
USENIX Association

Proceedings of the
FREENIX Track:

2002 USENIX Annual Technical
Conference

Monterey, California, USA
June 10-15, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Linux NFS Client Write Performance1

Chuck Lever, Network Appliance, Incorporated
<cel@netapp.com>

Peter Honeyman, CITI, University of Michigan
<honey@citi.umich.edu>

1 This document was written as part of the Linux Scalability Project at
CITI, U-M. The work described here was supported via a grant from
Network Appliance, Incorporated.

Abstract

We introduce a simple sequential write benchmark and
use it to improve Linux NFS client write performance.
We reduce the latency of the write() system call,
improve SMP write performance, and reduce kernel
CPU processing during sequential writes. Cached write
throughput to NFS files improves by more than a factor
of three.

1. Introduction

Network-attached storage (NAS) is an easy way to
manage large amounts of data. Applications access data
stored on NAS via various standard Internet protocols
such as HTTP and NFS [6, 20, 21]. To make network-
attached storage compete with locally attached storage
requires that NAS provide equivalent performance.
NAS server performance is well understood, but client
performance has long been terra incognita.

As Linux servers proliferate within enterprise informa-
tion infrastructures, performance of the Linux NFS cli-
ent emerges as a factor critical to the success of com-
plex applications such as database and mail services
that use network-attached storage. Efficient access to
shared data in laboratories that make extensive use of
Linux workstations also depends on superior NFS client
performance.

We are interested in two equally important goals. Our
first goal is narrow: to improve the performance of the
Linux NFS client. To do this, we also pursue a broader
goal of identifying factors that influence NFS client
performance.

To understand NFS client performance issues, we de-
veloped a simple file system benchmark that measures
write latency and throughput. In this paper, we describe
and rationalize such a benchmark, and use it to identify
several means to improve application write performance
to files accessed via the Linux NFS client. We also sug-
gest ways to apply the benchmark and comparative
techniques to client performance in general.

The remainder of this paper is organized as follows. In
Section 2, we detail the development of the benchmark
and identify issues that distinguish client from server
performance benchmarking. In Section 3, we use this
benchmark to expose and correct latencies in the Linux
write() system call. In Section 4, we outline future
areas of exploration and conclude the paper.

2. Measuring NFS client performance

In this section we develop a rationale for a simple se-
quential write benchmark based on Bonnie [1]. This
benchmark was developed on specialized hardware
(described in Section 3.1) that includes SMP Linux
NFS clients connected to a prototype Network Appli-
ance F85 filer via gigabit Ethernet.

2.1. Client performance issues

NFS is based on a “client makes right” design: the cli-
ent is responsible for ordering bytes, managing network
and server congestion, and otherwise handling the com-
plex issues of implementing a distributed file system.
This leaves the server simple and scalable [15]. In fact,
NFS servers maintain very little state. Satyanarayanan,
et al. [16] justify this architecture by pointing out that

in typical client/server distributed systems, “worksta-
tions have cycles to burn.” Consequently, an NFS client
tends to be complex, which can interfere with efficiency
and correct behavior.

Measuring NFS server performance is well understood.
Computer science literature contains many examples of
benchmarks meant to quantify NFS system perform-
ance or server performance [13, 17, 23]. SPEC SFS is a
typical NFS server benchmark [19]. To remove client
behavioral and performance variations from benchmark
results, SPEC SFS uses its own user-space NFS client
to access NFS servers under test.

Client performance measurement differs from server
performance measurement. Generic file system bench-
marks are biased towards exercising the weaknesses of
disk storage, which is not terribly useful in divining the
nature of a file system implementation that uses a net-
work device as its back end. For example, iozone, a
typical file system benchmark, tests both random and
sequential read and write requests [13]. A client sends
random write requests to a server as fast as it sends
sequential ones. If performance differences exist
between random and sequential NFS accesses, it is
likely we are measuring server disk performance and
not client behavior.

NFS client performance depends on the performance of
networks and servers. It is problematic, however, to
operate an NFS client without any server, thus it is dif-
ficult to isolate performance problems specific to a cli-
ent. A slow server or network can cause application
performance problems that are relatively easy to iden-
tify and fix; as we demonstrate, faster server perform-
ance can also degrade client performance.

A client’s on-the-wire write request behavior sometimes
affects server performance and scalability. Clients can
modulate an application’s unfortunate (random) access
pattern to help servers scale better [7, 9]. The relation-
ship between client and server must be carefully con-
sidered when dissecting client performance issues. In
this paper, we focus only on a client’s ability to get re-
quests to the server. In later work, we may approach
issues of server scalability that arise from client misbe-
havior.

One way to measure client performance is to eliminate
performance bottlenecks from downstream components,
using fast networking technologies and non-volatile
RAM on the server, and to push the client as hard as
possible to see what breaks. Just as SFS uses the same
client to test different servers, a simple memory-based
server could be developed to compare clients more
fairly.

Another approach compares the performance and be-
havior of a single client under more typical workloads
across a variety of networking conditions and server
types. For both approaches, it is necessary to be wary of
the bias of traditional file system benchmarking towards
measuring disk behavior instead of other factors that are
more important to client performance.

