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Abstract

File systems have (at least) two undesirable characteristics: both the addressing model and the consistency semantics
differ from those of memory, leading to a change in programming model at the storage boundary. Main memory is a
single flat space of pages with a simple durability (persistence) model: all or nothing. File content durability is a complex
function of implementation, caching, and timing. Memory is globally consistent. File systems offer no global consistency
model. Following a crash recovery, individual files may be lost or damaged, or may be collectively inconsistent even
though they are individually sound.

Single level stores offer an alternative approach in which the memory system is extended all the way down to the
disk level. This extension is accompanied by a transacted update mechanism that ensures globally consistent durability.
While single level stores are both simpler and potentially more efficient than a file system based design, relatively little
has appeared about them in the public literature. This paper describes the evolution of the EROS single level store design
across three generations. Two of these have been used; the third is partially implemented. We identify the critical design
requirements for a successful single level store, the complications that have arisen in each design, and the resolution of
these complications.

As the performance of the EROS system has been discussed elsewhere, this paper focuses exclusively on design. Our
objective is to both clearly express how a single level store works and to expose some non-obvious details in these designs
that have proven to be important in practice.

1 Introduction
Single level stores simplify operating system design by re-
moving an unnecessary layer of abstraction from the sys-
tem. Instead of implementing a new and different seman-
tics at the file system layer, a single level store extends the
memory mapping model downwards to include the disk.
Where conventional operating systems use the memory
mapping hardware to translate virtual page addresses to
physical pages, single level stores map virtual page ad-
dresses to logical page addresses, using physical memory
as a software-managed cache to hold these pages.

The most widely-used single level store design is prob-
ably the IBM System/38, more commonly known as the
AS/400 [IBM98]. At the hardware level, the AS/400 is a
capability-based object system. The AS/400 design treats
the entire store as a unified, 64-bit address space. Ev-
ery object is assigned a 16 megabyte segment within this
space. Persistence is managed explicitly – changes to ob-
jects are rewritten to disk only when directed by the appli-
cation. While the protection architecture and object struc-
ture of the AS/400 is described by Soltis [Sol96], key de-
tails of its single-level store implementation are unpub-
lished.

Like the AS/400, EROS is a capability-based single level
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store design. Unlike AS/400, EROS manages persistence
transparently using an efficient, transacted checkpoint sys-
tem that runs periodically in the background. Applica-
tions rely on the kernel to transparently handle persis-
tence, leaving the applications free to build data struc-
tures and algorithms without regard to disk-level place-
ment or the need to protect recoverability through care-
ful disk write ordering. The EROS system and its per-
formance have been described elsewhere [SSF99]. This
paper describes how the EROS single level store design
is integrated into the system and its key components, and
the evolution of this design over the last decade.

As an initial intuition for single level stores, imagine a
system design that begins by assuming that the machine
never crashes. In such a system, there would be no need
for a file system at all; the entirety of the disk is used as a
large paging area. Such a design would clearly eliminate a
large body of code from a conventional operating system.
The EROS system, including user-mode applications that
implement essential functions, is currently 103,712 lines
of code.1 Excluding drivers, networking protocols, and
include files, the Linux 2.4 kernel contains 383,698 lines
of code, of which 283,956 implement support for vari-
ous file systems and file mapping. While the two sys-
tems implement very different semantics, their function-
ality is comparable, and the EROS code provides features

1 EROS drivers and network stack are implemented outside the kernel.
Driver and network code size is not included in either estimation of
code size.



that Linux lacks: on restart, EROS recovers processes and
interprocess communication channels in addition to data
objects.

The design challenges of a single-level store are (1) to ad-
dress the problem that systems actually do crash, and en-
sure that consistency is preserved when this occurs, (2) to
devise some efficient means of addressing this very large
paging area, and (3) to provide some means for speci-
fying desired locality, preferably in a fashion informed
by application-level semantic knowledge. This paper de-
scribes three designs that meet these challenges in two dif-
ferent EROS kernel designs. Other potential applications
of these design ideas include database storage managers,
storage-attached networks, and logical volume systems.

The first design presented is the one used by KeyKOS,
which was inherited by the original EROS system in 1991.
This design suffered from minor irritations that caused us
to revise the design in 1997. In 2001, it was decided to re-
move drivers from the EROS kernel entirely, which forced
us to rethink and partially rebuild the single level store
yet again. Aside from the storage allocator itself, all of
these designs present identical external semantics to ap-
plications.

The balance of this paper proceeds as follows. We first
provide a brief overview of the EROS object system, its
storage model and the mechanism used to ensure global
consistency. This discussion introduces the critical re-
quirements that must be satisfied by a single-level store
design. We then describe the user-level storage allocator,
which bears responsibility for locality management and
storage reclamation. We then describe each of the exist-
ing design generations in turn, and the motivation behind
each revision. The paper concludes with related work,
lessons learned, and some hints as to our future plans.

2 Object System Overview
EROS is a microkernel design. The kernel implements
a small number of object types, but leaves storage allo-
cation, fault handling, address space management, and
many other traditional kernel functions to user-level code.
For this paper, the most important function implemented
by user-level code is the space bank (Section 5). The
space bank is responsible for all storage allocation, for
storage quota enforcement, for bulk storage reclamation,
and for disk-level object placement. At the kernel inter-
face, all of this is accomplished by allocating and deallo-
cating objects with appropriately selected unique object
identifiers. Every object has a unique object identifier
(OID). OIDs directly correlate to disk locations, which
enables the space bank to perform object placement.

The EROS kernel design consists of three layers (Fig-

ure 1). The machine layer stores process and memory
mapping information using a representation that is con-
venient to the hardware. For process state, this represen-
tation is determined by the design of the hardware con-
text switch mechanism. For memory mapping state, it is
determined by the design of the hardware memory man-
agement unit. These layers are managed as a cache of
selected objects that logically reside in the object cache.
When necessary, entries in the process cache or memory
mapping tables are either written back or invalidated. En-
tries in the process cache correspond to entries in the pro-
cess table of a more conventional design, but processes
may be moved in and out of the process cache several
times during their lifespan.

