USENIX Association

Proceedings of the
FREENIX Track:
2002 USENIX Annual Technical
Conference

Monterey, California, USA
June 10-15, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Enhancing NFS Cross-Administrative Domain Access

Joseph Spadavecchiaand Erez Zadok
Sony Brook University
{j oseph, ezk}@s. sunysb. edu

Abstract

The access model of exporting NFS volumes to clients
suffers from two problems. First, the server depends on
the client to specify the user credentials to use and has
no flexible mechanism to map or restrict the credentials
given by the client. Second, when the server exports a
volume, there is no mechanism to ensure that users ac-
cessing the server are only able to access their own files.

We address these problems by a combination of two
solutions. First, range-mapping allows the NFS server to
restrict and flexibly map the credentials set by the client.
Second, file-cloaking allows the server to control the data
a client is able to view or access, beyond normal Unix
semantics. Our design is compatible with all versions of
NFS. We have implemented this work in Linux and made
changes only to the NFS server code; client-side NFS
and the NFS protocol remain unchanged. Our evaluation
shows a minimal average performance overhead and, in
some cases, an end-to-end performance improvement.

1 Introduction

NFS was originally designed for use with LANs [17, 22],
where a single administrative entity was assumed to con-
trol all of the hosts in that site and create unique user ac-
counts and groups. The access model chosen for export-
ing NFS volumes was simple but weak. In a different ad-
ministrative domain, the password database may define
different users with the same UIDs; a UID clash could
occur if files in one domain are accessed from another.
Worse, users with local root access on their desktops or
laptops can easily access files owned by any other user
via NFS, by simply changing their effective UID (i.e.,
using / bi n/ su).

Therefore, NFS servers rarely export volumes outside
their administrative domain. Moreover, administrators
resist opening up access even to hosts within the domain,
if those hosts cannot be controlled fully. Today, users and
administrators must compromise in one of two ways. Ei-
ther volumes are exported across administrative domains
and security is compromised, or the volumes are not ex-
ported across administrative domains, preventing users
from accessing their data. Neither solution is acceptable.

Although NFSv4 [19] promises to provide strong au-
thentication and provides a convenient framework for

fixing these problems, it will not be available for many
platforms and in wide use for several years. The transi-
tion between NFSv2 [22] and NFSv3 [2] took around 10
years and corresponds to relatively small changes com-
pared to the changes between NFSv3 and NFSv4. Even
today, NFSv3 is not fully implemented on all platforms.
Moreover, the NFSv4 specification does not address all
of the problems that we wish to fix. Nevertheless, the
techniques described in this paper can enhance NFSv4
functionality. For example, whereas NFSv4 optionally
supports ACLs (Access Control Lists), it does not spec-
ify how to use them to hide files or consider the idea of
hiding files.

Current NFS servers implement a simple form of se-
curity check for the super user, intended to stop a root
user on a client host from easily accessing any file on the
exported NFS volume. However, current NFS servers do
not allow the restriction and mapping of any number of
client credentials to the corresponding server credentials.

We present a combination of two techniques that to-
gether increase both security and convenience: range-
mapping and file-cloaking. Range-Mapping allows an
NFS server to map any incoming UIDs or GIDs from
any client to the server’s own known UIDs and GIDs.
This allows each site to continue to control their own user
and group name-spaces separately while allowing users
on one administrative domain to access their files more
conveniently from another domain. Range-mapping is
a superset of the usual UID-0 mapping and Linux’s all-
squash option which maps all UIDs or GIDs to 2.

Our second technique, file-cloaking, lets the server de-
termine which ranges of UIDs or GIDs should a client be
allowed to view or access. We define visibility as the
ability of an NFS server to make some files visible under
certain conditions. We define accessibility as the NFS
server’s ability to permit some files to be read, written,
or executed. Cloaking extends normal Unix file permis-
sion checks by restricting the visibility and accessibil-
ity of users’ files when those files are exported via NFS.
Cloaking can be used to enforce the NFS client options
nosui d and nosgi d which prevent the execution of
set-bit files.

Range-mapping and cloaking complement each other.
Together, they allow NFS servers to extend access to
more clients without compromising the existing security

of those files. Whereas ACLs can allow a greater degree
of flexibility than cloaking, ACLs are not available on all
hosts and all file systems, are not supported in NFSv2,
and are partially implemented in NFSv3. Furthermore,
ACLs are often implemented in incompatible ways; this
is one reason why the new NFSv4 protocol specification
lists ACL attributes as optional [19].

Our system is implemented in the Linux kernel-mode
NFS server. No changes were made to the NFS client
side and our system is compatible with existing NFS
clients. This has the benefit that we can deploy our sys-
tem fairly easily by changing only NFS servers.

We performed a series of general-purpose benchmarks
and micro-benchmarks. Range-mapping has an overhead
of at most 0.6%. File-cloaking overheads range from
72% for a large test involving 1000 cloaked users—to an
improvement of 26% in performance under certain con-
ditions, reflecting a 4.7 factor reduction in network 1/0.

The rest of this paper is organized as follows. Sec-
tion 2 describes the design of our system and includes
several examples. We discuss interesting implementation
aspects in Section 3. Section 4 describes the evaluation
of our system. We review related works in Section 5 and
conclude in Section 6.

2 Design

Range-mapping and cloaking are features that offer ad-
ditional access-control mechanisms for exporting NFS
volumes. We designed these features with three goals:
compatibility, flexibility, and performance.

First, we are compatible with all NFS clients by requir-
ing no client-side or protocol changes. Range-mapping
and cloaking are performed entirely by the NFS server.
The server forces a behavior on the client that main-
tains compatibility with standard Unix semantics. Sec-
ond, we provide additional flexible access-control mech-
anisms that allow both users and administrators to con-
trol who can view or access files. We allow adminis-
trators to mix standard Unix and cloaking semantics to
define new and useful policies. Third, our design is eco-
nomical and efficient. We utilize hash tables and caches
to ensure good overall performance.

2.1 Range-Mapping

Traditionally, NFS supports two simple forms of creden-
tial mapping called root-squashing and all-squashing.
Root-squashing allows an NFS server to map any in-
coming UID 0 or GID 0 to another number that does
not have superuser privileges, often —2 (the nobody user).
All-squashing is a Linux NFS server feature that allows
the server to map all incoming UIDs or GIDs to another

number, representing a user or group with minimal priv-
ileges (e.g., —2).

These two crude forms of credential mapping are not
sufficient in many situations. First, there is no way to
map arbitrary ranges of client IDs to server IDs. There-
fore, squashing is not sufficient in cases where it is desir-
able to map to more than a single ID. Second, it is useful
in some cases to map one set of IDs while squashing all
others. For example, if the file system was exported to
a client where only UIDs 400-500 should be able to ac-
cess their files on the server, then it is desirable to assure
that all other UIDs coming from the client are squashed
to -2.

NFS Server NFS Client

o /
,,,,,,,,,, -/

Figure 1: Range-mapping: client UID 100 to server UID 10
(1-to-1); client UIDs 400-500 to server UIDs 200-300 (N-to-
N); client UIDs 800-999 to server UID 517 (N-to-1). Note that
server UID 517 is reverse-mapped to client UID 800. All other
UIDs are restricted.