We borrow from both approaches in this study. Our
hardware test bed consists of high-performance SMP
Linux client hardware connected via a high-
performance gigabit Ethernet switch to a prototype
Network Appliance F85 filer. Also included in our test
bed are a four CPU Linux server, and several single-
CPU Solaris NFS clients (not used in this report).
Comparing behavior and performance among these
clients and servers exposes performance issues that
might otherwise escape attention.

2.2. Related work

Little related work focuses specifically on NFS client
performance. Improving NFS performance often
amounts to helping the server use its disks more effi-
ciently by improving client caching strategies, as in
Dahlin, et al. [3]; or as in Juszczak, who adds write
clustering to clients to help server scalability [7]; or by
adding new features to the protocol, as in Macklem’s
Not Quite NFS [9].

Martin and Culler investigate NFS behavior on high
performance networks, but do not address implementa-
tion specific issues in existing clients [10].

The closest previous work we found describes perform-
ance improvement (reduced CPU loading) through
elimination of data copies in the 4.3BSD Reno NFS
implementation [8].

2.3. Inter-run variance on Linux

Our experience with performance measurement on
Linux has taught us to expect large variations in results
between individual benchmark runs on the same O/S
version and software and hardware configurations.

Other benchmarks performed by the authors in the past
have revealed inexplicable variations in performance of
several parts of the Linux kernel, including the virtual
memory subsystem, the scheduler, and parts of the sys-
tem whose correctness depend on the global kernel
lock. There are often one or more outlying data points
that skew average results, often masking relevant
behavior. Such variations are not common in commer-
cial operating systems such as Solaris. The best

results on Linux are excellent, but they are too often
hampered by the outliers, leaving only moderate to
good performance on average. Several measurements
reported here illustrate this phenomenon.

To make forward progress we must often ignore these
variations. Over time, our experience resolves many of
these issues, but one could wish that untuned system
behavior were more consistent.

To address this, we generally report single run results in
this paper. The “shape” of the results is typically consis-
tent from run to run, including any highly variable out-
lying results. We are most interested in trends rather
than precise measurements, noting any anomalies.

2.4. Introducing our simple write benchmark

We started by measuring the Linux NFS client with
Bonnie to understand several aspects of Linux client
performance in combination, under a simple but typical
load. We refined our benchmark to include only a small
part of the suite of tests performed by Bonnie. In this
section we discuss what was left out, and why.

Using a simple microbenchmark rather than a complex
application simulation provides immediate and uncom-
plicated feedback without the additional effects of other
application processing, improving the repeatability of
results. It also offers a workload that drives specific
components of a client with surgical precision. How-
ever, a microbenchmark does not offer a clear assess-
ment of real world application performance impact.

We based our benchmark program on the block sequen-
tial write portion of the Bonnie file system benchmark.
This test measures how quickly an application can write
8 KB chunks into a fresh file. Writing into a fresh file
narrows our focus to write code pathways because the
client does not read any preexisting file data from the
server to complete write requests. Write throughput
depends on the behavior of the kernel’s VM, network-
ing, and RPC layers, and offers a generic picture of file
system performance. In addition, raw write perform-
ance is important to many typical real world workloads.

Both read and write operations are network-intensive
because data is transmitted along with these requests.
However, client O/S caching moderates the perform-
ance of application read requests on the client; writes
reflect network efficiencies and latencies more directly
[14]. Using sequential writes we minimize disk latency
(i.e., seek time) on typical disk-based servers. As
pointed out in Section 2.1, we gain little new informa-
tion about a client by comparing random and sequential
results. We considered testing against a memory-only

server, but we chose to start with a benchmark that does
not require atypical server modifications. Thus we have
a simple and typical application to run on a client that
exercises many of the critical paths between client and
server.

Bonnie includes the final close() call in elapsed time
and throughput calculations to capture I/O that occurs
after the last write(). However, for many local file
systems, dirty data remains in the system’s data cache
after the final close() operation. To make fair com-
parisons between NFS (which always flushes com-
pletely before last close due to close-to-open semantics)
and local file systems (which may delay flushing to
improve perceived performance), our benchmark re-
ports three throughput results: one for all writes, one for
the subsequent flush operation, and one for the final
close operation. Each result is a throughput measure-
ment reported in megabytes per second (MBps), and is
calculated by dividing the total number of bytes written
by the amount of time from the beginning of the
benchmark until just after the respective operation
(writes, flush, close).

Our benchmark also reports system call latency. One
can calculate throughput by dividing average system
call latency into the average byte size of each request.
Reducing system call latency has immediate positive
effects on throughput. However, to get to the heart of
system call misbehavior, it is sometimes necessary to
record actual, and not average latency. As we demon-
strate, jitter (variation in latency from one call to the
next) drastically degrades data throughput in our test,
and is easily revealed when examining actual results
rather than computed averages.

3. Write latencies in the Linux NFS client

Here we report the results of our benchmark when run
on an SMP Linux client against files on a Linux NFS
server and a Network Appliance filer. Our goal is to
identify and correct write performance problems.

The first section describes our software and hardware
configuration, and the following sections report our
measurements and describe our fixes. We finish with a
description of recent improvements to the Linux NFS
client resulting from our work.

3.1. Systems under test

In this section, we describe the systems used during
these tests.

