
USENIX Association

Proceedings of the
FREENIX Track:

2002 USENIX Annual Technical
Conference

Monterey, California, USA
June 10-15, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Ningaui: A Linux Cluster for Business

Andrew Hume

AT&T Labs - Research
andrew@research.att.com

Scott Daniels

Electronic Data Systems Corporation
scott.daniels@eds.com

Abstract

Clusters of commodity PC hardware are very attractive as a basis for large scale computing.
In fact, this style of system, commonly referred to as Beowulf systems, are well on their way to
dominating the supercomputing arena, which is almost solely concerned with large scientific
computing. In other domains, issues other than performance predominate.

This paper describes Ningaui, an architecture for computing on partitioned datasets using a
cluster of loosely coupled computers. Although performance is a goal, it is dominated by the
goals of availability, reliability, scalability and manageability. We describe the architecture,
together with a large-scale application, and describe how we met our goals. We also discuss
how well our platform fared, and the lessons we have learned. As our environment is jargon
rich, we include a glossary.

1. Introduction

The relentless pressure of Moore’s Law, or
more accurately, the surprisingly continuous
exponential growth in CPU speed and disk
capacity, enables, and ultimately forces, the
development of systems architectures to handle
problems of ever increasing size. No where is
this trend more obvious than in scientific super-
computing where the fastest systems, tradition-
ally large expensive monolithic machines from
Cray, Fujitsu and the like, will soon be vast
arrays of PCs linked in architectures popularised
as Beowulf systems[Bec95].

The adoption of this kind of architecture
for business systems has been rather less enthusi-
astically pursued. Despite the promise of
cheaper hardware and system software costs,
issues of reliability, availability and the necessity
to run common commercial software packages
have dominated and largely blocked the intro-
duction of these architectures. In particular, the
commonplace property of scientific Beowulf sys-
tems that a computation fails completely if any
node fails during the computation, while appar-
ently tolerable for the scientific community, is not

viable for business systems.

Over the last year, we have been in a posi-
tion to investigate these issues in the context of a
large production system within AT&T, namely
Gecko[Hum00]. Gecko traced the processing of
telephone call and billing records for residential
AT&T customers on a continuous and ongoing
basis. In 2001, we were asked to resurrect Gecko,
with the change of focus to analysing business
(rather than residential) customers and having
rather less funding for the project. We took the
liberty of interpreting this request as a desire to
port the Gecko software to a cluster of PCs run-
ning Linux (or somesuch) and adding some
requirements of our own:

• the system must be highly available and
reliable, requiring only 8×5 support (and not
24×7), even if hardware fails.

• the system must be highly scalable. That
is, we can predict with confidence how much
CPU and disk resources are needed for a desired
workload, and that the resources are roughly lin-
ear in the size of the workload.

• running the system, which has two
major components (managing the hardware and

managing the feeds coming into the system),
must be a simple, low effort activity.

The resulting system, which we call Ningaui (a
small Australian mouse-like marsupial), is based
on a cluster of hefty PCs running Linux, con-
nected by a high speed network. In the follow-
ing sections, we briefly describe the business
problem and its system requirements. We then
describe the Ningaui architecture and how it
meets its goals, and the current implementation,
both what it is, and how well it has met our
expectations. Finally, we’ll do some comparisons
with Gecko, and discuss future plans.

2. The Problem

2.1. The Business Problem

The flow of records through AT&T’s billing
systems, from recording to settlement, is fairly
complicated. For most business calls, the records
flow through seven major billers comprising
15-20 major systems and are processed by a few
hundred different processing steps. Complexity
arises not only from that inherent in the work
(e.g., how to handle records sent to the wrong
biller), but also from the tendency to implement
new features by tacking on new systems, rather
than reworking and integrating the new features
into the existing systems. This flow undergoes
considerable churn both at the process level, and
at the architectural level. The key business prob-
lem is: in the face of this complexity and change,
how do we know that every call is billed exactly
once? (Gecko answered a similar question for
residential calls, but business is harder to do for
two major reasons: 3 times greater volumes, and
probably 6 times as much architectural complex-
ity. Furthermore, each of the major billers was
developed and are run by distinct, independent,
and competing organisations.)

Ningaui attacks this question the same way
Gecko did; it tracks the progress of (or records
corresponding to) each call throughout the
billing process by tapping the dataflows between
systems and within systems. This is a data-
intensive method; for Gecko, it involved a daily
average of 3100 files totaling 250GB per day. It is
a measure of how far things have advanced in 5
years in that for Gecko, this was a novel idea,
whereas today, it seems only a little excessive.
The main difference between Gecko and Ningaui
is the change in platform from a large multipro-
cessor system to a loosely coupled cluster.

2.2. The Technical Problem

The problem is fourfold: we need to con-
vert the various dataflow taps into canonical
fixed-length tags (parsing), we need to match
tags for a call together into tagsets and maintain
them in a database (update cycle), we need to
generate various reports from the datastore
(report generation), and we need a scheme for
backups.