Range-mapping allows greater flexibility in mapping
credentials. Range-mappings are defined per export (ex-
ported file system) and allow the NFS server to restrict
or map any set of an NFS client’s credentials to the cor-
responding set on the server. Figure 1 shows an exam-
ple of several range-mappings. First, client UID 100 is
mapped to server UID 10 (1-to-1). Second, client UIDs
400-500 are mapped to server UIDs 200-300 (N-to-N),
respectively. Third, client UIDs 800-900 are mapped to
server UID 517 (N-to-1); this case is also called squash-
ing. For N-to-1 mappings, the server reverse-maps the
single server UID to the first corresponding client UID
in the squashed range: server UID 517 is reverse-mapped
to client UID 800 in Figure 1. Finally, the arrow with a
slash through it means that all other UIDs are restricted
(squashed to -2).

Range-mapping is done bidirectionally. Forward map-
ping is done when a client sends a request to the NFS
server and the server maps the user’s client UID and GID
to the corresponding server UID and GID. Reverse map-
ping is done when the server responds to the client (i.e.,
when returning file attributes) and must map the user’s

server UID and GID back to the corresponding client
UID and GID.

2.1.1 Range-Mapping Configuration Examples

Range-mapping definitions are specified per export in
/ et c/ exports as part of the option list. To provide
human-readable formatting of the range mapping defini-
tions, we extended the file’s format to support whitespace
and line continuation. The syntax for the range mapping
option is as follows:
range_map = rmap_def [rmap_def...]
rmap_def := <uid|gid> rmlow [rmhigh]
<map| squash> | c-| ow
The first option in r map_def specifies whether the
definition applies to UIDs or GIDs. The rm-low, rm-
high, and Ic-low values specify the remote lower bound,
remote upper bound, and local lower bound ID values,
respectively. The client ID range rm-low to rm-high is
mapped to the server’s ID range Ic-low as follows:
lc-low + (rmhigh — rm|ow)

A one-to-one mapping from ID rm-low on the client to
ID Ic-low on the server is performed if rm-high is not
specified or is equal to rm-low.

The map or squash option specifies that an N-to-N,
or N-to-1 ID mapping is being performed, respectively.
The following example shows a single range mapping
definition:

/homre *.exanple.con(rw, \
range_map = \
uid 100 250 nap 12314 \
gid 100 200 squash 6000)

The definition above specifies two range-maps for
clients who are members of the exanpl e. comdomain
and are accessing the / homre volume. First, client UIDs
100-250 will be mapped to server UIDs 12314-12464.
Second, client GIDs 100-200 be squashed to server GID
6000.

Range-mapping is a superset of root-squashing and
all-squashing. Root squashing is a feature of NFS that al-
lows the NFS server to map the root UID (0) and GID (0)
to the nobody UID (typically —2) and nobody GID (typi-
cally —2). The following example shows how to perform
root squashing using range-mapping:

/home *.exanple.com(rw, \
range_map = \
uid 0 squash -2\
gid 0 squash -2)

All-squashing is a feature supported in Linux that
maps all client UIDs and GIDs to —2. All-squashing may
be done with range-mapping as follows:

/home *.exanple.con(rw, \
range.map = \
uid 0 -1 squash -2\
gid 0 -1 squash -2)

2.2 File-Cloaking

File-cloaking is a mechanism that abstracts the concept
of file permissions to allow data to be hidden. With file-
cloaking, if a file is not visible then it is not accessible.
When a request is made to access a file or list a direc-
tory, file-cloaking uses the NFS credentials, file protec-
tion bits, and cloaking-mask to determine access and vis-
ibility.

NFS Credientials: UID/GID

visible

No

File Protection
Bits: other/group

Cloaking—mask: /etc/exports
4 5 6 7 8 9

R|W|IX R |W|X

SHOwW [P
SETUID |©
SETGID [
STICKY (%

GROUP OTHER

No cloaked Yes

Figure 2: File-cloaking algorithm running on the NFS server.

File | Permission | User | Group
J1 0600 j oe src
J2 0640 j oe src
J3 2666 j oe src
Ja 0700 j oe src
E5 0750 ezk src
E6 0750 ezk fac
E7 4775 ezk src
E8 0775 ezk fac
E9 6700 ezk src

E10 0000 ezk src

Table 1: An example listing of files. User j oe belongs to
group src, and user ezk belongs to groups src and f ac.
The leftmost 3 bits attached to the permission mask represent
the SETUID, SETGID, and sticky bits, respectively.)

Figure 2 shows how file-cloaking works. The NFS
credentials are checked against the owner of the file.

Cloak User ezk User j oe Meaning
Mask ([J1|J2|J3|J4 || E5|E6|E7|E8|E9|EL for files J1-E10
+000 Show files to owners only
+007 A Al A Show files to owners and others
+070 Al A A A | A Show files to owners and group members
+077 Al A A A | A Show files to all people with any access
-007 || v | Vv ViV]v Hide world-accessible files
-070 v % Hide from group members
077 Y% Y% Hide from groups members and others
-004 v | A vi |A|lVv]|A]A v | Hide world readable files
=400 | Vv | A|A|VI|A]|V A v | Hide SETUID files
-200 v | A vi Al Vv|A]A v | Hide SETGID files
| 000 [v] AJAJVv]A]V]A]A] V] v |Unixstandard

Table 2: File visibility and accessibility for various cloak masks, given the files in Table 1. A “+ in front of the mask implies that
files are cloaked by default; a “~"” means that files are visible by default. The letter “A” means that the file is visible and accessible.
The letter “v’> means the file is visible but not accessible. A blank cell means that the file is neither visible nor accessible.

If the credentials match then the file is visible. Other-
wise two checks are done, each with an AND between
the cloaking-mask and the file’s protection bits. The first
check is done if the credentials have group ownership on
the file. The group Rwx bits of the cloaking-mask are
ANDed with the file’s protection bits. The second check
is done with an AND between all the bits in the cloaking-
mask (excluding the group rwx bits) and the file’s pro-
tection bits (excluding the group and user bits). If the
result of either AND is non-zero and the sHow bit of the
cloaking-mask is set then the file is visible; else if the
SHOW bit is unset then the file is cloaked. The inverse
behavior takes place if the result of the AND is zero. In
this way, the sHow bit can determine whether files are
visible or cloaked by default, allowing the other mask
bits to reverse the default behavior.

Tables 1 and 2 illustrate the concept of cloaking and
provide some examples of useful cloaking configura-
tions. Table 1 shows a sample of files owned by two dif-
ferent users: j oe and ezk. The permissions for each file
are listed including the SETUID, SETGID, and sticky
bits. User j oe belongs to the sr ¢ group, and user ezk
belongs to the src and f ac groups. Table 2 shows a
visibility/accessibility matrix of the files listed in Table 1
for eleven useful cloaking masks. In Table 2, “A” implies
“v” and the “+” or “~” preceeding the mask sets or clears
the mask’s sHOwW bit, respectively. Next, we describe a
few of the examples in Table 2.

With mask +000, the administrator enforces a strict
policy that users can only see their own files. On the
other hand, with mask —077 the administrator chooses a
policy that allows users to decide if their files should be
hidden or not by setting the group and world bits. To hide
a file from everyone, the user may set any of the “other”
bits. To hide a file from group members, the user may set

one of the group bits. Note that this mask is non-intuitive
because it restricts access by performing an action that
would normally increase others’ access. Also, note that
this option is not fail-safe. If the administrator changes
the export option hidden files might not only be visible,
but also accessible.

