
THE MAGAZINE OF USENIX & SAGE
June 2003 • volume 28 • number 3

The Advanced Computing Systems Association &

The System Administrators Guild

&

inside:
CONFERENCE REPORTS

4th USENIX Symposium on Internet Technologies and Systems

(USITS ‘03)

4th USENIX Symposium on
Internet Technologies and
Systems (USITS ‘03)
SEATTLE, WASHINGTON

MARCH 26-28, 2003

[Only a few reports were received on this
conference – Ed.]

SESSION: ROBUSTNESS

Summarized by Ajay Gulati

WHY DO INTERNET SERVICES FAIL, AND

WHAT CAN BE DONE ABOUT IT?

David Oppenheimer, Archana
Ganapathi, and David A. Patterson,
University of California, Berkeley

David Oppenheimer and his group
studied various causes of failures for
Internet services and the effectiveness of
various techniques used to mask service
failures, as part of their recovery-ori-
ented computing project currently going
on at University of California, Berkeley,
and Stanford. Today, Internet services
have 24/7 expectancy from users, and in
spite of a lot of techniques used by the
designers for higher availability, they still
fail, although such failures are not
always directly visible to users. He talked
about the difficulties users face in con-
vincing service providers to allow access
to their problem-tracking databases, say-
ing “Nobody wants their failure infor-
mation to be public.”

They studied three large-scale services,
which he classified as “Online” (a
mature service/Internet portal), “Con-
tent” (content-hosting service), and
“ReadMostly” (mature readmostly Inter-
net service). They got access to problem-
tracking databases on the first two and a
log of user-visible failures on the third.
Oppenheimer made a clear distinction
between component failures and service
failures: a service failure is one which is
visible to end users; component failures
are sometimes masked by redundancy
and do not cause service failure.

70 Vol. 28, No. 3 ;login:

According to Oppenheimer, operator
errors were found to be the leading
cause of failure in two of the three ser-
vices. Most of these errors were due to
misconfiguration and post-installation
changes made by the operators. He
showed that operator errors are the
largest contributors both in terms of
numbers and time to repair (TTR), con-
tributing approximately 75% of all TTR
on both online and content services.
Oppenheimer also observed that the
highest proportion of operator error
eventually became visible to users as
compared to any other type. In read-
mostly services, network errors domi-
nated operator errors and caused 76% of
all the service failures. Oppenheimer
attributed that to simple and more
robust application software and less
need for day-to-day maintenance on the
part of operators.

Oppenheimer went on to explain vari-
ous techniques commonly used to miti-
gate failures, such as online correctness
testing, exposing/monitoring failures,
redundancy, config checking, and online
fault injection. He presented three tech-
niques, namely, component isolation,
proactive restart, and pre-deployment
correctness testing, which are not cur-
rently in use but which could have pre-
vented some failures from occurring. He
stressed that most of the techniques
work well to mask hardware, software,
and network failures, but that we lack
efficient techniques to mask/detect oper-
ator failures. Also, operator errors are
difficult to diagnose and detect before
they convert into failures.

Finally, Oppenheimer stated some of the
difficulties in extracting data from prob-
lem-tracking databases, since data
entered into them is sometimes incor-
rect and cannot be analyzed by writing
just a few database queries. David said
that a global repository of common
errors, and what was done to handle
them, might be of great help in such
research.

USING FAULT INJECTION AND MODELING TO

EVALUATE PERFORMABILITY OF CLUSTER-

BASED SERVICES

Kiran Nagaraja, Xiaoyan Li, Ricardo
Bianchini, Richard P. Martin, and Thu D.
Nguyen, Rutgers University

Thu Nguyen started off by saying that
today unavailability costs are really high
and even 99.9% of availability is not suf-
ficient for Internet services in some
cases. Most of the large Internet services
use large clusters of commodity com-
puters as their infrastructure. These ser-
vices are often quite complex and have
large design space. Measurement of
availability is mostly based on a practi-
tioner’s experience and intuition rather
than a quantitative methodology.
Nguyen proposed a metric combining
performance and availability. Before
going to the two phases of the metric, he
explained a seven-stage piecewise linear
model showing various stages that a
server goes through, from fault occur-
rence to recovery: (1) component fault
occurs, (2) fault detected, (3) server sta-
bilizes (with performance degradation),
(4) component recovers, (5) server stabi-
lizes (still not performing at peak),
(6) operator resets, (7) normal opera-
tion.