Mainly because tagsets have variable
length and determining their reporting status
requires quite complicated logic, we are unable
to use conventional databases and in fact use
simple sorted flat files. To keep these files, or
database partitions, manageable, we split the
database into about 5000 pieces, based on a hash
of the originating telephone number for each
call. There are several more requirements, out-
lined in[Hum00], but they are unimportant here,
other than we need to do the daily update cycle
as fast as we can.

3. The Current Architecture

At a basic level, the fundamental task of the
cluster is to support data storage and manage-
ment, and to run jobs on the data, and to do so in
a scalable, available way. We made some initial
structural decisions:

• the cluster is a loosely coupled federa-
tion of nodes, and even though there was a
leader node for coordination reasons, the control
paradigm is that nodes announce resources or
ask for work from the leader, and the leader
never unilaterally imposes work.

• all data is stored locally at each node;
there is no networked storage (like SAN) and
certainly no network file system. We distrust
both in terms of performance modelling and reli-
ability.

• all activities, such as job executions, and
data storage, have leases. All cluster activities
and facilities must support nodes going down
and being added with fairly minimal impact.

• we assume the presence of a very fast
and scalable networking fabric.

The cluster infrastructure has two funda-
mental concerns, data storage and job execution,
and support for high availability; these three
issues are described below.

3.1. Data Storage

There are two kinds of cluster data. The
first is various configuration files and the like;
these are distributed from the primary source
machine via mechanisms equivalent to the rsync
program[Tri96]. The second are all the various
application data files, such as feed files, tags to
be added to the database, and the database parti-
tions themselves.

These application data files are managed
by the replication manager, or repmgr. This is a
user level, file based, replication service that dis-
tributes copies amongst nodes, somewhat similar
to, although substantially simpler than, other
such systems such as Ficus[Pop90] and
Magda[Wen01]. Although current fashion
favours schemes replicating at the system call
(read, write) level, we felt a user level scheme
was easier to manage, and easier to diagnose
when things go wrong.

Repmgr handles a single database, namely
that of registered files. Files have a simple data
view; they have a simple, nonhierarchical, name,
MD5 checksum, length, replication count, and a
callback mechanism (called when the file is cor-
rectly replicated). Files are referred to by
(name,md5) tuples, and these tuples are unique
across the cluster.

Each node maintains its own database of
the files, or instances; the database relates path-
names and MD5 checksums. Periodically, each
node sends repmgr its list of instances (of files),
together with a lease time, and measures of how
much space is available.

Repmgr’s work is fairly simple. It takes the
list of registered files, and the set of instances
from all its nodes, and does the appropriate
actions. These are recorded internally as
attempts with leases (the copies have leases, the
deletes do not); any copy that times out is retried
on another node if possible. Repmgr logs all its
registrations and periodically checkpoints (every
5 minutes); restarting takes 30-120s to rummage
through the log, and another 15-20s to start run-
ning.

Repmgr also takes hints. These are not
allowed to interfere with correctness, and can be
used to move files around safely. For example, if
a file is replicated on ning03 and ning12, and
we give the hint to not store a copy on ning03,
then repmgr will make a copy on another (the
least full) node, and only after that copy is made,
will it remove the copy on ning03.

We are paranoid; every file copied to a
node has its MD5 checksum calculated. If a file
gets copied and ends up with a different check-
sum (for whatever reason), repmgr will observe a
new, unrelated, instance appearing and simply
try again. Cleanup scripts are run daily to clean
up apparent detritus.

3.2. Job Execution

Somewhat to our surprise, we have a three
level hierarchy of programs to manage and exe-
cute jobs across the cluster. It is, however, quite a
robust arrangement.

The bottom level is a per system batch
scheduler (woomera) inherited from Gecko. This
is a simple and flexible engine which supports a
number of constraints, such as maximum load
and number of simultaneous processes, in addi-
tion to arbitrary constraints, called resources,
which are akin to counting semaphores.
Although any node can submit requests to
woomera, all subsequent action takes place locally
and independently of the cluster.

The next level in the hierarchy is seneschal,
which implements cluster-wide job executions,
handling node failures and doing some low level
scheduling optimisations. Seneschal takes job
descriptions with three important characteristics:
how to invoke the program, the input
files/resources needed, and the output files gen-
erated. On the basis of resources declared by
nodes, seneschal allocates jobs to these nodes and
schedules the jobs via woomera on those nodes.
The model is that jobs are posted (on seneschal),
and nodes bid for these jobs.

Node failure is handled by each execution
having an assigned attempt number and a lease.
The output filenames for that execution have the
attempt number embedded in them. Upon suc-
cessful execution, the output files are renamed
and the job is regarded as having succeeded. If
the lease expires, or the job otherwise fails, then
seneschal reassigns it (to another node if possible),
incrementing the attempt number. If multiple
attempts succeed, one is chosen as the successful
execution and the other(s) are treated as though
they failed. This scheme relies on the fact all jobs
execute locally and may only affect local, and not
cluster-wide, state.

