
USENIX Association

Proceedings of the
FREENIX Track:

2002 USENIX Annual Technical
Conference

Monterey, California, USA
June 10-15, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Gscope: A Visualization Tool for Time-Sensitive Software

Ashvin Goel, Jonathan Walpole

Department of Computer Science and Engineering
Oregon Graduate Institute, Portland
{ashvin,walpole}@cse.ogi.edu

Abstract

This paper describesgscope, a visualization tool
for time-sensitive applications. Gscopeprovides an
oscilloscope-like interface that can be integrated with
applications. It focuses on software visualization and is
thus designed to handle various types of signal wave-
forms, periodic or event-driven, in single or multi-
threaded environments as well as local or distributed ap-
plications. Gscopehelps in visually verifying system
correctness and modifying system parameters and thus
can complement standard debugging techniques and be
used to build compelling software demos. Initial exper-
iments with usinggscopeshow that the library has low
overhead.

1 Introduction

Modern processor speeds and high speed networks have
made multimedia and other timing-sensitive applica-
tions common on desktop computers. For instance, to-
day a standard desktop computer comes equipped with
a DVD player, DVD and CD burner, TV tuner and digi-
tal video editing and conferencing software, making it a
full featured home audio and video client or server. Al-
though these types of timing-sensitive applications are
becoming common, implementing them is non-trivial
because existing tools for visualizing and debugging al-
ter the timing behavior. For instance, a standard debug-
ger stops an application and thus affects its timing be-
havior.

Current techniques for visualizing, testing and debug-
ging time-sensitive applications involve some or all of

This work was partially supported by DARPA/ITO under the In-
formation Technology Expeditions, Ubiquitous Computing, Quorum,
and PCES programs and by Intel.

these steps: 1) create an experimental setup, 2) generate
data in real-time, 3) collect data and store it to files, 4)
process the file data offline, and 5) plot the data. The
first three steps are complicated by the fact that the pro-
grammer attempts to minimize the impact of these steps
on the application’s timing behavior. The programmer
must often repeat these steps several times before being
satisfied with the results. In addition, for a distributed
application, data files must be collected from multiple
machines and transferred to a single machine where the
data is correlated before it can be processed.1 The prob-
lem with this approach is that the visualization and de-
bugging cycle is long and error prone. It is error prone
because the steps outlined above are often not an inte-
gral part of the application. Further, with this approach,
it is not easy to demonstrate or experimentally validate
system behavior in real-time.

Unlike the ad hoc tools used for visualizing time-
sensitive software, there exists a time-tested visualiza-
tion tool in the hardware community: theoscilloscope.
The invention of the oscilloscope started a revolution
that allowed “seeing” sound and other signals, experi-
encing data, and gaining insights far beyond equations
and tables [11]. Today, an oscilloscope, together with a
logic analyzer, is used for several purposes such as de-
bugging, testing and experimenting with various types
of hardware that often have tight timing requirements.
We believe a similar approach can be applied effectively
for visualizing time-sensitive software systems.

We have implemented a software visualization tool and
library calledgscopethat borrows some of its ideas from
an oscilloscope. Thegscopedesign is motivated by the
following goals:

• Simplify visualization of system behavior in real-
time, especially the interactions among concur-

1In some cases, it is almost impossible to correlate distributed data
for analysis, but we will assume that distributed data can be correlated.



rent or competing software components, within or
across machine boundaries.

• Simplify visualization of system behavior in real-
time, especially the interactions among concur-
rent or competing software components, within or
across machine boundaries.

• Simplify modification of system behavior in real-
time.

• Enable building compelling software demos that
can help explain the internal working of a time-
sensitive system.

• Enable visual verification of system correctness.

• Complement standard debugging techniques with a
real-time “debugging” tool.

• Build an easy to use library, thus encouraging use
of visualization as an integral part of the applica-
tion.

• Build a generic and extensible library that does not
need specific hardware for correct operation.

• Build free software that is available to all users.

From an ease of use perspective, the oscilloscope inter-
face is ideal. The probes of the oscilloscope are hooked
to a circuit and, loosely speaking, the oscilloscope is
ready for use. Our goal is to emulate this simplicity in
interface as much as possible while extending it when
needed to accommodate software needs. In the simplest
case, agscopesignal consists of a signal name and a
word of memory whose value is polled and displayed
(see Section 3.1). More complex signals consist of func-
tions that return a signal sampling point.

