USENIX Association

Proceedings of the
2002 USENIX Annua Technical
Conference

Monterey, California, USA
June 10-15, 2002

THE ADVANCED COMI

PUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

My cache or yours? Making storage more exclusive

Theodore M. Wong
Carnegie Mellon University, Pittsburgh, PA
tmwong+@cs.cmu.edu

Abstract

Modern high-end disk arrays often have several giga-
bytes of cache RAM. Unfortunately, most array caches
use management policies which duplicate the same data
blocks at both the client and array levels of the cache hi-
erarchy: they are inclusive. Thus, the aggregate cache
behaves as if it was only as big as the larger of the client
and array caches, instead of as large as the sum of the
two. Inclusiveness is wasteful: cache RAM is expensive.

We explore the benefits of a simple scheme to achieve
exclusive caching, in which a data block is cached at ei-
ther a client or the disk array, but not both. Exclusiveness
helps to create the effect of a single, large unified cache.
We introduce a DEMOTE operation to transfer data eject-
ed from the client to the array, and explore its effective-
ness with simulation studies. We quantify the benefits
and overheads of demotions across both synthetic and
real-life workloads. The results show that we can obtain
useful—sometimes substantial—speedups.

During our investigation, we also developed some new
cache-insertion algorithms that show promise for multi-
client systems, and report on some of their properties.

1 Introduction

Disk arrays use significant amounts of cache RAM to
improve performance by allowing asynchronous read-
ahead and write-behind, and by holding a pool of data
that can be re-read quickly by clients. Since the per-
gigabyte cost of RAM is much higher than of disk, cache
can represent a significant portion of the cost of modern
arrays. Our goal here is to see how best to exploit it.

The cache sizes needed to accomplish read-ahead and
write-behind are typically tiny compared to the disk ca-
pacity of the array. Read-ahead can be efficiently han-
dled with buffers whose size is only a few times the
track size of the disks. Write-behind can be handled with
buffers whose size is large enough to cover the variance
(burstiness) in the write workload [32, 39], since the sus-
tained average transfer rate is bounded by what the disks
can support—everything eventually has to get to stable

John Wilkes
Hewlett-Packard Laboratories, Palo Alto, CA
wilkes@hpl.hp.com

storage. Overwrites in the write-behind cache can in-
crease the front-end write traffic supported by the array,
but do not intrinsically increase the size of cache needed.

Unfortunately, there is no such simple bound for the size
of the re-read cache: in general, the larger the cache, the
greater the benefit, until some point of diminishing re-
turns is reached. The common rule of thumb is to try to
cache about 10% of the active data. Table 1 suggests that
this is a luxury out of reach of even the most aggressive
cache configurations if all the stored data were to be ac-
tive. Fortunately, this is not usually the case: a study of
UNIX file system workloads [31] showed that the mean
working set over a 24 hour period was only 3-7% of the
total storage capacity, and the 90th percentile working
set was only 6-16%. A study of deployed HP AutorRAID
systems [43] found that the working set rarely exceeded
the space available for RAID1 storage (about 10% of the
total storage capacity).

Both array and client re-read caches are typically oper-
ated using the least-recently-used (LRU) cache replace-
ment policy [11, 12, 35]; even though many proprietary
tweaks are used in array caches, the underlying algo-
rithm is basically LRU [4]. Similar approaches are the
norm in client-server file system environments [15, 27].

Interactions between the LRU policies at the client and
array cause the combined caches to be inclusive: the ar-
ray (lower-level) cache duplicates data blocks held in the
client (upper-level) cache, so that the array cache is pro-

High-end arrays
System | Cache] Disk space
EMC 8830 64 GiB 70 T8B
IBM ESS 32 GiB 27718
HP XP512 32 GiB 92 1B
High-end servers
System [Memory| Type (CPuUS)
IBM z900 64 GiB| High-end (1-16)
Sun E10000 64 GiB| High-end (4-64)
HP Superdome | 128 GiB | High-end (8-64)
HP rp8400 64 GiB |Mid-range (2-16)
HP rp7400 32 GiB| Mid-range (2-8)

Table 1: Some representative maximum-supported sizes for
disk arrays and servers from early 2002. 1 Gis = 230 bytes.

viding little re-read benefit until it exceeds the effective
size of the client caches.

Inclusiveness is wasteful: it renders a chunk of the array
cache similar in size to the client caches almost useless.
READ operations that miss in the client are more likely
to miss in the array and incur a disk access penalty. For
example, suppose we have a client with 16 GB of cache
memory connected to a disk array with 16 GB of re-
read cache, and suppose the workload has a total READ
working set size of 32 GB. (This single client, single
array case is quite common in high-end computer instal-
lations; with multiple clients, the effective client cache
size is equal to the amount of unique data that the clients
caches hold, and the same arguments apply.) We might
naively expect the 32 6B of available memory to capture
almost all of the re-read traffic, but in practice it would
capture only about half of it, because the array cache will
duplicate blocks that are already in the client [15, 27].

To avoid these difficulties, it would be better to arrange
for the combined client and array caches to be exclusive,
so that data in one cache is not duplicated in the other.

1.1 Exclusive caching

Achieving exclusive caching requires that the client and
array caches be managed as one. Since accesses to
the client cache are essentially free, while accesses to
the array cache incur the round-trip network delay, the
cost of an 1/O operation at the client, and the controller
overheads at the array, we can think of this setup as a
cache hierarchy, with the array cache at the lower level.
These costs are not large: modern storage area networks
(SANS) provide 1-2 Gbit/s of bandwidth per link, and
1/0 overheads of a few hundred microseconds; thus, re-
trieving a 4 kKB data block can take as little as 0.2 ms.

However, it would be impractical to rewrite client O/S
and array software to explicitly manage both caches. It
would also be undesirable for the array to keep track of
precisely which blocks are in the client, since this meta-
data is expensive to maintain. However, we can approx-
imate the desired behavior by arranging that the client
(1) tells the array when it changes what it caches, and
(2) returns data ejected from the upper-level cache to the
lower-level one, rather than simply discarding it.

We achieve the desired behavior by introducing a DE-
MOTE operation, which one can think of as a possible
extension to the scsi command set. DEMOTE works as
follows: when a client is about to eject a clean block
from its cache (e.g., to make space for a READ), it first
tries to return the block to the array using a DEMOTE.
A DEMOTE operation is similar to a WRITE operation:
the array tries to put the demoted block into its re-read
cache, ejecting another block if necessary to make space.

NONE DEMOTE DEMOTE
LRU LRU
LRU LRU LRU
7 — Read
i v ----- Demote
LRU LRU LRU

T

Figure 1: Sample cache management schemes. The top and
bottom boxes represent the client and array cache replacement
queues respectively. The arrow in a box points to the end clos-
est to being discarded.

Unlike a WRITE, the array short-circuits the operation
(i.e., it does not transfer the data) if it already has a copy
of the block cached, or if it cannot immediately make
space for it. In all cases, the client then discards the
block from its own cache.

Clients are trusted to return the same data that they read
earlier. This is not a security issue, since they could eas-
ily issue a WRITE to the same block to change its con-
tents. If corruption is considered a problem, the array
could keep a cryptographic hash of the block and com-
pare it with a hash of the demoted block, at the expense
of more metadata management and execution time.

SANs are fast and disks are slow, so though a DEMOTE
may incur a SAN block transfer, performance gains are
still possible: even small reductions in the array cache
miss rate can achieve dramatic reductions in the mean
READ latency. Our goal is to evaluate how close we can
get to this desirable state of affairs and the benefits we
obtain from it.

1.2 Exclusive caching schemes

The addition of a DEMOTE operation does not in itself
yield exclusive caching: we also need to decide what
the array cache does with blocks that have just been de-
moted or read from disk. This is primarily a choice of
cache replacement policy. We consider three combina-
tions of demotions with different replacement policy at
the array, illustrated in figure 1; all use the LRU policy
at the client:

e NONE-LRU (the baseline scheme): clients do no de-
motions; the array uses the LRU replacement policy
for both demoted and recently read blocks.

e DEMOTE-LRU: clients do demotions; the array uses
the traditional LRU cache management for both de-
moted and recently read blocks.

e DEMOTE: clients do demotions; the array puts
blocks it has sent to a client at the head (closest to

being discarded end) of its LRU queue, and puts de-
moted blocks at the tail. This scheme most closely
approximates the effect of a single unified LRU
cache.

