
USENIX Association

Proceedings of the
2002 USENIX Annual Technical

Conference

Monterey, California, USA
June 10-15, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

The Performance of Remote Display Mechanisms for
Thin-Client Computing

S. Jae Yang, Jason Nieh, Matt Selsky, and Nikhil Tiwari

Department of Computer Science
Columbia University

{sy180, nieh, selsky, nst8}@cs.columbia.edu

Abstract
The growing popularity of thin-client systems makes it important to determine the factors that govern the
performance of these thin-client architectures. To assess the viability of the thin-client computing model, we
measured the performance of six popular thin-client platforms—Citrix MetaFrame, Microsoft Terminal Services,
Sun Ray, Tarantella, VNC, and X—running over a wide range of network access bandwidths. We find that thin-
client systems can perform well on web and multimedia applications in LAN environments, but the efficiency of the
thin-client protocols varies widely. We analyze the differences in the various approaches and explain the impact of
the underlying remote display protocols on overall performance. Our results quantify the impact of different
approaches in display encoding primitives, display update policies, and display caching and compression techniques
across a broad range of thin-client systems.

1. Introduction
In the last two decades, the centralized computing

model of mainframe computing has shifted to the more
distributed model of desktop computing. But as these
personal desktop computers become ubiquitous in
today's large corporate and academic organizations, the
total cost of owning and maintaining them can become
unmanageable. In response to this challenge, there is a
growing movement to return to a more centralized and
easier-to-manage computing strategy. The thin-client
computing model is the embodiment of that movement.

The goal of the thin-client model is to centralize
computing resources, with all the attendant benefits of
easier maintenance and cheaper upgrades, while
maintaining the same quality of service for the end user
that could be provided by a dedicated workstation. In a
thin-client computing environment, end users move
from full-featured computers to thin clients, lightweight
machines primarily used for display and input and
which require less maintenance and less frequent
upgrades. Organizations then provide computing
services to their end users' thin clients from high-
powered servers over a network connection. Server
resources can be shared across many users, resulting in
more effective utilization of computing hardware.

 While thin-client computing is reminiscent of the
days of mainframe computing, today's users can no
longer be satisfied by dumb terminals that only input
and output ASCII text. Thin clients must be able to
support graphical computing environments effectively
to meet the users’ demands. The key mechanism for
achieving this is a remote display protocol that enables

graphical displays to be served across a network to a
client device, while all application logic is executed on
the server. Using such a protocol, the client transmits
user input to the server, and the server returns screen
updates to the client. For some thin-client systems, no
unrecoverable state is stored on the client at all.

Because of the potential cost benefits of thin-
client computing, a wide range of thin-client platforms
have been developed. Some are designed specifically
for use over high-bandwidth local area networks, while
others attempt to provide quality service over slow
network connections. Some application service
providers (ASPs) are even offering thin-client service
over wide area networks such as the Internet [3, 21].
The growing popularity of thin-client systems makes it
important to analyze their performance, to assess the
general feasibility of the thin-client computing model,
and to compare various thin-client platforms and
determine the factors that govern their performance.
However, while many thin-client platforms and
protocols have been developed, most of these systems
and their protocols are proprietary, and few of the
vendors have provided detailed performance
measurements for their own products or a cross-
platform analysis against other vendors’ products.

To assess the viability of the thin-client computing
model, we have measured the performance of thin-
client computing platforms running over a wide range
of network access bandwidths. We have characterized
the design choices of underlying remote display
technologies and quantified the performance impact of
these choices. We considered a range of design choices
as exhibited by six of the most popular thin-client

platforms in use today: Citrix MetaFrame [5, 14],
Microsoft Windows 2000 Terminal Services [6], AT&T
Virtual Network Computing (VNC) [22, 32], Tarantella
[24, 27], Sun Ray [26, 30], and X [25]. These platforms
were chosen for their popularity, performance, and
diverse design approaches.

We report the first quantitative measurements to
examine the performance of such a broad range of thin-
client architectures in various network environments.
Because many thin-client systems are closed-source and
proprietary, we employed slow-motion benchmarking
[37], a novel non-intrusive measurement technique that
addresses some of the fundamental difficulties in
previous studies of thin-client performance. Our results
show that thin-client computing can deliver good
performance for web and multimedia applications, but
performance varies widely among different thin-client
platform designs. Our results show that a simple pixel-
based remote display approach can deliver superior
performance to more complex thin-client systems that
are currently popular. We analyze the differences in the
underlying mechanisms of various thin-client platforms
and explain their impact on overall performance.

This paper is organized as follows. Section 2
details the experimental testbed and methodology we
used for our study. Section 3 describes our
measurements and performance results. Section 4
discusses some related work. Finally, we present some
concluding remarks and directions for future work.

2. Experimental Design
The goal of our research was to compare thin-

client systems to assess their basic display performance

in various network environments. In our experiments,
we used the following six versions of thin-client
platforms: Citrix MetaFrame 1.8 for Windows 2000,
Windows 2000 Terminal Services, Tarantella
Enterprise Express II for Linux, AT&T VNC v3.3.2 for
Linux, Sun Ray I for Solaris, and Xfree86 3.3.6 on
Linux. In this paper, we also refer to these platforms by
their remote display protocols, which are Citrix ICA
(Independent Computing Architecture), Microsoft RDP
(Remote Desktop Protocol), Tarantella AIP (Adaptive
Internet Protocol), VNC, Sun Ray, and X, respectively.
As summarized in Table 1, these platforms span a range
of differences in the encoding of display primitives,
policies for updating the client display, algorithms for
compressing screen updates, supported display color
depth, and transport protocol used. To evaluate their
performance, we designed an experimental testbed and
various experiments to exercise each of the thin-client
platforms on single-user web-based and multimedia-
oriented workloads using slow-motion benchmarking as
explained in Section 2.1. Section 2.2 describes the
experimental testbed we used. Section 2.3 discusses the
application benchmarks used in our experiments.

2.1 Measurement Methodology
To provide a more effective method for evaluating

thin-client performance, we previously developed slow-
motion benchmarking [37]. We developed this
benchmarking technique in order to address the
inadequacies in conventional benchmarks in measuring
thin-client performance. In thin-client systems, the
client display is often decoupled from the server-side
application execution. In some systems, the screen

Platform Display
Encoding

Screen Updates Compression Client Caching Client
Cache Size

Max Client
Display

Transport
Protocol

Citrix
MetaFrame
(ICA)

Low-level
graphics

Server-push, lazy RLE Glyphs, small
bitmaps in
memory; large
bitmaps on disk

3 MB RAM,
Percent of
disk (1%
default)

8-bit color* TCP/IP

Microsoft
Terminal
Services
(RDP)

Low-level
graphics

Server-push, lazy RLE Glyphs, small
bitmaps in
memory; large
bitmaps on disk

1.5 MB
RAM,
10 MB disk

8-bit color TCP/IP

Tarantella
(AIP)

Low-level
graphics

Server-push, eager or
lazy depending on
bandwidth, load

Adaptively
enabled, RLE
and LZW at low
bandwidths

Glyphs, pixmaps,
files

1024 objects 8-bit color TCP/IP

AT&T VNC 2D draw
primitives

Client-pull, lazy
updates between client
requests discarded

Hextile (2D
RLE)

Only local
framebuffer
(Copyrect)

N/A 24-bit color TCP/IP

Sun Ray

2D draw
primitives

Server-push, eager None Only local
framebuffer

N/A 24-bit color UDP/IP

X High-level
graphics

Server-push, eager None Application /
toolkit-specific,
usually none

N/A 24-bit color TCP/IP

* Citrix MetaFrame XP offers the option of 24-bit color depth, but this was not available in time for our experiments.