Gscopefocuses on visualization of time-sensitive soft-
ware applications. It can be used for visualizing time-
dependent variables such as network bandwidth, latency,
jitter, fill levels of buffers in a pipeline, CPU utilization,
etc. We have implementedgscopeand have been using
it for the last two years. We have used it for visualizing
and debugging various time-sensitive applications, in-
cluding a CPU scheduler [19], a quality-adaptive stream-
ing media player [14], a network traffic generator called
mxtraf [13], and various control algorithms such as a
software implementation of a phase-lock loop [9]. We
believe that applications usinggscopewill see a direct
benefit in terms of reducing the visualizing, debugging
and testing cycle time.

Some of the key features ofgscopeare: support for mul-
tiple scopes and signals, dynamic addition and removal

Figure 1: TheGtkScope widget

of scopes and signals, adjustment of program or control
parameters, support for arbitrary signal types, time and
frequency representation of signals, support for discrete-
time and event-driven signals, support for distributed vi-
sualization, saving of signal data, replay of signal data,
adjustment of per-signal parameters and scope parame-
ters, and a programmatic interface for every action that
can be performed from the GUI. These features help ful-
fill the many of the goals that motivated the design of
gscope.

In our experience, perhaps the most significant differ-
ence between the signals produced by software com-
ponents and the signals typically visualized in an os-
cilloscope is the number of signal or event sources.
Since software signals are not necessarily tied to spe-
cific pieces of hardware, applications can generate large
numbers of disparate signals that need to be visualized
and correlated. For instance, we usegscopeto view
dynamically changing process proportions as assigned
by a CPU proportion-period scheduler [19]. Here, the
number of signals depends on the number of running
processes. As another example, since software signals
are disconnected from hardware, they may be generated
from remote sources (see Section 4.4).

The remainder of this paper describesgscopein more
detail. Section 2 explains thegscopedesign by de-
scribing the graphical components ofgscope. Section 3
presents key components of the interface that enable
an application to communicate withgscope. Section 4
discusses various aspects of programming thegscope
library and it describes some of our experiences with
gscope. Section 5 examines related work in this area and
Section 6 presents future directions forGscope. Finally,
Section 7 presents our conclusions.

2 Graphical Interface

Gscopeis a graphical library and thus its various fea-
tures are best explained by briefly describing the visual



Figure 2: Signal Parameters Window

components of the library. Then this section explains
how we have usedGscopeto visualize TCP behavior
in an experimental network.Gscopehas been imple-
mented using theGnome [6] and GTK [3] graphical
toolkits. These GUI toolkits are multi-platform although
they are primarily designed for the X Window System.
They are free software and part of the GNU Project [18].
Both Gnomeand GTKuse theglib library that pro-
vides generic system functionality independent of the
GUI. For instance,glib provides portable support for
event sources, threads, and file and socket I/O.Gscope
uses some of thisglib functionality.

The main graphical widget in thegscope library is
called GtkScope , as shown in Figure 1. An appli-
cation displays one or more signals by creating and
passing aGtkScopeSig data structure for each sig-
nal to the library (see Section 3.1). The library creates
a GtkScopeSignal object for each signal. Applica-
tions can create one or moreGtkScope widgets.

A screen shot of theGtkScope widget with the embed-
ded canvas displaying two signals is shown in Figure 4.
The zoom and bias widgets below the canvas allow scal-
ing and translating the signal data. The sampling period
widget allows changing the polling period of the dis-
played data. The delay widget allows setting the delay
with which buffered signals are displayed on the scope
(further described in Section 3.1). The x-axis ruler is
sized in seconds and the y-axis ruler has a scale from 0
to 100.

Under the zoom and bias widgets, signal parameters
are displayed. Each signal has asignal name such
asCWNDand aValue button associated with it. Sig-
nal parameters, specified in the application using the
GtkscopeSig data structure, can be modified by right
clicking on the signal name, which brings up the win-
dow shown in Figure 2. Left clicking on the signal name
toggles displaying the signal. When theValue button

Figure 3: Application and Control Parameters Window

is pressed, the signal value is continuously displayed as
shown with theCWNDsignal.

