
USENIX Association

Proceedings of the
FREENIX Track:

2002 USENIX Annual Technical
Conference

Monterey, California, USA
June 10-15, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Planned Extensions to the Linux Ext2/Ext3 Filesystem

Theodore Y. Ts’o
International Business Machines Corporation

theotso@us.ibm.com, http://www.thunk.org/tytso

Stephen Tweedie

Red Hat
sct@redhat.com

Abstract

The ext2 filesystem was designed with the goal of ex-
pandability while maintaining compatibility. This paper
describes ways in which advanced filesystem features
can be added to the ext2 filesystem while retaining for-
wards and backwards compatibility as much as possible.
Some of the filesystem extensions that are discussed in-
clude directory indexing, online resizing, an expanded
inode, extended attributes and access control lists sup-
port, extensible inode tables, extent maps, and prealloca-
tion.

1 Introduction

Linux’s second extended filesystem[1] (also known as
ext2) was first introduced into the Linux kernel in Jan-
uary, 1993. At the time, it was a significant improvement
over the previous filesystems used in the 0.97 and earlier
kernels, the Minix and the “Extended” or (ext) filesys-
tem. Fundamentally, the design of the ext2 filesystem is
very similar to that of the BSD Fast Filesystem[2].

The ext2 filesystem is divided intoblock groupswhich
are essentially identical to the FFS’s cylinder group; each
block group contains a copy of the superblock, alloca-
tion bitmaps, part of a fixed, statically allocated inode
table, and data blocks which can be allocated for direc-
tories or files. Like most classic Unix filesystems, ext2/3
uses direct, indirect, double indirect, and triple indirec-
tion blocks to map logical block numbers to physical
block numbers. Ext2’s directory format is also essen-
tially identical to traditional Unix filesystems in that a
simple linked list data structure is used to store directory
entries.

Over the years, various improvements have been
added to the ext2 filesystem. This has been facilitated
by a number of superblock fields that were added to the
ext2 filesystem just before Linux 2.0 was released. The
most important of these fields, the compatibility bitmaps,
enable new features to be added to the filesystem safely.
There are three such compatibility bitmaps: read-write,
read-only, and incompat. A kernel will mount a filesys-
tem that has a bit in the read-write compatibility bitmask
that it doesn’t understand. However, an unknown bit in
the read-only compatibility bitmap cause the kernel to
only be willing to mount the filesystem read-only, and the
kernel will refuse to mount in any way a filesystem with
an unknown bit in the incompat bitmask. These bitmaps
have allowed the ext2 filesystem to evolve in very clean
fashion.

Today, more developers than ever have expressed in-
terest in working on the ext2/3 filesystem, and have
wanted to add or integrate various new exciting features.
Some of these features include: preallocation, journal-
ing, extended attributes and access control lists, on-line
resizing, tail-merging, and compression. Some of these
features have yet to be merged into the mainline ext2
code base, or are only available in prototype form. In
the case of the journaling support, although filesystems
with journaling support are fully backwards compatible
with non-journalled ext2 filesystems, the implementation
required enough changes that the resulting filesystem has
been namedext3.

The goal of this paper is to discuss how these features
might be added to the filesystem in a coordinated fash-
ion. Many of these new features are expected of modern
filesystems; the challenge is to add them while maintain-
ing ext2/3’s advantages of a relatively small and simple
code base, robustness in the face of I/O errors, and high
levels of forwards and backwards compatibility.



2 Proposed enhancements to the ext2
filesystem format

We will discuss a number of extensions to the ext2/3
filesystem which will likely be implemented in the near
future. For the most part, these extensions are indepen-
dent of each other, and can be implemented in any order,
although some extensions have synergistic effects. For
example, two new features that will be described below,
extent maps and persistent preallocation, are far more ef-
fective when used in combination with each other.

2.1 Directory indexing

Daniel Phillips has implemented a directory indexing
scheme using a fixed-depth tree with hashed keys[3].
This replaces the linear directory search algorithm cur-
rently in use with traditional ext2 filesystems, and signif-
icantly improves performance for very large directories
(thousands of files in a single directory).

