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Abstract

CPCMS, the Cryptographically Protected Configuration Management System is a new configuration man-
agement system that provides scalability, disconnected commits, and fine-grain access controls. It addresses the
novel problems raised by modern open-source development practices, in which projects routinely span tradi-
tional organizational boundaries and can involve thousands of participants. CPCMS provides for simultaneous
public and private lines of development, with post hoc “publication” of private branches.

This paper describes the repository architecture of CPCMS, and in particular its use (and abuse) of crypto-
graphic naming mechanisms to achieve collision-free disconnected operation.

1 Introduction
CPCMS, the Cryptographically Protected Configuration
Management System, is a new configuration management
system that provides scalable, distributed, disconnected,
access-controlled configuration management across mul-
tiple administrative domains. All of these features are en-
abled by the pervasive and consistent exploitation of cryp-
tographic names and authentication.

Software configuration management (CM) systems pro-
vide multiple developers with a consistent, shared view of
a project that is changing and evolving. When develop-
ment occurs in geographically dispersed locations and is
split across multiple organizations, issues of access con-
trol, integrity management, update distribution, and high-
volume change integration become significant concerns in
choosing a CM system. This is especially true in open
source projects. In addition to the “core” team, which may
consist of developers from several companies, an open
source project may have small patches submitted by thou-
sands of users that need to be integrated. As open source
projects become more successful, the demands placed on
the supporting CM tools grow with them.

In the most immediate sense, CPCMS was brought about
by the expansion of the EROS team and the impending re-
lease of the EROS system to outside development groups.
EROS [SSF99] is an open source, secure operating sys-
tem that is currently gaining mainstream interest. From
1991 to 2000, the EROS project relied on the CVS sys-
tem [Ber90] for its configuration management. As the
project reached the point where outside developers would
be making substantive changes, it became clear that CVS
did not meet several of our requirements:

� First-class support for configurations, and in partic-
ular for rename operations.

� Support for disconnected commit and distributed
repositories.

� Scalable, consistent replication. While tools such as
rdist, rsync, and mirror provide replication,
a user “updating” at the wrong moment can easily
end up with an incomplete or inconsistent result.
There is no simple way for a user to detect this.

� Per-file access controls. The CVS-ACLS system
does not protect RCS logs.

� Support for development groups that span multiple
companies or administrative domains. While un-
common in proprietary projects, such groups are
nearly universal in open source efforts. CVS pro-
vides no authentication mechanism suitable for multi-
organizational development.

When only a limited number of developers worked on the
EROS code base, these shortcomings were relatively man-
ageable annoyances. As we contemplated the prospect of
hundreds or (optimistically) thousands of potential con-
tributors and “lurkers,” these requirements suddenly
loomed as serious concerns.

Subversion, a successor to CVS currently under develop-
ment by Tigris.Org [SVN], addresses many of these is-
sues, but is notably lacking in disconnected commit sup-
port or multi-organizational authentication. Other CM sys-
tems similarly did not address our requirements.

Ignoring the problem of delta management in the reposi-
tory, a configuration management system is not conceptu-
ally difficult to design and build. The principle architec-
tural challenges in distribution lie in naming and consis-
tency. Cryptographic naming seemed to provide a solu-
tion for both problems that we wished to explore. Cryp-



tographic names uniquely identify the content they repre-
sent. They are collision-free, but can be generated without
shared access name binding agent. They are also pragmat-
ically impossible to forge. A properly constructed cryp-
tographic name therefore provides an inherent integrity
check on the content it names.

Finally, we felt that a CM system based on cryptographic
names might provide an interesting basis for future re-
search. In particular, different projects impose different
policies on their repository content and often use local
customizations (e.g. triggers). We were intrigued by the
possibility that a safe programming language might be
integrated with the CM client to enable this in a safe,
platform-independent way. This is a “future,” but the cur-
rent base will clearly support it.

This paper describes the architecture and the implementa-
tion of CPCMS, our early experiences and problems with
the first design, and the results obtained by its reformu-
lated successor: OpenCM.

2 Comparison to CVS
CPCMS is ultimately intended to replace CVS, and the
command line CPCMS client has a very similar “feel” to
the CVS client. Like CVS, the basic CPCMS usage model
is to check out some branch of a product, edit it locally,
perform integration updates along the way, and ultimately
commit the result back into the repository.

CPCMS differs from CVS in several ways:

� To support rename operations, CPCMS maintains a
set of bindings from workspace object names (e.g.
file names) to objects.

� Versioning is on configurations, not on files. Every
commit, whether a single file or a complete replace-
ment of the code base, creates a new configuration
object in the repository.

� In a laptop configuration, CPCMS replication can
be used to cache the originally checked out ver-
sion in a laptop-based repository. Status checks and
“undo” can be done without connecting to the net-
work.

� CPCMS is workspace-neutral, in the sense that it
can support workspaces other than files and direc-
tories. For example, the information architecture
could readily support an object workspace such as
those used by several integrated development envi-
ronments for Java.

� CPCMS uses cryptographic rather than password-
based authentication.

� Commits need not be made to the originating repos-
itory. This allows work to be committed – and po-
tentially undone – while disconnected.

The last point is important, as it is the basis for discon-
nected development. A user can check out a project, make
some changes, and can realize after the fact that they are
disconnected or for some reason lack the authority to check
in those changes. Instead of losing their work, they can
instead create a new branch in a local repository, allow-
ing development to proceed. At a later time, after the
impediment has been removed, this local branch can be
synchronized to the central repository and a merge can be
performed.

3 System Architecture
In this section we describe the CPCMS architecture and
how this architecture facilitates replication and discon-
nected development.

3.1 A Client/Server System

CPCMS is a client/server system. The client implements
all of the semantics of the configuration management sys-
tem. The server provides an archival object repository
with specialized support for objects that are frequently re-
vised.