In the first phase, they tried to measure
the system’s response to individual
faults. For the second phase, evaluators
need to use an analytical model to com-
bine expected fault load for the server
with the measurements taken in the first
phase. This gives them a sort of dot
product of faults and behavior vectors.
To demonstrate the effectiveness of the
methodology, the authors studied per-
formability of four versions of PRESS (a
highly optimized yet portable cluster-
based locality-conscious Web server)
against five classes of faults associated
with network, disk, node, and applica-
tion. In phase two of the case study, they
compared performability of various ver-
sions of PRESS and showed how the
model can be used to evaluate various
design tradeoffs, such as adding RAID or

increasing operator support. Finally,
Nguyen discussed some of the lessons
learned after applying their methodol-
ogy to PRESS.

MAYDAY: DISTRIBUTED FILTERING FOR

INTERNET SERVICES

David G. Anderson, MIT

Denial-of-service attacks are quite com-
mon these days; it doesn’t require a high
degree of sophistication to implement
them. Many measures have been sug-
gested to prevent and avoid DoS attacks,
but for various reasons none of them
has been globally deployed. Either they
require lots of changes in routers, affect
normal operation of the server, don’t
provide any guarantees about immediate
relief to the deployer, or take too much
time to recover once the attack is
detected. Anderson proposed Mayday,
an architecture that provides pro-active
protection against DDoS attacks, impos-
ing overhead on all transactions to
actively prevent attacks from reaching
the server.

He made it clear in the beginning that
Mayday works only for flooding attacks
and not for other smart attacks that
could potentially crash a server with
incorrect data. He also pointed out that
an attacker who can watch all traffic in
the network is too powerful to resist;
one who targets a particular node or can
watch only a part of network traffic,
however, can be eliminated, basically
because the server has time to detect
and prevent the attack before the
attacker gets hold of all the nodes. May-
day combines overlay networks with
lightweight packet filtering that is effi-
ciently deployed in routers around the
server. This filter ring of routers actually
provides Internet connectivity and a set
of overlay nodes that can talk to the
server via the filter ring. Clients commu-
nicate with overlay nodes using some
application-defined client authenticator.
Overlay nodes authenticate the client,
perform protocol verification, and then
send it to the server through the filter

71June 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
Sring using a lightweight authenticator.

According to Anderson, this leaves the
designer with a lot of choices to trade off
among security, performance, and ease
of deployment. The performance and
robustness of the resulting system
depend heavily on overlay routing tech-
niques and the authentication mecha-
nism.

Anderson went on to discuss the pros
and cons of various lightweight authen-
tication techniques such as the use of the
server’s destination port/address, overlay
node source address, or any other field
in the header for authentication. Simi-
larly, in the case of overlay routing, one
can give access privileges to all overlay
nodes or only to some of them. In the
latter case, access can be by: (1) indirect
routing – overlay nodes pass the message
to a particular node which has access to
the server; (2) random routing – the
message is propagated randomly in the
overlay until it reaches a node having
access to the server; (3) mix routing –
each node knows the next hop but not
the final destination. Fake traffic can be
generated between overlay nodes to con-
fuse the eavesdropper. Once such a pro-
tection mechanism is in place, the server
can switch between normal mode of
operation and secure mode when an
attack is detected.

The paper then covered some of the
practical attacks that can be used against
such filtering-based schemes. Probing or
timing attacks, for example, can quickly
determine a valid lightweight authenti-
cator and use that to pass through the
filter ring. Finally, some of the more
sophisticated attacks that might get con-
trol over an overlay node and launch
internal attacks in the overlay were dis-
cussed.

