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Abstract 

This paper presents an approach to integrate interactive 
real-time 3D graphics into the scripting language Tcl. 
3D graphics libraries are typically implemented in sys-
tem programming languages such as C or C++ in order 
to be type safe and fast. We have developed a technique 
that analyzes the C++ application programming inter-
face of such a library and maps it to appropriate script-
ing commands and structures. As 3D graphics library, 
we apply the Virtual Rendering System, an object-
oriented library that supports 3D modeling, interaction, 
and animation. The mapped API represents a complete 
and powerful development tool for interactive, ani-
mated 3D graphics applications. The mapping tech-
nique takes advantage of the weak typing and dynamic 
features of the scripting language, preserves all usabil-
ity-critical features of the C++ API, and has no impact 
on performance so that even real-time 3D applications 
can be developed. The mapping technique can be ap-
plied in general to all kinds of C++ APIs and auto-
mated. It also gathers reflection information of the API 
classes and supports interactive management of API 
objects. Consequently, interactive development envi-
ronments can be built easily based on this information. 
We illustrate the approach by several examples of 3D 
graphics applications. 

1 Introduction 

In 3D computer graphics and multi-media, a large 
number of software libraries have been developed in the 
past. Examples include the 3D graphics library OpenIn-
ventor [15], the visualization toolkit VTK [13], the 3D 
rendering system OpenGL [16], and an upcoming stan-
dard for media creation and playback called OpenML 
[7]. As a common characteristic, these libraries provide 
low-level C/C++ application programming interfaces 
(APIs) in terms of functions, data types, and classes. 
Developing applications based on these APIs is gener-
ally regarded difficult because developers are fre-
quently confronted with a multitude of functionality 
and the implications of strong typing, and typically it 
becomes difficult to explore and use the library’s capa-
bilities.  

Scripting languages have been successfully used to 
develop large, complex software systems [11]. The 
reasons for this include: 1) Scripting languages simplify 
gluing together existing software components to a sin-
gle application. The simplification results mainly from 
weak typing because this allows developers to interface 
components that use incompatible data types at the 
programming-language level. 2) An API of a pre-built 
library can be integrated by adding new commands to 
the scripting language. Such an extension to a scripting 
language is called binding of an API. A binding further 
simplifies the application development because it gives 
developers easy access to the API and does not require 
detailed knowledge of the underlying system program-
ming language. 3) Scripting enables developers to ex-
periment with libraries and their functionality in a quite 
different way compared to studying a C++ API docu-
mentation. Interactively, developers can  

• instantiate objects and see immediately whether 
their services fit to the problem to be solved;  

• inquire available classes, methods, method argu-
ments, and other public class elements; 

• inquire current objects and manage these objects; 

• modify and deploy objects; and 

• easily integrate object management and object 
visualization into the graphical user interface. 

In this paper, we discuss how to bind the C++ API of 
the Virtual Rendering System VRS [3], a complex and 
large library for real-time 3D computer graphics, to the 
scripting language Tcl [10]. The resulting Tcl/Tk pack-
age is called interactive VRS (iVRS). The mapping, 
which denotes the process of generating the binding, is 
based on an automated analysis of the class interfaces 
and generation of appropriate wrapper classes. The 
binding, however, must guarantee that a) all features of 
the API are transparently accessible in the scripting 
language and b) no major performance penalties are 
introduced. As proof-of-concept, we have developed an 
interactive real-time 3D-map system, called LandEx-
plorer, which can be used to visualize and explore geo 
data (Figure 1).  



Section 2 briefly discusses related work. Section 3 
outlines main aspects of the Virtual Rendering System 
and its API. Section 4 discusses the requirements a 
binding should meet to simplify application develop-
ment. Section 5 explains methods for mapping C++ 
APIs to Tcl bindings. Section 6 gives examples that 
illustrate how developers can interactively use iVRS. 
Finally, Section 7 draws some conclusions. 

2 Related Work 

Tcl is basically a procedural language bundled with the 
powerful user-interface toolkit Tk. A couple of object-
oriented extensions exist that integrate many concepts 
of object-oriented programming languages in Tcl (e.g., 
classes, encapsulation, inheritance etc.), for example 
[incr Tcl] [8] and the extension of Sinnige [14], which 
mimics C++ class syntax. Using these extensions, de-
velopers can specify and implement classes in Tcl. 
However, it is rather difficult to implement real-time 
3D graphics on top of these extensions because graph-
ics data has to be efficiently processed and stored.  