%BUNDLE = /ningaui/poot
%DATE = 20010728

step2a: [%p in <partitions(abs)>] "generate add file"
<- %node_add
-> %add = %p-342.add
cmd ng_add_gen -i %input %p

step2b: [%p] "partition update"
<- %add
<- %oldpart = %p-341
-> %newpart = %p-342
-> %delete = %p-342.del
-> %report = %p-342.rpt
cmd ng_pu -d %DATE -e 342 %oldpart %add %newpart %delete %report

step3: [%p] "report for deleted tags"
<- %delete
-> %delreport = %p-342.delrpt
cmd ng_report_step1 -e 342 -d %DATE %delete %delreport

Figure 1: A nawab fragment.

Seneschal also supports a number of conve-
nience features such as specifying a node to run a
specific tasks on, and also supports woomera-style
resources to help manage job streams. Seneschal
runs as a single copy daemon, with no check-
pointing; nawab feeds seneschal all its input and
nawab does its own checkpoints.

The final and top level in our hierarchy is
nawab. This is both a language, and a daemon
supporting management of jobs specified by
nawab programs. Nawab is a small domain spe-
cific language designed to facilitate handling
large interrelated job streams; figure 1 shows a
fragment of the program to perform an update
cycle of the Ningaui database. A full description
of the syntax is beyond this paper but the high-
lights are

• iterators are enclosed in []; they are typ-
ically are partitions or sets of nodes. The parti-
tion set here is specific to the abs application.

• inputs and outputs are denoted by <-
and -> respectively; in addition, they can be
given symbolic names usable in command
strings.

• definitions of variables and iterators stay
in effect until redefined

Note that seneschal handles the issues of
sequencing and ensuring inputs are made prior
to initiating jobs.

Nawab is not just a front end or compiler for
seneschal; it also supports managing (deleting,
pausing, monitoring) jobs in terms of the actual

nawab specification. Nawab runs as a single copy
daemon and does its own checkpointing.

3.3. High Availability

We have a simple view of, and method for,
high availability. All programs fall into two
classes:

• ephemeral executions should either fail
or succeed. In general, temporary resource
issues should be handled by failing immediately,
and letting the surrounding retry software do its
job.

• long running executions, such as dae-
mons and programs like nawab and repmgr,
should checkpoint periodically and log every
change pertinent to restarting in the master log
file. Both the checkpoints, and as we described
below, the log messages, are replicated to all
nodes, not only for increased safety, but also so
facilitate quicker restart when we change leader.
Furthermore, these programs should be embed-
ded within a startup script that execute these
programs in a loop, so that there is automatic
restart on a failure.

In order to support this model, we take a
lot of care over logging. Many programs log into
their own logfiles, but all programs log into the
master logfile. Logging to the master file is done
via both of two methods:

• the log message is written directly to the
master log on the current node

• the log message is broadcast (via UDP)
to all nodes in the cluster. The logging routine

returns only after acknowledgements have been
received from a sufficient number of nodes. If
insufficient acknowledgements have arrived
before a timeout, the message is written to a local
nak logfile. The logging daemon writes mes-
sages to both the master logfile and to a sec-
ondary logfile.

Periodically, typically every 5 minutes, a
process gathers up the secondary logfiles (and
nak logfiles if any) and creates a node specific log
fragment which is registered with repmgr. A few
times a day, a second process gathers up log frag-
ments and absorbs them into larger log frag-
ments (one per week for the whole cluster).

Although we have tried really hard to tol-
erate individual failures of various programs and
daemons, sometimes the system is in real trouble
and requires human intervention. We do this
through a two part monitoring system. The first
part periodically checks for processes it knows
should be running and if they are not, it drops a
critical log message in the master log. Appli-
cations may also put such messages in the log,
although mostly we would expect just warn and
error messages. The second part is a single
process crit_alert which looks for critical log mes-
sages and exits when it sees one. This process is
registered with whatever monitoring software
our operations support folks use (for example, in
Gecko, they used BMC Patrol), and the absence
of this process will generate alarms and cause
people to get paged. We have auxiliary com-
mands to extract critical log messages to quickly
determine what the relevant log entries were.
Critical log messages also include a code which
identifies the scenario, likely cause, and normal
fixup procedures.

4. The Current Implementation

4.1. Hardware

We use fairly regular hardware, except we
went for the highest density of disk in our PCs.
The configuration is either 1 or 2 Pentium III
CPUs per 2U high box. Each system has 512MB
memory per CPU, integral 100BaseT Ethernet, a
3WARE PCI disk controller, and an Emulex (pre-
viously GigaNet) CLAN network card. Apart
from a floppy drive and a sprinkling of CD-ROM
drives, the rest of the space in the enclosures is
filled with 82GB IDE drives (currently being
upgraded to 160GB drives). In order to support
experimentation on the effects of CPU speed and
multiprocessorness, we have 16 nodes; 4 of each

combination of 1 or 2 CPUs and 933 or 866MHz
processors. We shipped the CLAN network
cards to the supplier (Net Express)† and they
shipped us the systems ready to go with Linux
and drivers installed. The dual CPU mother-
boards also have dual SCSI ports that we use for
attaching tape drives.