Gscopealso allows storing, displaying and modifying
application or control parameters that are application-
wide and not specific to eachGtkScope widget. Fig-
ure 3 shows an example of a control parameter window
with two application parameters.

A Gscope Example

This section describes how thegscopelibrary is used to
visualize network behavior using themxtraf network
traffic generator application [13]. WithMxtraf , a small
number of hosts can be used to saturate a network with
a tunable mix of TCP and UDP traffic. The primary pur-
pose ofmxtraf is to allow stress testing of experimen-
tal networks.

The experiment shown in Figures 4 and 5 compares the
behavior of TCP and ECN [8](explicit congestion notifi-
cation) flows in a congested wide-area network. To em-
ulate a simple wide-area network, we use a Linux router
between a client and a server machine and usenist-
net [17] to add delay and bandwidth constraints at
the router. In this experiment, we usemxtraf to gen-
erate varying number of long-lived flows (calledele-
phants) that transfer data from the server to the client.
Figures 4 and 5 show two signals each. Theele-
phants signal shows the number of long-lived flows
over time. This number is changed from 8 to 16 roughly
half way through the x-axis. TheCWNDsignal shows the
TCP or ECN congestion window (at the server) of one
(arbitrarily chosen) long-lived flow in Figures 4 and 5
respectively. This window provides an estimate of the
short-term bandwidth achieved by the flow.

These figures show how the window changes with a
changing number of long-lived flows. While the abso-
lute magnitude of the window is not very relevant in the
short term period shown in the figures (since it changes



Figure 4: A snapshot of theGtkScope widget showing TCP behavior

Figure 5: A snapshot of theGtkScope widget showing ECN behavior

dramatically over short intervals), one significant differ-
ence between the two flows is the number of timeouts
experienced by each flow. Both TCP and ECN reduce
the congestion window to one upon a timeout. The low-
est value of theCWNDsignal in the graphs corresponds
to a CWNDvalue of one. The graphs show that while
ECN does not hit this value, TCP hits it several times.
Additional signals (not shown in the figures) confirm
that there is a timeout each timeCWNDreaches one.
Since timeouts affect TCP throughput and latency sig-
nificantly, this experiment indicates that ECN can po-
tentially improve flow throughput.

We usemxtraf to dynamically change the number of
different types of flows, switch between different TCP
variants and visualize network behavior in real time.

Such visualization has revealed several interesting prop-
erties (and bugs) in TCP behavior that would have been
hard to determine otherwise. For instance, a TCP variant
that we have implemented for low-latency TCP stream-
ing [10] initially showed significant unexpected timeouts
that we finally traced to an interaction with the SACK
implementation.

3 Gscope API

This section describes the interface data structures that
enable an application to communicate withgscope. The
gscopelibrary The gscopeinterface is relatively sim-



ple but powerful. Thegscopeinterface consists of three
components: 1) signal specification, 2) control param-
eter specification for configuring the application and 3)
tuple format for streaming, recording and viewing data.

3.1 Signal Interface

Gscopecan acquire signal data from applications in
one of two acquisition modes:polling or playback. In
polling mode, signals are obtained from the running pro-
gram using the signal interface described below. Polled
signals can beunbufferedor buffered. In unbuffered
mode,gscopepolls and displays single sampling points.
In buffered mode, applications enqueue signal samples
with timestamps into a buffer andgscopedisplays these
samples with a user-specified delay. The buffered mode
enables applications to push data to the scope. For in-
stance, an application can listen for kernel events on a
netlink socket and push these event samples to the
gscopebuffer. Gscopepolls the buffer periodically to
display the samples. Polled signals can be displayed in
the time or frequency domain. In addition, the polled
data can be recorded to a file. Section 4 discusses the
polling overhead and the finest polling granularity that
is supported ingscope.

In the playback mode, data is obtained from a file and
displayed. This file format is described in Section 3.3.
Both polling and playback modes have a polling period
associated with them. In both modes, data is displayed
one pixel apart each polling period (for the default zoom
value).