The Tcl interpreter can be extended by new commands, 
which interface external functions written in C or C++; 
object-oriented features of C++ are not directly sup-
ported by Tcl. Therefore, several techniques and tools, 
which are called mappers, have been developed to map 
the API of an existing C++ class hierarchy into ade-
quate constructs of the Tcl language. A general C++-to-
Tcl mapper is SWIG, the Simplified Wrapper and Inter-
face Generator [1]. SWIG can map C, C++, and Objec-

tive-C classes into a variety of higher-level languages 
(e.g., Tcl, Python) by parsing the header files or special 
interface files and generating wrapper code for the 
scripting language. One limitation is that certain C++ 
features are not directly mapped, e.g., overloaded 
methods in C++ cannot be handled without a name 
affix, and smart pointers are not supported. In our ap-
proach, we focus on usability-critical features of C++ 
APIs such as overloaded methods, object management, 
memory management, and class reflection.  

TkOGL [4] directly maps the OpenGL API to Tcl. For 
each OpenGL C function, there is a Tcl command. This 
way, simple scenes can be built based on OpenGL 
functions, but complex scene modeling can only be 
achieved using large numbers of calls to OpenGL C 
functions via Tcl, which decreases speed drastically.  

The Itcl++ mapper [5] is based on [incr Tcl]. Itcl++ 
parses C++ headers and generates C++ wrapper code 
that is linked to generated [incr Tcl] classes. For each 
C++ class, C++ wrapper code and a corresponding [incr 
Tcl] class is generated. The inheritance relationships 
between classes are preserved under this mapping. This 
way, new [incr Tcl] classes can be derived from gener-
ated [incr Tcl] classes. As a proof of concept, the au-
thors completely wrapped the C++ API of the OpenIn-
ventor 3D graphics library. The limitations of this ap-
proach include the missing support for abstract classes 
and overloaded methods and the costly mapping proc-
ess. Our approach targets the same category of C++ 
APIs but does support important C++ API features 
while using significantly less resources because classes 

 

Figure 1: The iteractive 3D-map system LandExplorer, which has been built with iVRS. LandExplorer is used to visualize, 
explore, and analyze geo data. 



are not mirrored into classes of an object-oriented ex-
tension of Tcl. 

The TclObj mapper [12] works based on C++ macros 
and requires the original C++ source to be modified in 
order to access attributes and methods. As a major 
disadvantage of this approach, the mapping process is 
not automatic.  

The 3D game engine Nebula [9] represents an example 
of a complex C++ library wrapped by Tcl focusing on 
game development. The Nebula library is based on the 
scene graph paradigm and can be extended by C++ 
class inheritance. Through the Tcl API, developers can 
construct and configure scene graphs. Nebula provides 
a good example of how efficiently real-time 3D games 
can be created by scripting languages. VRS, however, 
is a general-purpose 3D graphics library, intended for 
any kind of 3D application.  

3 The 3D Graphics Library VRS 

The Virtual Rendering System [3] is a 3D graphics 
library providing a large collection of 3D building 
blocks including different types of geometries, graphics 
attributes, and state-of-the-art real-time 3D rendering 
techniques such as shadowing, reflection, and multit-
texturing. Interactive, dynamic 3D applications are 
implemented by scene graphs and behavior graphs. A 
scene graph specifies geometry and appearance of a 3D 
scene, whereas a behavior graph specifies event han-
dling, time-dependent actions, and constraint handling 
[2]. VRS supports advanced real-time rendering tech-
niques such as texture-based shadows, reflection, or 
multi-texturing capabilities and encapsulates low-level 
OpenGL techniques like P-buffer rendering [17].  

The scene graph is composed of scene nodes, called 
scene things. The nodes basically serve as containers 
for node components. Node components include shapes 
(3D geometries), graphics attributes (e.g., color, mate-
rial specifications, light sources), geometric transforma-
tions (e.g., rotation, scaling, translation), and child 
nodes, which represent scene subgraphs (Figure 2). In 
analogy, the behavior graph is composed of behavior 
nodes that contain node components. For behavior 
nodes, node components include constraints, time re-
quirements, time layouts, and event handlers. To dis-
play a scene, rendering engines traverse scene graphs 
and interpret the node components of the nodes. To 
animated and interact with scenes, events are sent 
through and processed by behavior graphs.  