The interior, or index, nodes in the tree are formatted
to look like deleted directory entries, and the leaf nodes
use the same format as existing ext2 directory blocks. As
a result, read-only backwards compatibility is trivially
achieved. Furthermore, starting in the Linux 2.2 kernel,
whenever a directory is modified, theEXT2 BTREEFL
(since renamedEXT2 INDEX FL) is cleared. This al-
lows us to guarantee read/write compatibility with Linux
2.2 kernels, since the filesystem can detect that the in-
ternal indexing nodes are probably no longer consis-
tent, and thus should be ignored until they can be recon-
structed (via thee2fsck program).

Daniel Phillip’s directory indexing code is currently
available as a set of patches versus the 2.4 ext2 code base.
As of this writing, the patches still need to be merged
with the ext3 journaling code base. In addition, there are
plans to select a better hash function that has better distri-
bution characteristics for filenames commonly found in
workloads such as mail queue directories. There are also
plans to add hinting information in the interior nodes of
the tree to indicate that a particular leaf node is nearly
empty and that its contents could be merged with an ad-
jacent leaf node.

2.2 On-line filesystem resizing

Andreas Dilger has implemented patches to the ext2
filesystem that support dynamically increasing the size

of the filesystem while the filesystem is on-line. Be-
fore logical volume managers (LVMs) became available
for Linux, off-line resizing tools such asresize2fs ,
which required that the filesystem be unmounted and
checked usinge2fsck first, were sufficient for most
users’ needs. However, with the advent of LVM sys-
tems that allow block devices to be dynamically grown,
it is much more important filesystems to be able to grow
and take advantage of new storage space which has been
made available by the LVM subsystem without need-
ing to unmount the filesystem first. Indeed, adminis-
trators of enterprise-class systems take such capabilities
for granted. (Dynamically shrinking mounted filesys-
tems is a much more difficult task, and most filesystems
do not offer this functionality. For ext2/3 filesystems,
filesystems can be shrunk using the off-line resizing tool
resize2fs .)

A disadvantage of the current ext2 resizing patches
is that they require that the filesystem be prepared be-
fore the filesystem can be resized on-line. This prepa-
ration process, which must be done with the filesystem
unmounted, finds the inodes using the blocks immedi-
ately following the block group descriptors, and relocates
these blocks so they can be reserved for the resizing pro-
cess. These blocks must be reserved since the current
layout of the ext2 superblock and block group descrip-
tors require an additional block group descriptor block
for each 256MB, 2GB, or 16GB of disk space for filesys-
tems with 1KB, 2KB, and 4KB blocksizes, respectively.
Although the requirement for an off-line preparation step
is quite inconvenient, this scheme does have the advan-
tage that the filesystem format remains unmodified, so it
is fully compatible with kernels that do not support on-
line resizing. Still, if the system administrator knows in
advance how much a filesystem may need to be grown,
reserving blocks for use by the block group descriptors
may be a workable solution.

Requiring advance preparation of the filesystem can
be obviated if we are willing to let the filesystem be-
come incompatible with older kernels after it has been
extended. Given that many 2.0 and 2.2 kernels do not
support LVM devices (and so would be unable to read a
filesystem stored on an LVM anyway), this may be ac-
ceptable. The change in the filesystem format replaces
the current scheme where the superblock is followed by
a variable-length set of block group descriptors. Instead,
the superblock and asingleblock group descriptor block
is placed at the beginning of the first, second, and last
block groups in ameta-block group. A meta-block group
is a collection of block groups which can be described
by a single block group descriptor block. Since the size
of the block group descriptor structure is 32 bytes, a



meta-block group contains 32 block groups for filesys-
tems with a 1KB block size, and 128 block groups for
filesystems with a 4KB blocksize. Filesystems can either
be created using this new block group descriptor layout,
or existing filesystems can be resized on-line, and a new
field in the superblock will indicate the first block group
using this new layout.

This new scheme is much more efficient, while re-
taining enough redundancy in case of hardware failures.
Most importantly, it allows new block groups to be added
to the filesystem without needing to change block group
descriptors in the earlier parts of the disk. Hence, it
should be very simple to write an ext2/3 filesystem ex-
tension using this design that provides on-line resizing
capabilities.

2.3 An expanded inode

The size of the on-disk inode in the ext2/3 filesystem
has been 128 bytes long during its entire lifetime. Al-
though we have been very careful about packing as much
information as possible into the inode, we are finally get-
ting to the point where there simply is not enough room
for all of the extensions that people would like to add to
the ext2/3 filesystem.

