
USENIX Association

Proceedings of the
2002 USENIX Annual Technical

Conference

Monterey, California, USA
June 10-15, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



A Mechanism for TCP-Friendly Transport-level

Protocol Coordination

David E. Ott and Ketan Mayer-Patel
University of North Carolina at Chapel Hill

{ott,kmp}@cs.unc.edu

Abstract

In this paper, we identify an emerging and impor-
tant application class comprised of a set of pro-
cesses on a cluster of devices communicating to a
remote set of processes on another cluster of de-
vices across a common intermediary Internet path.
We call these applications cluster-to-cluster applica-
tions, or C-to-C applications. The networking re-
quirements of C-to-C applications present unique
challenges. Because the application involves com-
munication between clusters of devices, very few
streams will share a complete end-to-end path. At
the same time, network performance needs to be
measured globally across all streams for the appli-
cation to employ interstream adaptation strategies.
These strategies are important for the application
to achieve its global objectives while at the same
time realizing an aggregate flow behavior that is
congestion controlled and responsive. We propose
a mechanism called the Coordination Protocol (CP)
to provide this ability. In particular, CP makes fine-
grained measurements of current network conditions
across all associated flows and provides transport-
level protocols with aggregate available bandwidth
information using an equation-based congestion con-
trol algorithm. A prototype of CP is evaluated
within a network simulator and is shown to be ef-
fective.

1 Introduction

Advances in broadband networking, the emer-
gence of information appliances (e.g., TiVo, PDA’s,
HDTV, etc.), and the now ubiquitous computer pro-
vide an environment rife with possibilities for new
sophisticated multimedia applications that truly
incorporate multiple media streams and interac-
tivity. We believe many of these future In-
ternet applications will increasingly make use of
multiple communication and computing devices in

a distributed fashion. Examples of these ap-
plications include distributed sensor arrays, tele-
immersion [13], computer-supported collaborative
workspaces (CSCW) [7], ubiquitous computing envi-
ronments [16], and complex multi-stream, multime-
dia presentations [17]. In these applications, no one
device or computer produces or manages all of the
data streams transmitted. Instead, the endpoints of
communication are collections of devices. We call
applications of this type cluster-to-cluster applica-
tions, or C-to-C applications.
C-to-C applications share three important prop-

erties:

• They generate many independent, but semanti-
cally related, flows of data.

• While very few flows within the application will
share the exact same end-to-end path, all flows
will share a common intermediary path between
clusters.

• This shared common path is the primary con-
tributor of transmission delay and the source
of dynamic network conditions including loss,
congestion, and jitter.

Traditional multimedia applications like stream-
ing video generate only a few media streams (e.g.,
audio and video) which in general originate and ter-
minate at the same devices (e.g., media server to
media client). The applications we envision go far
beyond this traditional model and include myriad
flows of information of many different types commu-
nicated between clusters of devices.
Each flow of information may play a different role

within the application and thus should be matched
with a specific transport-level protocol which pro-
vides the appropriate end-to-end networking behav-
ior. Furthermore, these flows will have complex se-
mantic relationships which must be exploited by the
application to appropriately adapt to changing net-
work conditions and respond to user interaction.



The fundamental problem with current
transport-level protocols within the C-to-C
application context is their lack of coordina-
tion.

Application streams share a common intermediary
path between clusters, and yet operate in isolation
from one another. As a result, flows may compete
with one another when network resources become
limited, instead of cooperating to use available band-
width in application-controlled ways.
In this paper, we describe and evaluate a mech-

anism that allows transport-level protocol coordi-
nation of separate, but semantically related, flows
of data. Our approach is to introduce mechanisms
at the first- and last-hop routers which make mea-
surements of current network conditions integrated
across all flows associated with a particular C-to-
C application. These measurements are then com-
municated to the transport-level protocols on each
endpoint. This enables a coordinated response to
congestion across all flows that reflects application-
level goals and priorities. We leverage recent work in
equation-based congestion control to ensure that the
aggregate bandwidth used by all of the flows is TCP-
friendly while allowing the application to allocate
available bandwidth to individual flows in whatever
manner suits its purposes.
The main contributions of this paper are:

• Identification of the C-to-C class of Internet ap-
plications, including a brief motivating exam-
ple.

• Description of the networking challenges unique
to this application type.

• A proposal for a mechanism that provides
transport-level protocol coordination in C-to-C
applications.

• Evaluation of several aspects of our mechanism
using simulation.

The rest of this paper is organized as follows: In
Section 2, we present the C-to-C application model,
describe a motivating example, and discuss network-
ing requirements unique to this class of distributed
applications. In Section 3, we review related work.
We present our solution to the transport-level proto-
col coordination problem in Section 4, and provide
some experimental evaluation in Section 5. Section 6
mentions future work, and Section 7 briefly summa-
rizes the contents of this paper.

Aggregation
Point

Cluster−to−Cluster
Data Path

Aggregation
Point

App.
Process

A1Endpoint

App.
Process

A2Endpoint

ANEndpoint

App.
Process

App.
Process

B1Endpoint

App.
Process

B2Endpoint

BNEndpoint

App.
Process

Cluster A Cluster B

Internet

Figure 1: C-to-C application model.

2 Motivation

In this section, we describe in more detail the C-to-
C application model, and illustrate it with a specific
example. We then discuss the networking challenges
associated with this application type, and why there
is a need for a protocol coordination mechanism.

