering. This metric observes whether
a client is in the same network-aware cluster(NAC)
as its local DNS server, where network clusters
are identified by the network-aware clusteringtech-
nique [13] using prefix entries from BGP routing
table snapshots from a wide set of routing tables.
Longest prefix matchingis used to map clients to
network clusters identified by a network prefix. All
the clients within a network cluster are topologi-
cally close together and with a high probability be-
long to the same administrative domain. Validation
tests (in [13]) using nslookupand tracerouteshow
that the accuracy of network clustering is above
90% across all the Web logs from the study by
Krishnamurthy and Wang. Network clustering is
much more fine-grained than AS clustering [12].

For both AS and network clustering, BGP prefixes
and the association of IP CIDR blocks to ASes were
extracted from an extensive set of BGP tables col-
lected on May 27, 2001 from the sources listed
by Krishnamurthy and Wang [13] and Telstra In-
ternet [5]. There are a total of more than 440,000
unique routing entries.

� Traceroute divergence. This metric, used previ-
ously in [15], is based on the length of divergent
paths to the client and its local DNS server from a
probe point using traceroute. It is defined to be the
maximum number of disjoint network hops from a
probe location to the client and its LDNS.

� Round-trip time correlation. This metric, used
previously in both [15] and [4], refers to examin-
ing the correlation between the message round-trip
times from a probe point to the client and its local
DNS server.

AS clustering, network clustering, and traceroute diver-
gence are topology-oriented metrics, while round-trip
time correlation is a performance-oriented metric. AS
and network clustering are passive, requiring no active
probing. The other metrics are highly dependent on the

Table 4: Aggregate statistics of AS/network clustering

Metrics # of client # of LDNS total # of
clusters clusters clusters

AS clustering 9,215 8,590 9,570
Network clustering 98,001 53,321 104,950

probe locations. To obtain an exhaustive evaluation of
proximity, we include all four metrics in our study.

3.1 AS and network clustering

Table 4 shows the aggregate statistics from the data we
collected—the number of clusters containing clients, the
number of clusters containing local DNS servers, and
the total number of clusters. We note that from daily
routing table analysis from several major ISPs [9], up to
12,000 unique ASes were identified as being in use on
November 12, 2001. The theoretical limit on the pos-
sible number of ASes is determined by the 16-bit AS
identifier, resulting in a total of 64K ASes. Thus, we
observed close to 80% of ASes that were identified on
November 12, 2001 and close to 15% of the total possi-
ble ASes. With regard to network clusters, the maximum
number of network clusters is 440K, since we used 440K
unique prefixes. A one day extract from the 1998 Winter
Olympic Games server log has 9,853 client clusters [13].
Thus, our measurement data contains close to ten times
as many client clusters from one day of a popular Web
server log and close to 25% of all possible network clus-
ters. We conclude that the data we collected is extensive
and covers a significant number of ASes and network
clusters.

Table 5 shows the percentage of client-LDNS associa-
tions sharing the same cluster for clients visiting educa-
tional sites, commercial sites, and all sites in our mea-
surement study. We observe that clients visiting edu-
cational sites have better proximity to their local DNS
servers using the network- and AS- clustering metrics.
This is expected since most of these clients also come
from universities, which generally have a denser distri-
bution of local DNS servers and better local DNS con-
figurations than commercial ISPs. Because the major-
ity of our log results from hits to the commercial sites,
the proximity values for clients visiting all participating
sites are very close to those visiting commercial sites
alone. Because CDNs are most likely to accelerate com-
mercial sites, we believe our client mix is representative



Table 5: Percentage of client-LDNS associations sharing the same cluster classified according to the types of domains
visited by the clients

Metrics Client IPs HTTP requests
educational commercial combined educational commercial combined

AS cluster 70% 63% 64% 83% 68% 69%
Network cluster 28% 16% 16% 44% 23% 24%

of clients visiting a CDN-accelerated site. In the follow-
ing discussion, we consider clients visiting all participat-
ing sites.

Using AS clustering, 64% of distinct client-LDNS asso-
ciations share the same AS. Thus, more than half of the
clients use a local DNS server in the same AS. This is
expected, since it is common for an administrative do-
main to run its own DNS server. If users configure their
DNS settings correctly, they typically use the LDNS in
their administrative domain by default. About 69% of
the HTTP requests come from clients using an LDNS
server in the same AS cluster. This means clients with
LDNS in the same AS are slightly more active than those
that use an LDNS in another AS.