Table 1: Characteristics of thin-client platforms.

updates may be merged or even discarded in order to
synchronize the display with the application logic.
While these techniques allow the thin server to run the
application without being constrained by the slow
display update speed, they pose a unique challenge in
benchmarking. Standard benchmarks designed for
desktop systems cannot be used to provide accurate
results when evaluating thin-client systems. Because
the benchmark applications are executed on the thin
server, independent of the client-side display updates,
the benchmarks effectively only measure the server’s
performance and do not accurately reflect the user’s
experience at the client-side. A video playback
benchmark, for example, would measure the frame rate
as rendered on the server, but if many of the frames did
not reach the client, the frame rate reported by the
benchmark would give an exaggerated view of the
system’s performance. While internal instrumentation
may be an effective solution to this problem, many thin-
client products are proprietary and closed-source,
making it difficult to instrument them and obtain
accurate results. Internal instrumentation can also add
intrusive processing overhead.

In slow-motion benchmarking, we use network
packet traces to monitor the latency and data transferred
between the client and the server, but we alter the
benchmark application by inserting delays between the
separate visual events, such as web pages or video
frames, so that the display update for each event is fully
completed on the client before the server begins
processing the next one. Then we process the network
packet traces and use these gaps of idle time between
events to break up the results on a per-event basis. This
allows us to obtain the latency and data transferred for
each visual event separately. We can then obtain overall
results by taking the sum of these per-event results. The
amount of the delay inserted depends on the application
workload and platform being tested. The necessary
length of delay can be determined by monitoring the
network traffic and making the delays long enough to
achieve a clearly demarcated period between all the
visual events where client-server communication drops
to the idle level. This ensures that each visual event is
discrete and generated completely.

2.2 Experimental Testbed
To verify our results in a controlled network

environment and to provide a basis for comparison, we
constructed an isolated network testbed. Our
experimental testbed consisted of seven machines, five
of which were active for any given test. The testbed
consisted of a network emulator machine, a packet
monitor machine, two pairs of thin client/server
systems, and a web server used for the web benchmark.

The network emulator machine was a Micron Client
Pro PC with two 10/100BaseT NICs running The Cloud
[29], a network emulator that we used to adjust the
network bandwidth between the client and server. For
our experiments, we considered the performance of
thin-client systems over a range of network bandwidths,
specifically 128 Kbps, 768 Kbps, 1.5 Mbps, 10 Mbps,
and 100 Mbps, corresponding roughly to ISDN, DSL,
T1, 10BaseT, and 100BaseT, respectively. The packet
monitor machine was a Micron Client Pro PC running
Etherpeek 4 [33], a network traffic monitor that we
used to obtain the measurements for slow-motion
benchmarking. To ensure a level playing field, we used
the same client/server hardware for all of our tests
except when testing the Sun Ray platform, which only
runs on Sun machines. The features of each system are
summarized in Table 2. As discussed in Section 3, the
slower Sun client and server hardware did not affect the
lessons derived from our experiments.

Unless otherwise stated, the video resolution of
the client was set to 1024x768 with 8-bit color, as this
was the lowest common denominator supported by all
of the platforms. However, the Sun Ray client was set
to 24-bit color, since the Sun Ray display protocol is
based on a 24-bit color encoding. By default,
compression and memory caching were left on for those
platforms that used it, and disk caching was turned off
by default in those platforms that supported it. For each
thin-client system, we used the server operating system
that delivered the best performance for the given
system; Terminal Services only runs on Windows.
MetaFrame ran best on Windows. Tarantella, VNC, and
X ran best on UNIX/Linux, and Sun Ray runs only on
Solaris.

2.3 Application Benchmarks
To measure the performance of the thin-client

platforms, we used two application benchmarks: a web
benchmark for measuring web browsing performance,
and a video benchmark for measuring video playback
performance. The web and video benchmarks were
used with the slow-motion benchmarking technique
mentioned in Section 2.1 to measure thin-client
performance effectively. We describe each of these
benchmarks below.

2.3.1 Web Benchmark
The web benchmark we used was based on the

Web Text Page Load test from the Ziff-Davis i-Bench
benchmark suite [10]. We first describe the original i-
Bench web benchmark and then discuss how it was
modified for our experiments. The original i-Bench web
benchmark loads a JavaScript-controlled sequence of
54 web pages from the web benchmark server.

Normally, as each page downloads, a small script
contained in each page starts off the subsequent
download. The pages contain both text and bitmap
images, with some pages containing more text while
others contain more images. Some common elements
appear on each page, including a blue left column, a
white background, a PC Magazine logo and other small
images. The JavaScript cycles through the page loads
twice, resulting in a total of 108 web pages being
downloaded during this test. When the benchmark is
run from a thin client, the thin server would execute the
JavaScript that sequentially requests the test pages from
the i-Bench server and relay the display information to
the thin client. For the web benchmark used in our tests,
we modified the original i-Bench benchmark’s
JavaScript call to introduce delays of several seconds
between pages using the JavaScript, sufficient in each
case to ensure that the thin client received and
displayed each page completely and that there was no
temporal overlap in transferring the data belonging to
two consecutive pages. We used the packet monitor to
record the packet traffic for each page, and then used
the timestamps of the first and last packet associated
with each page to determine the download time for each
page.

We used Netscape Navigator 4.72 as the web
client for the web benchmark, as it is available on all
the platforms in question. The browser's memory cache
and disk cache were enabled but cleared before each
test run. In all cases, the Netscape browser window was
1024x768 in size, so the region being updated was the
same on each system.

2.3.2 Video Benchmark
The video benchmark program processes and

displays an MPEG1 video file containing a mix of news
and entertainment programming. We measured video
performance by monitoring resulting packet traffic at
two playback rates, 1 frames/second (fps) and 24 fps.
Although no user would want to play video at 1 fps, we
took the measurement at that frame rate in order to
establish the reference data size transferred from the
thin server to the client that corresponds to a "perfect"
playback. To measure the normal 24 fps playback
performance and video quality, we monitored the
packet traffic delivered to the thin client at this
playback rate and compared the total data transferred to
the reference data size. The video quality can then be
quantified by the ratio of data transfer rate at the full
frame rate of 24 fps to the transfer rate at the slow-

Role / Model Hardware OS / Window System Software
PC Thin Client
Micron Client Pro

450 MHz Intel PII
128 MB RAM
14.6 GB Disk
10/100BaseT NIC

MS Win 2000 Professional
Caldera OpenLinux 2.4, Xfree86 3.3.6,
KDE 1.1.2

Citrix ICA Win32 Client
MS RDP5 Client
VNC Win32 3.3.3r7 Client
SCO Tarantella Win32 Client
Netscape Communicator 4.72

Sun Thin Client
Sun Ray I

100 MHz Sun uSPARC IIep
8 MB RAM
10/100BaseT NIC

Sun Ray OS N/A

Packet Monitor
Micron Client Pro

450 MHz Intel PII
128 MB RAM
14.6 GB Disk
10/100BaseT NIC

MS Win 2000 Professional AG Group's Etherpeek 4

Benchmark Server
Micron Client Pro

450 MHz Intel PII
128 MB RAM
14.6 GB Disk
10/100BaseT NIC

MS Win NT 4.0 Server SP6a Ziff-Davis i-Bench 1.5
MS Internet Information Server

PC Thin-Client Server
Micron Client Pro
(SPEC95 – 17.2 int, 12.9 fp)

450 MHz Intel PII
128 MB RAM
14.6 GB Disk
2 10/100BaseT NICs

MS Win 2000 Advanced Server
Caldera OpenLinux 2.4, Xfree86 3.3.6,
KDE 1.1.2

Citrix MetaFrame 1.8
MS Win 2000 Terminal Services
AT&T VNC 3.3.3r7 for Win32
SCO Tarantella Express
AT&T VNC 3.3.3r2 for Linux
Netscape Communicator 4.72

Sun Thin-Client Server
Sun Ultra-10 Creator 3D
(SPEC95 – 14.2 int, 16.9 fp)

333 MHz UltraSPARC IIi
384 MB RAM
9 GB Disk
2 10/100BaseT NICs

Sun Solaris 7 Generic 106541-08,
OpenWindows 3.6.1, CDE 1.3.5

Sun Ray Server 1.2_10.d Beta
Netscape Communicator 4.72

Network Simulator
Micron Client Pro

450 MHz Intel PII
128 MB RAM
14.6 GB Disk
2 10/100BaseT NICs

MS Win NT 4.0 Server SP6a Shunra Software The Cloud 1.1

Table 2: Testbed machine configurations.

motion playback rate of 1 fps expressed in percent [37].
The ratio was computed as follows:

For the video benchmark, we used two different

MPEG1 players. We used Microsoft Windows Media
Player version 6.4.09.1109 for the Windows-based thin
clients and MpegTV version 1.1 for the Linux/Solaris-
based platforms. Both players were used with non-
video portions of the interfaces minimized so that the
appearance of the playback application was similar
across all platforms. In the minimized mode, accessory
components like progress bars, frame counters, or
clocks were not displayed. The test video clip was
34.75 seconds long and consisted of 834 352x240 pixel
frames with an ideal frame rate of 24 fps. The total
video file size was 5.11 MB. The thin server executed
the video playback program to decode the MPEG1
video then relayed the resulting display to the client.