2.1 C-to-C Application Model

We model a generic C-to-C application as two sets of
processes executing on two sets of communication or
computing devices. Figure 1 illustrates this model.
A cluster is comprised of a set of endpoints dis-

tributed over a set of endpoint hosts (computers
or communication devices) and a single aggregation
point, or AP. Each endpoint is a process that sends
and/or receives data from another endpoint belong-
ing to a remote cluster. The AP functions as a gate-
way node traversed by all cluster-to-cluster flows.
The common traversal path between aggregation
points is known as the C-to-C data path.
The AP is typically the first-hop router connect-

ing the cluster to the Internet and the cluster end-
points are typically on the same local area network.
This configuration, however, is not strictly required
by our model or our proposed mechanism. Our
model is intended to capture several important char-
acteristics of C-to-C applications. First, network-
ing resources among endpoints of the same cluster
are generally well provisioned for the needs of the
application. Second, latency between endpoints of
the same cluster is small compared to latency be-
tween endpoints on different clusters. Third, there
exists a natural point within the network topology
through which all cluster-to-cluster communication
flows which can act as the AP. Finally, the C-to-C
data path between AP’s is the main source of dy-
namic network conditions such as jitter, congestion,
and delay. Our overall objective is to coordinate
endpoint flows across the C-to-C data path.



Figure 2: The Office of the Future.

2.2 An Example Application

A concrete example of a C-to-C application may help
clarify the types of applications we envision. In the
Office of the Future, conceived by Fuchs et al. [13],
tens of digital light projectors are used to make al-
most every surface of an office (walls, desktops, etc.)
a display surface. Similarly, tens of video cameras
are used to capture the office environment from a
number of different angles. At real-time rates, the
video streams are used as input to stereo correla-
tion algorithms to extract 3D geometry information.
Audio is also captured from a set of microphones.
The video streams, geometry information, and au-
dio streams are all transmitted to a remote Office
of the Future environment. At the remote environ-
ment, the video and audio streams are warped us-
ing both local and remote geometry information and
stereo views are mapped to the light projectors. Au-
dio is spatialized and sent to a set of speakers. Users
within each Office of the Future environment wear
shutter glasses that are coordinated with the light
projectors.
The result is an immersive 3D experience in which

the walls of one office environment essentially disap-
pear to reveal the remote environment and provide
a tele-immersive collaborative space for the partic-
ipants. Furthermore, synthetic 3D models may be
rendered and incorporated into both display envi-
ronments as part of the shared, collaborative experi-
ence. Figure 2 is an artistic illustration of the appli-
cation. A prototype of the application is described
in [13].
The Office of the Future is a good example of

a C-to-C application because the endpoints of the
application are collections of devices. Two simi-
larly equipped offices must exchange myriad data

streams. While few streams (if any) will share a
complete end-to-end communication path, all of the
data streams will span a common shared path be-
tween the local networking environments of each Of-
fice of the Future.
The local network environments are not likely to

be the source of congestion, loss, or other dynamic
network conditions because they can be provisioned
to support the Office of the Future application. The
shared Internet path between two Office of the Fu-
ture environments, however, is not under local con-
trol and thus will be the source of dynamic network
conditions.
The Office of the Future has a number of com-

plex application-level adaptation strategies that we
believe are typical of C-to-C applications. One such
strategy, for example, is dynamic interstream prior-
itization. Since media types are integrated into a
single immersive display environment, user interac-
tion with any given media type may have implica-
tions for how other media types are encoded, trans-
mitted, and displayed. The orientation and posi-
tion of the user’s head, for example, indicates a re-
gion of interest within the office environment. Me-
dia streams that are displayed within that region
of interest should receive a larger share of available
bandwidth and be displayed at higher resolutions
and frame rates than media streams that are out-
side the region of interest. When congestion occurs,
lower priority streams should react more strongly
than higher priority streams. In this way, appro-
priate aggregate behavior is achieved and dynamic,
application-level tradeoffs are exploited.

2.3 Networking Requirements of C-
to-C Applications

A useful metaphor for visualizing the networking
requirements of C-to-C applications is to view the
communication between clusters as a rope with
frayed ends. The rope represents the aggregate data
flow between clusters. Each strand represents one
particular flow between endpoints. At the ends of
the rope, each frayed strand represents a separate
path between an endpoint and its local AP. The
strands come together at the AP’s to form a single
aggregate object. While each strand is a separate
entity, they share a common fate and purpose when
braided together.
With this metaphor in mind, we identify several

important networking requirements of C-to-C appli-
cations:

• Preserved end-to-end semantics.
The transport-level protocol (i.e., TCP, UDP,



RTP, RAP, etc.) that is used by each flow is
specific to the communication requirements of
the data within the flow and the role it plays
within the application. Thus, each transport-
level protocol should maintain the appropriate
end-to-end semantics and mechanisms. For ex-
ample, if a data flow contains control infor-
mation that requires in-order, reliable deliv-
ery, then the transport-level protocol used (e.g.,
TCP) should provide these services on an end-
to-end basis.

• Global coordinated measurements of
throughput, delay, and loss.
The application is interested in overall perfor-
mance which may involve complex interstream
adaptation strategies in the face of changing
network conditions. Throughput, delay, and
loss should be measured across all flows associ-
ated with the application as an aggregate. Fur-
thermore, the behavior of individual transport-
level protocols must reflect both the end-to-end
semantics associated with the protocol as well
as application-level adaptation strategies. To
achieve this, we need to separate the adaptive
dynamic behavior of each transport-level proto-
col from the mechanisms used to measure cur-
rent network conditions.

• TCP-friendliness.
While the C-to-C application is free to pri-
oritize how bandwidth is allocated among its
streams, the total bandwidth used needs to be
responsive to congestion. The emerging gold-
standard for evaluating responsiveness is TCP-
friendliness. Intuitively, a flow of data is consid-
ered TCP-friendly if it consumes as much band-
width as a competing TCP flow consumes given
the same network conditions. The advantage of
using TCP-friendliness as a standard by which
to measure the congestion response of a protocol
(or in our case, the aggregate behavior of a set
of protocols) is that it ensures “fairness” with
the large majority of Internet traffic (including
HTTP) that uses TCP as an underlying data
transport protocol.

• Information about peer flows.
Individual streams within the C-to-C applica-
tion may require knowledge about other streams
of the same application. This knowledge can
be used to determine the appropriate adap-
tive behavior given application-level knowledge
about interstream relationships. For example,
an application may want to establish a relation-
ship between two flows of data such that one

flow consumes twice as much bandwidth as the
other.

