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Abstract

Data-intensive applications such as multimedia and
data mining programs may exhibit sophisticated ac-
cess patterns that are diÆcult to predict from past
reference history and are di�erent from one applica-
tion to another. This paper presents the design,
implementation, and evaluation of an automatic
application-speci�c �le prefetching (AASFP) mech-
anism that is designed to improve the disk I/O per-
formance of application programs with such compli-
cated access patterns. The key idea of AASFP is to
convert an application into two threads: a computa-
tion thread, which is the original program contain-
ing both computation and disk I/O, and a prefetch

thread, which contains all the instructions in the
original program that are related to disk accesses.
At run time, the prefetch thread is scheduled to run
suÆciently far ahead of the computation thread,
so that disk blocks can be prefetched and put in
the �le bu�er cache before the computation thread
needs them. Through a source-to-source translator,
the conversion of a given application into two such
threads is made completely automatic. Measure-
ments on an initial AASFP prototype under Linux
show that it provides as much as 54% overall per-
formance improvement for a volume visualization
application.

1 Introduction

With the emergence of data-intensive applications
such as multimedia and data mining workloads, disk
I/O performance plays an ever more critical role in
the overall application performance. This is due to
the increasing performance gap between CPU speed

and disk access latency. To improve performance for
these data-intensive applications requires that disk
access delays be e�ectively masked or overlapped
with computation. Many application programmers
alleviate this performance gap problem by manu-
ally interleaving computation with synchronous disk
I/O. That is, the program issues a disk I/O call,
waits for the I/O to complete, performs some com-
putation, then issues another disk I/O request, and
so on. Another solution to mask disk I/O delay is
asynchronous I/O. Although conceptually straight-
forward, asynchronous disk I/O tends to complicate
program logic and possibly lengthen software devel-
opment time. Also, an asynchronous disk I/O-based
application written for one disk I/O subsystem may
not work well for another with di�erent latency and
bandwidth characteristics. Yet another solution is
to cache recently accessed disk blocks in main mem-
ory for future reuse. If there is a high degree of data
reuse, �le or disk caching can reduce both read la-
tency and disk bandwidth requirements. However,
for many media applications caching is not e�ective
either because the working set is larger than the �le
bu�er cache, or because each disk block is used only
once.

A well-known solution to this problem implemented
in many UNIX systems, including Linux, is to
prefetch a disk block before it is needed [12]. Linux
assumes that most applications access a �le in a
sequential order. Hence, whenever an application
reads a data block i from the disk, the �le sys-
tem prefetches blocks i + 1, i + 2, ... i + n for
some small value of n. If the access pattern is not
sequential, prefetching is suspended until the ap-
plication's disk accesses exhibit a sequential access
pattern again. For most common applications, this
simple sequential prefetching scheme seems to work
well. However, sequential access is not necessarily
the dominant access pattern for some other impor-



tant applications, such as volumetric data visualiza-
tion, multi-dimensional FFT, or digital video play-
backs (e.g., fast forwards and rewinds); these are
popular applications in the scienti�c visualization
or multimedia world.

Di�erent applications may exhibit di�erent access
patterns and thus a �xed prefetching policy is not
adequate. We propose an Automatic Application-

Speci�c File Prefetching mechanism (AASFP) that
allows an application program to instruct the �le
system how to prefetch on its behalf. AASFP au-
tomatically generates the prefetch instructions from
an application's source code. The prefetch instruc-
tions are instantiated as a program running inside
either a local �le system or a network �le server.
AASFP is an application of the idea of decoupled
architecture [22], which was originally proposed to
address the von Neumann bottleneck to bridging the
CPU-disk performance gap.

AASFP transforms a given application program into
two threads: a computation thread and a prefetch

thread. The computation thread is the original pro-
gram and contains both computational and disk ac-
cess instructions; the prefetch thread contains all
the instructions in the original program that are re-
lated to disk I/O. At run time, the prefetch thread
is started earlier than the computation thread. Be-
cause the computation load in the prefetch thread is
typically a small percentage of that of the original
program, the prefetch thread could remain ahead
of the computation thread throughout the applica-
tion's entire lifetime. Consequently, most disk I/O
accesses in the computation thread are serviced di-
rectly from the �le system bu�er, which is popu-
lated beforehand by the I/O accesses in the prefetch
thread. In other words, the prefetch thread brings
in exactly the data blocks as required by the com-
putation thread before they are needed. Of course,
it is not always possible for the prefetch thread to
maintain suÆcient advance over the computation
thread. For example, the computation thread may
need to access a disk address, but the generation
of this address may depend on the user inputs or
on the inputs from a �le. In such cases, these two
threads need to synchronize with each other. For-
tunately, such tight synchronization is relatively in-
frequent in I/O-intensive programs. The key ad-
vantage of AASFP is that it eliminates the need for
manual programming of �le prefetch hints by gener-
ating the prefetch thread from the original program
using compile-time analysis. In addition to being
more accurate in what to prefetch, AASFP also pro-

vides more 
exibility to the �le system in deciding
when to prefetch disk blocks via a large look-ahead
window lead by the prefetch thread.

The rest of this paper is organized as follows. Sec-
tion 2 reviews some of the related work. Section 3
describes the system architecture of AASFP. Section
4 shows how to generate the prefetch thread from
a given program. Section 5 discusses the run-time
system of AASFP. Section 6 evaluates the perfor-
mance results of AASFP. Section 7 concludes this
paper and points out potential future directions.

