
USENIX Association

Proceedings of the
FREENIX Track:

2002 USENIX Annual Technical
Conference

Monterey, California, USA
June 10-15, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

A Study of the Relative Costs of Network Security Protocols�

Stefan Miltchev
miltchev@dsl.cis.upenn.edu

University of Pennsylvania

Sotiris Ioannidis
sotiris@dsl.cis.upenn.edu

University of Pennsylvania

Angelos D. Keromytis
angelos@cs.columbia.edu

Columbia University

Abstract

While the benefits of using IPsec to solve a significant
number of network security problems are well known
and its adoption is gaining ground, very little is known
about the communication overhead that it introduces.
Quantifying this overhead will make users aware of the
price of the added security, and will assist them in mak-
ing well-informed IPsec deployment decisions.

In this paper, we investigate the performance of IPsec
using micro- and macro-benchmarks. Our tests explore
how the various modes of operation and encryption al-
gorithms affect its performance and the benefits of using
cryptographic hardware to accelerate IPsec processing.
Finally, we compare against other secure data transfer
mechanisms, such as SSL, scp(1), and sftp(1).

1 Introduction

The increasing need for protecting data communica-
tions has led to the development of several protocols
that provide very similar services, most notably data se-
crecy/integrity and origin authentication. Examples of
such protocols include IPsec, SSL/TLS, and SSH[8, 2,
11]. While each of the protocols is based on a differ-
ent set of assumptions with respect to its model of use,
implementation characteristics, and supporting applica-
tions, they all fundamentally address the same problem,
namely to protect the secrecy and integrity of data trans-
ferred over an untrustworthy network such as the Inter-
net.

Securing the data while in transit is not sufficient by it-
self in building a secure network: data storage, key man-
agement, user interface, and backup security must also
be addressed to provide a comprehensive security pos-
ture. These are often overlooked, yet are an essential

�This work was supported by DARPA under Contract F39502-99-
1-0512-MOD P0001.

part of a secure system. In this paper, we aim to quantify
the costs of specific mechanisms and clarify the options
available to system and network architects. In particular,
we wish to quantify the performance implications of us-
ing various security protocols that are either widely used
(e.g., SSL and SSH) or are expected to be in wide use
(e.g., IPsec).

Compared to other network security mechanisms,
IPsec offers many architectural advantages. Firstly, he
details of network security are usually hidden from ap-
plications, which therefore automatically and transpar-
ently take advantage of whatever network-layer secu-
rity services their environment provides. More impor-
tantly, IPsec offers a remarkable flexibility not possible
at higher or lower network layers: security can be con-
figured end-to-end (protecting traffic between two hosts),
route-to-route (protecting traffic passing over a particular
set of links), edge-to-edge (protecting traffic as it passes
between “trusted” networks via an “untrusted” one, sub-
suming many of the current functions performed by net-
work firewalls), or in any other configuration in which
network nodes can be identified as appropriate security
endpoints. However, a perception of complexity1 and re-
duced performance have acted as deterring factors in its
deployment and use. The former point is being addressed
by new APIs and refinement of administrative interfaces
that make configuration and use of IPsec easier. How-
ever, the performance issue has not received adequate
examination.

In this paper, we investigate the performance of IPsec
using micro- and macro-benchmarks. Our tests are de-
signed to explore how the various modes and encryp-
tion algorithms affect its performance, the benefits of
using hardware accelerators to assist the IPsec crypto-
graphic framework, and finally compare against other se-
cure transfer mechanisms, such as SSL, scp(1), and
sftp(1). We use the OpenBSD operating system as
our experimental platform, because of its support for

1In particular with respect to configuration tools, and PKI support.

cryptographic hardware accelerators and its native IPsec
implementation[9].

2 System Architecture

In this section we briefly describe the OpenBSD
IPsec and Kernel Cryptographic Framework architecture.
Since the goal of this paper is not to discuss the imple-
mentation details, we refrain from going into too much
depth.

2.1 IPsec

The IP Security architecture [8], as specified by the In-
ternet Engineering Task Force (IETF), is comprised of a
set of protocols that provide data integrity, confidential-
ity, replay protection, and authentication at the network
layer. This positioning in the network stack offers con-
siderable flexibility in transparently employing IPsec for
different roles (e.g., building Virtual Private Networks,
end-to-end security, remote access, etc.). Such flexibility
is not possible at higher or lower levels of the network
stack.

