
USENIX Association

Proceedings of the
FREENIX Track:

2002 USENIX Annual Technical
Conference

Monterey, California, USA
June 10-15, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

X Meets Z: Verifying Correctness In
The Presence Of POSIX Threads

Bart Massey
Computer Science Department

Portland State University
Portland, Oregon USA 97207–0751

bart@cs.pdx.edu

Robert Bauer
Rational Software Corporation

1920 Amberglen Pkwy, Suite 200
Beaverton, Oregon USA 97006

rbauer@rational.com

Abstract

The engineering of freely-available UNIX software nor-
mally utilizes an informal analysis and design process
coupled with extensive user testing. While this approach
is often appropriate, there are situations for which it pro-
duces less-than-stellar results.

A case study is given of such a situation that arose dur-
ing the design and implementation of a thread-safe li-
brary for interaction with the X Window System. XCB
is a C binding library for the X protocol designed to
work transparently with either single-threaded or multi-
threaded clients. Managing XCB client thread access to
the X server while honoring the constraints of both XCB
and the X server is thus a delicate matter.

The problem of ensuring that this complex system is
coded correctly can be attacked through the use of
lightweight formal methods. A model is constructed of
the troublesome portion of the system using the Z formal
specification notation. This model is used to establish
important system properties and produce C code with a
high likelihood of correctness.

1 Introduction

The design and implementation of multi-process and
multi-threaded systems has historically been fraught
with peril. This sort of code is commonly defective in
subtle ways, leading to errors that are difficult to repro-
duce and troublesome to diagnose.

Each of the past several years, one of the authors
has taught a course on formal methods for modeling
and analysis of software systems using the Z (pro-
nounced “Zehd”) specification notation. This course
has reviewed numerous successful case studies of
“lightweight” formal methods using Z and related nota-
tions to analyze and formalize requirements and design

and guide the development of resulting code. While this
approach is not a panacea, it typically does dramatically
reduce the likelihood of defects and increase confidence
in the developed system. A more surprising finding of
most of these case studies, confirmed by the authors’ ex-
perience in teaching formal methods to industrial prac-
titioners, is that Z-like lightweight formal methods are
quite accessible to reasonably experienced software en-
gineers. In fact, in many studies, the savings in time and
effort due to reduced defect rates has exceeded the extra
cost of judiciously-applied formal analysis.

Thus, using the Z notation to construct a lightweight
problem model can enable the construction of an algo-
rithm for controlling client thread access to the server
that has a high likelihood of correctness in a situation
where user testing is likely to be ineffective. The meth-
ods employed, while challenging, can be learned with
a reasonable amount of effort by experienced program-
mers. This approach is thus a useful adjunct to more tra-
ditional methods of freely-available software construc-
tion.

2 Background

The X Window System [SGN88] has for some 15 years
been the underlying basis common to most graphical
user interfaces for UNIX systems. During that time, the
server and wire protocol have been generally praised as
well-designed. Indeed, the sample server implementa-
tion provided originally by the MIT X Consortium and
now maintained and enhanced by the XFree86 team is
widely regarded as the prime example of a policy-free
networked graphics platform.

The client side software, however, has frequently been
criticized for its somewhat excessive resource consump-
tion, mediocre performance and reliability, and inflexi-
bility in the face of changing application demands. Such
criticisms seem especially well-justified in the case of

the new generation of handheld UNIX platforms that
often come with a modest CPU and memory, are mis-
sion critical, and feature GUIs constrained by limited
screen size and other factors. A number of recent X
“toolkits”, for example GTK+ [Pen99] and Qt [Dal01],
have eschewed the original X GUI approach involving
Xt [AS90] and the Athena or Motif [You90] widget set.
This has led to a marked improvement along the critical
client-side axes.

Underneath almost all these modernized toolkits, how-
ever, communication with the X server is still typically
handled by Xlib [SGN88]. The Xlib C binding to the X
protocol is in some ways a superior piece of code: its
quality is attested to by its longstanding sole ownership
of this critical task. However, Xlib suffers, to a lesser
degree, to many of the problems that plagued Xt.

The XCB “X C Binding” [MS01] is an attempt to pro-
vide a radically shrunken and simplified X protocol
translation library for C programs, while simultaneously
extending flexibility in a few key ways demanded by
modern toolkits and applications. Primary among these
extensions is first-class support for multi-threaded li-
brary clients. The XCB interface attempts to provide
a convenient latency-hiding interface to multi-threaded
X clients, while cleanly and efficiently handling single-
threaded clients using the same interface.

A principal difficulty in the design of the XCB inter-
nals was establishing the correctness of the core routines
that handle the transfer of X requests to the server and
server replies and events back to the client. The com-
plication here is that these routines must interlock prop-
erly when being invoked by several threads, and must
also complete successfully in the single-threaded case.
Reasoning about multi-threaded code is always difficult.
The IEEE POSIX 1003.1c-1995 Threads Specification
(PTHREADS) [IEE95] provides details of the required
semantics of the thread system itself (although this is
difficult to verify, since the cost of the printed specifica-
tion is prohibitive and it is not readily available online or
through the local library). The trick is to avoid the perils
of deadlock, races, non-determinism, and spinning that
seem to be inherent in real multi-threaded situations.

The Z specification notation [Spi92] is a specific syntax
and semantics for first-order logic with finite and inte-
ger sorts. It is carefully designed to avoid logical para-
doxes, to be easy to use to describe realistic software en-
gineering problems and solutions, and to be amenable to
pencil-and-paper proofs of important properties. There
are many excellent books available to introduce Z to
software engineers (e.g., [Jac97, Wor92]), and the ex-
isting knowledge typical of software engineers greatly
assists learning Z.