2 Related Work

Prefetching and caching have long been imple-
mented in modern �le systems and servers. How-
ever, until recently, prefetching was restricted to se-
quential lookahead and caching was mostly based
on the LRU replacement policy. Unfortunately, se-
quential access is not necessarily the dominant ac-
cess pattern for certain important data-intensive
applications, such as volume visualization applica-
tions [27] and video playbacks involving fast for-
wards and rewinds. This observation has spawned
research in three di�erent directions.

Predictive Prefetching: Early �le prefetching
systems [6, 9, 10, 26] attempted to deduce future
access patterns from past reference history and per-
forms �le prefetching based on these inferred ac-
cess patterns. This approach is completely transpar-
ent to application programmers. However, incorrect
prediction might result in unnecessary disk accesses
and poor cache performance due to the interference
between current working sets and predicted future
working sets. Some di�erent prediction policy is
also possible. For example, the work by Duchamp
et al. [7], in the context of Web page browsing, pro-
posed to prefetch data based on the popularity of a
Web page.

Application Controlled Caching and
Prefetching: Patterson et al. [15, 17] modi-
�ed two UNIX applications, make and grep, to
provide hints to the �le system regarding the �les
that applications are going to touch. The hints
are given to the �le system by forking o� another
process that just accesses all the �les that are going
to be accessed by the original process ahead of
time. This study showed a 13% to 30% reduction



in execution time. In a later paper, they modi�ed
a volume visualization application to provide hints
and obtained reduction in execution time by factor
of 1.9 to 3.7 [18].

While Patterson et al. were performing application-
controlled prefetching, Cao et al. [2, 3] were investi-
gating the e�ects of application hints on �le system
caching. Traditionally, the �le system cache imple-
ments the LRU replacement policy, which is not ad-
equate for all applications. Cao et al. proposed a
two-level cache management scheme in which the
kernel allocates physical pages to individual appli-
cations (allocation), and each application is respon-
sible for deciding how to use its physical pages (re-
placement). This two level strategy, along with a
kernel allocation policy of LRU with Swapping and
Placeholders (LRU-SP), reduced disk block I/O by
up to 80% and execution time by up to 45% for
di�erent applications.

Prefetching and caching are complimentary to each
other. Cao et al. [4] �rst proposed an integrated
prefetching and caching scheme which showed an ex-
ecution time reduction of up to 50% through a trace-
driven simulation study. Patterson et al. [19] showed
another prefetching and caching scheme based on
user-supplied hints which classi�es bu�ers into three
types: prefetching hinted blocks, caching hinted
blocks for reuse, and caching used blocks for non-
hinted access. Later, they extended their scheme
to support multiple processes where the kernel al-
locates resources among multiple competing pro-
cesses [25]. Joint work by both groups later on ar-
rived at an adaptive approach that incorporates the
best of both schemes [8, 24].

Tait et al. [23] adopted the idea of �le prefetching,
hoarding, and caching in the context of mobile com-
puting. Rochberg et al. [21] implemented a net-
work �le system extension of the Informed prefetch-
ing scheme [16] that uses modi�ed NFS clients to
disclose the application's future disk accesses. The
result showed a 17{69% reduction in execution time
and demonstrated the scheme can be extended to
network �le systems quite easily. Pai et al. [14]
applied the prefetching idea to manually construct
the decoupled architecture where the computation
performed by the Web server never blocks on I/O.
Similarly, it was also adopted by the Unix backup
(/sbin/dump) program (originally from Caltech),
where the main dump program should never block
on I/O.

Compiler Directed I/O: Instead of requiring
application programmers to enter the disk access
hints, Mowry et al. [13] described a compiler tech-
nique to analyze a given program and to issue
prefetch requests to an operating system that sup-
ports prefetching and caching. This fully auto-
matic scheme signi�cantly reduces the burden on
the application programmer and thus enhances the
feasibility of application-speci�c prefetching and
caching. However, this approach is restricted to
loop-like constructs, where the disk access addresses
usually follow a regular pattern. Recently, Chang
and Gibson [5] developed a binary modi�cation tool
called SpecHint that transforms Digital UNIX ap-
plication binaries to perform speculative execution
and issue disk access hints. They showed that
this technique can perform quite close to Informed
Prefetching without any manual programming ef-
forts. Chang's work is most similar to AASFP but
is di�erent in two ways:

� AASFP operates on the source code of ap-
plication programs and constructs application-
speci�c prefetch instructions as a separate run-
ahead thread. Therefore, AASFP's lookahead
window could be arbitrarily large, subject only
to the synchronization constraint between the
computation and prefetch threads. In contrast,
Chang's approach is more limited because the
extent of prefetching depends on the amount
of CPU cycle time it can get scheduled at run
time.

� AASFP's prefetch thread only executes disk
I/O-related code, whereas SpecHint executes
the original application speculatively to iden-
tify future disk access patterns. In addition,
AASFP ensures that the prefetch thread al-
ways run suÆciently far ahead of the compu-
tation thread, whereas SpecHint runs the \pre-
execution" pass only when the CPU is idle be-
cause of disk I/O.

3 System Architecture

The AASFP prototype consists of three compo-
nents: a source-to-source translator, a run-time

prefetch library, and a modi�ed Linux kernel, as
shown in Figure 1.

