USENIX Association

Proceedings of the
FREENIX Track:
2002 USENIX Annual Technical
Conference

Monterey, California, USA
June 10-15, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

SWILL: A Simple Embedded Web Server Library

Sotiria Lampoudi and David M. Beazley
Department of Computer Science
University of Chicago
Chicago, Illinois 60637
{slampoud,beazley}@cs.uchicago.edu

Abstract

We present SWILL, a lightweight programming
library that adds a simple embedded web server ca-
pability to C and C++ programs. Using SWILL,
it is possible to add Internet accessibility to pro-
grams that are poorly matched to more traditional
methods of web programming such as CGI scripting
or web server plugin modules. SWILL also makes it
easy for programmers to add web-based monitoring,
diagnostics, and debugging capabilities to software
not normally associated with internet programming.
We like to think of SWILL as an attempt to turn the
problem on its head: traditionally, the web server
came first, the “programs” later; in our approach,
the application is written first, and the server in-
tegrated last. For some types of applications, this
approach is far more painless. In this paper, we pro-
vide an overview of the SWILL library and describe
how we have used it to provide web access to a va-
riety of applications including scientific simulation
software, a compiler, and a hardware emulator for
teaching operating systems.

1 Introduction

With the growth and popularity of the web, many
software developers are interested in building web-
based interfaces to their applications. However,
much of the effort involved in doing this seems to
be spent figuring out how to integrate an applica-
tion into an existing web server using CGI scripts,
server plugin modules, or some sort of middleware
layer. Although it is certainly possible to imple-
ment a web interface in this manner, a programmer
may have to contort their application or implement
a complicated runtime environment to make it work.
To further complicate matters, there are certain ap-
plications in which web access would be useful, but
which do not really fit into the standard mold of an

internet application. Examples might include sim-
ulators, long running scientific programs, and com-
pilers.

Instead of figuring out how to integrate an appli-
cation with a web server, an alternative approach
might be to flip the whole situation around and to
ask what it would take to add a web server to an ap-
plication as a programming library. If a web server
could be added as a library, it might greatly sim-
plify the task of creating web-accessible programs.
For instance, since the the web server would be part
of the application itself, there would be no need to
worry about the installation and configuration of
a complicated web server environment. A library
would also make it easier to add web capabilities to
programs that are not really intended to be inter-
net applications, but where a web interface would
be useful in providing remote accessibility or as a
simple diagnostics tool.

In this paper, we describe SWILL (Simple Web
Interface Link Library). SWILL is a lightweight li-
brary we have developed that makes it easy to add
a web server to C/C++ programs. It consists of
a handful of C functions that are inserted into an
application to make it web accessible. The imple-
mentation is intentionally minimal and is primarily
intended for developers who would like to create a
web interface without a lot of hassle.

SWILL was initially written for use with high per-
formance scientific simulation software [4]. How-
ever, the implementation is generic enough to be
used in a variety of other applications—limited only
by the programmer’s imagination. For example, we
have used SWILL in a compiler project to help with
the debugging of parse tree data. It has also been
used to monitor the internals of a hardware simula-
tor for teaching operating systems.

The rest of this paper provides a brief overview of
SWILL followed by some examples of how we have
used the library. At the end, we provide a brief
overview of related work and future plans.

2 Library Introduction

The best way to introduce SWILL is with a simple
example. Although the library contains about 25
functions, only a handful are needed to get started
as shown in this “Hello World” example:

#include <swill.h>
void hello(FILE *f) {

fprintf (f,"Hello World!\n");
}

int main() {
swill_init (8080);
swill_handle("hello.txt",hello,0);
while (1) {
swill_serve();

}

In this example, the web server is activated by
calling swill_init() with a TCP port number.
One or more documents are then registered with
the server using swill handle(). swill_serve()
is then used to wait for a connection. When a con-
nection is received, an appropriate handler function
is invoked depending on the URL. In this case, a
request for the document “hello.txt” invokes the
hello() function and produces the output that you
expect.