During the construction of XCB, it became apparent that
an important component, the XCBConnection layer,
is quite difficult to make correct while simultaneously
accommodating the external design constraints placed
upon it. Essentially, a “thread scheduling” algorithm
with somewhat unusual requirements is needed. Four
different designs for this algorithm were pseudo-coded,
and two of these designs were actually implemented in
C. Each of these four designs was subsequently shown,
after a great deal of thought, to be subtly incorrect.

The task of specifying the thread scheduling algorithm
using Z was begun with the hope that a reasonable
amount of work could produce a design that was ar-
guably, if not provably, correct. This hope has proven
out: the Z model described here specifies such an algo-
rithm.

It is somewhat unusual in the literature to present a Z
model for a real system in its entirety, especially to an
audience not necessarily comfortable with the Z nota-
tion. Nonetheless, it is hoped that this full presentation
will provide a gentle introduction to Z, illustrate some
interesting details of formal modeling on a real-world
problem, and show how formal methods can be of as-
sistance to developers of freely-available software for
UNIX systems.

3 A Z XCB Connection Model

A precise description of the XCBConnection layer of
XCB is needed in order to prove the desired prop-
erties. This layer of XCB handles calls from client
threads (through the XCBProtocol layer) to perform
several tasks: enqueueing X server requests, retrieving X
server replies, and retrieving X events (generated spon-
taneously by the server).

The principal engineering difficulties of the
XCB Connection layer are twofold. First, it is de-
sirable for a single API to transparently handle both
the single-threaded and multi-threaded case. Second,
it is desirable that both of these cases be handled with
minimum possible client latency: the layer should never
gratuitously block a thread that could continue.

In this section, an engineering solution for the
XCB Connection layer is described. Semi-formal argu-
ments about correctness of this solution are also offered.

3.1 The Z Notation

The style of the description of XCBConnection pre-
sented is that standard for Z specifications: natural-
language text interleaved with Z paragraphs. No prior

knowledge of Z is assumed here. Thus, in this section
and the succeeding description an attempt will be made
to explain the semantics of the various Z constructs used
in the description. For Z novices, it may be desirable to
consult one of the Z references cited in Section 2 before
attempting to read this section.

A Z specification describes a state machine. States in
the Z specification correspond to machine states of the
program being modeled. State transitions in the speci-
fication correspond to execution of the program. In Z,
state transitions are expressed using constraints between
unprimed variablesx indicating the state before the tran-
sition and primed variablesx′ indicating the state after
the transition.

A Z state machine is described usingparagraphscon-
sisting of two optional parts. A declaration section lists
the data objects comprising the state and their types. A
constraint section indicates, in the form of equational
first-order logic, constraints on the data items that must
hold for the paragraph. The constraint portion of a
Z paragraph limits the permissible values of variables
named in the declaration portion of the paragraph. The
declared type of a variable also limits its legal set of val-
ues. A horizontal bar separates the declaration section
from the constraint section when both are present.

Z paragraphs come in several flavors. Basic type defi-
nitions define the names associated with types. In Z, a
type is synonymous with the set of values that comprise
it. Any set of values of a given type can itself be used as
a type: thus new types can be constructed from old.

Axiomatic definitions are written with a bar to the left:
they define the names and constraints associated with
globally visible constant values. Schema definitions are
written with a bar to the left, above, and below, form-
ing a “schema box”: they are typically named, and de-
fine names and constraints associated with a state or state
transition. Since a schema definition denotes a range of
possible values for a set of state variables, the name of
the schema may itself be used as a type.

Z is not a programming language. As in mathematics,
variables are simply names for values: the value associ-
ated with a name does not change over the course of a
Z description. There is no inherent notion of execution
of a Z description: the description defines a state ma-
chine whose transitions model the execution of a com-
puter program, but this state machine is not necessarily
directly executable.

Nonetheless, a Z description is useful in several ways:
it can precisely specify the behavior of a computer pro-
gram, it can expose logical defects in program design,
and it can enable informal or rigorous proofs of desired

design properties. Like other mathematical notations
used in engineering, Z is a powerful tool for producing
a high-quality product, rather than a substitute for the
product itself.

3.2 Modeling System State

An item of principal interest in the description of the
XCB system state is the set of client threads using the
API. In Z, the existence of a set with no particular defin-
ing characteristics is declared by placing the set’s name
in square brackets: this is known as a “base type” dec-
laration, since such a set is typically used as the set of
values constituting some type. The Z here declares such
a set,THREAD. The second line of the paragraph de-
clares thatSEQNUMis another name forN, since the
“sequence numbers” used by the X protocol are natural
numbers.

[THREAD]
SEQNUM== N

3.2.1 X Server State

The X server may be either ready to accept requests or
not at any given time. At any given time, it may have
a reply or an event response available. The sequence
number of a reply is important to its correct processing.
The Z here declares the existence of a setREQ STATUS
consisting of two distinct elements, given the names
req readyandreq not ready. This is known as a “free
type” declaration, since the set of values declared is typ-
ically used as a type. The declaration ofRESPSTATUS
is similar: in this case, the set consists of distinct ele-
ments namedno respandevent, and a set of distinct ele-
ments produced by applying the implicitly-defined “con-
structor” functionreply to any legalSEQNUM.

REQ STATUS::=
req ready| req not ready

RESPSTATUS::=
no resp| reply〈〈SEQNUM〉〉 | event

REPLY== ranreply

The X server state is described by a record contain-
ing the request and response status. The Zschemafor
this describes something analogous to a two-field record,
where thereq statusand resp statusfields, above the
line in the Z “schema box”, have the given types.