Clients use an RPC-based protocol to make requests on
the server over an encrypted, mutually authenticated con-
nection provided by the Secure Sockets Layer (SSL). While
remote procedure calls do not achieve the best possible
bandwidth utilization, they provide a reasonable compro-
mise between client simplicity and effective network uti-
lization. Most of the possible asynchronous exchanges
between a CPCMS client and server can be simulated in
the remote procedure call interface by providing an inter-
face that supports bulk batch transfer of managed objects.
A more asynchronous interface and protocol is under con-
sideration for a future version of CPCMS.

3.2 Naming in the Object Store

Objects in a CPCMS repository are divided into two cate-
gories: frozen and mutable.

A frozen object is immutable. From the perspective of the
repository, each version of a file, each configuration, and
each access control list is a frozen object. Frozen objects
cannot be modified. Changes to (e.g.) file content in the
repository are recorded by introducing new frozen objects
corresponding to the new state, and updating some muta-
ble object (see below) to point to the new objects rather
than the old ones. This is because a CM repository is



an archival store. While a new version of a file may be
introduced, the old version must continue to exist as an
independent object for reasons of historical traceability.

A mutable object is one whose identity must remain the
same across modifying operations. A branch, for exam-
ple, is a sequence of configurations. As new configura-
tions are added, the branch grows, but the branch itself re-
tains the same identity after the commit as before. When
a new configuration has been appended to a branch, we
say that the branch has been revised.

Frozen objects are named by the cryptographic hash of
their content. A cryptographic hash provides a short, un-
forgeable bit-string that uniquely identifies the original
content. Because they are unforgeable, cryptographic
hashes are also collision resistant. CPCMS uses the SHA-
1 cryptographic hash function for frozen object names
[FIP94]. Mutables are named using server-generated swiss
numbers, which are identifiers generated using a strong
random number generator. Mutable names also contain
the server’s unique identifier. The mutable itself contains
the signature verification key of the originating server.
The mutable content plus its name are signed by the orig-
inating server, and the signature is distributed as part of
the mutable.

Both naming mechanisms ensure unforgeability of con-
tent. For this reason, we refer to these two types of names
collectively as true names. Server-generated true names
are a pair consisting of the server’s unique identity fol-
lowed by the randomly generated server-relative object
ID. The server checks for collision of mutable true names.

CPCMS has no means to recover from a collision of cryp-
tographic hashes. We are aware of no mechanism that (in
principle) can provide such recovery without central coor-
dination. The SHA-1 algorithm is a 160-bit hash. In such
a hash, the expected number of objects required to gener-
ate a hash collision is

�����
. As an empirical test, we have

obtained copies of several large CVS-based repositories
and extracted every version of every file in these reposi-
tories. To date, we have not observed a collision except
where content was actually identical.

Identical content is the one case in which cryptographic
name collision is guaranteed. From the CPCMS perspec-
tive, this is not only desirable, it is essential. Name col-
lision on identical objects is the basis for eliminating un-
necessary communication. As a practical example, if two
otherwise empty files are independently checked in with
the same copyright notice, only one frozen object will be
stored and both configurations will name the same frozen
object. Given that the bits are identical, it does not mat-
ter which entity is returned on checkout. Because the
CPCMS repository does not interpret the content of its
stored objects (other than for garbage collection), the se-

mantics of objects in the repository is completely defined
by their content.

Having acknowledged the “Achilles heel” in the CPCMS
design, it should also be said that the use of cryptographi-
cally generated names has several desirable properties:

� Given two objects with different content, we can
generate non-colliding names without appeal to a
centralized naming mechanism. This is a funda-
mental requirement for successful disconnected com-
mits.

� The hash serves as an integrity check that lets us
verify the integrity of the object. By recomputing
the hash, the client can determine whether the con-
tent of the object has been improperly altered.

� Because hashes are universally unique, the hash can
be used to avoid network transmission of objects
that are already present at the destination.

� Because hashes are sparsely allocated from a very
large space, they are pragmatically impossible to
guess. This is a crucial underpinning for the CPCMS
access control architecture, which is described be-
low.

Using cryptographic object names eliminates the need to
deal with case sensitivity, file name length, or path length
issues in choosing server-side names. In fact, a file-in-
dependent naming strategy divorces the repository imple-
mentation from underlying platform dependencies alto-
gether. Repositories can be constructed to use storage
strategies ranging from use of an object database to stor-
age within the server file system itself via some transfor-
mation on the true name. Further, it is straightforward to
construct a “union” repository by which a new repository
implementation can be run in parallel with an old one for
testing purposes.

3.3 Naming Managed Content

The CPCMS server makes minimal assumptions about the
client-side semantics of managed content. Ignoring is-
sues of garbage collection, the CPCMS server provides
configuration-based versioning of uninterpreted “blobs”
(binary large objects) and records bindings between client-
side names (C-Names) and internal object names (true
names). To the server, these c-names are uninterpreted
strings. It is entirely up to the client what names to use,
and what organizational semantics should be associated
with these names and their bound content in the client-side
workspace. Examples of possibly valid c-names include:



sys/kerninc/Process.h (a file)
org.apache.xalan.xsl.Process (a class)

�
Object 0x0040824 � (an object pointer)

For example, CPCMS does not assume that the objects
managed consist of files, nor does it depend in any way
on file semantics. While the current command line cli-
ent is designed to manage workspaces of files, an alterna-
tive client might use the repository to manage an object
workspace just as easily. As a result, the CPCMS reposi-
tory (and most of the logic of the file-based client) could
be used for workspaces that are not file oriented, such as
a Java or Smalltalk class repository. One could also imag-
ine directly binding a CPCMS branch as a namespace that
can be exported directly through a web server (we are in
the process of building this).

Similarly, the CPCMS server has no responsibility for cli-
ent side serialization and deserialization. CPCMS delivers
the requested blob. Further interpretation is left to the cli-
ent. Correct client interpretation is facilitated by record-
ing the “type” of the object along with its name binding.
For example, the client may record that the object content
is ASCII at check-in time in order to know that newline
conversion may be needed on checkout. The server knows
nothing of client side canonicalization.