We observe that the DEMOTE scheme is more exclusive
than the DEMOTE-LRU scheme, and so should result in
lower mean latencies. Consider what happens when a
client READ misses in the client and array caches, and
thus provokes a back-end disk read. With DEMOTE-LRU,
the client and array will double-cache the block until
enough subsequent READS miss and push it out of one
of the caches (which will take at least as many READS as
the smaller of the client and array queue lengths). With
DEMOTE, the double-caching will only last only until the
next READ that misses in the array cache. We thus ex-
pect DEMOTE to be more exclusive than DEMOTE-LRU,
and so to result in lower mean READ latencies.

1.3 Objectives

To evaluate the performance of our exclusive caching ap-
proach, we aim to answer the following questions:

1. Do demotions increase array cache hit rates in
single-client systems?

2. If so, what is the overall effect of demotions on
mean latency? In particular, do the costs exceed
the benefits? Costs include extra SAN transfers, as
well as delays incurred by READSs that wait for DE-
MOTES to finish before proceeding.

3. How sensitive are the results to variations in SAN
bandwidth?

4. How sensitive are the results to the relative sizes of
the client and array caches?

5. Do demotions help when an array has multiple
clients?

The remainder of the paper is structured as follows. We
begin with a demonstration of the potential benefits of
exclusive caching using some simple examples. We then
explore how well it fares on more realistic workloads
captured from real systems, and show that DEMOTE does
indeed achieve the hoped-for benefits.

Multi-client exclusive caching represents a more chal-
lenging target, and we devote the remainder of the paper
to an exploration of how this can be achieved—including
a new way of thinking about cache insertion policies.
After surveying related work, we end with our observa-
tions and conclusions.

2 Why exclusive caching?

In this section, we explore the potential benefits of ex-
clusive caching in single-client systems, using a simple
analytical performance model. We show that exclusive
caching has the potential to double the effective cache
size with client and array caches of equal size, and that
the potential speedups merit further investigation.

We begin with a simple performance model for estimat-
ing the costs and benefits of caching. We predict the
mean latency seen by a client application as

Tmean = Tchc+ (Ta+Tc) ha+ (Ta+ TC +Td) m'SS (l)

where T¢ and T are costs of a hit in the client and disk ar-
ray caches respectively, T, is the cost of reading a block
from disk (since such a block is first read into the cache,
and then accessed from there, it also incurs Ta + T¢), he
and h, are the client and array cache hit rates respec-
tively (expressed as fractions of the total client READS),
and miss= 1 — (hc+ hy) is the miss rate (the fraction of
all READS that must access the disk). Since Tc = 0,

Trean = Taha+ (Ta+ Ty) miss 2

In practice, T, is much less than T,: Ta ~ 0.2 ms and
Ty ~ 4-10 ms for non-sequential 4 KB reads.

We must also account for the cost of demotions. Large
demotions will be dominated by data transfer times,
small ones by array controller and host overheads. If
we assume that a DEMOTE costs the same as a READ
that hits in the array, and that clients demote a block for
every READ, then we can approximate the cost of de-
motions by doubling the latency of array hits. This is
an upper bound, since demotions transfer no data if they
abort, e.g., if the array already has the data cached. With
the inclusion of demotion costs,

Trean = 2Taha + (2Ta+ T) miss. ®)

We now use our model to explore some simple exam-
ples, setting T = 0.2 ms and T, = 10 ms throughout this
section.

2.1 Random workloads

Consider first a workload with a spatially uniform distri-
bution of requests across some working set (also known
as random). We expect that a client large enough to hold

Cumul. hit rate vs. effective cache size - ZIPF

1.0-9 I

0.8+

0.6 4
--x-- Inclusive
- - Exclusive

0.4+

Cumul. hit rate

i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

0.2 |

|
|
|
|
&

0.0

5‘0 160
Effective cache size (MB)

Figure 2: Cumulative hit rate vs. effective cache size for a
Zipf-like workload, with client and array caches of 64 MB each
and a working set size of 128 mB. The marker shows the addi-
tional array hit rate achieved with exclusive caching.

half of the working set would achieve h; = 50%. An ar-
ray with inclusive caching duplicates the client contents,
and would achieve no additional hits, while an array with
exclusive caching should achieve hy = 50%.

Equations 2 and 3 predict that the change from inclu-
sive to exclusive caching would reduce the mean latency
from 0.5(Ta+ Ty) t0 Ty, i.e., from 5.1 ms to 0.2 ms.

2.2 Zipf workloads

Even workloads that achieve high client hit rates may
benefit from exclusive caching. An example of such
a workload is one with a Zipf-like distribution [49],
which approximates many common access patterns: a
few blocks are frequently accessed, others much less of-
ten. This is formalized as setting the probability of a
READ for the i!" block proportional to 1/i%, where o is
a scaling constant commonly set to 1.

Consider the cumulative hit rate vs. effective cache size
graph shown in figure 2 for the Zipf workload with a
128 mB working set. A client with a 64 MB cache
will achieve he = 91%. No additional hits would oc-
cur in the array with a 64 mB cache and traditional, fully
inclusive caching. Exclusive caching would allow the
same array to achieve an incremental hy = 9%; because
T4 >> Ta, even small decreases in the miss rate can
yield large speedups. Equations 2 and 3 predict mean
READ latencies of 0.918 ms and 0.036 ms for inclu-
sive and exclusive caching respectively—an impressive
25.5x speedup.

3 Single-client synthetic workloads

In this section, we explore the effects of exclusive
caching using simulation experiments with synthetic
workloads. Our goal is to confirm the intuitive argu-
ments presented in section 2, as well as to conduct sen-

Figure 3: System simulated for the single-client workloads,
with a RAID5 array and a 1 Gbit/s FibreChannel SAN.

sitivity analyses for how our demotion scheme responds
to variations in the client-array SAN bandwidth and rela-
tive client and array cache sizes. Sections 4 and 5 present
our results for real-life workloads.

3.1 Evaluation environment: Pantheon

To evaluate our cache management schemes, we began
by using the Pantheon simulator [44], which includes
calibrated disk models [33]. Although the Pantheon ar-
ray models have not been explicitly calibrated, Pantheon
has been used successfully in design studies of the HP
AutoRAID disk array [45], so we have confidence in its
predictive powers.

We configured Pantheon to model a RAIDS disk array
connected to a single client over a 1 Gbit/s FibreChannel
link, as shown in figure 3. For these experiments, we
used a workload with 4 KB READS, and set T, = 0.2 ms;
the Pantheon disk models gave T, ~ 10 ms.

The Pantheon cache models are extremely detailed,
keeping track of 1/O operations in 256 byte size units
in order to model contention effects. Unfortunately, this
requires large amounts of memory, and restricted us to
experiments with only 64 mB caches. With a 4 KB cache
block size, this means that the client and array caches
were restricted to No = Ny = 16384 blocks in size.

To eliminate resource-contention effects for our syn-
thetic workload results, we finished each READ before
starting the next. In each experiment, we first “warmed
up” the caches with a working-set size set of READS; the
performance of these READS is not included in the re-
sults. Latency variances were all below 1%.

Our chief metric for evaluating the exclusive caching
schemes is the mean latency of a READ at the client; we
also report on the array cache hit rate. For each result,
we present both absolute latencies and a speedup ratio,
which is the baseline (NONE-LRU) mean latency divided
by the mean latency for the current experiment. Al-
though the difficulties of modeling partially closed-loop

[Workioad [Client | NONE-LRU| DEMOTE-LRU| DEMOTE]|

RANDOM | 50% 8% 21% 46%
SEQ 0% 0% 0% 100%
ZIPF 86% 2% 4% 9%

Table 2: Client and array cache hit rates for single-client syn-
thetic workloads. The client hit rates are the same for all the
demotion variants, and can be added to the array hit rates to get
the total cache hit rates.

[Workload [NONE-LRU[DEMOTE-LRU [DEMOTE |

RANDOM| 4.77ms [3.43ms (1.39%)[0.64 ms (7.5x)
SEQ 1.67ms |1.91 ms (0.87x)|0.48 ms (3.5x)
ZIPF 1.41ms [1.19ms (1.18x)|0.85 ms (1.7x)

Table 3: Mean READ latencies and speedups over NONE-LRU
for single-client synthetic workloads.

application behavior are considerable [16], a purely 1/0-
bound workload should see its execution time reduced
by the speedup ratio.