ServerState
req status: REQ STATUS
resp status: RESPSTATUS

3.2.2 XCB Client State

The state of the XCB client application is much easier to
describe. Its only interesting property, for the purposes
of this description, is the set of threads that are blocked
waiting for XCB. The possible sets of blocked threads
are described as elements of thepower setof threads
(i.e., the set of all possible sets of threads).

ThreadState
blocked: P THREAD

3.2.3 XCB Connection State

Having described the state of the external entities, it is
necessary to describe the state of XCBConnection it-
self. This state is a function of the client calls received,
as well as the external states seen.

Important properties of an XCB client call, from the
point of view of XCB Connection, are the sequence
number of interest and the thread making the call.

AskInfo
seqnum: SEQNUM
thread: THREAD

An XCB client call is referred to in this description as
an “ask”. There are three kinds of asks: read asks, write
asks, and event read asks. Both read and write asks have
a particular sequence number and thread associated with
them. (The sequence number is assumed to be generated
by the caller; this is not how the system actually works,
but it is common in Z modeling to abstract away such
details to simplify the treatment.) The sets of read asks
and write asks will be used extensively as types, so ab-
breviations are created for them. Note that these subsets
of ASKare simply the ranges of their constructor func-
tions.

ASK ::=
read ask〈〈AskInfo〉〉 |
write ask〈〈AskInfo〉〉 |
eventask

READ ASK== ranread ask

WRITE ASK== ranwrite ask

At any given time, there may be one thread that
XCB Connection designates as a “worker”. The worker
thread is blocked trying to process (send to or receive
from the X server) the request or response associated
with a particular sequence number. It is easiest to model

• Reader queue, containing threads
waiting to

– Get an event.

– Get a reply to an X request.

• Writer queue, containing threads
waiting to write an X request.

• Event queue, containing events wait-
ing to be delivered.

• Reply queue, containing replies wait-
ing to be claimed.

• An output FIFO buffer.

• Indication as to whether there is cur-
rently

– A current reader (thread
blocked reading).

– A current writer (thread
blocked writing).

Figure 1: Relevant XCB Data Structures

this in Z by having the worker be an ASK, capturing just
the data needed in the description.

WORKER::=
no worker | worker is〈〈ASK〉〉

The XCB state is fairly complicated. Figure 1 shows a
sketch of the key items as abstracted from pseudo-code
constructed during the development process. The state
contains a sequence of asks enqueued as writers (a se-
quence since writes must occur in the order in which the
asks are received by XCB), a set of asks enqueued as
readers, and a set of replies waiting for a read ask. The
queue of events waiting for an event read ask is mod-
eled by a simple counter denoting its cardinality, since
the content of events is not important to the description.
Finally, the current workers blocked on reading and writ-
ing are maintained by the system.

XCBStateVars
writers : seqWRITE ASK
readers: P READ ASK
replies: P REPLY
nevents: N
cur reader, cur writer : WORKER

3.3 Modeling System State Change

The state changes in the XCBConnection layer are
complex. The pseudo-code algorithms of Figures 2
and 3 informally describe the intended state changes of
the system. A “reader” is an XCB client thread attempt-
ing to retrieve an X server event or a reply to an X server
request. (These cases are handled nearly identically by
the implementation.) A “writer” is an XCB client thread
attempting to send an X server request.

Note that an attempt was made to present the pseudo-
code of Figures 2 and 3 as similarly as possible to its ap-
pearance in the design notes. This is necessary to ensure
that the Z is developed to describe the desired algorithm,
rather than driving some completely different algorithm
design. It also gives some insight into the algorithm de-
sign style used by the XCB authors.

The complexity here is largely due to the restrictions
the X protocol specification places on clients. X clients
must never assume that the server connection will even-
tually become writable unless it is continuously being
read from. This is because the X server can sponta-
neously generate responses on its output (X events) that
will block the server until they are read. If the client is
blocked waiting for the server to read its request, dead-
lock will result.

This restriction on the protocol is a difficult fit to one of
the XCB requirements: that single-threaded and multi-
threaded applications be able to use the same interface
for sending requests. The single-threaded case by itself
would be easy: a client thread wishing to send a request
could use theselect() system call to wait until the
socket is writable, in which case it sends a request, or
readable, in which case it processes whatever response
has appeared and callsselect() again. With an inter-
face designed for multi-threaded applications, it would
be possible to require the XCB client to always have a
thread blocked reading events.

With a possibly multi-threaded client, the situation is
more complex. The problem arises as follows: while
one thread is blocked waiting for an X server response
(selecting only for reading), another thread arrives hop-
ing to send a request to the server. The second thread
must block until the server connection is writable, but
cannot guarantee that the reader will continue to read
from the socket: the reader may complete its work and
exit. This causes a danger of deadlock: if there is
no thread consuming server responses, the server may
block, which will block the writer. The solution is for
writers toselect() for both reading and writing, as
in the single-threaded case, and handle the resulting race
separately.

pending:
Can satisfy call

from pending queue?
Yes:

done
No:

Is there a reader or writer?
Yes:

enqueue self
block
go to pending

No:
become reader

select:
select on read
is there a writer?

Yes:
enqueue self
block
goto pending

get response
is it ours?

Yes:
wake up top of queue

(writer else reader)
done

No:
Is a client waiting?