The source-to-source translator generates a prefetch
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Figure 1: Software Architecture of AASFP

thread from an application program by extracting
the parts of the program that are related to disk I/O
accesses and removing all the other computation.
In addition, all the disk I/O calls in the prefetch
thread are replaced by their corresponding prefetch
calls to the prefetch library. The original program
itself forms the computation thread. There is a one-
to-one correspondence between the prefetch calls in
the prefetch thread and the actual disk I/O calls
in the computation thread. The prefetch thread is
executed as a Linux thread, as supported by the
pthread library [11]. All the prefetch calls are ser-
viced by AASFP's run-time prefetch library, which
generates the logical �le block address associated
with each prefetch call and inserts the prefetch re-
quests into a user-level prefetch queue. When the
user-level prefetch queue becomes full, the prefetch
library makes a system call to transfer the prefetch
requests to the application's kernel-level prefetch
queue. However, these prefetch hints are completely
non-binding (i.e., the kernel might ignore these hints
if there are not enough resources for �le prefetch-
ing).

A major innovation of AASFP is that the compu-
tation and the prefetch thread are automatically
synchronized so that the kernel neither prefetches
too far ahead nor falls signi�cantly behind. That
is, AASFP ensures that the portion of the target
�les prefetched are those that are to be accessed by
the computation thread in the immediate future.
To maintain synchronization between the prefetch
and computation threads, AASFP marks each en-
try in the prefetch queue with the ID of the corre-
sponding prefetch call. The kernel also maintains
the ID of the current disk I/O call of the compu-
tation thread. These IDs are created and main-
tained by the run-time system without program-
mer intervention. When the ID of an entry in the

prefetch queue is smaller than the ID of the most re-
cently made disk I/O call, the computation thread
has run ahead of the prefetch thread, and the ker-
nel simply skips the expired prefetch queue entries.
Therefore, even if the prefetch thread falls behind, it
never prefetches unnecessary data. To prevent the
prefetch thread from running too far ahead of the
computation thread, the kernel attempts to main-
tain a prefetch depth of N , based on the following:
the run-time measurements of the average disk ser-
vice time, which can be measured o�-line before-
hand; and the average amount of computation that
the application performs between consecutive I/O
calls.

The �les that an application accesses can be clas-
si�ed into two categories: data �les, which are ex-
pected to be prefetched by AASFP, and con�gura-

tion �les, which are retrieved in the beginning and
used to steer the computation to generate access
addresses, and thus do not need to be prefetched.
It is not possible for the translator to distinguish
between data and con�guration �les. For every
data �le, the application programmer can option-
ally provide an additional annotation of the form
PREFETCH �le *fp to indicate to the source-to-
source translator that the �le descriptor fp should be
prefetched at run time. These �les will be referred
to as prefetchable �les for the rest of the paper.

3.1 Prefetch Thread

In this subsection we describe the basic operations
in the prefetch thread and its interaction with the
computation thread and the prefetch library.

Figure 2 shows how AASFP's translator converts
an example application into a computation and a
prefetch thread. The programming interface pro-
vided by the prefetch library includes the following
four calls:

1. create prefetch thread
(prefetch function): This function al-
lows an application to fork a prefetch thread,
and to execute the prefetch function. The
prefetch function is passed as the input
argument, as shown in line 1 of Figure 2.

2. prefetch XXX(): These are a set of func-
tions that the prefetch thread can use to
specify prefetch calls. The prefetch calls re-



int fp;

COMPUTATION THREAD PREFETCH THREAD

void main(void){ void prefetch_function(void){

int i; int data[100]; int i;

/* create the prefetch thread */

## C1. create_prefetch_thread(

(void *)prefetch_function);

/* open data file */

C2. fp = open("mydata.dat", O_RDONLY);

/* signal the prefetch thread */ /* wait for file to open */

## C3. synchronize(1,signal); $$ P1. synchronize (1,wait);

/* inform prefetch library */

$$ P2. inform_open(fp);

/* prefetch */

C4. for (i=99; i>=0; i--){ P3. for (i=99; i>=0; i--){

/* I/O */ /* only the I/O part is retained */

C5. lseek(fp, i*4, SEEK_SET); P4 prefetch_lseek(fp, i*4, SEEK_SET);

C6. read(fp, &data[99-i], 4); P5 prefetch_read(fp, 4);

/* Computation */

C7. data[99-i] = data[99-i]*i;

} }

/* close data file */ /* inform prefetch library */

C8. close(fp); $$ P6. inform_close(fp);

} }

Figure 2: Computation thread (left) and prefetch thread (right). The main function without the lines
marked by ## is the original application code. This code is modi�ed to add a prefetch thread represented
by the prefetch function. The lines in the prefetch function that are not marked with $$ are extracted from
the original main function. Other additional functions are added for the two threads to communicate with
each other. Notice that the computation part of the main function does not appear in the prefetch function

place the original I/O calls and use almost
the same syntax. For example, for the I/O
call read(stream, ptr, size), AASFP pro-
vides the prefetch call prefetch read(stream,

size). The parameter ptr for the data is not
needed, since the prefetch call only generates
the target data's starting address but never ac-
tually performs the real I/O. Lines P4 and P5
in Figure 2 represent the prefetch calls corre-
sponding to the I/O calls at lines C5 and C6 of
the main function respectively.

3. inform open(�le pointer), in-
form close(�le pointer): These two
functions are used by the prefetch thread
to inform the prefetch library that some �le is
opened or closed. Such noti�cation is necessary
so that the prefetch library can maintain a
�le table consisting of f�le pointer, current
o�setg for those �les accessed by the prefetch
thread. Lines P2 and P6 in Figure 2 represent
the inform calls corresponding to the open and
close system calls in the computation thread.

