
6 ; LO G I N : VO L . 33, N O. 4

B R a n d o n E n R i g h t, g E o F F V o E l k E R ,
S t E F a n S a V a g E , C h R i S k a n i C h , a n d
k i R i l l l E V C h E n k o

Storm: when
 researchers collide
Brandon Enright is a network security analyst at
the University of California, San Diego. He is pri-
marily interested in malware and exploit research.

bmenrigh@ucsd.edu

Geoff Voelker is an associate professor of computer
science at the University of California, San Diego.
He works in computer systems and networking.

voelker@cs.ucsd.edu

Stefan Savage is an associate professor of computer
science at the University of California, San Diego.
He has a BS in history and reminds his colleagues
of this fact any time the technical issues get too
complicated.

savage@cs.ucsd.edu

Chris Kanich is a PhD student studying networking
systems and security at the University of California,
San Diego.

ckanich@cs.ucsd.edu

Kirill Levchenko is a PhD student at the University
of California, San Diego. His research is focused on
network routing and security.

klevchen@cs.ucsd.edu

W h e n I t c o m e s t o I n t e r n e t t h r e at s ,
few topics get researchers and the media as
excited as the propagation speed and vital-
ity of modern malware. One such example
is the SQL Slammer worm, which was the
first so-called Warhol Worm, a term used to
describe worms that get their “15 minutes
of fame” by spreading at an exponential
rate—infecting every vulnerable machine
in under 15 minutes [1]. It is ironic, then, that
the latest malware to capture the attention
of researchers is not one of the shortest-
lived but one of the longest, largest, and
most successful bots ever: Storm.

Storm got its name from a particular self-propa-
gation spam email subject line used in early 2007:
“230 dead as storm batters Europe.” Storm, also
known as the Storm worm, is not actually a worm.
It is hybrid malware: part worm, part bot (a pro-
gram designed to perform automated tasks), part
Trojan, and even part Peer-to-Peer (P2P) client. Un-
like SQL Slammer, where all of the research and
analysis is, by necessity, post mortem, the archi-
tecture and longevity of Storm have made it a veri-
table researchers’ paradise, offering nearly endless
opportunities to measure, interact, infiltrate, and
even manipulate it. However, this interactive qual-
ity is also a researcher’s greatest enemy; the ease
with which anyone can poke at the Storm network
means that to gather any meaningful research data
requires identifying and filtering out the noise cre-
ated by other researchers attempting to accomplish
the same task.

History

The Storm botnet that exists today is not the same
network or architecture the authors designed and
built originally. In fact, the authors have modi-
fied the network architecture on more than one
occasion in response to enterprising researchers,
making life difficult for them. Our player in this
cat-and-mouse game is Stormdrain. We originally
wrote Stormdrain in early June 2007 as a way to
locate existing and future Storm infections on our
institution’s network [2].

Originally the Storm bot was little more than a P2P
client and downloader; the authors would publish
URLs to download new components in the P2P
network and new functionality (such as the abil-
ity to spam) would be downloaded as stand-alone

; LO G I N : Au Gust 20 0 8 stO R m : wh E N REsE A RCh E R s CO LLI d E 7

packages. Within a few months the authors designed and built a new tiered
architecture to relay commands and adapted the existing command and
control (C&C) P2P network to be an overlay/rendezvous system only. This
new network design also allowed the authors to combine all the functional-
ity that was once in separate components into a single unified package that
could do everything. By mid-2007 Storm had garnered considerable research
and media attention and in October the authors chose to separate the Storm
P2P network from the original Overnet/eDonkey network by using a simple
encryption scheme. Each big change has slowed researchers down and re-
quired additional efforts to continue to track and measure the network. The
evolution of the Storm network now makes it necessary for researchers to
mention what version and at what time their work on the Storm network
took place. Unless otherwise noted, the network architecture discussed in
this article is the one that was deployed in May 2008.