Yes: deliver to it
No: place in pending

Is a writer queued?
Yes:

enqueue self
switch to writer
block
go to pending

No:
go to select

Figure 2: XCB Reader Pseudo-code

Z is nice for modeling the XCB pseudo-code, because
states are modeled as changing instantaneously: this
avoids any explicit mention of mutual exclusion via mu-
texes at the model level. (Indeed, the presented pseudo-
code does not mention them.)

A useful building block in constructing the Z descrip-
tions will be a function that returns the reply in the reply
queue matching a given ask, if any. TheOPT REPLY
type is used to indicate whether there was a reply, and if
so, what it was.

OPT REPLY::=
no reply | reply is〈〈REPLY〉〉

Is there a writer?
Yes:

enqueue self
block

become writer
select:

select on read ∨ write
read:

get reply
Is there a waiting client?

Yes: deliver to client
No: place in reply or

event queue
go to select

write:
try to write
was full amount?

Yes: done
No: go to select

Figure 3: XCB Writer Pseudo-code

The lookup reply function looks up the reply matching
the givenASK in the reply queue. Note the use of Z
schema inclusionhere: in the first line of the schema, all
of the names declared inXCBStateVarsare included in
XCBStateas well.

The definition oflookup reply is given by constraining
the result over every possibleAskInfo. This style of im-
plicit definition is normal in Z. Theif − then−else is
not an imperative programming-language construct: it is
more like the?: operator of C, an operator that returns
one of two different values depending on its leftmost ar-
gument.

XCBState
XCBStateVars
lookup reply : READ ASK→ OPT REPLY

∀ r : AskInfo•
lookup reply (read ask r) =

if(reply r.seqnum) ∈ replies
then reply is (reply r.seqnum)
elseno reply

The constraint, below the line in the Z schema box, de-
fines thelookup reply function. This constraint is im-
portant in the proofs: it is implicit in any reference to
XCBState in subsequent Z in the description. It is this
feature of Z that makes it a useful pencil-and-paper proof
notation: by expanding schemata (replacing their names
with their definition) and manipulating the resulting con-
straints, one can construct proofs of interesting proper-
ties using first-order logic.

This completes the model of the XCB environment to the
level of detail necessary for what follows. The formal
notation here has already accomplished several tasks rel-
ative to the informal model of Figure 1. First, the formal
model is quite precise: it tells exactly what is and is not
of interest. Second, the formal model is fully strongly
typed. This contributes to the precision (since, for ex-
ample, sequences are typed differently than sets). It also
reduces the likelihood of error: this Z, like most Z pub-
lished these days, has been checked for correct syntax
and type safety by an automated tool. As with computer
programs, semantic defects in formal notation are often
accompanied by syntactic or type errors.

3.3.1 Read Ask Model

Having described the environment and the state, the
next step in Z modeling is to describe the possible state
changes during execution. A Z model defines a (not nec-
essarily deterministic) state machine. The initial state of
the model is given explicitly. The remaining reachable
states are implicitly defined by giving schema denoting
legal state transitions. A state transition schema consists
of unprimed values (e.g.x) of the state before the tran-
sition, and primed values (e.g.x′) of the state after the
transition.

The first three lines of the first state transition schema
denote Z schema inclusions. The∆ operator applied to
a schema inclusion denotes that the schema should be in-
cluded twice: once with its names primed and once with
them unprimed. Thus, all the definitions and constraints
in XCBStateimplicitly appear inReadAskQueuedboth
with and without primed names. This ensures that any
invariant constraints defined inXCBStatehold both be-
fore and after the state transition. TheΞ operator in-
cludes primed and unprimed schema asDelta does.
In addition theΞ operator, that denotes that the refer-
enced state will not change, implicitly defines an equal-
ity constraint between each primed/unprimed pair in the
schema being operated on. The identifierask? has been
decorated with a question mark to indicate that it is an
input to the state change, not part of any state.

The ReadAskQueuedschema starts a read request for
ask?, by checking whether the reply queue already con-
tains the data being asked for. If so, the resulting reply
queue is constrained (by the somewhat complex logic
in the unique-existential constraint) to no longer contain
the data, and the request is satisfied.

ReadAskQueued
∆XCBState
ΞThreadState
ΞServerState
ask? : READ ASK

readers′ = readers

writers′ = writers

∃1 r : REPLY•
reply is r = lookup reply ask? ∧
replies′ = replies\ {r}

nevents′ = nevents

cur reader′ = cur reader

cur writer′ = cur writer

What if the data is not available? Then the existential
precondition (constraint on the before state) fails to hold.
In this case, the entire state transition is unavailable: un-
less there is some other transition schema that can apply,
the state is terminal.

In this case, one transition schema that could apply is
one in which the ask blocks waiting for a reply. In the
model threads block, not asks, so as a convenience a par-
tial function is defined that returns the thread of a read or
write ask. This function is specified by constraining its
explicit map: the set of input-output pairs that constitute
the function.

ask thread: ASK 7→ THREAD
ask seqnum: ASK 7→ SEQNUM

ask thread=
{a : AskInfo• (read ask a7→ a.thread)}∪
{a : AskInfo• (write ask a7→ a.thread)}

ask seqnum=
{a : AskInfo• (read ask a7→ a.seqnum)}∪
{a : AskInfo• (write ask a7→ a.seqnum)}

The preconditions of the following schema and the pre-
vious one are incompatible: the previous schema re-
quired thatlookup reply return a reply, whereas this one
required that it returnno reply. Making the precondi-
tions of all state transitions mutually exclusive makes
the overall system deterministic. Another precondition
of this schema is that the ask’s thread cannot itself be-
come the reader, because some other thread is already
reading or writing.