If an application wants to perform other work in
addition to checking for connections, a non-blocking
polling function is used. For example:

while (1) {
swill_poll(); /* Requests? */

/* other work */

This approach allows the web interface to be eas-
ily inserted into applications that provide their own
event or computation loops. For example, a scien-
tific simulation might call swill pol1() at selected
intervals during computation, but spend the rest of
its time crunching numbers.

There are no restrictions on the type of output
a SWILL handler function may produce. However,
the document type is implicitly determined by the
suffix supplied to the swill_handle() function. For
example, if a function produces HTML, the follow-
ing code would be used:

void hello(FILE *f) {

fprintf (f,"<HTML><BODY>\n");
fprintf (f,"Hello World!\n");
fprintf (f,"</BODY></HTML>\n") ;

int main() {

swill_handle("hello.html'",hello,0);

Similarly, the following code produces a PNG im-
age using the freely available GD library [7]:

void

image (FILE *f) {
int black,white;
gdImagePtr im;

im = gdImageCreate(64,64) ;

black = gdImageColorAllocate(im,
0,0,0);

white = gdImageColorAllocate(im,
255,255,255) ;

gdImagelLine(im,0,0,63,63,wht);

gdImagePng(im,f) ;
gdImageDestroy (im) ;

int main() {

swill_handle("image.png",image,0);

Since a programmer may want to reuse the same
handler function for different web pages, SWILL al-
lows an optional pointer to be passed to the handler
functions. This pointer is used to pass application
specific data or an object to the handler. For ex-
ample, an application that created various types of
data plots might look roughly like this:

void

make_plot(FILE *f, void *clientdata) {
Plot *p = (Plot *) clientdata;
// Generate plot

write_plot(p,f);
}

int main() {

e = new energy_plot();

d = new density_plot();

swill_handle("energy.png",make_plot,e);
swill_handle("density.png",make_plot,d);

Although SWILL is primarily intended for dy-
namic content generation, it can also deliver indi-
vidual files or files from a user-specified directory.
For example, if a programmer wanted to register a
specific file with the server, they would do this:

swill_file("foo.html","./htdocs/foo.html");
Similarly, a directory of files is registered as follows:
swill_directory("./htdocs")

When a directory is registered, SWILL delivers files
much like a traditional web-server.

In certain applications, a programmer might want
to receive HTTP query variables as input parame-
ters (as might be supplied from an HTML form).
SWILL automatically parses HTTP query strings
in both GET and POST requests. To access query
variables as strings, the following function is used:

char *swill_getvar(const char *name);

However, a more convenient way to get form vari-
ables is to use swill getargs() as shown in this
example:

void adder (FILE *f) {
double x,y;
if (!'swill_getargs("d(x)d(y)",&x,&y)) {
fprintf(f,"Missing values!\n");
return;
}
fprintf (£f,"%g + %g = %g\n", x,y,x+y);
}

The argument to swill getargs() is a format
string that specifies the types and names of form
variables to be converted. If available, the variables
are decoded, placed into C variables, and a success
code returned.

3 Concurrency and I/0

SWILL is a single-threaded server that does not
rely upon concurrency mechanisms such as forking
or multithreading. This limitation is by design and
is related to the goal of having a server that could

be easily embedded into a variety of specialized ap-
plications such as parallel scientific codes, hardware
emulators, and so forth. In these situations, the use
of concurrency can introduce serious reliability and
portability problems. For instance, an application
may not be thread-safe, making it impossible to reli-
ably execute a handler function in parallel with nor-
mal execution. Similarly, forking may be impracti-
cal in applications with heavy resource utilization or
which rely upon interprocess communication (e.g.,
message passing).

Because of the single-threaded execution model,
the implementation of SWILL relies entirely upon
non-blocking I/O with timeouts. This prevents the
server from indefinitely blocking the application in
the event of bad connections and missing data. For
instance, if a connection is made, but no HTTP
headers are received, SWILL automatically closes
the connection after a timeout and returns. The
timeout is fully configurable by the user and can be
set to only a few seconds if desired.