Client system: Our client software runs on a dual proc-
essor Pentium III system based on the ServerWorks III
LE chipset. The processors are 933 MHz FC-PGA
packages with 256 KB of level 2 cache. The front-side
bus and SDRAM speed is 133 MHz. There is 256 MB
of PC133 registered SDRAM in each system. The client
has one 30GB IBM Deskstar 70GXP EIDE UDMA100
drive. Because of limitations in the ServerWorks south
bridge, the IDE controller runs in multiword DMA
mode 2. The ServerWorks chipset supports two 64-
bit/66 MHz PCI slots; there is a Netgear GA 620T gi-
gabit Ethernet NIC in one of these that supports
1000base-T (copper). The Netgear card uses the Alteon
Tigon II chipset. This system runs a Linux 2.4.4 kernel
with the Red Hat 7.1 distribution.

NetApp filer: The Network Appliance filer is a proto-
type F85 with eighteen 36 GB Seagate 336704LC SCSI
drives. The F85 has a single 833 MHz FC-PGA Pen-
tium III with 256 KB of level 2 cache, 256 MB of
RAM, and 64 MB of NVRAM on a PCI card. The sys-
tem supports several 64-bit/66 MHz PCI slots that con-
tain a Q-Logic ISP 1280 SCSI controller and a fiber
optic gigabit Ethernet card based on Intel’s GbE chip-
set. Data stored on this system is contained in RAID 4
volumes. This system runs a pre-release of Network
Appliance’s DATA ONTAP operating system2. Special
options enabled on the test volume include the
no_atime_update option, which eliminates seek-
intensive inode write activity during workloads that
consist mostly of read requests. This option probably
has no effect for our write-intensive workloads. The test
volume contains eight disks in a single raid group.
Snapshots are enabled during these tests.

Linux server: Our Linux NFS server is a four-way Intel
system based on the i450NX mainboard. There are four
500 MHz Katmai Pentium III CPUs, each with 512 KB
of level 2 cache. The front-side bus and SDRAM speeds
are 133 MHz. The system contains 512 MB of SDRAM
and six Seagate SCSI LVD drives of varying model,
controlled by a Symbios 53c896 SCSI controller. The
system is network-connected via a Netgear GA 620T
1000base-T Ethernet NIC installed in a 32-bit/33 MHz
PCI slot. This system runs a Linux 2.4.4 kernel with the
Red Hat 7.1 distribution. NFS files stored on this sys-
tem reside on a single physical disk (no RAID). To
maximize server write performance, we use the async
export option; throughput results reported for the Linux
server are therefore not comparable to a production
server.

2 Benchmark results produced on prototype hardware and
software do not necessarily reflect the performance of any
released product.

These systems are connected to a single Extreme Net-
works Summit7i Ethernet switch. The copper connec-
tions are made via CAT6 UTP cabling, and the fiber
connection to the filer is standard multi-mode. Jumbo
packets are not enabled on the switch or on any of the
systems under test during these benchmarks. Unless
otherwise mentioned, all network links are one Gbps,
full duplex.

Both the Network Appliance filer and the Linux NFS
server are mounted with typical mount options: NFS
version 3 via UDP, rsize=wsize=8192. As of kernel
2.4.4, the Linux kernel NFS server does not support
sizes larger than 8K. Using a smaller wsize causes the
Linux client to use only synchronous network writes,
resulting in a significant drop in write throughput. In
addition, these sizes match the block size of our simple
write benchmark.

The Network Lock Manager is disabled during our test-
ing to reduce protocol overhead. Later we can test how
much overhead is caused by Lock Manager interaction,
after we quantify the baseline overhead for data trans-
fer.

Using jumbo Ethernet frames is an easy optimization
that can improve data throughput. However, jumbo
frames work only for networks that allow large frame
sizes from end to end, which makes them unsuitable in
many situations. Because many realistic local and wide-
area networks use smaller frames, it is useful to study
the cost of packet fragmentation and reassembly. Thus,
we chose to leave jumbo frames disabled during our
tests.

3.2. Local versus network write performance

To begin, we compare the performance of sequential
writes into a local file system (ext2fs [2] on the client)
to the performance of sequential writes into a net-
worked file system (NFS served from the filer and from
the Linux NFS server). This compares the cache per-
formance of ext2 against the cache performance of NFS
without regard to back end performance. Ext2 cached
write performance is a target for NFS client cached
write performance.

This test calculates write throughput by dividing the
total number of bytes written by the elapsed time re-
quired for all of the write() system calls to com-
plete. Figure 1 shows throughput results that include
only write calls, not including the final flush() and
close() calls included. To allow a better comparison,
the latter results are not included because ext2fs usually
does not flush after close().

0

50000

100000

150000

200000

0 50 100 150 200 250 300 350 400 450 500

w
rit

e
th

ro
ug

hp
ut

 (
K

B
/s

ec
)

file size (MB)

Linux NFS (async)
Netapp filer

local ext2

Figure 1. Local v. NFS cached write performance.
Write throughput is measured for test files between the
sizes of 25 MB and 450 MB. Note that the large peak
in memory write performance for local files does not
appear for NFS files. NFS memory write throughput
remains constrained to network/server throughput.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000

ac
tu

al
 w

rit
e(

)
sy

st
em

 c
al

l l
at

en
cy

 (
m

ill
is

ec
s)

count of write() system calls

Linux 2.4.4 client against NetApp F85

Figure 2. Write() system call latency. This figure
shows the first 1000 write system calls during a 40
MB benchmark run. Periodically, write system calls
take more than 19 milliseconds, increasing the mean
latency, thus decreasing overall throughput.