The above results indicate that in about 64% of the cases,
CDNs could select appropriate servers using DNS redi-
rection with the granularity of ASes. Thus, even if a
CDN deployed a cache in every AS in the world, it could
select the closest cache according to the AS metric only
in 64% of the cases. However, AS clustering does not
reveal how well redirection works for finer-grained load-
balancing. An AS can span large geographical regions,
causing network delays between two hosts within the
same AS to be relatively high. For finer-grained load-
balancing it is therefore important to consider network
clustering, which groups together IP addresses that are
close together topologically and likely to be under the
same administrative domain.

The observations using network clustering are signifi-
cantly different from the AS clustering results. Only
16% of the client-LDNS associations are in the same
network cluster. This shows that most clients are not in
the same routing entity as their local DNS servers. If the
HTTP request count is taken into account, about 24%
of the HTTP requests in our logs originated from clients
that used an LDNS in the same network cluster. Again,
the difference between these two numbers demonstrate
that clients with LDNS in the same network clusters are
more active than those with LDNS in a different network
cluster.

Overall, these results indicate that DNS-based redirec-
tion can confidently select appropriate CDN servers with
the granularity of an AS. However, for CDNs with mul-
tiple servers in the same AS, the selection may not be
as accurate. If there is a CDN server in each network
cluster, then DNS-based redirection will only select the
CDN server in the same network cluster as the client
about 24% of the time.

3.2 Traceroute divergence

Another metric to evaluate the proximity between the
client and its local DNS server is the maximum num-
ber of disjoint network hops from a probe location to
the client and its local DNS server. In [15], this met-
ric is referred to as the traceroute cluster size. The
smaller the cluster size or traceroute divergence, the
closer the client is to the local DNS server. In many of
our traceroute results, we found that the network routes
from the probe site to the client and its LDNS diverge
and converge multiple times due to router load balanc-
ing. We use the last point of divergence as the reference
for calculating disjoint network hops. For example, Ta-
ble 6 shows the network routes obtained by performing
traceroute to the client 112.74.197.1633 and its LDNS
112.25.195.1. We use hop 11 instead of 2 as the point
of divergence. Thus, the traceroute divergence in this
example is max(14� 11; 13� 11) = 3.

We selected four probe sites representing candidate
CDN servers and performed traceroute to a sample of
clients and local DNS servers from the log. The sample
consists of 48,908 client-LDNS pairs or 66,975 IP ad-
dresses. It is obtained by randomly selecting one client-
LDNS pair from the top half of the client network clus-
ters generating the most HTTP requests. The number of
client-LDNS pairs reached by an individual probe site
ranges from 9,878 to 11,935. In about 20% of these,
both the client and the LDNS belong to the same net-
work cluster. And in about 75% of these, both the client
and the LDNS belong to the same AS cluster.

3For privacy concerns, the IP addresses have been anonymized.



Table 6: Traceroute divergence

1 112.0.1.1 6 ms 1 112.0.1.1 5 ms
2 112.124.182.17 6 ms 2 112.124.182.17 15 ms
3 112.123.1.10 7 ms 3 112.123.1.22 14 ms
4 112.122.1.149 8 ms 4 112.122.5.246 7 ms
5 112.122.2.173 25 ms 5 112.122.2.2 24 ms
6 112.122.2.206 32 ms 6 112.122.2.206 31 ms
7 112.122.2.41 34 ms 7 112.122.2.41 35 ms
8 112.122.2.26 71 ms 8 112.122.2.26 68 ms
9 112.122.2.121 75 ms 9 112.122.2.121 77 ms
10 112.123.145.25 73 ms 10 112.123.145.25 72 ms
11 112.124.23.6 72 ms 11 112.124.23.6 73 ms
12 112.25.192.2 72 ms 12 * * *
13 112.25.192.181 73 ms 13 * 112.25.195.1 71 ms
14 112.74.197.163 92 ms
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Figure 2: Proximity evaluation using traceroute diver-
gence

Figure 2 shows the cumulative distribution of traceroute
divergence for the sampled client-LDNS pairs. About
14% of them have traceroute divergence of 1. The mean
divergence varies from 5.8 to 6.2 depending on the probe
site, and the median traceroute divergence is 4 from all
four probe sites. This means that a large fraction of
clients are topologically quite closeto their local DNS
servers using the hop count metric. At most 30% of the
client-LDNS pairs have traceroute divergence of size 8.
This result is slightly inconsistent with the results de-
scribed by Shaikh, et al. [15] considering 1,090 client-
LDNS pairs of dial-up ISPs. We believe that the dif-
ference can be explained by the fact that our results are
based on the analysis of a much larger set of populations
visiting both commercial and educational sites.