The I/O for handler functions relies upon a tem-
porary file created with tmpfile(). When requests
are serviced by handler functions, output is placed
into this file. When a handler function has finished
execution, the file contents along with HTTP head-
ers are sent back to the client. Normally, SWILL
simply passes a corresponding FILE * object to han-
dler functions so that they can perform I/0O. As an
optional feature, SWILL can also capture standard
output. This is enabled in swill handle() by pre-
fixing the document name with stdout: as follows:

swill_handle("stdout:foo.html",f00,0);

In this case, all I/O operations on stdout are cap-
tured for the duration of the handler function. This
capture is sufficiently powerful to allow other pro-
grams to be executed using system() and to have
the output of those programs redicted to a web page.
For example, the following handler function would
capture the output of a system command:

void listfiles() {
system("1ls -1");
}

swill_handle("stdout:files.txt",listfiles,0);

4 Security and Reliability

SWILL is not appropriate for use in applications
that require a high degree of security since no sup-
port for SSL or cryptographically secure user au-
thentication is provided. However, the library does

provide a few simple security features to restrict ac-
cess. First, basic HT'TP user authentication is avail-
able by registering names and passwords like this:

swill_user("dave","iluvschlitz")

Second, IP filters can be used to disallow or allow
connections from specific IPs or ranges of IPs. For
example:

swill_allow("127.0.0.0");
swill_deny("128.135.11.");
swill_deny("128.135.11.8");
swill_deny("");

SWILL also allows users to register a log file in
which requests will be recorded and which can be
monitored to check for suspicious activity.

Due to the lack of concurrency, a SWILL applica-
tion may be vulnerable to a denial of service attack.
However the library does take reasonable precau-
tions to allow an application to make progress. As
mentioned in the previous section, all I/O opera-
tions involve non-blocking system calls with time-
outs. Therefore, it is not possible for a client to in-
definitely block execution by keeping the connection
open without transmitting any data. SWILL is also
quick to close connections if it detects malformed
data such as bad HTTP headers or garbled input.
We have considered the possibility of automatically
blocking IP addresses that repeatedly send bad re-
quests. However, this is not implemented at this
time. Given that IP filters can be used to block ac-
cess, a user already has the means to restrict access
to a set of known hosts.

Finally, since SWILL is embedded in an applica-
tion, it is certainly possible for bad programming
to break the server. For instance, a poorly written
handler function could enter an infinite loop or start
a computation that exceeds available machine re-
sources. In this case, the application would become
unresponsive and would probably die. SWILL does
not take any steps to prevent such problems. How-
ever, these can be anticipated with a certain amount
of common sense, error checking, and having an un-
derstanding of the underlying execution model of
the application.

5 Parallelized SWILL

A very useful feature of SWILL is that it supports
SPMD-style parallel applications that utilize MPI
(MPICH is currently supported) [8]. This allows

it to be used on Beowulf clusters and large paral-
lel machines. If used in this style, every node calls
swill poll () in parallel which results in a global
synchronization. If an incoming request is received,
it is forwarded to all of the nodes which then execute
the handler function in parallel.

Using SWILL in this setting is no more difficult
than in the single processor setting; the HT'TP client
connects to the master node of the computation, is-
sues a request and receives sorted output collected
from all nodes. Under the hood the implementation
is also quite simple. The master node (MPI_Rank
== 0) receives requests and broadcasts them to all
of the other nodes. FEach node runs the handler
function in parallel after which the content is col-
lected by the master node and served in a coherent
manner to the HTTP client.