A View from Orbit

Much of the research interest in Storm is directly related to its novel archi-
tecture. The Storm network is actually two separate networks, each with
its own protocol and function. The first is the UDP-based private P2P over-
lay network built on the Overnet protocol. It is this P2P network that gives
Storm much of its resiliency [3]. No actual C&C between the Storm authors
and the bots uses this P2P overlay network. The network’s only function
now is to facilitate advertising and locating proxy addresses in the separate
TCP C&C network. This second protocol and network utilizes a custom
TCP- and HTTP-based protocol for C&C. This C&C network makes heavy
use of proxying to provide several layers of anonymity between the authors
in control of the network and the actual bots doing their dirty work [4]. The
Storm authors run a series of proxies on the TCP C&C network and UDP
P2P network we call controllers. These controllers provide HTTP proxy ser-
vices on the TCP network and locate Storm infections on the UDP P2P net-
work to turn into proxies. Even though no actual bot C&C uses the P2P
portion of Storm, all Storm infections participate in the P2P network so they
can advertise/locate proxy services to connect to the TCP C&C network.
Overnet does not provide any sort of authentication; in true egalitarian fash-
ion, all peers have equal roles. Because of this, Storm’s P2P network is an
attractive place for researchers to measure and manipulate it. Additionally,
any attack or disruption in the P2P network will directly affect both Storm’s
proper functioning and the work of other researchers. It is difficult to strike
a balance between being a good citizen in the network and potentially dam-
aging it through novel research techniques.

The inherently malicious nature of the Storm network engenders a carte
blanche, “the gloves are off” attitude in some researchers. Initially Storm-
drain was not prepared to handle the constant stream of misinformation
thrown at it. For much of its early life, for example, Stormdrain crashed try-
ing to handle various buggy and maliciously crafted addresses (multicast,
127.0.0.1, 0.0.0.0, etc). It wasn’t until Stormdrain stopped making assump-
tions about the protocol, message fields, addresses, and content of the net-
work that it was able to run for more than a few minutes without crashing.

DHT Modus Operandi

To understand how different research groups can affect Storm or each other,
it is important to understand how Storm’s P2P network works. The network
is based on the Overnet Distributed Hash Table (DHT), which in turn is

8 ; LO G I N : VO L . 33, N O. 4

based on the Kademlia DHT algorithm [5]. These names and acronyms are
not particularly important. What is important is that DHT networks provide
two basic functions: storage of some set of values and, later, retrieval of some
of those values. In Storm’s case, the values being stored and retrieved in the
network are TCP C&C proxy IP addresses and ports. The mechanics of the
storage and retrieval of data are at the heart of what so many researchers are
poking at. To fully understand how Storm’s DHT works, a simple analogy is
in order.

Suppose you want to build a human-based social message storage system.
One simple method would be to designate one person as the “note holding”
person. Anyone who wants to leave a message for someone else can simply
go to the note holder and give the holder a note. Anyone seeking that note
can go to the note holder to get a copy. This system works pretty well in
small groups but isn’t resilient—if the note holder gets hit by a bus all is lost.
A somewhat related issue to resiliency is that not all participants have the
same role or responsibilities. A simple fix to this system would be to make
everyone a potential note holder. How could that be accomplished? One so-
lution is to introduce envelopes to put the notes in and create a simple ad-
dressing system for the people and envelopes. In this new system notes are
not handed directly to a note holder. They are first placed in a numbered en-
velope and the envelope is given to the person whose own number is closest
to the number on the envelope. To retrieve a note, you must find the person
whose number is closest to the number on the envelope you are looking for.
Without more structure, this process would get quite chaotic.