3. Experimental Results
We ran the web and video benchmarks on each of

the six thin-client platforms and measured their
resulting performance under five network bandwidths.
The web benchmark results are shown both in terms of
latencies and the respective amounts of data transferred
from server to client to illustrate both the overall user-
perceived performance and the bandwidth efficiency of
the thin-client systems. The data transferred from client
to server was not significant in any of our experiments.

Section 3.1 discusses the results obtained for
running the thin-client systems with their default
configuration options as discussed in Section 2.2.
Section 3.2 analyzes the impact of the underlying
baseline remote display encodings. Section 3.3
considers the impact of caching and compression
mechanisms on thin-client performance.

3.1 Default Configurations
The results of running the web benchmark on each

of the thin-client systems with the default settings are
shown in Figure 1 through Figure 4. The results of
running the video benchmark on each of the thin-client
systems are shown in Figure 5 through Figure 8. For
comparison purposes, we also show results for using
the PC client connected directly through the network
emulator to the web and video server to demonstrate the

performance of a traditional “fat” client system for web
browsing and streaming video, respectively.

3.1.1 Web Performance
Figure 1 shows the average download latency per

page. Usability studies have shown that web pages
should take less than one second to download for the
user to enjoy an uninterrupted browsing experience [16,
17]. Using this metric, all of the thin-client systems
delivered good performance over the 10 Mbps and 100
Mbps LAN bandwidths with average web page
latencies well under a second. Using the 100 Mbps
bandwidth, X and AIP are the fastest with average web
page latencies of less than 300 ms while the other thin-
client systems have average latencies of about 500 ms.
Figure 1 shows that reducing the bandwidth had the
biggest negative impact on X and Sun Ray. In contrast,
Citrix ICA, Microsoft RDP, Tarantella AIP, and VNC
were able to deliver sub-second average web page
latencies over bandwidths as low as 768 Kbps,
corresponding to DSL environments. However, none of
the thin-client systems were able to deliver sub-second
performance at 128 Kbps. Only the PC fat-client
achieved sub-second performance across all bandwidths
tested. The results indicate that thin-client systems can
provide good web browsing performance in broadband
or higher bandwidth network environments, but are not
yet able to perform well in lower-bandwidth dialup
modem and ISDN environments.

The web performance of the systems at various
bandwidths can be better understood by examining the
average amount of data sent per web page shown in
Figure 2. Since the visual quality is constant across all
bandwidths as a result of slow-motion benchmarking,
the amount of data transferred for each platform is also
essentially constant across all bandwidths, except for
AIP. For AIP, the different data transfer amounts across
various bandwidths is caused by adaptive compression
mechanisms which we discuss further in Section 3.3.

At higher bandwidths, there is little correlation
between the amount of data transferred and the average
web page latency. The best performing thin-client
systems at the LAN bandwidths were X and AIP, which
sent far more data than the lesser performing ICA and
VNC. X sent more data than any other thin-client
system except Sun Ray at 100 Mbps, yet it achieved the
best performance at this bandwidth. At lower
bandwidths, however, there is direct correlation
between the amount of data transferred and the average
web page latency. ICA sends the least amount of data
and has the best performance of all the thin-client
systems when using the 128 Kbps network
environment. As shown in Figure 2, ICA sends on
average about 30 KB of data per page, only twice as

much data for its display updates compared to using
HTTP with a PC fat-client.

Figure 3 and Figure 4 show the network
bandwidth and client and server CPU utilizations for
the web benchmark. The utilization measurements
shown do not include the idle time between web pages.
Figure 3 shows that the stronger correlation between
latency and data transfer efficiency at lower bandwidths
is due to the network becoming the main bottleneck.
When the average bandwidth utilization exceeds 85
percent, the latency incurred for the thin-client systems
generally increases beyond the one-second web page
latency threshold. Figure 4 shows the client and server
load when using the 100 Mbps network environment.
The measurements show that, except for VNC, the
clients were not heavily loaded during the web
benchmark, indicating that the client CPU was not the
primary bottleneck even at high bandwidths. In the case
of VNC, the client does not rest much as it is constantly
pulling from the server. The CPU utilization for the Sun
Ray hardware client is not shown because there were no
tools available to measure it. In general, the server CPU
was more heavily loaded than the client CPU. AIP,
which requires running a web server on the server, had
the highest server CPU utilization and appears limited
by server speed in a 100 Mbps network environment.

3.1.2 Video Performance
Figure 5 shows the resulting video quality on each

system for various network bandwidth environments.
The video quality was quantified using the VQ formula
discussed in Section 2.3.2. Unlike the web benchmark
performance, several of the thin-client platforms, ICA,
RDP, and VNC, deliver poor video quality even in the
100 Mbps network environment. Only X, AIP, and Sun
Ray deliver good video quality at the highest
bandwidth. None of the platforms deliver reasonable
video quality at lower network bandwidths. Figure 5
shows that X, AIP, and Sun Ray all deliver over 90
percent video quality at 100 Mbps, but that even the
best of them degrades to only about 50 percent video
quality at 10 Mbps. Sun Ray has a special color space
convert display primitive that can be used to improve
the video playback performance if the application is
written to exploit the feature. The MpegTV application
we used, however, was not written to do so. No video
benchmark data is shown for Sun Ray at 128 Kbps,
because Sun Ray could not play the entire clip without
interruption due to the limited bandwidth. The PC fat-
client provides good video quality even at 1.5 Mbps,
but the video quality rapidly deteriorates at lower
bandwidths. For all platforms, the video playback time
was relatively constant across all bandwidths, taking
about 35 seconds to play the entire video clip.

Figure 1: Average latency per page in the web benchmark
with default settings at various network bandwidths.

Figure 2: Average data transferred per page in the web
benchmark with default settings at various network
bandwidths.

Figure 3: Average bandwidth utilization while downloading
pages in the web benchmark with default settings at various
network bandwidths.

Figure 4: Average client and server CPU utilization while
downloading pages in the web benchmark with default
settings at 100 Mbps.

9.88 22.51

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

PC X ICA RDP AIP VNC SunRay

Platforms

A
ve

ra
ge

 L
at

en
cy

 (s
)

128Kbps 768Kbps 1.5Mbps 10Mbps 100Mbps

0

50

100

150

200

250

300

350

400

PC X ICA RDP AIP VNC SunRay

Platforms

A
vg

. D
at

a
Tr

an
sf

er
re

d
(K

B
)

128Kbps 768Kbps 1.5Mbps 10Mbps 100Mbps

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

PC X ICA RDP AIP VNC SunRay

Platforms

B
an

dw
id

th
 U

til
iz

at
io

n

128Kbps 768Kbps 1.5Mbps 10Mbps 100Mbps

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

PC X ICA RDP AIP VNC Sunray

Platforms

C
PU

 U
til

iz
at

io
n

Client Server

The video performance of the various systems at
different bandwidths can be better understood by
examining the total data transferred. Figure 6 shows the
amount of data transferred by each system at the normal
playback rate of 24 fps and at the slow-motion playback
rate of 1 fps. The 1 fps data transfer measurements
show how efficiently each system encoded the display
updates when all of the video frames were fully
delivered and displayed on the client. Comparing the 24
fps and 1 fps measurements, we see that all of the
systems discard data at lower bandwidths to maintain a
constant playback rate, resulting in lower video quality.
ICA, RDP, and VNC even discard large amounts of
data at 100 Mbps. Figure 6 also shows that the thin-
client systems that performed the best on the video
benchmark were also the least data efficient at encoding
the display. AIP and X transferred roughly 70 MB to
play back the video clip in 8-bit color and Sun Ray
transferred roughly three times that amount to display
in 24-bit color. These data transfer rates are comparable
to sending raw pixels over the network for each
352x240 pixel frame and more than ten times the
transfer rate of MPEG streaming the 5.11 MB clip.