A signal is specified to thegscope library using a
GtkScopeSig structure shown below:

typedef struct {
char *name; /* signal name */
GtkScopeSigData signal; /* signal data */
/* color, min, max, line, hidden, filter */

} GtkScopeSig;

The name is the name of the signal and thesignal
field is used to obtain signal data. This field is described
with an example below. The rest of the fields are op-
tional parameters that specify the color of the signal, the
minimum and maximum value of the signal displayed
(for default zoom and bias values), the line mode in
which the signal is displayed, whether the signal is hid-
den or visible, and a parameterα for low-pass filtering
the signal. The low-pass filter uses the following equa-
tion to filter the signal:yi = αyi−1 + (1 − α)xi. Here,

xi is the signal point andyi is the filtered signal point.
Theα filter parameter ranges from the default value of
zero (unfiltered signal) to one.

The examples below show theGtkScopeSig speci-
fication for theelephants and CWNDsignals. The
elephants signal consists of an integer value that
will be sampled bygscope. The CWNDsignal uses the
get cwnd function to determine theCWNDvalue of the
socketfd .

int elephants;
GtkScopeSig elephants sig = {

name: "elephants",
signal: {type: INTEGER, {i: &elephants }},
min: 0, max: 40 /* optional */

};

int fd; /* socket file descriptor */
GtkScopeSig cwnd sig = {

name: "Cwnd",
signal: {type: FUNC, {fn: {get cwnd, fd }}},

};

The signal can of type INTEGER, BOOLEAN, SHORT,
FLOAT, FUNC or BUFFER and this type determines
how signals are sampled. When the signal type is
BUFFER, the signal is buffered, otherwise it is un-
buffered.

Unbuffered Signals For unbuffered signals, the
INTEGER, BOOLEAN, etc. field is sam-
pled and displayed. of the union in the
GtkScopeSigData structure depending on thetype
of the signal. When the signal type isFUNC, the
function is invoked with the two argumentsarg1
andarg2 (passed in by the user duringGtkScope-
Sig initialization) and the function’s return value is the
value of the signal data. The function mechanism allows
reading arbitrary signal data.

Buffered Signals For buffered signals,gscopereads
data from a scope-wide buffer that has timestamped sig-
nal data in a tuple format (described in Section 3.3) and
displays this data with a user-specified delay.Gscope
provides applications an API for inserting the times-
tamped signal data in the buffer.



3.2 Control Parameter Interface

Application or control parameters as shown in Figure 3
can be read and modified by the gscope library using the
GtkScopeParameter structure. These parameters
are not displayed but generally used to modify applica-
tion behavior. TheGtkScopeParameter structure is
very similar to theGtkScopeSig structure. However,
while signals can only be read, application parameters
can be read and written also.

3.3 Tuple Format

Signals can be streamed togscope. For instance,
streamed signals allow distributed visualization in real
time. Signals can also be recorded to a file andgscope
can replay signals from the file. In all these cases, signal
data is delivered, generated or stored in a textual tuple
format. Each tuple consists of three quantities:time,
valueandsignal name. This format allows multiple sig-
nals to be delivered togscopeor recorded in the same
file. As a special case, if there is only one signal, then
the third quantity may not exist. In that case, signals are
simply time-value tuples.

When signals are streamed or replayed from a recorded
file, the time field of successive tuples is in increasing
time order and its value is in milliseconds. Data is dis-
played one pixel apart for each polling period (for the
default zoom value). For instance, if the polling period
is 50 ms, then data points in the file that are 100 ms apart
will be displayed 2 pixels apart.