For the sake of simplicity in our note storage system, the numbers chosen by
people or written on envelopes will be limited to 1 through 100. Rather than
try to assign people numbers as they enter the system, they will be allowed
to randomly choose a number for themselves. Also, to assist in finding num-
bers, any participant can be asked what their number is. Participants can
also be asked to provide the number of any other participant that they know
about. To aid in finding numbers quickly, participants will keep themselves
in numerical order by standing in a line. With this additional structure in
place, a dozen people could easily make a working note storage system. If
one of the participants wants to store a note in the system, that person can
write out his or her note, put it into an envelope, and number it, then seek
others in line whose numbers are close to the number on the envelope the
participant wants to store. To accomplish this the participant can approach
someone else in the line and ask for his or her number. If the numbers aren’t
the same, the participant can ask for a list of people that the other knows
about whose number is closer to the desired number. The person trying to
store the envelope can keep doing this, slowly getting closer to a person with
the same or a closer number. The would-be envelope storer keeps doing this
until he or she is satisfied that anyone closer to the desired number can’t be
located, at which time the participant hands a copy of the envelope and note
to that person. To reduce the negative effect of people holding envelopes
who leave the line, it is best to give a copy of the envelope and note to sev-
eral close participants. If new participants enter this system, they can choose
a random number for themselves and go about using this same search pro-
cedure to locate the right place in the line to stand.

With this simple system several basic tasks are easily accomplished. For ex-
ample, to store a note inside envelope “34” in this line, one could walk up to
another and say, “What is your number and all the people you know about
close to the number 34?” The response may be something like “I’m number
71 and I know persons with number 56 and 51 that are closer to 34.”

; LO G I N : Au Gust 20 0 8 stO R m : wh E N REsE A RCh E R s CO LLI d E 9

The next step would be to approach numbers 56 and 51, asking the same
question. The responses may provide numbers 37 and 30. When both 37
and 30 are asked the same question, no closer numbers are learned about.
This means that 30 and 37 must be the closest numbers to 34. A copy of
the envelope and note can be made and given to both people to hold. Put-
ting new envelopes with notes into the line like this is called “publishing.”
If someone else comes along and wants to find a previously published note,
the same system can be used. To search for envelope 34 the search would
most likely end up slightly different. Perhaps the person doing the search-
ing knows about some other set of people. The person can walk up to one
of these and ask, “What is your number and all those you know about close
to the number 34?” The response could be something like “I’m number 20
and I know about persons 29 and 30.” When person 29 is asked, that person
may respond with persons 30 and 37. The responses from 30 and 37 will be
slightly unique, though. Because each has an envelope labeled with number
34 from a previous publish, they will both respond with others close to 34
and include themselves in the list. If, in the course of searching for an enve-
lope, the person asked responds with him- or herself as an answer, it is an
indication that the person has an envelope labeled with the desired number
and can be asked for it.

Search failure can also be easily detected. If while searching for an enve-
lope number no new close people are located and none offer themselves as a
source then it can be assumed that the envelope does not exist and search-
ing can be stopped. Without people standing in an ordered line the bound
on the amount of searching someone would have to do before locating an
envelope or giving up would be much higher. Finally, the person doing the
searching does not need to start right where he or she is standing; the per-
son can “skip” to the closest person he or she already knows about that hap-
pens to be close to the desired envelope. If someone searching for envelope
90 has already had contact with person 95, then that person can start the
search with person 95.

Although this “line of people” analogy follows just a few simple rules, it
should be readily apparent how dynamic the line can be. With people com-
ing and going, reliability is not guaranteed. To try to keep content (notes
inside of envelopes) fresh, the content is published not once but constantly,
at regular intervals. Also, a person in the line may know about his or her
neighbors at one point but, with people entering and leaving the line often,
the line members must constantly search for people close to them and an-
nounce their presence to others. Acquainting yourself with another peer is
called “connecting” in Overnet. Announcing your continued presence to
someone you’ve already connected to is called “publicizing.” Searching for
another number (for whatever reason) is called “searching.” As discussed be-
fore, storing content in the network is called “publishing.”