Fortunately, just before the release of Linux 2.0, most
of the work to allow for an expanded inode was added.
As part of the changes to version 1 of the ext2 su-
perblock, the size of the inode in the filesystem was
added as a parameter in the superblock. The only re-
striction on the size of inode is that it must evenly divide
the filesystem blocksize. Unfortunately, some safety-
checking code which aborted the filesystem from being
mounted if the inode size was not 128 bytes was never
removed from the kernel. Hence, in order to support
larger inodes, a small patch will have to made to the 2.0,
2.2, and 2.4 kernels. Fortunately the change is simple
enough that it should be relatively easy to get the change
accepted into production kernels.

One of the most important features that requires ad-
ditional space in the inode is the addition of sub-second
resolution timestamps. This is needed because given to-
day’s very fast computers, storing file modification times
with only second granularity is not sufficient for pro-
grams likemake. (For example, ifmake can compile
all of the object files for a library and create the library
within a second, a subsequentmake command will not
be able to determine whether or not the library needs to
be updated.)

Another limitation imposed by the current inode field
sizes is the use of a 16 bits fori links count, which limits
the number of subdirectories that can be created in a sin-
gle directory. The actual limit of 32,000 is smaller than
what is possible with an unsigned 16-bit field, but even if
the kernel were changed to allow 65,535 subdirectories,
this would be too small for some users or applications.

In addition, extra inode space can also enable sup-
port 64-bit block numbers. Currently, using 4KB blocks,
the largest filesystem that ext2 can support is 16TB. Al-
though this is larger than any commonly available indi-
vidual disks, there certainly are RAID systems that ex-
port block devices which are larger than this size.

Yet another future application that may require addi-
tional storage inside the inode is support formandatory
access control[4] (MAC) or audit labels. The NSA SE
(Security-Enhanced) Linux[5] implementation requires a
single 32-bit field for both purposes; other schemes may
require two separate 32-bit fields to encode MAC and
audit label.

In order to maximize backwards compatibility, the in-
ode will be expanded without changing the layout of the
first 128 bytes. This allows for full backwards compati-
bility if the the new features in use are themselves back-
wards compatible — for example, sub-second resolution
timestamps.

Doubling the inode size from 128 bytes to 256 bytes
gives us room for 32 additional 32-bit fields, which is a
lot of extra flexibility for new features. However, the 32
new fields can be very quickly consumed by designers
proposing filesystem extensions. For example, adding
support for 64-bit block pointers will consume almost
half of the new fields. Hence, allocation of these new
inode fields will have to be very carefully done. New
filesystem features which do not have general applicabil-
ity, or which require a large amount of space, will likely
not receive space in the inode; instead they will likely
have to use Extend Attribute storage instead.

2.4 Extended attributes, access control lists,
and tail merging

One of the more important new features found in
modern filesystems is the ability to associate small
amounts of custom metadata (commonly referred to as
Extended Attributes) with files or directories. Some of
the applications of Extended Attributes (EA) include Ac-
cess Control Lists[6], MAC Security Labels[6], POSIX



Capabilities[6], DMAPI/XDSM[7] (which is important
for implementing Hierarchical Storage Management sys-
tems), and others.

Andreas Gruenbacher has implemented ext2 exten-
sions which add support for Extended Attributes and Ac-
cess Control Lists to ext2. These patches, sometimes re-
ferred to as theBestbits patches, since they are available
at web sitehttp://www.bestbits.at , have been
relatively widely deployed, although they have not yet
been merged into the main-line ext2/3 code base.

The Bestbitsimplementation uses a full disk block
to store each set of extended attributes data. If two
or more inodes have an identical set of extended at-
tributes, then they can share a single extended attribute
block. This characteristic makes theBestbits imple-
mentation extremely efficient for Access Control Lists
(ACLs), since very often a large number of inodes will
use the same ACL. For example, it is likely that inodes
in a directory will share the same ACL. TheBestbitsim-
plementation allows inodes with the same ACL to share
a common data structure on disk. This allows for a very
efficient storage of ACLs, as well as providing an im-
portant performance boost, since caching shared ACLs
is an effective way of speeding up access control checks,
a common filesystem operation.