The API of VRS uses common C++ language features 
such as classes, encapsulation, method overloading, 
inheritance, and templates. The API is strictly object-
based and maintains encapsulation, that is, objects are 
exclusively accessed by method calls. VRS makes a 
clear distinction between API classes and internal 
classes (e.g., interface classes and private classes).  

The VRS API can be considered as a typical API of an 
object-oriented graphics or multimedia library, whose 
usage can be characterized by the following main tasks: 

• Constructing models. To construct scene graphs 
and behavior graphs, developers search for appro-
priate classes, look through the services they pro-
vide, and use instances of these classes to construct 
3D scenes.  

• Modifying models. To modify models, their com-
ponents have to be accessed. To do so, developers 
want to inquire objects of a certain kind currently 
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Figure 2: Example of a VRS scene graph (left) and a snapshot taken from the rendered scene (right). 



instantiated, inspect their state, inquire provided 
services, and call methods.  

• Evaluating models. To evaluate models, they are 
interpreted with respect to an underlying rendering 
system or multimedia system. In VRS, for exam-
ple, the OpenGL engine traverses scene graphs to 
render them, whereas the ray-request engine trav-
erses scene graphs to find picking results. 

Completeness and simplicity are the most important 
quality criteria for any API mapping technique. In addi-
tion, no source code modifications should be necessary 
to generate an API mapping.  

The ability to extend a graphics library at Tcl level 
(e.g., deriving new Tcl classes from mapped Tcl 
classes) is generally not required because to implement 
extensions, access to low-level functionality of the 
underlying system libraries (e.g., OpenGL) is neces-
sary. When the C++ library has been extended, the 
mapping process can be invoked again. Developers able 
to extend the library will also be able to control the 
mapping process. 

4 Requirements of API Bindings  

A binding of an API should allow developers to easily 
access all interface elements of the C++ API within an 
interactive environment such as the Tcl interpreter. This 
way, developers can experimentally explore the API 
and incrementally develop applications at runtime. For 
this, the API binding should support creating, inspect-
ing, modifying, and destroying objects by Tcl com-
mands.  

The API binding needs an efficient and powerful 
mechanism to identify and call methods of the C++ 
API. In particular, string arguments of Tcl commands 
must be automatically interpreted and converted to 
typed C++ arguments (and vice versa), and a corre-
sponding method must be chosen based on the method 
signature. To illustrate that API mapping is subtle un-
dertaking, let us consider a few details of the VRS API: 

• Objects with identity versus objects as values. Most 
VRS classes are derived from the root class 
SharedObj, which represents shareable, dynami-
cally allocated objects. Shareable objects are 
known by their identity. Objects that are handled 
like values are not derived from SharedObj. 
These classes include, for example, mathematical 
classes such as Vector or Matrix. The mapper 
must be able to treat both categories of objects. 

• Reference counting. The class SharedObj imple-
ments a semi-automatic memory management. If 
an object has a link to another object, it references 
that object. If the link is no longer needed, the ob-
ject un-references the other object. If an object’s 
reference counter becomes zero, it is not referenced 
by any other object and, therefore, gets deleted. 
The API binding can take advantage of the refer-
ence counting mechanism to avoid memory leaks 
and to provide convenient memory management 
from a developer’s point of view. 

• Method overloading. Many VRS classes specify 
overloaded methods (e.g., two or more construc-
tors). If overloaded methods differ in the number of 
arguments, they can clearly be distinguished. If 
not, the API binding must be able to distinguish the 
argument types although Tcl does not support ar-
gument typing. 

• Default argument values. Methods can define de-
fault values for their arguments. The API binding 
should allow us to call these methods with and 
without default arguments. 

• Abstract classes. The API binding must detect 
abstract classes and prohibit instantiating objects of 
them. 

• Template classes. All VRS data container classes 
are implemented as template classes. The API 
binding must generate frequently used template 
classes in advance. 
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Figure 3: The handling of method calls by the Tcl binding. 



• Enumerations. Symbolic names specified as enu-
meration constants are frequent elements of VRS 
classes. The API binding must preserve these 
names in its communication with the Tcl inter-
preter. 

• Static class elements. Static methods are frequent 
elements in VRS classes. The API binding must in-
tegrate static methods similar to the syntax used in 
C++, that is, static methods should be accessible 
via the class name. 