The absolute values of traceroute divergence may not be
completely indicative of the proximity of a client to its
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Figure 3: Ratio of common to disjoint path length

local DNS server. In Figure 3, we plot the ratio of the
common path length to the disjoint path length from a
probe site. Using the terminology of Shaikh, et al. [15],
the common path length is the minimum number of net-
work hops of the shared path from the probe site to the
local DNS server and the client before their paths di-
verge. For example, the common path length of client
112.74.197.163 and its LDNS 112.25.195.1 (shown in
Table 6) is min(11; 11) = 11. The disjoint path length
is the maximum number of network hops of the diverg-
ing paths. In this example, the divergent path length is
max(14-11, 13-11)=3. Again, we use the last point of
the divergence as the reference point. For all probe sites,
less than 34% of the client-LDNS pairs have disjoint
paths at least as long as the common path. This means
that at least 66% of client-LDNS pairs have a common
path as long as or longer than their disjoint path. This
metric implies that most clients are topologically close
to their LDNS as viewed from a randomly chosen probe
site.

3.3 Round-trip time correlation

Some CDNs select servers based on the round-trip la-
tency between the CDN server and the client’s local
DNS server [15]. It is therefore important to understand
the correlation between the round-trip delay to a client
and to its LDNS from a third location.

To compare with the results presented in [15], we study
how the round-trip delays to the client and its LDNS de-
termine the accuracy of the CDN server selection based
on round-trip delays to the LDNS. Since our data set
consists of more than 4.2 million pairs of client and



LDNS, much larger than that presented in [15] (1,090
pairs), we expect some differences. Let tic and tid be the
round-trip delays between the probe site i and the client,
and between the probe site i and the client’s LDNS, re-
spectively. We ask the question whether tid < t

j
d implies

tic < tjc. Depending on the locations of two probe sites
i and j, the percentage of violations ranges from 17% to
38%. For instance, among the 9,360 client-LDNS pairs
responding to traceroute from both probe site 1 and 2,
about 38% violate this assumption. This implies that if
one selects between two CDN servers located at probe
sites 1 and 2 based on the round-trip delays to the LDNS,
the decisions would be suboptimal 38% of the time for
the set of clients considered based on the round-trip de-
lay metric. On the other hand, among the 7,895 pairs re-
sponding to traceroute from both probe site 2 and 4, only
17% violate this assumption. This means that this metric
is highly dependent on probe locations. However, it is a
reasonable metric for use to avoid really distant servers.

Another interesting question to answer is whether, if two
CDN servers are roughly an equal distance from the
LDNS based on the round-trip delay, the same holds
from the client’s perspective. Thus, we ask whether
jtid � t

j
dj � w implies jtic � tjcj � w, where w is a small

number (e.g., a 10 ms threshold was used by Shaikh et
al. [15]). In the sample of our study, it holds in 44–75%
of the cases depending on the probe sites. This num-
ber is bigger than the previously obtained result of 12%
in [15].

3.4 Improved local DNS configuration

For the client and local DNS associations that are not
in the same network cluster, we ask whether there exist
any local DNS servers in those clusters. From our log,
we collected a set of local DNS servers. Thus, assum-
ing the clients have access to those local DNS servers
in their network clusters, it is interesting to examine the
degree of improvement if all LDNS servers were used
optimally. This assumption is not unreasonable, since
most IP addresses in the same network cluster are under
the same administrative control. From Table 4, we can
calculate the number of client ASes and network clusters
where there are no local DNS servers as observed in our
log. There are 9; 570� 8; 590 = 980 such AS clusters,
and 104; 950�53; 321 = 51; 629 such network clusters.
Table 7 compares the improved percentages of client-
LDNS associations and HTTP requests in the same clus-
ter with the original results. If the clients in our data cur-
rently configured to use a LDNS in a different cluster are
allowed to use an LDNS in the same cluster, then at least
92% of the HTTP requests come from clients using the

Table 7: Improvement of the percentage of the client-
LDNS associations sharing the same cluster using opti-
mal LDNS assignment

Metrics Client IPs HTTP requests
Original Improved Original Improved

AS cluster 64% 88% 69% 92%
Network cluster 16% 66% 24% 70%

LDNS in the same AS cluster. That number is 70% for
network clusters.

3.5 Clients using multiple local DNS servers

Some client IP addresses in our data are associated with
multiple LDNS IP addresses. This may happen due to
the following reasons: (1) The first LDNS server the
client contacts times out and the second LDNS server
is contacted. (2) The client’s LDNS server is config-
ured by a DHCP server that assigns the LDNS server
IP addresses from a set of addresses in a round-robin
fashion. (3) A client may be configured to round-robin
among multiple LDNS servers. (4) The client IP address
is reused at different times by different users and these
users may have different configurations for their LDNS
servers, resulting in different associations. (5) The client
IP address is that of a NAT box or a application-level
proxy, so there are multiple actual clients behind this IP
address using different LDNS servers. (6) The client is
misconfigured.

Here we examine the distribution of the LDNS servers
with which a client IP address is associated. If they all
occupy the same cluster as the client, DNS-based server
selection can use the local DNS server’s IP address to
estimate where the client is even if the client uses multi-
ple local DNS servers. However, if they occupy multiple
clusters or a single cluster different from the client, it is
more difficult to use DNS-based server selection. In Ta-
ble 8, we show how many clients use ten or fewer local
DNS servers. In addition, we observe that some IP ad-
dresses are associated with up to 330 local DNS servers
occupying up to 273 different network clusters. Further
investigation shows that some of these addresses belong
to cache proxies. In general, we observe that the more
LDNS servers with which a client IP address is associ-
ated, the lower the percentage of associations with the
client and LDNS in the same cluster. Fortunately, the
majority of client IP addresses are associated with a sin-
gle LDNS server. They are responsible for about 52%
of the requests. However, only about 20% in this group



Table 8: Clients using ten or fewer multiple local DNS
servers

# of clients # of LDNS % of total % associations
(% of total) (avg # of HTTP with client and

NACs) requests LDNS in
the same NAC

2,524,939 (78.064) 1 (1.0) 51.8 20.3
522,228 (16.146) 2 (1.6) 22.4 12.1
123,524 (3.819) 3 (2.1) 10.4 6.6
41,422 (1.281) 4 (2.5) 4.9 4.7
13,469 (0.416) 5 (2.9) 2.5 4.9
4,555 (0.141) 6 (3.3) 1.8 6.7
1,590 (0.049) 7 (4.1) 1.3 9.9
713 (0.022) 8 (4.7) 0.7 13.6
461 (0.014) 9 (5.5) 0.7 14.2
273 (0.008) 10 (6.1) 0.5 14.0

have the client and LDNS in the same network cluster.

3.6 Comparisons of proximity metrics

Given the above set of metrics for evaluating proxim-
ity between client and its local DNS server, we compare
their results on a common set of 7,8944 client-LDNS as-
sociations in Table 9. The comparison shows that net-
work clustering is a fine-grained metric, similar to trace-
route divergence (TD) count of 1. Hosts within the same
network cluster, or which have a TD of 1, are guaranteed
to be very close to each other. However, hosts not in the
same network cluster, or have a TD bigger than 1, may
still be quite close. Thus, these two metrics are quite
conservative. AS clustering is the most coarse-grained
metric, since an AS can be quite large. This is compara-
ble to the ratio of common to disjoint path length. RTT
correlation is also a relatively coarse-grained metric. It
is inconclusive and largely dependent on the two probe
site locations.

In general, performance-oriented metrics such as round-
trip time should provide accurate real-time network la-
tency measurements. CDNs often do real-time network
measurements from their servers to clients. Since we
can only probe from a limited set of locations, such met-
rics are inconclusive. Topology-oriented metrics have
the advantage of being non-invasive, since they do not
incur any network overhead. However, they cannot take
network congestion into account.

As we explain in the following section, the applicability
of each metric depends on the density of CDN server
placement. The denser the placement, the more fine-

4Only 7,894 of all associations can be reached from both probe
sites 2 and 3.

Table 9: Comparison of four proximity metrics

Proximity metric Evaluation

AS clustering 78% in the same cluster
Network clustering 23% in the same cluster
Traceroute divergence 16%: TD=1, 32%: TD=2
(TD) median TD=4, mean TD =5.7
(probe site 2) 65%: disjointPathLen

� commonPathLen

RTT correlation 71%: t2d < t3d ) t2c < t3c
(probe sites 2, 3) 62%: jt2d � t3dj � 10ms)

jt2c � t3c j � 10ms

a = t2d � t3d, b = t2c � t3c
correl(a; b) = 0:13

grained metric is needed.

4 Application impact

In this section, we focus on the impact that client-LDNS
associations have on DNS-based server selection. We
study this impact in detail for three of the largest com-
mercial CDNs. We anonymize the CDN names to prop-
erly reflect the nature of this work as a research vehicle
rather than any form of competitive analysis. All three
CDNs chosen rely on deploying caches in multiple net-
works. ISP-based CDNs deployed by companies like
AT&T and Qwest are excluded from this study, since
their caches are located in one or two ASes. Since a
client and its LDNS are very likely to be in the same
AS (about 69% of HTTP requests in our study), an ISP-
based CDN can easily identify a peering link that is suit-
able for the AS containing both of them5. The results
described below are representative of all the data we col-
lected and remained stable during our entire study.

Previous work by Johnson, et al. [10] has shown that
DNS-based CDNs do not always pick the best server
available. Here we study whether this is partly due to
the inherent limitations of DNS-based server selection.
The answer to this largely depends on the proximity be-
tween clients and local DNS servers and the location of
CDN servers.

The proximity evaluation of client-LDNS associations
using the network clustering metric indicates that, if a
CDN had a server in each network cluster, about 84%
of the selection decisions for the client population in
our log could be suboptimal. This is because our study

5The main tradeoff here is fewer peering links traversed in multi-
ISP CDNs versus less traffic between access and backbone routers as
well as lower costs in single-ISP CDNs.



found only 16% of these clients have their LDNS in the
same network cluster. For clients with their LDNS in
different network clusters, the CDN would most likely
resolve the DNS query from a client’s LDNS to the CDN
server in the LDNS’s cluster and not the cluster where
the client resides. In reality, and as we show below, even
the biggest CDN today does not have a CDN server in
every network cluster. Thus, it is important to examine
the impact of DNS-based redirection in a commercial
content distribution setting.

We assume that on average a CDN server within the
client’s AS/network cluster or smaller traceroute diver-
gence (TD) is closer than one in a different cluster or
larger TD. For clients with CDN servers in their clusters,
if a CDN selects a server not in a client’s cluster, this
may be a suboptimal decision in terms of proximity. We
also assume that CDNs attempt to optimize for proxim-
ity in most cases. Network bandwidth is less important,
since the content delivered by these CDNs is relatively
small in size. Although CDNs may also incorporate the
avoidance of overloaded servers in their server selection
algorithms, we believe that our assumption is reasonable
because CDNs today are highly overprovisioned from
the perspective of server capacity. Furthermore, we re-
peated our experiments on separate dates to avoid any
possibility of a skew due to a flash event, and the results
were always similar. One limitation in our results below
is that we do not quantify suboptimal server selection in
terms of end user performance, nor how close it is to the
optimal server selection.

We first describe our measurement methdology then
use AS/network clustering and traceroute divergence to
study how the proximity between client and LDNS af-
fect DNS-based server selection in three commercial
CDNs.

4.1 Experiment methodology

We use the following three data sets for our study.

1. Client-LDNS associations. These associations be-
tween clients and their LDNS servers are obtained
from our measurement study.

2. LDNS-CDN server associations. For a given
CDN, these associations map LDNS servers from
the first data set to the CDN servers selected by
the CDN when resolving a query from these LDNS
servers.

3. Available CDN servers. This data set represents a
list of CDN servers available in a given CDN.

In the first data set, we sampled 42,991 LDNS servers
from our measurement study. We obtained the second
data set by sending DNS queries to these 42,991 LDNS
servers using the dig command for a domain name of a
Web site that we know is a customer of a given CDN.
27,918 of these LDNS servers do not use access con-
trol and hence answered the queries from our machines,
as if these machines were their clients. To answer our
queries, these LDNSs recursively resolved our queries
with the CDN in question. The server selected by the
CDN for this DNS query is exactly the same server that
would be used by any real client associated with this
LDNS, as if that client and not our machine initiated the
DNS query.6

The third data set was obtained in a similar way, except
we added a large number of additional LDNS servers to
the 27,918 LDNS servers above, for a total of 41,754
different local DNS servers. This is to increase the like-
lihood of finding all CDN servers of a particular CDN
for a given domain. The extensive list of geographically
distributed LDNS servers was obtained from DNS server
logs for a large Web site. The set of servers to which a
given CDN resolved queries from these LDNSs repre-
sents the servers available in this CDN at the time of
the experiment. We obtained our second and third data
sets at around the same time each day to find the set of
servers available to a CDN at the time it performed its
server selection in the second experiment.

Note that our set of available servers is conservative,
since we might not have discovered all available CDN
servers. However, if a CDN performs a suboptimal
server selection among a subset of all available servers,
its server selection will remain suboptimal for a larger
set: suboptimal means that we already found a closer
server to the client than the one selected by the CDN. A
superset of the list of servers would suffer from the same
suboptimal assignment.

Many CDNs claim a much larger number of caches.
However, CDNs do not utilize all servers for all Web
sites and many of their locations may contain multiple
caches. The statistics we gathered are for a particular
domain served by a CDN. For example, when examining
multiple different domain names served by the largest
CDN in our study, we found multiple CDN IP address
sets of approximately equal size which only partly over-
lapped. Each unique server IP address we discover may
also account for multiple servers.

6Note, for fault-tolerance, most CDN DNS servers usually return
multiple IP addresses. In this case, we pick the first one, since clients
also typically choose the first IP address.



Table 10: CDN cache servers for a particular domain
name

# of AS # of network # of CDN
CDN clusters clusters servers IPs

with servers with servers

CDN X 622 740 1,567
CDN Y 120 152 195
CDN Z 60 79 154

Table 11: The evaluation of server selection according
to AS clustering

CDN CDN X CDN Y CDN Z

Clients w/ CDN 1,679,515 1,215,372 618,897
server in cluster
Verifiable clients 1,324,022 961,382 516,969
Misdirected clients 809,683 752,822 434,905
(% verifiable clients) (60%) (77%) (82%)
(% clusters occupied) (92%) (94%) (94%)
MC w/ LDNS
not in client’s cluster 443,394 354,928 262,713
(% misdirected
clients) (55%) (47%) (60%)

Table 10 shows the statistics of the CDN server IP ad-
dresses of the three CDNs studied for a single domain
name obtained on August 7, 2001. These numbers were
fairly stable during the course of our study. All three
CDNs examined appear to redirect client requests by us-
ing DNS, although they may differ in the details of the
algorithms. This table lists the total number of CDN
servers discovered and the number of AS and network
clusters these CDN servers represent. The data in Table
10 confirm our conjecture that CDNs today cover only a
small number of all available network clusters for a sin-
gle domain they serve. While the overall list of LDNSs
used for generating the third data set represents 5,788
AS and 21,786 network clusters, the discovered CDN
servers represent only a small fraction of these, even in
the case of the largest CDN in our study.

With the three data sets above, we evaluate the quality
of server selection by these CDNs by examining what
percentage of clients are actually redirected to servers in
their own cluster, among those clients that have at least
one server in their cluster.

Table 12: The evaluation of server selection according
to network clustering

CDN CDN X CDN Y CDN Z

Clients w/ CDN 264,743 156,507 103,448
server in cluster
Verifiable clients 221,440 132,567 90,264
Misdirected clients 154,198 125,449 87,486
(% verifiable clients) (68%) (94%) (96%)
(% clusters occupied) (77%) (82%) (93%)
MC w/ LDNS
not in client’s cluster 145,276 116,073 84,737
(% misdirected clients) (94%) (93%) (97%)

4.2 Results of DNS-based server selection in
commercial CDNs

Tables 11 and 12 show the results of our server selection
evaluation using AS and network clustering. We col-
lected 3,234,449 distinct client IP addresses in our logs.
The first row of the table contains the number of clients
with CDN servers in their clusters for the considered
CDNs. Depending on the server density of each CDN,
the number of clients with servers in their AS clusters
ranges from 19% to 52% of the total clients in the log.
This fraction is an order of magnitude lower in the con-
text of network clusters. Thus, according to either met-
ric, most clients will have to be served by remoteservers.
But a more interesting question is how many clients that
could have been served by local servers are in reality di-
rected to remote ones.

To answer this question, we concentrate on clients with
servers in their clusters and consider the LDNS-CDN
server associations for these clients from the second data
set. Unfortunately, not all of these LDNS servers re-
spond to DNS queries from our machines. The second
row of the tables gives the number of clients, among
those with CDN servers in their clusters, whose LDNS
servers responded to our queries. We call these clients
verifiablebecause we could find out which CDN servers
a CDN would redirect these clients to. The third row
shows the number of clients that a CDN directed to an
external CDN server (one that was outside the client’s
cluster), when there was an available CDN server within
that cluster. We refer to such clients as misdirected
clients (MC) based on the assumption that CDN servers
within the cluster are closer than external ones, although
we accept that other factors than proximity may have
affected the assignment. We see a large number of mis-
directed clients according to both proximity metrics. To
confirm that these misdirected clients are not due to any



anomaly of clients belonging to a small number of clus-
ters, we also show in the third row the percentage of
clusters occupied by these clients relative to the total
number of clusters of verified clients. The cluster per-
centage values are at least as big as the client percentage
values. This means that the misdirected clients are fairly
spread out in the number of clusters they occupy.