Unfortunately, the Bestbits design is not very well
suited for generic Extended Attributes, since the EA
block can only be shared if all of the extended attributes
are identical. So if every inode has some inode-unique
EA (for example, a digital signature), then each inode
will need to have its own EA block, and the overhead for
using EAs may be unacceptably high.

For this reason, it is likely that the mechanism for
supporting ACLs may be different from the mechanisms
used to support generic EAs. The performance require-
ments and storage efficiencies of ACL sharing justify se-
riously considering this option, even if it would be more
aesthetically pleasing, and simpler, to use a single EA
storage mechanism for both ACLs and generic EAs.

There may be a few other filesystem extensions which
require very fast access by the kernel; for example,
mandatory access control (MAC) and audit labels, which
need to be referenced every time an inode is manipulated
or accessed. In these cases, however, as mentioned in
the previous section, the simplest solution is to reserve
an extra field or two in the expanded ext2 inode for these
applications.

One of more promising tactics for solving the EA stor-

age problem is to combine it with Daniel Phillips’s pro-
posal of addingtail mergingto the ext2 filesystem. Tail
merging is the practice of storing the data contained in
partially filled blocks at the end of files (called tails) in
a single shared block. This shared block could also be
used as a location of storing Extended Attributes. In fact,
tail-merging can be generalized so that a tail is simply a
special Extended Attribute.

The topic of extended attributes is still a somewhat
controversial area amongst the ext2 developers, for a
number of reasons. First, there are many different ways
in which EAs could be stored. Second, how EAs will
be used is still somewhat unclear. Realistically, they are
not used very often today, primarily because of portabil-
ity concerns; EAs are not specified by any of the com-
mon Unix specifications: POSIX.1[8], SUS[9], etc., are
not supported by file archiving tools such astar and
zip , and they cannot be exported over NFS (though the
new NFSv4 standard[10] does include EA support.) Still,
the best alternatives which seem to have been explored
to date will probably keep the Bestbits approach exclu-
sively for ACLs, and an approach where multiple inodes
can utilize a single filesystem block to store tails and ex-
tended attributes.

However, progress is being made: the linux-2.5 kernel
now includes a standard API for accessing ACLs, and
the popularSambafile-serving application can already
use that API, if it is present.

2.5 Extensible inode table

With the increase in size of the on-disk inode data
structure, the overhead of the inode table naturally will
be larger. This is compounded by the general practice
of significantly over-provisioning the number of inodes
in most Unix filesystems, since in general the number of
inodes cannot be increased after the filesystem is created.
While experienced system administrators may change
the number of inodes when creating filesystems, the vast
majority of filesystems generally use the defaults pro-
vided by mke2fs . If the filesystem can allocate new
inodes dynamically, the overhead of the inode table can
be reduced since there will no longer be a need to over-
allocate inodes.

Expanding the inode table might seem to be a simple
and straightforward operation, but there are a number of
constraints that complicate things. We cannot simply in-
crease the parameter indicating the number of inodes per
block group, since that would require renumbering all of



the inodes in the filesystem, which in turn would require
scanning and modifying all of the directory entries in the
filesystem.

Also complicating matters is the fact that the inode
number is currently used as part of the block and in-
ode allocation algorithms. An inode’s number, when di-
vided by the filesystem’sinodes per block group
parameter, results in the block group where the inode is
stored. This is used as a hint when allocating blocks for
that inode for better locality. Simply numbering new in-
odes just beyond the last used inode number will destroy
this property. This presents problems especially if the
filesystem may be dynamically resized, since growing
the filesystem also grows the inode table, and the inode
numbers used for the extensible inode table must not con-
flict with the inode numbers used when the filesystem is
grown.

One potential solution would be to extend the inode
number to be 64 bits, and then encode the block group
information explicitly into the high bits of the inode
number. This would necessarily involve an incompati-
ble change to the directory entry format. However, if we
expand the block pointers to 64 bits to support petabyte-
sized filesystems, we ultimately may wish to support
more than232 inodes in a filesystem anyway. Unfor-
tunately, there are two major implementation problems
with expanding the inode number which make pursuit of
this approach unlikely. First, the size of the inode number
in struct stat is 32 bits on 32-bit platforms; hence,
user space programs which depend on different inodes
having unique inode numbers may have this assumption
violated. Secondly, the current ext2/3 implementation
relies on internal kernel routines which assume a 32-bit
inode number. In order to use a 64-bit inode number,
these routines would have to be duplicated and modified
to support 64-bit inode numbers.