3.2 TheRANDOM synthetic workload

For this test, the workload consisted of one-block READS
uniformly selected from a working set of N, 4 blocks.
Such random access patterns are common in on-line
transaction-processing workloads (e.g., TPC-C, a clas-
sic oLTP benchmark [38]).

We set the working set size to the sum of the client and
array cache sizes: No = N = 16384, N, 4 = 32768
blocks, and issued N,,.,4 warm-up READs, followed by
10 XN, 4,q timed READs.

We expected that the client would achieve h; = 50%.
Inclusive caching would result in no cache hits at the
array, while exclusive caching should achieve an addi-
tional hy = 50%, yielding a dramatic improvement in
mean latency.

The results in table 2 validate our expectations. The
client achieved a 50% hit rate for both inclusive and ex-
clusive caching, and the array with DEMOTE achieved an
additional 46% hit rate. 4% of READS still missed with
DEMOTE, because the warm-up READS did completely
fill the client cache. Also, since NONE-LRU is not fully
inclusive (as previous studies demonstrate [15]), the ar-
ray with NONE-LRU still achieved an 8% hit rate.

As predicted in section 1.2, DEMOTE-LRU did not per-
form as well as DEMOTE. DEMOTE-LRU only achieved
hy = 21%, while DEMOTE achieved hy = 46%, which
was a 7.5x speedup over NONE-LRU, as seen in table 3.

Figure 4 compares the cumulative latencies achieved
with NONE-LRU and DEMOTE. For DEMOTE, the jump
at 0.4 ms corresponds to the cost of an array hit plus the

cost of a demotion. In contrast, NONE-LRU got fewer ar-
ray hits (table 2), and its curve has a significantly smaller
jump at 0.2 ms, which is the cost of an array cache hit
without a demotion.

3.3 ThesEeQ synthetic workload

Sequential accesses are common in scientific, decision-
support and data-mining workloads. To evaluate the
benefit of exclusive caching for such workloads, we
simulated READs of sequential blocks from a work-
ing set of Nsq contiguous blocks, chosen so that the
working set would fully occupy the combined client
and array caches: Ne = Na = 16384, and Neeg = Nc +
Ny — 1 = 32767 blocks (the —1 accounts for double-
caching of the most recently read block). We issued Nsegy
warm-up READS, followed by 10 x Nseq timed one-block
READS.

We expected that at the end of the warm-up period,
the client would contain the blocks in the second half
of the sequence, and an array under exclusive caching
would contain the blocks in the first half. Thus, with
DEMOTE, all subsequent READS should hit in the array.
On the other hand, with NONE-LRU and DEMOTE-LRU,
we expected that the array would always contain the
same blocks as the client; neither the client nor the ar-
ray would have the next block in the sequence, and all
READS would miss.

Again, the results in table 2 validate our expectations.
Although no READSs ever hit in the client, they all hit in
the array with DEMOTE. The mean latency for DEMOTE-
-LRU was higher than for NONE-LRU because it point-
lessly demoted blocks that the array discarded before
they were reused. Although all READS missed in both
caches with NONE-LRU and DEMOTE-LRU, the mean la-
tencies of 1.67 ms and 1.91 ms respectively were less
than the random-access disk latency T thanks to read-
ahead in the disk drive [33].

The cumulative latency graph in figure 4 further demon-
strates the benefit of DEMOTE over NONE-LRU: all
READS with DEMOTE had a latency of 0.4 ms (the cost
of an array hit plus a demotion), while all READs with
NONE-LRU had latencies between 1.03 ms (the cost of a
disk access with read-ahead caching) and 10 ms (the disk
latency Ty, incurred when the READ sequence wraps
around). Overall, DEMOTE achieved a 3.5x speedup
over NONE-LRU, as seen in table 3.

3.4 ThezIpF synthetic workload
Our Zipf workload sent READs from a set of Nzipt

blocks, with NZipf = 1.5(Ng + Na), so for Nc = Ny
= 16384, NZipf = 49152. This resulted in three equal

Cumul. READ frac. vs. mean latency - RANDOM

Cumul. READ frac. vs. mean latency - SEQ

Cumul. READ frac. vs. mean latency - ZIPF

e
|
|
I
|
c 4 c 4 c 4
508 508 ; 5 08
S S | k3l
3 8 i 8
£ £ | £
Q o064 Q o064 \ 0 064
< < ! <
w w \ w
4 4 ! [
)) |)
2 04| 2 04 ! 2 04
3 3 i 3
3 3 I =1
: : : :
— NONE-LRU — NONE-LRU — NONE-LRU
O 024 - -~ DEMOTE O 024 | - -~ DEMOTE O 024 - - - DEMOTE
|
I
|
0.0 T T 0.0 L T 0.0 T T

0.1 1 10 0.1
Mean latency (ms)

Mean latency (ms)

10 0.1 1 10
Mean latency (ms)

Figure 4: Cumulative READ fraction vs. mean READ latency for the RANDOM, SEQ, and zIPF workloads with NONE-LRU and

DEMOTE.

size sets of N /3 blocks: Z, for the most active third
(which received 90% of the accesses), Z; for the next
most active (6% of the accesses), and Z, for the least ac-
tive (the remaining 4% of the accesses). We issued N ¢
warm-up READS, followed by 10 XN timed READSs.

We expected that at the end of the warm-up set, the client
cache would be mostly filled with blocks from Z, with
the highest request probabilities, and that an array under
exclusive caching would be mostly filled with the blocks
from Z, with the next highest probabilities. With our
test workload, exclusive caching schemes should thus
achieve he = 90% and hy = 6% in steady state. On the
other hand, the more inclusive caching schemes (NONE-
-LRU and DEMOTE-LRU) would simply populate the ar-
ray cache with the most-recently read blocks, which
would be mostly from Z,, and thus achieve a lower array
hit rate h;.

The results in table 2 validate our expectations. The
client always achieved he = 86% (slightly lower than
the anticipated 90% due to an incomplete warm-up). But
there was a big difference in hy: DEMOTE achieved 9%,
while NONE-LRU achieved only 2%.

The cumulative latency graph in figure 4 supports this:
as with RANDOM, the curve for DEMOTE has a much
larger jump at 0.4 ms (the cost of an array hit plus a
demotion) than NONE-LRU does at 0.2 ms (the cost of
an array hit alone). Overall, DEMOTE achieved a 1.7 x
speedup over NONE-LRU, as seen in table 3. This may
seem surprising given the modest increase in array hit
rate, but is more readily understandable when viewed as
a decrease in the overall miss rate from 12% to 5%.

3.5 SAN bandwidth sensitivity analysis

Exclusive caching using demotions relies on a low-
latency, high-bandwidth SAN to allow the array cache to
perform as a low-latency extension of the client cache.

Mean latency vs. bandwidth - RANDOM

154

\
\
\
\\
—~ \
A \ —%— NONE-LRU
£ 101 — - DEMOTE
>
o
=
2
K
c
I
O 54
=
-
e e __ o
0 T T 1
0.01 0.1 1 10
Bandwidth (Gbit/s)
Mean latency vs. bandwidth - ZIPF
5.
Pl
\
\
@ \ —— NONE-LRU
E \ - e—- DEMOTE
>
o
[=
2
K
c
a
[
=
0 T T 1

0.01 0.1 1 10
Bandwidth (Gbit/s)

Figure 5. Mean READ latency vs. SAN bandwidth for the
RANDOM and zIPF workloads.

The more this expectation is violated (i.e., as SAN la-
tency increases), the less benefit we expect to see—
possibly to the point where demotions are not worth
doing. To explore this effect, we conducted a sensi-
tivity analysis, using Pantheon to explore the effects of
varying the simulated SAN bandwidth from 10 Ghit/s to
10 Mbit/s on the NONE-LRU and DEMOTE schemes.

Our experiments validated our expectations. Figure 5
shows that at very low effective SAN bandwidths (less

than 20-30 Mbit/s), NONE-LRU outperformed DEMOTE,
but DEMOTE won as soon as the bandwidth rose above
this threshold. The results for RANDOM and zIPF are
similar, except that the gap between the NONE-LRU and
DEMOTE curves for high-bandwidth networks is smaller
for zIPF since the increase in array hit rate (and the re-
sultant speedup) was smaller.