ReadAskBlocks
∆XCBState
∆ThreadState
ΞServerState
ask? : READ ASK

readers′ = readers∪ {ask?}
writers′ = writers

replies′ = replies∧
no reply = lookup reply ask?
nevents′ = nevents

cur reader 6= no worker∨
cur writer 6= no worker

cur reader′ = cur reader

cur writer′ = cur writer

blocked′ = blocked∪ {ask thread ask?}

Finally, if the reader’s data is not yet available and yet no
other thread is already prepared to acquire it, this read
ask becomes a worker on its own behalf and on behalf
of those who come after it.

ReadAskWorker
∆XCBState
∆ThreadState
ΞServerState
ask? : READ ASK

readers′ = readers

writers′ = writers

replies′ = replies∧
no reply = lookup reply ask?
nevents′ = nevents

cur reader= no worker∧
cur reader′ = worker is ask?
cur writer′ = cur writer = no worker

blocked′ = blocked∪ {ask thread ask?}

Putting all of this together, if XCB receives a read ask,
it should take one of the three state transitions indicated
above.

ReadAsk== ReadAskQueued∨
ReadAskBlocks∨ ReadAskWorker

(This shorthand notation for theReadAskschema indi-
cates that at least one of the three referenced schema al-
ways applies: it is possible, though more cumbersome,
to write the definition out in full schema notation.)

There are several properties of the specification that can
be checked at this point, either informally or using a

formal proof. It is important to verify that the speci-
fication is well-founded: that all functions are applied
only to their defined domains, for example, and that
division by zero never occurs. This check is usually
informal, although in this instance some progress was
made toward a formal proof using the Z/EVES theorem
prover [CMS99].

A well-founded specification may be deterministic or
non-deterministic. As discussed earlier, this spec-
ification is deliberately deterministic. While non-
deterministic specifications are sometimes useful, non-
determinism is also commonly an inadvertent result of
specification error.

Finally, a well-founded specification will be complete.
In this case, it is necessary to show that for any possi-
ble combination of XCB states, thread states, and server
states, a read ask will meet the precondition of at least
one of the given schemata. A brief inspection shows this
to be the case here.

3.3.2 Write Ask Model

The action taken by XCB on receiving a write ask is
quite similar to that taken on receiving a read ask. One
minor difference is that the writes must be enqueued
in order: as mentioned earlier, this is the reason that
the writers are stored in a sequence. Reads deliver
specifically-requested data, and are completed in the or-
der the data becomes available.

Another more important difference from the read case
has to do with the situation where the X server is busy
and thus writes cannot proceed. In this case, the writing
thread cannot simply block until the server is available,
since the server may also block waiting for its responses
to be consumed, leading to deadlock. Instead, the writ-
ing thread must process X server responses while wait-
ing.

Most confusingly of all, if a reader thread is processing
X server responses when a write ask comes in and cannot
proceed, the writing thread should take over the response
processing task after the reader is done processing its
next request. Note that there will be a period of time
during which both the reader and writer will awaken if
data becomes available from the X server. It is the details
of this process that caused the most confusion in initial
attempts to design this algorithm, and has led to the use
of Z to clarify and validate the design.

First, the simple case: if a write ask comes in and there is
already a writer, the asking thread blocks until the pend-
ing write completes. (In the actual implementation, the
fact that there is a write queue and requests are written

in blocks complicates the situation a bit. However, this
level of detail is irrelevant to the purpose of modeling.)
The blocked ask is used to construct a single-element se-
quence (surrounded by〈 and〉) that is appended (using

the sequence concatenation operatora) to the queue of
pending write asks.

WriteAskBlocks
∆XCBState
∆ThreadState
ΞServerState
ask? : WRITE ASK

readers′ = readers

writers′ = writersa 〈ask?〉
replies′ = replies

nevents′ = nevents

cur writer 6= no worker

cur reader′ = cur reader

cur writer′ = cur writer

blocked′ = blocked∪ {ask thread ask?}

If the write ask can proceed, the thread simply becomes
the distinguished writer and blocks waiting to be able to
write.

WriteAskWorker
∆XCBState
∆ThreadState
ΞServerState
ask? : WRITE ASK

readers′ = readers

writers′ = writers

replies′ = replies

nevents′ = nevents

cur writer = no worker∧
cur writer′ = worker is ask?
cur reader′ = cur reader

blocked′ = blocked∪ {ask thread ask?}

These schema are then assembled into a whole.

WriteAsk== WriteAskBlocks∨ WriteAskWorker

Again, questions of validity, determinism, and complete-
ness arise, and again the answers are relatively straight-
forward.

3.3.3 Server Request Model

When the X server is capable of accepting a request and
a writer thread is blocked waiting for this eventuality, the
request can be immediately written to the server. At that
point, the thread may return from XCB, but not before
waking up a pending writer or reader. It is easiest to
model this last bit first.

An auxiliary function will be useful for finding the
thread associated with a worker. This example shows an-
other popular style of function definition in Z: constrain-
ing a function’s outputs over all valid inputs. Consider
the universally-quantified constraint onworker ask. For
every object of typeWORKERother thanno worker,
this constraint ensures a valid value for the function.
Thus,worker ask is a partial function (denoted by the
7→ symbol in the type).

worker ask: WORKER 7→ ASK
worker thread: WORKER 7→ THREAD
worker seqnum: WORKER 7→ SEQNUM

∀a : ASK• worker ask(worker is a) = a

worker thread= ask thread◦ worker ask

worker seqnum= ask seqnum◦ worker ask

The case where there are available writers is then mod-
eled.