VRS consists of approximately 530 C++ classes; about 
280 are relevant for being mapped to Tcl. These 280 
classes include 6 numerical classes and about 45 tem-
plate classes. All classes implement about 2500 meth-
ods. The 70 base classes define 54 abstract methods. 
Method overloading occurs 88 times.  

5 Mapping Techniques 

Our mapping technique concentrates on object-oriented 
language features of C++. It maps, as basic constructs, 
classes and template classes. In the case of templates, 
concrete instantiations must be specified. For each 
class, it can handle virtual and non-virtual methods, 
static methods, overloaded methods, and arithmetic 
operators. In addition, single inheritance is supported. 

The mapping technique does currently not support 
direct access to member variables, non-constant refer-
ences, namespaces, nested classes, and multiple inheri-
tance. These language features rarely occur in the VRS 
API. They could be added in a straightforward way to 
the mapping technique. 

The key idea for mapping a C++ class to the Tcl bind-
ing is to create a wrapper class, which collects interface 

information and reflects C++ class methods with their 
signatures consisting of string arguments only. The 
mapping technique obtains interface information by 
parsing the C++ header files. The wrapper class uses 
converter functions to transform between strings and 
C++ data types, and it links wrapper methods and 
wrapped methods (Figure 3). Both, wrapper classes and 
converter functions are generated automatically. 

The C++ object instantiated by the library is called 
wrapped object. It is accessed by Tcl through a corre-
sponding wrapper object. The call manager handles 
VRS-related scripting commands. First, it identifies the 
wrapper object by the wrapper-object table. Next, it is 
looking through the wrapper-method table of the wrap-
per object for an appropriate method, called the wrap-
per method. If found, it calls that method, which con-
verts its string arguments into C++ data types and sub-
sequently calls the corresponding method of the 
wrapped object. 

5.1 Wrapper Classes 

Wrapper classes are responsible for type-sensitive 
method selection and delegation of their execution to 
C++ method calls. The class Wrapper is the common 
base class of all concrete wrapper classes. It defines 
methods for identifying the class of an object and all its 
base classes. The “class” of the wrapper base class is 
void*. Derived wrapper classes specialize the identifi-
cation methods. For example, the wrapper class for the 
Sphere class defines that its wrapped objects belong to 
the Sphere class and its base classes Shape and 
SharedObj. 

A wrapper method expects an array of strings as argu-
ments. The following example (Figure 4) shows the 

 

Figure 4: A sample class hierarchy (A and B), its corresponding wrapper classes (AWrap and BWrap), and their associated wrap-
per-method tables. 



data relations among the class A and its wrapper class 
AWrap, implemented as follows: 

// wrapped C++ class
class A {

double value;
public:

// constructor
A(double val = 1.0);

// set/get value
double getValue();
void setValue(double val,

bool calc = true);

// polymorph method modified
virtual void modified();

}; 

// C++ wrapper class
class AWrap : public Wrapper {

// pointer to wrapped object
A* obj;

public:

// constructor wrapper method
char* _A(int argc, char** argv);

// set/get value wrapper method
char* _getValue(int argc, char** argv);
char* _setValue_double_bool(int argc,

char** argv);

// modified wrapper method
char* _modified(int argc, char** argv);

};

The implementation of two typical wrapper methods is 
outlined in the following example (converter functions 
are named type2str respectively str2type): 

char* Awrap::_getValue(int argc, char** argv){

// call wrapped method
double res = obj->getValue();

// convert return type to char*
return type2str(res);

}

char* Awrap::_setValue_double_bool
(int argc, char** argv) {

// convert argument 0
double arg0 =

str2type<double>(argv[0]);

// convert argument 1
// handle default argument
bool arg1 = (argc <= 1) ? true :

str2type<bool>(argv[1]);

// call wrapped method
obj->setValue(arg0,arg1);

// no return value (void)
return NULL;

}

5.2 Wrapper-Method Table 

The wrapper-method table stores signature information 
for each mapped method. The signature information 
includes method name, arguments, minimum and 
maximum number of method parameters, flags, and the 
pointer to the wrapper method (Table 1 and 2). The 
flags indicate special-purpose methods such as con-
structors (CTOR) or static methods (STATIC). The 
signature information is needed for correctly resolving 
overloaded methods and argument default values. 