In parallel scientific programming performance is
the foremost consideration. To evaluate the perfor-
mance of swill poll() we distinguish three cases:
a) the case in which there is no pending HTTP re-
quest, b) the case where there is a pending request
for a file or authentication, and c¢) the case where
there is a request for dynamic content.

a) This case is quite simple. If there is no pending
HTTP request, the master node communicates
a null request to all nodes, and the host code
continues execution immediately after the call
to swill poll (). There is one synchronization
in this case, for the call to broadcast the null
request.

b) This case is also handled with an overhead of
one synchronization. The master node iden-
tifies the pending request as one that can be
served by it alone, serves it and broadcasts a
null request. This also reveals one of our un-
derlying assumptions, namely that the SPMD
program is running on a shared filesystem of
some sort, so that it would make no sense to
return n (for n nodes) copies of the requested
file. This behavior is easy to get around. If it is
desirable that a copy of the requested file be re-
turned from each node, the user can just write
a function that reads the file in and prints it to
stdout or uses swill printf ().

c) This is a somewhat more expensive operation.
The master node broadcasts the pending re-
quest to all nodes, who parse it and execute the
appropriate function. Then each node trans-
mits the result of its execution to the master.
Next, the master node serves the HTTP re-
sponse and resumes execution of the host code,

while the back-end nodes resume computation
immediately. All in all, this case has a cost of
one broadcast plus n (for n nodes) communica-
tions.

In our quest for simplicity we have left it up to the
user to produce output that denotes what process
each segment of the output is coming from — SWILL
merely orders it in rank order and serves it.

One interesting use of the parallel capability of
SWILL is in overcoming limitations — whether due
to architecture or policy — imposed by the adminis-
trators of clusters and supercomputing centers. Of-
ten it is not possible to access the backend computa-
tional nodes of a supercomputer or cluster in order
to query the state of one’s execution — at least not
through a normal shell. When an application em-
beds a web server, all that is required is knowledge
of the master node and access to an unprivileged
port. Web requests can then be easily translated
into operations that execute on each node of the
system.

6 Applications

SWILL has primarily been developed as a tool
for remote process monitoring, debugging, and di-
agnostics. This section describes some applications
in which we are using the library.

6.1 Scientific simulation monitoring

The motivating application for most of SWILL’s
development has been that of monitoring long-
running scientific simulations. These programs are
typically non-interactive batch jobs that provide lit-
tle in the way of user feedback. However, to make
sure a program is running correctly, a scientist may
want to periodically monitor the state of their pro-
grams. For example, they might want to check for
numerical instabilities or to see how far an experi-
ment has progressed.

To do this, a simulation can be modified slightly
by implementing a few handler functions and insert-
ing swill poll() calls into selected places in the
simulation loop. For example:

/* Initialize SWILL */
swill_init(3737);

/* Register a few handlers */
swill_handle(...);
swill_handle(...);

for (i = 0; i < nsteps; i++) {
compute_forces();
integrate();
boundary_conditions();
redistribute_data();
if (M (i % output_freq)) {

write_output();

}
/* Check for connections */
swill_poll();

Although this is only a simple example, this tech-
nique is easily extended to provide a variety of ad-
vanced monitoring capabilities. For instance, if a
graphics library is available, the web interface can
be used to generate on-the-fly plotting and data
visualization. Web access can also be provided to
temporary files and other debugging output as the
simulation runs. Using HTTP query variables and
forms, a scientist could even alter various simulation
parameters, enable diagnostic features, temporarily
suspend computation, and so forth.

6.2 Compiler parse tree browsing

As a more unusual example, we have used SWILL
to provide a web interface to SWIG, a compiler for
creating scripting language extensions [3]. One of
the challenges of compiler implementation is that of
creating, traversing, and managing parse tree data.
For the purposes of debugging, it is fairly common
to dump the parse tree into a text file where it can be
examined. Unfortunately, even for small input files,
this might generate a lot of output since a parse tree
might contain hundreds to thousands of nodes. This
makes it difficult to find the specific information of
interest.