3.4 Programming With Gscope

TheGscopelibrary has a programmatic interface for ev-
ery action that can be performed from the GUI. Fig-
ure 6 presents a fragment of a simple program that
shows how thegscopelibrary is used. After creating the
scope , the elephants sig signal (defined in Sec-
tion 3.1) is added toscope andscope is set to polling
mode, where it polls the value ofelephants every 50
ms. The function that manipulates the elephants value
is calledread program and it runs when the server
has control data available from the client. In this us-
age style, theread program function is I/O driven
and performs non-blocking calls. Other ways of us-
ing thegscopelibrary include 1) periodic invocation of
read program and 2) separation ofth e scope into its

main()
{

...
scope = gtk scope new(name, width, height);

/* sig defined in Section 3.1 */
gtk scope signal new(scope, elephants sig);

/* sampling period is 50 ms */
gtk scope set polling mode(scope, 50);

/* set polling to start state */
gtk scope start polling(scope);

/* register read program with I/O loop */
g io add watch(..., G IO IN, read program, fd);

/* main loop: calls read program when fd
has input data */

gtk main(); /* doesn’t return */
}

gint
read program(int fd)
{

control info = read control info(fd);
if (elephants != control info.elephants) {

start or stop elephants;
/* change signal value */

elephants = control info.elephants;
}
return TRUE;

}

Figure 6: A sample gscope program

own thread. These issues are discussed further in Sec-
tion 4.3.

4 Discussion

The previous section has described thegscopeAPI and
how thegscopelibrary can be used. This section dis-
cusses various aspects of programming thegscopeli-
brary in more detail and it describes some of our ex-
periences withgscope. Section 4.1 describes portabil-
ity issues with thegscopelibrary. Section 4.2 examines
howgscopecan be used for different types of signals ef-
fectively. Section 4.3 describes when it is appropriate
to have a single-threaded or a multi-threadedgscopeap-
plication, while Section 4.4 describes how data is polled
and displayed from a distributed application. Section 4.5
describes the polling granularity in the current imple-
mentation and thus the type and range of applications
that can be supported. Finally, Section 4.6 discusses the
overhead of our approach.



4.1 Implementation Portability

Gscopehas been implemented on the Linux OS and we
have been using it for the last two years.Gscopecan
be installed on a vanilla Linux system that hasGnome
software installed on it. Although,Gscopehas not been
ported to other free source operating systems such as
BSD, we believe that the porting process should be sim-
ple sinceGscopedoes not use any Linux specific func-
tionality andGnomehas been ported to other OSs.

4.2 Signal Types

Applications often produce various types of signal data,
such as clocked signals and event-driven signals. For
instance, bandwidth monitoring can be done based on
events that are packet arrivals.Gscopeimplements a
discrete-time polling system but can also handle event-
driven signal generation. Below, we describe various
signal types and howgscopehandles them.

Sample and Hold Applications can be designed so that
certain events change a state and then the state is
held until the next event changes the state. Be-
tween event arrivals, polling can detect the previous
event by monitoring the held state. For instance,
the state can be the end-to-end packet latency that
can change on each packet arrival event. If the
polling frequency is sufficiently high, all packet
arrival events can be captured. This approach re-
quires knowing the shortest period of back-to-back
event arrival.

Periodic Signals Signals can be periodic, in which
case, such signals can be viewed by polling at
the same period. For instance, we usegscopeto
view dynamically changing process proportions as
assigned by a real-rate proportion-period sched-
uler [19]. These proportions are assigned at the
granularity of the process period and we set the
scope polling period to be same as the process pe-
riod. This approach does not require phase align-
ment between process period and the polling period
since the signal is held between process periods.

Buffering Events can be buffered and then polling can
display data with some delay. For instance, a de-
vice driver could poll a memory mapped device at
the appropriate frequency and queue data to a buffer
that is then polled bygscope. In gscope, the buffer-
ing interface is implemented with buffered signals

described in Section 3.1. This approach may seem
like cheating since one of the main purposes of the
scope is to poll the data directly. However, decou-
pling the data collection from the data display has
several benefits. For instance, data can be collected
and displayed on different machines, thus allowing
distributed or client-server application data visual-
ization as discussed in Section 4.4. In addition,
data can be captured only when certain conditions
are triggered, i.e. at “interesting” times. At other
times, data collection and display would have little
or no overhead. A similar trigger-driven sampling
approach is used by hardware oscilloscopes.

Event Aggregation Another very effective method for
visualizing event-driven signals is event aggrega-
tion. In this method, event data is aggregated be-
tween polling intervals and then displayed. For in-
stance, applications may want to display the maxi-
mum value of an event sample between polling in-
tervals. An example of using the maximum sam-
ple value is to display the maximum latency of a
network connection. Rather than displaying the la-
tency of each packet (as discussed in Sample and
Hold) or the maximum latency over the life time of
the connection, it may be useful to display the max-
imum latency within each polling interval.Gscope
provides aggregation functions shown below that
aggregate data between polling intervals. Exam-
ples for network connections are described for each
function.