The next to last two lines in Table 2 show that cloak-
ing allows the server to enforce the client-side nosui d
and nosgi d mount options. The nosui d and nosgi d
options are achieved by cloaking using the masks —400
and —200, which translate to hide SETUID and hide SET-
GID files, respectively. Note that cloaking here is more
restrictive than the nosui d and nosgi d options. These
options allow files to be executed, but without their set-
bits. Cloaking hides such files and thus disallows their
execution altogether.

Another example is the mask —002, which hides all
world-writable files. This mask can be especially use-
ful on multi-user systems to protect layman users from
leaving their files world writable. In this scenario the ad-
ministrator enforces a policy on the systems users.

2.2.1 File-Cloaking Configuration Examples

Cloaking definitions are specified with range-mappings
in the / et c/ export s file. The syntax for cloaking
definitions is as follows:

cloaklist = clist_def [clist_def...]
clist_def := <uid|gid> mask lc-low [Ic-high]

As with range-mapping, the first option specifies
whether the definition applies to UIDs or GIDs. Next,
mask is a 10-bit field for defining the cloaking policy.
Figure 2 shows the different bits comprising the mask.

The range Ic-low to Ic-high is the range of server 1Ds
to cloak based on the policy given by the mask. If Ic-high

is omitted, then the definition applies only to the server
ID Ic-low. The following example shows a cloaking def-
inition:

/home *.exanple.con(rw, \

cloaklist =\
uid +000 500 1000 \
gid +077 100 200)

In this example, there are two cloaking definitions.
The first places the restriction for UIDs 500-1000 that
only the owners may see or access their files. That is,
files on the server owned by UIDs 500-1000 cannot be
seen or accessed by any user other than the owner. The
second definition states that files owned by UIDs 100-
200 are only visible if there is world access to them, or if
there is group access to them and the user listing the file
belongs to the group of the file.

3 Implementation

We implemented this project in two places: the NFS Util-
ities (nf s- uti | s) package version 0.3.1 [8] and the
NFS server code (both NFSv2 and NFSv3) in the Linux
2.4.4 kernel. We added 1678 lines of code to nf s-
util s, an increase of 5.8% to its size. This code pri-
marily handles parsing / et ¢/ expor t s files for range-
mapping and cloaking entries, packing them into exports
structures, and passing these structures to the kernel us-
ing a special-purpose i oct | used by the in-kernel NFS
server.

Most of the code we added was to the kernel: 1330
lines of additional code, or an increase of 15.1% to the
total size of the NFS server sources. Although this in-
crease is substantial, the bulk of our changes to the kernel
code are in new C source and header files, and in stand-
alone functions we added to existing source files. The
placement of our changes in the kernel sources made it
easier to develop: two first-year graduate students spent a
combined total of 12 man-weeks developing and testing
the code.

3.1 Range-Mapping

For range-mapping we faced three questions: where to
do forward mapping, where to do reverse mapping, and
how to get the mapping context from the export struc-
tures for each client request.

Forward mapping is done in the nf sd_set user
function, which is passed a pointer to the relevant ex-
port structure; the latter contains the information we need
to perform the mapping. Implementing reverse map-
ping was more difficult. The best place for it was in the
server’s outgoing path, where it encodes file attributes
into XDR structures before shipping them back to the

NFS client. This is done in the encode_f att r 3 rou-
tine (or encode_fattr2 for NFSv2). We find a re-
sponse packet inside the request structure passed to this
function; from this we get the NFS file handle. The latter
contains the export information we need to compute the
range-mapping.

3.2 Cloaking

Cloaking was more challenging to implement than
range-mapping because of the restriction that we only
modify the server. Cloaking needs to display different
directory listings to each user on the same client. Since
clients cache directory contents and file attributes, we
have to force the NFS clients to ignore cached informa-
tion (if any) and reissue an NFS_READDIR procedure ev-
ery time users list a directory. We investigated two op-
tions: (1) lock the directory, and (2) fool the client into
thinking that the directory’s contents changed and thus
must be re-read. We chose the second option because
locking the directory permanently would have serialized
all access to that directory and prevented more than one
NFS client from making changes to that directory (such
as adding a new file).

To force the client to re-read directories, we increment
the in-memory modification time (mtime) of the direc-
tory each time it is listed; we do not change the actual
directory’s mtime on disk. This technique has been used
before to prevent client-side caching in NFS-based user
level servers [14,25,29]. NFS clients check the mtime
of remote directories before using locally cached data.
Since the mtime always changes, the clients re-read the
directory each time and effectively discard their local
cache. The mtime field has a resolution of one second,
but sometimes several r eaddi r requests come in one
second. We therefore had to ensure that the mtime is
always incremented on each listing. This has a side ef-
fect that the modification time of directories being listed
frequently could move into the future. In practice this
was not a problem because directory-reading requests are
often bursty and in between bursts the real clock has a
chance to catch up to a directory’s mtime that may be
in the near future. Furthermore, future Linux kernels
will increase the mtime resolution to microseconds, thus
practically eliminating this problem.

We expected that forcing the clients to ignore their
directory caches will reduce performance. However,
if a client machine has only one user (as is the case
with most personal workstation and laptops), we can al-
low the client to cache directory entries normally since
there is little risk that another user on that client will be
able to view cached entries. We made client caching
optional by adding a server-side export option called
no_cl i ent _cache that, if enabled, forces the direc-

tory mtime to increase and cause clients not to cache di-
rectory entries. If no_cl i ent _cache is not used (the
default), we do not increase the mtime and NFS clients
cache directory entries normally.

Cloaking requires that some files be hidden from users
and therefore those files” names should not be sent back
to the NFS client. We implemented this in the en-
code_ent ry function. Given a file’s owner, group,
mode bits, and the export data structures, we compute
whether the file should be visible or not. If the file is
invisible, we simply skip the XDR encoding of that file.
If the file is not invisible, then we allow access to that
file based on normal Unix file permissions. A user could
try to lookup (perhaps guess) a file that is hidden to that
user. To catch this we perform a cloaking check also in
nf sd_l ookup and if the file should be invisible to the
calling user, we return an error code back to the lookup
request.

4 Evaluation

To evaluate range-mapping and cloaking in a real world
operating environment, we conducted extensive mea-
surements in Linux comparing vanilla NFS systems
against those with different configurations of range-
mapping and cloaking. We implemented range-mapping
and file-cloaking in NFSv2 and NFSv3; however, we
report the results for NFSv3 only. Our benchmarks
for NFSv2 show comparable performance. In this sec-
tion we discuss the experiments we performed with
these configurations to (1) show overall performance on
general-purpose workloads, and (2) determine the per-
formance of individual common file operations that are
affected the most by this work. Section 4.1 describes the
testbed and our experimental setup. Section 4.2 describes
the file system workloads we used for our measurements.
Sections 4.3 and 4.4 present our experimental results.

4.1 Experimental Setup

We ran our experiments between an unmodified NFS
client and an NFS server using five different configura-
tions:

1. vAN: A vanilla setup using an unmodified NFS
server. Results from this test gave us the basis on
which to evaluate the overheads of using our sys-
tem.