Writes to local files are very fast while there is still
memory available to cache dirty data. As the test file
size approaches the size of client memory, performance
drops to raw disk speeds. In contrast, the NFS client
constrains write throughput even though there is ample
memory available to cache writes. During the test, the
application can generate data only as fast as the NFS
server can take it, no matter how small the file is; little
or no write buffering appears to occur on the client. In
the next subsection, we explore this limitation.

3.3. Periodic latency spikes

Early in our testing we discovered that write() sys-
tem call latency varies wildly but periodically. To ex-
plore write() system call latency, we execute our
benchmark against a single 40 MB file residing on the
Network Appliance filer, and report latency for
write() system calls during the test. A typical result
is shown in Figure 2.

While most writes complete within 300 microseconds,
there is a periodic jump in latency approximately every
85 system calls. The latency for these slow system calls
is over 19 milliseconds. While there are relatively few
of these slow calls (37 out of 2560 calls in this run, or
about 1.5%), they inflate the mean latency for the run
from 139.6 microseconds per call (excluding the 37
calls exceeding 1 millisecond) to 482.1 microseconds
per call, a factor of almost 3.5.

We observe similar results with both the Network Ap-
pliance filer and the Linux NFS server. The latency
spikes do not appear in write requests on the wire.

Eliminating spiky latency behavior seems likely to
lower average write latency and improve write through-
put. We instrumented the Linux NFS client’s write code
path to record the time required for each step of a
write() system call. We use the Linux kernel’s
do_gettimeofday() kernel function to capture
wall clock time on either side of a target section of
code, then record the timings in the kernel log.

We discovered several places where the Linux NFS
client delays writer threads to keep memory usage in
check. It delays writers when the number of pending
write requests for an inode or mounted file system ex-
ceeds fixed limits. When the per-inode request count
grows larger than MAX_REQUEST_SOFT (whose value
is 192 in the 2.4.4 kernel) the NFS client forces the
writer thread to schedule all pending writes for that
inode and wait for their completion before resuming the
current request. When the per-mount request count
grows larger than MAX_REQUEST_HARD (whose value
is 256 in the 2.4.4 kernel) the NFS client suspends any
thread writing to that file system until another thread
signals there are fewer than MAX_REQUEST_HARD
requests. Each internal write request is no larger than a
page. This implementation does not employ hysteresis
to smooth the request load.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1000 2000 3000 4000 5000 6000 7000

ac
tu

al
 w

rit
e(

)
sy

st
em

 c
al

l l
at

en
cy

 (
m

ill
is

ec
s)

count of write() system calls

Linux 2.4.4 client against NetApp F85

Figure 3. Write() system call latency without peri-
odic flushes. We show an entire benchmark run with a
100 MB file. The latency axis is the same as Figure 2.
The periodic spikes in write system call latency are
gone, but average latency grows worse over time.

These limits prevent a large backlog of write requests.
This is a classic time-space tradeoff. By limiting the
amount of space available to buffer NFS writes the op-
erating system avoids the expense of reclaiming pages
at network and server latency speeds. It also avoids
memory starvation if many write requests are pending
when a server becomes unavailable.

Every system call in our test generates two write re-
quests (8192 bytes is two pages, thus two requests).
After the test application makes 90 write()calls, at
least 180 internal requests are queued on the test file’s
inode. If the server is lagging, there may be requests
from writes older than the past 90 system calls. There-
fore, every 80 to 90 system calls, the client flushes the
inode’s write request queue. This produces the spiky
latency seen in Figure 2.

In the Linux NFS client, a separate daemon, called
nfs_flushd, flushes cached write requests behind a
writing application. To minimize the cost of writes, the
client should cache as many requests as it can in avail-
able memory [9]. The Solaris NFS client, for example,
flush write requests only when the application requests
it (via fsync() or close()), or unless the client
cannot allocate more memory for new requests, in
which case the VFS layer blocks the writer [4].

We see in Figure 3 that the periodic latency spikes are
gone. However, mean latency does not improve: for the
entire run (6400 writes in this case) the average latency
is 484.7 microseconds. Furthermore, latency increases
over time. We investigate this behavior in the next sec-
tion.

3.4. List scans and sequential write performance

Scalability problems are often the result of lengthy data
structure traversals. To establish whether data structure
traversal limits throughput, we used a kernel-profiling
tool that provides a sample-driven histogram of kernel
execution to pinpoint areas of heavy CPU usage.

The profiler exposed two functions in the NFS client
that consume significant CPU resources during the
benchmark run: nfs_find_request() and
nfs_update_request(), both of which use the
inline function _nfs_find_request(). This
helper function scans a sorted list of an inode’s write
requests to find a request that matches an application’s
current write request. The list is maintained in order of
increasing page offset in the file.

Eliminating periodic write request flushing makes this
per-inode list much longer. The sequential benchmark
causes the client to traverse the list completely during
each write system call, only to find no matching re-
quest, whereupon the client adds the new request to the
end of the list.

To improve scalability, we implemented a hash table,
similar to other hash tables in the Linux kernel, to man-
age the client’s outstanding write requests. This hash
table supplements the per-inode write request list. Find-
ing a pending write request is now much faster, at a
memory cost of eight bytes per request and eight bytes
per inode, plus the size of the hash table itself.