• Flexibility for the application.
A C-to-C application should be free to exploit
trade-offs without constraint. That is, a coordi-
nation mechanism should not preclude dynamic
changes in bandwidth usage among flows, or
enforce any particular scheme for establishing
bandwidth usage relationships between flows.
The application should be free to implement
whatever adaptation policy is most appropriate
in whatever manner is most appropriate.

3 Related Work

3.1 Application-level Framing

The ideas of this paper are firmly grounded in the
concept of Application Level Framing (ALF) [5].
The ALF principle states that networking mecha-
nisms should be coordinated with application-level
objectives. As explained above, however, C-to-
C applications present unique challenges because
these objectives involve interstream tradeoffs for
flows that do not share a complete end-to-end
path. The actions of heterogeneous protocols dis-
tributed among a cluster of devices must be coordi-
nated to incorporate application-specific knowledge.
In essence, we are extending the ALF concept to
the idea of adapting protocol behavior to reflect
application-level semantics. This idea is also well
expressed in a position paper by Padmanabhan [11].

3.2 Protocol Coordination

The coordination problem presented by C-to-C ap-
plications is addressed most directly by Balakrish-
nan et al. in their work on the Congestion Manager
(CM) [3, 1, 2]. CM provides a framework for differ-
ent transport-level protocols to share information on
network conditions, specifically congestion, thus al-
lowing substantial performance improvements. We
note, however, that CM flows share the same end-to-
end path, while C-to-C flows share only a common
intermediary path. The fact that C-to-C senders
do not reside on the same host significantly lim-
its the extensibility of the CM architecture to our
problem context. CM offers applications sharing the
same macroflow a system API and callback mecha-
nisms for coordinating send events. Implementing
this scheme using message passing between hosts is
at best problematic.



Furthermore, CM makes use of a scheduler to ap-
portion bandwidth among flows. In [3], this is imple-
mented using a Hierarchical Round Robin (HRR) al-
gorithm. We might extend this scheme to the C-to-C
context by placing the scheduler at the AP. Doing so,
however, results in several problems. First, packet
buffering mechanisms are required which, along with
scheduling, add complexity to the AP and hurt for-
warding performance. Second, packet buffering at
the AP lessens endpoint control over send events
since endpoint packets can be queued for an indeter-
minate amount of time. Balakrishnan et al. deliber-
ately avoid buffering for exactly this reason, choos-
ing instead to implement a scheduled callback event.
Finally, scheduler configuration is problematic since
C-to-C applications are complex and may continu-
ally change the manner in which aggregate band-
width is apprortioned among flow endpoints.
In [9], Kung and Wang propose a scheme for ag-

gregating traffic between two points within a back-
bone network, and applying the TCP congestion
control algorithm to the whole bundle. The mech-
anism is transparent to applications and does not
provide a way for a particular application to make
interstream tradeoffs.
Pradhan et al. propose a way of aggregating TCP

connections sharing the same traversal path in order
to share congestion control information [12]. Their
scheme takes a TCP connection and divides it into
two separate (“implicit”) TCP connections: a “local
subconnection” and a “remote subconnection.” This
scheme, however, breaks the end-to-end semantics of
the transport protocol.
[14] describes a scheme for sharing congestion in-

formation across TCP flows from different hosts.
This work is similar to ours in that a mechanism
is introduced within the network itself to coordi-
nate congestion response across a number of differ-
ent flows which may not share a complete end-to-
end path. Their mechanism does not provide the
application with information about flows as an ag-
gregate, however, and focuses on optimizing TCP
performance by avoiding slow-start and detecting
congestion as early as possible.
Finally, Seshan et al. propose the use of perfor-

mance servers that act as a repository for end-to-
end performance information [15]. This informa-
tion may be reported by individual clients or col-
lected by packet capture hosts, and then made avail-
able to client applications using a query mechanism.
The time granularity of performance information is
coarse compared to CP, however, since it is intended
to enable smart application decisions on connection
type and destination, and not ongoing congestion

Transport Layer

Network Layer

Coordination Layer

Application Layer

Aggregation
Point

Aggregation
PointEndpoint Endpoint

IP

CP

C−TCP C−UDP

C−RTP

IP

CP

IP

CP

IP

CP

C−TCP C−UDP

C−RTP

Packet Path

Figure 3: CP network architecture.

responsiveness. In addition, their work does not as-
sociate heterogeneous flows belonging to the same
application, or consider the performance of flow ag-
gregates.

3.3 Equation-based Congestion Con-
trol

TCP-friendly equation-based congestion control has
recently matured as a technique for emulating TCP
behavior without replicating TCP mechanics. In [6,
10], an analytical model for TCP behavior is derived
that can be used to estimate the appropriate TCP-
friendly rate given estimates of various channel prop-
erties. A number of important recommendations for
using their TCP-friendly equation-based congestion
control have been documented in [8].

4 Coordination Protocol (CP)

In this section we describe our solution to the prob-
lem of transport-level protocol coordination in C-to-
C applications.

4.1 The Coordination Protocol (CP)

We propose the use of a new protocol which oper-
ates between the network layer (IP) and transport
layer (TCP, UDP, etc.) that addresses the need for
transport-level coordination. We call this protocol
the Coordination Protocol (CP). The coordination
function provided by CP is transport protocol in-
dependent. At the same time, CP is distinct from
network-layer protocols like IP that play a more fun-
damental role in routing a packet to its destination.
CP works by attaching probe information to pack-

ets transmitted from one cluster to another. As ad-
ditional probe information is returned along the re-
verse cluster-to-cluster data path, a picture of cur-
rent network conditions is formed by the AP and
shared among endpoints within the local cluster. A
consistent view of network conditions across flows
follows from the fact that the same information is
shared among all endpoints.