4. synchronize(synchronization point,
type): This function synchronizes the two
threads. The argument type can be signal or
wait. Synchronization is discussed in detail in
the next subsection.

3.2 Synchronization

The prefetch thread and the computation thread
execute independently of each other until either of
them reaches a synchronization point. Each of the
following cases represents a synchronization point:

� File Open: The prefetch thread needs to wait
until the computation thread opens the �le.
The two threads are synchronized by calling
the synchronize function with an identical
synchronization point argument. The com-
putation thread opens a �le and calls the
synchronize function to signal that the �le
has been opened. The prefetch thread calls



the synchronize function, and waits until it
receives the signal. Lines C3 and P1 in Fig-
ure 2 represent the synchronization points for
the two threads. The synchronize function
is implemented using the pthread cond wait

and pthread cond signal primitives of the
pthread library. This synchronization is nec-
essary because there may exists a conditional-
branch in the original code as to which data
�le will be used in the application. Having
a synchronization point like this helps avoid
prefetching a wrong �le that will never be used
in the future.

� User Input: The prefetch thread needs to wait
for the computation thread if the address gener-
ation computation depends on some input from
the user (stdin) or from some user-speci�ed �le.
Only one of the threads is allowed to actually
perform an I/O operation and hence the other
thread needs to wait. If disk access address gen-
eration is dependent on data from a �le that is
being prefetched, AASFP puts synchronization
points in both threads. This way, the prefetch
thread can proceed only after the computation
thread actually reads in the data from the �le
system bu�er cache. For terminal input and
input from �les that are not prefetched (typi-
cally setup or con�guration �les), AASFP al-
lows the prefetch thread to perform the ter-
minal/disk I/O instead and removes those I/O
requests from the computation thread. Thus,
the prefetch thread can still stay ahead of the
computation thread. In this case, the compu-
tation thread waits until the prefetch thread
completes its I/O, and then the computation
thread resumes execution.

� Read after Write: If a program involves only
reading from one �le and writing to a di�er-
ent �le, or non-overlapping reads/writes on the
same �le, then there is no need for synchroniza-
tion; otherwise, a synchronization is needed.
Assuming the prefetch thread is running ahead
and it detects a read request that is dependent
on some previous write operation, it then stops
and waits for the computation thread to �nish
the dependent write operation. Only after the
associated write is done, regardless of whether
it is a synchronous or an asynchronous write,
can the prefetch thread proceed.

3.3 Data Sharing

Although the prefetch thread and the computation
thread can share data through global variables in
the application program, sometimes we may need to
share information in other ways. AASFP provides
the abstraction of a communication channel between
the two threads. This communication channel is
provided by the prefetch library and is implemented
using a shared bu�er between the two threads. Typ-
ically the only variables that need to be shared are
the common �le pointers and the user/�le input
variables. The following functions support sharing
data between the two threads:

� send �leptr(�le pointer), re-
ceive �leptr(&�le pointer): These func-
tions send and receive �le pointers between
the threads. The functions provide implicit
synchronization and thus eliminate the need to
call synchronization functions explicitly. Lines
C3 and P1 in Figure 3 are examples.

� send XXX(), receive XXX(): These are
a set of functions that a thread uses to
send/receive data to/from the other thread.
They replace the I/O calls of the same name
and use almost the same syntax. For ex-
ample, for the I/O call fscanf(fp, "%d",

&value), AASFP provides the send call
send fscanf(fp, "%d", &value), and the
receive call receive fscanf("%d", &value).
The send function reads in the value as well
as sends it to the communication channel for
the other thread to pick up. The variable fp

is not needed in the receive call since the re-
ceive function receives it from the communica-
tion channel. As discussed in Section 3, the
prefetch thread performs all the I/O opera-
tions on the con�guration �le; these operations
are removed from the computation thread. In
Figure 3, lines marked by XX are removed
from the computation thread, and lines in the
prefetch thread that are not marked by $$ are
extracted from the original main function. In-
stead of fscanf, the prefetch thread performs a
send fscanf, and the computation thread per-
forms a receive fscanf. These functions also
provide implicit synchronization.



COMPUTATION THREAD PREFETCH THREAD

void main(void){ void prefetch_function(void){

int fp, int data, int index; int fp, int index;

XX /* FILE *config_fp; */ FILE *config_fp;

## C1. create_prefetch_thread(

(void *)prefetch_function));

C2. fp = open("mydata.dat", O_RDONLY);

/* send the fp to prefetch thread */ /* receive the file pointer */

## C3. send_fileptr(fp); $$ P1. receive_fileptr(&fp);

$$ P2. inform_open(fp);

XX C4. /* config_fp = fopen("config.dat", "r"); */ P3. config_fp = fopen("config.dat", "r");

/* I/O */

XX C5. /* fseek(config_fp, 10, SEEK_SET); */ P4. fseek(config_fp, 10, SEEK_SET);

/* read and send to computation thread */

XX C6. /* fscanf(config_fp, "%d", &index); */ P5. send_fscanf(config_fp, "%d", &index);

/* wait for data from prefetch thread */

## C7. receive_fscanf("%d", &index);

C8. lseek(fp, index*4, SEEK_SET); P6. prefetch_lseek(fp, index*4, SEEK_SET);

C9. read(fp, &data, 4); P7. prefetch_read(fp, 4);

C10. data = data + 10;

C11. close(fp); $$ P8. inform_close(fp)

} }

Figure 3: Data sharing between the computation and the prefetch thread. Both fp and index local variables
need to be shared between the two threads.