The other hardware is a CLAN 5300 switch
(30 ports) and a QUALSTAR 36180 tape library.
The tape library is used just for rolling backups
of the database. We backup the source and sys-
tem images over the network to one of our local
servers.

We use WTI power controllers; they were
about the only controller available that could
supply enough power. (Even with delayed turn
on, we can only run 4 systems per 20A circuit.)

At the current time we are using RedHat
6.2 and in the middle of transitioning to RedHat
7.2. Although our intent was to support a het-
erogeneous set of operating systems, originally,
there was only CLAN support for Linux. (Of
course, now the best driver is that for FreeBSD!)

We make use of the AST distribu-
tion[Fow00] which apart from providing us very
useful functionality, also insulates us even more
from the underlying system. (The AST distribu-
tion includes both a sophisticated set of libraries
and POSIX compliant versions of the main user
level commands. Perhaps most importantly, the
four main authors of AST have their offices
within 30 yards of ours, and we have their home
phone numbers!) We anticipate very few
changes should we move to another OS, such as
FreeBSD.

All the knowledge and use of the fast net-
working is localised to one command ccp (cluster
cp).

4.2. Software

The rest of the implementation, including
the programs seneschal, nawab, and repmgr, work
as described above. The rest of the application
specific software is largely ported from Gecko
and is uniteresting for the purposes of this paper.

†Net Express (http://www.tdl.com/˜netex/)
offered to install the cards for us and we’re glad we did,
because the cards were larger than we expected and Net
Express had to change the boxes to make things fit.

5. The Results So Far

This is a work in progress; we are just
ramping up into production and we have only
just started finetuning things. Nevertheless,
we’ve learned quite a bit already.

5.1. Hardware

We are generally quite happy with the
hardware. It is amazing to have one rack contain
16 nodes totaling 24 CPUs and 96 82GB drives, 2
power controllers, an Ethernet switch, and a
CLAN switch. While the density is great, we are
a little concerned about heat (despite assurances
to the contrary); we have seen a few flaky com-
ponents. We are often asked why we have so
much disk per node, and shouldn’t we be using
RAID. In retrospect, this was a great decision.
For our sort of applications, a CPU per
250-500GB of disk is a good ratio; significantly
different ratios would yield systems either CPU
or I/O constrained. And having this in a single
box simplifies scalability calculations; if you buy
enough boxes to get the disk you need, you auto-
matically get enough CPU.

Processor (year) kr/s /SPARC
250MHz UltraSPARC (97) 56.7 1.00
197MHz R10000 (98) 72.8 1.28
866MHz Pentium III (01) 97.7 1.72
933MHz Pentium III (01) 102 1.80
250MHz R10000 (02) 104 1.81

Figure 2: Relative performance for CPU intensive
jobs (parsing) in kilorecords per second.

While we are still investigating ways to
increase effective file I/O performance, we are
delighted with the CPU performance. Figure 2
shows the performance relative to the two other
systems we have measured it on. Please keep in
mind that the Sun and SGI systems are 3-4 years
old; undoubtably, their current offerings are
faster. For our cluster of 16 nodes and 24 CPUs,
the overall throughput was about 1.33 that of the
32 CPU Sun E10000 that Gecko ran on. On the
other hand, the cost of the Sun and disk was
about 20 times the cost of the Ningaui cluster.
All hail Moore’s Law and the economics of com-
modity hardware!

Another goal of our setup was to assess the
importance of minor differences in clock speed in
a production environment (as opposed to one of
the standard benchmarks). Figure 3 shows the
effective speed of the system for each of the four

cases (1 or 2 CPUs, 866 or 933MHz); the speeds
are normalised per CPU. It is rewarding to see
we get better speeds from faster CPUs, although
the increase is not as great as the increase in clock
rate. We expect the modest difference in perfor-
mance between the single and double CPU case
is due to the different motherboard and memory
controllers.

CPU 1 CPU 2 CPU
866MHz Pentium III 97.7 98.4
933MHz Pentium III 102 105

Figure 3: How CPU speed and configuration af-
fect throughput in kilorecords per second.

One area where we still need refinement is
how to arrange the disk space. The 3WARE con-
troller is a pseudo-RAID controller, that is, it
does just striping and mirroring. Originally, we
configured it to present each disk as a single
LUN, as in our experience, this leads to the most
efficient use of the most precious resource (disk
heads). However, two problems are forcing us to
change this. The first is bizarrely large tap data
files; the largest one we have seen so far is
140GB. While we deal with these files in a com-
pressed form (around 10-20GB), it would be nice
to have a filesystem where we can store one of
these uncompressed. The second is lack of disk
speed, which you would normally attack by
striping. However, the effects of striping are
obscured by the mandatory Linux buffer cache.
We’re still working this issue, but frankly, this
seems a significant limitation for Linux.