Figure 3 shows our proposed network architecture
from a stack implementation point of view. CP ex-
ists on each endpoint device participating in the C-
to-C application, as well as on the two aggregation
points (APs) on either end of the cluster-to-cluster
data path. Routers on the data path between APs
need not be CP-enabled since they examine only the
IP header of each incoming packet in order to route
the packet in their customary manner.
The decision to insert CP between the network

and transport layer rather than handling coordina-
tion at the application level requires some justifica-
tion. Of primary importance to us is the preserva-
tion of end-to-end semantics. An alternative would
be for each endpoint to send to a multiplexing agent
who would send the data, along with probe informa-
tion, to a demultiplexing agent on the remote clus-
ter. By breaking the communication path into three
stages, however, the end-to-end semantics of indi-
vidual transport-level protocols have been severed.
Such a scheme would also mandate that application-
level control is centralized and integrated into the
multiplexing agent.
Furthermore, we note that CP logically belongs

between the network and transport layer. While the
network layer handles the next-hop forwarding of
individual packets and the transport layer handles
the end-to-end semantics of individual streams, CP
is concerned with streams that share a significant
number of hops along the forwarding path but do
not share the same end-to-end path. This relaxed
notion of a stream bundle logically falls between the
strict end-to-end notion of the transport-level and
the independent packet notion of the network-level.
Finally, placement of CP between the network and

transport layer allows for greater efficiency. In an
application-level implementation of CP, information
on network conditions (e.g., round trip time between
APs) must pass up through an endpoint’s protocol
stack to the application layer. The information must
then be passed back down to the transport layer
where sending rate adjustments can be made in re-
sponse to the information. In contrast, a distinct
coordination layer allows for the information to be
received and passed directly to the transport layer
in a single pass as the incoming packet is processed
by each layer of its endpoint’s network stack.
While we acknowledge that implementing CP

mechanisms at the application layer is indeed possi-
ble, we believe there are distinct advantages to the
approach we have chosen. We emphasize, however,
that the relative merits or drawbacks of our scheme
are merely implementation issues that should not
obscure the fundamental problem of C-to-C flow co-

ordination described in this paper.

4.2 CP Packet Headers

Figure 4 shows a CP data packet. CP encapsu-
lates transport-level packets by prepending a 16-
byte header and indicating in the protocol field
which transport level protocol is associated with the
packet. In turn, IP encapsulates CP packets and
indicates in its protocol field that CP is being used.
Each CP header contains an application identi-

fier associating the packet with a particular C-to-C
application, and a flow identifier indicating which
flow from a given endpoint host the packet belongs
to. The triple (application id, IP address, flow id)
uniquely identifies each flow within the C-to-C ap-
plication, and hence the source of each CP packet.
The header also contains a version number and a
flags field.
The remaining contents of the CP header vary ac-

cording to the changing role played by the header
as it traverses the network path from source end-
point to destination endpoint. As the packet passes
from the source endpoint to its local AP, the header
merely identifies the cluster application it is associ-
ated with and its sender. As the packet is sent from
the source’s local AP to the remote AP, the header
contains probe information used to measure round
trip time, detect packet loss, and communicate cur-
rent loss rate and bandwidth availability. As the
packet is forwarded from the remote AP to its desti-
nation endpoint, the header contains information on
application bandwidth use, flow membership, round
trip time, loss rate, and bandwidth availability.

4.3 Basic Operation

The basic operation of CP is as follows.

• As packets originate from source end-
points.
The CP header is included in the application
packet indicating the source of the packet and
the cluster application it is associated with.

• As packets arrive at the local AP.
CP will process the identification information
arriving in the CP header, and note the packet’s
size and arrival time. Part of the CP header
will then be overwritten, allowing the AP to
communicate congestion probe information to
the remote AP.

• As packets arrive at the remote AP.
The CP header is processed and used to de-
tect network conditions. Again, part of the CP



Header
Transport−level

Packet Data

IP Header

CP Header

RTT
Variance

Aggregate
Bandwidth Used

No. of
Flows

Bandwidth
Available

Loss
Rate

C−to−C
App ID

Flow
ID

Protocol
ID

Round Trip Time

Ver Flags

Seq.
No.

Echo
Delay

Bandwidth
Available

Loss
Rate

C−to−C
App ID

Flow
ID

Protocol
ID

Timestamp

Echo Timestamp

Ver FlagsC−to−C
App ID

Flow
ID

Protocol
ID

Ver Flags

Unused

Unused

Unused

From endpoint to AP: From AP to AP: From AP to endpoint:

Figure 4: CP packet structure.

header is overwritten to communicate network
condition information, along with information
on cluster application size and bandwidth us-
age, to the remote remote endpoint.

• As packets arrive at the destination end-
point.
CP processes network condition information
from the CP header and passes it on to the
transport-level protocol and the application.

4.4 State Maintained by an AP

An AP maintains a table of active cluster applica-
tions, each entry of which exists as soft state. When
a packet arrives with an unknown cluster identifier
in its CP header, a new entry will be created in the
table and CP probe mechanisms will become active
for that application. Similarly, if no CP packet has
been seen for a particular cluster identifier i, then
the entry will time out and be removed from the
application table. Use of soft state in this manner
is both flexible and lightweight in that it avoids the
need for explicit configuration and ongoing adminis-
tration.
For each cluster application, the AP monitors

the number of participating flows, and the number
and size of packets received during a given interval.
Weighted averages are calculated to dampen the ef-
fect of packet bursts. The information is passed back
to local cluster endpoints using the CP header when-
ever a packet arrives from the remote AP on route to
a local endpoint. If no such packet arrives within a
specified time period, then a report packet is created
and “pushed” to each endpoint informing them of
cluster application membership and bandwidth us-
age, as well as current network conditions.
An AP also maintains probe state, including a cur-

rent packet sequence number, estimated round trip
time and mean deviation, a loss history and esti-
mated loss rate, and a bandwidth availability calcu-
lation. Use of these mechanisms is described below.