Maximum and Minimum maximum and mini-
mum sample, e.g., latency.

Sum Sum of the sample values, e.g., bytes re-
ceived.

Rate Ratio of the sum of sample values to the
polling period, e.g., bandwidth in bytes per
second.

Average Ratio of the sum of sample values to the
number of events, e.g., bytes per packet.

Events Number of events, e.g., number of packets.

AnyEvent Did an event occur between polling in-
tervals, e.g., any packet arrived?

4.3 Single vs. Multi-Threaded Applications

Gscopeis thread-safe and can be used by both single-
threaded and multi-threaded applications. With multi-
threaded applications, typicallyGscopeis run in its own
thread while the application that is generating signals



is run in a separate thread. This approach allows the
gscopeGUI to be scheduled independently of the appli-
cation (unlessgscopesignals make application calls that
need to acquire locks). However, it is the application
thread’s responsibility to acquire a globalGTKlock if it
needs to makegscopeAPI calls.

Single-threadedgscopeapplications must use event-
driven programming. Such applications should either be
periodic or they should be I/O driven and they should
use non-blocking I/O system calls (since blocking calls
would block the GUI as well). Periodic applications are
supported directly bygscope. I/O driven applications
can use theGTK GIOChannel functions to drive their
events as shown in Figure 6. This approach allows all
GUI and application events to be handled by the same
event loop and does not require any locking. However,
application logic can become more complex due to the
use of non-blocking I/O system calls. We have imple-
mented a single-threaded I/O drivengscopeclient-server
library that is described in the next section.

4.4 Distributed Applications

Gscopesupports monitoring and visualization of dis-
tributed applications. It implements a single-threaded
I/O driven client-server library that can be used by appli-
cations to monitor remote data. Clients use thegscope
client API to connect to a server that uses thegscope
server library. Clients asynchronously send BUFFER
signal data in tuple format (described in Section 3.3) to
the server. The server receives data from one or more
clients asynchronously and buffers the data. It then dis-
plays these BUFFER signals to one or more scopes with
a user-specified delay as described in Section 3.1. Data
arriving at the server after this delay is not buffered but
dropped immediately.

Currently, we use thegscopeclient-server library in the
mxtraf network traffic generator. Thegscopeclient-
server library allows visualizing and correlating client,
server and network behavior (connections per second,
connection errors per second, network throughput, la-
tency, etc.) within a single scope.

4.5 Polling Granularity

Gscopeuses theGTKtimeout mechanism to implement
polling. The defaultGTKtimeout implementation uses
the timeout feature of the POSIXselect call. Al-
thoughselect allows specifying the timeout with a

microsecond granularity, typically the kernel wakes pro-
cesses at the granularity of the normal timer interrupt.
The timer interrupt generally has a much coarser gran-
ularity. For instance, on Linux, this granularity is 10
ms. Thusgscope, which is implemented on Linux, is
currently limited to this polling interval and has a maxi-
mum frequency is 100 Hz.2

In addition to coarse granularity timeouts, scheduling
latencies in the kernel can induce loss in polling time-
outs under heavy loads. To handle this problem,Gscope
keeps track of lost timeouts and advances the scope re-
fresh appropriately.

Compared to an oscilloscope,Gscope has a much
coarser polling granularity and thus relatively low band-
width. For instance, the currentGscopeimplementation
would not be appropriate for real-time low-delay display
of a speech recognition application that monitors phone-
line quality 8 KHz audio signals. Fortunately, in our
experience, many software applications don’t have tight
polling requirements. Coarse granularity polling works
well for three reasons: 1) many software applications
have coarse time scales, 2) debugging software applica-
tions often only requires visualizing the long term trends
of the signal, 3) many applications generate event-driven
signals that are handled by techniques such as buffering
or event aggregation as explained in Section 4.2. For in-
stance, the audio signal could be read from the audio de-
vice and buffered by an application andgscopecan dis-
play the signal with some delay using buffered signals.
In our experience, the 10 ms polling granularity and loss
of polling timeouts has not been a limiting factor for the
gscopeapplications that we have implemented. How-
ever, Section 6 describes some directions for improving
the polling granularity.