5.2. Networking

As we described above, we use the
100BaseT Ethernet for control messages and UDP
broadcasts of log messages. This network is
comfortably loaded; the average utilisation is
under 0.1%, and we’ve never lost a UDP packet
in several months of operation.

Essentially all our data traffic moves over
the CLAN network. With the version 1 drivers
(on a 2.2.17 kernel), the CLAN behaved itself
admirably, being both fast and reliable. Without
tuning, we measured 80-100MB/s node-to-node
(memory to memory), and often 25-35MB/s.
Figure 4 shows the distribution of observed
speeds of about 182,000 transfers. Basically, this
is a function of how much buffer cache is avail-
able. If there is little to none at both ends, you
get 4-12MB/s; if there is little to none at just one
end, you get 20-30MB/s, and if there is plenty of

buffer cache at both ends, and the source file is in
the buffer cache, you get 50-60MB/s. The fabric
is circuit-switched and we never observed traffic
to any node affecting the transfer speed among
other nodes.

Bulk file transfer speed

MBytes/s

%
of

to
ta

l t
ra

ns
fe

rs

1

2

3

4

5

10 20 30 40 50 60

•

•

•
••••••••••••••

••••••••
•••

•

••

••

•

•
•

••••••••••••••••••••••
•••

•••••••••

Figure 4: Effective CLAN performance for files
larger than 50MB.

Unhappily, we were forced to migrate to
the version 2 drivers (we needed to go to a 2.4
kernel for large files and the version 1 driver
won’t work on a 2.4 kernel). Regrettably, the ver-
sion 1 and 2 drivers cannot coexist on the same
switch (the drivers download microcode into
ASICs on the controller card which talk directly
to the switch). The version 2 drivers are not
nearly as reliable; in particular, rebooting a sys-
tem sometimes breaks the CLAN network on
other systems (requiring them to be rebooted).
And Emulex has not been very good about sup-
port, although the driver source has been
released as "free software" and this is helping a
fairly active user community improve on things.
As far as we can tell, if you have this hardware,
the most reliable (version 2) drivers are now
those for FreeBSD[Mag02].

It wasn’t an option for us, but if we making
the decision today, we would probably go with
1000BaseT Ethernet, although that would intro-
duce some scaling issues (not every node could
be on the same Ethernet). There are other net-
works based on the same ideas as CLAN, such as
InfiniBand†, but we know little about them.

†see http://www.infinibandta.org for more
details.

5.3. System Software

As described above, we were forced to use
Linux because of the CLAN network driver
issues. We didn’t view this as a problem, rather,
we saw it as an opportunity to evaluate whether
Linux was ready for prime time. We started with
RedHat 6.2 and upgraded the kernel to 2.2.19.
We also used ReiserFS for all the filesystems
where we store data. It is fair to say we have
been surprised at how problematic Linux has
been to date (for the record, the authors have
predominately used Solaris and Irix); the prob-
lems we’ve seen include:

• we use a scheme for distributing soft-
ware that used dump/restore. A distribution of
the root filesystem involved rebooting to a
backup filesystem, mkfsing the old root disk,
restoring the distribution onto that disk and then
rebooting again. Doing this by hand never
failed, but doing it automatically failed about 5%
of the time (for no reason that we could find).

• for a while, we couldn’t generate new
kernels. We needed a special Ethernet driver
from Intel that only existed as a module. Appar-
ently over time, our kernel had been growing
because we came to a point where it was too big
to build as a modularised kernel. (Changing to
2.2.19 fixed this.)

• part of the Linux community’s doctrine
is the mantra of if you don’t like a bug you have,
try another release of something (most often, the
kernel) and see if it goes away and the bugs in
this new release don’t hurt you. This scattershot,
hunt and peck method of trying new kernels
until you’re happy seemed, and still does seem,
odd and unsatisfactory to us.

• we initially used gdbm for the per-node
database of files. We gave up quickly; despite
promises to the contrary, whatever locking it
uses was ineffective for our setup. The mean
time to a corrupted database was about 5 hours.
File locking has been much more reliable.

• we encountered a bizarre problem with a
server that did not keep up with a torrent of con-
nections. On any other Unix-like system we’ve
seen, this would fail in a polite way, that is, even-
tually, the clients would start getting connection
refused or somesuch. Instead, no connections
failed and the server would get the file descrip-
tor from the accept system call as normal. The
bad thing was that when loaded, reading the
(approximately 100 bytes of) data from the client
would take anywhere from 30-400 seconds. As
always, the experts recommend trying another

kernel, but instead we went to multi-threading
the server. (Of course, we didn’t thread the
server itself as our kernel didn’t support core
dumps of threaded programs; instead, we built a
multithreaded front end that simply dumped all
its requests down a pipe to the real server.)