The mapper creates a wrapper-method table by copying 
the wrapper-method table of the base class (if any), 
except methods marked with CTOR or STATIC. Next, it 
inserts entries for methods declared in the class under 
consideration. An entry replaces a stored entry if 
method name and arguments are the same. This way, 
overridden methods are handled. For example, see the 
modified entry in the wrapper-method table of class 
B (Figure 4). 

5.3 Memory Management 

The Tcl commands new and delete create and destroy, 
respectively, wrapped objects. The constructor com-
mand has the following format: 

% new ClassName arg1 arg2 …
objClassName1

The CallManager instantiates a new wrapper object 
depending on the class name written after new and 
iterates over all methods marked with the flag CTOR in 
the wrapper-method table. The first constructor method 
that can convert all incoming arguments is called and 
the wrapped object is constructed. If a shared object is 
created, its reference counter is incremented by one. 
The CallManager generates a unique name for the 
new object and returns it as result. To destroy an object 
we write: 

% delete objClassName1

The CallManager is searching for the given wrapper 
object, removes the entry in the wrapper-object table, 
and deletes the wrapper object. If the wrapped object is 
a shared object, its reference counter is decremented by 
one. Otherwise the wrapped object is immediately de-
stroyed.  

5.4 Converting Arguments 

Converter functions transform data values (respectively 
objects) between Tcl and C++: str2type converts a 
string to the C++ data value and type2str converts a 
C++ data value to a string. If a conversion fails, a Con-
vertException is thrown. The CallManager 
catches this exception. This way, overloaded methods 
are distinguished.  



For standard data types (e.g., char, int, double) 
converter functions are built-in. Derived standard data 
types, like double***, are interpreted as non-typed 
data, that means they are treated as void*. Converter 
functions for object pointers can be handled type-safe 
because of the stored type information in each wrapper 
object. Converter functions for objects of classes de-
rived from SharedObj can additionally use the C++ 
runtime type information and convert precisely to the 
underlying type. In addition, inline conversion provides 
a complementary handling of arguments that are han-
dled “by-value”. 

5.5 Inline Conversion 

Numerical classes such as points, vectors, matrices, and 
rays are frequently used in graphics and multimedia 
applications. Numerical objects are mostly transient, 
i.e., applications use them by value. The example below 
shows how to add vectors: 

% set v [new Vector 1 2 3]

% $v + “4 5 6”
5 7 9

% delete $v

To support numerical objects, we could use the same 
mechanism as for non-transient objects. In the example, 
we could initialize a new VectorWrapper object with 
the arguments “1 2 3”, register and return its name, 
call the method “+” with the argument “4 5 6”, de-
register its name, and delete the wrapper object. This 
approach, however, is neither syntactically elegant nor 
computationally efficient. 

Alternatively, we could implement all API relevant 
methods of numerical classes as Tcl procedures. This 
would duplicate the implementation, lead to less effi-
cient implementations, and involve manual work.  

To cope with transient objects handled by-value, our 
mapping technique supports inline conversion of nu-
merical objects using directly transient C++ objects. 

The vector example above is written as follows: 

% VECTOR “1 2 3” + “4 5 6”
5 7 9

The VECTOR function initializes a static VectorWrap-
per object with the first argument “1 2 3”, calls the 
method “+” with the argument “4 5 6”, and returns the 
result. This way, we save time for creation, registration, 
deregistration, and destruction of the wrapper object. 
Inline conversion functions are generated automatically 
for numerical classes such as Vector, Color, Matrix, 
Ray, and Area. 

5.6 Enumerations 

Enumerations typically represent integer constants by 
symbolic names and, this way, facilitate the usage of 
these constants. An enumeration in C++ is defined as a 
pair of integer value and name.  

Our mapping technique supports C++ enumerations 
similar to the C++ syntax by classname::enumname. 
An enumeration specified this way in Tcl can be di-
rectly mapped to its C++ counterpart. To map a C++ 
enumeration to its Tcl name, the enumeration type (i.e., 
the class) must be known, otherwise only the integer 
value of the enumeration value can be returned.  

% set polygon [new PolygonSet
PolygonSet::Quads]

% $polygon getType
PolygonSet::Quads

5.7 Overloaded Methods 

The C++ compiler can differentiate between overloaded 
methods at compile time based on argument number 
and/or argument type. The Tcl interpreter cannot differ-
entiate based on argument types because Tcl is type-
less.  