4 Generation of Prefetch Thread

This section describes how AASFP extracts the I/O
related code from a given program to form a prefetch
thread for use at run time.

4.1 Intra-Procedural Dependency
Analysis

The goal of intra-procedure dependency analysis is
to identify, inside a procedure, all the variables and
statements that disk access statements depend on.
Let related set(x) of a variable x be the set of state-
ments that are involved, directly or indirectly, in
generating the value of x in a procedure. We use a
simple and conservative approach as follows to com-
pute related set(x):

1. All the statements that directly update the
variable x, i.e., those that de�ne x, are included
in related set(x).

2. Compute the set A that contains all the vari-
ables used in the statements in related set(x).
Then for each variable a 2 A, include
related set(a) into related set(x).

Note that in a block structured language like C, spe-
cial care should be taken to restrict the computation
of related set(x) in Step 1 within the scope of the
declaration of the variable x. For example in the
code fragment below, lines 4 and 5 should not be
included in related set of the variable i on line 7.

1. void main(void){

2. int i;

3. i = 5;

4. { int i;

5. i = 6;

6. }

7. lseek(fp,i,SEEK_SET);

8. }

The above algorithm for computing related set(x)
is conservative and simple to implement. However,
it might include some redundant de�nitions of a
variable which never reaches any disk I/O state-
ment. Since the generated source code will go
through a �nal compilation phase, we expect that
the compiler could eliminate these redundant state-
ments with a more detailed data 
ow analysis [1].

Given this algorithm to identify related set, we use
the following algorithm to analyze a procedure and



deduce the corresponding prefetch thread:

1. Include the disk access calls in the original pro-
gram that operate on prefetchable �les in PT ,
the set of statements that are I/O related. For
each variable x that appears in the disk access
statements, mark it as I/O related, compute
related set(x), and include the result into PT .

2. For each 
ow-control statement, e.g., for,
while, do-while, if-then-else, case, if there
is at least one member of PT inside its body,
mark all the variables used in the boolean ex-
pression of the 
ow-control statement as I/O
related. For each such variable a, compute
related set(a), and include it in PT . Repeat
this step until PT stops growing in terms of
program size.

3. Include into PT the declaration statements of
all variables that are marked as I/O related.

4. Insert into PT the necessary synchronization
calls, add send XXX and receive XXX calls to
transfer data between the threads, and rename
shared global variables to avoid simultaneous
updates from both threads.

5. Finally, if a procedure does not contain any I/O
related statements after the algorithm com-
pletes, then remove its statements from PT .

The above algorithm executes on each procedure it-
eratively until the resulting I/O-related variable set
converges.

4.2 Inter-Procedural Dependency
Analysis

To generate the prefetch thread for an application
program that contains multiple procedures, inter-
procedural dependency analysis is required. It prop-
agates the information on whether a variable is I/O
related through procedure call arguments, return
values, and global variables. This propagation pro-
ceeds as follows:

1. For each procedure P , let Q(x1; x2; :::; xn) be
one of the procedures that P calls with actual
parameters (y1; y2; ::; yn). If any actual param-
eter yi is I/O related in P , and it is a pointer

(i.e., the value it points to can be changed in-
side Q), then mark the object xi points to in
Q as I/O related. If P stores the return value
from Q in variable a, and a is I/O related in
P , then the variable in Q corresponding to the
return value is considered I/O related.

2. For each procedure P (y1; y2; ::; yn), let R be a
procedure that calls P with actual parameters
P (z1; z2; :::; zn). If a formal parameter yi is I/O
related in P , its corresponding actual parame-
ter zi is considered I/O related in R.

3. All global variables that are I/O related are I/O
related within all procedures.

The above algorithm only needs to be applied to the
function call graph once if there are no recursive
function calls. It recursion occurs, the algorithm
may need to be applied more than once until the
extracted code converges.

4.3 Limitations

There are some limitations on the extraction of I/O
related code. Currently we do not support multi-
threaded applications. The inter-procedural analy-
sis is also not implemented yet as all our test appli-
cations have their computations performed in one
procedure. Memory Mapped I/O is not dealt with
now, but theoretically it might be done. First, we
could add more parsing work to identify if there is
a mmap system call with the protection 
ag set to
PROT READ. Second, we could keep track of the later
memory accesses related to the returning address by
mmap. Third, some extra synchronizations should
be done to make sure that the prefetch thread runs
ahead, pre-maps the address, and passes the address
to the computation thread later.

Currently the input programs are assumed to be
written in ANSI C, therefore the other benchmarks
that we could test are rather limited.

For simplicity, we sometimes may sacri�ce the ac-
curacy in terms of granularity of identifying an I/O
related object (variable). For example, if there ex-
ists an array of (structured) objects, where in fact
only one element of them is really I/O related. For
an easier implementation, we would classify this en-
tire array as I/O related.
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5 Run-Time System

Figure 4 depicts the software architecture of
AASFP's run-time system, which consists of a user-
level prefetch library and a kernel component.

5.1 Prefetch Library

The disk I/O calls that the prefetch thread makes
are serviced by the prefetch library, which maintains
a prefetch queue that stores the addresses of the �le
blocks to be prefetched. Each prefetch queue entry
is a tuple of the form f file ID, block number,
prefetch call ID g. The �le ID and the block
number together uniquely identify the logical disk
block to be prefetched, and the prefetch call ID iden-
ti�es the prefetch call that initiated the correspond-
ing disk access. The initial value of the prefetch
call ID is 0. It is incremented every time a prefetch
call is made. The library also maintains a �le table
to keep track of the current o�set corresponding to
every prefetchable �le descriptor so that it can cal-
culate the logical block number for prefetch read

and prefetch lseek calls.