The overall IPsec architecture is very similar to previ-
ous work [5] and is composed of three modules:

� The data encryption/authentication protocols [6, 7].
These are the “wire protocols,” used for encapsu-
lating IP packets to be protected. They simply pro-
vide a format for the encapsulation; the details of
the bit layout are not particularly important for the
purposes of this paper.

Outgoing packets are authenticated, encrypted, and
encapsulated just before being sent to the network,
and incoming packets are decapsulated, verified,
and decrypted immediately upon receipt. These
protocols are typically implemented inside the ker-
nel, for performance and security reasons. A brief
overview of the OpenBSD kernel IPsec architecture
is given in Section 2.2.

� A key exchange protocol (e.g., IKE[4]) is used to
dynamically establish and maintain Security Asso-
ciations (SAs). An SA is the set of parameters
necessary for one-way secure communication be-
tween two hosts (e.g., cryptographic keys, algo-
rithm choice, ordering of transforms, etc.). Al-
though the wire protocols can be used on their own
using manual key management, wide deployment
and use of IPsec in the Internet requires automated,
on-demand SA establishment. Due to its complex-
ity, the key management protocol is typically imple-
mented as a user-level process.

� The policy module governs the handling of pack-
ets on their way into or out of an IPsec-compliant
host. Even though the security protocols protect
the data from tampering, they do not address the
issue of which host is allowed to exchange what
kind of traffic with what other host. This module
is in fact split between the kernel (which decides
what level of security incoming or outgoing packets
should have) and user space (making higher-level
decisions, e.g., which user is allowed to establish
SAs and with what parameters).

For more details on their implementation in
OpenBSD, see [3].

2.2 OpenBSD IPsec Implementation

In the OpenBSD kernel, IPsec is implemented as just an-
other pair of protocols (AH and ESP) sitting on top of IP.
Thus, incoming IPsec packets destined to the local host
are processed by the appropriate IPsec protocol through
the protocol switch structure used for all protocols (e.g.,
TCP and UDP). The selection of the appropriate proto-
col is based on the protocol number in the IP header. The
SA needed to process the packet is found in an in-kernel
database using information retrieved from the packet it-
self2. Once the packet has been correctly processed (de-
crypted, authenticity verified, etc.), it is re-queued for
further processing by the IP module, accompanied by ad-
ditional information (such as the fact that it was received
under a specific SA) for use by higher protocols and the
socket layer.

Outgoing packets require somewhat different process-
ing. When a packet is handed to the IP module for trans-
mission (in ip output), a lookup is made in the Se-
curity Policy Database (SPD) to determine whether that
packet needs to be processed by IPsec. The SPD in
OpenBSD is implemented as an extension to the stan-
dard BSD routing table. The decision is made based on
the source/destination addresses, transport protocol, and
port numbers. If IPsec processing is needed, the lookup
will also specify what SA(s) to use for IPsec process-
ing of the packet (even to the extent of specifying en-
cryption/authentication algorithms to use). If no suitable
SA is currently established with the destination host, the
packet is dropped and a message is sent to the key man-
agement daemon through the PF KEY interface [10]. It
is then the key management’s task to negotiate the nec-
essary SAs. Otherwise, the packet is processed by IPsec
and passed to ip output again for transmission. The
packet also carries an indication as to what IPsec process-
ing has already occured to it, to avoid infinite processing

2Specifically, the destination IP address, the 32-bit SPI field from
the IPsec header, and the IPsec protocol (ESP or AH) number.

loops.

2.3 OpenBSD Cryptographic Framework

To improve the performance of the cryptographic oper-
ations in IPsec, we developed a framework for crypto-
graphic services in OpenBSD that abstracts the details
of specific cryptographic hardware accelerator cards be-
hind a kernel-internal API. The details of the framework
are beyond the scope of this paper. However, we give a
brief description here so the reader has the proper context
within which to consider our measurements.

Besides abstracting the API for accessing these cards,
the framework was designed with these goals in mind:

� Asynchronous operation: The kernel should not
have to wait until the hardware finished the re-
quested operation.

� Load balancing: If multiple cryptographic accel-
erators are present, they should be utilized such that
throughput is maximized.

� No dependence on hardware: If no hardware ac-
celerators are present, the system should offer the
same services (albeit at lower performance).

� Application independence: Although the frame-
work was initially developed for use with IPsec, it
should be possible to use it to accelerate other ker-
nel operations (e.g., filesystem or swap encryption)
and user-level applications (e.g., the OpenSSL li-
brary).