4.5 Detecting Network Delay and
Loss

A primary function of CP is to measure network
delay and detect packet loss along the cluster-to-
cluster data path. Figure 5, Table 1, and Table 2
together illustrate how information in the CP header
is used to make these measurements.
Each packet passing from one AP to another has

several numbers inserted into its CP header. The
first is a sequence number that increases monoton-
ically for every packet sent. A remote AP may use
this number to observe gaps (and reorderings) in the
aggregate flow of cluster application packets that it
receives. In this way, it can detect losses and infer
congestion. In our example, AP2 detects the loss of
packet C when the sequence number received skips
from 14 (packet A) to 16 (packet D).
In addition, a timestamp is sent along with the se-

quence number indicating the time at which the AP
sent the packet. The remote AP will then echo the
timestamp of the last sequence number received by
placing the value in the CP header of the next packet
traveling on the reverse path back to the sending AP.
Along with this timestamp, a delay value will also
be given indicating the length of time between the
arrival of the sequence number at the AP and the
time the AP transmitted the echo.
By noting the time when a packet is received

(Tarrival), the AP can calculate the round trip time
as (Tarrival − Techo) − Tdelay. In our example, AP2
receives packet B at time 280. The CP header con-
tains the timestamp echo 60 and an echo delay value
of 30. Thus, the round trip time is calculated as
280 − 60 − 30 = 190. A weighted average of these
round trip time calculations is used to dampen the
effects of burstiness.
Note that because sequence numbers in the CP

header do not have any transport-level function, CP
can use whatever C-to-C application packet is being
transmitted next to carry this information. Since



720

460

400

280

60

20

A

B

C

D

E

F

AP1 AP2

1325

1260

1020

950

900
870

620
AP

1 
Sy

st
em

 C
lo

ck
 V

al
ue

s AP2 System
 C

lock Values

Figure 5: Timeline of AP packet exchanges.

Packet Sequence
Number

Time-
stamp

Time-
stamp
Echo

Echo
Delay

B 14 900 60 30
C 15 950 60 80
D 16 1020 60 150
F 17 1325 460 65

Table 1: Information in CP header for packets trav-
eling from AP1 to AP2 in Figure 5.

the packets of multiple flows are available for this
purpose, this mechanism can be used for fine-grained
detection of network conditions along the cluster-to-
cluster data path.

We also observe that there is no one-to-one corre-
spondence between timestamps sent and timestamps
echoed between APs. It may be the case that more
than one packet is received by a remote AP before a
packet traveling along the opposite path is available
to echo the most current timestamp. The AP simply
makes use of available packets in a best effort man-
ner. In Figure 5 this can be seen as AP2 receives
both packets B and D before packet E is available
to send on the return path. Likewise, an AP may
echo the same timestamp more than once if no new
CP packet arrives with a new timestamp. In our
example, this occurs when AP1 sends packets B, C,
and D with a timestamp echo value of 60 which it
received from packet A.

Packet Sequence
Number

Time-
stamp

Time-
stamp
Echo

Echo
Delay

A 76 60 620 40
E 77 460 1020 60

Table 2: Information in CP header for packets trav-
eling from AP2 to AP1 in Figure 5.

4.6 Calculating Loss Rate and Band-
width Availability

Calculation of loss rate and bandwidth availability
make use of equation-based congestion control meth-
ods described in Floyd et al. in their work on TCP-
friendly rate control (TFRC) [8].
Loss rate, a central input parameter into the band-

width availability equation, is calculated using a loss
history and loss events rather than individual packet
losses. By using a loss event rate rather than a sim-
ple lost packet rate, we provide a more stable han-
dling of lost packet bursts. The reader is referred
to [6] for more details.
Calculation of available bandwidth makes use of

the equation:

X =
s

R
√

2bp
3 + tRTO(3

√
3bp
8 )p(1 + 32p

2)
(1)

where X is the transmit rate (bytes/sec), s is the
packet size (bytes), R is the round trip time (sec), p
is the loss event rate on the interval [0,1.0], tRTO is
the TCP retransmission timeout (sec), and b is the
number of packets acknowledged by a single TCP
acknowledgement.
The resulting quantity, which we refer to as cur-

rent bandwidth availability, is calculated at the re-
mote AP, and then passed using the CP header to
each endpoint in the cluster. Similarly, the event
loss rate is also passed on to endpoints to inform
them of current network conditions.
We emphasize here that the use of the above equa-

tion to calculate bandwidth availability for the clus-
ter application makes the aggregate data flow from
one AP to another TCP-compatible.

4.7 Transport-level Protocols

Transport-level protocols at the endpoints are built
on top of CP in the same manner that TCP is built
on top of IP. CP provides these transport-level pro-
tocols with a consistent view of network conditions,
including aggregate bandwidth availability, loss rate,
and round trip delay measurements. In addition, it



informs endpoints of the aggregate bandwidth us-
age and the current number of flows in the cluster
application. A transport-level protocol will in turn
use this information, along with various configura-
tion parameters, to determine a data transmission
rate and related send characteristics.
In Figure 3, we show several possible transport-

level protocols (C-TCP, C-UDP, and C-RTP) which
are meant to represent coordinated counterparts to
existing protocols. A coordinated version of UDP
(C-UDP) simply makes the above information avail-
able directly to the application which may modify
its sending rate according to an application-specific
rule or bandwidth sharing scheme.
A coordinated version of TCP (C-TCP) may con-

sider acknowledgements only as an indicator of suc-
cessful transfer. The burden of round trip delay de-
termination and congestion detection can be rele-
gated entirely to CP. Send rate adjustments at the
transport level are the combined result of configu-
ration information given by the application (e.g., a
maximum sending rate), and information on current
network conditions as provided by CP.
While C-UDP and C-TCP represent adaptations

of familiar transport-level protocols, we believe that
other coordinated transport-level protocols are pos-
sible. Such protocols will make use of CP infor-
mation and application semantics to adjust sending
rates to meet application-specific objectives.

4.8 Application-level Programming
Interface

Endpoint implementations of CP provide a modi-
fied socket interface to the application layer. With
this interface, the application is able to associate its
data flow with a particular cluster application and
interact more directly with CP-related mechanisms
in two ways.
First, the application may use the interface

to communicate configuration information to the
transport-level. For example, an application may
wish to restrict the transport-level sending rate to
no more than some maximum value. Or, an appli-
cation may instruct the transport layer to send at
only some fraction of the available bandwidth given
various conditions. Such configuration is made pos-
sible by a set of system calls which allow applications
to pass functions to the transport layer which oper-
ate on reported CP values in order to calculate an
instantaneous sending rate.
The application may also use the interface to ac-

cess CP information directly. Thus, a system call is
provided which allows the application to query, for

example, available bandwidth, round trip time, and
the current loss rate. Obtaining this information
directly is of particular importance when the appli-
cation itself controls its own send rate (e.g., C-UDP)
rather than relegating such control to the transport-
level protocol (e.g., C-TCP).

4.9 Endpoint Coordination

While a goal of C-to-C applications is to maintain
congestion responsiveness on an aggregate level, how
this goal is realized is left entirely to the applica-
tion. The approach of CP is to avoid the use of
traffic shaping or packet scheduling mechanisms at
the AP, but instead to provide application endpoints
with bandwidth availability “hints” and other in-
formation about changing network conditions. An
application may then apportion bandwidth among
endpoints by configuring them to respond to these
hints in ways which meet the objectives of the ap-
plication as a whole.
For example, a C-to-C application may config-

ure secondary streaming endpoints to reduce their
sending rate, or stop sending altogether, in response
to a drop in available bandwidth below a particu-
lar threshold value. At the same time, a primary
stream endpoint may continue to send at its original
rate, and a control endpoint may increase its send-
ing rate somewhat in order to transmit important
commands telling the receive side how to respond
to the change. Despite these differences in response
behavior, the aggregate bandwidth usage drops ap-
propriately to match the bandwidth availability hint
given.
CP provides a C-to-C application with the mech-

anisms needed to make coordinated adaptation de-
cisions which reflect the current state of the net-
work and the application’s objectives. We believe
it unnecessary to provide additional mechanisms
which enforce bandwidth usage among endpoints
since each belongs to the same application and thus
shares the same objectives. In addition, endpoint
configuration may be complex and change dynami-
cally making the implementation of an enforcement
scheme inherently problematic.

5 Evaluation

In this section, we evaluate the behavior of CP us-
ing the network simulator ns-2 [4]. We focus here
on our implementation of C-TCP, the coordinated
counterpart to TCP.
C-TCP, like TCP, implements reliability through

the use of acknowledgement packets, timeouts, and



2I

1I

SAP

S1

S2

Sn

1T

2T

AAP

1A

2A

nA

1ms, 10Mb/s

1ms, 10Mb/s4ms, 10Mb/s

4ms, 10Mb/s

Figure 6: Simulation testbed in ns2.

retransmission. Unlike window-based TCP, how-
ever, C-TCP is a rate-based implementation which
adjusts its instantaneous send rate based on band-
width availability information supplied by CP, and
configuration information supplied by the applica-
tion. Our implementation of C-TCP draws heavily
from TFRC [8], except that loss and send rate cal-
culations are handled by APs communicating over
the C-to-C data path, and TCP-compatibility, as
defined in [6], is achieved on an aggregate and not
per-flow level.

5.1 Network Topology

Our simulation topology is pictured in Figure 6. A
cluster of sending agents is labeled S1 through Sn,
with its local aggregation point labeled APS . A re-
mote cluster of ACK (acknowledgement) agents is
labeled A1 through An, with its aggregation point
labeled APA. I1 and I2 are intermediary nodes used
to create a congested link, and T1 and T2 are used
for traffic generation.
Propagation delay on links APS-I1, I1-I2, and I2-

APA is configured to be 4 msec, while it is only 1
msec on links Si-APS and Ai-APA. The link capac-
ity for all links is 10 Mb/s, except for links T1-I1 and
T2-I2 where link capacity is 100 Mb/s. This allows
traffic generators to increase traffic over link I1-I2 to
any desired level.
Trace data is collected as it is transmitted from

APS to I1 since this allows us to observe sending
rates before additional traffic on the link I1-I2 causes
queuing delays, drops, or jitter not reflective of clus-
ter endpoint sending rates.
TCP and C-TCP flows in this section use an in-

finitely large data source and send at the maximum
rate allowed by their respective algorithms. Conges-
tion periods are created by configuring T1 and T2

to generate constant bitrate traffic across the link
I1-I2. In particular, a CBR agent sending at a con-
stant 7.5-9.0 Mb/s from T1 to T2 competes with data
traffic from S1-Sn over link I1-I2.

Congestion
Period

TCP flow 0

TCP flow 2
TCP flow 1

0

1

2

3

4

5

6

7

8

9

10

5 10 15 20 25
Time (sec)

Th
ro

ug
hp

ut
 (M

bp
s)

Figure 7: TCP flows competing for bandwidth dur-
ing congestion.

5.2 Behavior of Uncoordinated TCP
Flows

To better see the problem addressed by CP, we first
examine how several TCP connections behave with-
out coordination. In Figure 7, we see the throughput
plot of three TCP connections as network congestion
occurs between time 8.0 and 13.0 seconds. Flow 0
belongs to an application process with higher band-
width requirements than processes associated with
flows 1 and 2. This can be seen clearly at the right
and left edges of the plot when flow 0 takes its full
share of the bandwidth under congestion-free cir-
cumstances.
We note the following observations:

• During the congestion interval, all three flows
compete with one another and receive a roughly
similar portion of the available bandwidth.

• The flows continue to compete in a similar fash-
ion during the period directly afterward (time
13.0 through 22.0) as each struggles to send ac-
cumulated data and regain its requisite level of
bandwidth.