Q: What can Mayday do about attacks
that are not well known?

A: It’s always possible to come up with
some attacks that are not taken care of.
But my work mostly concentrated on

flooding and DDoS attacks, and it is
quite sufficient to handle them.

Q: How long does it take to change the
configuration and other things in a
router so as to avoid attacks?

A: It depends on how much of a window
you want to allow for attackers to detect
and cut through the security system. But
automated tools these days take minutes,
and sysadmins can do this in a matter of
hours.

SESSION: RESOURCE MANAGEMENT

AND SCHEDULING

Summarized by Ajay Gulati

ADAPTIVE OVERLOAD CONTROL FOR BUSY

INTERNET SERVERS

Matt Welsh and David Culler, Univer-
sity of California, Berkeley, and Intel
Research

Matt Welsh started off by saying that
9/11 has reminded us of the inability of
most Internet services to scale and han-
dle spikes in demand dynamically. Peak
workload may be orders of magnitude
higher than the average, and managing
the performance of a server under such
conditions becomes really difficult. Most
of the common approaches apply strict
limits on resources, such as bounding
the number of open sockets or threads
or limiting the maximum CPU utiliza-
tion. He stressed the point that these
limits should in some sense be represen-
tative of user response time and not just
the characteristics of the servers.

Overload management techniques are
based on SEDA (staged event-driven
architecture), which is a model for scala-
ble and robust Internet services. SEDA
decomposes a service into a graph of
stages, where each stage is an event-
driven service component. Each stage
uses a small, dynamically sized thread
pool to handle some aspect of request
processing. These stages are connected
via explicit queues that act as a mecha-
nism for control flow between the stages
and a boundary between them. Each
stage’s incoming event queue is guarded

USITS ‘03 �

by an admission controller that accepts
or rejects new requests for the stage.
Each stage can do dynamic resource
control, to keep itself in its normal oper-
ating mode by tuning parameters for its
operation, such as changing the number
of threads based on the workload and
performance of the stage. Welsh showed
a code snippet to demonstrate that over-
load management is built into the appli-
cation itself, as any stage can reject a
queue request if it feels that accepting it
might lead to performance loss. He dis-
cussed some of the alternatives to reject-
ing requests for load shedding. One
might start working at degraded perfor-
mance and tell the user, “This will take
time, please wait,” as most airlines do.
Another way would be to send explicit
rejections, such as “We are busy now, try
again later.” Some Web sites also do
some social engineering by sending
error messages, saying, for example,
“Zipcode is wrong,” just to confuse users
and gain more time to handle the
request. This scheme allows overload
control to be performed in response to
measured bottlenecks, which is better
than having an external control based on
general service capacity. Also, handling
rejected requests can be done on a stage
basis, since the application knows which
stage was bottlenecked for a given
request. Welsh presented three mecha-
nisms of overload control in SEDA:

1. Performance metric: A 90th percentile
response time is used, which is a realistic
and intuitive measurement of client-
perceived system performance. The
response time value may be set by the
system administrator and might depend
on request type – for example, not kick-
ing out a user with lots of stuff in a
shopping cart.

2. Response-time controller design: The
controller associated with each stage
observes a history of response times and
throughput of the stage, and adjusts the
rate of acceptance for new requests to
meet the goals of performance.

72 Vol. 28, No. 3 ;login:

3. Class-based differentiation: This
scheme can prioritize requests from cer-
tain users over others and handle service
level agreements based on what different
clients are paying for the service. The
authors developed a Web-based email
service, which was a clone of Yahoo
mail, allowing users to access and man-
age their emails. During large load
spikes, SEDA compared favorably to
servers with fixed connection limits in
meeting 90th percentile targets. Also,
SEDA’s rejection rates were lower than
other approaches. Finally, multi-class
service differentiation led to different
rejection rates for various classes, with
requests from one class meeting the 90th
percentile response time more fre-
quently than the other, less-preferred
class.

Q: Is this architecture designed for a sin-
gle machine or a cluster?

A: It will work very well on a cluster as
well. In that case, different stages might
be implemented on different machines.