Given a prefetch call, the library �rst assigns the
current prefetch call ID to this call. Second, it incre-
ments the current prefetch call ID. Third, it inserts
an entry into the prefetch queue after calculating its
target logical block ID. Finally, it updates the cur-
rent o�set of the accessed �le in the �le table. When
the prefetch queue becomes full, the library makes
a system call that we added to copy the prefetch
queue entries into the kernel.

When an application makes a
create prefetch thread() call, the library
forks o� a new thread as the prefetch thread, and
informs the kernel about the process ID of both
the computation and the prefetch thread using
an added system call. This helps the kernel to
identify the process ID of the prefetch thread given
a computation thread, and vice versa. In addition,
the prefetch library registers the �le pointers of all
prefetchable �les with the kernel through another
added system call, so that the kernel can take
appropriate action regarding prefetching for those
�le pointers.

5.2 Kernel Support

The modi�cation of the Linux kernel is mainly to
ensure that the prefetch thread will be scheduled
ahead of but not too far ahead of the computation
thread. When the prefetch library of an AASFP
application registers with the kernel the process
ID of the application's prefetch and computation
threads, the kernel allocates a prefetch queue for
that application in the kernel address space. When
an application's prefetch thread informs the kernel
that its user-level prefetch queue is full, the kernel
copies them to the application's kernel-level prefetch
queue. If there is not enough space in the kernel-
level prefetch queue, the prefetch thread is put to
sleep. The kernel wakes up the prefetch thread only
when there are enough free entries in the kernel's
prefetch queue. The size of the kernel prefetch queue
is larger than the prefetch library's queue to avoid
unnecessary stalls. Note that the prefetch calls in
the prefetch thread simply prepare disk prefetch re-
quests, but do not actually initiate physical prefetch



operations. In our experiment we use 300 for the
prefetch library queue size. This is an empirical
value which is about 1=10 of the total number of
pages accessed by all our testing cases, as will be
shown in Table 1. We also set a threshold num-
ber 64, and when there are at least this number of
free entries available in the kernel prefetch queue,
the prefetch thread will be woken up. These num-
bers may require tuning for di�erent architectures.
One could use the simple Backward 1 case, as will
be described in the performance evaluation section,
as a good guideline on how to tune these numbers
e�ectively.

For prefetchable �les, the AASFP kernel turns o�
Linux's sequential prefetching mechanism and sup-
ports application-speci�c prefetching. Whenever an
AASFP application's computation thread makes a
disk access call, the kernel �rst satis�es this ac-
cess with data already prefetched and stored in the
�le bu�er, then performs asynchronous disk read
for a certain number of requests in the kernel-level
prefetch queue. That is, physical disk prefetching
is triggered by disk accesses that the computation
thread makes. This scheme works well for applica-
tions with periodic I/O calls. However, if an ap-
plication performs a long computation followed by
a burst of I/O, physical disk prefetch operations
may be invoked too late to mask all disk I/O de-
lay. Therefore AASFP uses a timer-driven approach
to schedule disk prefetch operations. That is, ev-
ery time Linux's timer interrupt occurs (roughly ev-
ery 10ms), the CPU scheduler will assign a higher
priority to the prefetch thread so that the prefetch
thread can get scheduled sooner in the near future if
it does not �nd any entry in the kernel-level prefetch
queue. Furthermore it will check whether there are
prefetch entries in the kernel-level prefetch queue
that should be moved to the disk queue according
to an algorithm described next. Before a request in
the kernel-level prefetch queue is serviced, the kernel
checks whether this request is still valid by compar-
ing its prefetch call ID with the number of disk I/O
calls that the computation thread has made up to
that point. If the prefetch entry's call ID is smaller,
the entry is invalid and the kernel just deletes it.
For a valid entry, the kernel dynamically determines
whether to service that entry at that moment. To
make this decision, the kernel maintains the current
number of entries in the disk queue (K), the aver-
age time taken to service a disk request (T ), and the
average computation time between two consecutive
disk I/O calls for the application (C). Suppose at
time t, the current disk I/O call's ID is i, and the

prefetch call ID for the entry is j. Then, the time
available before the application accesses the block
corresponding to the jth prefetch call is approxi-
mately C � (j � i). A prefetch request that is sent
to the disk queue at t will be expected to be com-
pleted at time t+(K+1)�T . Therefore the kernel
should service the prefetch request only if

(C�(j�i))�((K+1)�T )� T ime Threshold (1)

(j � i) � Queue Threshold (2)

The �rst term ensures that the disk block is
prefetched before it is needed, and the second term
ensures that there are not too many prefetch blocks
in the bu�er cache. Keeping the �le bu�er cache
from being over-committed is essential to prevent
interference between current and future working
sets. Both Queue Threshold and T ime Threshold
are empirical constants that need to be �ne-tuned
by the users based on hardware con�gurations and
workload characteristics based on system perfor-
mance; this tuning needs to be done only once per
di�erent architecture.

6 Performance Evaluation

This section describes how we conducted our exper-
iments and evaluates the performance results be-
tween AASFP and the original Linux on several
benchmarks.