We conjecture that the reason that these clients are mis-
directed is that their LDNS servers are topologically dis-
tant from these clients. CDNs select a server close to
the LDNS servers. The servers selected may therefore
be suboptimal from the client’s perspective. The last
row of the tables shows misdirected clients with their
LDNS outside their clusters. This row indicates the
number of clients that inherently cannot be directed to
the most proximal server using a DNS-based mecha-
nism. According to Table 11, for AS clustering, they
represent only half of misdirected clients. To understand
why CDNs choose a CDN server in a different AS than
the one containing the client and its LDNS server, we
sampled a dozen of these clients using traceroutefol-
lowed by DNS name resolution of the last-hop router
IP address to estimate the geographic locations7 of the
client, CDN servers in the client’s AS, and selected CDN
servers in a different AS. We found that in most cases,
the selected CDN servers by CDNs are geographically
closer to the client than CDN servers in the same AS.
Assuming peering links between the client’s AS and the
selected CDN server’s AS are not congested, redirect-
ing to a nearby CDN server in a different AS may be a
better decision than redirecting to a distant CDN server
in the same AS. This observation also confirms our find-
ing that AS clustering is a very coarse-grained metric for
evaluating proximity.

For network clustering, the last row of Table 12 indicates
that an overwhelmingly majority of misdirected clients
have their LDNS servers in a different network cluster.
This confirms our hypothesis that such misdirection is
due to the fact that clients and their LDNS servers are of-
ten not proximal. It also shows the usefulness of network
clustering because it is a fine-grained metric for eval-
uating proximity. We emphasize that we do not know
the exact server selection policy used by a commercial
CDN, so we cannot fully evaluate the effectiveness of
its server selection decisions. However, given that there
is such a strong correlation between misdirection and an
LDNS being in a different cluster, we can infer that when
the LDNS and client do not belong to the same network
cluster, this limits the accuracy of server selection.

7In many cases, the router’s DNS name has an indication of the
geographic location [14].

Table 13: The evaluation of server selection according
to traceroute divergence (TD) from probe site 3

CDN CDN X CDN Z

Client-LDNS pairs examined 2,105 2,171
Clients with CDN servers at smaller 1,606 1,724
TD than ones redirected to (76%) (79%)
Median TD of CDN servers 11 13
clients redirected to
Median TD of closest CDN 5 9
servers to clients
Median TD improvement 6 4

Table 13 shows the evaluation of DNS-based server se-
lections according to the traceroute divergence metric.8

We performed traceroute from probe site 3 to a sample of
client and local DNS servers from the log and the CDN
cache servers from the third data set. The sample is cho-
sen by randomly selecting one client-LDNS pair from
the top 1200 client clusters generating the most HTTP
requests. We found over 70% of the clients to be di-
rected to a CDN server that is more distant than another
available CDN server. Selecting the closest CDN server
would have reduced traceroute divergence by as much as
19 hops for some clients.

Overall, we conclude that, among the clients we could
verify, knowing the client’s IP address would allow more
accurate server selections in a large number of cases
(443,394 for CDN X). The last row of Tables 11 and 12
also indicate the number of improved CDN server selec-
tions if the client’s IP address were known to the CDN.
Relative to the total number of clients, in the case of
CDN X, this represents a small percentage: specifically
14% (443,394 out of 3,234,449). In general, the num-
ber of misdirected clients depends on the server density,
placement, and selection algorithms.

5 Related work

Our work is motivated by a related effort by Shaikh,
et al. [15] examining the effectiveness of DNS-based
server selection. They developed a method of find-
ing client-LDNS associations using time correlations of
DNS and HTTP requests from DNS and Web server
logs. However, as they have noted, the associations ob-
tained using their method are inherently inaccurate due
to clock skews, client DNS caching, and mishandling of
TTLs. To resolve ambiguities, they used heuristics based

8We were unable to include CDN Y in the traceroute experiment,
since most of its CDN servers are unreachable using traceroute.



on AS numbers and domain names to decide whether
a client and a nameserver did in fact belong together.
This heuristic removed misconfigured client-nameserver
pairs and did not assure the correctness of associations.
They also obtained a set of 1090 client-LDNS associa-
tions from accounts with 9 commercial ISPs to study the
proximity correlations.

In comparison, our method provides accurate associa-
tions eliminating any need for validation. Furthermore,
our study has more than 4.2 million associations, con-
sisting of clients from a diverse set of ISPs, far exceed-
ing their data set of 1090 associations.

More recently, Bestavros, et al. [4] have also developed a
method for finding client-LDNS associations by assign-
ing multiple IP addresses to a Web server and correlat-
ing DNS lookups with client IPs based on the server IP
used. This method is slow in discovering client-LDNS
pairs due to the limited number of IP addresses a Web
server can have. In addition, their method is complicated
to implement, requiring reassignment of server IPs and
modification of the Web server.