MODEL-BASED RESOURCE PROVISIONING IN

A WEB SERVER UTILITY

Ronald P. Doyle, IBM; Jeffrey S. Chase,
Omer M. Asad, Wei Jin, and Amin M.
Vahdat, Duke University

Summarized by Ajay Gulati

Jeff Chase started off by saying that pro-
visioning of shared resources at large-
scale network services is one of the
biggest challenges for system research
today. The authors focused on automa-
tion of on-demand resource provision-
ing for multiple services hosted by a
shared server infrastructure competing
for resources such as memory, CPU
time, and throughput from storage
units. A slice of the these resources
is allocated to each service to meet ser-
vice quality targets decided in SLAs.
Chase presented a novel model-based
approach, in which internal models of
service behavior are used to predict ini-
tial resource allotment and are changed
dynamically using a monitoring and
feedback system. He introduced the

notion of a “utility operating system”
that handles resource management
across the utility as a whole. The authors
observed that network service loads have
been studied extensively, have common
properties, and can be represented by
models fairly accurately. Chase went on
to discuss some of the models derived
from basic queuing theory and showed
that behaviors predicted from these
models were quite similar to actual
observed behaviors. Resources such as
memory, storage I/O rate, and response
time were closely modeled by parame-
ters like requests/s, average object size,
average CPU demand/req., memory size
for object cache, and peak storage
throughput in IOPS.

Once the models were obtained, a
resource provisioning algorithm was
used to plan least-cost resource slices
and get an “allotment vector” for each
service, representing CPU, memory, and
storage allotments. This algorithm con-
sists of three main primitives:

1. Candidate – plans initial allotment
vectors that are guaranteed to meet SLA
response time targets for each service. It
does not consider resource constraints,
which is done by the other two primi-
tives.

2. LocalAdjust – takes a candidate allot-
ment vector and request arrival rate as
input and outputs an adjusted vector
adapted to local resource constraint or
surplus exposed during initial assign-
ment. It basically constructs an alterna-
tive vector that meets target within the
resource constraints.

3. GroupAdjust – works on a set of can-
didate vectors to adapt to a resource or a
surplus exposed during assignment to
meet system-wide goals. For example, it
can reprovision available memory to
maximize the hit ratio across a group of
hosted services.

Chase presented various graphs showing
how these primitives allocated surplus
memory to optimize global response
time and flexibility of the model-based

approach in adapting to changes in load
or system behavior. Finally, he presented
the evaluation methodology for the
technique, for which they used a cluster
of load-generating clients, a reconfig-
urable switch, DASH Web server, and
network storage servers accessed using
DAFS (direct access file system). The
results showed that the predicted and
observed resource utilizations were fairly
close and that model-based provisioning
is quite effective for resource manage-
ment on cluster utilities.

CONFLICT-AWARE SCHEDULING FOR

DYNAMIC CONTENT APPLICATIONS

Cristiana Amza, Alan L. Cox, Rice
University; Willy Zwaenepoel, EPFL

This work focused on scaling a dynamic
content site (e.g., Amazon.com) through
a new technique called conflict-aware
scheduling. Dynamic content sites con-
sist of three tiers: Web server, application
server, and database. The need for scal-
ing the main site arises because there
may be many clients accessing such sites.
Replicating the front tiers is easy because
they do not contain the dynamic con-
tent; the data that changes is stored in
the database. Currently, state-of-the-art
dynamic-content Web servers rely on a
single very expensive database super-
computer to satisfy the volume of
requests. The solution introduced was to
scale the database tier by using replica-
tion on clusters. This allows a low-cost
solution and, most importantly, incre-
mental scaling and strong consistency at
the same time. Amza justified the choice
of replication based on characteristics of
dynamic-content applications such as
locality (hot-spots in the workload) and
higher read-query complexity as com-
pared to the write-query complexity. On
the other hand, traditional replication
has a known down side. It is well known
that one cannot get both scaling and
strong data scheme (for consistency),
asynchronous writes (for scaling), and
conflict avoidance (for improved scal-
ing).