2. MNU: Our modified NFS server with all of the
range-mapping and cloaking code included but not
used. This test shows the overhead of including our
code in the NFS server while not using those fea-
tures.

3. RMAP: Our modified NFS server with range-
mapping configured in / et ¢/ exports. Since
our range-mapping code works exactly the same
when a single UID or a range of UIDs are mapped,
for simplicity these tests mapped a single UID.

4. cLk: Our modified NFS server with cloaking
configured in / et ¢/ exports. To illustrate the
worst-case performance for cloaking, we set the
cloaking mask to +000, indicating the most restric-
tive cloaking possible. Using +000 ensures that the
code which determines if a file should be visible or
not checks as many mask conditions as possible, as
we described in Section 2.

5. RMAPCLK: Our modified NFS server with
both range-mapping and cloaking configured in
[etcl/lexports. To ensure worst-case perfor-
mance, we set the user entries that are range-
mapped so they are also cloaked.

The last three configurations were intended to show
the different overheads of our code when each feature
is used alone or combined. Since our system runs the
same range-mapping or cloaking code with either UIDs
or GIDs we evaluated range-mapping and cloaking only
for UIDs.

All experiments were conducted between two equiv-
alent Dell OptiPlex model GX110 machines that use
a 667MHz Intel Pentium IIl CPU, 192MB of RAM,
and a Maxtor 30768H1 7.5GB IDE disk drive. The
two machines were connected to a stand-alone dedicated
switched 100Mbps network.

To ensure that our machines were equivalent and our
setup was stable, we ran the large-compile Am-utils
benchmark (see Section 4.2.1) on both machines, alter-
nating the server and client roles of the two. We com-
piled the package on the client, using an exported file
system from the server. We compared the results and
found the difference in elapsed times to be 1.003% and
the difference in system time (as measured on the client)
to be 1.012%. The standard deviations for these tests
ranged from 2.2-2.7% of the mean. Therefore, for the
purposes of evaluating our systems, we consider these
machines equivalent, but we assume that benchmark dif-
ferences smaller than 1% may not be significant.

We installed a vanilla Linux 2.4.4 kernel on both ma-
chines. We designated one machine as client and in-
stalled on this machine an unmodified NFS client-side
file system module. On the server we installed both a
vanilla NFS server-side file system module and our mod-
ified NFS server module that included all of the range-
mapping and cloaking code. Since our code exists en-
tirely in the NFS server, we could use a vanilla kernel on
the server and simply load and unload the right kNFSd
module.

On the server we installed our modified user-level NFS
utilities that understand range-mapping and cloaking;
these include the expor t f s utility and the r pc. nf sd,
rpc. | ockd, andr pc. mount d daemons. Finally, the
server was configured with a dedicated 334MB EXT2FS
partition that we used exclusively for exporting to the
client machine.

All tests were run with a cold cache on an otherwise
quiescent system (no user activity, periodic cr on(8)
jobs turned off, unnecessary services disabled, etc.). To
ensure that we used a cold cache for each test, we un-
mounted all file systems that participated in the given test
after the test completed, and we mounted the file sys-
tems again before running the next iteration of the test
(including the dedicated server-side exported EXT2FS
partition). We also unloaded all NFS-related modules on
both client and server before beginning a new test cycle.
We verified that unmounting a file system and unload-
ing its module indeed flushes and discards all possible
cached information about that file system.

We ran each experiment 20 times and measured the
average elapsed, system, and user times. In file system
and kernel benchmarks, system times often provide the
most accurate representation of behavior. In our tests we
measured the times on the NFS client, but the code that
was modified ran on the server’s kernel. System times
reported on a client do not include the CPU time spent
by the server’s kernel because when the server is work-
ing on behalf of the client, the client’s user process is
blocked waiting for network 1/0O to complete. 1/0 wait
times are better captured in the elapsed time measure-
ments (or, alternatively, when subtracting system and
user times from elapsed times). Since our testbed was
dedicated and the network connection fast, we chose to
report elapsed times as the better representatives of the
actual effort performed by both the client and the server.

Finally, we measured the standard deviations in our
experiments and found them to be small: less than 3% for
most benchmarks described. We report deviations that
exceeded 3% with their relevant benchmarks.

4.2 File System Benchmarks

We measured the performance of our system on a va-
riety of file system workloads and with the five differ-
ent configurations as described in Section 4.1. For our
workloads, we used three file system benchmarks: two
general-purpose benchmarks for measuring overall file
system performance and one micro-benchmark for mea-
suring the performance of common file operations that
may be affected by our system.

4.2.1 General-Purpose Benchmarks

Am-utils The first general-purpose benchmark we
used to measure overall file system performance was am-
utils (The Berkeley Automounter) [13]. This benchmark
configures and compiles the am-utils software package
inside a given directory. We used am-utils-6.0.7: it con-
tains over 50,000 lines of C code in 425 files. The build
process begins by running several hundred small config-
uration tests intended to detect system features. It then
builds a shared library, ten binaries, four scripts, and doc-
umentation: a total of 265 additional files. Overall, this
benchmark contains a large number of r eads, wri t es,
and file | ookups, as well as a fair mix of most other file
system operations such as unl i nk, mkdi r, and sym
I i nk. The main usefulness of this benchmark is to show
what the overall performance might be for regular use of
our system by users.

NFSSTONE The second general-purpose benchmark
we used was an NFS-specific benchmark called NFS-
STONE [18]. This traditional benchmark performs a se-
ries of 45522 file system operations, mostly executing
system calls, to measure how many operations per sec-
ond can an NFS server sustain. The benchmark performs
a mix of operations intended to show typical NFS ac-
cess patterns [16]: 53% LOOKUPs, 32% READS, 7.5%
READLINKS (symlink traversal), 2.3% GETATTRS, 3.2%
WRITES, and 1.4% CREATES. This benchmark performs
these operations as fast as it can and then reports the aver-
age number of operations performed per second, or NF-
SSTONES.

For these two general benchmarks, we set up the NFS
server with the an / et ¢/ export s file configured as
follows:

e For the vAN and MNU tests, the exports files con-
tained only one entry exporting a single file system.
No range-mapping or cloaking were configured.

e For the RMAP test we configured 10 range-mapped
users, representing a small configuration we believe
will be common. The user we ran these benchmarks
on the client was one of the mapped UIDs. This way
we caused the server to do some work, bidirection-
ally mapping one user 1D to another.

e For the cLK test we configured 10 cloaked users.
The user we ran the benchmarks on the client was
one that was allowed to access and modify their files
on the server. This test shows the worst-case sce-
nario for cloaking, when the server has to look at
the entire list of cloaked users and not find the user
who is accessing the files.

e For the RMAPCLK test we configured an
[etc/exports file that contained 10 range-
mapped entries and also 10 cloaked entries. The

user we ran the test on the client was range-mapped
and had permission to view and modify their files.