As an alternative to dumping the parse tree to
a file, a more convenient way to examine the parse
tree data is to run SWIG using a special -browse
option like this:

$ swig -browse -c++ -python example.i
SWIG: Tree browser listening on port 4908

In this mode, the compiler enters a web-server mode
after all parsing and code generation stages have
been completed. Then, by pointing a browser at
the appropriate port number, it is possible to point-
and-click through internal parse tree data. A sam-
ple screenshot of this interface is shown in Figure 1.
Unlike the information in a text dump, the web in-
terface provides a more more detailed picture of how

7 name - "example.i"
[+] module {example). examplei:2
[+] insert. example.i:6

[=] include {exampleh). examplei 28

7 name - "example.h"

—] elass (Complex). example.:d

? classtype - "Complex"
2 name - "Complex"
7 sym:symtab - 0x9d478
2 symtab - Oxabeld
? allocate:visit — "1
? kind - "glass"
2 sym:name - "Complex"
2 allocate:default_constructor - "1°
2 allocate:default_destructor - "1"
2 has_constructor - "1
2 tmap:out — "Py_INCREF(Py_MNone); resultck] = Py_None;"
7 module - "example"
? wrap:action - "delete argl;in"
7 typescops - O0xaB198
[+] access. example.h:5
[+] edecl {rpart). example.h:s
[+] edecl {ipart). exampleh:é
[+] access. exampleh7
[+] eonstraetor {Complex), example.h §
[+] eonstruetor {Complex), example 9
[=] edeel {operator =), exarmple.h: 14
2 name - "operator ="
7 decl - "fir.gleconst).Complex).r."
? parms - Complex const &
7 error - "ignored"
7 code - "{in rpart = c.rpart;in ipart =
s

Figure 1: Parse-tree browsing in SWIG

information is organized in the compiler. For in-
stances, pointers are represented by hyperlinks and
clicking on a link is essentially the same as derefer-
encing a pointer in C. The web interface also pro-
vides access to compiler symbol tables, type tables,
and other information.

At first glance, the idea of a web-enabled com-
piler sounds crazy. However, this capability greatly
simplifies debugging and development of the com-
piler. Furthermore, a web browser interface works
perfectly well as a simple data exploration tool and
it was extremely easy to implement—requiring only
a half day of effort and a few hundred lines of code.
In comparison, the development of a customized tree
browser using a GUI toolkit such as Tcl/Tk would
have been a much more involved project, would have
greatly complicated the configuration of the com-
piler, and would have provided little if any extra
functionality.

6.3 Operating systems project

At the University of Chicago, the course in op-
erating systems requires students to implement a
simple Unix-based kernel that runs within an em-
ulated hardware environment. For emulation, we
use a modified version of Yalnix, an emulator origi-
nally developed by Dave Johnson at Rice University
[11]. In this project, students are given eight weeks
to implement a kernel from scratch including boot
loading, virtual memory management, I/O device
drivers, processes, and interprocess communication.
Kernels are implemented in C and typically consist
of a few thousand lines of code.

One of the problems of working with the emu-
lator is that debugging is extremely difficult. For
the most part, the only available diagnostics are
an optional hardware trace file and the output of
print statements included in the student’s imple-

mentation. Unfortunately, this information is often
incomplete—making it very difficult to reconstruct
the system state that might be the source of a prob-
lem.

As an experiment, we have recently used SWILL
to add a web-interface to the Yalnix emulator. Inter-
nally, Yalnix relies heavily on advanced features of
signal handling on Solaris. Specifically, user-mode
programs execute natively on the SPARC whereas
the student kernel runs in response to signals such as
SIGSEGV and SIGALRM (which are transformed into
“hardware interrupts”). To instrument the emula-
tor with a web server, we implemented a number of
handler functions, initialized the server on startup,
and placed a swill poll() call into the SIGALRM
handler that is used for internal timing of the emu-
lator.

Using the web interface, it is possible to directly
connect to the emulated hardware. Available in-
formation includes the current status of all hard-
ware registers, page table settings, and the contents
of physical memory pages. It is also possible to
pause execution and to obtain traces of recent hard-
ware operations (the history of memory mapped I/0O
ports, registers, and interrupts). More importantly,
the web interface allows you to observe system be-
havior that is nearly impossible to obtain otherwise.
For instance, by watching page tables you can easily
spot kernel memory leaks and other inefficiencies in
the implementation.