4.6 Scope Overhead

We measured the overhead of using thegscopelibrary
by running a simple application that polls and displays
several different integer values. To measure overhead,
we use a CPU load program that runs in a tight loop at a
low priority and measures the number of loop iterations
it can perform at any given period. The ratio of the itera-
tion count when runninggscopeversus on an idle system
gives an estimate of thegscopeoverhead.

The gscopeCPU overhead on a 600 MHz Pentium III
processor is less than two percent while polling at 10 ms
granularity (smallest granularity supported by the sys-

2Thesetitimer periodic timer call behaves similarly.



tem) and less than one percent at 50 ms granularity. The
increase in overhead with increasing number of signals
being displayed ranges from 0.02 to 0.05 percent per sig-
nal. When compared to the number of signals displayed,
polling granularity has a much larger effect on CPU con-
sumption.

5 Related Work

This section provides some background on oscilloscopes
and compares them withgscope. Then it describes some
oscilloscope-like applications that have been developed
in the free software community.

The oscilloscope is essentially a graph-displaying de-
vice – it draws a graph of an electrical signal. Oscil-
loscopes can help determine various signal properties:
time and voltage values of a signal, frequency of an os-
cillating signal, phase difference between two oscillat-
ing signals, a malfunctioning component that is distort-
ing the signal, AC and DC components of a signal and
noise in a signal. Oscilloscopes put significant effort on
visualization of repeating waveforms. For instance, they
have trigger controls that help stabilize such waveforms.
Oscilloscopes can be analog or digital. Analog oscil-
loscopes are preferred when it is important to display
rapidly varying signals in “real time”. However, dig-
ital oscilloscopes allow capture and viewing of events
that may happen only once. They can process the digital
waveform data or send the data to a computer for pro-
cessing. Likegscope, they can store the digital wave-
form data for later viewing and printing and they also
allow event aggregation.

Gscope is similar in functionality to
gstripchart [12], the Gnome stripchart pro-
gram, that charts various user-specified parameters as a
function of time such as CPU load and network traffic
levels. The gstripchart program periodically reads
data from a file, extracts a value and displays these
values. However, unlikeGscope, gstripchart has a
configuration file based interface rather than a program-
matic interface, which limits its use for debugging or
modifying system behavior.

There is large body of work related to implementing
software digital oscilloscope functionality for audio vi-
sualization. The basic idea is to record sound with a
microphone and then display the digitized sound waves.
Xoscope [20] is one such program.Xmms[4] displays
sound frequency during audio playback.Baudline [2]

is a real-time signal analysis tool and an offline time-
frequency browser. These programs emulate the func-
tionality of a digital oscilloscope much more closely
thangscope. However, these programs are focusing on
audio visualization whilegscopefocuses on visualiza-
tion and debugging of software behavior. Thus certain
oscilloscope features are not appropriate forgscopeand
vice-versa.

There are hundreds of measurement tools that can be
used for capturing system and network performance [1].
Gscopecomplements them because it can be used to vi-
sualize their output in real-time.

6 Future Work

We expect to see more integration of oscilloscope func-
tionality in gscope. Gscopecurrently does not have sup-
port for repeating waveforms. Thus, many oscilloscope
features such as triggers that stabilize repeating wave-
forms or waveform envelop generation are not imple-
mented ingscope. Gscopedoes not currently support
printing of recorded data. Also, it does not have bind-
ings for languages other than C.

There are several options for supporting applications
with more stringent polling requirements. First, Linux
exposes the real-time clock on the Intel x86 processor
that can generate interrupts at a maximum frequency of
8KHz. Unfortunately, this clock is exposed only to pro-
cesses withroot privileges and can only be used by
one application at a time. Further, it is not clear how this
mechanism can be used together with theGTKpolling
or event handling mechanism. The benefit of using the
GTKpolling mechanism is that all events, GUI as well as
application events, are handled by the same mechanism
and this allows implementing fully event-driven appli-
cations. Such an implementation is the norm for GUI
applications [16, 7].3

A second option is to improve the granularity ofse-
lect in the kernel by connecting it to a more general
fine-grained timing facility, such as soft-timers [5]. Im-
proving the granularity ofselect will automatically
help to improve the granularity of theGTKpolling mech-
anism. Finally, kernel scheduling latencies can be re-
duced by using a preemptive kernel [15].