The file-oriented CPCMS client stores configurations as a
set of (c-name, type, truename) triples. When the CPCMS
client processes the triple:

(kerninc/process.h, ASCII, truename)

it interprets this to mean that the intervening directories
must be created if they do not already exist. That is, the
client views the existence of directories as an emergent
consequence of the need to bind c-names. Directories typ-
ically have no first-class existence in the repository. This
means that directories are renamed in the workspace as a
side-effect of renaming the files that live in them. The cli-
ent facilitates this by simulating the behavior of the UNIX
mv command when it is passed arguments that imply that
a “directory” is being renamed.

Where it is necessary to ensure that an empty directory
appears in the client working tree, a name binding with
type DIR can be created. This name binding is handled in
the same way as the file name binding shown above, and
renaming is handled similarly.

3.4 Naming for Users: Take 1

While cryptographic names solve the repository’s object
naming problem, they are not terribly useful to human be-
ings. As a user, I want to work on “the main branch of the
EROS project”, not some strange ascii-encoded random
number.

To facilitate human association, the original CPCMS ar-

chitecture provided a per-server namespace of “pet names.”
Each project or branch carries with it both a human read-
able description and a “nickname.” When a project or
branch is first replicated to a server, the server generates a
petname by applying a collision avoiding transformation
on the nickname. This provides both a means of human
association and a means by which two users on distinct
servers can arrive at closely related names for the projects
they share in common.

Experience shows that this design does not work. The
CPCMS architecture encourages users to make many
branches, and the results quickly create a pet name space
too crowded to be practically useful. One usability con-
clusion from this is that users need to be actively involved
in name selection for the naming mechanism to be use-
ful. The CPCMS architecture also makes it difficult to
supply an equivalent to the CVS “tag” mechanism. In the
course of cleaning up this and other problems in the orig-
inal CPCMS design we arrived at a different and more
workable approach, presented in Section 7.

3.5 Replication

CPCMS’s scalability is built on replication. Because frozen
objects are named by their cryptographic hash, these ob-
jects are non-colliding, and mutual replication of such ob-
jects is straightforward. For mutable objects differences
are resolved by taking the copy with the higher sequence
number. This works because of two constraints that are
imposed on mutable objects:

� Every mutable object has a single server that is said
to “originate” that object. Valid modifications to
the object can only be performed by the originating
server.

� Each change to a mutable object is signed by the
originating server. The signature verification key is
itself embedded in the mutable’s state. Accuracy of
an alleged version can therefore be determined by
checking the object signature.

Ironically, the problem in the resulting replication archi-
tecture isn’t so much deciding what to keep as deciding
what to throw away. Client side repositories can rapidly
come to hold many object versions that are no longer of
interest. At present, a simple garbage collection mech-
anism that preserves the top N configurations of all un-
owned branches is used. Other options are being consid-
ered, and this is an open area for future work in CPCMS.
One reviewer of this paper suggested “last N days” as a
potentially useful metric.

A second reviewer encouraged us to re-examine some of
the approaches used in the Elephant file system [SFH

�
99],



which must similarly decide when to forget. The Elephant
design works in part because each content version is logi-
cally independent. Any object pointers implicated by for-
getting a file version are owned by the file system, which
is free to update them. This approach does not translate
straightforwardly into an archival object system, because
objects in the archival store embed pointers to predecessor
versions.

CPCMS content is encoded in ASCII XML form, allow-
ing replication across heterogenous servers without regard
to issues of word order or host platform restrictions.

4 The CM Schema
The CPCMS configuration management schema can be
divided into two parts: the content schema and the con-
figuration schema. Each content object, such as a file, is
implemented as two repository objects (Figure 1):

Entity

Commit *

Project *

Branch *

EntityBits *
EntityBits

Content

Configuration Schema

Figure 1: Content schema

Entity An Entity is a single version of a managed object
(a file, the text of a function, a document, etc.) Each en-
tity records the identity of the commit description record
under which it was created, the names of its containing
project, branch, and version, and a list of its immedi-
ate predecessors (it can have two – the second due to a
merge). It also records the c-name of the object, which is
the name by which it is referenced in the client environ-
ment (e.g. “docs/dcms.xml”).

EntityBits An EntityBits object contains the actual con-
tent of an entity version (along with its length). In RCS
and SCCS, entity metadata and content are stored in a sin-
gle file. By separating these in CPCMS, we allow the
merge algorithm to trace the evolution of objects without
actually fetching the large volume of data associated with
the content of each version.

Further, the cryptographic hash by which the EntityBits
object is named allows the merge algorithm to trivially
check whether the file version that is being merged is iden-
tical with the one already in the workspace – which is

the majority of cases. The merge algorithm simply con-
structs an EntityBits object in memory from the file al-
ready present, and checks if the true name of this object is
the same as the true name of the EntityBits to be merged.

The schema supporting configurations is more compli-
cated (Figure 2). Every CPCMS commit generates a new
CommitInfo object, a new Change object, and an append
to an existing Branch object. The CommitInfo record is
separated from the Change object so that each Entity can
carry the history of its changes and ancestry. The config-
uration schema must also track the responsible party for
each change.

EntitySet

seq<Entity *>

Entity

See Fig 1

CommitInfo *

Group

seq<Group|User *>

User

Public Key Data

Branch

Project *

ChangeVec *

Description

ChangeVec

seq<Change *>

Change

EntitySet *

CommitInfo *

Misc

CommitInfo

Description

Date

Group|User *

Figure 2: Configuration schema

Project and Branch objects are unusual in that these are
mutable objects. Every mutable object carries a “read
group” and a “write group” identifying who can read or
modify the object. Each Project and Branch object pro-
vides a human-readable description of the corresponding
project or branch.

The repository storage format for objects includes their
type in the first word, allowing tools such as integrity
checkers or browsers to be constructed, and supporting
occasional garbage collection to reclaim storage from un-
completed transactions.



5 Relationship to Objectives
CPCMS is primarily focused on three problems: scaling,
disconnected commits, and access control. Each of these
is a source of difficulty in current CM systems. In this sec-
tion, we discuss how the CPCMS information architecture
addresses these issues.