6.1 Methodology

We have successfully implemented a fully opera-
tional AASFP prototype under Linux 2.0.34. For
the source-to-source translator, we did not mod-
ify Gcc, but built a parser of our own, which cur-
rently only accepts programs written in ANSI C.
The parser itself consists of 2.5K lines of code and
the I/O extraction part about 3K lines of code. The
modi�cation to the Linux kernel involves about only
500 lines of code and the modi�cation to the device
driver code is less than 50 lines; therefore this work
should be fairly easy to port to new Linux kernels.
To evaluate the prototype's performance, we ran one
micro-benchmark and two real media applications,
and measured their performance on a 200-MHz Pen-
tiumPro machine with 64MByte memory.



Test Scenario # of (4KB) Pages
Case Description Accessed

Vol Vis 1 16MB, orthographic view, 4KB-block 4096
Vol Vis 2 16MB, non-orthographic view, 4KB-block 3714
Vol Vis 3 16MB, orthographic view, 32KB-block 4096
Vol Vis 4 16MB, non-orthonormal view, 32KB-block 3856

FFT 256K 2MB, 256K points, 4KB-block 2944
FFT 512K 4MB, 512K points, 4KB-block 6400

Forward 1 16MB, read forward, 4KB stride 4096
Backward 1 16MB, read backward, 4KB stride 4096
Forward 2 16MB, read forward, 8KB stride 2048
Backward 2 16MB, read backward, 8KB stride 2048

Table 1: Characteristics of test applications.

The �rst real-application is a volume visualiza-
tion program based on the direct ray casting al-
gorithm [27]. The volume data set used here is
of the size 256 � 256 � 256 and each data point is
one byte. This data set is divided into equal-sized
blocks, which is the basic unit of disk I/O opera-
tion. The block size can be tuned to exploit the
best trade-o� between disk transfer eÆciency and
computation-I/O parallelism. In this experiment,
we view that data from di�erent viewing directions
and use di�erent block sizes. Results for two block
sizes are reported here: 4KB (16�16�16) and 32KB
(32� 32� 32). For non-orthonormal viewing direc-
tions, the access patterns of the blocks are quite ran-
dom. Therefore it provides a good example showing
that the default Linux prefetching algorithm can do
little help here.

The second application is an out-of-core FFT pro-
gram [20]. The original program uses four �les for
reading and writing. We have modi�ed it to merge
all the reads and writes into one big �le. We have
tested the FFT programwith 256K points and 512K
points of complex numbers; the input �le sizes are
2MB and 4MB respectively. Each read/write unit
is 4KB bytes.

Table 1 shows the characteristics of di�erent ap-
plications we used in this performance evaluation
study. Vol Vis 1, Vol Vis 2, Vol Vis3, and Vol

Vis 4 are four variations of the volume visualization
application viewed from di�erent angles with di�er-
ent block sizes. FFT 256K and FFT 512K are the
out-of-core FFT program with di�erent input sizes.
Forward 1, Backward 1, Forward 2, and Backward 2

are variations of a micro-benchmark that emulates
the disk access behavior of a digital video player that

supports fast forward and backward in addition to
normal playbacks.

6.2 Performance Results and Analysis

Table 2 shows the measured performance of the test
cases in Table 1 under generic Linux and when us-
ing AASFP. All numbers are the average results of
5 runs. To get correct results, the �le system bu�er
cache must be 
ushed each time. Instead of reboot-
ing our testing machine each time, we generate a �le
with random contents and whose size is 128MBytes.
Notice this size is bigger than or equal to the size
of the system's physical memory size plus the sys-
tem's swap space size. Therefore, a sequential read
through out this �le should wipe out all the related
content of the previous run. To verify this, we com-
pare the results of Backward 1 under normal Linux
with the machine rebooted each time and with read-
ing the above big �le. The numbers are shown in
Table 3.

Under Linux, only sequential disk prefetching is
supported. Under AASFP, only application-speci�c
disk prefetching is supported. The number within
the parenthesis shows the AASFP overhead, which
is due to the extra time to run the prefetch thread.
This overhead is in general insigni�cant because
the cost of performing computation in the prefetch
thread, and the associated process scheduling and
context switching is relatively small when compared
to the computation overhead. The percentages of
disk I/O time that AASFP can mask are listed in
the fourth column. This is calculated by taking the
ratio between the disk I/O time that is masked and



Test Linux AASFP % of Disk Perf. CPU % of Syn. % of Com.
Case (Overhead) I/O Masked Improv. Time Overhead Overhead

Vol Vis 1 68.95 31.76 (3.59) 62.14% 53.94% 24.47 0.06% 0.18%
Vol Vis 2 83.05 64.95 (3.22) 12.99% 21.56% 15.18 0.76% 0.09%
Vol Vis 3 36.87 31.23 (3.02) 66.61% 15.30% 25.93 0.00% 0.19%
Vol Vis 4 30.99 29.78 (3.02) 30.00% 3.90% 15.46 2.04% 0.20%

FFT 256K 33.42 33.74 (0.00) 0.00% -0.94% 24.70 2.16% 0.12%
FFT 512K 66.68 67.84 (0.00) 0.00% -1.71% 54.75 1.35% 0.06%

Forward 1 4.78 4.76 (0.00) 0.54% 0.42% 0.48 0.21% 0.21%
Backward 1 52.54 7.63 (0.00) 84.75% 85.48% 0.48 0.65% 0.13%
Forward 2 4.61 4.84 (0.00) 0.00% -4.75% 0.48 0.00% 0.21%
Backward 2 25.02 6.19 (0.00) 78.40% 75.26% 0.48 0.32% 0.16%

Table 2: The overall performance measurements of the test applications under Linux and under AASFP.
All reported measurements are in seconds or percentage. AASFP overhead (included in the AASFP time,
and is also shown within the parenthesis) is mainly the time to execute the prefetch thread, which does not
exist in the conventional approaches. Percentages of Masked I/O shows the percentages of disk I/O time
that AASFP can e�ectively mask.

the total disk I/O time without prefetching.