Node Cache Page
Cache

Checkpoint
Area

Mapping
Tables

Process
Cache

Object Cache (Main Memory)

Object
Cache

Layer

Store
ObjectHome

Locations

Machine

Figure 1: EROS design layers.

The object cache occupies the bulk of main memory. At
this layer there are only two types of objects: pages and
nodes. Pages hold user data. Nodes hold capabilities.
Every node and page has a corresponding location in the
home location portion of the object store. As with the ma-
chine layer, the object cache is a software-managed cache
of the state on the disk.

As is implied by Figure 1, all higher-level operating sys-
tem abstractions are composed from these two fundamen-
tal units of storage. Process state is stored in nodes, and
is loaded into the process cache at need. Address space
mappings are likewise represented using trees of nodes.
These are traversed to construct hardware mapping data
structures as memory faults occur. Details of these trans-
formations can be found in [SSF99, SFS96].

The object store layer is the object system as it exists on
the disk. At this layer the system is divided into two parts:
the “home locations,” which provide space for every ob-
ject in the system, and the “checkpoint area,” which pro-
vides the means for building consistent snapshots of the
system. All object writes are performed to the checkpoint
area. Revised objects are migrated to their home loca-
tions only after a complete, system-wide transaction has



been successfully committed. The checkpoint mechanism
is described in Section 3.2.

Collectively, these layers implement a two-level caching
design. At need, the entire user-visible state of the system
can be reduced to pages and nodes, which can then be
written to disk.

3 Storage Model
The main reason for having two types and sizes of objects
is to preserve a partition between data and capabilities.
Data resides in pages and capabilities reside in nodes. It is
certainly possible to design a single level store in which all
objects are the size of a page, but it proved inconvenient
to do so in EROS for reasons of storage efficiency. In
the current implementation, capabilities occupy 16 bytes
and nodes 544 bytes, but these sizes are not exposed by
any external system interface. This leaves us free in the
future to change the size of capabilities compatibly, much
as was done in the AS/400 transition from 48-bit to 64-bit
addresses.

Every object in the store has a unique object identifier
(OID). Objects on the disk are named by operating-system
protected capabilities [Dv66], each of which contains an
object type (node, page, or process), the OID of the ob-
ject it names, and a set of permissions. An EROS object
capability is similar to a page table entry (PTE) that con-
tains the swap location of an out-of-memory page.2 When
an object capability is actively in use, the EROS kernel
rewrites the capability internally to point directly at the
in-memory copy of the object.

Pages contain user data. Nodes contain a fixed-size array
of capabilities, and are used as indirect blocks, memory
mapping tables, and as the underlying representation for
process state. Within the store, these nodes are packed
into page-sized containers called “node pots.” All I/O to
or from the store is performed in page-sized units.

3.1 Home Locations

Every object in the EROS store has a uniquely assigned
“home location” on some disk. Some versions of EROS
implement optional object mirroring, in which case the
same object may appear on the disk at multiple locations
and is updated (when needed) at all locations. Additional
mirroring or RAID storage may be performed by the stor-
age controller. This is invisible to the EROS kernel.

The bulk of the disk space in an EROS system is used to
contain the “home locations” of the objects. The basic
design requirements for this part of the store are:

2 In the PTE case, no object type is needed because PTEs can only name
pages.

� Object fetch and store should be efficient. As a
result, there should be a simple, in-memory strat-
egy for directly translating an OID value to the disk
page frame (the home location) that contains the ob-
ject.

� EROS does not expose the physical locations of ob-
jects outside the kernel; only OIDs are visible, and
these only to selected applications. For purposes
of locality management, there must be some well-
defined relationship between OID values and disk
locations.

Without an in-memory algorithm to translate an OID into
a disk object address, the store would require disk-level
directory data structures that would in turn require addi-
tional, sequentially dependent I/O accesses to locate and
fetch an object. The elimination of such additional ac-
cesses is a performance-critical imperative. The encoding
of object locations, the organization of the disk, and the
locality management of home locations has been the main
focus of evolution in the design of the storage manager.

3.2 Checkpointing

To ensure that global consistency for all processes and ob-
jects is maintained across restarts, it is sufficient for the
kernel to periodically write down an instantaneous snap-
shot of the state of the corresponding pages and nodes.
To accomplish this, EROS implements an efficient, asyn-
chronous, system-wide checkpoint mechanism derived from
the checkpoint design of KeyKOS [Lan92].

The checkpoint system makes use of a dedicated area on
the disk. This area is also used for normal paging, and is
conceptually equivalent to the “swap area” of a conven-
tional paging system. Before any node or page is made
dirty, space is reserved for it in the checkpoint area. As
memory pressure induces paging, dirty objects are paged
out to (and if necessary, reread from) the checkpoint area.
Object locations in the checkpoint area are recorded in an
in-memory directory.

Periodically, or when the checkpoint area has reached a
predefined occupancy threshold, the kernel declares a “snap-
shot,” in which every dirty object in memory is marked
“copy on write.” Simultaneously, a watermark is made
in the checkpoint area. Everything modified prior to the
snapshot will be written beneath this watermark; every-
thing modified after the snapshot is written above it. The
kernel now allows execution to proceed, and initiates back-
ground processing to flush all of the pre-snapshot dirty ob-
jects into the previously reserved space in the checkpoint
area. Checkpoint area I/O is append-only. If an object is
dirtied multiple times, no attempt is made to reclaim its



previously occupied space in the checkpoint area. This
ensures that checkpoint I/O is mostly sequential.

Once all objects have been written to the checkpoint area,
an area directory is written and a log header is rewritten
to capture the fact that a consistent system-wide transac-
tion has been completed. A background “migrator” now
copies these objects back to their home locations in the
store. Whenever a checkpoint transaction completes, the
checkpoint area space occupied by the previous transac-
tion is released. To ensure that there is always space in
the checkpoint area for the next checkpoint, migration is
required to complete before a new checkpoint transaction
can be completed.