• unlike most other Unix variants, Linux
does not support direct I/O. That is, all I/O to
files goes through the buffer cache. For applica-
tions like ours, file I/O falls into two camps; one
needs to be buffered (logfiles, executable images,
config files), the other (database partition files)
should not. For the sake of performance, and not
needlessly churning the buffer cache, we’d like
to bypass the buffer cache for the second camp.
And it is pointless to say we should have more
main memory; more memory always helps, but
we’ll always have more disk than memory, and
in our application, we tend to read and write all
the data with very low cache hit rates.

• another consequence of the mandatory
buffer cache is enormous variability in the execu-
tion times of commands like df during heavy I/O
loads. In these cases, where a node has a dozen
or more files coming in over the CLAN, we have
seen df take over 30 minutes (only 6 filesystems,
no NFS). This is not a huge problem, but some
of our scripts cannot tolerate this variability and
so we have to maintain a cached copy of the df
output.

• when the system is heavily loaded, we
have noticed that jobs of the form
gzip -d < file.gz | a.out > outputfile

have about a 2-5% chance of gzip complaining
about a bad CRC (from a file that is known to be
good). We don’t care particularly, as our soft-
ware essentially treats this as a soft error and
retries the job again, but we suspect most people
would correctly view this bug as pretty unsatis-
factory.

• it turns out that ReiserFS has not been a
good choice for us. (We chose it on the advice of
local experts.) It is unsuited for our file size dis-
tribution (relatively few, big, files) and we get a
panic in the ReiserFS code every couple of
weeks. (This might be resolved by the newly
usable reiserfsck software.) Having a logging
filesystem is really great, though, for quick
reboots. We will switch to the ext3 filesystem
when we finish our migration to the 2.4 kernel.

• we were severely constrained by the
default (and undocumented) limits on how fast
inetd can initiate processes. But at least we could
look at the code and figure out that there was

this limit and how to change it (which we did
from 40 processes per min to 5000).

• we use Java for our monitoring software.
The standard distributions ship with kaffe, yet if
you ask around, kaffe is deprecated and has been
for more than a year. It would seem more effica-
cious to ship something that works, rather than
let the users find out for themselves. We use the
IBM Java environment for Linux; it seems quite
solid.

5.4. Cluster Software

5.4.1. Repmgr

The current replication manager is our
throwaway prototype. It is about 3000 lines of C
and 500 lines of Kornshell scripts. It works well
enough that we are taking our time to design
and implement the "real" one, despite going into
production. As we had learned in Gecko, one of
the more useful features is an explain mode,
where repmgr explains exactly why it is doing, or
not doing, every external action (copies and
deletes).

While the details of the new version are
peripheral to this paper, some are motivated by a
particularly good idea we borrowed from the
Venti storage server[Qui02]. The core idea
behind Venti is that the name, or address, of a
block of data is a function of its contents alone.
Venti uses a cryptographic checksum (SHA1,
although MD5 is equally useful) for its function.
What has this to do with the replication man-
ager? Currently, instances are stored on nodes as
files whose basename is the same as the regis-
tered file. The per node database correlates each
instance and its checksum. This is not too bad a
scheme, but there are a couple of drawbacks: you
have to be careful not to overwrite an instance of
the same name, and it can take a long time to
recreate the database by recalculating the check-
sums for all the instances on a node. The Venti
idea suggests a better solution: name each
instance by its MD5 checksum! There is now no
problem with collisions (if the names match, so
do their contents!), and rebuilding the database
is now trivial.

It is worth asking the question how well
does the registry of files correspond to reality?
In a deep sense, the registry is reality — it is sim-
ply the list of registered files. The correct ques-
tions is how well does repmgr’s view of file
instances correspond to reality? Like all
databases of physical inventory, despite best

intentions, the per node databases of the files on
that node seem to start decaying as soon as you
create the database! You might call this hubris,
but instead, we run a process that corrects and
makes the database and underlying filesystems
consistent. This runs once a day and as a result,
nearly all nodes have zero inconsistencies.

5.4.2. Nawab and Seneschal

The source for nawab and seneschal is about
10000 lines of C. The charming thing about
servers bidding for work is that they are inher-
ently good at load balancing; figure 5 shows a
batch run of 700 jobs distributed over 9 nodes.
As you can see, we keep all 9 nodes busy for the
first 48.5 minutes and then the number of nodes
drops off as we run out of jobs. Part of the rea-
son for the sharp drop off is that seneschal orders
job assignments by size (largest first) so as to get
the best amount of parallel work.

Number of simultaneous jobs and nodes active

Elapsed time (mins)

N
um

be
r

of
 jo

bs
 (s

ol
id

)

N
um

ber of nod
es (d

ashed
)

10

20

30

40

1
2
3
4
5
6
7
8
9

10 20 30 40 50

Figure 5: Effectiveness of seneschal scheduling.