� Support for public key operations. This is cur-
rently work in progress.

Work on the framework is still in progress, but the main
skeleton is present and has been in use with IPsec since
OpenBSD 2.8.

The framework presents two interfaces: one to device
drivers, which register with the framework and specify
what algorithms and modes of operations they support;
and one to applications (e.g., IPsec), which create “ses-
sions” and then queue requests for these.

Sessions are used to create context in specific drivers
(selected by the framework based on a best-match basis,
with respect to the algorithms used) and can migrate be-
tween different cryptographic accelerators (e.g., if a card
fails or is plugged out of the system, as may be the case
with PCMCIA adaptors, or if a higher-priority session
arrives). This is achieved by requiring that all necessary
context is provided with every request, regardless of the
fact that a session has been created (the context is kept at
the application and inside the accelerator cards and is not
cached by the framework itself).

Applications queue requests on sessions, and the cryp-
tographic framework, running as a kernel thread and pe-
riodically processing all requests, routes them to the ap-
propriate driver. Once the request has been processed, a
callback function provided by the application is invoked,
which continues processing (in the IPsec case, passes the
packet to ip output() for transmission). A software
pseudo-driver registers with the framework as a driver of
last resort (if any other driver can process the session, it
will be preferred).

User-level applications (e.g., the OpenSSL library or
the SSH daemon) can access the hardware through the
/dev/crypto device, which acts as another kernel applica-
tion to the framework, using the same API. Public key
operations are modeled in the same way.

64 128 256 512 1024 2048 4096 8192 16384 32768

Packet size (bytes)

0

50

100

150

200

250

T
hr

ou
gh

pu
t (

M
bp

s)

Cryptocard Performance

Figure 1: Cryptographic card performance.

Smart ethernet cards Although the cryptographic
framework does not directly take advantage of ethernet
cards that support IPsec processing offloading (since they
are not general-purpose cryptographic accelerators), we
extended the IPsec stack to use them. Unfortunately, at
the time of writing this paper, driver support for these
cards was not completed and thus we could not measure
their performance. The cards of this type we are familiar
with are 100Mbps full-duplex, and it seems reasonable
(given our results with dedicated cryptographic proces-
sors) to assume that they can achieve that performance.
Unfortunately, at the time this paper was written, we did
not have enough information to write a device driver that
could take advantage of such features.

3 Evaluation

Our test machines are x86 architecture machines run-
ning OpenBSD 3.0. More specifically, they are 1 GHz

Intel PIII machines with 256 MB of registered PC133
SDRAM, 10 GB Western Digital Protege IDE hard
drives, Intel PRO/1000 F network adapters and some
3Com 3c905B 100Mbps network adapters. We chose
Supermicro 370DE6 motherboards based on the Server-
Works Serverset III HE-SL chipset with dual PCI buses.
Thus we were able to place our gigabit cards and crypto-
cards on separate PCI buses. For some of our experi-
ments we used the Broadcom 5820 crypto-cards. The
manufacturer of these cards advertises 300Mbps 3DES;
our own evaluation showed a peak measured perfor-
mance of around 260Mbps, probably due to operating
system overhead. We summarize our results in Fig-
ure 1. Notice that even in the best case (host-to-host,
large socket buffers), we only get slightly over half the
nominal throughput. We believe this is a deficiency in the
device driver, but did not investigate in great detail. How-
ever, given that (a) the performance of all the security
protocols we measure is dominated by the cost of encryp-
tion, (b) the throughput of those protocols is markedly
lower than the unencrypted protocols (ftp, http, and unen-
crypted ttcp[1]), and (c) we present absolute performance
numbers, this should not affect the validity of our exper-
iments: better-performing ethernet cards/drivers would
only improve the throughput numbers of the unencrypted
protocols.

3.1 Benchmark Variables

In order to understand the performance trade-offs of us-
ing IPsec as well as how it compares to other approaches
we designed a set of performance benchmarks. Our ex-
periments were designed in such a way as to explore a
multitude of possible setups.

H2H1
1 Gbps

Figure 2: Host-to-Host topology.

1Gbps
G1 G2H1

1Gbps1Gbps H2

Figure 3: Host-to-Gateway-to-Gateway-to-Host topology.
In this case experiments that use IPsec form a tunnel be-
tween gateways.