The Linux VFS layer passes write requests no larger
than a page to file systems, one at a time. Before the
NFS client builds an RPC request, it maintains these
page write requests on a per-inode list, ordered by page
offset. Our modification inserts requests into a hash
table based on the requesting inode and the page offset
of the request.

All requests to the same page in the same inode are kept
in the same hash bucket, so any overlapping requests
are detected by searching all the requests in a single
bucket. The client usually caches only a single write
request per page to maintain write ordering, so this is
normally not an issue. Write requests are coalesced into
wsize chunks just before the client generates write
RPCs.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1000 2000 3000 4000 5000 6000 7000

w
rit

e
la

te
nc

y
in

 m
ill

is
ec

on
ds

 p
er

 c
al

l

count of write() system calls

Linux 2.4.4 client against NetApp F85

Figure 4. Write() system call latency with scalable
data structures. Write latency remains low even as
the number of outstanding requests increases for the
entirety of this benchmark run against a 100 MB file.
For comparison, the latency axis is the same as in
Figures 2 and 3.

We see the improvement of using a hash table to track
write requests in Figure 4. Write system call latency
during this run averages 136.9 microseconds per call,
about the same as the mean for the original 2.4.4 client
when latency spikes are excluded (see Figure 2). The
sustained memory throughput of our sequential write
benchmark is now almost 115 MBps, compared to 28
MBps in Figure 1 for a 100 MB file.

We also notice a gap of greatly reduced jitter for a few
hundred calls in the middle of Figure 4. This gap ap-
pears in several runs against the filer. We investigate
this further in the next section.

3.5. Global kernel lock on SMP hardware

Having eliminated the extra flush in the write path, and
implemented a scalable hash table to track write re-
quests, we now compare write throughput performance
of our client against a Network Appliance filer and
against a four-way Linux NFS server.

During a typical run of our write benchmark with a 5
MB file, the filer sustains about 38 MBps of network
throughput. Our benchmark reports it can generate
about 115 MBps of writes. On the other hand, the Linux
server can sustain only 26 MBps of network through-
put, less than 70% of the filer’s network throughput, yet
our benchmark writes at a rate greater than 138 MBps
20% faster than the filer run.

To explore this unexpected behavior, we again examine
write latency. Figure 5 shows a histogram of write()
system call latencies. While some of these calls take
less than 100 microseconds, many take longer. The dis-
tribution shows there are more slow calls when the file
resides on the faster of the two servers.

Surprisingly, the client requires less overhead to buffer
writes when it is sending data to a slow server. We veri-
fied this result with a server on 100 Mbps Ethernet. The
benchmark writes to memory even faster with this
server, which sustains less than 10 MBps per second of
network throughput.

Kernel execution profiling shows that, during bench-
mark runs, the global kernel lock taken in
nfs_commit_write() is under contention on SMP
hardware. The lock section is the fourth largest CPU
consumer in the kernel, exercised more than twice as
often as the fifth largest consumer. A profile analysis of
this section shows that the lock taken in
nfs_commit_write() is the only contributor to
CPU time sampled in the lock section.

On SMP hardware, even a single writer thread uses
more than one CPU, because data that is not flushed
during a write() system call is flushed later by the
NFS client’s write-behind daemon, nfs_flushd.
Kernel lock contention results when both the single
writer thread and the flush daemon generate network
write requests. Nfs_flushd holds the global kernel
lock whenever it is awake and flushing requests. We
suspected the flush daemon was causing contention, but
after removing the global kernel lock from the daemon,
we found little improvement.

Next we instrumented the write path to find out where
the most time is spent, and found that the kernel spends
50 microseconds per write request in the network layer
(sock_sendmsg() is called from the RPC layer for
each RPC request). This accounts for almost 90% of the
time per request spent waiting in the NFS client’s write
path to acquire the kernel lock.

During the development of the Linux 2.3 kernel, the
global kernel lock was removed from Linux’s network
implementation. Because it is now no longer necessary
to hold the kernel lock while calling the network layer,
we release the lock then reacquire it when
sock_sendmsg()returns. This permits other writing
processes to make progress while the network layer
sends the current request.

0

100

200

300

400

500

600

700

800

900

1000

0
0.

06
0.

12
0.

18
0.

24 0.
3

0.
36

0.
42

0.
48

Write() system call latency, in milliseconds

N
um

be
r

of
 c

al
ls

NetApp F85 Linux NFS server (async)

Figure 5. Write() system call latency against differ-
ent servers. This figure shows the latency of write
calls during a benchmark run against a 30 MB file.
Both runs have about the same minimum latency, but
the filer run has a large number of lengthy calls. The
average latency of client memory writes increases
when a file is stored on a faster server.

0

100

200

300

400
500

600

700

800

900

1000

0
0.

06
0.

12
0.

18
0.

24 0.
3

0.
36

0.
42

0.
48

Write() system call latency, in milliseconds

N
um

be
r

of
 c

al
ls

NetApp F85 Linux NFS Server (async)

Figure 6. Write() system call latency with less lock
contention. This figure shows that maximum latency
and latency variation (jitter) are clearly reduced. On
average, filer writes still take longer than writes to the
Linux NFS server, but the difference is much smaller.
Minimum latency remains roughly the same, suggest-
ing that latency variation, in this case, is the result of
lock contention.