7 Discussion of Related Work

Internet programming is obviously a huge topic,
making a detailed comparison of SWILL to related
work difficult. Overall, we feel that SWILL differs
from other work in a number of respects. First,
a considerable amount of attention has been given
to programming techniques such as CGI scripting,
web server modules, server pages, and program-
ming environments for building Internet applica-
tions [10, 2, 6, 12, 17]. Although these techniques
are successfully used to incorporate programming li-
braries and other applications into a larger Internet
framework, SWILL has a somewhat different focus
than this. Instead of trying to build Internet appli-
cations, SWILL is mostly concerned with providing
Internet access. This may be a subtle point, but the
applications for which SWILL is the most useful are
not really designed for the Internet—Internet access
is merely an add-on feature that can enhance them.

SWILL might also be compared to work in dis-
tributed computing. For instance, SOAP and XML-

RPC are often mentioned as mechanisms for adding
internet access to applications [13, 16]. In fact,
toolkits such as gSOAP can be used to simplify the
integration of an application into such an environ-
ment [14]. The problem with these approaches is
that they are mostly focused on the problem of turn-
ing an application into some sort of pluggable net-
work service to be used within a complicated mid-
dleware layer. SWILL, on the other hand, is much
more lightweight and is oriented more towards end-
users. For instance, users merely connect to the
server and are presented with application-specific
information in a format that is easy to use and ma-
nipulate. There is no hidden application framework
or network layer at work.

Finally, SWILL is closely related to domain-
specific efforts in providing remote access to appli-
cations. For instance, in scientific computing, a lot
of attention has been given to the area of “compu-
tational steering” [15]. One of the primary goals of
steering research is to provide fine-grained interac-
tivity and user feedback to scientific software that
is normally batched-oriented and non-interactive.
Traditionally, this work has relied upon customized
network protocols, complicated client software, and
high-end hardware such as graphics workstations.
(For a detailed discussion of computational steering
we refer the reader to the excellent article [9].)

In some cases, application frameworks may pro-
vide web access for this purpose. The Cactus code
[5, 1], a modular scientific programming framework,
is such an example (the CactusConnect/HTTP and
CactusConnect/HTTPExtra “thorns” — modules —
are supposed to provide HTTP access to a cactus
application). In such cases, however, the web ac-
cess features are not usable as a stand-alone library.
If one wants to have web access, one is forced to
buy into a framework with all the pain and risks
that entails. SWILL tries to avoid this by focusing
exclusively on the problem of web access.

8 Implementation Details

SWILL is implemented entirely in ANSI C and
consists of about 2500 semicolons. Most of the im-
plementation (1500 semicolons) simply provides a
small set of generic data structures (hashes, lists,
strings, etc.) that are used elsewhere. The library
itself requires minimal memory overhead. How-
ever, all of the generated web pages involve internal
buffering. Therefore, memory use is directly propor-
tional to the size of generated web pages. Clearly
the library would be inappropriate for serving huge

amounts of data. However, this was not a design
goal.

The performance overhead of using SWILL de-
pends on frequency of polling (and obviously the
number of incoming connections). On a single CPU,
swill poll() is nothing more than a thin wrap-
per around the select() system call. With MPI,
polling requires a barrier synchronization across
processors. This is obviously more expensive and
careful consideration must be given to parallel ap-
plications.

For networking, SWILL relies upon the
HTTP/1.0 protocol. Although this is less power-
ful than HTTP/1.1, it is easier to implement and
perfectly well suited for most situations.

9 Limitations

SWILL was primarily designed as a tool for build-
ing quick-and-easy web interfaces to C/C++ pro-
grams. Its single threaded execution would be inap-
propriate for a high-traffic web site and you proba-
bly would not want to use it as the basis of a large in-
ternet application. Similarly, internal buffering and
other aspects of the implementation make the server
inappropriate for delivering very large amounts of
data. The server is also unable to support data
streaming or any sort of application in which the
HTTP connection would be kept alive over a pro-
longed period.