To solve this problem, our mapping technique uses a 
try-and-error strategy. In the case of overloaded meth-

Method Name Arguments Min.  Max. Flags Method Pointers 
“A” “double” 1 1 CTOR AWrap::_A
“setValue” “double bool” 1 2 AWrap::_setValue_double_bool
“getValue” “” 0 0 AWrap::_getValue
“modified” “” 0 0 AWrap::_modified

Table 1: Wrapper-method table for class A. 

Method Name Arguments Min.  Max. Flags Method Pointers 
“B” “” 0 0 CTOR BWrap::_B
“setValue” “double bool” 1 2 AWrap::_setValue_double_bool
“setValue” “bool” 1 1 BWrap::_setValue_bool
“getValue” “” 0 0 AWrap::_getValue
“modified” “” 0 0 BWrap::_modified
“calcValue” “” 0 0 BWrap::_calcValue

Table 2: Wrapper-method table for class B. 



ods, we iterate through the method table searching for 
methods with the specified name and the correct num-
ber of arguments. For each suitable method, we try to 
convert argument strings into C++ data objects. If a 
conversion exception occurs, the next suitable method 
will be searched. If no exception occurs, the method 
call was successful. The method-table entry of a suc-
cessful method is moved to the beginning of the table to 
reduce the number of method tests for the next call of 
the same method. 

Some data types, however, cannot be distinguished by 
their value. For example, the characters 17 can be in-
terpreted as int, float, char, or string. In such a 
case, the CallManager calls the first method that can 
convert all arguments of a method. To avoid this non-
deterministic behavior, the name of the method can 
explicitly force a specific data conversion. Example: 

$obj setValue:char 17  

or force conversion as string  

$obj setValue:string 17.  

If no method with the explicit type is present, no con-
version will be done and an error occurs. The explicit 
conversion is the fastest method because no method 
searching is required but the readability of the scripting 
code is reduced.  

5.8 Class Reflection 

The information gathered during the parsing process 
can be inquired at runtime. Each class or object can be 
analyzed regarding: 

• parent and child classes, 

• constructors with complete signature, 

• methods including complete signature, 

• enumerations,  

• objects currently instantiated, and 

• object relationships. 

This information can be used to build sophisticated 
integrated development environments, including syntax 
highlighting for classes, methods and enumerations, 
class hierarchy browser, and run-time object browser 
(Figure 5). 

6 Examples 

iVRS represents a complete 3D graphics package for 
Tcl/Tk. In the following, we illustrate this along several 
examples.  

 

Figure 5: Integrated development environment for iVRS. 



6.1 3D Object Viewer 

As a first example, let us develop a 3D object viewer. It 
can be used to view and inspect 3D objects constructed 
with AutoDesk’s 3ds maxTM.  

The script below completely implements the 3D object 
viewer. A snapshot of the application is shown in 
Figure 5. 

# loading iVRS extension
package require VRS

# create the root scene node
set myScene [new SceneThing]

# create camera and append to scene
set myCamera [new Camera {0 –2 –2} {0 0 0} 60]
$myScene append $myCamera

# insert light source
set distantlight [new DistantLight]
$myScene append $distantlight

# read 3DS file and put it directly into scene
set my3ds [ObjectLoader readFile dragon.3ds]
$myScene append $my3ds

# create Tk OpenGL canvas
set myCanvas [new TclCanvas .view 400 400]
pack .view

# append root scene node to canvas
$myCanvas append $myScene

# append trackball behavior node to canvas
$myCanvas append [new TrackBall $my3ds]

The first command loads the VRS package and initial-
izes VRS classes and wrapper tables. The application is 
implemented by a scene graph, a behavior graph, and a 
3D canvas.  

First, we create the root node of the scene graph and 
store its name in the Tcl variable myScene. The scene 
graph contains a virtual camera, a light source, and the 
subgraph that represent the 3DS object components. 
The Camera object defines camera position, camera 
focus and field of view angle. We activate the camera 
by appending it to myScene. To illuminate the scene, 
we insert a distant light into the scene graph.  

VRS provides an object loading mechanism that sup-
ports several file formats (e.g., JPEG, TIF, 
3D StudioMAX). A call to the static ObjectLoader 
method readFile, tries to find a reader for the given 
file and, if found, returns the object the reader creates. 
The name of the 3DS data object read from 
dragon.3ds is stored in the variable my3ds and in-
serted into the scene graph. The 3DS data object con-
sists of a node whose node content objects represents 
geometry and graphics attributes of the 3DS object. 