Figure 6 shows the improvement in write() system
call latency that occurs after removing the kernel lock
around sock_sendmsg(). During this run, our cal-
culated results also improve: the mean write() sys-
tem call latency drops for both benchmark runs on the
new client (127 versus 149 microseconds for the filer,
105 versus 113 microseconds for Linux), and the filer’s
maximum latency also drops, from 381 microseconds to
292 microseconds.

In calculating these averages, we excluded the first data
point in all four runs. The latency for the first
write() system call was almost a millisecond during
two of the runs.

We note that the minimum latency hardly changes. This
agrees with the idea that the latency variation is not a
code path issue, but results from the writer waiting to
acquire a resource, such as a lock.

We ran our 5 MB benchmark with the lock modifica-
tion. Against the filer, the benchmark runs at almost 140
MB per second, better than a 20% increase over the
earlier 115 MB per second. The benchmark runs at 147
MB per second against the Linux server, a 6.5% im-
provement. Lock contention measured by the profiler is

almost entirely gone. These results are summarized in
Table 1 (overleaf).

Although most of the unexpected inversion of perform-
ance is gone, the client still runs 5% faster against a
server that is 40% slower. We discuss this further in the
next section.

3.6. The cost of responding to server replies

Even though the Network Appliance filer provides bet-
ter network throughput than the Linux NFS server, ap-
plications writing to the filer run slower. Despite the
fact that less client processing is required for filer
writes, which don’t require an additional COMMIT
RPC, client throughput to a fast server is hampered by
lock contention and the cost of handling server replies
at a higher rate. A faster server forces the client to do
the same amount of work in less time. This explains the
unexpected inversion of client performance.

 Network Lock No lock

NetApp F85 38 MBps 115 MBps 140 MBps

Linux (async) 26 MBps 138 MBps 147 MBps

Table 1. Application write throughput, before and
after lock modification. Network write throughput is
compared to application write throughput when writ-
ing a 5MB file. Removing the global kernel lock from
the RPC layer improves cached write throughput for
files residing on both the Network Appliance filer and
the Linux NFS server. Section 3.6 explains why appli-
cations can write faster to a slower server.

Tests with a single application writer thread contending
with a single flusher thread show less than ideal scaling.
On a client with a single CPU, we expect to find the
flusher thread taking some CPU time away from a user-
level writer thread, increasing as server throughput in-
creases. On a client with more than one CPU, however,
the writer thread and the flusher thread should not inter-
fere. We suspect that faster servers will exacerbate on
SMP Linux clients until this issue is addressed.

Recall the short period in Figure 4 during which
write() system call latency is much lower on aver-
age. This can now be explained by reduced SMP lock
contention and interrupt load when the filer briefly
stops responding to network write requests during a file
system checkpoint [5]. In effect, the filer behaves like
an infinitely slow server during this period, momentar-
ily eliminating SMP lock contention on the client.
While the flusher thread is blocked, only the application
writer thread is active. Other threads do not compete
with the writer, allowing the client to return control
quickly to the application. In other words, the differ-
ence between the slowest and fastest writes in Figure 4
is due to the client’s cost of responding to server re-
plies.

Moreover, fast networking introduces significantly in-
creased interrupt loads. The new network device driver
API (“NAPI”) in Linux 2.5 may help here, especially
on single processor systems, by improving system be-
havior during intense interrupt loads that can result
when a client is communicating with a high-
performance server over a low latency network. When
the system recognizes that a device is producing inter-
rupts at a high rate, it masks the device interrupt and
polls instead. As the workload decreases, the interrupt is
re-enabled to keep I/O latency reasonable. This tech-

nique is further expanded by Mogul and Ramakrishnan
[12].

In future work, we hope to explain why the network
layer takes more than 50 microseconds per RPC request
on a 933 MHz processor. We suspect IP fragmentation
is a major expense. Jumbo frames, a feature of gigabit
Ethernet, may help by reducing the need for fragment-
ing and reassembling large RPC requests in the IP layer,
although this does not extend to WANs, in general.

Removing the global kernel lock from the write path
yields considerable improvements in throughput and
application concurrency. As it happens, the RPC layer
also acquires the global kernel lock to ensure the integ-
rity of its internal data structures. Removing the global
kernel lock from the RPC layer will allow an SMP sys-
tem with multiple network interfaces to process more
than one RPC request at a time, allowing concurrent
writes to separate files and to separate servers from
separate client CPUs.

3.7. Final measurement

Figure 7 illustrates how our modifications have im-
proved client write performance. With our modifica-
tions, NFS write performance is very good while mem-
ory is available to buffer write requests, but drops to the
server’s throughput rate when the client exhausts mem-
ory.

The left side of Figure 7 shows that memory write per-
formance to NFS files is considerably improved. Write
performance is no longer limited to network and server
speeds. Client scalability defects continue to cause
memory writes to files on the Network Appliance filer
to be 7 MBps slower than to files on the Linux NFS
server. The right side of Figure 7 shows that as client
memory is exhausted, the filer sustains greater network
write throughput than the Linux NFS server can.

NFS write performance is still not as good as writes to
local files, however. We believe this is due to the costs
on the client of responding to the server’s replies. These
costs, which include interrupt handling and network
processing, are clearly greater than simply managing
disk I/O.