Comparing Figure 7 and Figure 3 shows that the
average bandwidth consumption of the thin-client
systems when running the video benchmark was much
higher than when running the web benchmark. None of
the platforms was bandwidth limited at 100 Mbps, even
though half of the systems (ICA, RDP, and VNC)
delivered poor video quality at that bandwidth.
However, all of the three systems (X, AIP, and Sun
Ray) that delivered good video quality at 100 Mbps
consumed well over 10 Mbps of network bandwidth.
As a result, bandwidth limitations were the primary
bottleneck for these three systems at lower network
bandwidths. For the other systems that failed to perform
well even at 100 Mbps, Figure 8 indicates that none of
the client or server systems had high CPU load except
for VNC. We note that while none of the client and
server average utilization measurements reached 100
percent, there was high variability in the system loads
with frequent peaks at 100 percent for VNC on the
client-side, suggesting that VNC video performance
appears to be limited by the client’s CPU speed.

Our measurements of thin-client performance on
the web and video benchmarks indicate that AIP, X,

Figure 5: Video quality in the video benchmark with default
settings at various network bandwidths.

Figure 6: Total data transferred in full-motion (24 fps) and
slow-motion (1 fps) playback in the video benchmark with
default settings at various network bandwidths.

Figure 7: Average bandwidth utilization during video
playback in the video benchmark with default settings at
various network bandwidths.

Figure 8: Average client and server CPU utilization during
video playback in the video benchmark with default settings
at 100 Mbps.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

PC X ICA RDP AIP VNC SunRay

Platforms

Vi
de

o
Q

ua
lit

y
(V

Q
)

128Kbps 768Kbps 1.5Mbps 10Mbps 100Mbps

201.4 211.8

0

10

20

30

40

50

60

70

80

PC X ICA RDP AIP VNC SunRay

Platforms

To
ta

l D
at

a
(M

B
)

128Kbps 768Kbps 1.5Mbps 10Mbps 100Mbps 100Mbps (1fps)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

PC X ICA RDP AIP VNC SunRay

Platforms

B
an

dw
id

th
 U

til
iz

at
io

n

128Kbps 768Kbps 1.5Mbps 10Mbps 100Mbps

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

PC X ICA RDP AIP VNC Sunray

Platforms

C
PU

 U
til

iz
at

io
n

Client Server

and Sun Ray are more able to support a broader range
of applications, particularly multimedia applications.
The results also suggest that thin-client systems such as
ICA, RDP, and VNC can be quite bandwidth efficient
for web applications, but that these same mechanisms
which lead to bandwidth efficiency may degrade the
performance in multimedia video applications.

3.2 Baseline Display Encoding Primitives
To understand how the underlying design choices

in thin-client systems impact their performance, we
isolated the effects that can be attributed to the basic
display encoding primitives used. Four types of display
encoding primitives are high-level graphics, low-level
graphics, 2D draw primitives, and raw pixels. Higher-
level display encodings are generally considered to be
more bandwidth efficient, but may require more
computational complexity on the client and may be less
platform-independent. For instance, graphics primitives
such as fonts require the thin-client system to separate
fonts from images while using pixel primitives enable
the system to view all updates as just regions of pixels
without any semantic knowledge of the display content.
X takes a high-level graphics encoding approach and
supports a rich set of graphics primitives in its protocol.
ICA, RDP, and AIP are based on lower-level graphics
primitives that include support for fonts, icons, drawing
commands as well as images. Sun Ray and VNC
employ 2D draw primitives such as fills for filling a
screen region with a single color or a two-color bitmap
for common text-based windows. VNC can also be
configured to use raw pixel encoding only, but none of
the systems we considered used raw pixels by default.

To examine the basic display encoding
performance, we disabled all configurable caching and
compression mechanisms and ran the benchmarks. For
AIP, there was no option to disable caching. For VNC,
the display compression could not be disabled because
it is built into the default hextile display encoding used.
For X and Sun Ray, the baseline and default
configurations were the same as there were no caching

and compression options. For comparison purposes, we
also show measurements using the VNC raw pixel
encoding (RAW), which essentially encodes display
updates as just raw pixels. The caching and
compression options for each platform are discussed in
further detail in Section 3.3. Due to space constraints,
and since performance at lower network bandwidths is
strongly correlated with bandwidth efficiency, we
simply present latency and data transfer measurements
for experiments at 100 Mbps to illustrate the baseline
display encoding performance for the various
approaches.

3.2.1 Web Performance
Figure 9 and Figure 10 show the latency and data

transfer measurements for the baseline performance of
the thin-client systems running the web benchmark. In
particular, we show results for running two versions of
the web benchmark: one with all of the images
displayed normally, and one with just text in which all
of the images were removed and replaced with blank
spaces of equal size. We employed both versions to
compare how different thin-client mechanisms perform
on graphics versus text-oriented media.

We first discuss the baseline measurements with
the standard benchmark content (both images and text).
Figure 9 shows that the average web page download
latencies are not much different than those with the
default thin-client configurations discussed in Section
3.1.1. We note that all of the systems fare much better
than RAW, which results in unacceptable average web
page latencies of over 4 seconds. ICA and RDP exhibit
somewhat higher latencies using just the baseline
display encoding primitives as opposed to the default
configurations. X and AIP still deliver the lowest
average web page download latencies.

The more interesting measurements are in Figure
10, which shows the average data transferred per web
page at the baseline settings. Comparing with RAW, the
results show that all of the other display encodings used
are substantially more bandwidth efficient than sending

Figure 9: Average latency per page in the web benchmark
with baseline settings at 100 Mbps.

Figure 10: Average data transferred per page in the web
benchmark with baseline settings at 100 Mbps.

3.8 4.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

PC RAW X ICA RDP AIP VNC SunRay X-24 VNC-24

Platforms

A
ve

ra
ge

 L
at

en
cy

 (s
)

Baseline Baseline Text Only

1218 1160

0
50

100
150
200
250
300
350
400
450
500

PC RAW X ICA RDP AIP VNC SunRay X-24 VNC-24

Platforms

A
ve

ra
ge

 D
at

a
Tr

an
sf

er
re

d
(K

B
)

Baseline Baseline Text Only

raw pixels, in some cases by more than an order of
magnitude. ICA, RDP, and AIP all send about the same
amount of data, which is consistent with the fact that
they all employ low-level graphics display encoding
primitives. X, which employs the higher-level graphics
primitives, surprisingly sends the most data among all
the 8-bit color thin-client systems. Although both VNC
and Sun Ray use 2D draw primitives, the amount of
data sent in each case is quite different. While the VNC
display encoding appears the most data efficient, it
includes built-in compression so comparing its
efficiency with the other systems without compression
is not a fair comparison. On the other hand, Sun Ray
uses 24-bit color, so comparing its efficiency with other
8-bit systems is not entirely fair either.

To account for the impact of different color depths
on display encoding efficiency, we also measured the
performance of X and VNC using 24-bit color, as these
were the only platforms we used that could operate
using either 8-bit or 24-bit color depth. As shown in
Figure 10, both X and VNC send roughly three times as
much data using 24-bit color as opposed to using 8-bit
color. This suggests that to fairly compare Sun Ray
with the other 8-bit color results, we should normalize
the amount of data transferred by the pixel color depth,
which would effectively reduce the amount of data Sun
Ray transferred by a factor of three. The normalized
Sun Ray data transfer measurements would then be
better than X and only about 20 percent worse than
ICA. Surprisingly, the use of simple 2D draw primitives
results in data transfer requirements better than the
high-level graphics X approach and not much different
from the low-level graphics approach used by ICA,
RDP, and AIP. Furthermore, Figure 9 shows that Sun
Ray performs somewhat better than the 8-bit color ICA
and RDP platforms despite providing a higher quality
24-bit color display.