73June 2003 ;login:

�

 C
O

N
FE

RE
N

C
E

RE
PO

RT
SThe TPC-W e-commerce benchmark

with its three workload mixes – brows-
ing, shopping, and ordering – was used
to evaluate conflict-aware scheduling.
The group used commodity hardware
and software components in the evalua-
tion: the Apache Web server and PHP
module for the Web and app servers and
the MySQL database engine. The only
correct protocol that could previously be
used to satisfy TPC-W’s requirement for
strong consistency was the eager proto-
col with synchronous writes. The scaling
of the eager protocol is poor and gets
worse with increasing writes in the mix
and larger clusters. Amza’s results
showed that conflict-awareness com-
pared favorably to both eager and con-
flict-oblivious lazy replication over a
large range of cluster sizes and conflict
rates. Scaling was close to ideal in the
conflict-aware protocol for the browsing
and shopping mixes of TPC-W up to
large cluster sizes. The ordering mix was
a pathological case for the protocol. It
had a very high fraction of writes (50%)
and consisted mostly of ordering trans-
actions, which were very long and held
locks on all useful tables. The scaling for
this mix flattened at 16 databases,
although conflict awareness still brought
significant improvement over eager,
which did not scale at all in this mix.

INVITED TALK

FAST, RELIABLE DATA TRANSPORT

Michael Luby, Digital Fountain, Inc.

Summarized by Xuxian Jiang

An interesting talk on the data transport
issue.

Luby first examined the weakness exist-
ing in traditional data transport (UDP,
TCP etc), especially the interconnection
between rate control and reliability
mechanism in TCP data transport. In
traditional data transport, the rate con-
trol is highly constrained by the quantity
of unacknowledged data allowed, and
loss estimation is mainly based on
acknowledgments received.

Secondly, he talked about the digital
fountain data transport approach, which
decouples the relationship between reli-
ability and flow/congestion control. The
reliability is provided without using
feedback. Such feedbackless-based reli-
able data transport has many desirable
features in data transport: (1) speed over
large distances and loss networks; (2)
predictable speedy control of data trans-
port; (3) global transport with local per-
formance; (4) massive scalability; (5)
flexibility in choosing a flow/congestion
control mechanism.

Such an approach can be widely adopted
in many situations: (1) wireless and
satellite communication; (2) enable
receiving when receivers have intermit-
tent connectivity; (3) enable data trans-
port even in highly unreliable commu-
nication, which may experience unknown
or variable loss.

The digital fountain approach is analo-
gous to a water fountain: it doesn’t mat-
ter what is received or lost, it only
matters that enough is received. The
sender sends encoded data at the rate
decided by the selected flow control
mechanism and the receiver receives
some of the encoded data and is able to
reconstruct the original data. It is not
necessary for the receiver to provide
feedback for the transport, what really
matters is that enough information is
received. The encoding and decoding
technology does the essential core of the
magic.

There are serveral erasure codes which
can succeed in the encoding for this pur-
pose, including Reed-Solomon codes
(1960, Reed and Solomon), Tornado
codes (1997, Luby et al.) , LT codes
(1998, Luby), and Raptor codes (2001,
Shokrollahi). The common properties of
these digital fountain codes include: (1)
encoding only as long as data flows; (2)
recoverability of data from required
encoding, (3) low complexity for encod-
ing and decoding; (4) ability to encode

very large data; (5) ability to produce an
unlimited flow of encoding.

The pros and cons of example digital
fountain codes were examined in terms
of data length, encoding length, flexibil-
ity to receive from multiple sources,
memory requirement, computational
work, reception overhead, failure proba-
bility, etc. Interested readers are referred
to the corresponding encoding papers,
especially LT codes (1998, Luby) and
Rapter codes (2001, Shokrollahi).

The talk concluded with some typical
and interesting application scenarios
and on-going projects, such as CINC
deployment, broadcasting data to auto-
mobiles, and robust communication in
challenged environments.

74 Vol. 28, No. 3 ;login:

