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Abstract

A distributedalgorithmfor determiningthe positionsof

nodesn anad-hocwirelesssensonetwork is explained
in detail. Detailsregardingthe implementatiorof such
an algorithm are also discussed. Experimentationis

performedon networks containing400 nodesrandomly
placedwithin a squarearea,and resulting error mag-
nitudesare representeds percentage®f eachnodes

radio range. In scenarioswith 5% errorsin distance
measurement§% anchornodepopulation(nodeswith

known locations),and averageconnectvity levels be-
tweenneighborsof 7 nodes,the algorithmis shown to

have errorslessthan33% on average.lt is alsoshown

that, given an averageconnectvity of atleast12 nodes
and 10% anchorsthe algorithm performswell with up

to 40%errorsin distanceameasurements.

1 Intr oduction

Ad-hoc wirelesssensometworks are being developed
for usein monitoring a host of ervironmentalcharac-
teristics acrossthe areaof deployment, suchas light,

temperaturesound,and mary others. Most of these
datahave the commoncharacteristichat they are use-
ful only when consideredn the context of wherethe
datawere measuredand so most sensordatawill be
stampedwith positioninformation. As thesearead-hoc
networks, however, acquiringthis position datacanbe
quitechallenging.

Ad-hocsystemsstriveto incorporateasfew assumptions
aspossibleaboutcharacteristicsuchasthecomposition

of the network, the relative positioning of nodes,and

the ervironmentin which the network operates. This

calls for robustalgorithmsthat are capableof handling
thewide setof possiblescenariodeft openby somary

degreesof freedom. Specifically we only assume
that all the nodesbeing consideredin an instanceof

the positioningproblemare within the sameconnected
network, and that therewill exist within this network

a minimum of four anchornodes. Here, a connected
network is a network in which thereis a pathbetween
every pair of nodesandananchomodeis a nodethatis

givena priori knowledgeof its positionwith respecto

someglobal coordinatesystem.

A consequencef the ad-hocnatureof thesenetworks
is the lack of infrastructureinherentto them. With

very few exceptions,all nodesare consideredequal;
this makesit difficult to rely on centralizedcomputation
to solve network wide problems,such as positioning.
Thus, we considerdistributed algorithmsthat achieve
robustnesghroughiterative propagatiorof information
througha network.

The positioning algorithm being consideredrelies on
measurementsyith limited accurag, of the distances
between pairs of neighboring nodes; we call these
range measurements.Several techniquescan be used
to generatetheserangemeasurementsncluding time
of arrival, angle of arrival, phasemeasurementsand
receved signal strength. This algorithmis indifferent
to which methodis used,exceptthat differentmethods
offer differenttradeofs betweenaccuray, compleity,
cost, and power requirements.Someof thesemethods
generaterange measurementsvith errors as large as
+50% of the measurement. Note that theseerrors
can come from multiple sources,including multipath



interference Jine-of-sight obstruction,and channelin-

homogeneitywith regardto direction. This work, how-

ever, is not concernedvith the problemof determining
accurateangemeasurementsnsteadwe assumdarge
errorsin rangemeasurementthat shouldrepresenan
agglomeratiorof multiple sourcesof error. Being able
to copewith rangemeasurementrrorsis thefirst of two

major challengesn positioningwithin anad-hocspace,
andwill betermedthe range error problemthroughout
this paper

The secondmajor challengebehind ad-hoc position-
ing algorithms, henceforthreferredto as the sparse
andor node problem comesfrom the needfor at
least four referencepoints with known location in a
three-dimensionapacein orderto uniquelydetermine
the locationof an unknavn object. Too few reference
points resultsin ambiguitiesthat lead to underdeter
minedsystemsf equations.Recallingthe assumptions
madeabove,only theanchomodeswill have positioning
information at the start of thesealgorithms, and we
assumehattheseanchomodeswill belocatedrandomly
throughoutan arbitrarily large network. Given limited
radio ranges,it is thereforehighly unlikely that ary
randomlyselectechodein the network will bein direct
communicationwith a sufficient numberof reference
pointsto derive its own positionestimate.

In responsdo thesetwo primary obstacleswe present
an algorithm split into two phases:the start-up phase
andtherefinemenphase.The start-upphaseaddresses
thesparseanchomodeproblemby cooperatiely spread-
ing awarenes®f theanchomodes’positionsthroughout
the network, allowing all nodesto arrive at initial posi-
tion estimates.Theseinitial estimatesare not expected
to be very accurateput areusefulasroughapproxima-
tions. Therefinementphaseof the algorithmthenuses
the resultsof the start-upalgorithm to improve upon
theseinitial positionestimateslt is herethatthe range
errorproblemis addressed.

This paperpresentsour algorithmsin detail, and dis-
cusseseveral network designguidelinesthat shouldbe
takeninto consideratiorwhendeploying a systemwith
suchan algorithm. Section2 will discussrelatedwork
in this field. Section3 will elaborateour two-phase
algorithm approach, exploring in depth the start-up
and refinementphasesof our solution. Section4 will
discusssomesubtletiesof the algorithmin relationto
our simulationervironment. Section5 reportson the
experimentsperformedto characterizehe performance
of ouralgorithm.Finally, Section6 is adiscussiorof de-
signguidelinesandalgorithmlimitations,and Section7
concludeghepaper

2 Relatedwork

The recent surey and taxonomy by Hightower and
Borriello providesa generaloverview of the stateof the
artin locationsystemg7]. However, few systemdor lo-
catingsensomodesin anad-hocnetwork aredescribed,
becauseof the aforementionedangeerror and sparse
anchornodeproblems.Many systemsare basedon the
attractive option of using the RF radio for measuring
the range betweennodes,for example, by observing
the signal strength. Experiencehas shovn, however,
that this approachyields very inaccuratedistanced8].
Much betterresultsare obtainedby time-of-flight mea-
surementsparticularly when acousticand RF signals
are combined[6, 12]; accuracieof a few percentof
the transmissiorrangeare reported. Acoustic signals,
however, aretemperaturelependenaindrequireanun-
obstructedine of sight. Furthermoregvensmallerrors
do accumulatewhen propagatingdistanceinformation
over multiple hops.

A drasticapproachthat avoids the rangeerror problem
altogetheris to use only connectity betweennodes.
The GPS-lessystemby Bulusuetal. [3] emplgysagrid
of beaconnodeswith known locations;eachunknovn
nodesetsits positionto the centroidof the locationsof
the beaconsconnectedo the unknowvn. The position
accurag is aboutone-third of the separationdistance
betweenbeaconsjmplying a high beacondensity for
practicalpurposes.Doherty et al. usethe connectvity
betweennodesto formulate a set of geometriccon-
straintsandsolve it usingcornvex optimization[5]. The
resulting accurag dependson the fraction of anchor
nodes. For example, with 10% anchorsthe accurag
for unknawvns is on the order of the radio range. A
seriousdrawback, which is currently being addressed,
is that corvex optimizationis performedby a single,
centralizechode.The“DV-hop” approactby Niculescu
andNath,in contrastjs completelyad-hocandachieres
an accuray of aboutone-third of the radio rangefor
networks with densepopulationsof (highly connected)
nodes[10]. In afirst phaseanchordlood their location
to all nodesin the network. Each unknovn node
recordsthe position and (minimum) numberof hops
to at least three anchors. Wheneer an anchor aq
infers the position of anotheranchora, it computes
the distancebetweenthem, dividesthat by the number
of hops, andfloods this averagehop distanceinto the
network. Eachunknawn usesthe averagehop distance
to convert hop countsto distancesandthenperformsa
triangulationto threeor moredistantanchorgo estimate
its own position. “DV-hop” works well in denseand
regular topologies,but for sparseor irregular networks
theaccurag degradego theradiorange.



More accuratepositionscan be obtainedby using the
range measurementetweenindividual nodes(when
theerrorsaresmall). Whenthe fractionof anchomodes
is high the “iterative multilateration” methodby Sav-
videsetal. canbeused[12]. Nodesthatareconnected
to at least three anchorscomputetheir position and
upgradeto anchorstatus allowing additionalunknavns
to computetheir position in the next iteration, etc.
Recentlya numberof approachefave beenproposed
that require few anchors[4, 9, 10, 11]. They are
quite similar and operateasfollows. A nodemeasures
the distancedo its neighborsand then broadcastghis
information. This resultsin eachnode knowing the
distanceto its neighborsand somedistanceshetween
thoseneighborsThisallowsfor theconstructiorof (par
tial) local mapswith relative positions. Adjacentlocal
mapsarecombinedby aligning (mirroring, rotating)the
coordinatesystems.The known positionsof the anchor
nodesare usedto obtain mapswith absolutepositions.
Whenthreeor moreanchorsare presentn the network
a singleabsolutemapresults. This style of locationing
is not very robust sincerangeerrorsaccumulatevhen
combiningthe maps.

3 Two-phasepositioning

As mentioneckarlier, thetwo primary obstaclesgo posi-
tioning in anad-hocnetwork arethe sparseanchomode
problemandtherangeerrorproblem.In orderto address
each of theseproblemssuficiently, our algorithm is
separatedhto two phasesstart-upandrefinement.For
the start-upphasewe useHop-TERRAIN, an in-house
algorithmsimilar to DV-hop[10]. The Hop-TERRAIN
algorithmis run onceatthe beginningof the positioning
algorithm to overcomethe sparseanchornode prob-
lem, and the Refinementalgorithm is run iteratively
afterwards to improve upon and refine the position
estimategyeneratedy Hop-TERRAIN. Note therefore
thatthe emphasifor Hop-TERRAIN is not on getting
highly accuratepositionestimatesbut insteacbn getting
very rough estimatesso asto have a starting point for
Refinement.Cornversely Refinemenis concernecnly
with nodesthat exist within a one-hopneighborhood,
andit focusesonincreasinghe accurag of the position
estimateasmuchaspossible.

3.1 Hop-TERRAIN

Before the positioning algorithm has started, most of
the nodesin a network have no positioningdata, with

the exceptionof the anchors.The networks beingcon-
sideredfor this algorithmwill be scalableto very large
numberof nodesspreadverlargeareasrelative to the
shortradio rangegthat eachof the nodesis expectedto
possessFurthermoreijt is expectedthatthe percentage
of nodeghatareanchomodeswill besmall. Thisresults
in a situationin which only a very small percentage
of the nodesin the network are ableto establishdirect
contactwith ary of the anchors,and probablynoneof
thenodesin the network will beableto directly contact
enoughanchorgo derive a positionestimate.

In orderto overcomethis initial informationdeficieng,

the Hop-TERRAIN algorithmfinds the numberof hops
from a nodeto eachof the anchorsnodesin a network

and then multiplies this hop count by an averagehop

distancgseeSection4.2) to estimateherangebetween
the node and each anchor Thesecomputedranges
are then usedtogetherwith the anchornodes’known

positionsto performa triangulationand get the nodes

estimatedposition. Thetriangulationconsistsof solving

a systemof linearizedequationgAx=b) by meansof a

leastsquareslgorithm,asin earlierwork [11].

Eachof the anchornodeslauncheghe Hop-TERRAIN
algorithmby initiating a broadcastontainingits known
location and a hop count of 0. All of the one-hop
neighborssurroundingan anchorhear this broadcast,
recordthe anchors positionanda hop countof 1, and
thenperformanotherroadcastontainingthe anchors
positionand a hop countof 1. Every nodethat hears
this broadcasenddid not hearthe previous broadcasts
will recordthe anchors position and a hop count of
2 and then rebroadcast. This processcontinuesuntil
eachanchorspositionandanassociatetiopcountvalue
have beenspreadto every nodein the network. It is
importantthat nodesreceving thesebroadcastsearch
for the smallestnumberof hopsto eachanchor This
ensuresonformity with the modelusedto estimatethe
averagedistanceof a hop, andit also greatly reduces
network traffic.

As broadcastsnay be omni-directionaland maythere-
fore reachnodesbehind the broadcastinghode (rela-
tive to the direction of the flow of information), this
algorithm causesnodesto hear mary more paclets
thannecessary In orderto preventan infinite loop of
broadcastsnodesareallowed to broadcastnformation
only if it is notstaleto them.In this context, information
is staleif it refersto ananchorthatthe nodehasalready
heardfrom andif the hop countincludedin thearriving
pacletis greatetthanor equalto thehop countstoredin
memoryfor this particularanchor New informationwill
always trigger a broadcastwhereasstale information
will nevertriggerabroadcast.



Oncea nodehasreceived an averagehop distanceand
dataregardingat least3(4) anchornodesfor a network

existingin a2(3)-dimensionatpaceit is ableto perform
a triangulationto estimateits location. If this node
subsequentlyreceves nen data after already having

performeda triangulation, either a smaller hop count
or a new anchor the node simply performsanother
triangulationto include the new data. This procedure
is summarizedn thefollowing pieceof pseudacode:

when apositioningpacletis receved,

if new anchoror lower hop count

then
storehop countfor this anchor
broadcashew pacletfor this anchorwith
hop count= (hopcount+ 1).

else
do nothing.

if averagehopcountis known and
numberof anchors>= (dimensionof spacet 1)

then
triangulate.

else
do nothing.

The resultingpositionestimateis likely to be coarsein
terms of accurag, but it provides an initial condition
from which Refinementcanlaunch. The performance
of this algorithmis discussedh detailin Section5.

3.2 Refinement

Given the initial position estimatesof Hop-TERRAIN

in the start-up phase,the objective of the refinement
phaseis to obtain more accuratepositions using the

estimatedangedetweemodes.SinceRefinementmust

operatein anad-hocnetwork, only the distancego the

direct (one-hop)neighborsof a node are considered.
This limitation allows Refinemento scaleto arbitrary

network sizesandto operateon low-level networksthat

do not supportmulti-hoprouting (only alocal broadcast
is required).

Refinements aniterative algorithmin which the nodes
updatetheir positionsin a numberof steps. At the
beginning of eachstep a node broadcaststs position
estimaterecevesthepositionsandcorrespondingange
estimatesfrom its neighbors, and computesa least
squaredriangulationsolutionto determineits new po-
sition. In mary casesthe constraintsimposedby the
distanceso theneighboringocationswill forcethenewn
positiontowardsthe true position of the node. When,

afteranumberof iterations thepositionupdatebecomes
small Refinementstopsand reportsthe final position.
NotethatRefinemenis by natureanad-hoddistributed)
algorithm.

The beautyof Refinements its simplicity, but thatalso
limits its applicability. In particular it wasa priori not

clearunderwhatconditionsRefinementvould corverge
andhow accuratehefinal solutionwould be. A number
of factorsthatinfluencethecorvergenceandaccurag of

iterative Refinementre:

o theaccurag of theinitial positionestimates,
¢ themagnitudeof errorsin therangeestimates,
¢ theaveragenumberof neighborsand

¢ thefractionof anchomodes.

Basedon previous experiencewe assumethat redun-
dang can counterthe above influencesto a large ex-
tent. When a node has more than 3(4) neighborsin
a 2(3)-dimensionakpacethe inducedsystemof linear
equationss over-definedanderrorswill beaveragedut
by theleastsquaresolver. For example,datacollected
by Beutel [1] shaws that large rangeerrors (standard
deviation of 50%)canbetoleratedvhenlocatinganode
surroundedoy 5 (or more) anchorsin a 2-dimensional
space:the averagedistancebetweenthe estimatedand
true position of the nodeis lessthan 5% of the radio
range.

Despite the positive effects from redundang we ob-

senedthat a straightforward applicationof Refinement
did not corverge in a considerablenumber of “rea-

sonable” cases. Close inspectionof the sequenceof

stepstaken under Refinementrevealedtwo important
causes:

1. Errorspropagatdastthroughouthewholenetwork.
If the network hasa diameterd, thenanerrorintro-
ducedby a nodein steps has(indirectly) affected
every nodein the network by steps + d becausef
thetriangulate-hop-triangulateep- - - pattern.

2. Some network topologiesare inherently hard, or
evenimpossible,to locate. For example,a cluster
of n nodes(no anchors)connecteddy a singlelink
to the main network canbe simply rotatedaround
the‘entry’-point into the network while keepingthe
exact sameintra- noderanges.Anotherexampleis
givenin Figurel.

To mitigate error propagationwe modified the refine-
mentalgorithmto include a confidenceassociatedvith
each nodes position. The confidencesare used to
weigh the equationawvhen solving the systemof linear
equations. Insteadof solving Ax=b we now solve



wAXx=wb, wherew is the vectorof confidenceweights.
NodesJike anchorsthathave highfaithin their position
estimatesselecthigh confidencevalues(closeto 1). A
nodethatobsenespoor conditions(e.g.,few neighbors,
poorconstellation)associatealow confidencecloseto
0) with its positionestimate,andconsequenthhasless
impacton the outcomeof the triangulationsperformed
by its neighborsThedetailsof confidenceselectionwill
be discussedn Section4.3. The usageof confidence
weightsimproved the behavior of Refinementgreatly:
almostall casescorverge now, andthe accurayg of the
positionsis alsoimprovedconsiderably

Anotherimprovementto Refinementwas necessaryo
handlethesecondssueof ill-connectedyroupsof nodes.
Detectingthat a single nodeis ill-connectedis easy: if
the numberof neighborgs lessthan3(4) thenthe node
is ill-connectedin a 2(3)-dimensionakpace.Detecting
thata groupof nodesis ill-connected however, is more
complicatedsince someglobal overview is necessary
We employ aheuristicthatoperatesn anad-hocfashion
(no centralizedcomputation) yet is ableto detectmost
ill-connectednodes. The underlying premisefor the
heuristicis thatasoundnodehasindependenteferences
to at least3(4) anchors. That s, the multi-hop routes
to the anchorshave no link (edge)in common. For
example,node3 in Figurel (whichis takenfrom [12])
meetsthis criteriaandis consideredgound.

@ Anchor

(O unknown

Figurel: Exampletopology

To determingf anodeis soundthe Hop-TERRAINal-
gorithmrecordsthe ID of eachnodesimmediateneigh-
bor alonga shortespathto eachanchor Whenmultiple
shortestpathsare available, the first one discoveredis
used(this only approximateshe intendedconditionbut
is considerablysimpler). TheselDs are collectedin a
set of soundneighbors. When the numberof unique
IDs in this setreaches3(4), a nodedeclarestself sound
and may enterthe Refinementphase. The neighbors
of the soundnodeaddits ID to their setsand may in
turn becomesoundif their soundsetsbecomesuficient.
This processontinueghroughouthenetwork. Theend
resultis thatmostill-connectedhodeswill notbeableto
fill theirsetsof soundheighboravith enoughentriesand,

therefore may not participatein the Refinemenphase.
In theexampletopologyin Figurel, node3 will become
sound,but node4 will not. We alsonotethatthe more
restrictive participating nodedefinition by Savvides et
al. renderdothunknonvn nodesasill-conditioned [12].

Refinement with both modifications (confidence
weights, detection of ill-connected nodes) performs
quite satishctorily, aswill be shovn by theexperiments
in Sectionb5.

4 Simulation and algorithm details

To study the robustnessof our two-phasepositioning
algorithmwe createda simulationenvironmentin which
we caneasilycontrolanumberof (network) parameters.
We implementedthe Hop-TERRAIN and Refinement
algorithmsas C++ code running under the control of
the OMNeT++ discreteevent simulator[13]. The al-
gorithms are event driven, where an event can be an
incoming messager a periodictimer. Processingan
eventusuallyinvolvesupdatinginternalstate,andoften
generate®utput messagethat mustbe broadcast.All
simulatedsensomodesrun exactly the sameC++ code.
The OMNeT++ library is in control of the simulated
time and enforcesa semi-concurrenexecution of the
code‘running’ onthemultiple sensomnodes.

4.1 Network layer

Although our positioning algorithm is designedto be
usedin an ad-hocnetwork that presumablyemploys
multi-hop routing algorithms, our algorithm only re-
quiresthata nodebe ableto broadcasa messagéo all
of its one hop neighbors. An importantresult of this
is the ability for systemdesignerdo allow the routing
protocolsto rely on positioninformation,ratherthanthe
positioningalgorithmrelying on routing capabilities.

An importantissueis whetheror not the network pro-
videsreliablecommunicatiorin the presencef concur
renttransmissionin this paperwe assumahatmessage
lossor corruptiondoesnot occurandthateachmessage
is deliveredat the neighborswithin a fixed radio range
(R) from the sendingnode. Concurrenttransmissions
areallowedwhenthetransmissiorareagcircles)do not
overlap. A nodewantingto broadcast messageavhile
anothemessagén its areais in progressnustwait until
thattransmissior{andpossiblyotherqueuednessages)
completeslin effectwe employ a CSMA policy.



The functionality of the network layer (local broadcast)
is implementedn a single OMNeT++ object, which is
connectedo all sensomodeobjectsin the simulation.
This network objectholdsthetopologyof the simulated
sensonetwork, which canbereadfrom a”scenario”file
or generatedhat randomat initialization time. At time
zerothe network objectsendsa pseudanessagéo each
sensomodeobjecttelling its role (anchoror unknown)
andsomeattributes(e.g., the positionin the caseof an
anchomode).Fromthenonit relaysmessagegenerated
by sensonodego thesenders neighborswithin aradius
of R units.

4.2 Hop-TERRAIN

At time zero of the Hop-TERRAIN algorithm, all of
the nodesin the network are waiting to receive hop
countpacletsinforming themof the positionsandhop
distancesssociatevith eachof theanchomodes Also
at time zero, eachof the anchornodesin the network
broadcasts hop count paclet, which is receved and
repeatedy all of theanchors’one-hopneighbors.This
informationis propagatedhroughoutthe network until,

ideally, all the nodesin the network have positionsand
hop countsfor all of theanchorsn the network aswell

asan averagehop distance(seebelow). At this point,
eachof the nodesperformsa triangulationto createan
initial estimateof its position. The numberof anchorsn

ary particularscenarids notknown by thenodesn the
network, however, soit is difficult to definea stopping
criteriato dictatewhen a nodeshouldstop waiting for

moreinformationbeforeperformingatriangulation.To

solve this problem,nodesperformtriangulationsevery
time they receve informationthatis not staleafter hav-

ing recevedinformationfrom thefirst 3(4) anchorsn a
2(3)-dimensionaspace(seeSection3.1 for a definition
of staleinformation).

Nodesalso rely on the anchornodesto inform them
of the value to usefor the assumedaveragehop dis-
tanceusedin calculatingthe estimatedrangeto each
anchor Initially we experimentedwith simply using
the maximum radio range for this quantity Better
position results,however, are attainedby dynamically
determiningthe average hop distanceby comparing
the numberof hops betweenthe anchorsthemseles
to the known distancesseparatinghem following the
calibrationprocedureusedfor DV-hop (seeSection2).
We implementedhe calibrationprocedureasa separate
pasghatfollowstheinitial hop-counflooding. Whenan
anchornoderecevesa hop countfrom anotheranchor
it computesits estimateof the averagehop distance,
andfloodsthat backinto the network. Nodeswait for

the first suchestimateto arrive before performingary
triangulationas outlined above. Subsequengstimates
from otheranchorpairsare simply discardedo reduce
network load.

The above detailsaresuficient for controllingthe Hop-
TERRAIN algorithm within a simulatedervironment
whereall of the nodesstartup at the sametime. One
importantconsequencef a real network, however, is
that the nodesin the network start up or enter the
network at randomtimes, relative to eachother This
allows for the possibility that a late node might miss
someof the waves of propagatedoroadcasimessages
originating at the anchornodes. To solve this, each
node is programmedto announceitself whenit first
comesonline in a new network. Likewise, every node
is programmedo respondto theseannouncementby
passingthe new nodetheir own position estimatesthe
positionsof all of the anchornodesthey know of, and
thehop countsandhop distancemetricsassociatedvith
theseanchors. Note that, accordingto the rebroadcast
rulesregardingstaleinformation, this information will
all benew to thenew node causinghisnew nodeto then
rebroadcasall of the informationto all of its one-hop
neighbors. This becomedmportantin the caseswvhere
thenew nodeformsalink betweertwo clustersof nodes
thatwerepreviously notconnectedln casesvhereall or
mostof the new nodes one-hopneighborscameonline
beforethe new node,this informationwill mostlikely
be consideredstale,andso thesebroadcastsvill not be
repeategbasta distanceof onehop.

4.3 Refinement

The refinementalgorithmis implementedasa periodic
process. The information in incoming messagess

recordednternally; but not processeimmediately This

allows for accumulatingmultiple positionupdatesrom

differentneighbors,andrespondingwith a singlereply
(outgoing broadcasimessage). The task of an anchor
nodeis very simple: it broadcast#s positionwheneer
it hasdetecteda new neighborin the precedingperiod.
The task of an unknovn node is more complicated.
If new information arrived in the precedingperiod it

performs a triangulationto computea new position
estimatedeterminegnassociatedonfidencdevel, and
finally decideswhetheror not to sendout a position
updateto its neighbors.

A confidencés avaluebetweerD and1. Anchorsimme-
diately startoff with confidencel; unknovn nodesstart
off ata low value (0.1) and may raisetheir confidence
at subsequenRefinemeniterations. Wheneer a node



performsa successfutriangulationit setsits confidence
to the averageof its neighbors’confidences.This will,
in generalyaisethe confidencdevel. Nodescloseto an-
chorswill raisetheirconfidencetthefirst triangulation,
raisingin turn the confidenceof nodestwo hopsaway
from anchorson the next iteration, etc. Triangulations
sometimedfail or the new positionis rejectedon other
grounds(seebelaw). In thesecasesthe confidenceis
setto zero, so neighborswill not be using erroneous
informationof theinconsistenhodein thenext iteration.
This generallyleadsto new neighborpositionsbringing
the faulty node back into a consistentstate, allowing
it to build its confidencelevel again. In unfortunate
casesa node keepsgetting back into an inconsistent
state, never corverging to a final position/confidence.
To warrantterminationwe simply limit the numberof
position updatesof a nodeto a maximum. Nodesthat
endup with apoorconfidencg< 0.1)arediscardedand
excludedfrom the reportederror results;all othersare
consideredo belocatedandincludedin theresults.

To avoid flooding the network with insignificant or
erroneougposition updateshe triangulationresultsare
classifiedasfollows. First, a triangulationmay simply
fail becausé¢he systemof equationss underdetermined
(too few neighborsbadconstellation).Secondthe new
positionmay be very closeto the currentone,rendering
the position updateinsignificant. We usea tight cut-
off radiusof ﬁ of the radio range; experimentation
shaved Refinementis fairly insensitve to this value
aslong asit is small (under 1% of the radio range).
Third, we checkthatthe new positionis within thereach
of the anchorsused by Hop-TERRAIN. Similarly to
Dohertyet al. [5] we checkthe corvex constraintshat
the distancebetweenthe position estimateand anchor
a; must be less than the length of the shortestpath
to a; (hop-couny) times the radio range (R). When
the position drifts outsidethe corvex region, we reset
the positionto the original initial positioncomputedby
Hop-TERRAIN.Finally, thevalidity of the new position
is checledby computingthedifferencebetweerthesum
of the obsened rangesand the sum of the distances
betweenthe new position and the neighborlocations.
Dividing this differenceby the number of neighbors
yields a normalizedresidue. If the residueis large
(residue> radio range)we assumethat the systemof
equationss inconsistenandrejectthe new position. To
avoid beingtrappedin somelocal minima, however, we
occasionallyacceptbad moves (10% chance),similar
to a simulatedannealingprocedure(without cooling
down), andreducethe confidenceby 50%.

An unexpectedsourceof errorsis that Hop-TERRAIN
assignghe sameinitial positionto all nodeswith iden-
tical hop countsto the anchors. For example, twin
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Figure 2: Averagepositionerror after Hop-TERRAIN
(5% rangeerrors).

nodeghatshareheexactsamesetof neighborsareboth
assignedhe sameinitial position. The consequences

that a neighborof two ‘look-alikes’ is confrontedwith

a large inconsisteng: two nodesthat sharethe same
position have two different range estimates. Simply
droppingoneof thetwo equationgrom thetriangulation
yields better position estimatesn the first iteration of

Refinementand even has a noticeableimpact on the
accurag of thefinal positionestimates.

5 Experiments

In orderto evaluateour algorithm,we ran mary exper

iments on both Hop-TERRAIN and Refinementusing

the OMNeT++ simulationervironment. All datapoints
represenéverage®ver100trialsin networkscontaining
400 nodes. The nodesare randomly placed, with a

uniform distribution, within a squarearea. The spec-
ified fraction of anchorsis randomly selected and the

rangebetweenconnectechodesis blurred by drawing

a randomvalue from a normal distribution having a

parameterizedstandarddeviation and having the true

rangeasthe meart. The connectvity (averagenumber
of neighbors)s controlledby specifyingtheradiorange.
To allow for easycomparisorbetweerdifferentscenar

ios, rangeerrorsaswell aserrorson positionestimates
arenormalizedo theradiorange(i.e. 50%positionerror

meanshalf therangeof theradio).

Figure 2 shows the averageperformanceof the Hop-
TERRAIN algorithmasa function of connectvity and
anchomopulationin thepresencef 5%rangeerrors.As
seenin this plot, positionestimatesy Hop-TERRAIN

1Rangesareenforcedto be non-ngative by clipping valuesbelov
zero.
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have anaverageaccurag underl00%errorin scenarios
with at least 5% anchor population and an average
connectvity level of 7 or greater In extremesituations
where very few anchorsexist and connectvity in the

network is very low, Hop-TERRAIN errorsreachabove

250%.

Figure 3 displaysthe resultsfrom the sameexperiment
depictedin Figure 2, but now the position estimates
of Hop-TERRAIN are subsequentlyprocessedyy the
Refinementalgorithm. Its shapeis similar to that of
Figure 2, shaving relatively consistenterror levels of
lessthan33%in scenariosvith atleast5% anchorpop-
ulationandanaverageconnectvity level of 7 or greater
Refinementlsohasproblemswith low connectvity and
anchorpopulations,andis shovn to climb above 50%
positionerrorin theseharshconditions.Overall Refine-
mentimprovestheaccurag of the positionestimatedy
Hop-TERRAINDby afactorthreeto five.

Figure 4 helpsto explain the sharpincreasesn posi-
tioning errors for low anchor populationsand sparse
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Figure 5: Averagepositionerror after Hop-TERRAIN
(2D grid, 5% rangeerrors).
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networksshawvn in figures2 and3. Figure4 showsthat,
as the averageconnectvity betweennodesthroughout
the network decreasegast certain points, both algo-
rithms breakdown, failing to derive position estimates
for large fractionsof the network. Thisis duesimply to
a lacking of sufficient information, andis a necessary
consequencef loosely connectednetworks. Nodes
can only be locatedwhen connectedto at least 3(4)
neighbors; Refinementalso requiresa minimal confi-
dencelevel (0.1). It should be noted that the results
in Figure 4 imply that the reportedaverage position
errorsfor low connectvities in figures2 and 3 have
low statisticakignificanceasthesepointsrepresentnly
small fractionsof the total network. Neverthelessthe
generalconclusionto be dravn from figures2, 3, and
4 is that both Hop-TERRAIN and Refinemeniperform
poorly in networks with averageconnectvity levels of
lessthan?.

Sinceconnectvity hasa pronounceckffect on position
errorwe wereinterestedf othertopologicalcharacteris-
tics would shawv large effectsaswell. In the following
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experimentwe randomlyplace400nodesonthevertices
of a 200x200grid, ratherthan allowing the nodesto

sit anywhere in the squarearea. We found that the

grid layout did not resultin betterperformancéor the

Refinementalgorithm, relative to the performanceof

the Refinemengalgorithmwith randomnodeplacement.
We do not include a plot herebecauset looks almost
identicalto Figure 3. We did find a differencein per

formancefor Hop-TERRAIN though. Figure 5 showvs

that placing the nodeson a grid dramaticallyreduces
the errorsof the Hop-TERRAIN algorithmin the cases
whereconnectvity or anchornodepopulationsarelow.

For example,with 5% anchorsanda connectvity of 8

nodes,the averageposition error decreasesrom 95%

(randomdistribution) to 60% (grid). We suspectthis

is due to the consistentdistancesbetweennodes,the

idealtopologieswithin clustersthatresultform the grid

layout, andthe inherentlyoptimizedconnectvity levels

acrosgheentirenetwork.

Sensitvity to averageerrorlevelsin therangemeasure-
mentsis a major concernfor positioning algorithms.
Figure6 shavstheresultsof anexperimentin whichwe
heldanchompopulationrandconnectvity constanait 10%
and 12 nodes,respectiely, while varying the average
level of error in the range measurements.We found
that Hop-TERRAIN was almostcompletelyinsensitve
to rangeerrors. This is a result of the binary nature
of the procedurein which routing hops are counted;
if nodescanseeeachother they passon incremented
hop counts, but at no time do ary nodesattemptto
measurghe actualrangesbetweenthem. Unlike Hop-
TERRAIN, Refinementoesrely ontherangemeasure-
mentsperformedbetweennodes,and Figure 6 shavs
this dependencaccordingly At lessthan40%errorin
therangemeasurement®&n average Refinemenbffers
improved position estimatesover Hop-TERRAIN. The
resultsimprove steadily as the range errors decrease.
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Figure 8: Relationbetweenconfidenceand positioning
error (averageandstandardieviation).

For referencewe determinedhe bestpossibleposition

informationthat canbe obtainedin eachcase.For each

nodewe performeda triangulationusingthe true posi-

tions of its neighborsandthe correspondingerroneous
rangemeasurementsThe resultingposition errorsare

plotted asthe lower boundin Figure 6. This suggests
thatthereis roomfor improvementfor Refinement.

Up until this point we reportedaveragepositionerrors.
Figure7, in contrast,givesa detailedlook at the distri-
bution of the positionerrorsfor individual nodesunder
four differentscenariosNotethatthe distributionshave
similar shapesmary nodeswith smallerrors largetails
with outliers. Refinemens confidencemetrics are to
someextentcapableof pinpointingtheoutliers.Figure8
shavstherelationshipbetweerpositionerrorlevelsand
the correspondingconfidencevaluesassignedo each
node. The datafor Figure 8 was taken from the best
andworstcasescenariogrom thesameexperimentused
to generatd-igure7. As desiredthe nodeswith higher
position errors are assignedlower confidencelevels.
In the easiercase,the confidenceindicatorsare much
morereliablethanin the moredifficult case.The large
standarddeviations, however, showv that confidenceis
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not a good indicator for position accurag. This is

unfortunatesincea reliableconfidencemetricwould be

very useful for applications,for example, to identify

regions of “bad” nodes. Currently the value of using

confidencelevels is the improved averagepositioning
errorcomparedo anaiveimplementatiorof Refinement
without confidences.

Finally, yet anotherusefulway of looking at the distri-
bution of errorsover individual nodesis to take their
geographicallocation into account. Figure 9 plots
positioning errors as a function of a nodes location
in the squaretestingarea. This experimentused400
randomly placednodes,an anchor populationof 5%,
an averageconnectvity level of 12, andrangeerrorsof
5%. The error distribution in Figure 9 is quite typical
for mary scenarioshaving that areasalongthe edges
of the network lacking a high concentratiorof anchor
nodesareparticularlysusceptibléo highpositionerrors.

6 Discussion

It is interestingto compareour resultsfrom the previ-
ous sectionwith the alternatve approachesliscussed
in Section2. First, we discussthe performanceof
Hop-TERRAIN andrelatedalgorithmsthat do not use
rangemeasurementsHop-TERRAIN is similar to the
“DV-hop” algorithmby NiculescuandNath[10], butwe
getconsistentlyhigherpositionerrors for example ,69%
(Hop-TERRAIN) versus35% (DV-hop) on a scenario
with 10% anchorsand a connectity of 8. Under
poorer network conditionsthough, Hop-TERRAIN is
more robust than DV-hop, shaving abouta factor of
2 improvementin position accurag in sparselycon-
nectednetworks. Regardless,the trend obsened in
both studiesis the same:whenthe fraction of anchors

dropsbelow 5%, position errorsrapidly increase. The

corvex optimizationtechniqueby Doherty et al. [5] is

aboutas accurateas Hop-TERRAIN, except for very

low fractionsof anchors. For example, corvex opti-

mization achieves position errorsthat are abore 150%
onascenariq200nodes5% anchorsgonnectvity of 6)

whereHop-TERRAIN errorsarearound125%;the gap
growsfor evenlowerfractionsof anchors As mentioned
earlier corvex optimizationis a centralizedalgorithm.

The resultsof Refinementare comparableo thosere-

portedby Savvides et al. for an “iterative multilatera-
tion” scenariavith 50 nodes20%anchorsconnectvity

10,and1% rangeerrors[12]. Theiralgorithm,however,

can handleneitherlow anchorfractions nor low con-
nectvities, becausepositioning startsfrom nodescon-
nectedto at least3 anchors. Refinementstill performs
acceptablywell with few anchorsor alow connectvity.

Furthermorethe preliminary resultsof their more ad-
vanced“collaborative multilateration” algorithm show

that Refinementis able to determinethe position of a
larger fraction of unknowvns: 56% (Refinementyersus
10% (collaboratve multilateration)on a scenariowith

just5% anchorg200nodesconnectvity 6).

The“Euclidean”algorithmby NiculescuandNath uses
rangeestimatego constructiocal mapsthatare unified
into a single globalmap[10]. The resultsreportedfor

randomconfigurationsshowv that “Euclidean” is rather
sensitve to rangeerrors,especiallywith low fractionsof

anchors:in caseof 10% anchorstheir Hop-TERRAIN
equivalent (DV-hop) outperformsEuclidean. Refine-
ment achieves better position estimatesand is more
robustsincethe crossover with Hop-TERRAIN occurs
around40%rangeerrors(seeFigure6).