• The bandwidth used by each flow is character-
ized by jagged edges, often criss-crossing one
another. This makes sense since each flow op-
erates independently, searching the bandwidth
space by repeatedly ramping up and backing off.

5.3 Behavior of C-TCP Flows

We postulate here that use of the Coordination Pro-
tocol (CP) should be distinctive in at lease two
ways. First, since all flows make use of the same
bandwidth availability calculation, round trip time,



Aggregate
C−TCP flow 0
C−TCP flow 1
C−TCP flow 2

C
on

ge
st

io
n 

Pe
rio

d

C
on

ge
st

io
n 

Pe
rio

d
0

1

2

3

4

5

6

7

8

9

10

11

5 10 15 20 25
Time (sec)

Th
ro

ug
hp

ut
 (M

bp
s)

Figure 8: C-TCP flows sharing bandwidth equally.

and loss rate information, bandwidth usage patterns
among CP flows should be much smoother. That is,
there should be far fewer jagged edges and less criss-
crossing of individual flow bandwidths as flows need
not search the bandwidth space in isolation for a
maximal send rate.
Second, the use of bandwidth by a set of CP flows

should reflect the priorities and configuration of the
application–including intervals of congestion when
network resources become limited.
To test these hypotheses, we implemented three

simple bandwidth sharing schemes which reflect dif-
ferent objectives an application may wish to achieve
on an aggregate level. We note here that more
schemes are possible, and the mixing of schemes in
complex, application-specific ways is an open area of
research.
Figure 8 shows a simple equal bandwidth sharing

scheme in which C-TCP flows divide available band-
width (B) equally among themselves. (Ri = B/N
where Ri is the send rate for sending endpoint i, and
N is the number of sending endpoints.) The aggre-
gate plot line shows the total bandwidth used by the
multi-flow application at a given time instant. While
not plotted on the same graph, this line closely cor-
responds to bandwidth availability values calculated
by APs and communicated to cluster endpoints.
Figure 8 confirms our hypothesis that usage pat-

terns among CP flows should be far smoother, and
avoid the jagged criss-crossing effect seen in Figure 7.
This is both because flows are not constantly trying
to ramp up in search of a maximal sending rate,
and because of the use of weighted averages in the
bandwidth availability calculation itself. The latter
has the effect of dampening jumps in value from one
instant to the next.
Figure 9 shows a proportional bandwidth shar-

C
on

ge
st

io
n 

Pe
rio

d

C
on

ge
st

io
n 

Pe
rio

d

Aggregate
C−TCP flow 0
C−TCP flow 1
C−TCP flow 2

0

1

2

3

4

5

6

7

8

9

10

11

5 10 15 20 25
Time (sec)

Th
ro

ug
hp

ut
 (M

bp
s)

Figure 9: C-TCP flows sharing bandwidth propor-
tionally.

ing scheme among C-TCP flows. In this particular
scheme, flow 0 is configured to take .5 of the band-
width (R0 = .5 ∗ B), while flows 1 and 2 evenly
divide the remaining portion for a value of .25 each
(R1 = R2 = .25 ∗ B).
Figure 9 confirms our second hypothesis above by

showing sustained proportional sharing throughout
the entire time interval. This includes the conges-
tion intervals (times 5.0-8.0 and 14.0-20.0) and post-
congestion intervals (times 8.0-10.0, 20.0-25.0) when
TCP connections might still contend for bandwidth.
In Figure 10, we see a constant bandwidth flow in

conjunction with two flows equally sharing the re-
maining bandwidth. The former is configured to
send at a constant rate of 3.5 Mb/s or, if it is
not available, at the bandwidth availability value
for that given instant. (R0 = min(3.5Mb/s,B)).
Flows 1 and 2 split the remaining bandwidth or, if
none is available, send at a minimum rate of 1Kb/s.
(R1 = R2 = max((B − R0)/2, 1Kb/s))
We observe that flows 1 and 2 back off their send-

ing rate almost entirely whenever flow 0 does not
receive its full share of bandwidth. We also note
that while flow 0 is configured to send at a constant
rate, it never exceeds available bandwidth limita-
tions during time of congestion.
We emphasize once again the impossibility of

achieving results like Figure 9 and Figure 10 in an
application without the transport-level coordination
provided by CP.

5.4 TCP-Friendliness

The TCP-friendliness of aggregate CP traffic is
established by using the equation-based conges-
tion control method described in [6] and used by



C
on

ge
st

io
n 

Pe
rio

d

C
on

ge
st

io
n 

Pe
rio

d Aggregate
C−TCP flow 0
C−TCP flow 1
C−TCP flow 2

0

1

2

3

4

5

6

7

8

5 10 15 20 25
Time (sec)

Th
ro

ug
hp

ut
 (M

bp
s)

Figure 10: A constant bandwidth C-TCP flow with
two C-TCP flows sharing remaining bandwidth.

TFRC [8].
While equation-based rate control guarantees

TCP-compatibility over long time intervals, Fig-
ure 11 illustrates informally the behavior of a sin-
gle C-TCP connection with two TCP connections
during a short congested interval (time 5.0 through
9.0). Here we’re interested in verifying that the be-
havior of the C-TCP flow does indeed appear to be
compatible with that of the TCP flows.
In general, we see that the C-TCP connection

mixes reasonably well with the TCP connections,
receiving approximately an equal share of the avail-
able bandwidth. In addition, we once again observe
the smoothness of its rate adjustments compared to
the far more volatile changes in TCP flows.