We investigated three additional benchmarks that we
did not use to evaluate our work. First, the Modified
Andrew Benchmark (MAB) [11] is also a compile-based
benchmark but it is too small for modern hardware and
completes too quickly as compared to the larger am-utils
compile. Second, a newer version of NFSSTONE called
NHFSSTONE [7] uses direct RPC calls to a remote NFS
server instead of executing system calls on the client be-
cause the latter can result in a different mix of actual
NFS server operations that are executed. Unfortunately,
the only available NHFSSTONE benchmark for Linux
[8] supports only NFSv2, whereas we wanted a bench-
mark that could run on both NFSv2 and NFSv3 servers
[2,12,17,22]. Third, the SFS 2.0 benchmark, a succes-
sor to LADDIS [24], is a commercial benchmark that
provides an industry-standardized performance evalua-
tion of NFS servers (both NFSv2 and NFSv3), but we
did not have access to this benchmark [14,23]. Never-
theless, we believe that the benchmarks we did perform
represent the performance of our system accurately.

4.2.2 Micro-Benchmarks

GETATTR: The third benchmark we ran is the pri-
mary micro-benchmark we used. Our code affects only
file system operations involving accessing and using file
attributes such as owner, group, and protection bits.
This benchmark runs a repeated set of recursive list-
ing of directories using | s -1 R That way, the micro-
benchmark focuses on the operations that are affected the
most: getting file attributes and listing them.

Since this benchmark is the one that is affected the
most by our code, we ran this test repeatedly with several
different configurations aimed at evaluating the perfor-
mance and scalability of our system. To ensure that the
server had the same amount of disk 1/0 to perform, we
used fixed-size directories containing exactly 1000 files
each.

To test the scalability, we ran some tests with a dif-
ferent numbers of range-mapped or cloaked entries in
/ et c/ exports: 10, 100, and 1000. Ten entries in-
tends to represent a small site whereas one-thousand en-
tries represents a large site.

For the VAN and MNU tests we used a directory with
1000 zero-length files owned by 1000 different users.
These two tests show us the base performance and the
effect on performance that including our code has, re-
spectively.

For the RMAP test we also kept the size of the directo-
ries being listed constant, but varied the number of UIDs
being mapped: 10 mapped users each owning 100 files,
100 mapped users each owning 10 files, and 1000 users

each owning one file. The directories were created such
that each user’s files were listed together so we could also
exercise our range-mapping UID cache. The user that ran
thel s -1 Rcommand for this benchmark on the client
was one of the mapped UIDs. (It does not matter which
of the mapped users was the one running the test since the
entire directory was listed and for each file the server had
to check if range-mapping was applicable.) These tests
show what effect range-mapping has on performance for
different scales of mapping.

For the CLK test we used a similar setup as with range
mapping: directories containing 1000 files owned by a
different number of cloaked users each time: 10, 100,
and 1000. To make the server perform the most work,
we ran the benchmark on the client using a user whose
UID was not permitted to view any of the files listed.
This ensured that the server would process every file in
the directory against the user who is trying to list that
directory, but would not return any file entries back to the
client. This means that although the directory contains
1000 files on the server, the client sees empty directories.
This has the effect of reducing network bandwidth and
the amount of processing required on the client.

The RMAPCLK test combined the previous two tests,
using a different number of range-mapped users all of
whom were cloaked: 10, 100, and 1000. The directories
included 1000 files owned by a corresponding number of
users as were mapped and cloaked. The user we ran the
test as, on the client, was one of those users to ensure that
the server had to process that user’s UID both for map-
ping and cloaking. This guaranteed that only the files
owned by the cloaked user (out of a total of 1000 files)
would be returned to the client: 100 files were returned
when there were 10 cloaked users, 10 files returned when
there were cloaked 100 users, and only one file returned
when there were 1000 cloaked users. This test therefore
shows the combination of two effects: range-mapping
and cloaking make the server work harder, but cloaking
also results in reducing the number of files returned to the
client, and thus saving on network bandwidth and client-
side processing.

Finally, for all benchmarks involving cloaking (CLK
and RMAPCLK) we ran the tests with and without the
no_cl i ent _cache option (Section 3.2), to evaluate
the effects of circumventing NFS client-side caching.

4.3 General-Purpose Benchmark Results

Am-Utils Figure 3 shows the results of our am-utils
benchmark. This benchmark exercises a wide variety
of file operations, but the operations affected the most
involve getting the status of files (via st at (2)), some-
thing that does not happen frequently during a large com-
pilation; more common are file reads and writes. There-

fore the effects of our code on the server are not great in
this benchmark, as can be seen from the individual re-

sults.
CLK

160 T
Cold-Cache m—

140

0 I I
VAN MNU

[
o N
o o
T T

Elapsed Time (seconds)
e
o
T

60
40 F
20+
RMAP
Test Name

Figure 3: Results of the am-utils benchmark show a small
difference between all of the tests—less than 1% between the
fastest and slowest results.

When our code is included but not used (MNU vs. VAN)
we see a 0.14% degradation in performance. Adding
range-mapping (RMAP vs. MNU) costs an additional
0.026% in performance. Adding cloaking (CLK vs.
MNU) costs an additional 0.54% in performance. These
results suggest that range-mapping and cloaking have a
small effect on normal use of NFS mounted file systems.

NFSSTONE Figure 4 shows the results of the NFS-
STONE benchmark. This benchmark exercises the oper-
ations that would be affected by our code on the server
(GETATTR) more times than the Am-utils benchmark.
Therefore, we see higher performance differences be-

tween the individual tests.
T
Cold—Cache
14000 | g
12000 | g
10000 | g
8000 .
6000 g
4000 i
2000 F g
0
VAN MNU RMAP CLK

Test Name
Figure 4: Results of the NFSSTONE benchmark show a small
difference between all of the tests—less than 2.6% between the
fastet and slowest.

16000

NFSSTONES per second

When our code is included but not used (MNU vs. VAN)
we see a small 0.05% degradation in performance, sug-
gesting that when our code is not used, it has little ef-
fect on performance. Adding range-mapping (RMAP vs.

MNU) costs an additional 2.5% in performance. Adding
cloaking (CLK vs. MNU) costs an additional 0.54% in
performance. These results also suggest that range-
mapping and cloaking have a small effect on normal use
of NFS mounted file systems.

4.4 Micro-Benchmark Results

Our code affects operations that get file attributes
(stat (2)). The micro-benchmarks tested the effect
that our code has on those operations using a variety of
server configurations.

1400 T T T
Sat-et
_ 1200 F oak-Cache === i
B8
S 1000 - 1
2 =
= 800 =
£ =
g 600 25 B
= =
g_ 400 - =
]
o200 - E :
0 = =
VAN MNU RMAP CLK RMAPCLK

File System

Figure 5: Results of recursive listing of directories containing
exactly 1000 entries on the server. The tests were configured to
result in exactly 1000 files being returned to the client each time
(i.e., worst case). The Cloak-Cache bars show results when
NFS clients used cached contents of cloaked directories (i.e.,
the no_cl i ent _cache export option was not used). Stan-
dard deviations for this tests were 4.3-6.5% of the mean.

Figure 5 shows results of our first micro-benchmark:
a recursive listing (I's -1 R) we conducted on an
NFS-mounted directory containing 1000 entries. The
/ et c/ export s file on the server was configured with
range-mapping and cloaking such that the user listing
that directory on the client would always see all files.
This ensures that the amount of client-side work, net-
work traffic, and server-side disk 1/O for accessing the
directory remained constant, while making the server’s
CPU experience different workloads.