5.4.3. Elections

Every 5 seconds, the nodes in the cluster
elect a leader node using a nifty algorithm by
Christof Fetzer, a variant of the algorithm in
[Fet99]. (The algorithm involves each system
keeping track of each system voting, their prior-
ity, and a lease on the current election. When the
lease expires, we assume the leader has crashed
and the system with the next highest priority
will attempt to become leader. The whole elec-
tion is resolved in just one round of ’voting’.)
This may seem fairly frequent, but we only
change something if the election yields a new
leader. We added two rules to the original elec-
tion scheme: re-elect the current leader unless it
doesn’t vote, and if changing leaders, we have
specified a preferred winner (again, if that

system voted). We normally specify a 2 proces-
sor system to be our normal leader (because of
daemons like seneschal and repmgr).

5.4.4. Logging

Everybody knows it, but most do not do it:
log everything! We expect to be generating over
120MB of master log file per day, and that is
independent of daemon specific logs. And for
every time we have thought we log too much,
there have been multiple disasters and weird-
nesses which could only be resolved by picking
through the logs. Our decision to make the mas-
ter log file replicated throughout the cluster has
really facilitated diagnosis of multinode prob-
lems.

5.5. Application Code

Nearly all the application code was ported
from Gecko without incident. The main surprise
has been in the diversity of data feeds; one sys-
tem sends us about 1000 small files per day,
while another sends us one 140GB file per
month! And it is just plain awkward to deal
with a 140GB file.

5.6. Other Stuff

5.6.1. Zookeeper

Monitoring and managing a cluster of
nodes is not substantially more difficult than
managing an SMP environment, but can be
much more tedious. While we do not view the
cluster as a single (virtual) system, we do require
that we can manage it through a single user
interface. This user interface, which we call
zookeeper, presents customised views represent-
ing various aspects of the cluster. There are four
basic parts of the infrastructure supporting
zookeeper:

• various scripts that gather various sys-
tem statistics and details, which are then pro-
cessed into view data. View data is distributed by
HTTP.

• Java classes, or views, which display
view data. Views may represent hardware/sys-
tem information (disk usage, load averages) or
daemon specific information (seneschal queue
and load distribution information).

• a broadcast mechanism which supplies
low latency incremental updates to view data
(via UDP/IP packets).

• a method for hierarchically constructing
a new view from an arrangement of other views.

Zookeeper’s user interface provides a sim-
plistic, but useful, ability to remotely control
cluster components by allowing for command
buttons within a view. When ’pressed,’ a com-
mand button executes a preprogrammed com-
mand which can allow the user to do such things
as start/stop/pause critical processes, pause or
resume operations on a node, and even power
cycle a node without the user needing to physi-
cally log into the machine.

The graphical user interface portion of
zookeeper was implemented as a Java applica-
tion, rather than a pure Xwindows application.
While less efficient and rather more quirky, this
empowers the unwashed masses (who do not
run X) to to see what is going on. The user inter-
face was not written as an applet as it has the
need to retrieve and communicate with hosts
other than the host that would supply the applet;
something not allowed under the definition of an
applet.

Effect of scaling

Number of Active Nodes

Jo
bs

 p
er

 m
in

ut
e

4 6 8

2.5

5

7.5

10

12.5

• • • • • • •

total throughput
normalised throughput•

Figure 6: Experiments in scaling.

5.6.2. Scalability

Ningaui is inherently scalable because of its
loosely coupled design, especially as it’s unit of
design, the node, is fairly well balanced in terms
of CPU and I/O. Figure 6 shows how the perfor-
mance scales with the number of nodes. It
shows both the total throughput, as well as the
throughput divided by the sum of the through-
puts of the nodes involved. This normalised
throughput is relatively constant. The current
hardware and software architecture could scale
to about 100 nodes comfortably. Above that, we
have some issues:

• networking. The CLAN hardware can
handle fairly large numbers of nodes but

eventually, any single network will not scale.
This mostly affects the replication manager, and
in our new design, we are thinking of supporting
subgroups of nodes with peer-to-peer interfaces
with other subgroups. By having different sub-
groups using different network fabrics, the net-
work can be increased to a large size, at least up
to the thousands of nodes.

• replication manager. Repmgr gets sent
file lists from all its nodes every several minutes.
This does not scale well! On the other hand, the
above subgroup functionality would also miti-
gate this problem, as the total number of nodes
would increase as the square of the repmgr limit.

6. Epilog

One of the unexpected results of the Gecko
work was a relationship between high perfor-
mance architectures for SMP machines and net-
worked clusters:

‘‘designing for a scalable cluster of
systems networked together is iso-
morphic to designing for a single sys-
tem with a scalable number of filesys-
tems. Just as with a cluster of sys-
tems, where you try to do nearly all
the work locally on each system and
minimise the inter-system communi-
cations, you arrange that processing
of data on each filesystem is indepen-
dent of processing on any other
filesystem.’’[Hum00]

The foremost goal on Ningaui was to verify this
relationship and to evaluate whether or not a
loosely coupled cluster of Linux systems was in
fact competitive with large, industrial strength,
high end SMP servers.