0

50000

100000

150000

200000

0 50 100 150 200 250 300 350 400 450 500

w
rit

e
th

ro
ug

hp
ut

 (
K

B
/s

ec
)

file size (MB)

Linux NFS (async)
Netapp filer

local ext2

Figure 7. Local v. NFS cached write performance,
revisited. This figure shows write throughput for test
files between the sizes of 25 MB and 450 MB. NFS
write throughput is considerably improved compared
to Figure 1. Application write throughput no longer
tracks network write throughput for small NFS files.
Maximum cached write throughput is nearly the same
against both servers.

Throughput for the local test and the test against the
Linux NFS server immediately trail off for file sizes
that exceed the physical memory size of the client, but
the benchmark is able to sustain high data throughput
longer when the test file resides on the Network Appli-
ance filer. We conjecture that the filer’s NVRAM acts
as an extension of the client’s page cache, allowing
writes to the server to proceed at near local memory
speed until the server’s NVRAM is full. The fact that
the filer is able to process requests faster also makes
more client buffers available for a little while.

With workloads that hold a file open for a long time and
write asynchronously (that is, without the requirement
that data be made permanent before the write() sys-
tem call is complete), the slower Linux NFS server has
a slight advantage. Where applications write then im-
mediately flush or close, or where applications require
data permanence before a write() system call returns
(e.g. databases), the Network Appliance filer, with its
greater network and disk throughput, performs better.
Though cached writes are slightly slower on the client,
applications regain control sooner after they flush or
close a file when writing to a faster server. As client
scalability improves, applications can take advantage of
improved memory write throughput and better network
throughput.

3.8. Recent releases of the Linux NFS client

After writing the initial drafts of this paper, we shared
our work with Trond Myklebust, the maintainer of the
Linux NFS client. Trond built on our ideas, creating a
safe version of our patch to remove the global kernel
lock from the RPC layer and the NFS client’s write
path. This patch is available on his web site in the ex-
perimental patches section [22].

Trond also made a simple change to the write request
queuing logic to reverse the order of the list, based on
the results of our hash table experiment, to allow se-
quential writes to insert new requests into the request
list in constant time, rather than walking the entire list.
Finally, based on this paper and other recent work at
Network Appliance, he replaced the flushing logic de-
scribed in Section 3 with an entirely new system. This
work now appears in Linux kernel releases following
2.4.15. Because so many other changes have occurred
since the 2.4.4 kernel, a direct comparison is not mean-
ingful. However, we hope to analyze some of these im-
provements in future work.

4. Discussion and future work

In this paper, we describe a simple sequential write
benchmark to measure file system write latency and
throughput. We show how this benchmark reveals per-
formance and scalability problems in the Linux NFS
client, and we describe several modifications to the
Linux NFS client that improve application write latency
and throughput.

4.1. Observations on client benchmarking

An NFS server’s job is to store data and metadata in an
organized way, and to move data between network
cards and disks as efficiently as possible. Measuring
these behaviors is well understood. On the other hand, a
client’s role is to translate and adapt the NFS protocol
to its local environment efficiently. This is a much more
subtle task.

Because a client is complex and completely dependent
on the performance of servers and their disks, we use a
microbenchmark, rather than a large suite of tests, to
focus analysis on small parts of client behavior. As a
result of our studies, we have identified several areas
where client implementation directly affects application
throughput. Some of these areas are already docu-
mented by previous work.

Networking efficiency

Packet fragmentation and reassembly, handling
packet loss, eliminating data copies, handling heavy
interrupt loads, and optimizing the number of net-
work requests all contribute to the cost of handling
server replies.

Caching efficiency

Effective caching makes NFS clients perform almost
as well as local file systems. This means making the
best use of available memory, as well as properly im-
plementing cache coherency.

I/O scheduling

Unfortunate write scheduling can decimate applica-
tion performance and server scalability.

Lock contention

With any number of CPUs, avoiding lock contention
is critical. This has direct bearing on how well client
performance scales when adding more CPUs and
network interfaces.

Data structure efficiency

As the power of clients and the amount of cached
data grows, it is vital to manage both efficiently.

Our current efforts focus on developing a suite of mi-
crobenchmarks of these aspects, in the style of McVoy’s
lmbench [11].

4.2. Future work

In this paper, we identified several specific issues with
the Linux client that deserve further investigation. As
our work continues, we hope to evolve benchmarks that
measure each of these areas.

We want to assess further the impact of the global ker-
nel lock on the scalability of the Linux NFS client. We
also want to continue investigating why slower servers
allow faster memory write throughput on Linux NFS
clients, and why, in general, there continues to be so
much variance between benchmark runs on Linux.

We especially want to prove our comparative method-
ology within real application domains. To keep our
study on point we have focused mainly on our micro-
benchmark; future work will determine the real world
impact of these changes. These techniques are also
valuable for surveying NFSv4 client implementations
[18]. Finally, we hope to explore improvements to the
Linux NFS client that affect its behavior in corner cases
that face advanced deployments outside the research

lab, such as its file locking and specialized caching be-
havior, and its performance with databases and mas-
sively parallel applications combined with network-
attached storage.