The black bars in Figure 5 show the worst-case re-
sults, when NFS clients were ignoring their cache:
no_cl i ent _cache was used on the server, described
in Section 3.2. The Cloak-Cache bars show the results
when this option was not used, thus allowing clients to
use their directory caches.

When our code is included but not used (MNU Vvs. VAN)
we see a 17.6% degradation in performance. This is be-
cause each time a client asks to get file attributes, our
code must check to see if range-mapping or cloaking are
configured for this client. This checking is done by com-
paring four pointers to NULL. Although these checks

are simple, they reside in a critical execution path of the
server’s code—where file attributes are checked often.

Adding range-mapping (RMAP vs. MNU) costs an ad-
ditional 18.1% in performance. This time the server
scans a linked list of 1000 range-mapping entries for the
client, checking to see if the client-side user is mapped
or not. Each of 1000 files were owned by a different user
and one user was range-mapped. Therefore the server
had to scan the entire list of range mappings for each file
listed; only one of those files actually got mapped. Such
a test ensures that the range-mapping cache we designed
was least effective (all cache misses), to show the worst-
case overhead.

The cloaking test (CLK vs. MNU) costs an additional
30.3% in performance. This test ensured that the files in
the directory were not owned by a cloaked user. Cloaking
must guarantee that NFS clients do not use cached file
attributes. Therefore the client gets from the server all
of the files each time it lists the directory. Moreover, the
code that determines if a file should be cloaked or not is
more complex as it has to take into account cloak masks.
Range-mapping, in comparison, uses a simpler check to
see if a UID or GID is in a range of mapped ones; that
is why cloaking costs more than range-mapping (10.4%
more).

The cumulative overhead of range-mapping and cloak-
ing, when computed as the worst case time difference
between cloaking and range-mapping, compared against
MNU, is 48.4%. However, when combining cloaking
and range-mapping together (RMAPCLK vS. MNU) we see
a slightly smaller overhead of 46.9%. This is because
the range-mapping and cloaking code is localized in the
same NFS server functions. This means that when the
NFS server invokes a function look up a file, both range-
mapping and cloaking tests are performed without hav-
ing to invoke that function again, pass arguments to it,
etc.

The worst-case situation (RMAPCLK vs. VAN) has an
overhead difference of 72.3%. This overhead is for the
inclusion of our code and its use on a large directory with
1000 files. Although this overhead is high, it applies only
when getting file attributes. Under normal user usage,
performance overhead is smaller, as we have seen in Sec-
tion 4.3.

Finally, for single-user NFS clients, the server can
safely allow such hosts to cache directory entries, thus
improving performance. The Cloak-Cache results in
Figure 5 show what happens when we did not use the
no_cl i ent _cache export option. For the CLK test,
client-side caching improves performance by 30.6%.
Client-side caching improves performance of the RMAP-
CLK test by 22.3%.

The micro-benchmarks in Figure 5 show the worst
case performance metrics, when both the server and

client have to do as much work as possible. The second
set of micro-benchmarks was designed to show the per-
formance of more common situations and how our sys-
tem scales with the number of range-mapped or cloaked
entries used. These are shown in Figure 6.

1200 VAN-O

RMAP m—

| TCLK s===m
1000 [RMAPGLK

800 [

600

400

Elapsed Time (milliseconds)

200

0

Number of User Entries in /etc/exports

Figure 6: Results of recursive listing of directories containing
a different number of files while the server is configured with a
different number of mapped or cloaked entries. Standard devi-
ations for this tests were 4.3-6.7% of the mean.

The range-mapping bars (RMAP) show the perfor-
mance of listing directories with 1000 files in them, but
varying the number of users that were range-mapped.
Range-mapping with 10 users implies that each user
owns 100 files. When one of those users lists the di-
rectory, that user sees 1000 files, but 100 of those files
have their UID mapped by the server. For 100 files
and users, only 10 files are mapped; for 1000 files and
users, only one file is mapped. The largest cost for
range-mapping is the number of range-map entries listed
in/ et c/ exports because the server has to scan the
entire (in-memory) list to determine the range-mapping
needed for each user that is accessing from the client and
for each file that the server wants to present to the client
(reverse mapping). Using 100 mappings slows perfor-
mance by 5.3% compared to 10 mappings; using 1000
mappings costs another 7.9% in performance. Despite
two orders of magnitude difference in number of en-
tries used in these three bars, the overall overhead is just
13.6%.

The bars for cloaked configurations (CLK) show a dif-
ferent behavior than range-mapped configurations. Here,
all 1000 files were owned by cloaked users, whether
there were 10, 100, or 1000 cloaked users. But the user
that listed the files on the client was not one of those
cloaked users and therefore was not able to see any of
those files; what they listed appeared on the client as
an empty directory. This test fixes the amount of work
that the client has to do (list an empty directory) and
the server’s work (scan 1000 files and apply cloak rules
to each file). This test differs in the number of cloaked
user entries listed in / et ¢/ export s. The bars show a

small difference in the amount of work that the server had
to do to process the cloak lists: 4.1% performance dif-
ference between the largest and smallest lists. However,
just using the cloaking code costs in performance, even
if the client receives no files. We compared this cloak-
ing to listing an empty directory on a vanilla NFS server
without cloaking code (marked as VAN-0 in Figure 6);
cloaking is 17.8 times slower than listing an empty di-
rectory, showing that whereas the client has little work to
do, the server must still process a large directory.

Although cloaking consumes more CPU than range-
mapping (as seen in Figure 5), the difference between
the bars is smaller than with range-mapping and the bars
themselves are smaller: 7.3 times faster. The main reason
for this is that this cloaking test returns no files back to
the client, saving a lot on network bandwidth and client-
side CPU processing. This shows on one hand an in-
teresting side effect to cloaking: a reduction in network
I/0 and client-side processing. On the other hand, to
make cloaking work reliably, we had to ensure that the
clients would not use cached contents of directories with
cloaked files. This potentially increases the amount of
network 1/O and client-side processing as clients have to
scan directories through the server each time they list a
directory. We explore these opposing interactions next.

The last set of bars in Figure 6 shows the performance
when combining range-mapping with cloaking (RMAP-
CLK). Since all of the users’ files were cloaked and
range-mapped, and the user that listed the directory on
the client was one of those users, then that user saw a por-
tion of those files (the files they own). With 10 cloaked
users, 100 files were seen by the client; with 100 cloaked
users, 10 files were seen; and with 1000 cloaked users,
only one file was seen. This means that the amount of
work performed by the client should decrease as it lists
fewer files and has to wait less time for network 1/0. The
RMAPCLK bars indeed show an improvement in perfor-
mance as the number of cloaked user entries increases.
The reason for this improvement is that the savings in
network 1/0O and client-side processing outweigh the in-
creased processing that the server performs on larger
cloak lists. Listing the same directory when we use 100
cloaked and range-mapped entries is 22.3% faster than
the directory with 10 entries, because we are saving on
listing 90 files. Listing the directory with cloaked 1000
entries is only an additional 4% faster because we are
saving on listing just 9 files.