Figure 9 and Figure 10 also show the latency and
data transfer measurements for the performance of the
thin-client systems running the text-only version of the

web benchmark. These results suggest that the higher-
level display encodings are more optimized to reduce
the data transfer requirements of text content as
opposed to image content. Figure 10 shows that the
higher-level encodings used by ICA, RDP, AIP, and X
were much more bandwidth efficient for text than the
lower-level encodings used by Sun Ray and VNC. In
particular, RDP reduced the amount of data sent for text
to less than five percent of that for both images and
text. Despite the large bandwidth savings for text
content, the higher-level encoding systems do not
provide the same degree of reduction in latency, as
shown in Figure 9. Instead, Sun Ray demonstrates the
largest percentage reduction in web page download
latency despite having the smallest percentage
reduction in the amount of data transferred when
comparing image and text content to text-only content.
This again demonstrates that at a high enough
bandwidth, the encoding overhead rather than the
amount of data generated is the primary factor in
determining the performance.

3.2.2 Video Performance
Figure 11 and Figure 12 show the video quality

and data transfer measurements for the baseline
performance of the thin-client systems. The video
quality results shown in Figure 11 for the baseline
display encoding configuration are quite similar to the
results for the default configuration discussed in
Section 3.1.2. All of the systems performed much better
than RAW, which yielded poor video quality of less
than 15 percent. X, AIP, and Sun Ray still deliver good
video quality while ICA, RDP, and VNC deliver
noticeably worse video quality. Although the video
quality for ICA and RDP are similar to their respective
performance with the default configurations, Figure 12
shows that they send roughly twice as much data when
just using the basic display encoding.

To account for the impact of different color depths
on display encoding efficiency, we again measured the
performance of X and VNC using 24-bit color as well.

Figure 11: Video quality in the video benchmark with
baseline settings at 100 Mbps.

Figure 12: Total data transferred in full-motion (24 fps)
and slow-motion (1 fps) playback in the video benchmark
with baseline settings at 100 Mbps.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

PC RAW X ICA RDP AIP VNC SunRay X-24 VNC-24

Platforms

Vi
de

o
Q

ua
lit

y
(V

Q
)

0

50

100

150

200

250

300

PC RAW X ICA RDP AIP VNC SunRay X-24 VNC-24

Platforms

To
ta

l D
at

a
Tr

an
sf

er
re

d
(M

B
)

Baseline 1fps Baseline 24fps

As expected, both platforms send substantially more
data using 24-bit color versus using 8-bit color. In
addition, Figure 11 shows that when using 24-bit color,
the video quality of VNC remains poor and the video
quality of X decreases down to about 65 percent. When
comparing among the 24-bit color platforms, Sun Ray
clearly delivers the best video quality.

An important lesson derived from the default and
baseline video benchmark results is that the timing of
display update can be just as important as how a display
update is encoded. X, AIP, and Sun Ray employing an
eager server-push display update model excelled in the
video benchmark at 100 Mbps. AIP also uses a lazy
model to adapt to lower bandwidths. When a rendering
command is generated by the application, these thin-
client systems immediately convert that command to
the underlying display encoding primitives and send the
display update to the client. The eager updates enable
the server to keep up with the video application’s
rendering commands and allow the server to take
advantage of any semantic information that can be used
from the rendering command. In contrast, ICA, RDP,
and VNC employ a lazy display update model, in which
multiple rendering commands are first buffered and
then later merged before lazily sending the merged
display updates to the client. For ICA and RDP, the
updates are lazily sent at a server-defined rate. The
problem is that the updates are not sent frequently
enough for real-time video display, resulting in multiple
video frames being merged and overwritten at the
server and never displayed at the client. For VNC, the
updates are lazily sent when the client requests them.
Since the client running VNC is already heavily loaded,
the client becomes a bottleneck in requesting the
display updates, resulting in lost video frames that are
merged and overwritten at the server before the client is
able to generate the next display request.

3.3 Caching and Compression
Four of the six thin-client platforms tested employ

some form of configurable caching or compression to
improve system performance. ICA and RDP both
employ run-length encoding compression and cache
fonts and bitmaps in memory and on disk at the client.
AIP also employs local client caching of display objects
and uses an adaptive mechanism to progressively
enable higher-degrees of compression as the availability
of network bandwidth becomes limited. VNC has RLE
compression built-in with its display encoding format
and employs a very simple form of on-screen caching
whereby the client can simply copy display data from
one portion of the screen to another rather than
requesting it from the server if the display data is
already displayed on another portion of the framebuffer.

To examine the performance impact of caching
and compression techniques, we measured the
performance of the thin-client systems on the web and
video benchmarks with various caching and
compression configuration settings. We show results
for ICA, RDP, AIP, and VNC. In Section 3.3.1 and
3.3.2, we compare four configurations: (1) the baseline
results from Section 3.2 with all caching and
compression options disabled, (2) all compression only
options enabled, (3) all caching only options enabled,
and (4) all caching and compression options enabled. In
particular, for ICA and RDP which support both
memory and disk caching, we enabled or disabled both
caches together. In Section 3.3.3, we explore the disk
and memory caching options of ICA separately in
further detail. For AIP, there was no option to disable
caching as mentioned in Section 3.2, so the AIP cache
only and baseline and cases are the same and there was
no compression only configuration tested. For VNC,
the compression cannot be separately configured as it is
part of the default hextile encoding used, so the VNC
baseline and compression only cases are the same and
there was no cache only configuration tested.

Figure 13 through Figure 16 show the latency and
data transfer measurements for running the web
benchmark relative to the baseline performance of each
system as reported in Section 3.2.1. We again show
results for running the normal web benchmark with
both images and text and the text-only version of the
web benchmark. Figure 17 and Figure 18 show the
video quality and slow-motion 1 fps data transfer
measurements for running the video benchmark relative
to the baseline performance of each system as reported
in Section 3.2.2.

3.3.1 Web Performance
Figure 13 shows that using 100 Mbps bandwidth,

there is no significant performance benefit due to
caching and compression options in most of the thin-
client systems. The most notable difference occurs for
ICA with caching enabled. Surprisingly, enabling
ICA’s cache increases the average web page latency by
almost 40 percent over the baseline performance.

Figure 14 shows that there was a substantial
difference in the amount of data transferred for almost
all platforms for different caching and compression
options. For all three platforms, ICA, RDP, and AIP,
for which compression could be enabled or disabled,
enabling compression resulted in a substantial reduction
in the amount of data transferred, at least a factor of two
in all cases. It must be noted that the effect of AIP’s
compression could not be isolated and directly
compared with those of RDP and ICA, because its
cache could not be disabled. But AIP seems to have a

large reduction in data transfer when its compression is
engaged, which is most likely due to its use of both
RLE and LZW compression as opposed to using only
RLE compression for ICA and RDP. AIP, however,
was adversely affected by the added processing
overhead of using cache and compression at 100 Mbps.
When compression was enabled, the latency increased
by 13%. At higher bandwidths, where the network is
not the bottleneck, it may be advantageous to reduce the
processing overhead by holding back on compression
even if it results in a larger amount of data. Since
performance at lower bandwidths is directly related to
the amount of data transferred, compression is
beneficial for improving performance at lower
bandwidths.

Caching is also not always beneficial. Among the
systems that provided the option to enable or disable
caching, Figure 14 shows that enabling caching results
in the largest reduction in data transferred for ICA. ICA
shows almost a factor of three reduction in data transfer
for just using caching, and yet results in a significant
increase in the average web page latency. In other
words, the overhead of ICA caching outweighs its
benefits in high bandwidth network environments. On

the other hand, using caching with RDP and VNC
resulted in very little difference in either latency or data
transferred versus not using caching. For VNC, the on-
screen cache contains only the current display data
which does not provide sufficient history to be
beneficial in reducing the amount of data that the server
needs to send. However, the ineffectiveness of the
cache for RDP is more surprising as its caching
architecture is similar to ICA on the surface. Our results
indicate that RDP’s caching mechanism may not be
operating correctly at best or poorly designed at worst.
Figure 14 and Figure 16 show that there was no
reduction in data size due to RDP’s disk cache.