Acknowledgements

The authors gratefully acknowledge the assistance of
our colleagues Andy Adamson, Kendrick Smith, James
Newsome, and Steve Molloy at the University of Michi-
gan; Brian Pawlowski and Sudheer Miryala at Network
Appliance; Spencer Shepler and Sun Microsystems; and
especially Trond Myklebust for his helpfulness and
thorough work on the Linux NFS client. Special thanks
also to FreeNIX reviewers and to our shepherd, Jim
McGinness. The Intel Corporation loaned CITI hard-
ware used in this study.

The source for our simple write benchmark and a patch
against Linux kernel 2.4.4 that includes the modifica-
tions discussed in this paper are available at the CITI
web site:

 http://www.citi.umich.edu/projects/nfs-perf/patches/

References

1. Bray, T. Bonnie Source Code. Netnews Posting, 1990.

2. Card R., Ts’o, T., Tweedie, S. “Design and Implementa-
tion of the Second Extended Filesystem.” Proceedings of
the First Dutch International Symposium on Linux, De-
cember 1994.

3. Dahlin, M., Mather, C., Want, R., Anderson, T., Patter-
son, D. “A quantitative analysis of cache policies for
scalable network file systems.” ACM SIGMETRICS Con-
ference on Measurement and Modeling of Computer Sys-
tems, May 1994.

4. Eisler, Michael. Personal communication, September
2001.

5. Hitz, D., Lau, J., and Malcolm, M. “File System Design
for an NFS File Server Appliance.” USENIX Technical
Conference Proceedings, January 1994.

6. “HTTP: A protocol for networked information.” W3C,
1992. www.w3.org/Protocols/HTTP/HTTP2.html

7. Juszczak, C. “Improving the Write Performance of an
NFS Server.” USENIX Technical Conference Proceed-
ings, January 1994.

8. Macklem, R. “Lessons Learned Tuning the 4.3BSD Reno
Implementation of the NFS Protocol.” USENIX Technical
Conference Proceedings, January 1991.

9. Macklem, R. “Not Quite NFS, Soft Cache Consistency
for NFS.” USENIX Technical Conference Proceedings,
January 1994.

10. Martin, R., Culler, D. “NFS Sensitivity to High Perform-
ance Networks.” SIGMETRICS '99/PERFORMANCE '99
Joint International Conference on Measurement and
Modeling of Computer Systems, May 1999.

11. McVoy, L., Staelin, C. “lmbench: Portable Tools for
Performance Analysis.” USENIX Technical Conference
Proceedings, June 1996.

12. Mogul, J., Ramakrishnan, K. “Eliminating Receive Live-
lock in an Interrupt-driven Kernel.” USENIX Technical
Conference Proceedings, January 1996.

13. Norcott, W., et al. IOzone benchmark. See
www.iozone.org .

14. Ousterhout, J. and Douglis, F. “Beating the I/O Bottle-
neck: A Case for Log-Structured File Systems.” Proceed-
ings of the ACM Symposium on Operating System Prin-
ciples, 23, January 1989.

15. Pawlowski, B., Juszczak, C., Staubach, P., Smith, C.,
Lebel, D., Hitz, D. “NFS Version 3 - Design and Imple-
mentation.” USENIX Technical Conference Proceedings,
June 1994.

16. Satyanarayanan, M., Howard, J., Nichols, D., Side-
botham, R., Spector, A., and West, M. “The ITC Distrib-
uted File System: Principles and Design.” Proceedings of
the 10th ACM Symposium on Operating System Princi-
ples, December 1985.

17. Shein, B., Callahan, M., Woodbuy, P. “NFSStone A net-
work file server performance benchmark.” USENIX
Technical Conference Proceedings, June 1989.

18. Shepler, Spencer, et al. “RFC 3010 – NFS Version 4
Protocol specification.” IETF draft standard, December
2000.

19. Standard Performance Evaluation Corporation. SPEC
SFS97. www.spec.org/osg/sfs97/ .

20. Sun Microsystems, Inc. “RFC 1094 - NFS: Network File
System Protocol specification.” IETF Network Working
Group. March 1989.

21. Sun Microsystems, Inc. “RFC 1813 - NFS: Network File
System Version 3 Protocol Specification.” IETF Network
Working Group. June 1995.

22. Myklebust, Trond. Linux NFS client pages, 2002. See
www.fys.uio.no/~trondmy/src/ .

23. Wittle, M., Bruce, K. “LADDIS: The Next Generation in
NFS File Server Benchmarking.” USENIX Technical
Conference Proceedings, June 1993.

	Linux NFS Client Write Performance
	Abstract
	Introduction
	Measuring NFS client performance
	Client performance issues
	Related work
	Inter-run variance on Linux
	Introducing our simple write benchmark

	Write latencies in the Linux NFS client
	Systems under test
	Local versus network write performance
	Periodic latency spikes
	List scans and sequential write performance
	Global kernel lock on SMP hardware
	The cost of responding to server replies
	Final measurement
	Recent releases of the Linux NFS client

	Discussion and future work
	Observations on client benchmarking
	Future work

	Acknowledgements
	References

	Figure 1. Local v. NFS cached write performance.
	Figure 2. Write() system call latency.
	Figure 3. Write() system call latency without periodic flushes.
	Figure 4. Write() system call latency with scalable data structures.
	Figure 5. Write() system call latency against different servers.
	Figure 6. Write() system call latency with less lock contention.
	Table 1. Application write throughput, before and after lock modification.
	Figure 7. Local v. NFS cached write performance, revisited.