5.1 Scaling

By “scaling,” we mean that we wish to enable hundreds
of thousands or millions of users to track updates and re-
visions to one or more aggregate works. This is clearly
beyond the number of users that can be handled by a sin-
gle server, and doing so is not an objective. Rather, we
wish to ensure that the CM schema allows simple incre-
mental replication so that multiple, satellite repositories
can be used to serve a large user base.

Connections between machines are sometimes lost, and
machines occasionally crash, yielding incomplete trans-
fers. Both clients and servers are able to validate their
current content without consulting other agents. Using
purely local information, this examination can determine:

� Which objects in the repository, if any, have been
incompletely transferred or (equivalently) have been
locally corrupted. These objects must somehow be
re-acquired.

� Which objects, while uncorrupted, are not referenced
by locally visible configurations. These should (even-
tually, but not too eagerly) be garbage collected.

� Which configurations are complete, in the sense that
all constituent entities are locally available.

� Which entities in the client working arena have “gone
missing” and should be recovered by re-acquiring
them from the server. Because CPCMS (by default)
allows file modifications in the working arena with-
out locking, it is usually unable to distinguish be-
tween corruption and modification. The rule here is
“notify where possible, but don’t make an uncertain
fix.”

By combining checks of the true names against the actual
content and traversing the reachable objects, each of these
concerns can be validated by a client application.

5.2 Disconnected Operation

Under the heading of “disconnected operation” we include
two types of usage: revisions committed by disconnected
developers and revisions made in private lines of develop-
ment.

As the storage and processing capacity of laptop machines
has increased, their use as development machines has be-
come ubiquitous. The bulk of this paper was first writ-
ten on a laptop while sitting in front of a fireplace or on
various airplanes. The greater part of CPCMS itself was
written on various airplanes between New York and Seat-
tle. Neither of these locations is networked.1 While dial-
up connections from hotels are usually possible, they are
hardly ubiquitous and are usually quite expensive.

There are two consequences of this type of migratory de-
velopment:

� Development mistakes are increasingly made in dis-
connected locations. The ability to “check in” lo-
cally in order to have a means of recovery is in-
creasingly important.

� The configurations resulting from these check-ins
will later need to be integrated back into the main
development repository. This integration should pre-
serve the entire history trail of the change sequence,
not just commentary on the final resulting delta.

This problem can be solved by introducing a hierarchy of
repositories, as in NUCM [dHHW96], but semi-connected
hierarchies require use of a “lock before modify” approach.
Locking requires connection, which largely defeats our
goal of disconnected commit. Also, we have found in
practice that locking is disruptive for mid- to large-sized
projects. Header files, in particular, become sources of
lock contention. Post-integration, as provided by CVS,
is (subjectively) more productive in properly structured
projects. In any case, an unrelated aspect of open source
development argues against hierarchical repositories: the
need to operate under multiple administrative domains.

Open source developers are frequently part time. In the
context of their employer they work on one set of projects.
In the context of the open source community they work on
another. If we imagine that their laptop holds a repository
that serves as a local cache, then this repository has two
parents: one associated with their employer and one (or
more) associated with open source efforts. The hierarchy,
if any, is a function of the project, not of the repository.

The CPCMS solution to this problem is to allow private
branches. The laptop user creates a laptop-local repos-
itory that mirrors the desired project from the primary
server for that project. To develop remotely, a new branch
is created in the laptop repository and commits and changes
are applied locally. At a later time, when a connection
is available, the laptop branch can be re-integrated (via
merge) into the main line of development.

1 The fireplace is now served by wireless, but it wasn’t at the time.



This approach incidentally solves the private line of devel-
opment problem. The “private branch” can serve equally
well as the start of a private, in-house line of development.

5.3 Access Control

The access control design objectives for CPCMS are rel-
atively straightforward. Wherever access control is ap-
plied, we wish to distinguish between who can read, who
can write, and who can alter the access control rules. The
mechanism for access checking should make use of cryp-
tographic techniques so that no local “account” is required
on a server to read or write the repository. In part, this is
necessary to ensure that mirrors of a repository can en-
force access rules without prior knowledge of particular
developers. Our current authentication model is provided
by SSL using self-signed certificates. The server holds a
certificate for each authorized user.

It is assumed that downstream replicate repositories are
trusted in a limited sense. Because the replication mech-
anism does not use a privileged API, replicating servers
make copies under the same access constraints as end users.
We are not unduly concerned with malicious modifica-
tion of entities, because the truename system provides a
self-checking means of detection. For mutable objects,
each change must be signed by the originating repository,
whose private key is undisclosed.

CPCMS does not prevent people from making modifica-
tions to projects in their own repositories, so long as these
modifications cannot be used to corrupt some other line of
development. Given that a user can read a project branch,
there is clearly no way to prevent them from checking
this image into a local repository as though it were a new
project of their own. Because of this, there is no strong
reason to prevent the creation of private, mutable branches
in privately controlled repositories. There are, however,
two reasons to encourage this in preference to checking in
the code again:

� In some cases, it may become desirable to publish
(and possibly to re-integrate) these private lines of
development at a later time. By preserving their re-
lationships to the public portions of the project, an
orderly merge is greatly simplified.

� If the private effort is in fact a private line of de-
velopment, the developer can use CPCMS to con-
tinue integrating changes from the main line of de-
velopment into their private version, reducing ver-
sion drift.

The original design of CPCMS called for access control
only at the project and branch level. We quickly con-
cluded that this was unworkable. The main reason for this

is that different portions of a code base may require dif-
ferent degrees of expertise to modify them successfully.
Requiring people to work in separate branches to perform
restricted modifications places a cumbersome burden on
the system integrator.

To avoid this burden, CPCMS includes as part of each
branch or project description a text object that specifies
for each user or group a set of patterns describing the ob-
jects they can modify. By associating this object with the
branch, access control propagations propagate as quickly
as changes to the branch. For branches and projects, read
access changes are rare, typically increase access (that is:
you don’t delete people from the read list often), and rea-
sonable propagation delays seem acceptable. Write ac-
cess for branches is centralized by the existence of a single
originating server in any case, so there is no propagation
delay for write controls. For frozen objects, access con-
trol is applied not so much on the object as on the c-name
namespace. In effect, the access controls determine which
portion of the c-name space a given user is permitted to
rebind.

Oddly, CPCMS does not implement read access checks
on entities. Entities in the CPCMS repository are named
by cryptographically secure true names. As a result, they
are unguessable. If the user does not already have in hand
the object describing the branch, it is impossible for them
to successfully guess the true names of entities within that
branch.

There is only one case in which this is untrue, which is
the case where a legitimate user exposes the entity’s true
name to the unauthorized user. We note that in all cases
where this might occur the legitimate user could also have
passed the entity itself; at modern bandwidths there is no
meaningful difference in transmission cost or time. There
is a small marginal disclosure in transmitting the entity
true name, which is that each entity knows its predeces-
sors. Disclosing the entity (as opposed to its content)
therefore discloses the sequence of changes that arrived
at the current entity version. Here again, however, the le-
gitimate user could simply transmit the entire sequence.

See the future work section for a proposed solution to this
problem.

6 Initial Implementation
Our initial server implementation used a simple file tree
structure to store objects:

./frozen

./frozen/[hash-1]

./frozen/[hash-2]

./frozen/...



./petnames/

./projects/

./projects/[rand-3]/

./projects/[rand-3]/branches/

./projects/[rand-3]/branches/[rand-4]

./projects/[rand-3]/branches/[rand-5]

./projects/[rand-3]/petnames/

./projects/[rand-6]/

./projects/...

This repository essentially ignores space efficiency issues.
Its one merit is that it was very quick to implement. Using
a simple structure reduced the entire effort to something
that we thought might be tractable to test with bounded
effort.

While we were aware that flat files were not the way to go
in the long term, this design seemed initially credible. One
of the most widely used file version management tools to-
day is RCS [Tic85]. Measurement using the EROS source
repository revealed that RCS storage is only 20% more
efficient than Lempel-Ziv compression of individual file
versions. Since users seem to find the storage cost of RCS
acceptable, and the cost of disk space continues to fall, we
decided not to implement any clever storage techniques in
the our first repository implementation.

A second factor motivating our initial decision was XDFS
[Mac00], a filesystem-like repository built on XDELTA.
XDFS provides most of the repository storage optimiza-
tions we want, and already supports cryptographic nam-
ing and delta-based compression. Discussions between
Shapiro and Josh MacDonald (the author of XDFS) early
in the CPCMS design cycle suggested strongly that the
two pieces of work would converge at about the right time.
As a result of these discusions, it was decided jointly to in-
tegrate XDFS into CPCMS in a later release of CPCMS
and focus our initial attention in the CPCMS project on
schema and usability issues.

As events turned out, our plausibility argument about RCS
file sizes was entirely and horribly wrong, for reasons that
should have been obvious in hindsight. The issues, and
the steps we have taken to solve the problem are described
in Section 7.

Fortune sometimes favors the paranoid. Though we chose
an initially simple implementation, we were aware that a
better implementation would someday be necessary. The
repository interface therefore provides a hinting mecha-
nism to support delta storage in the repository. While
frozen objects are immutable, the fundamental operation
by which a new entity is introduced into the repository
is the revise() operation, which specifies a (possibly
null) hint about the predecessor from which the new en-
tity is allegedly derived. This hint can be used as a basis
for delta calculation in storing the new entity. For config-

uration management purposes, entities internally encode
their true predecessors where appropriate. The predeces-
sor specified via the revise() interface is considered
advisory, and the repository implementation is free to ig-
nore the hint in favor of other compression strategies.

7 From CPCMS to OpenCM
CPCMS became fully operational as we were revising this
paper for final publication. In particular, our completion
of a CVS repository conversion tool made it possible to
perform the first storage overhead measurements for the
system design presented in the preceding section. Test
cases that run nicely on 10 or 15 operations do not reveal
problems that arise when thousands of operations are per-
formed.

Several changes were needed to overcome storage and us-
ability issues revealed by these larger tests. The revised
system is now being called OpenCM.

7.1 RCS Storage Revisited

Our first test case was to check in the entire change his-
tory of the “build” subdirectory of the EROS tree. The
CVS tree for this subsystem occupies 164 blocks (96 if
gzipped).2. CPCMS, using an uncompressed flat file repos-
itory, required 5,504 blocks. The rude surprise was that
compression did not help substantially. Compressing the
files yielded a CPCMS repository of 4,236 blocks – far
from the 20% increase over RCS that we had hoped for.

On examination, we discovered that the objects in the repos-
itory corresponding to the original RCS files (the Entity
and EntityBits records) accounted only for 40% (2,212
blocks) of the uncompressed total. While the Commit-
Info records also record state from the RCS files, they are
not stored in a directly comparable way. If CommitInfo
records are included as “content” then the content portion
of the space rises to 48.8% (2,688 blocks).

This was much higher than expected, but the real surprise
was that 60% of the space was going to the configuration
schema portion of the store. While we expected to see a
proportionally large amount of configuration data for this
test case – the build subtree is characterized by few new
file introductions and many small changes – this was un-
expectedly high.

Our first goal was to reduce the space occupied by the En-
tity and EntityBits portion of the data. To do so, we built
a repository using RCS as the underlying storage layer.
Each commit introduced two new cryptographic names
in the content schema (one for the EntityBits, the other
for the CommitInfo). In the RCS implementation, we tag

2 All block numbers reported here are 1 kilobyte blocks



each version using its cryptographic name, which adds
still more overhead to each version (there are now three
uncompressable names rather than two). Without com-
pression, the resulting repository occupies 1,104 blocks,
but the portion of the repository state corresponding to
the content schema now occupies only 300 blocks. Given
that the Entity vs. EntityBits split has visible impact on
merge performance, we are reluctant to unify these two
objects. We expect that the XDFS-based system, when
implemented, should recover most of the balance of con-
tent storage overhead.

7.2 On the Perils of Cryptography

While the content schema using the RCS storage repos-
itory occupies only 300 blocks, the total repository size
remained excessive. The marginal 804 blocks are record-
ing information that is not stored by CVS, but they seem
like a steep price to pay for the configuration schema part
of the store. The culprit in the story initially appeared to
be cryptographic naming.

Part of the problem is the schema design. There are four
objects in the original configuration schema (Branch,
Change, ChangeVec, EntitySet) where only one is really
needed. These objects are connected by cryptographic
names, each of which adds (after encoding) 32 bytes of
uncompressable state to every commit. We were able to
quickly eliminate the ChangeVec and EntitySet structures
by merging them inline into their containing objects. We
also made changes to the management of mutables. Where
CPCMS implemented multiple mutable object types,
OpenCM implements a single mutable type. Mutables
name revision records and revision records name content.
Together, these reduced the total overhead to 1060 blocks.

We then noticed a bug in the client code – the client was
failing to specify a “predecessor” when performing en-
tity revision on the CommitInfo records. Fixing this bug
brought the total RCS repository size for the build tree
down to 704 blocks. If gzip compression were incorpo-
rated, the total size of this repository would be 348 blocks.
This suggests that while a delta-based encoding scheme
in the repository is worthwhile, the RCS encoding is rel-
atively inefficient. We would prefer to incorporate an en-
coding scheme directly into OpenCM in any case, as call-
ing RCS has performance consequences.3

Fortunately, the EROS build subtree proves to be a pes-
simistic test case. Just the thing to prompt a mad scramble
to improve a CM system, but not representative of typical
usage. Changes in the build subtree are small, so the rela-
tive cost of the configuration data overhead is quite high.

3 One possibility would be to integrate the RCS library implementation
from CVS and also use zlib as the file I/O interface. We have not yet
had an opportunity to investigate this.

When the revised system is run against the “base” subtree
of the EROS repository (the tree containing our kernel
source and key applications), a somewhat different pic-
ture emerges. The CVS repository for this tree is 28,208
blocks, the OpenCM content schema objects take 47,304
blocks, and the total OpenCM storage is 65,692 blocks.
If compressed via gzip, the OpenCM numbers reduce to
17,848 and 23,260 blocks respectively. For comparison,
the EROS build tree has seen 119 changes, mostly minor,
in the last 5 years. The EROS base tree has seen 3199
changes over the same period.

build base
Content Only
CVS 164 (100%) 28,208 (100%)
CPCMS-flat 2,212 (1,348%) 360,376 (1,277%)
OpenCM 300 (182%) 47,304 (167%)
Content Only, gzipped
CVS+gz 96 (58%) 12,660 (44%)
CPCMS-flat+gz 1,668 (1,017%) 221,692 (785%)
OpenCM+gz 136 (82%) 17,848 (63%)

Total Storage
CVS 164 (100%) 28,208 (100%)
CPCMS-flat 5,504 (3,356%) 600,698 (2,129%)
OpenCM 704 (429%) 65,692 (232%)
Total Storage, gzipped
CVS+gz 96 (58%) 12,660 (44%)
CPCMS-flat+gz 4,236 (2,582%) 336,060 (1,191%)
OpenCM+gz 348 (212%) 23,260 (82%)

Table 1: Summary of storage use. CPCMS figures show
flat file repository sizes. OpenCM figures show
sizes after RCS and Schema repairs are applied.
All percentages are relative to uncompressed
gzip.

The space performance results are summarized in Table 1.
The current OpenCM repository stops short of re-encoding
objects for reasons of robustness – re-encoding would im-
pose a need for transaction support that the current server
does not require. We are considering additional schema
modifications to further reduce storage consumption.

While there is clearly more work to be done, we consider
the degree of compressability on the current RCS-based
OpenCM repository extremely promising. For the EROS
base tree, the reduction from compression in the origi-
nal RCS repository was 56%, while the reduction from
compression (total storage) for OpenCM was 75%. Since
cryptographic names are inherently uncompressable, the
compression ratio must arise from two factors:

� The fact that OpenCM uses XML as its storage for-
mat.



� The fact that the OpenCM schema still contains con-
siderable redundancy.

As a result of these numbers we plan to integrate com-
pression into the OpenCM storage layer, and use a more
efficient delta encoding system. We are more cautious
about reducing schema redundancy. One of the (currently
untested) potential strengths of the current OpenCM shema
is the degree to which information can be reconstructed
if an object is lost or damaged. We are concerned that
reducing this redundancy would reduce the likelihood of
successful recovery.

7.3 Naming for Users Redux

As mentioned in Section 3.4, the original pet name design
was not viable. The essential lesson from this design was
that human naming of objects in OpenCM needed real at-
tention and a basic redesign. To address these issues, we
introduced a directory system for human-management ob-
ject names.

To facilitate human association, each OpenCM server pro-
vides a private directory space for each user. Users can
“bind” cryptographic names to human-readable names
within this space. For example, the command

opencm create project eros

proceeds as follows:

1. It creates a new mutable object that will represent
the identity of this project.

2. It creates a new, frozen project object carrying the
initial project description, and sets the “value” slot
of the project mutable to point to this object.

3. It creates a new mutable object to serve as the iden-
tity of the “eros” directory.

4. It creates a new frozen directory object containing
the pair (project, pm-name), where pm-name is
the true name of the project mutable object. This
directory object is made the “value” of the directory
mutable.

5. It locates the mutable that represents the user’s “home
directory”, and revises the content (a directory ob-
ject) of that mutable to include a new binding (eros,
em-name), where em-name is the mutable name of
the previously created eros directory.

6. It revises the user’s top-level directory mutable to
point to the new directory object containing the com-
bination of the previous state and the new directory
binding for “eros.”

The net effect of all this is that the user can now type:

opencm ls
opencm ls eros
opencm show eros/project

and obtain a “directory” listing showing respectively that
eros is a directory, that this directory contains the name
project, and showing the content of the eros/project
object.

The new naming system carries an additional benefit: the
cvs tag command can now be achieved by creating a
duplicate mutable naming the content of some existing
branch. Changes to the original mutable can proceed,
but the duplicate’s state is unchanged. Mutables can be
marked “frozen,” in which case the tagged version can
be deleted but not inadvertently altered. Conversely, an
unfrozen mutable of this type provides all of the mecha-
nism needed to perform a “branch” operation. The pcms
branch command operates in just this way.

In the command line OpenCM client, it proves that this
naming scheme extends naturally into the managed object
trees. Branch objects are displayed by the opencm ls
command as a directory of versions. A given version is
in turn displayed as a directory containing the top level
names of the managed content. In effect, an entire source
tree can be browsed as a single hierarchical namespace.
We plan to use this to provide a simple CGI script that
displays OpenCM managed content via a web browser.

8 Early Experience
OpenCM is now self-hosting, and we have started using
OpenCM internally to support the EROS operating sys-
tem project. While the development groups in question
are small, these groups make heavy use of laptop environ-
ments, and therefore routinely test the disconnected oper-
ation features of OpenCM.

In the EROS and OpenCM projects, we have a steady
supply of captive early adopters (students) who are ini-
tially unfamiliar with either OpenCM or EROS. While
many of their modifications are ultimately accepted into
the main tree, there is some desire for quality control in
the acceptance process. This is enforced by encourag-
ing the students to create private branches. While they
lack the authority to modify the public development trees,
this does not deprive them of the ability to modify, save,
undo, branch, or evolve their own line of work. This work
can later be (repeatedly) integrated, preserving not just the
changes but the history trail and commentary that accom-
panied them. No comparable mechanism exists in other
CM systems we are aware of.

Three differences relative to CVS have been immediately
noticeable. The first is that rename works without loss of



evolution history. This is rather like having a new tooth
implanted: one has grown accustomed to the hole and is
surprised on obtaining the implant to realize how much
one missed the tooth after all.

The second difference is the relative ease of mobile de-
velopment. The standard practice is to set up a caching
repository on a laptop, create a branch originated by this
repository, and check this branch out. As a side effect, the
“top” version of the parent branch is copied to the laptop
repository. Commit, undo, and history of changes made
while on the road is ready to hand. On return from travel,
the local repository is synchronized to the main repository
and the final configuration (which includes its complete
change history) is merged into the parent branch. With
only slight modifications to the current design, it will be
possible to cache the entire change history text without
caching all of the object versions involved.

The third difference is the relative ease of change integra-
tion. Instead of mailing a patch, the merge hand-off in
OpenCM is accomplished by synchronizing repositories
and mailing the name of the branch containing the desired
changes. Because the integrator has an entire, connected
change graph to work with, the merge is frequently auto-
mated. When conflicts arise, the change history of both
lines of development is available for examination to de-
cide what to do.

9 Related Work
A number of related efforts exist or are currently under-
way.

9.1 RCS and SCCS

RCS and SCCS provide file versioning and branching for
individual files. The two differ slightly in feature set,
and significantly in their storage strategies. Older SCCS
implementations are dramatically slower than RCS. The
GNU implementation (CSSC) is considerably faster. GNU
CSSC uses a storage strategy that can extract arbitrary
versions in linear time, where RCS must internally recon-
struct various intermediate versions in branching cases.

Both SCCS and RCS provide operation on a single file.
Neither provides configuration management.

While either SCCS/CSSC or RCS could be used as an un-
derlying storage implementation for OpenCM, some form
of name translation strategy would be required to map true
names into SCCS or RCS version names. In the quick and
dirty OpenCM RCS repository, we accomplished this by
symbolic linking each RCS file under all truenames and
tagging each RCS version with its associated truename.
The RCS file is treated as a flat, unbranching sequence of

changes. A more deliberate server implementation would
accomplish the same mapping using a DB file. One ad-
vantage to our choice of encoding robustness: the sym-
bolic links can, if necessary, be recovered from the tag
names in the RCS file.

9.2 NUCM

NUCM (University of Toronto) [dHHW96] uses a server
information architecture that is similar to that of OpenCM.
NUCM “atoms” correspond roughly to OpenCM frozen
objects, but atoms cannot reference other objects within
the NUCM store. NUCM collections play a similar role
to OpenCM mutables, but the analogy is not exact: all
NUCM collections are mutable objects. Further, the NUCM
information architecture includes a notion of “attributes”
that can be associated with atoms or collections. These
attributes can be modified independent of their associated
object, which effectively renders every object in the repos-
itory mutable.

The distinction in their respective handling of collections
and mutables is a significant architectural gap between
the two systems. The NUCM repository does not have
a simple means of providing integrity controls, and the
“everything is mutable” design imposes a hierarchical and
strongly connected structure on the repositories.

Finally, NUCM versions atoms rather than mutable col-
lections. This is unfortunate, as it conflates the workspace
name of the object with its content, and requires that the
repository impose a canonicalization policy on names.

While we were intially attracted to the NUCM server as a
possible base for OpenCM, we discovered on reading the
repository code that it has not been written with robust-
ness in mind. System call return codes were not checked
in the version we examined (in fairness, this may since
have been fixed). CM systems are integrity-critical sys-
tems. We cannot say from experience that NUCM is un-
reliable, but given the lack of error checking in the code
we are unwilling to commit a large enough work base to
NUCM to find out.

9.3 BitKeeper

BitKeeper [McV] is similar in feature set to OpenCM, in
that it provides multiple satellite repositories and change
replication. BitKeeper does not provide cryptographic in-
tegrity controls, and its authentication model is not based
on cryptographic authentication. Provenance tracking in
BitKeeper across multiple organizations is unreliable in
the absence of a universal authentication system. In the
absence of integrity protection, hostile replicates can in-
ject modified copies of code in such a way that clients
cannot detect the substitution.



A secondary concern about BitKeeper is licensing. While
the “free if you use our log server” license is appealing,
a license that straddles the free/pay boundary is difficult
to manage in projects that span commercial and public
project members. Subjectively, it seems clear that Bit-
Keeper has failed the test of user acceptance in the open
source community. For many users this is unimportant.
Given that the core of our own work is open source we
feel that this is a significant concern for our applications.

9.4 CM Systems

A brief examination of existing tools is what convinced us
that a new CM system was needed. Commercial CM tools
did not provide distribution. Subversion, the succes-
sor to CVS, had elected to defer the question of distribu-
tion and adopted (in our view) an information architecture
that was unlikely to distribute easily. It also requires long
transactions that are relatively easily disrupted by loss of
a phone line.

Given the statements of Section 6, it is hopefully clear
that PRCS [MHS98] significantly influenced our design.
The OpenCM merge strategy is directly borrowed from
PRCS, and we are very greatful to Josh MacDonald for
the time he put in discussing replication options with us.
As with OpenCM, future versions of PRCS are expected
to be built on XDFS. In contrast to OpenCM, PRCS pro-
vides client/server connection but not distribution. Dis-
cussions with Josh MacDonald at the time the OpenCM
project was started suggested that distribution would not
be available in our timeframe, which encouraged us to
persue OpenCM quasi-independently.

9.5 WebDAV

The “Web Documents and Versioning” [WG] initiative is
intended to provide integrated document versioning to the
web. It provides branching, versioning, and integration
of multiple versions of a single file. When the OpenCM
project started, WebDAV provided no mechanism for man-
aging configurations, though several proposals were be-
ing evaluated. Given the current function of OpenCM,
OpenCM could be used as an implementation vehicle for
WebDAV.

9.6 Other

Both Microsoft’s “Globally Unique Identifiers” and Lo-
tus Notes object identifiers are generated using strong ran-
dom number generators. Mark Miller’s capability-secure
scripting language E [MMF00, Mil] uses strong random
numbers as the basis for secure object capabilities. The
Droplets system by Tyler Close has adapted this idea
to cryptographic capabilities encoded in URLs.

The Xanadu project was probably the first system to make
a strong distinction between mutable and frozen objects
(they referred to them respectively as “works” and “edi-
tions”) and leverage this distinction as a basis for replica-
tion [SMTH91]. In hindsight, the information architecture
of OpenCM draws much more heavily from Xanadu ideas
than was initially apparent.
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11 Future Work
The OpenCM command line client was an obvious first
step, but we are considering two possible directions for
enhancement on the client side. The first is to build a
GUI-based client, enabling the user to get a continuously
monitored overview of their project status. Comparable
front-ends have been built for CVS, but for OpenCM, we
feel that a complete, separate client is potentially appro-
priate. Indeed, there is no fundamental reason why the vi-
sual and command line clients cannot be used at the same
time by the same user if appropriate locking disciplines
are observed in the workspace. The second is IDE inte-
gration, allowing OpenCM to be directly used in various
development environments.

A second direction for further work is repository storage.



As previously mentioned, the XDFS versioned file system
is a nearly ideal substrate for use as a OpenCM store. In-
tegrating this will significantly reduce the server-side stor-
age overhead of OpenCM.

There is a problem in the current design concerning scope
of potential theft. The client-side file that records the
workspace state contains the true name of the configura-
tion object from which the workspace was constructed.
This object in turn has predecessor names that (transi-
tively) name the entire history of the project. Frozen ob-
jects are not uniquely associated with projects or branches,
and frozen object fetches therefore are not individually
access checked by the repository in the current design.
Any user who can authenticate to the server and present a
valid true name – even if they can only authenticate as the
anonymous user – can obtain a frozen object.

Ryan Goltry, a student at Hopkins, has proposed a modi-
fication to OpenCM in which every user of OpenCM has
a unique encryption key that is used to secure and validate
their entity names. In this design, the entity names stored
on the client would be encrypted in a user-specific way.
If stolen, they are useless without the user’s pass phrase,
and the user’s encryption key can be invalidated on the
server without significant loss if necessary. One beauty of
public key cryptography is that the client-side workspace
file in this scenario can be re-encrypted without losing any
changes that may be in progress.

12 Conclusion
OpenCM provides first-class support for configurations,
support for disconnected commit and distributed reposito-
ries, per-file access controls, and support for development
groups that span multiple companies or administrative do-
mains.

A recent discussion on the linux-kernel mailing list
[Bro02] generating the following (edited) list of desirable
CM system features. We have annotated each to indicate
which ones are addressed by OpenCM:

1. Working merges [yes]

2. Atomic checkins of entire patches, fast tags [yes]

3. Graphical 2-way merging tool. [no]

This is a very important aspect of a successful CM
client that we have not yet addressed. A graphical
merge mechanism could very easily be integrated
into OpenCM, and we would be happy to adopt a
reasonable revision from the community to support
it.

4. Distributed repositories [yes]

5. Ability to exchange changesets by email [yes*]

OpenCM goes one better – email an OpenCM URI
that directly references the new configuration on
the developer’s server. This preserves not just the
changes, but the history of the changes.

6. Ability to rename files [yes]

7. Ability to do archival and renaming of directories.
[yes]

8. Remote branch repository support [yes]

9. Support for archiving symlinks, device special files,
fifos, etc. [no]

Version 0.1 of the OpenCM client incorporates type
tags in entities, but does not currently know how
to interpret any type other than file. Addition of
new entity types is straightforward, and we would
be happy to adopt a reasonable revision from the
community.

While the linux kernel effort is an extreme test of any CM
system, we suspect that these features will also be useful
to other projects.

OpenCM is built on a small set of simple ideas that are
pervasively applied. While there are many interdepen-
dencies in the design, there are no clever or excessively
complicated algorithms or techniques in the system. The
fundamental insight, such as it is, is that successful distri-
bution and configuration management can be built on only
two primitive concepts – naming and identity – and that
cryptographic hashes provide an elegant means to unify
these concepts.

The core OpenCM system, including command line cli-
ent, local flat file repository, RCS repository, and remoting
SSL support, consists of 18,896 lines of code. In contrast,
the corresponding CVS core is over 62,000 lines (both
sets of numbers omit the diff/merge library). In spite of
this simplicity, OpenCM works reliably, efficiently, and
effectively. It also provides greater functionality and per-
formance than its predecessor. One of the significant sur-
prises in this effort has been the degree to which a straight-
forward, naïve implementation has proven to be reason-
ably efficient.

OpenCM is available for download from the EROS project
web site (http://www.eros-os.org) or the
OpenCM site (http://www.opencm.org). A con-
version tool for existing CVS repositories is part of the
distribution.
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