Figure 15 and Figure 16 show the latency and data
transfer measurements for various combinations of
caching and compression for the thin-client systems
running the text-only web benchmark. The results for
running the text-only benchmark were generally similar
to those for the normal web benchmark with both text
and images. These results suggest that the caching and
compression mechanisms have similar advantages and
disadvantages for both the image and text content of the
web benchmark. The one exception was for using
caching with ICA. With the text-only content, the

Figure 13: Latency (expressed as percentage relative to
baseline) in the web benchmark at 100 Mbps with various
cache and compression settings.

Figure 14: Data transferred (expressed as percentage relative
to baseline) in the web benchmark at 100 Mbps with various
cache and compression settings.

Figure 15: Latency (expressed as percentage relative to
baseline) in the web benchmark at 100 Mbps with various
cache and compression settings and with only text content.

Figure 16: Data transferred (expressed as percentage relative
to baseline) in the web benchmark at 100 Mbps with various
cache and compression settings and with only text content.

0%

20%

40%

60%

80%

100%

120%

140%

160%

ICA RDP AIP VNC

Platforms

La
te

nc
y

R
at

io

Baseline Compress Cache Compress & Cache

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

ICA RDP AIP VNC

Platforms

D
at

a
R

at
io

Baseline Compress Cache Compress & Cache

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

ICA RDP AIP VNC

Platforms

D
at

a
R

at
io

Baseline Compress Cache Compress & Cache

0%

20%

40%

60%

80%

100%

120%

ICA RDP AIP VNC

Platforms

La
te

nc
y

R
at

io

Baseline Compress Cache Compress & Cache

performance did not degrade when ICA’s caching was
engaged as we saw with both text and images.

3.3.2 Video Performance
Figure 17 shows the video quality measurements

for various combinations of caching and compression
for the thin-client systems running the video benchmark
at 100 Mbps. For RDP and VNC, there was little
difference in the video quality for the various options.
For ICA, the biggest difference again appeared with the
use of caching, which resulted in a substantial decrease
in video quality from roughly 50 percent to less than 5
percent. For AIP, the use of compression reduced the
VQ from over 90 percent to less than 30 percent.

Figure 18 shows the 1 fps data transfer
measurements for various combinations of caching and
compression for the thin-client systems running the
video benchmark. These measurements provide a
quantitative comparison of the amount of data each
system transferred when sending all of the video
content to the client without discarding data. Just as for
the web benchmark, for all three platforms, ICA, RDP,
and AIP, for which compression could be enabled or
disabled, enabling compression resulted in a substantial
reduction in the amount of data. The data reduction was
generally not as large for the video benchmark as for
the web benchmark, reflecting the fact that the video
content was not as compressible as the web content.
More importantly, enabling compression can have a
detrimental impact on video performance at LAN
bandwidths, as in the case of AIP. Compression,
however, could yield some benefit at lower bandwidths
due to its ability to reduce the amount of data
transferred. Unlike the other thin-client systems, AIP
employs an adaptive mechanism for enabling
compression that turns compression off at high
bandwidths and on at low bandwidths. Our results
suggest that an adaptive mechanism for enabling
compression at lower bandwidths is useful in trading

off compression overhead versus bandwidth savings at
different bandwidths.

As in the case of the web benchmark, caching did
not consistently reduce the amount of data transferred
for the video benchmark. Among the systems that
provided the option to enable or disable caching, Figure
18 shows that enabling caching reduced the amount of
data transferred for ICA, but had no impact on the
amount of data transferred for RDP or VNC. Just as
with the web benchmark, the video benchmark results
indicate that the overhead of ICA caching outweighs its
benefits in high bandwidth network environments.

3.3.3 Memory versus Disk Caching
Thin-client systems may implement a hierarchical

caching architecture with multiple levels of cache. In
ICA, two forms of client caching are applied to improve
the performance: caching in client memory and caching
in client disk. These two forms of caching may have
very different characteristics. Memory caching can
provide much faster access times to smaller caches
while disk caching can provide larger amounts of local
cache with relatively slower access times. ICA provides
both memory and disk caching as well as the ability to
enable and disable each cache independently. We
investigated the impact of memory and disk caching
techniques by running the web and video benchmarks
using ICA with various cache configurations. We
considered all possible combinations of memory and
disk caching, both with and without compression
enabled. For the ICA disk cache, the maximum cache
space and the minimum cacheable bitmap size are user-
configurable. For our tests, the disk cache size was set
to 39 MB, and the minimum cacheable bitmap size to
8KB. The memory cache size was 8 MB. These disk
and memory cache settings were default in the ICA
client.

Figure 17: Video quality (expressed as percentage relative to
baseline) in the video benchmark at 100 Mbps with various
cache and compression settings.

Figure 18: Total data transferred (expressed as percentage
relative to baseline) in slow-motion (1 fps) playback in the
video benchmark at 100 Mbps with various cache and
compression settings.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

ICA RDP AIP VNC

Platforms

Vi
de

o
Q

ua
lit

y
(V

Q
)

Baseline Compress Cache Compress & Cache

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

ICA RDP AIP VNC

Platforms

To
ta

l D
at

a
Tr

an
sf

er
re

d
(M

B
)

Baseline Compress Cache Compress & Cache

Figure 19 through Figure 22 show the
performance of ICA with various cache and
compression combinations available for ICA. As
discussed in Section 2.3.1, the web benchmark cycles
through 54 web pages twice. We call the first iteration
Run1 and the second Run 2. In order to highlight the
effects of caching and compression, we present the
performance relative to the baseline configuration as
well as the performance ratio of Run 2 to Run 1. If
enough elements are cached while displaying the
content from Run 1, we would expect the Run 2 to
produce less data transferred from server to client and
potentially yield a better performance. Also, if some
elements are displayed repeatedly within the 54-page
iteration, then we would expect the transferred data
amount to decrease in Run 1 as well as Run2.

While there is no tool available to us to directly
measure the cache hit/miss rate reliably for ICA, it
would be reasonable to assume the ratio of data
transferred from the server to the client with cache
turned on to that with cache off provides a rough
measure of the cache miss rate. As shown in Figure 20,

Run 1 of the benchmark run at 100 Mbps with disk
cache on produced 77% of the data generated by Run 1
with the baseline configuration. That is, the client was
forced to fetch 77% of the total display data from the
server even with the disk cache on, presumably because
the data wasn’t found in the local cache. In Run 2,
however, the data ratio drops to 48%. As expected,
more data was found in the local cache in Run 2.
Inferring from Figure 2, the first iteration of 54 pages
would yield only 1.6 MB of data, which would fit well
within the cache. However, not all of the elements were
cached even though the 39 MB disk cache had enough
capacity to store all objects encountered in Run 1. In
particular, the bitmap objects smaller than 8 KB were
not cacheable per the disk cache setting we used.

Comparing the relative data size and latency
between Run 1 and Run 2, it is evident that the memory
cache serves to handle small elements, while the disk
cache is used for caching large bitmaps. Figure 19
shows that there is less significant improvement in
latency in Run 2 compared to Run 1 with memory
cache engaged. Figure 20 shows that there is almost no

Figure 19: The latency in Run 1 and Run 2 of the web
benchmark at 100 Mbps with various cache and compression
settings in ICA. The Run 1 and Run 2 latency are expressed
as percentage relative to baseline as well as relative to one
another.

Figure 20: The data size in Run 1 and Run 2 of the web
benchmark at 100 Mbps with various cache and compression
settings in ICA. The Run 1 and Run 2 data sizes are expressed
as percentage relative to baseline as well as relative to one
another.

Figure 21: The latency in Run 1 and Run 2 of the web
benchmark at 100 Mbps with various cache and compression
settings in ICA and with only text content. The Run 1 and
Run 2 latency are expressed as percentage relative to baseline
as well as relative to one another.