In summary the performanceof Hop-TERRAIN and
Refinementis comparableto other algorithmsin the
caseof “easy” network topologies(high connectvity,
mary anchors)with low rangeerrors,and outperforms
the competitionin difficult caseqlow connectvity, few
anchorsarge rangeerrors). The resultsof refinement
can most likely be improved even further when the
placemenbf anchorsnodescanbe controlledgiventhe
positive experiencereportedby others[2, 5]. Since
the largesterrorsoccuralongthe edgesof the network
(seeFigure 9), mostanchorsshouldbe placedon the
perimeterof the network. Anotherapproacto increase
the accurag of locationing systemsis to use other
sourcesof information. When locating sensorsin a
room, for example, knowing that the sensorsare wall
mountedeliminatesonedegreeof freedom.Incorporat-
ing suchknowledgein localizationalgorithms however,
requiresgreat care. For example, knowing that two
sensorscannotcommunicatedoesnot imply that they



are locatedfar apartsincea wall may simply prohibit
radiocommunication.

Basedntheexperimentatesultsfrom Sections andthe
discussiorabove we recommendnumberof guidelines
for theinstallationof wirelesssensomnetworks:

e placeanchorgarefully(i.e. attheedges)andeither
e ensureahigh connectity (> 10),or
e employ areasonabléractionof anchorg> 5%).

Thiswill createthe bestconditionsfor positioningalgo-
rithmsin general,andfor Hop-TERRAIN and Refine-
mentin particular

7 Conclusionsand futur e work

In this paperwe have presentec completelydistributed
algorithmfor solving the problemof positioningnodes
within an ad-hoc, wireless network of sensornodes.
The procedurds partitionedinto two algorithms: Hop-

TERRAIN andRefinementEachalgorithmis described
in detail. The simulationervironmentusedto evaluate
thesealgorithmsis explained, including details about
the specificimplementationof eachalgorithm. Many

experimentsaredocumentedor eachalgorithm,show-

ing several aspectf the performanceachieved under
mary differentscenarios.The resultsshav thatwe are
able to achieve position errors of lessthan 33% in a

scenariowith 5% rangemeasuremengrror, 5% anchor
population, and an average connectvity of 7 nodes.
Finally, guidelinesfor implementingand deploying a

network that will use thesealgorithmsare given and
explained.

An important aspectof wireless sensornetworks is
enegy consumptionln thenearfuturewethereforeplan
to studytheamountof communicatiorandcomputation
inducedby runningHop-TERRAIN andRefinementA
particularly interestingaspectis how the accurag vs.
enegy consumptiontrade-of changesover subsequent
iterationsof Refinement.

Acknowledgements

Wewouldliketo thankDARPA for fundingtheBerkeley
Wireless ResearchCenter under the PAC-C program
(Grant#F29601-99-1-018). Also, Koen Langendoen
was supportedby the USENIX ResearchExchange
(ReX) program,which allowed him to visit the BWRC

for the summerof 2001andwork on the Refinementl-
gorithm. Finally, we would lik e to thanktheanorymous
reviewers and our “shepherd’Mike Spreitzerfor their
constructve comment®nthedraftversionof thispaper

References

[1] J. Beutel. Geolocationin a Pico Radio ervironment.
Masters thesis,ETH Ziirich, Decembei999.

[2] N.Bulusu,J.Heidemanny. Bychkovskiy, andD. Estrin.
Density-adaptie beacorplacemenalgorithmsfor local-
izationin ad hoc wirelessnetworks. In IEEE Infocom
2002 New York, NY, June2002.

[3] N. Bulusu,J.HeidemannandD. Estrin. GPS-lesdow-
costoutdoorlocalizationfor very small devices. |IEEE
PersonalCommunications7(5):28—-34 0Oct 2000.

[4] S.Capkun,M. Hamdi, andJ.-P Hubaux. GPS-freepo-
sitioning in mobile ad-hocnetworks. In Hawaii Int.
Conf on Systenscience¢HICSS-34)pages3481-3490,
Maui, Hawaii, January2001.

[5] L. Doherty K. PisterandL. El Ghaoui.Cornvex position
estimationn wirelesssensometworks. In IEEE Infocom
2001, AnchorageAK, April 2001.

[6] L. Girod andD. Estrin. Rolust rangeestimationusing
acoustiandmultimodalsensingln IEEE/RSJnt. Cont
onIntelligentRobotsand System$lROS) Maui, Hawaii,
October2001.

[7] J. Hightower and G. Borriello. Location systemsfor
ubiquitouscomputing. IEEE Computer 34(8):57—66,
Aug 2001.

[8] J.Hightower, R. Want,andG. Borriello. SpotON:An in-
door3D locationsensingechnologybasedn RF signal
strength.UW CSEO00-02-02,University of Washington,
Departmenbf ComputerScienceandEngineeringSeat-
tle, WA, February2000.

[9] R. Mukai, R. Hudson,G. Pottie,andK. Yao. A proto-
col for distributednodelocation. IEEE Communication
Letters, to be published.

D. NiculescuandB. Nath. Ad-hoc positioningsystem.
In IEEE GlobeComNovember2001.

C. Savarese,J. Rabag, and J. Beutel. Locationingin

distributed ad-hocwirelesssensornetworks. In IEEE

Int. Conf on Acoustics,Speeh, and Signal Processing
(ICASSP) pages2037—-2040,Salt Lake City, UT, May

2001.

A. Sawides, C.-C. Han, and M. Srivastaa. Dynamic
fine-grainedocalizationin ad-hocnetworks of sensors.
In 7th ACM Int. Conf on Mobile Computingand Net-
working (Mobicom) pages166-179,Rome, Italy, July
2001.

A. Vaga. The OMNeT++ discrete event simula-
tion system. In EuropeanSimulationMulticonfeence
(ESM’2001) Prague CzechRepublic,June2001.

[10]

[11]

[12]

(13]