3Gimp is event-driven but uses a thread per processor in an SMP
environment to optimize certain types of processing.



7 Conclusions

Gscopeis designed for visualizing time-sensitive soft-
ware applications. Its goal is to reduce the cycle time
needed for visualizing, testing and debugging time-
sensitive applications by providing an oscilloscope-like
interface that can be integrated with the application.
In this paper, we have described the design and inter-
face of thegscopelibrary, presented some simple ex-
amples of using the library and then discussed vari-
ous aspects related to programming the library. We
have usedgscopesuccessfully in many of our applica-
tions and have built several compelling demos of our
research work using this library.Gscopeis free soft-
ware. More information aboutgscopeis available at
http://gscope.sf.net.

References

[1] NLANR Network Performance and Measurement Tools.
http://dast.nlanr.net/npmt/ .

[2] The Baudline Real-Time Signal Analysis Tool.http:
//www.baudline.com .

[3] The GTK Graphical User Interface Toolkit.http://
www.gtk.org .

[4] Peter Alm, Thomas Nilsson, and et al. XMMS: A Cross
Platform Multimedia Player. http://www.xmms.
org .

[5] Mohin Aron and Peter Druschel. Soft Timers: Efficient
Microsecond Software Timer Support for Network Pro-
cessing.ACM Transactions on Computer Systems, Au-
gust 2000.

[6] Miguel de Icaza and et al. The Gnome Desktop Environ-
ment.http://www.gnome.org .

[7] Miguel de Icaza and et al. The Gnumeric Spread-
sheet. http://www.gnome.org/projects/
gnumeric .

[8] Sally Floyd. TCP and Explicit Congestion Notification.
ACM Computer Communication Review, 24(5):10–23,
1994.

[9] Gene F. Franklin, J. David Powell, and Michael Work-
man. Digital Control of Dynamic Systems. Addison-
Wesley, third edition, 1997.

[10] Ashvin Goel, Charles Krasic, Kang Li, and Jonathan
Walpole. Supporting Low Latency TCP-Based Media
Streams. InProceedings of the Tenth International Work-
shop on Quality of Service (IWQoS), May 2002. To ap-
pear.

[11] Ramesh Jain. TeleExperience: Communicating Com-
pelling Experiences. Keynote speech at ACM Multime-
dia 2001.

[12] John Kodis. Gstripchart: a Stripchart-Like Plotting Pro-
gram. http://users.jagunet.com/˜kodis/
gstripchart/gstripchart.html .

[13] Charles Krasic. The Mxtraf Traffic Generator.http:
//sourceforge.net/projects/mxtraf .

[14] Charles Krasic, Kang Li, and Jonathan Walpole. The
Case for Streaming Multimedia with TCP. In8th In-
ternational Workshop on Interactive Distributed Multi-
media Systems (iDMS 2001), pages 213–218, Sep 2001.
Lancaster, UK.

[15] Robert Love. The Linux Kernel Preemption Project.
http://kpreempt.sourceforge.net .

[16] Peter Mattis and Spencer Kimball. Gimp, the GNU
Image Manipulation Program.http://www.gimp.
org .

[17] NIST. The NIST Network Emulation Tool.http://
www.antd.nist.gov/itg/nistnet .

[18] Richard M. Stallman and et al. The GNU Project.http:
//www.gnu.org .

[19] David Steere, Ashvin Goel, Joshua Gruenberg, Dy-
lan McNamee, Calton Pu, and Jonathan Walpole. A
Feedback-driven Proportion Allocator for Real-Rate
Scheduling. InProceedings of the Third USENIX Sympo-
sium on Operating Systems Design and Implementation.
USENIX, February 1999.

[20] Timothy D. Witham. Xoscope: a Digital Oscilloscope
for Linux. http://xoscope.sourceforge.net .