To find out how much cloaking saves on network
I/0, we computed an estimate of the 1/O wait times
by subtracting client-side system and user times from
elapsed times. We found that for a combination of
cloaking and range-mapping with 10 users, network 1/0
is reduced by a factor of 4.7. Since cloaking with
the no_cl i ent _cache option forces clients to ignore

cached directory entries, these immediate savings in net-
work I/0O would be overturned after the fifth listing of that
directory. However, without the no_cl i ent cache
option, network 1/0O savings will continue to accumulate.

5 Redated Work

The closest past related works to ours are BSD-4.4
umapfs and the older and now defunct user-level NFS
server for Linux, Unfsd [5]. BSD-4.4 umapfs works on
the client and is not enforced by the server; thus creden-
tials cannot be controlled by the server and this solution
is not as secure as our server-side range-mapping. The
Linux Unfsd server included extensions that supported
UID and GID mapping or squashing via NIS or an ex-
ternal RPC server called ugi dd. This user-level NFS
server had several serious deficiencies: it was slow due
to context switches and data copies between user level
and the kernel; it did not reliably support many impor-
tant features such as the RPC LOCKD protocol; and it
had several security flaws that could not be solved unless
the server ran in kernel mode. For those reasons cur-
rent versions of Linux include a kernel-mode NFS server
named KNFSd. When that server code was written (from
scratch), it did not include support for range-mapping.
Our work has added support for range-mapping, squash-
ing, and cloaking into the Linux kernel. We achieved
good performance while offering flexible features that
were not available before (e.g., cloaking), not even in
Unfsd.

Today’s NFS servers include a feature to suppress ac-
cess from UID 0 or GID 0, also known as root squashing
[2,12,17,22]. Linux also includes a feature called all
squashing that maps all incoming UIDs or GIDs to a sin-
gle number. As we saw in the design section, our work
is a superset of these forms of UID or GID squashing
(root or all). With file-cloaking, we support a superset
of masking features that includes the ability to disable
SETUID or SETGID binaries from executing over NFS.

NFS runs on top of RPC (Remote Procedure Calls)
and it is possible to secure NFS by securing the RPC
layer. Several secure-RPC systems exist that support
even strongly-secure systems such as Kerberos [1,9,
21]. Unfortunately, past secure RPC systems used with
NFS did not always interoperate well with each other
and are not available for all existing NFS implementa-
tions. To use a system such as Kerberos, NFS clients,
servers, and even some user applications have to be mod-
ified to support Kerberos; consequently, most NFS sys-
tems use the weaker form of user authentication known
as AUTH_UNIX, where NFS clients inform the servers
what UID and GID they use. Even with strong RPC
security, NFS servers still do not support features such
as cloaking and range-mapping. Our work does not aim

to replace strong security, but rather to show how addi-
tional access methods that improve security can be im-
plemented and deployed easily, and that these changes
have little effect on overall performance.

A newer version of the protocol, NFSv4, promises to
support many new features including mandatory strong
security, protocol extensibility, support for wide-area file
access, and better interoperability between Unix and
non-Unix systems [19,26]. In NFSv4, users need not
be determined by their UID and GID, but by a universal
identifier such as an Email address or an electronic signa-
ture. Doing so will help identify users uniquely through-
out the Internet and would alleviate the need for range-
mapping.

Although the current NFSv4 specification does not
support cloaking, the protocol was designed for exten-
sibility. Our cloaking techniques do not require a change
in the NFS protocol and can be implemented in exactly
the same way: our work is therefore compatible with
NFSv4 as well as with older NFS protocols. However,
as discussed in Section 3.2, our cloaking implementation
may be configured to force NFS clients not to cache file
attributes or use them, to ensure the correctness of the
data that is given to different users on the same client.
This costs in performance as we saw in Section 4.4. With
NFSv4, cloaking could be added easily as extensions to
the protocol that cooperative NFSv4 clients and servers
can agree on dynamically. An NFSv4 server can allow an
NFSv4 client to cache these entries. If another user tries
to list a directory that is cached on the server, the server
can then issue a callback request to the client (now act-
ing as a small server for these RPC callbacks) to flush the
cache before the server sends the client a list of files for
that directory; this new list can be different based on the
particular view of that directory for another user.

NFSv4 also supports Access Control Lists (ACLS) as
optional file attributes. ACLs are also possible with
NFSv3, but they are not part of the specification and not
all vendors implement ACL support. The reason is that
not all operating systems and file systems support ACLSs,
and those that do are often incompatible (for example,
one system supports ACLs only for directories and an-
other system supports them for any file). Whereas ACLs
can be an effective and powerful access-control mecha-
nism and are compatible with our cloaking techniques,
ACL support remains an optional feature of existing and
future NFS protocols.

NFSv2 was widely used in 1994, when NFSv3 was
introduced. The protocol has not changed fundamen-
tally: two defunct RPC operations were removed and a
few more added; support for TCP and 64-bit files was in-
cluded too. Still, it took several years before most major
vendors began supporting NFSv3 and a few more years
to stabilize their code. Today, eight years later, not all

vendors who support NFSv2 also support NFSv3, and
of those that do, interoperability and stability problems
remain. In comparison, NFSv4 represents a large depar-
ture from NFSv3: the now stateful protocol integrates
all previous RPC services needed to support NFS (such
as MOUNTD, LOCKD, and more) and the specification
is larger too. The NFSv4 RFC is 212 pages, compared
with only 126 pages for the NFSv3 RFC. We expect that
it would be several years before NFSv4 is deployed by
all vendors and is stable. Even then, older versions of
NFS are likely to remain in use. For those reasons, we
believe that the work we presented in this paper remains
viable for the foreseeable future.

There are several commercial products that can map
credentials transparently, such as Network Appliances’s
filer [10]. Also, AFS [4] can map users transparently by
referring to their usernames. However, these solutions
are often expensive, are not available as Open Source
Software, or not in wide use compared to Linux and NFS.

6 Conclusions

The main contribution of this work is to allow NFS
servers to export their file systems to hosts they would
not have allowed access before for security reasons. We
used two techniques: range-mapping and file-cloaking.

Range-Mapping translates UIDs and GIDs of users
and their files between NFS servers and clients that ex-
ist on different administrative domains. This lets users
access their files on different sites where their user ac-
counts have different credentials. File-cloaking prevents
certain files from being seen or accessed by some users.
This lets administrators and users control the accessibil-
ity and visibility of their files. One use of this is to allow
only the files’ owners to see their own files; or to pre-
vent world-writable or SETUID files from being seen or
accessed by anyone other than their owners; or ensur-
ing that only members of the same Unix group could see
and write to a shared file. Cloaking gives administrators
the flexibility to safely export multi-user file systems to
clients of a single user where that user may not be trusted
with the remaining files on the exported volume.

We designed and implemented this work to be con-
tained entirely inside the NFS server and require no
changes to the NFS protocol or clients. This ensured that
our work can interoperate with all existing NFS clients
without modification.

Special care was taken to ensure that performance of
our system was good and that kernel resource consump-
tion remained low. Our benchmarks show a good perfor-
mance even with a large number of range-mapping and
file-cloaking entries in use.

6.1 FutureWork

Cloaking is a feature that is useful not just for NFS but
for all file systems. We plan on moving our cloaking
code to the Virtual File System (VFS) [6, 15]. This way,
cloaking features could be used with other native file sys-
tems such as EXT2FS on local hosts, or with stackable
file systems [3, 20, 27,28, 30], as well as NFS and other
network-based file systems.