WakePendingWriter
∆XCBState
ΞThreadState
ΞServerState
new worker! : WORKER

new worker! = worker is (head writers)
readers′ = readers

writers 6= 〈〉 ∧
writers′ = tail writers

replies′ = replies

nevents′ = nevents

cur writer = no worker∧
cur writer′ = new worker!
cur reader′ = cur reader

For the current purposes, it is sufficient to nondetermin-
istically select a new reader if there are pending readers
but no writers. In practice, it is probably most efficient
to select the reader whose reply is expected next.

WakePendingReader
∆XCBState
ΞThreadState
ΞServerState
new worker! : WORKER

∃ r : readers• new worker! = worker is r

readers′ = readers\
{worker ask newworker!}

writers′ = writers = 〈〉
replies′ = replies

nevents′ = nevents

cur writer′ = cur writer

cur reader= no worker∧
cur reader′ = new worker!

Finally, it may be that there is nothing left to do. Z makes
stating this case easy.

WakePendingNone
ΞXCBState
ΞThreadState
ΞServerState
new worker! : WORKER

readers= ∅
writers = 〈〉
new worker! = no worker

Putting these together yields

WakePending== WakePendingWriter∨
WakePendingReader∨ WakePendingNone

Finally, when the X server is writable and there is a
worker waiting to write to it, the worker is awakened,
completes the write, replaces itself as necessary, and is
done. The server may become blocked as a result of
the write: this is left undetermined. The whole series of
these “ServerDo” transitions has some common struc-
ture that can be conveniently captured with a subschema.

ServerWriteStuff
∆XCBState
∆ThreadState
∆ServerState

replies′ = replies

nevents′ = nevents

writers′ = writers

readers′ = readers

The subschema together with the manipulations on the
state comprise the write process itself.

ServerDoWrite
ServerWriteStuff

cur writer 6= no worker∧
cur writer′ = no worker

cur reader′ = cur reader

req status= req ready

resp status′ = resp status

blocked′ = blocked\
{worker thread cur writer}

In the model, two state transitions happen sequentially
but atomically: first the write, then the wakeups.

ServerRequest== ServerDoWriteo9 WakePending

As before, checking validity and completeness is
straightforward. With the exception of the deliber-
ate nondeterminism in server state, the model is also
straightforwardly deterministic.

3.3.4 Server Response Model

When the X server has response data to deliver to XCB,
at least one of two conditions should hold. The response
may be an event, in which case it may be queued at
leisure for future examination. The case in which any
sort of response is delivered while no thread is blocked
waiting to read data is modeled by merely deferring the
delivery until a thread is available: this approach re-
quires no mechanism here. If an event is delivered while
a thread is ready to read it, this is handled simply by de-
livering the event. Note that the server read is handled
by leaving its new response indeterminate: while there
are obviously constraints on what the server could return
next, they are outside the scope of the model.

ServerReadEvent
ServerWriteStuff
ΞThreadState

cur writer 6= no worker∨
cur reader 6= no worker

cur writer′ = cur writer

cur reader′ = cur reader

replies′ = replies

nevents′ = nevents+ 1
req status′ = req status

resp status= event

If the response is not an event, then there should be some
thread blocked in XCB waiting to read the response and
dispatch it appropriately. This thread will be either the
reader or writer worker.

There is some complexity associated with handling the
server response that has to do with the interaction be-
tween simultaneous reader and writer workers. It is as-
sumed that all threads wake up fromselect() when
a response is available. (This assumption seems natu-
ral, nothing in the PTHREADS specification seems to
contradict it, and it seems to be the behavior under ver-
sions of Linux and Solaris tested by the authors.) No as-
sumptions, however, are made about the order in which
threads are awakened.

Thus, the read must be handled carefully: whichever
worker wakes up first could perform the read, but there
would be a danger of it being erroneously re-performed
by the second worker. This race is handled by making
any writer worker always perform the read. If there is
just a reader, it performs the read: if the reply is destined
for the blocked thread, it is returned.

ServerReaderThis
∆XCBState
∆ServerState
∆ThreadState

writers′ = writers∧
readers′ = readers∧
replies′ = replies∧
nevents′ = nevents

cur writer′ = cur writer = no worker

∃1 s : SEQNUM•
worker seqnum curreader= s∧
resp status= reply s

cur reader′ = no worker

req status′ = req status

blocked′ = blocked\
{worker thread cur reader}

Otherwise, the reply may be dispatched if there is a
reader blocked waiting for it, and any current reader
worker continues to wait.

ServerReaderOther
∆XCBState
∆ServerState
∆ThreadState

writers′ = writers∧
replies′ = replies∧
nevents′ = nevents

cur writer′ = cur writer = no worker

∀ s : SEQNUM•
worker seqnum curreader 6= s∨
resp status6= reply s

cur reader′ = cur reader

req status′ = req status

∃a : READ ASK•
a ∈ readers∧
resp status= reply (ask seqnum a) ∧
readers′ = readers\ {a} ∧
blocked′ = blocked\

{ask thread a}

Finally, if there is no reader yet waiting for it, the reply
is simply enqueued.

ServerReaderNone
∆XCBState
∆ServerState
ΞThreadState

readers′ = readers∧
writers′ = writers∧
nevents′ = nevents

cur writer′ = cur writer = no worker

∀ s : SEQNUM•
worker seqnum curreader 6= s∨
resp status6= reply s

cur reader′ = cur reader

req status′ = req status

∀a : READ ASK•
a 6∈ readers∨
resp status6= reply (ask seqnum a)

resp status∈ REPLY∧
replies′ = replies∪ {resp status}

If the writer worker is present and wakes up on a read, it
can perform the read, process the result, and continue to
select. (Actually, there is the potential for a race condi-
tion with both a reader and a writer present: if the writer
exits before the reader awakens, the writer must first no-
tify the reader that the read has occurred. This portion
of the model is omitted here for simplicity: instead the

not-unreasonable assumption is made that the reader will
awaken before the writer exits, and these events are han-
dled atomically by the schemata.)