3.6 Evaluation environment: f scachesi m

For subsequent experiments, we required a simulator ca-
pable of modeling multi-gigabyte caches, which was be-
yond the abilities of Pantheon. To this end, we devel-
oped a simulator called f scachesi mthat only tracks
the client and array cache contents, omitting detailed
disk and SAN latency measurements. f scachesi mis
simpler than Pantheon, but its predictive effects for our
study are similar: we repeated the experiments described
in sections 3.2 and 3.4 with identical workloads, and
confirmed that the client and array hit rates matched ex-
actly. We used f scachesi mfor all the experimental
work described in the remainder of this paper.

3.7 Cachesize sensitivity analysis

In the results reported so far, we have assumed that the
client cache is the same size as the array cache. This sec-
tion reports on what happens if we relax this assumption,
using a 64 mMB client cache and RANDOM and zIPF.

We expected that an array with the NONE-LRU inclusive
scheme would provide no reduction in mean latency un-
til its cache size exceeds that of the client, while one with
the DEMOTE exclusive scheme would provide reductions
in mean latency for any cache size until the working set
fits in the aggregate of the client and array caches.

The results in figure 6 confirm our expectations. Max-
imum benefit occurs when the two caches are of equal
size, but DEMOTE provides benefits over roughly a 10:1
ratio of cache sizes on either side of the equal-size case.

3.8 Summary

The synthetic workload results show that DEMOTE of-
fers significant potential benefits: 1.7-7.5x speedups
are hard to ignore. Better yet, these benefits are mostly
insensitive to variations in SAN bandwidth and only
moderately sensitive to the client:array cache size ratio.

Since our results showed that DEMOTE-LRU never out-
performed DEMOTE, we did not consider it further. We
also investigated schemes with different combinations of
LRU and most-recently-used (MRU) replacement poli-
cies at the client and array in conjunction with demo-
tions, and found that none performed as well as DE-
MOTE.

Mean latency vs. array cache size - RANDOM
6 .

IS
I

Mean latency (ms)
T

\

—— NONE-LRU \ !
-+~ DEMOTE

° 1‘0 160
Array cache size (MB)

Mean latency vs. array cache size - ZIPF
204 .

e
o
.l

Mean latency (ms)
T

o
o
1

—— NONE-LRU
-+- DEMOTE

0.0

T T
10 100

Array cache size (MB)

Figure 6: Mean READ latency vs. array cache size for the
RANDOM and zIPF workloads. The client cache size was fixed
at 64 MB. The 64 MB size is marked with a dotted line.

[Workioad T Date[Capacity] Cache[Clients] Length [Warm-up[1/0s]

CELLO99 [1999| 300GB| 2GB 1 Imonth | 1day [61.9M
DB2 — 5.2 GB — 8 2.2hours| 30min | 3.7M
HTTPD 1995 0.5GB — 7 24hours| 1hr 11M
OPENMAIL {1999 4260GB| 2GB| 6 lhour | 10min | 52M
TPC-H 2000 | 2100 GB | 32 GB 1 lhour | 10min | 7.0M

Table 4: Real-life workload data, with date, storage capacity,
array cache size, client count, trace duration, and I/O count.
‘Warm-up’ is the fraction of the trace used to pre-load the
caches in our experiments. For bB2 and HTTPD, working set
size instead of capacity is shown. ‘—’ are unknown entries.

4 Single-client real-life wor kloads

Having demonstrated the benefits of demotion-based ex-
clusive caching for synthetic workloads, we now eval-
uate its benefits for real-life workloads, in the form of
traces taken from the running systems shown in table 4.

Some of the traces available to us are somewhat old, and
cache sizes considered impressive then are small today.
Given this, we set the cache sizes in our experiments
commensurate with the time-frame and scale of the sys-
tem from which the traces were taken.

We used f scachesi mto simulate a system model sim-
ilar to the one in figure 3, with cache sizes scaled to
reflect the data in table 4. We used equations 2 and 3

[Workioad [Client] NONE-LRU | DEMOTE |
CELLO99| 54% [1%{2.34 ms|13%1.83 ms (1.28x)
DB2 4% |0%|5.01 ms|33%|3.57 ms (1.40x)
HTTPD 86% |3%0.53 ms|10%)0.24 ms (2.20x)

Table 5. Client and array hit rates and mean latencies for
single-client real-life workloads. Client hit rates are the same
for all schemes. Latencies are computed using equations 2 and
3 with T; = 0.2 ms and T, = 5 ms. Speedups for DEMOTE over
NONE-LRU are also shown.

with T, = 0.2 ms, T, = 5 ms to convert cache hit rates
into mean latency predictions. This disk latency is more
aggressive than that obtained from Pantheon, to reflect
the improvements in disk performance seen in the more
recent systems. We further assumed that there was suf-
ficient SAN bandwidth to avoid contention, and set the
cost of an aborted demotion to 0.16 ms (the cost of SAN
controller overheads without an actual data transfer).

As before, our chief metric of evaluation is the im-
provement in the mean latency of a READ achieved by
demotion-based exclusive caching schemes.

41 TheceLLO99 real-life workload

The ceLLO99 workload comprises a trace of every disk
1/0 access for the month of April 1999 from an HP 9000
K570 server with 4 cpus, about 2 GB of main memory,
two HP AutoRAID arrays and 18 directly connected disk
drives. The system ran a general time-sharing load un-
der HP-UX 10.20; it is the successor to the CELLO sys-
tem Ruemmler and Wilkes describe in their analysis of
UNIX disk access patterns [32]. In our experiments, we
simulated 2 GB client and array caches.

Figure 7 suggests that that switching from inclusive to
exclusive caching, with the consequent doubling of ef-
fective cache size from 2 GB to 4 GB, should yield a
noticeable increase in array hit rate. The results shown
in table 5 demonstrate this: using DEMOTE achieved
ha = 13% (compared to hy =1% with NONE-LRU),
yielding a 1.28x speedup—solely from changing the
way the array cache is managed.

4.2 ThebpB2 real-life workload

The DB2 trace-based workload was generated by an
eight-node IBM SP2 system running an IBM DB2
database application that performed join, set and aggre-
gation operations on a 5.2 GB data set. Uysal et al. used
this trace in their study of 1/0 on parallel machines [40].

The eight client nodes accessed disjoint sections of the
database; for the single-client workload experiment we
combined all these access streams into one.

DB2 exhibits a behavior between the sequential and ran-
dom workload styles seen in the SEQ and RANDOM syn-

Cumul. hit rate vs. cache size - CELLO
1.0+

0.8+
2
<
S 6]
=
K=
=]
£ 04
3
@]
0.2+
0.0 T T T T
1000 2000 3000 4000
Cache size (MB)
Cumul. hit rate vs. cache size - DB2
1.0+
0.8
i)
©
= 06
=
=
=
£ 04
=
(&)
024
0.0 T T T
1000 2000 3000

Cache size (MB)

Cumul. hit rate vs. cache size - HTTPD
1.0+

0.8
2
<
S 6]
=
K=
=]
£ 04
3
@]
02
0.0 T .
50 100
Cache size (MB)
Cumul. hit rate vs. cache size - TPC-H
1.0+
0.8
2
<
: 0.6
=
E
£ 044
=
(]
0.2
0.0 T T T
20000 40000 60000

Cache size (MB)

Figure7: Cumulative hit rate vs. cache size graphs for single-
client real-life workloads.

thetic workloads. The graph for bB2 in figure 7 suggests
that a single 4 GB cache would achieve about a 37% hit
rate, but that a split cache with 2 GB at each of the client
and array would achieve almost no hits at all with in-
clusive caching; thus, DEMOTE should do much better
than NONE-LRU. The results shown in table 5 bear this
out: DEMOTE achieved a 33% array hit rate, and a 1.40x

[Array size| Client | NONE-LRU | DEMOTE |
2GB | 23% |0%]4.01 ms 1% [4.13ms (0.97x)
16 GB | 23% |0%|4.01 ms (1.00x)| 6% |3.86 ms (1.04x)
32GB | 23% |1%(3.97 ms (1.01x)|13%3.54 ms (L1.13x)

Table 6: Client and array hit rates and mean latencies for
single-client TPC-H for different array caches. Client hit rates
and cache sizes (32 GB) are the same for all schemes. Laten-
cies are computed using equations 2 and 3 with T, = 0.2 ms
and T, = 5ms. Speedups are with respect to a 2 GB array cache
with NONE-LRU.

speedup over NONE-LRU.
4.3 TheHTTPD real-life workload

The HTTPD workload was generated by a seven-node
IBM SP2 parallel web server [22] serving a 524 MmB data
set. Uysal et al. also used this trace in their study [40].
Again, we combined the client streams into one.

HTTPD has similar characteristics to zIPF. A single
256 MB cache would hold the entire active working set;
we elected to perform the experiment with 128 ms of
cache split equally between the client and the array in
order to obtain more interesting results. An aggregate
cache of this size should achieve he + hy ~ 95% accord-
ing to the graph in figure 7, with the client achieving
he ~ 85%, and an array under exclusive caching the re-
maining hy = 10%.

Table 5 shows that the expected benefit indeed occurs:
DEMOTE achieved a 10% array hit rate, and an impres-
sive 2.2x speedup over NONE-LRU.

44 TheTPC-H real-life workload

The TPC-H workload is a 1-hour portion of a 39-hour
trace of a system that performed an audited run [18]
of the TPC-H database benchmark [37]. This sys-
tem illustrates high-end commercial decision-support
systems: it comprised an 8-cpu (550MHz PA-RISC)
HP 9000 N4000 server with 32 GB of main memory and
2.1 TB of storage capacity, on 124 disks spread across
3 arrays (with 1.6 GB of aggregate cache) and 4 non-
redundant disk trays. The host computer was already
at its maximum-memory configuration in these tests, so
adding additional host memory was not an option. Given
that this was a decision-support system, we expected to
find a great deal of sequential traffic, and relatively lit-
tle cache reuse. Our expectations are borne out by the
results.

In our TPC-H experiments, we used a 16 KB block size,
a 32 GB client cache, and a 2 GB array cache as the base-
line, and explored the effects of changing the array cache
size up to 32 GB. Table 6 shows the results.

The traditional, inclusive caching scheme showed no im-

provement in latency until the array cache size reached
32 GB, at which point we saw a tiny (1%) improvement.

With a 2 GB array cache, DEMOTE yielded a slight slow-
down (0.97x speedup), because it paid the cost of do-
ing demotions without increasing the array cache hit
rate significantly. However, DEMOTE obtained a 1.04x
speedup at 16 GB, and a 1.13x speedup at 32 GB, while
the inclusive caching scheme showed no benefits. This
data confirms that cache reuse was not a major factor in
this workload, but indicates that the exclusive caching
scheme took advantage of what reuse there was.

45 Summary

The results from real-life workloads support our earlier
conclusions: apart from the TPC-H baseline, which ex-
perienced a small 0.97x slowdown due to the cost of
non-beneficial demotions, we achieved up to a 2.20x
speedup.

We find these results quite gratifying, given that ex-
tensive previous research on cache systems enthusias-
tically reports performance improvements of a few per-
cent (e.g., a ~1.12x speedup).

5 Multi-client systems

Multi-client systems introduce a new complication: the
sharing of data between clients. Note that we are delib-
erately not trying to achieve client-memory sharing, in
the style of protocols such as GMS [13, 42]. One benefit
is that our scheme does not need to maintain a directory
of which clients are caching which blocks.

Having multiple clients cache the same block does not
itself raise problems (we assume that the clients wish
to access the data, or they would not have read it), but
exploiting the array cache as a shared resource does: it
may no longer be a good idea to discard a recently read
block from the array cache as soon as it has been sent
to a client. To help reason about this, we consider two
boundary cases here. Of course, real workloads show
behavior between these extremes.

Digoint workloads: The clients each issue READs for
non-overlapped parts of the aggregate working set. The
READS appear to the array as if one client had issued
them, from a cache as large as the aggregate of the client
caches. To determine if exclusive caching will help, we
use the cumulative hit rate vs. cache size graph to esti-
mate the array hit rate as if a single client had issued all
READS, as in section 2.

Conjoint workloads: The clients issue exactly the same
READ requests in the same order at the exact same time.
If we arbitrarily designate the first client to issue an 1/O

as the leader, and the others as followers, we see that
READs that hit in the leader also will hit in the followers.
The READs appear to the array as if one client had issued
them from a cache as large as an individual client cache.

To determine if the leader will benefit from exclusive
caching, we use the cumulative hit rate vs. cache size
graph to estimate the array hit rate as if the leader had
issued all READS, as in section 2.

To determine if the followers will benefit from exclu-
sive caching, we observe that all READS that miss for the
leader in the array will also cause the followers to stall,
waiting for that block to be read into the array cache. As
soon as it arrives there, it will be sent to the leader, and
then all the followers, before it is discarded. That is, the
followers will see the same performance as the leader.

In systems that employ demotion, the followers waste
time demoting blocks that the leader has already de-
moted. Fortunately, these demotions will be relatively
cheap because they need not transfer any data.

5.1 Adaptive cacheinsertion policies

Our initial results using the simple demotion-based ex-
clusive caching scheme described above to multi-client
systems were mixed. At first, we evaluated NONE-LRU
and DEMOTE in a multi-client system similar to the one
shown in figure 3, with the single client shown in that
figure simply replaced by N clients, each with 1 /N of the
cache memory of the single client. As expected, work-
loads in which clients shared few or no blocks (disjoint
workloads) benefitted from DEMOTE.

Unfortunately, workloads in which clients shared blocks
performed worse with DEMOTE than with NONE-LRU,
because shared workloads are not conjoint in practice:
clients do not typically READ the same blocks in the
same order at the same time. Instead, a READ for block
X by one client may be followed by several READS for
other blocks before a second READ for X by another
client. Recall that with DEMOTE the array puts blocks
read from disk at the head of the LRU queue, i.e., in
MRU order. Thus, the array is likely to eject X before
the READ from the later client.

We made an early design decision to avoid the complex-
ities of schemes that require the array to track which
clients had which blocks and request copies back from
them—we wanted to keep the client-to-array interaction
as simple, and as close to standard scsi, as possible.

Ouir first insight was that the array should reserve a por-
tion of its cache to keep blocks recently read from disk
“for a while”, in case another client requests them. To
achieve this, we experimented with a segmented LRU
(SLRU) array cache [21]—one with probationary and

Read block Demoted block
|

N

~

Head

Ghosts

Figure8: Operation of read and demoted ghost caches in con-
junction with the array cache. The array inserts the metadata of
incoming read (demoted) blocks into the corresponding ghost,
and the data into the cache. The cache is divided into segments
of either uniform or exponentially-growing size. The array se-
lects the segment into which to insert the incoming read (de-
moted) block based on the hit count in the corresponding ghost.

protected segments, each managed in LRU fashion. The
array puts newly inserted blocks (read and demoted) at
the tail of the probationary segment, and moves them to
the tail of the protected segment if a subsequent READ
hits them. The array moves blocks from the head of the
protected segment to the tail of the probationary one, and
ejects blocks from the head of the probationary segment.

SLRU improved performance somewhat, but the opti-
mal size of the protected segment varied greatly with the
workload: the best size was either very small (less than
8% of the total), or quite large (over 50%). These results
were less robust than we desired.

Our second insight is that the array can treat the LRU
queue as a continuum, rather than as a pair of segments:
inserting a block near the head causes that block to have
a shorter expected lifetime in the queue than inserting it
near the tail. We can then use different insertion points
for demoted blocks and disk-read blocks. (Pure DE-
MOTE is an extreme instance that only uses the ends of
the LRU queue, and SLRU is an instance where the in-
sertion point is a fixed distance down the LRU queue.)

Our experience with SLRU suggested that the array
should select the insertion points adaptively in response
to workload characteristics instead of selecting them
statically. For example, the array should insert demoted
blocks closer to the tail of its LRU queue than disk-read
blocks if subsequent READS hit demoted blocks more of-
ten. To support this, we implemented ghost cachesat the
array for demoted and disk-read blocks.

A ghost cache behaves like a real cache except that
it only keeps cache metadata, enabling it to simulate

the behavior of a real cache using much less memory.
We used a pair of ghost caches to simulate the perfor-
mance of hypothetical array caches that only inserted
blocks from a particular source—either demotions or
disk reads. Just like the real cache, each ghost cache
was updated on READS to track hits and execute its LRU

policy.

We used the ghost caches to provide information about
which insertion sources are the more likely to insert
blocks that are productive to cache, and hence where in
the real cache future insertions from this source should
go, as shown in figure 8.) This was done by calculat-
ing the insertion point in the real cache from the relative
hit counts of the ghost caches. To do so, we assigned
the value O to represent the head of the real array LRU
queue, and the value 1 to the tail; the insertion points for
demoted and disk-read blocks were given by the ratio of
the hit rates seen by their respective ghost caches to the
total hit rate across all ghost caches.

To make insertion at an arbitrary point more computa-
tionally tractable, we approximated this by dividing the
real array LRU queue into a fixed number of segments
Nsegs (10 in our experiments), multiplying the calculated
insertion point by Nsgs, and inserting the block at the tail
of that segment.

We experimented with uniform segments, and with ex-
ponential segments (each segment was twice the size of
the preceding one, the smallest being at the head of the
array LRU queue). The same segment-index calculation
was used for both schemes, causing the scheme with seg-
ments of exponential size to give significantly shorter
lifetimes to blocks predicted to be less popular.

We designated the combination of demotions with ghost
caches and uniform segments at the array as DEMOTE-
-ADAPT-UNI, and that of demotions with ghost caches
and exponential segments as DEMOTE-ADAPT-EXP. We
then re-ran the experiments for which we had data for
multiple clients, but separated out the individual clients.

5.2 Themulti-client bB2 workload

We used the same DB2 workload described in sec-
tion 4.2, but with the eight clients kept separate. Each
client had a 256 MB cache, so the aggregate of client
caches remained at 2 GB. The array had 2 GB of cache.

Each DB2 client accesses disjoint parts of the database.
Given our qualitative analysis of disjoint workloads, and
the speedup for DB2 in a single-client system with DE-
MOTE, we expected to obtain speedups in this multi-
client system. If we assume that each client uses one
eighth (256 MB) of the array cache, then each client has
an aggregate of 512 MB to hold its part of the database,

Cumul. hit rate vs. cache size - DB2 clients

07 —Client 1

""" Client 2
084 ---Client3
———Client 4
-----Client5
----Client 6
----Client 7
——Client 8

o
o
1

Cumul. hit rate
o
n

0.24

g
-

e

0.0

T T T T T
200 400 600 800 1000

Cache size (MB)

Figure 9: Cumulative hit rate vs. cache size for DB2 clients.

[Client [I 2] 3] 4 5[6] 7] 8]
[[NONE-LRU |
[Meanlat.|| 5.20] 4.00] 4.62] 4.66] 4.66] 4.68] 4.66] 4.66]

DEMOTE (mean speedup 1.50x)

Mean lat. 1.30| 4.12| 3.44| 3.41| 3.39| 3.38
Speedup ||4.00x |0.97x |1.34x |1.37x |1.38x | 1.39x
DEMOTE-ADAPT-UNI (mean speedup 1.27x)
Mean lat. 2.15| 4.12| 357 353| 4.09| 4.07
Speedup ||2.42x |0.97x |1.29x |1.32x |1.14x | 1.15%
DEMOTE-ADAPT-EXP (mean speedup 1.32x)
Mean lat. 1.79| 4.12| 355 351 3.94| 4.05
Speedup [|2.91x |0.97x |1.30x |1.33x |1.18x | 1.16x

3.40
1.37x

3.38
1.38x

4.07
1.15x

4.05
1.15x

3.92
1.19x

3.99
1.17x

Table 7: Per-client mean latencies (in ms) for multi-client
DB2. Latencies are computed using equations 2 and 3 with
Ta= 0.2 ms and Ty = 5 ms. Speedups over NONE-LRU, and
the geometric mean of all client speedups, are also shown.

and we expected from figure 9 that exclusive caching
would obtain a significant increase in array hit rates, with
a corresponding reduction in mean latency.

Our results shown in table 7 agree: DEMOTE achieved an
impressive 1.50x speedup over NONE-LRU. DEMOTE-
-ADAPT-UNI and DEMOTE-ADAPT-EXP achieved only
1.27-1.32x speedups, since they were more likely to
keep disk-read blocks in the cache, reducing the cache
available for demoted blocks, and thus making the cache
less effective for this workload.

5.3 Themulti-client HTTPD workload

We returned to the original HTTPD workload, and sepa-
rated the original clients. We gave 8 MB to each client
cache, and kept the 64 MB array cache as before.

Figure 10 indicates that the per-client workloads are
somewhat similar to the zIPF synthetic workload. As
shown in section 3.4, disk-read blocks for such work-
loads will in general have low probabilities of being
reused, while demoted blocks will have higher proba-
bilities. On the other hand, as shown by the histogram
in table 8, clients share a high proportion of blocks, and
tend to exhibit conjoint workload behavior. Thus, while
the array should discard disk-read blocks more quickly

Cumul. hit rate vs. cache size - HTTPD clients
1.04

0.8 |

0.6;
—Client 1
————— Client 2
----Client 3
——-Client 4
----Client 5
----Client 6
----Client 7

0.4

Cumul. hit rate

0.2+

0.0 T T T T T
50 100 150 200 250

Cache size (MB)

Figure 10: Cumulative hit rate vs. cache size for HTTPD
clients.

[No. clients | 1] 2] 3] 4] 5] 6] 7]
No. blocks || 131738282 [5371 [5570 [6934 | 24251 | 5280
% of total 19%| 12%| 8%| 8%| 10%| 35%| 8%

Table 8: Histogram showing the number of blocks shared by
X HTTPD clients, where x ranges from 1 to 7 clients.

[Client | 1] 2] 3] 4] 5] 6] 7]
[[[NONE-LRU |
[MeanTat.|| 0.90] 0.83] 0.82] 0.89] 0.79] 0.76] 0.19|

DEMOTE (mean slowdown 0.55x)
Mean lat.[| 1.50 1.41] 1.44] 1.48] 1.43] 1.33[0.46
Speedup || 0.60x |0.59x |0.57x |0.60x [0.55x |0.57x [0.41x
DEMOTE-ADAPT-UNI (mean slowdown 0.91x)

Mean lat.[[0.99] 0.92] 0.91] 0.98] 0.87] 0.86
Speedup || 0.91x |0.90x |0.90x | 0.91x |0.90x | 0.89%
DEMOTE-ADAPT-EXP (mean speedup 1.18x)
Mean lat.[[0.81] 0.73] 0.74] 0.79] 0.68] 0.67
Speedup || 1.12x |1.13x |1.10x |1.13x |1.16x | 1.13%

0.20
0.94x

0.12
1.52x

Table 9: Per-client mean latencies (in ms) for multi-client
HTTPD. Latencies are computed using equations 2 and 3 with
Ta= 0.2 ms and Ty = 5 ms. Speedups over NONE-LRU, and
the geometric mean of all client speedups, are also shown.

than demoted blocks, it should not discard them imme-
diately.

Given this analysis, we expected DEMOTE to post less
impressive results than adaptive schemes, and indeed it
did, as shown in table 9: a 0.55x slowdown in mean
latency over NONE-LRU. On the other hand, DEMOTE-
-ADAPT-EXP achieved a 1.18x speedup. DEMOTE-
-ADAPT-UNI achieved a 0.91x slowdown, which we
attribute to demoted blocks being much more valuable
than disk-read ones, but the cache with uniform seg-
ments devoting too little of its space to them compared
to the one with exponential segments.

54 TheOpPENMAIL workload

The OPENMAIL workload comes from a trace of a pro-
duction e-mail system running the HP OpenMail appli-
cation for 25,700 users, 9,800 of whom were active dur-
ing the hour-long trace. The system consisted of six

Cumul. hit rate vs. cache size - OPENMAIL clients
104

——Client 1
""" Client 2
----Client 3
———Client 4
----Client5
----Client 6

Cumul. hit rate

0.0 ==

T T T T
1000 2000 3000 4000

Cache size (MB)

Figure1l: Cumulative hit rate vs. cache size for OPENMAIL.