Our experiments take into consideration five variables:
the type of utility used to measure performance, the type
of encryption/authentication algorithm used by IPsec (or
other applications), the network topology, use of cryp-
tographic hardware accelerators, and the effects that the

100Mbps

H1

H2

H3

G H4
1Gbps

100 Mbps

100 Mbps

Figure 4: 3 Hosts-to-Gateway-to-Host topology. We use
two IPsec tunnel configurations, end-to-end (where the 3
hosts form tunnels to the end host) and gateway-to-host
(H4).

added security has on the performance of the system. For
the IPsec experiments, we use manually configured SAs;
thus, the performance numbers do not include dynamic
SA setup times. For SSL, scp, and sftp, bulk data trans-
fers include the overhead of session setup; however, that
overhead is negligible compared to the cost of the actual
data transfer.

Large filetransfer experiments were repeated 5 times,
all other experiments were repeated 10 times and the
mean was taken. Error bars in our graphs represent one
standard deviation above and below the mean. Graphs
presenting ttcp measurements do not show error bars to
avoid clutter, however the standard deviation is small in
all cases.

We will go into more detail about each experiment in
the following section.

3.2 Micro-benchmark Results

In Figures 5, 6, 7 and 8, we explore different network
configurations using the ttcp benchmarking tool. We ex-
plore how the various encryption algorithms affect per-
formance and how much benefit we get out of hardware
cryptographic support. The host-to-host topology is used
as the base case, and should give us the optimal perfor-
mance of any data transfer mechanism in all scenarios.
The other two topologies map typical VPN and “road
warrior” access scenarios.

The key insight from our experiments is that even
though the introduction of IPsec seriously worsens per-
formance, our crypto hardware improves its performance
(relative to pure-software IPsec) by more than 100%, es-
pecially in the case of large packets. For the host-to-
host experiment, we see that throughput over IPsec varies
from 40% of the unencrypted transfer (for small packet
sizes) to 30% (for 8KB packets 3). We notice a sim-
ilar situation in the VPN configuration (host-gateway-
gateway-host). In the last two scenarios, the difference

3This is the size of the buffer that the ttcp benchmark is using for
reading and writing to the network.

NE AES-128 AES-192 AES-256 DES 3DES DES-HW 3DES-HW
0

50

100

150

200

250

300

350

400

450

500

550

T
hr

ou
gh

pu
t (

M
bp

s)

64-byte packets
512-byte packets
1024-byte packets
1470-byte packets
8192-byte packets

TCP host-to-host performance for 65535-byte socketbuffer

Figure 5: The ttcp utility over TCP, for the host-to-host net-
work configuration with 65535 bytes of socket buffer. NE
means No Encryption. We measure the AES algorithm with
three different key sizes (128, 192, and 256 bits), as well as
DES (56 bits) and 3DES (168 bits). The suffix “-HW” indi-
cated use of a hardware accelerator for that cryptographic
algorithm. In all cases where IPsec is used, we use HMAC-
SHA1 as the data integrity/authentication algorithm; when
hardware acceleration is used, HMAC-SHA1 is also accel-
erated.

in performance is less marked between the unencrypted
and the hardware-accelerated cases, since the aggregate
throughput of the three hosts on the left is limited to at
most 300 Mbps (due to the topology).

In our experiments, we also noticed some anomalous
behavior with 512 byte packet sizes, we believe that this
has to do with buffer mis-alignments in the kernel and
will investigate further in the future using profiling.

In our previous experiments we stress-tested IPsec by
maximizing network traffic using ttcp. In our next set
of experiments, we investigate how IPsec behaves under
“normal” network load and how it compares with other
secure network transfer mechanisms like scp(1) and
sftp(1). Our tests measure elapsed time for a large file
transfer in two different network configurations, host-to-

NE AES-128 AES-192 AES-256 DES 3DES DES-HW 3DES-HW
0

50

100

150

200

250

300

350

400

450

T
hr

ou
gh

pu
t (

M
bp

s)

64-byte packets
512-byte packets
1024-byte packets
1470-byte packets
8192-byte packets

TCP host-to-gateway-to-gateway-to-host performance for 65535-byte socketbuffer

Figure 6: The ttcp utility over TCP, for the host-
to-gateway-to-gateway-to-host network configuration with
65535 bytes of socket buffer. IPsec is used between the two
gateways.