The net effect of the checkpoint system is to capture a
consistent system-wide image of the system state. If de-
sired, checkpoints can be run at frequencies comparable
to those of conventional buffer cache flushes, making the
potential loss of data identical to that of conventional sys-
tems. To support the requirements of database logs, there
is a special “escape hatch” mechanism permitting imme-
diate transaction of individual pages.

3.3 Intuitions for Latency

While EROS is not yet running application code, KeyKOS
has been doing so since 1980, supporting both transaction
processing and (briefly) general purpose workloads. The
performance of the checkpoint design rests on two empir-
ical observations from KeyKOS:

� Over 85% of disk reads are satisfied from the check-
point area.

� Over 50% of dirty objects die or are redirtied be-
fore they are migrated. Such objects do not require
migration.

These two facts alter the seek profile of the system, re-
ducing effective seek latencies for reads. They also alter
the rotational delay profile of the system, reducing effec-
tive rotational latencies for writes. Our goal in this section
is to provide an intuition for why this is true. While the
specific measurements obtained from KeyKOS probably
will not hold for EROS twenty years later, we expect that
the performance of checkpointing will remain robust. We
will discuss the reasons for this expectation below.

It is typical for the amount of data included in a given
checkpoint to be comparable to the size of main mem-
ory. The checkpoint area as a whole must be able to hold
two checkpoints. Given a machine with 256 megabytes
of memory, the expected checkpoint area would be 512
megabytes. On a Seagate Cheetah (ST373405LC, 29550
cylinders, 68 Gbytes), this region would occupy 0.7% of
the disk, or 216 cylinders. As 100% of normal writes and

85% of all reads occur within this region, the arm position
remains within a very narrow range of the disk with high
probability.

Estimating disk latencies is deceptive, because computa-
tions based on the published minimum, average, maxi-
mum seek times have nothing to do with actual behavior.
Seek time profiling is required for effective estimation.
The seek time calculations presented here are based on
profiling data collected by Jiri Schindler using DIXtrac
[SG99]. We emphasize that these are computed, rather
than measured results. We will assume a disk layout in
which the checkpoint area is placed on the middle cylin-
ders of the drive.

3.3.1 Expected Read Behavior

The disk head position in KeyKOS has a non-uniform dis-
tribution. To compute the expected seek time, we must
consider the likely location of the preceding read as well
as the current one (Table 1), giving an expected seek time
for reads of 2.92ms on a drive whose average seek time
is 6.94 ms. This expectation is robust in the face of both
changes to the checkpoint region size and reasonable re-
ductions in checkpoint locality. Increasing the checkpoint
area size to 200 cylinders raises the expected seek time to
3.05 ms. Reducing the checkpoint “hit rate” to 70% yields
an expected seek time of 3.80 ms.

Conventional file system read performance is largely de-
termined by the average seek delay (in this case, 6.94 ms).
For comparing read delays, rotational latencies can be ig-
nored: the expected rotation delay on both systems is one
half of a rotation per read.

The difference in expected performance is largely immune
to changes in extent size or prefetching, as both tech-
niques can be used equally well on both systems. Both
techniques reduce the total number of seeks performed;
neither alters the underlying seek latency or distribution.
Similarly, low utilization yields similar benefits in both
systems by reducing the effect of long seeks. The read
performance of both designs converges on the performance
of the checkpointing design as utilization falls – on suf-
ficiently small, packed data sets there is no meaningful
difference in seek behavior.

3.3.2 Expected Write Behavior

As in log-based file systems, a checkpointing design po-
tentially performs two writes for every dirty block: one to
the checkpoint area and the second to the home locations.
Migration is skipped for data that is remodified or deleted
between the time of checkpoint and the time of migration.
Given this, there are two thresholds of interest:



Current I/O Preceding I/O Distance Time Weighted

Checkpoint (85%) Checkpoint (85%) 108 cyl 1.97 ms 1.42 ms
Checkpoint (85%) Other (15%) 7387 cyl 5.27 ms 0.67 ms
Other (15%) Checkpoint (85%) 7387 cyl 5.27 ms 0.67 ms
Other (15%) Other (15%) 14775 cyl 6.94 ms 0.16 ms

Weighted Seek Time 2.92 ms

Table 1: Expected read latency. Based on seek profile of the Seagate Cheetah
ST373405Lc. The reported average seek time for this drive is 6.94 ms.

1. How many objects live long enough to get check-
pointed.

2. Of those, how many live long enough to be mi-
grated.

The best available data on file longevity is probably the
data collected by Baker et al. [BHK

�

91]. Figure 4 of their
paper indicates that 65% to 80% of all files live less than
30 seconds, that 80% of all files live less than 300 seconds,
and that 90% of all files live less than 600 seconds (one
checkpoint interval). We can estimate from this that less
than half of all files that are checkpointed survive to be
migrated. This is consistent with the measured behavior
of KeyKOS: only 50% of the checkpoint data survives to
be migrated.

The impact of this is surprising. Imagine that there are 400
kilobytes of file data to be written to a conventional file
system. The key question proves to be: what are the run
lengths? Figure 1 of the Baker measurements [BHK

�

91]
shows that most file run lengths are small. While the fig-
ure does not differentiate read and write run lengths, Table
3 suggests that write run lengths are primarily driven by
file size: 70% of all bytes written are “whole file” writes.
Figure 2 shows that 80% of files are 10 kilobytes or less.
Taken together, these numbers mean that the cost of bulk
flushes of the data cache are dominated by rotational de-
lay. The 400 kilobytes in question will be written at nearly
40 distinct locations, each of which will require 1/2 a ro-
tation to bring the head to the correct position within the
track. On the Cheetah, the rotational delay alone comes to
119 ms. Seek delays depend heavily on filesystem layout,
but the same considerations apply in both checkpointed
and conventional designs. If the runs are uniformly spread
across the drive, the seeks (on the Cheetah) will come to
an additional 112 ms, for a total of 231 ms.