[Client [1] 2] 3] 4] 5] 6]
[[[NONE-LRU |
[MeanTat. || 2.96] 4.52] 454] 447] 1.79] 1.78|

DEMOTE (mean speedup 1.15x)

Mean lat.[[2.32] 4.08] 4.27] 4.35] 1.27 1.67
Speedup ||1.28x|1.11x |1.06x |1.03x [1.41x | 1.07x
DEMOTE-ADAPT-UNI (mean speedup 1.07 x)
Mean lat.[| 2.66| 4.34] 4.42] 4.46] 144 1.79
Speedup ||1.11x|1.04x |1.03x |1.00x [1.24%x | 0.99x
DEMOTE-ADAPT-EXP (mean slowdown 0.88x)
Mean lat. 3.03| 4.60(4.60| 4.54| 253 247
Speedup || 0.97x|0.98x |0.99x |0.98x [0.71x | 0.72x

Table 10: Per-client mean latencies (in ms) for OPEN-
MAIL. Latencies are computed using equations 2 and 3 with
Ta= 0.2 ms and Ty = 5 ms. Speedups over NONE-LRU, and
the geometric mean of all client speedups, are also shown.

HP 9000 K580 servers running HP-UX 10.20, each with
6 cpus, 2 GB of memory, and 7 scsi interface cards. The
servers were attached to four EMC Symmetrix 3700 disk
arrays. At the time of the trace, the servers were experi-
encing some load imbalances, and one was 1/0 bound.

Figure 11 suggests that 2 GB client caches would hold
the entire working set for all but two clients. To obtain
more interesting results, we simulated six clients with
1 GB caches connected to an array with a 6 GB cache.

OPENMAIL is a disjoint workload, and thus should ob-
tain speedups from exclusive caching. If we assume that
each client uses a sixth (1 GB) of the array cache, then
each client has an aggregate of 2 GB to hold its work-
load, and we see from figure 11 that an array under ex-
clusive caching array should obtain a significant increase
in array cache hit rate, and a corresponding reduction in
mean latency.

As with DB2, our results (table 10) bear out our ex-
pectations: DEMOTE, which aggressively discards read
blocks and holds demoted blocks in the array, obtained
a 1.15x speedup over NONE-LRU. DEMOTE-ADAPT-
UNI and DEMOTE-ADAPT-EXP fared less well, yielding
a 1.07x speedup and 0.88x slowdown respectively.

55 Summary

The clear benefits from single-client workloads are not
so easily repeated in the multi-client case. For largely
disjoint workloads, such as bB2 and OPENMAIL, the
simple DEMOTE scheme does well, but it falls down
when there is a large amount of data sharing. On
the other hand, the adaptive demotion schemes do well
when simple DEMOTE fails, which suggests that a mech-
anism to switch between the two may be helpful.

Overall, our results suggests that even when demotion-
based schemes seem not to be ideal, it is usually possible
to find a setting where performance is improved. In the
enterprise environments we target, such tuning is an ex-
pected part of bringing a system into production.

6 Redated work

The literature on caching in storage systems is large and
rich, so we only cite a few representative samples. Much
of it focuses on predicting the performance of an exist-
ing cache hierarchy [6, 24, 35, 34], describing existing
1/O systems [17, 25, 39], and determining when to flush
write-back data to disk [21, 26, 41]. Real workloads con-
tinue to demonstrate that read caching has considerable
value in arrays, and that a small amount of non-volatile
memory greatly improves write performance [32, 39].

We are not the first to have observed the drawbacks
of inclusive caching. Muntz et al. [27, 28] show
that intermediate-layer caches for file servers perform
poorly, and much of the work on cache replacement al-
gorithms is motivated by this observation [21, 24, 30,
48]. Our DEMOTE scheme, with alternative array cache
replacement policies, is another such remedy.

Choosing the correct cache replacement policy in an ar-
ray can improve its performance [19, 21, 30, 35, 48].
Some studies suggest using least-frequently-used [15,
46] or frequency-based [30] replacement policies instead
of LRU in file servers. MRU [23] or next-block pre-
diction [29] policies have been shown to provide better
performance for sequential loads. LRU or clocking poli-
cies [10] can yield acceptable results for database loads;
for example, the IBM DB2 database system [36] imple-
ments an augmented LRU-style policy.

Our DEMOTE operation can be viewed as a very sim-
ple form of a client-controlled caching policy [7], which
could be implemented using the “write to cache” opera-
tion available on some arrays (e.g., those from IBM [3]).
The difference is that we provide no way for the client
to control which blocks the array should replace, and we
trust the client to be well-behaved.

Recent studies of cooperative World Wide Web caching

protocols [1, 20, 47] look at policies beyond LRU
and MRU. Previously, analyses of web request traces
[2, 5, 8] showed the file popularity distributions to be
Zipf-like [49]. It is possible that schemes tuned for these
workloads will perform as well for the sequential or ran-
dom access patterns found in file system workloads, but
a comprehensive evaluation of them is outside the scope
of this paper. In addition, web caching, with its poten-
tially millions of clients, is targeted at a very different
environment than our work.

Peer-to-peer cooperative caching studies are relevant to
our multi-client case. In the “direct client coopera-
tion” model [9], active clients offload excess blocks onto
idle peers. No inter-client sharing occurs—cooperation
is simply a way to exploit otherwise unused memory.
The GMS global memory management project consid-
ers finding the nodes with idle memory [13, 42]. Coop-
erating nodes use approximate knowledge of the global
memory state to make caching and ejection decisions
that benefit a page-faulting client and the whole cluster.

Perhaps the closest work to ours in spirit is a global
memory management protocol developed for database
management systems [14]. Here, the database server
keeps a directory of pages in the aggregate cache. This
directory allows the server to forward a page request
from one client to another that has the data, request that
a client demote rather than discard the last in-memory
copy of a page, and preferentially discard pages that
have already been sent to a client. We take a simpler
approach: we do not track which client has what block,
and thus cannot support inter-client transfers—but we
need neither a directory nor major changes to the scsi
protocol. We rely on a high-speed network to perform
DEMOTE eagerly (rather than first check to see if it is
worthwhile) and we do not require a (potentially large)
data structure at the array to keep track of what blocks
are where. Lower complexity has a price: we are less
able to exploit block sharing between clients.

7 Conclusion

We began our study with a simple idea: that a DEMOTE
operation might make array caches more exclusive and
thus achieve better hit rates. Experiments with simple
synthetic workloads support this hypothesis; moreover,
the benefits are reasonably resistant to reductions in
SAN bandwidth and variations in array cache size. Our
hypothesis is further supported by 1.04-2.20x speedups
for most single-client real-life workloads we studied—
and these are significantly larger than several results for
other cache improvement algorithms.

The TPC-H system parameters show why making ar-

ray caches more exclusive is important in large systems:
cache memory for the client and arrays represented 32%
of the total system cost of $1.55 million [18]. The abil-
ity to take full advantage of such large investments is a
significant benefit; reducing their size is another.

Using multiple clients complicates the story, and our re-
sults are less clear-cut in such systems. Although we
saw up to a 1.5x speedup with our exclusive caching
schemes, we incurred a slowdown with the simple DE-
MOTE scheme when clients shared significant parts of
the working set. Combining adaptive cache-insertion
algorithms with demations yielded improvements for
these shared workloads, but penalized disjoint work-
loads. However, we believe that it would not be hard to
develop an automatic technique to switch between these
simple and adaptive modes.

In conclusion, we suggest that the DEMOTE scheme is
worth consideration by system designers and 1/O archi-
tects, given our generally positive results. Better yet,
as SAN bandwidth and cache sizes increase, its ben-
efits will likely increase, and not be wiped out by a
few months of processor, disk, or memory technology
progress.

8 Acknowledgments

We would like to thank Greg Ganger, Garth Gibson,
Richard Golding, and several of our colleagues for their
feedback and support, as well as all the authors of Pan-
theon. We would also like to thank Liddy Shriver, our
USENIX shepherd, for her feedback and help.

References

[1] M. F. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and
T. Jin. Evaluating content management techniques for web proxy
caches. Performance Evaluation Review, 27(4):3-11, Mar. 2000.

[2] M. F. Arlitt and C. L. Williamson. Web server workload charac-
terization: The search for invariants. In Proc. of SGMETRICS
1996, pages 126-137. July 1996.

[3] E.Bachmat, EMC. Private communication, Apr. 2002.
[4] D. Black, EMC. Private communication, Feb. 2002.