NE DES 3DES DES-HW 3DES-HW
0

50

100

150

200

250

T
ot

al
 T

hr
ou

gh
pu

t (
M

bp
s)

64-byte packets
512-byte packets
1024-byte packets
1470-byte packets
8192-byte packets

TCP 3 hosts-to-gateway-to-host (IPsec hosts-to-gateway) performance for 65535-byte socketbuffer

Figure 7: The ttcp utility over TCP, for the 3 hosts-to-
gateway-to-host network configuration with 65535 bytes of
socket buffer. In this case we create an IPsec tunnel between
hosts H1, H2, H3 and the gateway.

host and host-to-gateway-to-gateway-to-host. In the first
case, IPsec is used in an end-to-end configuration; in the
second case, IPsec is done between two gateways.

Figures 9 and 10 present our results. Since we are
doing large file transfers, we easily amortize the initial-
ization cost of each protocol. Comparing the two fig-
ures, we notice that most of the time is actually spent by
the file system operations, even after we normalize the
file sizes. Another interesting point is that when we use
IPsec the file transfer is quicker in the gateway network
topology compared to the direct link. At first this might
seem counter-intuitive, however it is easily explained: in
the gateway case, the IPsec tunnel is located between the
gateways, therefore relieving some processing burden
from the end hosts that are already running the ftp pro-
gram. This leads to parallel processing of CPU and I/O
operations, and consequently better performance, since
the gateway machines offload the crypto operations from
the end hosts. Note that IPsec is not used for the plaintext
ftp, scp, and sftp measurements.

Figures 11 and 12, compare IPsec with ssl(3) as

NE DES 3DES DES-HW 3DES-HW
0

50

100

150

200

250

T
ot

al
 T

hr
ou

gh
pu

t (
M

bp
s)

64-byte packets
512-byte packets
1024-byte packets
1470-byte packets
8192-byte packets

TCP 3 hosts-to-gateway-to-host (IPsec host-to-host) performance for 65535-byte socketbuffer

Figure 8: The ttcp utility over TCP, for the 3 hosts-to-
gateway-to-host network configuration with 65535 bytes of
socket buffer. In this case, all 3 hosts on the left form IPsec
tunnels to the end host.

FTP SCP SFTP AES-128 AES-192 AES-256 DES 3DES DES-HW 3DES-HW
0

200

400

600

800

1000

1200

1400

1600

1800

2000
E

la
ps

ed
 ti

m
e

(s
ec

)

File transfer times for 1GB file
File transfer times for 1GB file through 2 gateways

Figure 9: Large file transfer using ftp, scp, sftp, and ftp
over IPsec, over two different network topologies. The file
is read and stored in the regular Unix FFS. IPsec is not used
for the plaintext ftp, scp, and sftp examples, in either setup.

FTP SCP SFTP AES-128 AES-192 AES-256 DES 3DES DES-HW 3DES-HW
0

20

40

60

80

100

120

140

160

180

200

220

240

260

E
la

ps
ed

 ti
m

e
(s

ec
)

File transfer times for 200MB file using MFS
File transfer times for 200MB file through 2 gateways using MFS

Figure 10: File transfer using ftp, scp, sftp, and ftp over
IPsec, over two different network topologies. The file is read
and stored in the Unix memory file system (MFS).

used by HTTPS, the network configuration is host-to-
host. We used curl(1) to transfer a large file from
the server to the client. Once again IPsec proves to be a
more efficient way of ensuring secure communication.

Figure 13 provides insight on the latency overhead in-
duced by IPsec and HTTPS. We used curl(1) to trans-
fer a very small file from the server to the client. The
file contained just an opening and closing html docu-
ment tag. We timed 1000 consecutive transfers. The la-
tency overhead introduced by IPsec over cleartext HTTP
is only 10%. There was practically no difference be-
tween using manual keying and isakmpd, as the cost of
key and security association management gets amortized
over many successive connections. The need to perform
a handshake for each connection clearly hurts perfor-
mance in the case of HTTPS.

In our final set of experiments, we explore the impact
IPsec has on the operation of the system. We selected
a CPU-intensive job, Sieve of Eratosthenes 4, which we

4Sieve of Eratosthenes is an algorithm for computing prime num-
bers. We run primes(6), a program that uses this algorithm which
is CPU intensive, to emulate a loaded gateway machine

HTTP HTTPS AES-128 AES-192 AES-256 DES 3DES DES-HW 3DES-HW
0

100

200

300

400

500

600

700

800

900

1000

E
la

ps
ed

 ti
m

e
(s

ec
)

HTTP transfer times for 1GB file

Figure 11: Large file transfer using http, https, and http
over IPsec, on a host-to-host network topology. The file is
read and stored in the regular Unix FFS.