Now consider the same 400k under the checkpointing de-
sign. KeyKOS and EROS perform this write using bulk
I/O and track at once operations. Depending on the drive,
400 to 600 kilobytes can be written to the checkpoint area
in one seek (weighted cost 2.46ms on the Cheetah) plus
1.5 rotations (1/2 to start, 1 to complete) for a total of
11.42 ms. We must now consider the cost of migration.

The KeyKOS/EROS migration I/O behavior looks exactly
like that of a file cache that uses deferred writes. Because
the file semantics is unchanged this I/O has similar run
lengths, and like the buffer cache flush it is done using
bulk-sorted I/O. Seek times are amortized similarly be-
cause there are a large number of available blocks to write.
The difference is that the migrated blocks have a longer
time to die, and that the amount of data migrated is there-
fore half of the data that will be written by the deferred-
write buffer cache. Because half of the data will die be-
fore migration, only 56 ms will be spent in rotational de-
lay rewriting it and 70.47 ms of seek times (again under
the uniform distribution assumption). The combined total
cost of the checkpoint and migration writes is 137.89 ms.

4 Locality and Object Allocation
There are two primary issues that impact the design of a
single level store. The first is common to all disk-based
storage designs: locality. It is necessary that the object
allocation mechanism provide means to arrange the disk-
level placement of objects for reasonable locality. In all
generations of the EROS store this is accomplished by
preserving a correlation between OID values and disk po-
sitions. The second is object allocation: because all ob-
jects must be recoverable after a crash, all allocations must
(logically) be recorded using on-disk data structures.

4.1 Content Locality

The value of locality in general-purpose workloads is of-
ten misunderstood. While sequential data placement for
file content is extremely important in the case of a single
request stream, it is much less important when multiple
accesses to disk occur concurrently. Disk-level traces col-
lected by Ruemmler and Wilkes [RW93] show that it is
very rare to see more than 8 kilobytes of sequential I/O
at the level of the disk arm. While average file sizes have
grown since that time, and (we presume) modern sequen-
tial accesses would be longer than 8 kilobytes, the under-
lying reasons for the limited dynamic sequentiality have
not changed:



� Paging I/O is limited by the size of a page.

� Many file I/Os involve sequentially dependent ac-
cesses, as when traversing metadata.

� Directory I/Os are frequent. Directories are usu-
ally small, and the corresponding I/Os are therefore
short.

� While read-ahead helps, excessive read ahead is coun-
terproductive. Successful read-ahead works equally
well in both designs, and can be thought of as achiev-
ing a larger extent size.

� The request streams compete for attention at the
disk arm. Even if a second, potentially sequential
I/O request is initiated quickly by the application or
the operating system, the interrupt-level logic has
already initiated an arm motion if multiple requests
are present, preventing immediate service of the se-
quential request.

Two facts suggest that file system sequentiality may be
important only up to a limited extent size. Log-structured
designs organize data by temporal locality rather than spa-
tial locality. In spite of this, read performance for general-
purpose workloads is not degraded significantly in log-
structured designs [SSB

�

95]. It has also been established
that file system aging ultimately has a more significant im-
pact on overall I/O performance than the logging/clustering
choice [SS95].

The EROS store design effectively optimizes for both cases.
Newly modified objects are stored in the checkpoint area
according to temporal locality, but the small size of the
checkpoint area ensures physical locality as well. Data
in home locations is placed according to locality deter-
mined at object allocation time, which is when maximal
semantic knowledge (and therefore maximal knowledge
of likely reference patterns) is available.

While single level stores do not always implement direc-
tories and indirect blocks in the style of file systems, the
corresponding concepts are implemented elsewhere in the
operating system, and the basic usage patterns involved
are ultimately driven by application behavior. Similar ex-
tent size arguments should therefore apply in single level
stores. This introduces a significant degree of freedom
into file system or single level store design – one that we
plan to leverage in the next generation of our store.

4.2 Metadata Locality

A more pressing issue in the EROS single-level store is
metadata locality. In the Berkeley Fast File System design
[MJLF84], for example, block location occurs through a

two-stage hybrid translation scheme. The first stage trans-
lates the inode number to the inode data structure. This
translation is performed at file open time, and the result
is cached in an in-memory inode. The second stage tra-
verses the file indirect blocks to locate individual blocks
in the file. These indirect blocks are cached in memory ac-
cording to the same rules as other data blocks, but due to
higher frequency of access are likely to remain in memory
for active files.

An EROS address space is a peristent mapping from off-
sets to bytes. Address spaces need not be associated with
processes, and EROS therefore uses them to hold file data
as well as application memory images. As a result, the
EROS metadata that is most closely analogous to conven-
tional file metadata is EROS address space metadata.

An EROS address space is organized as a tree of nodes
whose leaves are pages (Figure 2), much as a UNIX file
is organized as a tree of indirect blocks whose leaves are
data blocks. Because EROS nodes are much “narrower”
than typical indirect blocks, the height of the address space
tree for any given address space is taller than the height of
the indirect block tree for a UNIX file of corrresponding
file (

����������	�
���
�������������������	�
���
����
). Any tree traversal of

this type implies sequential disk accesses with associated
seek delays. The Ruemmler data shows that these seeks
are frequently interspersed with other accesses when mul-
tiple request streams are present.

Request interleave in turn interacts badly with typical, non-
backtracking disk arm scheduling policies, and can lead to
as much as a full disk seek before the next block down the
tree will be fetched.3 Because of their greater tree height,
EROS address spaces potentially involve more levels of
traversal, and it is correspondingly more important to man-
aging the locality and prefetching of nodes within an ad-
dress space. The discussion of the EROS space bank be-
low (Section 5) describes how this locality is achieved.

4.3 Allocation Performance

The final performance issue in single level stores is the
efficiency of object allocation – particularly with respect
to ephemeral allocations such as heap pages or short-lived
file content. In a conventional file system, these ephemeral
blocks are allocated from swap space and do not survive
system shutdown or failure. Because there is no expecta-
tion that these allocations are preserved across restarts, in-
memory data structures and algorithms can be used to im-
plement them. Linux, for example, keeps an in-memory
allocation bitmap for each swap area [BC00].