Figure 22: The data size in Run 1 and Run 2 of the web
benchmark at 100 Mbps with various cache and compression
settings in ICA and with only text content. The Run 1 and
Run 2 data sizes are expressed as percentage relative to
baseline as well as relative to one another.

0%

20%

40%

60%

80%

100%

120%

Baseline MemCache DiskCache Both Cache Compress Compress &
MemCache

Compress &
DiskCache

Compress &
Both Cache

Test Configurations

D
at

a
R

at
io

Run1 vs. Baseline Run1 Run2 vs. Baseline Run2 Run2-to-Run1

0%

20%

40%

60%

80%

100%

120%

Baseline MemCache DiskCache Both Cache Compress Compress &
MemCache

Compress &
DiskCache

Compress &
Both Cache

Test Configurations

La
te

nc
y

R
at

io

Run1 vs. Baseline Run1 Run2 vs. Baseline Run2 Run2-to-Run1

0%

20%

40%

60%

80%

100%

120%

Baseline MemCache DiskCache Both Cache Compress Compress &
MemCache

Compress &
DiskCache

Compress &
Both Cache

Test Configurations

D
at

a
R

at
io

Run1 vs. Baseline Run1 Run2 vs. Baseline Run2 Run2-to-Run1

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%
200%

Baseline MemCache DiskCache Both Cache Compress Compress &
MemCache

Compress &
DiskCache

Compress &
Both Cache

Test Configurations

La
te

nc
y

R
at

io

Run1 vs. Baseline Run1 Run2 vs. Baseline Run2 Run2-to-Run1

difference in data size between Run 1 and Run 2. While
small graphical elements appear repeatedly throughout
each cycle of 54 web pages, the large bitmaps seen in
Run 1 only reappear when the same web page reappears
in Run 2. If the memory cache cached larger objects,
then we would expect to see a significant change in Run
2 compared to Run 1. With disk caching, however, we
do observe such a change. The difference in the types
of objects cached caused the two methods of cache to
yield very different performance characteristics in our
tests.

A notable finding was that, at 100 Mbps, ICA
performed worse whenever the disk cache was engaged
even though the cache significantly reduced the amount
of transferred data. As shown in the web benchmark
results in Figure 19, the increase in latency with disk
caching, relative to the baseline setting, was almost by a
factor of two in Run 1. In Run 2, there was a slight
improvement in performance with the disk cache
engaged, but when accounting for both Run 1 and Run
2, there was 44% higher latency overall. These data
suggest there is a heavy cache-miss penalty associated
with ICA’s disk caching. At a high bandwidth like 100
Mbps, the amount of time required to look up the cache
becomes significant relative to the network access time.

Figure 21 shows that the performance degradation
due to disk caching does not occur in displaying text-
only content, except when disk caching is used in
combination with compression. The disk cache is
primarily utilized for storing large bitmap objects. In
the text-only test, no bitmap image is displayed during
the benchmark run; therefore, we would expect the disk
cache to have little to no effect. As seen in Figure 22,
the disk cache does not contribute to any decrease in
data size. We note that, in general, the data size
increases slightly in Run 2 of the text-only tests
compared to Run 1, because Netscape for Windows,
with its own cache engaged, behaves slightly differently
in Run 2 compared to Run 1 in terms of the way the
page is drawn.

Memory caching, on the other hand, introduced no
performance degradation. As shown in Figure 19, in
both Run 1 and Run 2, the latency with memory cache
engaged was less than the baseline latency. Figure 20
shows the transferred data size was roughly reduced to
half relative to baseline. Although each of the 54 web
pages is displayed for the first time in Run 1, there are
fonts, text, and small graphical elements (like the PC
Magazine logo) that are repeated many times. With disk
caching, any benefit in caching the repeated graphical
elements was overwhelmed by the penalty in looking
up the cache on the hard drive. The cache-miss penalty
associated with the memory cache is much less severe.

The lower thin-client performance with disk
caching is due to the relative speed of the network
compared with the disk and the penalty associated with
cache misses. In a 100 Mbps LAN environment, the
network speed is almost comparable in speed and
bandwidth to the sustained performance of the local
disk of our client machine. Consequently, obtaining
display data from the disk cache is not necessarily
faster than obtaining the data from the server across the
100 Mbps network. In addition, with disk caching
enabled, each disk cache miss requires the client to
access the local disk as well as obtain the display data
across the network. If local disk and network speeds
were comparable, a cache miss would result in roughly
twice as much latency as when the data were simply
sent from the server without any disk caching.

Figure 23 compares the performance of ICA at
various network bandwidths with the default
configuration settings versus the same settings except
with the disk cache enabled. The results show that
while disk caching adversely affects ICA performance
at higher network bandwidths, it improves ICA
performance at bandwidths below 768 Kbps. At low
enough network bandwidths, the disk access time
becomes insignificant relative to the network access
time such that it is much faster to fetch data from the
client disk cache than going across the network to the
server. For lower bandwidth networks, assuming
reasonable cache hit rates, the benefit of smaller disk
cache latencies on cache hits outweigh the penalty of
extra disk cache latencies incurred on cache misses.

4. Related Work
Several studies have been conducted to evaluate

thin-client computing architectures. Danskin conducted
an early study of the X protocol [7] by gathering traces
of X requests. Citrix and Microsoft have conducted
internal performance testing of their products.
Microsoft has examined thin-client scalability issues in
Terminal Services performance for the purposes of

Figure 23: Average latency per page in the web benchmark
for ICA with disk cache on and off.

0

0.5

1

1.5

2

2.5

100M 10M 1.5M 768K 128K

Bandwidth

La
te

nc
y

pe
r p

ag
e

(s
)

Disk Cache On Disk Cache Off

capacity planning [15]. Schmidt, Lam, and Northcutt
examined the performance of the Sun Ray platform in
comparison to the X protocol [26]. Wong and Seltzer
have studied the performance of Windows NT Terminal
Server and LBX [34, 35]. Tolly Research has conducted
similar studies for Citrix MetaFrame [31]. Howard has
measured the performance of various hardware thin
clients using the i-Bench benchmark suite [9], but his
results suffer from methodology problems due to only
measuring server-side application performance instead
of user-perceived client-side performance. We have
also conducted earlier studies of thin-client
performance [18, 19, 36, 37], including previously
developing the slow-motion benchmarking [37] used in
this paper. Some of these studies have examined
selected thin-client systems in detail via internal
instrumentation. However, no study considered the
performance of remote display mechanisms across the
broad range of systems, system configurations, and
network bandwidths discussed here. We have also
further considered the performance of thin-client
systems in wide-area network environments [12].

In addition to the thin-client systems discussed in
this paper, a number of other systems for remote
display have been developed. These include extensions
to the systems considered such as low-bandwidth X
(LBX) [1] and Kaplinsk's recent VNC tight encoding
[11] as well as remote access solutions such as Laplink
[13] and PC Anywhere [20]. Because of space
constraints and previous work [18, 19] showing that
LBX, Laplink, and PC Anywhere perform very poorly,
we did not include them in this study. While thin-client
systems have primarily been employed in LAN
environments, a growing number of ASPs are
employing thin-client technology to host desktop
computing sessions that are remotely delivered over
WAN environments. Examples include services from
Charon Systems [3], Runaware [23], and Expertcity [8].

5. Conclusions and Future Work
Our results show that thin-client systems can

provide good performance for web and multimedia
applications in LAN environments. Unlike traditional
PC software environments, our results show that
different thin-client system designs exhibit widely
varying performance that can differ by orders of
magnitude in some cases. Through our experiments, we
have analyzed various design choices underlying
current thin-client systems. Specifically, our
measurements show three important conclusions
regarding thin-client system design.

First, higher-level graphics display primitives are
not always more bandwidth efficient than lower-level
display encoding primitives. X, which uses high-level

graphics encoding consumed the most bandwidth in
rendering the display at 8-bit color. Furthermore,
higher-level primitives are often more optimized for
text-oriented content, which will likely become a
smaller and smaller percentage of display content as
multimedia applications become increasingly popular.