HTTP HTTPS AES-128 AES-192 AES-256 DES 3DES DES-HW 3DES-HW
0

10

20

30

40

50

60

70

80

90

100

110

120

E
la

ps
ed

 ti
m

e
(s

ec
)

HTTP transfer times for 200MB file using MFS

Figure 12: Large file transfer using http, https, and http
over IPsec, on a host-to-host network topology. The file is
read and stored in the Unix memory file system (MFS).

run while constantly using the network. We tested the
impact of a number of protocols to the performance of
other jobs (in this case, the sieve) running on the system.
In Figure 14, we present the execution times of our CPU
intensive job while there is constant background network
traffic. To understand the results of Figure 14, one needs
to understand how the BSD scheduler works. In BSD,
CPU intensive jobs that take up all their quanta have their
priority lowered by the operating system. When execut-
ing the sieve while using ftp, the sieve program gets its
priority lowered and therefore ends up taking more time
to finish. In the case where it is run with scp(1) or
sftp(1), which are themselves CPU intensive because
of the crypto operations, the sieve finished faster. When
the sieve is run with IPsec traffic, the crypto operations
are performed by the kernel and therefore the sieve gets
fewer CPU cycles. With hardware cryptographic sup-
port, the kernel takes up less CPU which leaves more
cycles for the sieve. In the case of HTTPS background
network traffic, the CPU cycles spent in crypto process-
ing were not enough to affect the priority of the sieve.

0

50

100

150

200

250

300

E
la

ps
ed

 ti
m

e
(s

ec
)

Repeated HTTP transfer of small file

HTTP

HTTPS

M
ANUAL_3

DES

IS
AKM

PD_3
DES

Figure 13: Small file transfer using http, https, and
http over IPsec (using manual and automatic keying via
isakmpd), on a host-to-host network topology. We timed
1000 transfers of the file. The 3DES algorithm was used
for encryption.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

E
la

ps
ed

 ti
m

e
(c

yc
le

s*
10

^9
)

Sieve of Eratosthenes runtime

Id
le

HTTP

HTTPS

HTTP-D
ES

HTTP-3
DES

HTTP-D
ES-H

W

HTTP-3
DES-H

W
FTP

SCP
SFTP

FTP-D
ES

FTP-3
DES

FTP-D
ES-H

W

FTP-3
DES-H

W

Figure 14: IPsec introduced overhead on the normal per-
formance of a system. Impact on the execution time of CPU
intensive job (sieve) on a system that uses IPsec.

3.3 Macro-benchmark Results

All the experiments we run so far were designed to ex-
plore specific aspects of the security protocols, under
a variety of configurations. In this section we present
benchmarks that reflect a more realistic use of these pro-
tocols.

For our first macro-benchmark, we created a local mir-
ror of the www.openbsd.com site, 728 files and a to-
tal of 21882048 bytes, to a server machine. We then
used wget(1) from a client machine to transfer the
whole tree hierarchy over the Intel PRO/1000F network
adapters. We used wget(1) instead of curl(1) be-
cause of its support for recursive web transfers. Four dif-
ferent ciphers/modes were used for HTTPS. The HTTPS
tests used server certificates. The IPsec tests were con-
ducted using manual keying with DES, 3DES, AES and
hardware accelerated DES and 3DES. Finally, for com-
pleteness, we also included ephemeral Diffie-Hellman
results for HTTPS. We present the results in Figure 15.

Our second macro-benchmark is the compilation of

0

10

20

30

40

E
la

ps
ed

 ti
m

e
(s

ec
)

wget mirror of www.openbsd.com

HTTP

HTTPS-D
ES

HTTPS-3
DES

HTTPS-E
DH-D

ES

HTTPS-E
DH-3

DES

HTTP-D
ES

HTTP-3
DES

HTTP-D
ES-H

W

HTTP-3
DES-H

W

HTTP-A
ES-1

28

HTTP-A
ES-1

92

HTTP-A
ES-2

56

Figure 15: Mass transfer of a web tree hierarchy using
wget.