There is no way to persistently store ephemeral allocation

3 Many newer drives implement backtracking seeks, but doing so raises
both convergence and variance issues that must be avoided by the op-
erating system in real-time applications.
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Figure 2: An EROS address space.

data without incurring some disk I/O overhead. The chal-
lenge in a single-level store is to keep this overhead to a
minimum. EROS accomplishes this in two ways:

1. No recording of allocation is performed for objects
that are allocated and deallocated within the same
checkpoint interval. This largely recaptures the ef-
ficiency advantages of conventional swap area allo-
cations.

2. In the current and previous versions of the EROS
store, the store is divided into regions, each of which
has an overhead page containing bits that indicate
whether an object in the region is empty (zero). Se-
quential allocations first pull in the overhead page,
but then avoid I/O’s for successive objects within
the same region. Deallocations update the bit rather
than the on-disk object, with similar I/O reductions.

5 The Space Bank
The EROS storage manager, known as the “space bank,”
is a user-mode application that performs all storage allo-
cation in the EROS system. There is a hierarchy of logi-
cal space banks, all of which are implemented by a single
server process. Each logical bank:

� Allocates and deallocates individual pages and nodes
on request.

� Remembers what objects have been allocated from
that logical bank, so that they can be bulk-reclaimed
when the bank is destroyed.

� Provides locality of allocation so long as this is fea-
sible on the underlying disk, up to the limit of the
system-designed extent size.

� Impose optional limits (quotas) on the total number
of pages and nodes that can be allocated from that
logical bank.

� Provides means to create “child” banks whose stor-
age comes from the parent, creating a hierarchy of
storage allocation.

5.1 Extent Caching

A naive implementation of the space bank would allocate
one object at a time, recording each allocation in some
suitable ordered collection. Typically, each dynamically
allocated object in the system has associated with it at
least one logical bank. For example, most address spaces
are implemented as “copy on write” versions of some ex-
isting space, and the copied pages (and the nodes that ref-
erence them) are allocated from a per-space bank. One
impact of this is that space bank invocations are frequent.
As a result the single object approach would not provide
good locality.

An obvious solution would be to allocate storage to each
bank in extents, and allow the bank to suballocate objects
from this extent. Unfortunately, this doesn’t work well
either. If we imagine that each extent contains 64 pages,
and that there is some variation in address space sizes,
we must conclude that when each address space, process,
or other synthesized object has been completely allocated
there would remain within its bank a partially allocated
extent. In the absence of empirical data, we should ex-
pect that this residual extent would on average be half al-
located. Unfortunately, there is no simple way to know
which banks are done allocating. This means that there
would be a very large number of outstanding banks (one
per process, one per file, etc.) each of which has commit-
ted to it 32 page frames of disk storage that will never be
allocated.

The solution to this is extent caching. Instead of associ-
ating an individual extent with each bank, the space bank
maintains a cache (˜128 lines) of “active” extents. Each of
these extents begins at an OID corresponding to a 64 page
boundary on the disk and contains 64 page frames worth
of OIDs (some of which may already be allocated). Ex-
tent caches are typed: nodes and pages are allocated from
distinct extents, which helps to preserve metadata locality.
The extent cache design relies on the fact that sequential
OIDs correspond with high likelihood to sequential disk
locations.

Every bank is associated with a line in the extent cache by
a hash on the address of the logical bank data structure.
When a bank needs to allocate an object, it first checks
availability in its designated cache line. If that extent has
no available space, then a “cache miss” occurs, and an



attempt is made to allocate a fresh extent from the un-
derlying disk space. If this proves impossible, as when
disk space is near exhaustion, the needed object will be
allocated from the first extent in the extent cache that has
available space.

The effect of the extent cache is to ensure that banks re-
ceive sequential objects in probabilistic fashion up to the
limits of the extent size. While it is possible for two banks
that are simultaneously active to hash to the same extent,
we have not observed it to be a problem. A secondary
effect of the extent cache is that the disk page frame allo-
cation map is consulted with reduced frequency. This is
desirable because consulting the allocation map involves a
linear search through a page and consequently flushes the
CPU data cache, which has a significant impact on alloca-
tion speed. Our first space bank implementation did this,
and we found that the cost of data cache reconstruction
after allocation overwhelmed all other costs.

When objects are deallocated, they are restored to the ex-
tent cache only if the containing extent is still in the cache.
Otherwise, they are returned directly to the free map. Newly
freed objects are reused aggressively, because reusing ob-
jects that are still in memory eliminates extra disk I/Os
that would record their deallocation. Reuse of old objects
is deferred. The assumption behind this is that the objects
allocated to a given bank share a common temporal ex-
tent and will tend to be deallocated as a group. Given this,
it is better to wait as long as possible before reusing the
available space in an older extent in order to maximize the
likelihood that the entire extent has become free.

To support address space metadata locality, the space bank
implements a two-level allocation scheme for nodes. The
extent cache caches page frames. The space bank sub-
allocates nodes sequentially from these frames. Because
address spaces are constructed by copy on write methods,
and because the copy on write process proceeds top down
in the node tree (Figure 2), it is usual for the entire path of
nodes from the root to the first page to be allocated from
a single page frame on the disk. When the top node is
fetched, its containing page frame is cached in the page
cache. The effect of this is that the entire sequence of
nodes from the address space root node to the referenced
page is brought into memory with a single disk I/O.

5.2 Record-Keeping Locality

Conceptually, each space bank’s record of allocated ob-
jects can be kept by any convenient balanced tree struc-
ture. The current EROS implementation uses a red-black
tree. There are two potential complications that need to
be considered in building this tree.

The first is sheer size. Collectively, the number of RB-tree
nodes is on the same order as the number of disk objects.

While these structures might fit within the space bank’s
virtual address space on current machines, they certainly
will not fit within physical memory in large system con-
figurations. However clever the data structure, care must
be taken to ensure that traversals of these structures do
not suffer from poor locality due to space bank heap frag-
mentation. This type of poor locality translates directly
into paging. The current space bank implementation does
not attempt to manage this issue, which is a potentially
serious flaw. A simple solution would be to allocate tree
nodes using an extent caching mechanism similar to the
one already used for nodes and pages, or a slab-like allo-
cation mechanism [Bon94, BA01].