Although SWILL provides some basic security
mechanisms, it would not be appropriate for appli-
cations in which security was critical. It should also
be added that firewalls and other security mecha-
nisms may prevent users from accessing a server if
access to user TCP ports is blocked. Obviously,
SWILL cannot address these problems of social en-
gineering.

10 Future Plans

In our own work, SWILL has proven to be re-
markably simple and effective to use. Therefore,
we have every intention of preserving the minimal
nature of the implementation. However, it may be
interesting to provide alternative interfaces to C++
and Fortran. Since SWILL does not rely upon any-
thing more than a few simple functions and stan-
dard I/O operations, it would be relatively easy
to implement handler functions with a slightly dif-
ferent calling convention. For example, in C++,

SWILL might encapsulate I/O in an iostream ob-
ject instead of a FILE .

We have also considered the idea of allowing each
SWILL-server to “phone home” to a user-defined
master server. If a user was running many different
web-enabled applications, this scheme might make
it easier to keep track of where they are running. For
example, a user could simply connect to the master
server and jump to a specific application from there.

Obvious improvements could be made to the
underlying HTTP protocol such as support for
HTTP/1.1, secure sockets, and digest-based user
authentication. However, supporting such features
would introduce a lot of extra complexity and would
probably offer only marginal benefits in return.

11 Availability

SWILL is freely available under a LGPL licence.
More information is available at:

http://systems.cs.uchicago.edu/swill

12 Acknowledgments

We would like to thank the reviewers for their
helpful comments. Mike Sliczniak and Hasan Baran
Kovuk contributed to early parts of the SWILL im-
plementation.

References

[1] G. Allen et. al., Supporting Efficient Execution
in Heterogeneous Distributed Computing Envi-
ronments with Cactus and Globus, Supercom-
puting, Denver, CO, (2001).

[2] Apache Web Server, http://wuw.apache.org.

[3] D.M. Beazley, SWIG: An Easy to Use Tool
for Integrating Scripting Languages with C and
C++, 4th Annual Tcl/Tk Workshop, Mon-
terey, CA (1996).

[4] D.M. Beazley and P.S. Lomdahl, Controlling
the Data Glut in Large-Scale Molecular Dy-
namics Simulations, Computers in Physics,
Vol. 11, No. 3. (1997), p. 230-238.

[5] Cactus Code, http://wuw.cactuscode.org.

[6] C Server Pages,
http://tesitra.com/cserverpages.

[7] GD, http://wuw.boutell.com/gd/.

[8] W. Gropp, E. Lusk, A Skellum, Using
MPI: Portable Parallel Programming with the
Message-Passing Interface, MIT Press, (1999).

[9] W. Gu, J. Vetter, K. Schwan. Computational
steering annotated bibliography, Sigplan no-
tices, 32 (6): 40-4, (1997).

[10] S. Gundavaram, CGI Programming, O’Reilly &
Associates Inc., (1996).

[11] D. B. Johnson, Yalniz: An Undergraduate
Operating System Course Environment and
Project Set, Department of Computer Science,
Rice University.

[12] E. Meijer and D. van Velzen,Haskell Server
Pages: Functional Programming and the Battle
for the Middle Tier, Proc. Haskell Workshop,
(2000).

[13] SOAP, http://www.w3.org/TR/SOAP/.

[14] R.A. van Engelen, K.A. Gallivan, The gSOAP
Toolkit for Web Services and Peer-to-Peer Net-
works, Proc. IEEE CC Grid Conf., (2002).

[15] J. Vetter, K. Schwan, High Performance Com-
putational Steering of Physical Simulations,
Proc. Int’l Parallel Processing Symp., Geneva,
pp. 128-132, (1997).

[16] XML-RPC, http://www.xmlrpc. com.

[17] Zope, http://www.zope.org.