0

50

100

150

200

250

300

350

400

450

500

E
la

ps
ed

 ti
m

e
(s

ec
)

OpenBSD generic kernel compile

LOCAL
NFS

NFS-3
DES

NFS-3
DES-H

W

NFS-A
ES-2

56

Figure 16: Compilation of the OpenBSD kernel over NFS,
with and without use of IPsec.

the OpenBSD source over NFS (see Figure 16). We
present results for 3DES with and without hardware sup-
port, as well as AES. As expected, using hardware sup-
port for the encryption is particularly useful when the
system is burdened with intensive CPU and filesystem
loads.

4 Discussion

One lesson that can be drawn from our experiments is
that the current generation of hardware cryptographic ac-
celerators is not sufficient to support ubiquitous use of
encryption. Figure 1 points to one problem: the nominal
performance of crypto cards is only achieved for large
buffer/packet sizes. Since a large percentage (up to 40%)
of the packets in a TCP bulk-transfer is 40 bytes, we can
see that much of the benefit of such hardware is lost: the
cost of card and DMA initialization, PCI transfers, and
interrupt handling is roughly comparable to the cost of
pure-software encryption, especially as processor speeds
increase. This observation suggests that one possible so-
lution is a hybrid approach, where the system uses soft-
ware encryption for small packets, and hardware encryp-
tion for large ones. Another possible solution could be

integrating cryptographic functionality with the network
interface, which would also improve CPU utilization by
offloading the encryption.

One argument against this is the versatility of sepa-
rate cryptographic components, which allows their use
by many other applications (e.g., filesystem encryption,
database and other user-level processes that do crypto,
etc.). While this may be a valid argument in the case of
user-level processes, we believe that cryptographic accel-
erators can be integrated with other I/O devices that can
use them more efficiently (in particular, disk and tape
controllers). The declining cost of high-performance
cryptographic chips makes this a viable alternative to
dedicated processors.

5 Concluding Remarks

In this paper, we investigated the costs of network secu-
rity protocols. We used a variety of benchmarks to deter-
mine how IPsec performs under a wide range of scenar-
ios. Our experiments (and in particular our macrobench-
marks) have shown that IPsec outperforms all other pop-
ular schemes that try to accomplish secure network com-
munications. Even though this safety comes at a price,
which is present no matter which protocol one uses, it is
possible to get enough performance for practical use by
using dedicated cryptographic hardware. This price may
easily be acceptable for many applications and environ-
ments, given the remarkable flexibility and transparency
offered by IPsec.

References

[1] TTCP: a test of TCP and UDP Performance. USNA,
1984.

[2] T. Dierks and C. Allen. The TLS protocol version 1.0.
Request for Comments (Proposed Standard) 2246, Inter-
net Engineering Task Force, January 1999.

[3] Niklas Hallqvist and Angelos D. Keromytis. Implement-
ing Internet Key Exchange (IKE). In Proceedings of
the Annual USENIX Technical Conference, Freenix Track,
pages 201–214, June 2000.

[4] D. Harkins and D. Carrel. The Internet Key Exchange
(IKE). Request for Comments (Proposed Standard) 2409,
Internet Engineering Task Force, November 1998.

[5] John Ioannidis and Matt Blaze. The Architecture
and Implementation of Network-Layer Security Under
Unix. In Fourth Usenix Security Symposium Proceedings.
USENIX, October 1993.

[6] S. Kent and R. Atkinson. IP Authentication Header. Re-
quest for Comments (Proposed Standard) 2402, Internet
Engineering Task Force, November 1998.

[7] S. Kent and R. Atkinson. IP Encapsulating Security Pay-
load (ESP). Request for Comments (Proposed Standard)
2406, Internet Engineering Task Force, November 1998.

[8] S. Kent and R. Atkinson. Security Architecture for the In-
ternet Protocol. Request for Comments (Proposed Stan-
dard) 2401, Internet Engineering Task Force, November
1998.

[9] A. D. Keromytis, J. Ioannidis, and J. M. Smith. Imple-
menting IPsec. In Proceedings of Global Internet (Globe-
Com) ’97, pages 1948 – 1952, November 1997.

[10] D. McDonald, C. Metz, and B. Phan. PF KEY Key Man-
agement API, Version 2. Request for Comments (In-
formational) 2367, Internet Engineering Task Force, July
1998.

[11] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and
S. Lehtinen. SSH Protocol Architecture. Internet Draft,
Internet Engineering Task Force, February 1999. Work in
progress.