Our evaluation is not over; we have still to
go through the grind of doing production runs
for several months before we know for sure. But
so far, the answer is yes. Despite our litany of
problems with Linux and the GNU software, it is
a smaller and less serious list than what we faced
with Sun and Solaris in Gecko. And in almost all
cases, the workarounds were fairly easy, even if
tedious. They have also reinforced our profes-
sional grade paranoia; we believe in checksum-
ming, and checksumming often. (Recently, we
discovered that the zlib compression library does
not detect and pass through all I/O errors, and as
a result, a file system running out of space was
not detected and some poor operator had to
resend us several thousand files.)

Even if we judge the software reliability
issues as even, the tremendous cost, availability,
and scalability advantages of the cluster are just
too great. Eventually, clusters will rule the busi-
ness world, particularly the medium to high end.

Glossary

bid A request for an amount of work. Sent by a
node to seneschal.

biller One or more programmes responsible for
calculating a customer’s bill based on infor-
mation recorded by the switch for each
phone call.

cycle The process which takes all of the tags
received during a period of time (usually
24 hours) and updates the database with
them, deleting old tagsets, and generating
reports.

feed A series of data files received from the
same source. (See stream)

hint A suggestion given to an application such
as repmgr regarding how it should manage
something within its domain. Hints are not
mandatory and may be ignored if comply-
ing with the hint would affect the correct-
ness of the domain.

lease A period of validity for things such as
hints, and jobs. The application managing
an item with a lease must assume that the
item (hint, job, etc) is valid until the item is
specifically changed, or until the lease
expires. A lease expires when its endpoint
is no longer in the future.

parsing The process by which records within a
data file are converted to tags.

stream A group of feeds which are related and
can be processed in the same manner.

tap A point in the billing flow where data is
syphoned off and sent to Ningaui.

tag The set of information that is extracted
from each data record. A tag represents a
single phone call within the billing flow at
a single instance in time.

tagset A group of tags which represent the same
phone call. The tagset describes the history
of a phone call as it was processed within
the billing environment.

Acknowledgements

This work was a team effort; we have had
vital help from Angus MacLellan and assistance
from Christof Fetzer, Mark Plotnick, and Debi
Balog.

The comments of the reviewers and our
shepherd improved this paper; the remaining
errors are those of the authors.

This is an experience paper, and as such,
contains various statements about certain prod-
ucts and their behaviour. Such products evolve
over time, and any specific observation we made
may well be invalid by the time you read this
paper. Caveat emptor.

Contact Information

For any more information about this paper,
or the software described, please contact Andrew
Hume. We expect to be able to release some of
the software tools described here, but the details
will vary over time.

References

[Bec95]. Donald J. Becker, Thomas Sterling,
Daniel Savarese, John E. Dorband, Udaya
A. Ranawak, and Charles V. Packer,
‘‘BEOWULF: A PARALLEL WORKSTA-
TION FOR SCIENTIFIC COMPUTATION,’’
International Conference on Parallel Process-
ing, pp. 20-25, IEEE, http://www.
beowulf.org/papers/papers.html
(1995).

[Fet99]. C. Fetzer and F. Cristian, ‘‘A Highly
Available Local Leader Service,’’ IEEE
Transactions on Software Engineering 25(6),
pp. 603-618, http://www.research.
att.com/˜christof/HALL (Sep 1999).

[Fow00]. Glenn S. Fowler, David G. Korn,
Stephen C. North, and Kiem-Phong Vo,
‘‘The AT&T AST OpenSource Software Col-
lection,’’ pp. 187-195 in USENIX Conference
Proceedings, USENIX, San Francisco (Sum-
mer 2000).

[Hum00]. Andrew Hume, Scott Daniels, and
Angus MacLellan, ‘‘Gecko: Tracking A Very
Large Billing System,’’ pp. 93-105 in
USENIX Conference Proceedings, USENIX,
San Francisco (Summer 2000).

[Mag02]. Kostas Magoutis, ‘‘Design And Imple-
mentation of a Direct Access File System
(DAFS) Kernel Server for FreeBSD,’’

BSDCon02, San Francisco, pp. 65-76 (Feb
2002).

[Pop90]. Gerald J. Popek, Richard G. Guy,
Thomas W. Page, Jr., and John S. Heide-
mann, ‘‘Replication in Ficus Distributed
File Systems,’’ Workshop on Management of
Replicated Data, pp. 20-25, IEEE (Nov 1990).

[Qui02]. Sean Quinlan and Sean Dorward,
‘‘Venti: a new approach to archival stor-
age,’’ Conference on File System and Storage
Technologies, Monterey, pp. 89-101, USENIX
(Feb 2002).

[Tri96]. Andrew Tridgell and Paul Mackerras,
‘‘The rsync algorithm,’’ ANU Computer
Science Technical Reports TR-CS-96-05,
Australian National University (1996).
http://rsync.samba.org/

[Wen01]. Torre Wenaus, BNL (2001).
http://atlassw1.phy.bnl.gov/
magda/info