Compared to both works, the distinguishing features of
our measurement methodology are efficiency, nonintru-
siveness, and accuracy. This allowed us to collect more
extensive data, which we used to evaluate the effective-
ness of DNS-based server selections using four different
proximity metrics in several real-world CDN settings.
To our knowledge, we are the first to conduct such an ex-
haustive proximity evaluation between clients and their
local DNS servers using such a representative data set.
We are also not aware of other work in examining the
impact that the proximity between the local DNS server
and the client has on DNS based server selection in com-
mercial CDNs.

There has been a recent effort within the IETF to cat-
egorize different mechanisms for request routing in
CDNs [3]. DNS-based redirection is one of those mech-
anisms, and our methodology may prove useful in eval-
uating the effectiveness of this technique in that context.

6 Future work

There are three areas of future work we plan to pursue.
First, we plan to study the hidden load factors due to dif-
fering amounts of HTTP load corresponding to a DNS
name resolution request from an LDNS server. With the
help of a busy Web site, we will be able to gather statis-
tics on the number of HTTP requests and clients behind
each LDNS server. Identifying LDNS servers resulting

in large numbers of HTTP requests is essential for proac-
tive load balancing and flash crowd protection.

Second, we plan to improve existing DNS-based server
selection algorithms by considering the properties of
known client-LDNS associations for an LDNS that re-
quests a server name resolution. The following charac-
teristics of the associations can be explored based on
data collected using our methodology: known client
proximity to the LDNS, known client distribution, and
hidden load factor.

Given a name resolution request from an LDNS, if the
known client proximity to the LDNS is good, then a
CDN server close to the LDNS would also be close to its
clients. If the proximity correlation is low, known client
distribution and client cluster request patterns would be
considered. If the majority of HTTP requests belong to a
single network cluster, finding a CDN server close to or
within that network cluster would also be close to clients
issuing a majority of requests. Along with these factors,
the hidden load factor of the LDNS is also considered to
select lightly loaded CDN servers for an LDNS with a
large hidden load factor. If the proximity correlation is
low between LDNS and its clients, then server selection
is optimized using other metrics such as server load.

Finally, we would like to apply the results of this work to
improving content distribution internetworking (CDI),
which refers to the interoperation among multiple CDNs
for additional flexibility. A prototype of CDI, called
CDN Brokering[6], uses a DNS-based brokering mech-
anism to forward requests among DNS servers of the
interoperating CDNs. As a third area of future work,
we plan to improve CDN brokering algorithms by us-
ing hidden load factors and client-LDNS proximity in-
formation. The client-LDNS proximity findings in our
work justify DNS-based brokering, because the major-
ity of the clients and their LDNS belong to the same AS.

7 Conclusion

In this paper, we propose a novel technique for finding
client and local DNS server associations and potentially
hidden load factors in a fast, non-intrusive, and accu-
rate manner. Based on the results, we evaluate the prox-
imity between clients and their LDNS using four met-
rics: AS clustering, network clustering, traceroute diver-
gence, and round-trip time correlation.

We evaluate the potential effectiveness of DNS-based
server selection in CDNs based on these metrics. We
conclude that DNS is good for very coarse-grained



server selection, since 64% of the associations belong to
the same AS. DNS is less useful for finer-grained server
selection, since only 16% of clients use a DNS server in
the same network-aware cluster. These values can be im-
proved to 88% and 66% respectively, if clients are con-
figured to use a closer local DNS server. Since current
CDNs are not present in many network-aware clusters,
we conclude that although DNS-based server selection
has inherent limitations due to potentially poor proxim-
ity correlation between a client and its LDNS, the impact
is small due to the sparse distribution of CDN servers in
today’s CDNs.

At least one CDN has stated a goal of ultimately placing
CDN servers in every edge network. The high fraction of
clients using LDNS servers in different network-aware
clusters suggests that CDNs may be unable to use DNS
request routing for such fine-grained server selection un-
less DNS itself scales to provide each edge network with
a local DNS server that communicates directly with the
Internet. Thus, from an economic perspective, due to the
inherent limited precision of DNS-based server selec-
tion, it is less beneficial to have so many CDN servers
that the performance to two nearby servers is indistin-
guishable.

In addition to the proximity evaluation and the novel
measurement methodology, our work also provides two
additional contributions in improving DNS-based CDNs
in general. From our observation, client-LDNS asso-
ciations are fairly static. Thus, CDNs can build up a
database of such associations to infer the geographic lo-
cation of clients associated with an LDNS IP address
to improve server selection. Furthermore, based on the
URL-rewriting technique in our measurement method-
ology, CDNs can completely eliminate the originator
problem by embedding the client IP addresses in the
URLs of the Web pages, when a client initially requests
the base page.
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