Another potential solution to this problem is to utilize
inode numbers starting from the end of the inode space
(i.e., starting from232 − 1 and working downwards) for
dynamically-allocated inodes, and using an inode to al-
locate space for these extended inodes. For the purposes
of the block allocation algorithm, the extended inode’s
block group affiliation can be stored in a field in the in-
ode. However, the location of the extended inode in this
scheme could no longer be determined by examining its
inode number, so the location of the inode on disk would
no longer be close to the data blocks of the inode. This
would result in a performance penalty for using extended
inodes (since the location of the inode and the location of
its data blocks would no longer necessarily be close to-
gether), but hopefully the penalty would not be too great.

Some initial experiments which grouped the inode tables
of meta-block groupstogether showed a very small per-
formance penalty, although some additional benchmark-
ing is necessary. (A simple experiment would be to mod-
ify the block allocation algorithms to deliberately allo-
cate blocks in a different block group from the inode,
and to measure the performance degradation this change
would cause.)

2.6 Extent maps

The ext2 filesystem uses direct, indirect, double indi-
rect, and triple indirection blocks to map file offsets to
on-disk blocks, like most classical Unix filesystems. Un-
fortunately, the direct/indirect block scheme is inefficient
for large files. This can be easily demonstrated by delet-
ing a very large file, and noting how long that operation
can take. Fortunately, ext2 block allocation algorithms
tend to be very successful at avoiding fragmentation and
in allocating contiguous data blocks for files. For most
Linux filesystems in production use today, the percentage
of non-contiguous files reported bye2fsck is generally
less than 10%. This means that in general, over 90% of
the files on an ext2 filesystem only require a singleextent
mapto describe all of their data blocks. The extent map
would be encoded in a structure like this:

struct ext2_extent {
__u64 logical_block;
__u64 physical_block;
__u32 count;

};

Using such a structure, it becomes possible to ef-
ficiently encode the information, “Logical block 1024
(and following 3000 blocks) can be found starting at
physical block 6536.” The vast majority of files in a
typical Linux system will only need a few extents to de-
scribe all of their logical to physical block mapping, and
so most of the time, these extent maps could be stored in
the inode’s direct blocks.

However, extent maps do not work well in certain
pathalogical cases, such as sparse files with random al-
location patterns. There are two ways that we can deal
with these sorts of cases. The traditional method is to
store the extent maps in a B-tree or related data struc-
ture, indexed by the logical block number. If we pursue
this option, it will not be necessary to use the full balanc-
ing requirements of B-trees; we can use similar design
choices to those made by the directory indexing design



to significantly simplify a B-tree implementation: using
a fixed depth tree, not rotating nodes during inserts, and
not worrying about rebalancing the tree after operations
(such as truncate) which remove objects from the tree.

There is however an even simpler way of implement-
ing extents, which is to ignore the pathological case al-
together. Today, very few files are sparse; even most
DBM/DB implementations avoid using sparse files. In
this simplification, files with one or two extents can store
the extent information in the inode, using the fields that
were previously reserved for the direct blocks in the in-
ode. For files with more extents than that, the inode will
contain a pointer to a single extent-map block. (The sin-
gle extent-map block can look like a single leaf belong-
ing to an extent-map tree, so this approach could be later
extended to support a full extent-map tree if this proves
necessary.) If the file contains more extent maps than can
fit in the single extent-map block, then indirect, double-
indirect, and triple-indirect blocks could be used to store
the remainder of the block pointers.

This solution is appealing, since for the vast major-
ity of files, a single extent map is more than sufficient,
and there is no need to adding a lot of complexity for
what is normally a very rare case. The one potential
problem with this simplified solution is that for very
large files (over 25 gigabytes on a filesystem using a
4KB blocksize), a single extent map may not be enough
space if filesystem metadata located at the beginning
of each block group is separating contiguous chunks of
disk space. Furthermore, if the filesystem is badly frag-
mented, then the extent map may fill even more quickly,
necessitating a fall back to the old direct/double indi-
rect block allocation scheme. So if this simplification
is adopted, preallocation becomes much more important
to ensure that these large block allocations happen con-
tiguously, not just for performance reasons, but to avoid
overflowing the space in a single extent map block.

We can solve the first problem of metadata (inode
tables, block and inode bitmaps) located at the beginning
of each block group breaking up contiguous allocations
by solved by moving all the metadata out of the way.
We have tried implementing this scheme by moving the
inode tables and allocation bitmaps to the beginning of a
meta-block group. The performance penalty of moving
the inode table slightly farther away from the data blocks
related to it was negligible. Indeed, for some workloads,
performance was actually slightly improved by grouping
the metadata together. Making this change does not
require a format change to the filesystem, but merely a
change in the allocation algorithms used by themke2fs
program. However, the kernel does have some sanity-

checking code that needs to be removed so that the kernel
would not reject the mount. A very simple patch to
weaken the checks inext3 check descriptors()
was written for the 2.4 kernel. Patches to disable this
sanity check, as well as the inode size limitation, will be
available for all commonly used Linux kernel branches at
http://e2fsprogs.sourceforge.net/ext2.html .

2.7 Preallocation for contiguous files

For multimedia files, where performance is important,
it is very useful to be able to ask the system to allocate the
blocks in advance, preferably contiguously if possible.
When the blocks are allocated, it is desirable if they do
not need to be zeroed in advanced, since for a 4GB file
(to hold a DVD image, for example), zeroing 4GB worth
of pre-allocated blocks would take a long time.

Ext2 had support for a limited amount of preallocation
(usually only a handful of blocks, and the preallocated
blocks were released when the file was closed). Ext3
currently has no preallocation support at all; the feature
was removed in order to make adding journaling support
simpler. However, it is clear that in the future, we will
need to add a more significant amount of preallocation
support to the ext2/ext3 filesystem.

In order to notify the filesystem that space should
be preallocated, there are two interfaces that could be
used. The POSIX specification leaves explicitly unde-
fined the behavior offtruncate() when the argu-
ment passed toftruncate is larger than the file’s
current size. However, the X/Open System Interface
developed by the Austin Group[11] states if the size
passed toftruncate() is larger than the current file
size, the file should be extended to the requested size.
The ext2/ext3 can useftruncate as a hint that space
should be preallocated for the requested size.

In addition to multimedia files, there are also certain
types of files whose growth characteristics require per-
sistent preallocation beyond the close of the inode. Ex-
amples of suchslow-growthfiles include log files and
Unix mail files, which are appended to slowly, by differ-
ent processes. For these types of files, the ext2 behavior
of discarding preallocated blocks when the last file de-
scriptor for an inode is closed is not sufficient. On the
other hand, retaining preallocated blocks for all inodes is
also not desirable, as it increases fragmentation and can
tie up a large number of blocks that will never be used.

One proposal would be to allow certain directories and



files to be tagged with an attribute indicating that they are
slow-growth files, and so the filesystem should keep pre-
allocated blocks available for these files. Simply setting
this flag on the/var/log and /var/mail directo-
ries (so that newly created files would also have this flag
set, and be considered slow-growth files) would likely
make a big difference. It may also be possible to heuris-
tically determine that a file should be treated as a slow-
growth file by noting how many times it has been closed,
and then re-opened and had data appended to it. If this
happens more than once or twice, we can assume that it
would be profitable to treat the file as a slow-growth file.
Files opened with theO APPENDflag (which is rarely
used for regular file I/O) could also be assumed to be
have slow-growth characteristics.

The types of preallocation described above are all
non-persistent preallocation schemes. That is, the pre-
allocated blocks are released if the filesystem is un-
mounted or if the system is rebooted. It is also possi-
ble to implement persistent preallocations (which is re-
quired forposix fallocate ), where the blocks are
reserved on disk, and but not necessarily pre-zeroed. To
support this feature, a 64-bit field in the inode will have
to be allocated out of the newly expanded ext2 inode.
This field, called thehigh watermark, specifies the last
address that has actually been written to by the user. At-
tempts to read from the inode past this point must cause
a zero-filled page to be returned, in order to avoid a secu-
rity problem of exposing previously written and deleted
data. Of course, if the user seeks past the high watermark
and writes a block, the kernel must at that point zero all
of the blocks between the high watermark and the point
where the write was attempted.

Persistent preallocation may not be very important,
since few applications require guarantees about preallo-
cated contiguous allocations (even in the face of an un-
expected system shutdown). As a result, persistent pre-
allocation will likely be a very low-priority item to im-
plement. The benefits of allowing (non-persistent) pre-
allocation in ext3 filesystems are far greater, since they
address the allocation needs of both slow-growth log and
mail spool files, as well as large multimedia files.

3 Compatibility issues

Whereas many of the new features described in this
paper are fully backwards compatible, some of these pro-
posed new features introduce various different types of
incompatibility. For example, even though an older ker-

nel would be able to read a filesystem containing files
with high watermark pointers to implement persistent
preallocation, a kernel which did not know to check the
high watermark pointer could return uninitialized data,
which could be a security breach. Because of this secu-
rity issue, the persistent preallocation feature must use
a bit in theincompat compatibility bitmask in the su-
perblock.

Moreover, there are some changes that simply require
incompatible filesystem feature bits due to the funda-
mental changes in the filesystem format. A good exam-
ple of such a feature is the extent map changes. Older
kernels will not know how to interpret extent maps. In
the past, when we have made incompatible changes,
e2fsprogs has provided conversion utilities (usually
as part of thetune2fs ande2fsck programs) to add
and remove new features to filesystems.

Other changes, such as expanding the size of the on-
disk inode structures, will require the use of technology
already found inresize2fs to relocate data blocks be-
longing to inodes to other locations on disk to make room
for growing system data areas.

Andreas Dilger has also suggested an interesting way
of providing the largest amount of backwards compati-
bility as possible by adding compatibility flags on a per-
inode basis. So if there are only a few files which are
using persistent-preallocation or extent maps, the filesys-
tem could be mounted without causing problems for the
majority of the files which are not using those features.

Table 1 shows which of the proposed new ext2 fea-
tures are backwards compatible and which are not. Each
incompatible feature can be enabled or disabled on a per-
filesystem (and perhaps per-inode basis); in addition, for
many of these incompatible changes, it would be very
simple to make backports of these features available to
older kernels so that they would be able to use filesys-
tems with some of these new features.

4 Implementation issues

Nearly all of the extensions described here can be im-
plemented independently of the others. This allows for
distributed development, which is consonant with the
general Linux development model. The only real depen-
dency that exists is that a number of the new features,
such as subsecond timestamps, persistent preallocation,
and 64-bit block numbers require an expanded inode.



Feature Compatible?
Directory indexing Y
On-line filesystem resizing N
Expanded inode Y
Subsecond timestamps Y
BestbitsACL Y
Tail-merging N
Extent maps N
Preallocation Y
Persistent preallocation N

Table 1: Ext2/3 extensions compatibility chart

Hence, an early priority will be enhancingresize2fs
so that it can double the size of the inode structure on
disk. Another high priority task is to make available
kernel patches for all commonly used kernel versions
(at least for the 2.2 and 2.4 kernels) that remove the
safety checks that prevent current kernels from mount-
ing filesystems with expanded inodes. The sooner these
patches are available, the sooner they can get adopted
and installed on production systems. This will ease the
transition and compatibility issues immensely.

4.1 Factorization of ext2/3 code

One of the reasons why we have separate code bases
for ext2 and ext3 is that journaling adds a lot of complex-
ity to a number of code paths, especially in the block allo-
cation code. Factoring out these changes so that journal-
ing and non-journaling variants of block allocation func-
tions, inode modification routines, etc., could be selected
via function pointers and an operations table data struc-
ture will clean up the ext2/3 implementation. This will
allow us to have a single code base which can support
filesystems both with and without journaling.

4.2 Source control issues

Now that as many as six developers are experiment-
ing with various ext2/3 extensions, some kind of source
control system is needed so that each developer could
have their own source-controlled playground to develop
their own changes, and also allow them to easily merge
their changes with updates in the development tree. Up
until now we have been using CVS. However, our expe-
rience with using CVS for maintaining ext3 kernel code
has shown that CVS does not deal well with a large num-
ber of branches. Keeping track of a large number of

branches is very difficult under CVS; it does not have
any native visualization tools, and merging changes be-
tween different branches is a manual process which is
highly error-prone.

We have started usingbitkeeper to maintain the
e2fsprogs user space utilities, and this experiment
has been very successful. In addition, the master
2.4 and 2.5 Linux kernels are being maintained using
bitkeeper , as Linus Torvalds and many other ker-
nel developers have found that it best fits the highly dis-
tributed nature of development of the Linux kernel. For
these reasons, the authors are currently strongly explor-
ing the possibility of usingbitkeeper as the source
control mechanism for the ext2/3 kernel code. The open-
sourcesubversion source control system may also
be viable in the future: it promises good support for re-
peated merges between development branches, but it is
still quite immature compared tobitkeeper and CVS.

5 Conclusions

In this paper, we have reviewed some of the extensions
to the ext2/3 filesystem that are currently being planned.
Some of these designs may change while the extensions
are being implemented. Still, it is useful to work through
design issues before attempting to put code to paper (or
to emacs or vi buffers, as appropriate), since a number
of these extensions interact with one another, and create
dependencies amongst themselves.

In addition, there are number of other optimizations
being planned for the Linux 2.5 kernel that are not strictly
part of the ext2 filesystem, but which will significantly
impact its performance. Examples of such planned op-
timizations in the VM layer include write-behind opti-
mizations and support for theO DIRECTopen flag.

Other topics that we will likely explore in the future
include allowing multiple filesystems to share a journal
device, better allocation algorithms that take into account
RAID configurations, and large (32KB or 64KB) block-
sizes.

Finally, perhaps it would be appropriate to answer at
this point a common question. Given that there are many
new, modern filesystems such as XFS with advanced fea-
tures, why are we working on adding new features to
ext2/3? There are a number of answers to that question:

• Ext3 supports data journaling which can improve



performance for remote filesystems that require
synchronous updates of data being written.

• Ext3 allows for a smooth upgrade facility for exist-
ing ext2 filesystems (of which there are many).

• The ext3 code base is fairly small and clean, and has
an existing strong developer community that work
at a variety of different companies. Hence, the fu-
ture of ext2/3 is not tied to the success or failure
of a single company, and a single company can not
unduly influence the future of ext2/3.

6 Acknowledgments

There have many people who have worked on the
ext2 and ext3 filesystems, and their contributions both
in terms of code and design discussions have been in-
valuable. Those in particular who deserve special men-
tion include Andrew Morton and Peter Braam (who both
helped with the port of ext3 to 2.4), Daniel Phillips
(who implemented the tail-merging and directory in-
dexing patches), Andreas Dilger (who contributed nu-
merous patches to ext3 and to e2fsprogs), and Al Viro
(who has fixed up and significantly improved the trun-
cate and directory page cache). All of these peo-
ple also contributed extensively to discussions on the
ext2-devel@lists.sourceforge.net mailing
list, and helped to refine the design plans found in this
paper. Thank you all very much indeed.

References

[1] R. Card, T. Y. Ts’o, and S. Tweedie, “Design and
implementation of the second extended filesystem,”
in Proceedings of the 1994 Amsterdam Linux Con-
ference, 1994.

[2] M. McKusick, W. Joy, S. Leffler, and R. Fabry,
“A fast file system for UNIX,”ACM Transactions
on Computer Systems, vol. 2, pp. 181–197, August
1984.

[3] D. Phillips, “A Directory Index for Ext2,”Proceed-
ings of the 2001 Annual Linux Showcase and Con-
ference, 2001.

[4] Trusted Computer Security Evaluation Criteria,
DOD 5200.28-STD. Department of Defense, 1985.

[5] P. Loscocco and S. Smalley, “Integrating Flexible
Support for Security Policies into the Linux Oper-
ating System”,Freenix Track: 2001 Usenix Annual
Technical Conference, 2001.

[6] POSIX 1003.1e Draft Standard 17 (withdrawn),
POSIX, 1997.

[7] CAE Specification Systems Management: Data
Storage Management (XDSM) API, The Open
Group, 1997.

[8] Portable Operating System Interface (POSIX) –
Part 1: System Application Program Interface
(API), IEEE, 1996.

[9] The Single Unix Specification, Version 2, The
Open Group, 1997

[10] S. Shepler and B. Callaghan and D. Robinson and
R. Thurlow and C. Beame and M. Eisler and D.
Noveck, “NFS Version 4 Protocol”, RFC 3010, In-
ternet Engineering Task Force, 2000.

[11] The Open Group Base Specifications Issue 6: Sys-
tems Interface volume (XSI), The Open Group,
2001.

[12] The Bitkeeper Distributed Source Management
System, http://www.bitkeeper.com ,
2002.