The �fth column in Table 2 shows performance im-
provement column of AASFP over Linux. For refer-
ence, we also list the CPU Time, which is the pure
computation time of the application (i.e., excluded
I/O), in the sixth column. The overhead due to syn-
chronization, as explained in Section 3.2 is shown in
the seventh column here. The last column shows
the associated compilation overhead of AASFP to
extract the prefetch thread from each program.

For the volume visualization application with a 4-
KByte block size, AASFP achieves 54% and 22%
overall performance improvement for orthonormal
and non-orthonormal viewing directions, respec-
tively. There is not much performance gain for the
cases that use 32-KByte block size. Retrieving 32-
KByte blocks corresponds to fetching eight 4K pages
consecutively. There is substantial spatial locality
in this access pattern, which detracts the relative
performance gain from AASFP. This also explains
why the generic Linux prefetching is comparable to
AASFP when 32-KByte blocks are used.

For the out-of-core FFT apparently there is no sig-
ni�cant performance improvement. This is due to
its extremely sequential accessing patterns. Al-
though FFT is well known by its butter
y algorith-
mic structure, which suggests random disk access
patterns, a more careful examination revealed that
not only out-of-core FFT, but also many other out-
of-core applications exhibit sequential disk access

patterns. Nevertheless our results show that even
under such fairly regular access patterns AASFP
can still provide as good performance as sequen-
tial prefetching. This means that AASFP does not
mistakenly prefetch something that is unnecessary
and eventually hurt the overall performance, and
that the prefetch thread does not add any notice-
able overhead in this case.

For the micro-benchmark, AASFP provides 86%
performance improvement for the Backward 1 case,
which represents the worst case for the sequen-
tial prefetching scheme used in Linux. Note that
AASFP almost does not lose any performance for
the Forward 1 and Forward2 case when compared
to Linux. This is the best case for the Linux ker-
nel. The last measurement again demonstrates that
AASFP performs as well as generic Linux for se-
quential access patterns.

Another potential factor that can hurt the prefetch-
ing eÆciency is synchronization. Too many forced
synchronizations sometimes will slow down how far
ahead the prefetch thread can go, thus limiting
the performance improvement of AASFP. In all the
above test cases, the synchronization-related over-
head is either non-existent or negligible, because
there are neither conditional branches nor user-
inputs (for deciding which data �le to use), as can
be shown in Table 2.

Finally, the associated compilation overhead is also
minimal, and furthermore, the prefetch thread code



Reboot 52.31 52.60 52.87 52.47 52.88
Flush 52.40 52.53 52.60 52.53 52.58

Table 3: The comparison between rebooting a sys-
tem and reading a gigantic �le to 
ush the �le sys-
tem's bu�er cache. Reported numbers are the av-
erage times of 5 runs of the Backward 1 case under
Linux.

extraction needs to be done only once in a prepro-
cessing mode. This suggests not only the simplicity
of AASFP but also its applicability to other similar
programs.

7 Conclusion and Future Work

We have designed, implemented and evaluated
an automatic application-controlled �le prefetching
system called AASFP that is particularly useful for
multimedia applications with irregular disk access
patterns. It is automatic in the sense that the
system exploits application-speci�c disk access pat-
terns for �le prefetching without any manual pro-
gramming. The idea of extracting I/O related code
from the original code is very general and we believe
it is applicable to other languages such as C++ or
Java as well; the required e�ort to support other
languages should also be comparable to this work.
The Linux-based AASFP prototype implementation
is fully operational and provides up to 54% over-
all application improvement for a real-world volume
visualization application. Currently we are contin-
uing the development of AASFP. We are extend-
ing the current prototype to allow multiple I/O-
intensive applications to run on an AASFP-based
system simultaneously. The key design issue here is
to allocate disk resource among multiple processes,
depending on their urgency on disk access require-
ments. We are also building on the AASFP technol-
ogy to develop a high-performance I/O subsystem
for large-scale parallel computing clusters.

Finally we are extending the AASFP prototype to
the context of Network File System (NFS), and gen-
eralize the application-speci�c prefetching to a more
general concept called active �le server architecture.
Here, in addition to standard �le access service, we
allow an application to deposit an arbitrary program
either to manipulate accessed �le data on the 
y
such as compression or encryption (data plane), or

to exercise di�erent control policies such as prefetch-
ing, replacement, and garbage collection (control
plane). The active �le server architecture signi�-
cantly enhances the customizability and 
exibility
of �le access, and thus improves both the perfor-
mance of individual applications and the overall ef-
�ciency of the �le system. A major research chal-
lenge for active �le server is the design of a procedu-
ral interface for application program segments that
is both general and eÆcient enough to accommo-
date various control plane or data plane process-
ing requirements, and suÆciently rigid to ensure
data security and safety. We plan to use AASFP
with NFS as a case study to gain some concrete
experiences with the architectural design issues as-
sociated with active �le server. The code of this
project will be available for download at the URL:
http://www.ecsl.cs.sunysb.edu/archive.html.
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