6 Future Work

We believe transport-level protocol coordination in
C-to-C applications to be fertile area for future work.
In particular, much work remains to be done on
new transport protocols better equipped to make
use of network condition and cluster flow informa-
tion. These protocols may provide end-to-end se-
mantics which are more specific to an application’s
needs than current all-purpose protocols like TCP
and UDP.
Flow coordination in a C-to-C application within

this paper has meant the sharing of bandwidth from
a single bandwidth availability calculation, equiva-
lent to a single TCP-compatible flow. Future work
might focus on sharing the equivalent of more than
one TCP-compatible flow, just as many applications
(eg., Web browsers) open more than one connection
to increase throughput by parallelizing end-to-end

Congestion
Period

TCP flow
TCP flow

C−TCP flow

0

1

2

3

4

5

6

2 4 6 8 10 12 14
Time (sec)

Th
ro

ug
hp

ut
 (M

bp
s)

Figure 11: C-TCP flow interacting with TCP flows.

communication.
The assumption that local networks on each end

of a C-to-C application can always be provisioned
to minimize network delay and loss may not always
be true. For example, wireless devices may introduce
delay and loss inherent to the technology itself. How
CP can be adapted to accomodate this situation is
an area of future work. One idea is to use CP for
distinguishing between congestion sources. End-to-
end estimates of delay and loss could be compared
with those of CP in order to determine whether con-
gestion is local or within the network.
Finally, the impact of CP mechanisms on forward-

ing performance at the AP is an important issue
that deserves further study. We conjecture here that
the impact will be modest since per-packet process-
ing largely amounts to simple accounting and check-
sum computations, and an AP avoids entirely the
need for buffering or scheduling mechanisms. An
actual implementation is required, however, before
any meaningful analysis can be done.

7 Summary

In this paper, we have identified a class of dis-
tributed applications known as cluster-to-cluster (C-
to-C) applications. Such applications have semanti-
cally related flows that share a common intermediary
path, typically between first- and last-hop routers.
C-to-C applications require transport-level coordi-
nation to better put the application in control over
bandwidth usage, especially during periods when
network resources become limited by congestion.
Without coordination, high-priority flows may con-
tend equally with low-priority flows for bandwidth,
or receive no bandwidth at all, thus preventing the
application from meeting its objectives entirely.
We have proposed the Coordination Protocol



(CP) as a way of coordinating semantically re-
lated flows in application-controlled ways. CP oper-
ates between the network (IP) and transport (TCP,
UDP) layers, offering C-to-C flows fine-grained infor-
mation about network conditions along the cluster-
to-cluster data path, as well as information about
application flows as an aggregate. In particular, CP
makes use of equation-based rate control methods to
calculate bandwidth availability for the entire C-to-
C application. This results in aggregate flow rates
that are highly adaptive to changing network condi-
tions and TCP-compatible.

References

[1] D. Andersen, D. Bansal, D. Curtis, S. Se-
shan, and H. Balakrishnan. System Support for
Bandwidth Management and Content Adapta-
tion in Internet Applications. Proceedings of the
Fourth Symposium on Operating Systems De-
sign and Implementation (OSDI), pages 213–
226, October 2000.

[2] H. Balakrishnan and S. Seshan. RFC 3124: The
Congestion Manager, June 2001.

[3] Hari Balakrishnan, Hariharan S. Rahul, and
Srinivasan Seshan. An Integrated Congestion
Management Architecture for Internet Hosts.
Proceedings of ACM SIGCOMM, September
1999.

[4] L. Breslau, D. Estrin, K. Fall, S. Floyd,
J. Heidemann, A. Helmy, P. Huang, S. Mc-
Canne, K. Varadhan, Y. Xu, and H. Yu. Ad-
vances in Network Simulation. IEEE Computer,
33(5):59–67, May 2000.

[5] D.D. Clark and D.L. Tennenhouse. Architec-
tural Considerations for a New Generation of
Protocols. Proc. ACM SIGCOMM 1990, Com-
puter Communication Review, 20(4):200–208,
September 1990.

[6] S. Floyd, M. Handley, J. Padhye, and J. Wid-
mer. Equation-Based Congestion Control for
Unicast Applications. Proceedings of ACM
SIGCOMM, pages 43–56, 2000.

[7] J. Grudin. Computer-Supported Cooperative
Work: Its History and Participation. Computer,
27(4):19–26, 1994.

[8] M. Handley, J. Padhye, S. Floyd, and J. Wid-
mer. TCP Friendly Rate Control (TFRC): Pro-
tocol Specification. IETF, May 2001. Internet
Draft, work in progress.

[9] H.T. Kung and S.Y. Wang. TCP Trunking: De-
sign, Implementation and Performance. Proc.
of ICNP ’99, November 1999.

[10] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose.
Modeling TCP Throughput: A Simple Model
and Its Empirical Validation. Proceedings of
ACM SIGCOMM, 1998.

[11] V.N. Padmanabhan. Coordinated Congestion
Management and Bandwidth Sharing for Het-
erogeneous Data Streams. Proceedings of the
9th International Workshop on Network and
Operating System Support for Digital Audio and
Video (NOSSDAV), pages 187–190, 1999.

[12] P. Pradhan, T. Chiueh, and A. Neogi. Aggre-
gate TCP Congestion Control Using Multiple
Network Probing. Proc. of IEEE ICDCS 2000,
2000.

[13] Ramesh Raskar, Greg Welch, Matt Cutts,
Adam Lake, Lev Stesin, and Henry Fuchs. The
Office of the Future: A Unified Approach to
Image-Based Modeling and Spatially Immersive
Displays. Proceedings of ACM SIGRAPH 98,
1998.

[14] S. Savage, N. Cardwell, and T. Anderson. The
Case for Informed Transport Protocols. Pro-
ceedings of HotOS VII, March 1999.

[15] Srinivasan Seshan, Mark Stemm, and Randy H.
Katz. SPAND: Shared Passive Network Perfor-
mance Discovery. In USENIX Symposium on
Internet Technologies and Systems, 1997.

[16] M. Weiser. Some Computer Science Problems
in Ubiquitous Computing. Communications of
the ACM, 36(7):75–84, July 1993.

[17] T.-P. Yu, D. Wu, K. Mayer-Patel, and L.A.
Rowe. DC: A Live Webcast Control System.
Proc. of SPIE Multimedia Computing and Net-
working, 2001.