We plan to explore methods to improve the perfor-
mance of cloaking. To improve cloaking performance,
we have to allow multi-user NFS clients to cache files.
However, the VFS’s directory cache is not aware of
which users are looking up entries in the cache. If one
user lists a directory, all the files in that directory are
cached and can be seen by another user that can list the
same directory. For cloaking to work with caching, we
need to support user views of the directory cache. That
is, each entry in the client-side cache should have enough
information about cloaking to determine how to present
the contents of a directory to a user based on their imme-
diate credentials, filtering files that they should not see or
access. To achieve this, it would be important to change
the directory cache and the VFS in a way that does not
change existing NFS protocols.

An alternative to changes to the directory cache is to
implement cloaking functionality in both the NFS server
and the client. However, changing many existing NFS
clients is impractical and changing NFS protocols in use
is nearly impossible. A more suitable platform for such
changes would be NFSv4 as we discussed in Section 5.
NFSv4 standardizes the mechanisms to extend the proto-
col and provides callback methods for servers to initiate
contact with clients. In this way we can allow clients to
cache directories that were filtered due to cloaking, and
force new client-side users to contact the server to get an
updated list of files for a directory, based on a different
view of that directory for the new user.

7 Acknowledgments

We thank Nenad Dedic for contributing to the early
range-mapping and file-cloaking code, for Charles
Wright for his comments while the paper was being
written, and for R. Sekar for his suggestion to add a
no_cl i ent _cache export option. Thanks go to the
anonymous Usenix reviewers, and to Chris Demetriou
for his helpful comments. This work was partially made
possible by an HP/Intel gift number 87128.

The work described in this paper is Open Source
Software and is available for download from
ftp://ftp.fsl.cs.sunysb. edu/ pub/enf.

References

[1] S. M. Bellovin and M. Merritt. Limitations of the
Kerberos authentication system. In Proceedings of
the Winter USENIX Technical Conference, pages
253-67, Winter 1991.

[2] B. Callaghan, B. Pawlowski, and P. Staubach. NFS
Version 3 Protocol Specification. Technical Report
RFC 1813, Network Working Group, June 1995.

[3] J. S. Heidemann and G. J. Popek. File system de-
velopment with stackable layers. ACM Transac-
tions on Computer Systems, 12(1):58-89, February
1994.

[4] J. H. Howard, M. L. Kazar, S. G. Menees, D. A.
Nichols, M. Satyanarayanan, R. N. Sidebotham,
and M J. West. Scale and performance in a dis-
tributed file system. ACM Transactions on Com-
puter Systems, 6(1):51-81, February 1988.

[5] O. Kirch. The Linux user-space
NFS server. ftp://linux.mathematik.tu-
darmstadt.de/pub/linux/people/okir, December
1997.

[6] S. R. Kleiman. Vnodes: An architecture for mul-
tiple file system types in Sun UNIX. In Proceed-
ings of the Summer USENIX Technical Conference,
pages 238-47, Summer 1986.

[7] Legato Systems, Inc. = NHFSSTONE - Net-
work File System benchmark program.
ftp://wuarchive.wustl.edu/languages/c/unix-
c/benchmarks/nhfsstone.tar.Z, July 1989.

[8] H. J. Lu. Linux NFS utility package.
http://nfs.sourceforge.net, February 2001.

[9] S. Lunt. Experiences with Kerberos. In Proceed-
ings of the Second USENIX Security Workshop,
pages 113-20, August 1990.

[10] Network Appliance, Inc.
http://www.netapp.com, 2002.

NetApp files.

[11] J. Ousterhout. Why aren’t operating systems get-
ting faster as fast as hardware? In Proceedings of
the Summer USENIX Technical Conference, pages
247-56, Anaheim, CA, Summer 1990. USENIX.

[12] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith,
D. Lebel, and D. Hitz. NFS version 3 design
and implementation. In Proceedings of the Sum-
mer USENIX Technical Conference, pages 137-52,
June 1994,

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

J. S. Pendry, N. Williams, and E. Zadok. Am-
utils User Manual, 6.0.4 edition, February 2000.
http://www.am-utils.org.

D. Robinson. The advancement of NFS bench-
marking: SFS 2.0. In Proceedings of the 13th
USENIX Systems Administration Conference (LISA
’99), pages 175-185, Seattle, WA, November 1999.

D. S. H. Rosenthal. Evolving the Vnode interface.
In Proceedings of the Summer USENIX Technical
Conference, pages 107-18, Summer 1990.

R. Sandberg. The Sun network file system: Design,
implementation and experience. Technical report,
Sun Microsystems, 1985.

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh,
and B. Lyon. Design and implementation of the Sun
Network Filesystem. In Proceedings of the Sum-
mer USENIX Technical Conference, pages 119-30,
Summer 1985.

B. Shein, M. Callahan, and P. Woodbury. NFS-
STONE: A network file server performance bench-
mark. In Proceedings of the Summer USENIX Tech-
nical Conference, pages 269-275, Baltimore, MD,
Summer 1989.

S. Shepler, B. Callaghan, D. Robinson, R. Thurlow,
C. Beame, M. Eisler, and D. Noveck. NFS Version
4 Protocol. Technical Report RFC 3010, Network
Working Group, December 2000.

G. C. Skinner and T. K. Wong. “Stacking” Vn-
odes: A progress report. In Proceedings of the Sum-
mer USENIX Technical Conference, pages 161-74,
June 1993.

J. G. Steiner, C. Neuman, and J. I. Schiller. Ker-
beros: An authentication service for open net-
work systems. In Proceedings of the Winter
USENIX Technical Conference, pages 191-202,
Winter 1988.

Sun Microsystems. NFS: Network file system pro-
tocol specification. Technical Report RFC 1094,
Network Working Group, March 1989.

The Standard Performance Evaluation Cor-
poration. SPEC SFS97 (2.0) benchmark.
http://www.spec.org/osg/sfs97, June 2001.

A. Watson and B. Nelson. LADDIS: A multi-
vendor and vendor-neutral SPEC NFS benchmark.
In Proceedings of the Sixth USENIX Systems Ad-
ministration Conference (LISA VI), pages 17-32,
October 1992.

[25]

[26]

[27]

[28]

[29]

[30]

E. Zadok. Linux NFS and Automounter Adminis-
tration. Sybex, Inc., May 2001.

E. Zadok. Linux NFS and Automounter Adminis-
tration, chapter 6: NFS Version 4, pages 151-180.
Sybex, Inc., May 2001.

E. Zadok and I. Badulescu. A stackable file sys-
tem interface for Linux. In LinuxExpo Conference
Proceedings, pages 141-151, May 1999.

E. Zadok, I. Badulescu, and A. Shender. Extending
file systems using stackable templates. In Proceed-
ings of the Annual USENIX Technical Conference,
pages 57-70, June 1999.

E. Zadok and A. Dupuy. HLFSD: Delivering Email
to your $HOME. In Proceedings of the Seventh
USENIX Systems Administration Conference (LISA
VII), pages 243-254, Monterey, CA, November
1993.

E. Zadok and J. Nieh. FiST: A language for stack-
able file systems. In Proceedings of the Annual
USENIX Technical Conference, pages 55-70, June
2000.