The second is space overhead. Each OID occupies 64
bits, and it would be disproportionate to spend an ad-
ditional two or three pointers per object to record allo-
cations. As a result, the current bank tree nodes record
extents rather than OIDs, and use a per-extent allocation
bitmap to record which objects within an extent have been
allocated. Even if two or three banks are simultaneously
performing allocations from the same extent cache en-
try, the net space overhead of this is lower than per-OID
recording. The current implementation relies on every-
thing fitting within virtual memory. On the Intel x86 fam-
ily implementation, this will be adequate until the attached
disk space exceeds 2.6 terabytes.

6 Two Early Disk-Level Designs
The original EROS system, including its store design, fol-
lowed the published design of KeyKOS [Har85]. Each
disk is divided into ranges of sequentially numbered ob-
jects. Ranges are partitioned by object type; a given range
contains nodes or pages, but not both. Every object’s
OID consists of a 64 bit “coded disk address” concate-
nated with a 32 bit “allocation count.” The coded disk
address describes the location of the object, and the allo-
cation count indicates how many times a particular object
has been allocated. In order for a capability to be valid,
the allocation count in the capability must match the al-
location count recorded on the disk for the corresponding
object.

6.1 Original Storage Layout

At startup, the kernel probes all disks, identifies the ranges
present, and builds an in-memory table with an entry for
each range:

(node/page, startOID, endOID, disk, startSec)

It also scans the checkpoint area to rebuild the in-memory
directory of object locations.



For nodes, the allocation count is recorded in the node it-
self. Nodes are numbered sequentially within a range, and
are packed in page-sized units called node pots; no node
on the disk is split across two pages. Once the containing
range has been identified, the disk location of the relative
disk page frame containing a node can be computed by
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For pages, the allocation count cannot be recorded within
the page, because all of the available bytes are already
in use. Instead, page ranges are further subdivided into
subranges. Each subrange begins with an allocation pot,
which is a page that contains the allocation counts for the
following pages in the subrange (Figure 3). The allocation
pot also contains a byte containing various flags for the
page, including one indicating whether that page is known
to hold zeros.

Page Frames Page Frames

Allocation Pot

Page F...

(truncated)

Figure 3: Page range layout.

Each allocation pot can hold information for up to 819
pages, so a page range is organized as a sequence of sub-
ranges, each 820 pages long and consisting of an allo-
cation pot followed by its associated pages. Depending
on the size of the underlying partition, the final subrange
may be truncated. Once the containing range has been
identified, the disk location of a relative disk page frame
containing a page can be computed by
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In either case, the relative frame can then be combined
with the


	��
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value to yield the starting sector for the

I/O.

6.2 Unified Object Spaces

The design of Section 6.1 suffers from an irritating flaw:
it partitions the disk into typed ranges. There is no easy
way to know in advance the correct proportion of nodes to
pages, and the design does not provide any simple means
to reorganize the disk (there are no forwarding pointers)
or to interconvert ranges from one type to another. We
found that we were continuously adjusting our directions
to the disk formatting program to add or remove objects
of some type.

The solution was to adopt the page range layout for all
ranges, and use an available bit in the allocation pot to
indicate the “type” (node or page) of the corresponding

disk page frame (Figure 4). If the frame type is “page,”
the allocation count in the allocation pot is the allocation
count of the page, otherwise it is the max of the allocation
counts of all nodes contained in the frame. The OID en-
coding was also reorganized, using the least 8 bits as the
index of the object within the frame and the upper 56 bits
as the “frame OID.” The frame offset computation pro-
ceeds as previously described for page frames, with the
caveat that the OID value must be shifted before perform-
ing the computation.

...

Allocation Pot (truncated)

Node Frames

Figure 4: Unified range layout.

In the revised design, the kernel converts a frame from
one type to another whenever an object of the “wrong”
type is allocated by the space bank. The kernel assumes
that the space bank has kept track of available storage,
and that it will not unintentionally reallocate storage that
is already in use. There is a minor complication, which is
that the kernel must ensure that allocation count is never
decreased by conversion. This is assured by setting the
allocation count to

�)
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when

converting a frame from nodes to pages and setting all
node allocation counts to the page allocation count when
converting a frame from pages to nodes.

The switch to unified ranges simplifies the kernel object
management code, but more importantly it simplifies the
use and allocation of disk storage. Disk frames can now
be traded back and forth between types as needed. In
addition to allowing address space metadata and data to
be placed in a localized fashion (thereby facilitating read-
ahead across object types), the new design can potentially
be extended to perform defragmentation in order to im-
prove extent effectiveness. Individual banks effectively
record the relationships between pages, nodes, and their
containing objects, and the ability to retype frames sup-
ports storage compaction. To perform compaction, two
additional bits can be taken from the “flags” field to “lock”
an object, copy it’s content to a new destination frame, use
the old frame to record the new location, and then use a
second flags bit to mark the object forwarded. Either the
space bank or a helper application can now iterate through
all nodes, rewriting their capabilities to reflect the new ob-
ject location.



7 Embedded EROS
In early 2000, as part of an exploratory research collabo-
ration with Panasonic, we started to investigate the possi-
bility of an embedded version of EROS for selected real-
time applications. As part of this, a decision was made to
remove all remaining drivers from the kernel. Together,
these decisions introduced three new requirements into
the overall system design:

1. In order to support DMA, we needed a way to sup-
port pages (but not nodes) whose physical memory
address could be known to a driver.

2. The kernel now needed some mechanism for alloca-
tion of non-pageable and non-checkpointed objects.

3. Ordinary disk ranges now needed to be served by
user-mode drivers.

To address these requirements, the “range” notion was
generalized to the notion of object sources. An object
source implements some sequential range of OIDs. This
range may be only partially populated.

By well-known convention, two ranges of OIDs are re-
served. One corresponds to physical memory pages, while
the other allocates non-pageable objects. EROS already
uses main memory as an object cache. The physical page
object source will allocate any OID whose range-relative
frame index corresponds to a physical memory page frame
that is part of the page cache. The effect of allocating a
capability for such an OID is to evict the current resident
of that page cache entry and relabel the entry as a physi-
cal page object. The non-pageable object range is similar,
though there is no guarantee that the object will occupy
any particular physical address. Both physical memory
pages and non-pageable objects are exempted from check-
pointing and eviction. When these objects are freed, the
corresponding cache locations are returned to the object
cache free pool for later reuse.

In the embedded design, the system is partitioned into a
non-persistent space that contains drivers and the object
store manager, and a persistent space that operates ex-
actly as before. The driver portion of the system is loaded
from ROM, and uses an object source registry capabil-
ity to register support for a persistent range if one is to
be implemented. The persistent OID range (if present) is
“backed” by a user-mode object source driver, and the ker-
nel defines a protocol by which this driver can insert or re-
move objects whose OIDs fall within the range it controls.
When completed, there will also be a protocol by which
the persistent source driver indicates how many dirty ob-
jects can be permitted for its range at any given time. The
implementation of the checkpoint mechanism in this de-
sign is relocated to the persistent source driver; the kernel

remains responsible for snapshot and for “writing back”
the checkpointed objects to the persistent source driver.

8 The Vertical View
As with conventional file systems, the effectiveness of a
single-level store design relies on the interaction of tem-
poral, spatial, and referential efficiencies implemented co-
operatively by several vertical layers in the system. This
section briefly recaps the critical points in a single place
so that their combined effect can be more readily seen.
Each item is annotated by the section that discusses it.

Temporal Efficiency:

� The kernel ensures that objects that are allocated
and deallocated within a single checkpoint interval
generate no I/O to home locations provided that ca-
pabilities to them are never written to the disk. [4.3]

� The space bank eagerly reuses young, dead objects
to reduce unnecessary recording of deallocations,
and to aggressively reuse allocation pots that it knows
must already be in memory. [5.1]

Spatial Efficiency:

� The space bank allocates objects using bank-wise
extents, which helps to preserve disk-level locality.
Separate extents are used for pages and nodes. [5.1]

� There is a direct correspondence between OIDs and
page frame placement in the store, eliminating the
need for directory or indirection blocks in the object
store. [6.1,6.2]

Referential Efficiency:

� The address space copy on write implementation
combines a dedicated bank (and therefore a dedi-
cated extent) with top-down metadata traversal, en-
suring that all “indirect blocks” in a given traversal
will tend to be fetched in a single I/O operation.
[4.2]

� Both the checkpoint and the migration systems use
bulk, sorted I/O, reducing total seek latency in spite
of performing a larger number of object writes. [3.3]

� Empty (zero) objects are neither written nor read to
the home locations – only their allocation pots are
revised. [6.1]

� Both the checkpoint directory [3.2 ] and the range
table [6.1] are kept in memory. No additional disk
I/Os are required to determine the location of a tar-
get page or node.



The combined effect of this may be illustrated by describ-
ing in more detail what happens when an object is to be
loaded.

When a page or node is to be fetched, the EROS kernel
first consults an in-memory object hash table to determine
of the object is already in memory. This includes checking
for the containing node pot or allocation pot as appropri-
ate. Next, the checkpoint area directory is consulted to see
if the current version of this object is located in the check-
point area. If the object is not found in the checkpoint
area, the range table is consulted and an I/O is initiated
for the objects containing page frame and (if needed) its
allocation pot. In the typical case, ignoring read-ahead,
only one I/O is performed. The effectiveness of the node
allocation strategy tends to yield one I/O for every 7 nodes
(because 7 nodes fit in a node pot). Similarly, the alloca-
tion pot I/O is performed only once for a given 819 frame
region in the home locations; the overhead of these I/Os
is negligable.

The total effectiveness of the single-level store relies on
collaboration between the storage allocator, its clients, the
kernel, and the underlying store design. Each of these
pieces, taken individually, is relatively straightforward.

Conceptually, this layering is not so different from what
happens in a file system. An important difference is that in
the file system design this layering is opaque. In EROS, it
is straightforward to implement customized memory man-
agers or use multiple space banks for more explicit extent
management.

9 Related Work
While the idea of a single-level store is widely known
among operating system implementors, relatively little has
been published about their design. As mentioned in the in-
troduction, the AS/400 is perhaps the best known imple-
mentation, but the only widely available reference on this
design [Sol96] provides inadequate details. Even within
IBM, information on the AS/400 implementation is closely
held.

Both Grasshopper [DdBF
�

94] and Mungi [HEV
�

98] use
single-level stores. Neither has published details on the
storage system itself. Like the AS/400, persistence in the
Mungi system is explicitly managed. Grasshopper’s is
transparent, but its strategy for computing transitive de-
pendencies is both complex and expensive.

Consistent checkpointing has been the subject of several
previous papers, most notably work by Elnozahy et al.
[EJZ92] and Chandy and Lamport [CL85].

KeyKOS, from which the EROS design is derived, uses
a single level store and consistent checkpoint mechanism
described in [Lan92]. The design of the store itself has

never previously been published.

The L3 system [Lie93] implemented a transparent check-
pointing mechanism in its user-level address space man-
ager. Like the KeyKOS and EROS checkpointing designs,
this implementation uses asynchronous copy on write for
interactive responsiveness. Fluke similarly implemented
an experimental system-wide checkpoint mechanism at
user level [TLFH96], but this implementation is a “stop
and copy” implementation. Disk writes are performed
before execution can proceed making the Fluke imple-
mentation unsuitable for interactive or real-time applica-
tions. Neither the L3 nor the Fluke checkpointers per-
form any sort of systemwide consistency check prior to
writing a checkpoint, introducing the likelihood that sys-
tem state errors resulting from either imperfect implemen-
tation or ambient background radiation will be rendered
permanent.

The checkpoint design presented here is similar in many
respects to the behavior of log-structured file systems such
as LFS [SBMS93, MR92]. As with log-structured file
systems, the the checkpoint mechanism converts random
writes into sequential writes. Unlike the log-structured
design, the EROS checkpointing design quickly converts
this temporally localized data into physically localized data
by migrating it into locations that were allocated based on
desired long-term locality. The resulting performance re-
mains faster than conventional file systems, but does not
decay as file system utilization increases.

10 Future Work
The store designs described in sections 6 and 7 reflect
a mature placement strategy that has been tested over a
long period of time. While effective, this placement strat-
egy suffers from a significant limitation: it is difficult to
administer changes to the underlying disk configuration.
While the EROS system implements software duplexing
to allow storage to be rearranged, the rearrangement pro-
cess is neither efficient nor “hands free.” It would be better
to have an automated means to take advantage of new and
larger stores.

The current EROS space bank implementation can theo-
retically handle stores slightly larger than �

���
pages (2.6

terabytes). This corresponds approximately to one fully-
populated RAID subsystem containing 10 drives, each pro-
viding 60 gigabytes of storage. While not common on
the desktop, these configurations appear more and more
frequently on servers. The paging behavior of the cur-
rent space bank implementation would be quite bad for
this size store. While the space bank could be reimple-
mented to eliminate thrashing during allocation, a better
approach overall would be to loosen the association be-
tween OIDs and disk page frames. Extent-level locality



is essential, but a sparsely allocatable OID space would
eliminate the need for the red-black trees that are currently
used to record object allocations.

From an addressing standpoint, larger stores do not present
an immediate problem for EROS. The underlying OID
space can handle stores of up to �

� �
pages.4 Given that

there is no basic addressability problem, the key question
is “how will we manage the growth?” The sequential al-
location strategy used by the space bank does not do an
effective job of balancing load over disk arms in the ab-
sence of a RAID controller. Further, the current mapping
strategy from OIDs to disk page frames does not lend it-
self to physical rearrangement of objects as the available
storage grows. All of these issues point to a need for a
logical volume mechanism.

The next and (we hope) final version of the EROS single
level store will likely be based on randomization-based
extent placement. This is a nearly complete departure
from the designs described here:

� Node and page OID spaces are once again parti-
tioned.

� Allocation counts are abandoned. OIDs can be re-
allocated only if the space bank knows that no ca-
pability using the OID exists on the disk.

� The direct map from OIDs to disk ranges has been
abandoned entirely. Objects are now placed using a
randomization-based strategy.

� While extent-based object placement continues to
be honored on a “best effort” basis using low-order
bits of the OID, there is no longer any direct associ-
ation between an OID and the location of an object
on disk.

� Ranges can be dynamically grown or shrunk as disks
are added and removed.

� Where the previous operations on ranges were “al-
locate” and “deallocate,” the new design separates
object allocation into two parts: storage reservation
and object name binding.

The inspiration for this departure is a new, randomization-
based disk placement strategy being explored within the
Systems Research Laboratory based on prior work by Brink-
mann and Scheideler [BSS00]. We plan to adopt a single-
disk variant of this strategy in the EROS single-level store.

The key motivation for this change is the ability to di-
vorce OIDs from physical placement without losing the
ability to directly compute object addresses. Under the

4 The disk drive industry has yet to produce �
���

pages of total disk
storage over the lifespan of the industry, but will soon cross this mark.

new strategy, disks or partitions can be added or removed
from the system at will without needing to garbage collect
or renumber OIDs, and data can be transparently shifted
to balance load across available disk arms. This renders
the system more easily scalable, and provides the type of
load balancing and latency properties needed for multi-
media applications.
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12 Conclusions
This paper describes three working implementations of
a single-level store. To our knowledge, this is the first
time that any single-level store design has been compre-
hensively described in the public literature. The code is
available online, and can be found at the EROS web site
[Sha]. In describing our design, we have attempted to
identify both the critical performance issues that arise in
single level store designs and the solutions we have found
to those issues.

One key to an effective single-level store is the interac-
tion between temporal, spatial, and referential efficiency.
This is made possible in EROS by the fact that disk-level
locality information is rendered directly available for ap-
plication use. Where file systems make locality decisions
at the time the file is closed and the file cache is flushed,
the EROS space bank makes these decisions when the cor-
responding storage is allocated, which is the point where
maximal semantic knowledge of intended usage is at hand.
An interesting challenge in the randomization-based de-
sign is to preserve an effective balance between spatial
locality and adaptive scalability.

A surprising attribute of the EROS single level store is that
in spite of its vertical integration it has undergone several
major changes with minimal application-level impact. We
have changed the capability size, the OID encoding, the
checkpoint design, and removed the object driver from



the kernel. The only application code that changed was
the space bank. Within the kernel itself, even the cache
management code has gone largely unchanged as these
modifications occurred.

From a design perspective, this paper has illustrated that
single level stores simplify operating system design by re-
moving an unnecessary layer of abstraction from the sys-
tem. Instead of implementing a new and different seman-
tics at the file system layer, a single level store extends the
memory mapping model downwards to include the disk,
allowing applications to control placement directly. In
EROS these placement controls are generally provided by
standard fault handling programs; most applications sim-
ply use these handlers, and require no code at all for stor-
age management – separation of concerns is effectively
maintained. On the other hand, applications with unusual
requirements can replace these fault handlers if needed.
The total EROS system size is roughly 25% that of Linux.

Microbenchmarks [SSF99] show that performance-critical
object allocations in EROS are fast. Hand examination
shows that the mechanisms described here are actually
generating good disk-level locality. EROS-specific bench-
marks show that EROS makes effective use of the avail-
able sustained disk bandwidth. In practice the main prob-
lem with checkpointing seems to finding a heuristic that
does the associated I/Os slowly enough to avoid inter-
fering with interactive processing. We also know that
the KeyKOS database system, whose disk performance is
critical, delivered exceptionally strong performance. All
this being said, a key missing piece in this paper is appli-
cation-level benchmarks. We are in the process of porting
several server and client applications to EROS, and plan
to measure application-level performance when this has
been done.

This paper is dedicated to the memory of Prof. Dr. Jochen
Liedtke (1953–2001).
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