Next, we create an OpenGL canvas to display the scene 
graph. The TclCanvas can be treated as a usual Tk 
GUI component; it can be integrated in any Tk top-
level or container widget. The constructor requires a 

well-defined Tk pathname (.view). Then, we pack the 
widget to make it visible.  

We link the canvas to the scene graph and to a behavior 
graph that consists just of a track ball node, which al-
lows users to interactively rotate the 3DS object by 
mouse motion. 

6.2 3D Object Viewer with Shadows 

Let us extend the example of the previous section by 
adding shadows (Figure 6). Shadow rendering is based 
on shadow maps, a texture-based approach that is now 
supported by graphics hardware.  

# loading iVRS extension
package require VRS

# create the root scene node
set myScene [new SceneThing]

# create camera and append to scene
set myCamera [new Camera {0 –2 –2} {0 0 0} 60]
$myScene append $myCamera

# insert light source
set distantlight [new DistantLight]
$myScene append $distantlight

# specify light source that casts shadow
set cast [new ShadowCaster $distantlight]
$myScene append $cast
$myScene append \

[new ShadowCasterSwitch $cast true]

# read 3DS file and put it directly into scene
set my3ds [ObjectLoader readFile dragon.3ds]
$myScene append $my3ds

# specify objects that receive shadows
set shadowed [new Shadowed $distantlight]
$myScene append $shadowed
$myScene append \

[new ShadowedSwitch $shadowed true]

# add box to make shadow visible
$myScene append \

[new Box {-2 –1.1 –2} {2 -1 2}]

# create Tk OpenGL canvas
set myCanvas [new TclCanvas .view 400 400]
pack .view

# append root scene node to canvas
$myCanvas append $myScene

# append trackball behavior node to canvas
$myCanvas append [new TrackBall $my3ds]

In VRS, several attribute classes control the shadow 
rendering technique. In the example, we specify in 
which scene subgraphs shapes and light sources cast 
shadows (ShadowCaster) and in which scene graphs 
shapes receive shadows (Shadowed). Because shadow-
ing is a global illumination phenomenon, we can con-
trol locally shadowing by switch objects (Shadow-
CasterSwitch and ShadowedSwitch) 



6.3 Integrating Tcl Scripts as Callbacks 

In VRS, scene graphs and behavior graphs can also 
include nodes that define callbacks for certain types of 
events (e.g., time events, redraw events). Callbacks are 
able to call, for example, C functions or object methods. 
We extended VRS by a specialized callback class that 
encapsulates a Tcl script and invokes that script if the 
callback is activated. As a consequence, we can insert 
Tcl scripts at any position in scene graphs and behavior 
graphs. This way, the traversal of a graph is not entirely 
under control of the C++ engines but can be partially 
defined by scripts. 

The following example extends example 6.1 by creating 
a Tcl callback that saves the current contents of the 3D 
canvas and writes the contents to an image file. The 
resulting image files could be compressed to an AVI or 
MPEG stream.  

# snapshot proc
proc writeSnapshot {} {

# make canvas available
global myCanvas

# save canvas content to Image object
set myImage [$myCanvas snapshot]

# make unique filename
set filename snap[clock ticks].ppm

# call static method to write ppm image
PPMWriter writeFile $myImage $filename

}

# create TclCallback for writeContent
set myCall [new TclCallback writeSnapshot]

# create callback node for scene graph
set myRedraw [new SceneCallback $myCall]

# add SceneCallback to scene graph
$myCanvas append $myRedraw

The Tcl procedure writeSnapshot is responsible for 
capturing the current canvas contents into an Image 
object. The snapshot is saved as PPM file under a 
unique filename. To write the canvas contents after 
each redraw, a TclCallback object is used; it is in-
serted into the scene graph node myRedraw that in-
vokes the callback in the case of a redraw event. Fi-
nally, we have to append that new node into the scene 
graph. 

6.4 Development Environments 

The API information, which is gathered during API 
analysis and stored as part of the API mapping, facili-
tates the construction of development environments. As 
core parts, we can take advantage of the collected in-
formation to build automatically control widgets for 
objects. The following example shows widgets that 
query constructor arguments and types, and instantiate 
GUI components based on this information, which are 
used to manipulate the initial values of the constructor 
arguments (Figure 7).  