[5] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
caching and Zipf-like distributions: Evidence and implications.
In Proc. of the 18th Ann. Joint Conf. of the IEEE Computer and
Communications Soc., volume 1-3. Mar. 1999.

[6] D. Buck and M. Singha. An analytic study of caching in
computer-systems. Journal of Parallel and Distributed Comput-
ing, 32(2):205-214, Feb. 1996. Erratum published in 34(2):233,
May 1996.

[7] P. Cao, E. W. Felten, and K. Li. Application-controlled file
caching policies. In Proc. of the USENIX Assoc. Summer Conf.,
pages 171-182. June 1994.

[8] M. E. Crovella and A. Bestavros. Self-similarity in world wide
web traffic evidence and possible causes. In Proc. of SGMET-
RICS 1996, pages 160-169. July 1996.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson.
Cooperative caching: Using remote client memory to improve
file system performance. In Proc. of the 1st Symp. on Operating
Systems Design and | mplementation, pages 267-280. Nov. 1994.

W. Effelsberg and T. Haerder. Principles of database buffer man-
agement. ACM Trans. on Database Systems, 9(4):560-595, Dec.
1984.

EMC Corporation. Symmetrix 3000 and 5000 enterprise stor-
age systems product description guide. http://www.emc.com/
products/product_pdfs/pdg/symm_3_5_pdg.pdf, Feb. 1999.

EMC Corporation. Symmetrix 8000 enterprise storage systems
product description guide, Mar. 2001.

M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R. Karlin, and H. M.
Levy. Implementing global memory management in a worksta-
tion cluster. In Proc. of the 15th Symp. on Operating Systems
Principles, pages 201-212. Dec. 1995.

M. J. Franklin, M. J. Carey, and M. Livny. Global memory man-
agement in client-server DBMS architectures. In Proc. of the
18th Very Large Database Conf., pages 596-609. Aug. 1992.

K. Froese and R. B. Bunt. The effect of client caching on file
server workloads. In Proc. of the 29th Hawaii International Con-
ference on System Sciences, pages 150-159, Jan. 1996.

G. R. Ganger and Y. N. Patt.
evaluate 1/O subsystem designs.
47(6):667-678, June 1998.

C. P. Grossman. Evolution of the DASD storage control. 1BM
Systems Journal, 28(2):196-226, 1989.

Hewlett-Packard Company. HP 9000 N4000 Enterprise Server
using HP-UX 11.00 64-bit and Informix Extended Parallel
Server 8.30FC2: TPC-H full disclosure report, May 2000.

S. Jiang and X. Zhuang. LIRS: An efficient low inter-reference
recency set replacement policy to improve buffer cache perfor-
mance. In Proc. of SGMETRICS2002. June 2002.

Using system-level models to
IEEE Trans. on Computers,

S. Jin and A. Bestavros. Popularity-aware greedy-dual-size web
proxy caching algorithms. In Proc. of the 20th Intl. Conf. on
Distributed Computing Systems, pages 254-261. Apr. 2000.

R. Karedla, J. S. Love, and B. G. Wherry. Caching strategies to
improve disk performance. |EEE Computer, 27(3):38-46, Mar.
1994.

E. D. Katz, M. Butler, and R. McGrath. A scalable HTTP server:
The NCSA prototype. Computer Networks and ISDN Systems,
27(2):155-164, Nov. 1994.

K. Korner. Intelligent caching for remote file service. In Proc.
of the 10th Intl. Conf. on Distributed Computing Systems, pages
220-226. May 1990.

B. McNutt. I/O subsystem configurations for ESA: New roles for
processor storage. |BM Systems Journal, 32(2):252-264, 1993.

J. Menon and M. Hartung. The IBM 3990 disk cache. In Proc.
of COMPCON 1988, the 33rd |EEE Intl. Computer Conf., pages
146-151, June 1988.

D. W. Miller and D. T. Harper. Performance analysis of
disk cache write policies. Microprocessors and Microsystems,
19(3):121-130, Apr. 1995.

D. Muntz and P. Honeyman. Multi-level caching in distributed
file systems — or — your cache ain’t nuthin’ but trash. In Proc.
of the USENIX Assoc. Winter Conf. Jan. 1992.

D. Muntz, P. Honeyman, and C. J. Antonelli. Evaluating delayed
write in a multilevel caching file system. In Proc. of IFIP/IEEE
Intl. Conf. on Distributed Platforms, pages 415-429. Feb.—Mar.
1996.

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

E. Rahm and D. F. Ferguson. Cache management algorithms
for sequential data access. Research Report RC15486, IBM T.J.
Watson Research Laboratories, Yorktown Heights, N, 1993.

J. T. Robinson and M. V. Devarakonda. Data cache management
using frequency-based replacement. In Proc. of SGMETRICS
1990, pages 132-142. May 1990.

C. Ruemmler and J. Wilkes. A trace-driven analysis of disk
working set sizes. Tech. Rep. HPL-OSR-93-23, HP Laborato-
ries, Palo Alto, CA, Apr. 1993.

C. Ruemmler and J. Wilkes. UNIX disk access patterns. In Proc.
of the USENIX Assoc. Winter Conf., pages 405-420. Jan. 1993.

C. Ruemmler and J. Wilkes. An introduction to disk drive mod-
elling. IEEE Computer, 27(3):17-28, Mar. 1994.

A. J. Smith. Bibliography on file and 1/O system optimization
and related topics. Operating Systems Review, 15(4):39-54, Oct.
1981.

A.J. Smith. Disk cache-miss ratio analysis and design consider-
ations. ACM Trans. on Computer Systems, 3(3):161-203, Aug.
1985.

J. Z. Teng and R. A. Gumaer. Managing IBM Database 2 buffers
to maximize performance. |BM Systems Journal, 23(2):211-218,
1984.

Transaction Processing Performance Council. TPC benchmark
H, Standard Specification Revision 1.3.0. http://www.tpc.org/
tpch/spec/h130.pdf, June 1999.

Transaction Processing Performance Council. TPC benchmark
C, Standard Specification Version 5. http://www.tpc.org/tpcc/
spec/tpcc_current.pdf, Feb. 2001.

K. Treiber and J. Menon. Simulation study of cached RAID5 de-
signs. In Proc. of the 1st Conf. on High-Performance Computer
Architecture, pages 186-197. Jan. 1995.

M. Uysal, A. Acharya, and J. Saltz. Requirements of /O systems
for parallel machines: An application-driven study. Tech. Rep.
CS-TR-3802, Dept. of Computer Science, University of Mary-
land, College Park, MD, May 1997.

A. Varma and Q. Jacobson. Destage algorithms for disk arrays
with nonvolatile caches. In Proc. of the 22nd Ann. Intl. Symp. on
Computer Architecture, pages 83-95. June 1995.

G. M. Voelker, E. J. Anderson, T. Kimbrel, M. J. Feeley, J. S.
Chase, and A. R. Karlin. Implementing cooperative prefetching
and caching in a globally managed memory system. In Proc. of
S GMETRICS 1998, pages 33-43. June 1998.

D. Woigt. HP AutoRAID field performance. HP World talk 3354,
http://www.hpl.hp.com/SSP/papers/, Aug. 1998.

J. Wilkes. The Pantheon storage-system simulator. Tech. Rep.
HPL-SSP-95-14 rev. 1, HP Laboratories, Palo Alto, CA, May
1996.

J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP Au-
toRAID hierarchical storage system. ACM Trans. on Computer
Systems, 14(1):108-136, Feb. 1996.

D. L. Willick, D. L. Eager, and R. B. Bunt. Disk cache re-
placement policies for network fileservers. In Proc. of the 13th
Intl. Conf. on Distributed Computing Systems, pages 2-11. May
1993.

A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. Karlin,
and H. M. Levy. The scale and performance of cooperative web
proxy caching. In Proc. of the 17th Symp. on Operating Systems
Principles, pages 16-31. Dec. 1999.

Y. Zhou and J. F. Philbin. The Multi-Queue replacement algo-
rithm for second level buffer caches. In Proc. of the USENIX
Ann. Technical Conf., pages 91-104. June 2001.

G. K. Zipf. Human Behavior and Principle of Least Effort.
Addison-Wesley Press, Cambridge, MA, 1949.