It could be that the X server reply is destined for the
current reader worker. In this case, the reply is simply
marked as anask! for future handling.

ServerWriterReadWorker
∆XCBState
∆ServerState
ΞThreadState
ask! : READ ASK

writers′ = writers∧
nevents′ = nevents

cur writer′ = cur writer 6= no worker

cur reader′ = cur reader

cur reader= worker is ask!
readers′ = readers∧
replies′ = replies

∃1 s : SEQNUM•
ask seqnum ask! = s∧
resp status= reply s

req status′ = req status

Alternatively, the reply may be destined for a blocked
thread in the reader set. In this case, the blocked reader
should be removed from the set and treated as a new ask.

ServerWriterReadBlocked
∆XCBState
∆ServerState
∆ThreadState
ask! : READ ASK

writers′ = writers∧
nevents′ = nevents

cur writer′ = cur writer 6= no worker

cur reader′ = cur reader

ask! ∈ readers∧
readers′ = readers\ {ask!} ∧
replies′ = replies∪ {resp status}
∃1 s : SEQNUM•

ask seqnum ask! = s∧
resp status= reply s

req status′ = req status

blocked′ = blocked\ {ask thread ask!}

In either of these cases, the writer worker will need to
awaken a blocked reader worker. The generated output

ask! is used as an input to theReadAskschema previ-
ously defined (via the>> operator), effectively restart-
ing the state machine at this point.

ServerWriterDoRead==

(ServerWriterReadWorker∨
ServerWriterReadBlocked)>>
ReadAsk

Finally, the reply may just need to be enqueued.

ServerWriterQueueRead
∆XCBState
∆ServerState
ΞThreadState

readers′ = readers∧
writers′ = writers∧
nevents′ = nevents

cur writer′ = cur writer 6= no worker

cur reader′ = cur reader

∀a : READ ASK•
resp status6= reply(ask seqnum a) ∨
cur reader 6= worker is a∨
a 6∈ readers

replies′ = replies∪ {resp status}
req status′ = req status

When the server makes a read available with a writer
present, it can be processed using one of the schemata
just given.

ServerWriterRead==

ServerWriterDoRead∨
ServerWriterQueueRead

Putting it all together yields a model for X server state
changes that deliver a response to XCB.

ServerResponse==

ServerReadEvent∨
ServerReaderThis∨
ServerReaderOther∨
ServerReaderNone∨
ServerWriterRead

3.4 The Full Model

The final model simply notes that the system state can
change by any of the three transitions noted above:
ReadAsk(Section 3.3.1),WriteAsk(Section 3.3.2), or
server state change (Sections 3.3.3 and 3.3.4).

ServerStateChange==

ServerRequest∨ ServerResponse

XCBModel==

ReadAsk∨
WriteAsk∨
ServerStateChange

Of course, any state machine needs an initial state. This
is specified with a specially-named state schema. Note
that the initial server state is unspecified: this is in keep-
ing with the (lack of) server model.

InitXCBModel
XCBState
ServerState
ThreadState

cur reader= cur writer = no worker

readers= ∅
writers = 〈〉
replies= ∅
nevents= 0
blocked= ∅

The state machine defined by this Z model describes the
desired behavior of XCBConnection. In the process of
describing it, some important progress has been made
toward ensuring that the model is well-defined. The
model also gives some important hints about how the
implementation might be structured. The data structures
it suggests are largely straightforward to implement in
a conventional programming language. The few non-
deterministic transitions of the specification can all be
implemented deterministically without sacrificing cor-
rectness or performance. In short, the Z model accu-
rately describes an algorithm that is likely to be both
correct and reasonable to implement.

4 Analysis

There are a few important theorems that should be stated
and proved about the modeled algorithm.

1. It should be shown that the algorithm is deadlock-
free: that any thread that enters the system will
eventually return from it. To show this, it is neces-
sary to show that XCB will never try to write from
the X server in a situation where it cannot read from
it: this prevents a particularly pernicious form of
deadlock that was actually present for a time in the

initial Xlib implementation [Get01] in which the X
server is blocked trying to write to XCB and XCB
is blocked trying to write to the X server.

2. It should be shown that that the algorithm meets
the guarantee of XCB that threads will exit XCB
“as soon as possible”, that is, as soon as their exit
conditions are satisfied. This condition is more dif-
ficult to state formally: since the statement involves
asserting the existence of a sequence of state tran-
sitions, the condition cannot be stated directly in
first-order logic.

The authors have used the formal model presented here
to argue semi-formally that these properties hold: while
space considerations preclude presentation of this proof
sketch here, the formal model has been extremely help-
ful in this regard.

Of course, the formal model should correspond to the C
code that implements it. One of the weaknesses of the
Z notation is that this correspondence is not generally
a mechanical one: that is, the C code is not generated
by iterative refinement of the formal model as in, for
example, the B Method [Abr96]. (The tradeoff here is
that the B Method is substantially more difficult to learn
and use.)

The C code in XCB that implements the Z model de-
scribed here is the result of modifying earlier, flawed
code to conform to the model. Less than 100 lines
of C code are directly involved in implementing the
model: this greatly simplifies the task of keeping the
code straight. The XCB code implementing the model
is freely available: the authors plan to comment the code
with correspondences to the model, but the code as it
stands is far from opaque in this regard.