# specify the desired class
set what Sphere

# iterate over all constructors
foreach {name types args defs} \

[VRS info ctors $what] {

# iterate over all constructor arguments
foreach t $types a $args d $defs {

# build GUI components for arguments
label .l$a -text "$a ($t)" -width 10

# switch depending on type
if {[string equal $t double]} {

scale .e$a -variable $a
} else {

entry .e$a -textvariable $a
}
pack .l$a .e$a -side top

# append to argument string
append ctor_args "\$$a "

}

# button to create and insert object
button .b -text Create -command " \

set obj \[new $what $ctor_args\];\
\$myScene append \$obj"

pack .b -side top
}

The VRS info ctors command returns a list of all 
constructors of the specified class containing all argu-
ment types, argument names, and argument default 
values. The widget snapshots (Figure 7) show widgets 
for torus objects (defined by outer radius, inner radius, 
center, and three aperture angles), sphere objects (de-
fined by radius, cutting planes in y, and aperture angle), 
box objects (defined by two corner points), and cone 
objects (defined by height, radius, and aperture angle).  

 

Figure 6: Viewer for 3D objects with shadows. 



Our mapping technique preserves not only the argu-
ment types of methods but also the argument names and 
their default values. This information is important for 
documenting the API and provides valuable informa-
tion when developers want to interactively explore 
classes, objects and their methods. API information and 
run-time type information thus allow us to design inte-
grated development environments in a straightforward 
way. Figure 5 illustrates such an environment built for 
VRS: Developers can browse classes, edit scripts, ex-
plore classes, inspect objects, and run applications.  

6.5 An interactive 3D Map System 

The mapping technique has been used to bind the APIs 
of VRS and LandExplorer, a 3D-map library built on 
top of VRS, to Tcl. Using iVRS and Tcl, we have im-
plemented a complete interactive 3D-map system.  

The 3D-map system supports real-time, multi-
resolution terrain rendering, multi-texturing of the ter-
rain surface, and integration of 3D objects into the 
terrain model. In addition, various exploration functions 
have been added such as information lenses, fly-
throughs, and meta-views.  

Although real-time terrain rendering is time critical, the 
API mapping has no noticeable impact on performance 
because scene graph traversal, the most critical part of 
the display, is performed within C++. Even if some 
callbacks of a scene graph or behavior graph use Tcl 
scripts, the overall performance is not being affected.  

As main advantages for building complex 3D graphics 
applications we observed: 

• Easier class, object, and method selection. 

• Easier construction of scene graphs and behavior 
graphs. 

• Easier implementation of variants. 

• Easier execution of experiments. 

• Rapid prototyping. 

7 Conclusions and Future Work 

The described API mapping technique copes with im-
portant C++ language features such as classes, over-
loaded methods, operator methods, enumerations, and 
inheritance relations. It also analyzes the API with 
respect to argument names and default values. A semi-
automatic memory management facilitates the usage of 
objects through the scripting language. Objects used 
“by value” are treated differently by inline conversion. 
Furthermore, the mapping technique uses standard Tcl 
without the need for any object-oriented Tcl extension. 

The mapping technique gathers API information (e.g., 
classes, methods, and arguments) and provides run-time 
type information (instantiated objects, list of available 
classes, etc.). Both are the prerequisites for interactive 
development environments.  

As a proof-of-concept, the complete C++ API of the 
Virtual Rendering System has been mapped to Tcl 
successfully. Since scripts mainly construct and modify 
models (e.g., scene graphs, behavior graphs, and node 
components) but are not directly involved in evaluating 
these models (e.g., scene graph traversal), applications 
written with Tcl are almost as efficient as applications 
written in C++. Even real-time 3D computer graphics 
such as 3D terrain viewers can be implemented based 
on the mapped API. 

Finally, we observed that developers can use the 
mapped API more easily than the C++ API because no 
detailed knowledge of C++ is required and the library’s 
functionality can be interactively explored and immedi-
ately applied.  

In our future work, we are going to support additional 
C++ language features such as namespaces and nested 
classes. Furthermore, C++ comments of public methods 

 
 

 

 

Figure 7: Automatically generated construction widgets for the classes Torus, Sphere, Box, and Cone. 



should be recognized (e.g., doxygen style [6]) and inte-
grated into the run-time class reflection of iVRS. The 
implementation of mappings to other scripting lan-
guages such as Perl or Python is currently under devel-
opment.  

VRS and iVRS are free software under the GNU Gen-
eral Public License and can be downloaded at 
www.vrs3d.org.  
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