Second, the timing in sending display updates
from the server to the client can be as important as how
display updates are encoded. Our results indicate that
an eager server-push model as used in X and Sun Ray
provides better overall performance than lazy update
models like ICA, RDP, and VNC, especially for
multimedia video applications. While lazy update
models may lead to some bandwidth savings by
discarding or merging display updates, our results show
that these techniques for optimizing bandwidth
efficiency degrade the performance of multimedia
applications even in high bandwidth environments.

Third, display caching and compression are
techniques which should be used with care as they can
help or hurt thin-client performance. At higher
bandwidths, ICA displayed significant performance
degradation when caching was engaged, and AIP
slowed down when its compression was forced on. Our
results with current thin-client systems suggest that
existing compression techniques provide a greater
performance benefit than current caching mechanisms.
Furthermore, adaptive use of these mechanisms based
on the availability of network bandwidth as shown by
AIP produces a good balance between the
computational overhead of these encoding mechanisms
and the potential bandwidth savings that they provide.
In general, cutting down the processing time is
desirable when there is enough network bandwidth,
while reducing the amount of transferred data is
beneficial at lower network speeds.

Our results quantify the effectiveness of a number
of thin-client design and implementation choices across
a broad range of thin-client platforms and network
environments. In doing so, we provide the first
comparative analysis of the performance of these
systems. These measurements provide a basis for future
research in developing more effective thin-client
systems.

6. Acknowledgments
This work was supported in part by an NSF

CAREER Award, NSF grant EIA-0071954, and
National Semiconductor. We thank Naomi Novik for
developing the scripts for processing the raw
benchmark data and Brian Schmidt for helpful
comments on earlier drafts of this paper.

7. References
1. “Broadway / X Web FAQ”,

http://www.broadwayinfo.com/bwfaq.htm.
2. M. Chapman, http://www.rdesktop.org.
3. Charon Systems, http://www.charon.com.
4. B. O. Christiansen, K. E. Schauser, and M. Munke, “A

Novel Codec for Thin Client Computing”, Data
Compression Conference (DCC), Snowbird, UT, Mar.
2000.

5. “Citrix ICA Technology Brief”, Technical White Paper,
Boca Research, Boca Raton, FL, 1999.

6. B. C. Cumberland, G. Carius, and A. Muir, Microsoft
Windows NT Server 4.0, Terminal Server Edition:
Technical Reference, Microsoft Press, Redmond, WA,
Aug. 1999.

7. J. Danskin and P. Hanrahan, “Profiling the X Protocol”,
Proceedings of the SIGMETRICS Conference on
Measurement and Modeling of Computer Systems,
Nashville, TN, May 1994.

8. “DesktopStreaming Technology and Security”, Expertcity
White Paper, Expertcity.com, Santa Barbara, CA, 2000.

9. B. Howard, “Thin Is Back”, PC Magazine, 19(7), Ziff-
Davis Media, New York, NY, July 2000.

10. i-Bench version 1.5, Ziff-Davis, Inc.,
http://www.etestinglabs.com/benchmarks/i-bench/i-
bench.asp.

11. C. Kaplinsk, “Tight encoding”,
http://www.tightvnc.com/compare.html.

12. A. Lai and J. Nieh. “Limits of Wide-Area Thin-Client
Computing”, Proceedings of the SIGMETRICS
Conference on Measurement and Modeling of Computer
Systems, Marina del Rey, CA, June 2002.

13. “LapLink 2000 User's Guide”, LapLink.com, Inc.,
Bothell, WA, 1999.

14. T. W. Mathers and S. P. Genoway, Windows NT Thin
Client Solutions: Implementing Terminal Server and
Citrix MetaFrame, Macmillan Technical Publishing,
Indianapolis, IN, Nov. 1998.

15. “Windows 2000 Terminal Services Capacity Planning”,
Technical White Paper, Microsoft Corporation, Redmond,
WA, 2000.

16. J. Nielsen, Multimedia and Hypertext: The Internet and
Beyond, Morgan Kaufmann, San Francisco, CA, Jan.
1995.

17. J. Nielsen, Designing Web Usability, New Riders
Publishing, Indanapolis, IN, 2000.

18. J. Nieh and S. J. Yang, “Measuring the Multimedia
Performance of Server-Based Computing”, Proceedings
of the 10th International Workshop on Network and
Operating System Support for Digital Audio and Video,
Chapel Hill, NC, June 2000.

19. J. Nieh, S. J. Yang, and N. Novik, “A Comparison of
Thin-Client Computing Architectures”, Technical Report
CUCS-022-00, Department of Computer Science,
Columbia University, November 2000.

20. PC Anywhere, http://www.symantec.com/pcanywhere.
21. Personable.com, http://www.personable.com.
22. T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A.

Hopper, “Virtual Network Computing”, IEEE Internet
Computing, 2(1), Jan/Feb 1998.

23. Runaware.com, http://www.runaware.com.
24. “Tarantella Web-Enabling Software: The Adaptive

Internet Protocol”, SCO Technical White Paper, Santa
Cruz Operation, Dec. 1998.

25. R. W. Scheifler and J. Gettys, “The X Window System”,
ACM Transactions on Graphics, 5(2), Apr. 1986.

26. B. K. Schmidt, M. S. Lam, and J. D. Northcutt, “The
Interactive Performance of SLIM: A Stateless, Thin-
Client Architecture”, Proceedings of the 17th ACM
Symposium on Operating Systems Principles, Kiawah
Island Resort, SC, Dec. 1999.

27. A. Shaw, K. R. Burgess, J. M. Pullan, and P. C.
Cartwright, “Method of Displaying an Application on a
Variety of Client Devices in a Client/Server Network”,
US Patent US6104392, Aug. 2000.

28. B. Shneiderman, Designing the User Interface: Strategies
for Effective Human-Computer Interaction, 2nd edition,
Addison-Wesley, Reading, MA, 1992.

29. “The Cloud”, Shunra Software, http://www.shunra.com.
30. “Sun Ray 1 Enterprise Appliance”, Sun Microsystems,

http://www.sun.com/products/sunray1.
31. Tolly Research, “Thin-Client Networking: Bandwidth

Consumption Using Citrix ICA”, IT clarity, Feb. 2000.
32. Virtual Network Computing,

http://www.uk.research.att.com/vnc.
33. WildPackets, Inc., Etherpeek 4,

http://www.wildpackets.com.
34. A. Y. Wong and M. Seltzer, “Evaluating Windows NT

Terminal Server Performance”, Proceedings of the 3rd
USENIX Windows NT Symposium, Seattle, WA, July
1999, pp. 145-154.

35. A. Y. Wong and M. Seltzer, “Operating System Support
for Multi-User, Remote, Graphical Interaction”,
Proceedings of the USENIX 2000 Annual Technical
Conference, San Diego, CA, June 2000, pp. 183-196.

36. S. J. Yang and J. Nieh, “Thin Is In”, PC Magazine,
19(13), Ziff-Davis Media, New York, NY, July 2000.

37. S. J. Yang, J. Nieh, and N. Novik, “Measuring Thin-
Client Performance Using Slow-Motion Benchmarking”,
Proceedings of the USENIX 2001 Annual Technical
Conference, Boston, MA, June 2001, pp. 35-49.

http://www.broadwayinfo.com/bwfaq.htm
http://www.rdesktop.org/
http://www.futurelink.net/
http://www.cs.columbia.edu/~nieh/publications/nossdav2000_fordist.pdf
http://www.cs.columbia.edu/~nieh/publications/nossdav2000_fordist.pdf
http://www.personable.com/
http://www.shunra.com/
http://www.sun.com/products/sunray1
http://www.uk.research.att.com/vnc
http://www.cs.columbia.edu/~nieh/publications/pcmag2000_thinisin.pdf

	Abstract
	Introduction
	Experimental Design
	Measurement Methodology
	Experimental Testbed
	Application Benchmarks
	Web Benchmark
	Video Benchmark

	Experimental Results
	Default Configurations
	Web Performance
	Video Performance

	Baseline Display Encoding Primitives
	Web Performance
	Video Performance

	Caching and Compression
	Web Performance
	Video Performance
	Memory versus Disk Caching

	Related Work
	Conclusions and Future Work
	Acknowledgments
	References