To illustrate the sort of problem that the Z model helps to
detect, it is useful to look at Figure 4, a defective section
of pseudo-code developed prior to the Z modeling pro-
cess. In this earlier design, there is only a single worker:
writers block until reads complete, and themselves se-
lect only for writing. In this situation, the informal proof
of property (1) above does not hold: when the worker
is waiting to write to the X server, no thread is avail-
able to read from the X server, and there is a potential
for deadlock. While this defect was discovered through
informal reasoning about the system, initial attempts to
repair it led to other designs with subtle flaws. This was
a principal motivator for Z modeling effort: the result-
ing proof sketches give confidence that defects are being
eliminated rather than just pushed around.

...
become worker

select:
select on write

write:
try to write
was full amount?

Yes: done
No: go to select

Figure 4: Defective XCB Writer Pseudo-code

5 Evaluation

From the authors’ point of view, the effort described
in the previous section has been a successful one. The
model, while challenging, has not been an unreasonable
amount of work to develop. The transition from model
to code is an easy one.

The confidence in the algorithm and implementation
gained through the formal modeling process is impor-
tant. The sorts of defects inherent in earlier incorrect
versions of this algorithm would be difficult to isolate
through even extensive user testing: these defects tend
to be infrequent, hard to reproduce, and hard to under-
stand through examination of the implementation. As a
consequence, these defects are difficult to debug and re-
pair: often, large pieces of software infrastructure must
be torn down and rebuilt.

A number of industrial software engineers participat-
ing in the Oregon Master of Software Engineering
(OMSE) Program (http://www.omse.org) have
been taught the Z formal notation during a ten-week
course in modeling and analysis of software systems.
While these students are quite bright and hard-working,
their success suggests that a working knowledge of for-
mal methods is not impossible for those outside the ivory
tower to acquire and appreciate. The sort of lightweight
modeling described in the previous section, that isolates
a troublesome portion of the system for more detailed
study, is especially appropriate in this regard. OMSE
students have often observed that the success of these
methods for them is largely in the modeling stage: de-
tailed formal proofs may be impossible for them, but
they are also rarely necessary.

The world of software development, and especially
freely-available software development, is changing. De-
mand for software continues to grow, and minimum ac-
ceptable quality levels are increasing: traditional freely-
available software development methods may not be ef-
ficient enough to meet these countervailing challenges.

In vast commercial organizations, large amounts of
structured unit, integration, and system testing effort can
help to meet the quality demands. For individual project
developers with limited resources, a more “back-of-the-
envelope” approach may be suitable. In most engineer-
ing disciplines, use of often relatively unsophisticated
mathematical methods has been a key to higher quality
without substantial loss of productivity. Perhaps a simi-
lar result can be attained in the engineering of software.

Availability

The XCB implementation is freely available under
an MIT-style license athttp://xcb.cs.pdx.edu .
The LaTeX source for this document, including the Z
model, is also available at this location for interested re-
searchers.

Acknowledgements

Thanks to Clem Cole for continuing to shepherd
chronically-late authors through a tough paper. Thanks
to Keith Packard for inspiring, assisting, evaluating, and
suggesting solutions throughout the XCB development
process. Thanks to Jamey Sharp, who implemented
XCB and provided an incisive critique of the broken bits.
Thanks to Jonathan Wistar for insightful comments on
short notice.

References

[Abr96] Jean-Raymond Abrial.The B Book: Assign-
ing Programs To Meanings. Cambridge Uni-
versity Press, 1996.

[AS90] Paul J. Asente and Ralph R. Swick.X
Window System Toolkit—The Complete Pro-
grammer’s Guide and Specification. Digital
Press, Bedford, MA, 1990.

[CMS99] Dan Craigen, Irwin Meisels, and Mark
Saaltink. Analysing Z specifications with
Z/EVES. In J.P. Bowen and M.G. Hinchey,
editors, Industrial-Strength Formal Methods
in Practice. Springer-Verlag, 1999.

[Dal01] Matthias Kalle Dalheimer. Programming
with Qt. O’Reilly & Associates, Inc., second
edition, 2001.

[Get01] Jim Gettys, 2001. Personal communication.

[IEE95] IEEE 1003.1c-1995: Information
technology—interface (POSIX) – system
application program interface (API) amend-
ment 2: Threads extension (C language),
1995.

[Jac97] J. Jacky.The Way of Z: Practical Program-
ming with Formal Methods. Cambridge Uni-
versity Press, 1997.

[MS01] Bart Massey and Jamey Sharp. XCB: An X
protocol C binding. InProceedings of the
2001 XFree86 Technical Conference, Oak-
land, CA, November 2001. USENIX.

[Pen99] Havoc Pennington.GTK+/Gnome Applica-
tion Development. New Riders Publishing,
1999.

[SGN88] Robert W. Scheifler, James Gettys, and Ron
Newman. X Window System: C Library and
Protocol Reference. Digital Press, Bedford,
MA, 1988.

[Spi92] J. M. Spivey. The Z Notation: A Ref-
erence Manual. International Series in
Computer Sciences. Prentice-Hall, London,
second edition, 1992. Freely available
online at http://spivey.oriel.ox.
ac.uk/˜mike/zrm/zrm.ps.gz .

[Wor92] J. B. Wordsworth. Software Development
with Z. Addison-Wesley, 1992.

[You90] Douglas A. Young.The X Window System -
Programming and Applications with X (OSF-
Motif Edition). Prentice Hall, Englewood
Cliffs, NJ, 1990.