The aforementioned setup is nearly exactly the way the Storm P2P network
operates. The primary difference in the systems is in the scale. In the Storm
Overnet network, rather than only use the numbers 1 through 100 for peo-
ple and envelopes, Storm uses 0 through (2128 – 1), an astronomical number.
The number picked by a Storm peer (person) is typically called an Overnet
ID or simply OID. The number on the outside of an envelope is typically
called a hash or key. Additionally, rather than a mere dozen people in line,
Storm has thousands of peers online at a time. The ability to skip around in
line to the closest known person is roughly equivalent to the k-bucket sys-
tem in Kademlia or Chord’s finger tables.

10 ; LO G I N : VO L . 33, N O. 4

storm’s Innovation

The two attributes that have not yet been well defined about this system are
how to decide what numbers to assign envelopes and what useful informa-
tion to actually write down for the notes. One of Storm’s most interesting
innovations is how it repurposes these pieces of Overnet. Storm has two dif-
ferent types of notes that it wants to publish. The first is used to advertise
the ability to become a C&C proxy to the Storm authors. If a Storm node
comes online and determines that it is publicly accessible to other Internet
hosts, it first tries to announce itself as “proxy-capable” to the controllers.

The other type of note is used by peers who have already been transformed
into a proxy by a Storm controller and want to advertise their proxy ser-
vice to others by generating proxy-advertisement notes. Regular Storm peers
that are not publicly accessible and simply want to perform nefarious tasks
will seek out a proxy by searching for proxy-advertisement notes. Two dif-
ferent envelope numbering schemes are used but both are based on the cur-
rent date and each can generate 32 different envelope numbers per day. The
first scheme is only used for proxy-capable notes and a hash of the date is
used directly. Only the Storm authors search for envelopes with these num-
bers because only they turn proxy-capable peers into actual proxies (by way
of an RSA encrypted packet we term the “Breath of Life” or BoL for short).
The second set of 32 envelope numbers is generated from a hash of the date
where 1900 has been subtracted from the year. That is, the year 2008 uses
108 as the year. Storm nodes that have become proxies use these envelope
numbers to publish their proxy-advertisement messages. Regular Storm
peers search out these envelope numbers to locate the proxy service. By
keeping the two groups of envelope numbers separate, Storm does not mix
up peers looking to be proxies with peers that have already become proxies.

Of course, the trouble with rules is that they can easily be broken. Overnet
specifies a simple set of rules and all (nonbuggy) versions of Storm imple-
ment those rules. Researchers, however, typically do not. Let’s return to our
analogy for a moment. If you want to determine every participant in the line
(crawl the network) you can pick a random envelope number and search for
it. As you learn about new people you can add them to a master list. If you
do this fast enough and for long enough your master list will be nearly com-
plete. Many researchers are crawling the network constantly, which can put
a significant load on Storm bots and other researchers.

A View from the stormdrain

One of the benefits of crawling the Storm network for many consecutive
months is that anomalies are easy to spot. Stormdrain is set up to graph in
real time many attributes gathered while crawling. Sudden bumps or dips
are often the result of one or more misbehaving nodes. Initially there was no
perfect way to tell which peers in the network were buggy nodes versus im-
postors under the control of third parties.

Only the most heinous abuses of the network were clearly the doing of third
parties. Attempts to classify individual peers based on their behavior were
often lost in a sea of data. For example, in late 2007 Stormdrain suffered a
sudden drop in efficiency coupled with a large spike in CPU usage. The code
was carefully reviewed for possible bugs but none were found that could
cause the symptoms. Closer examination of network traffic revealed several
IPs in China flooding Stormdrain with Overnet traffic to the point of Denial
of Service (DoS). When the IPs were blocked a few hours later the attack re-
sumed from a new set of Chinese IPs. A change had to be made to Stormd-

; LO G I N : Au Gust 20 0 8 stO R m : wh E N REsE A RCh E R s CO LLI d E 11

rain’s select() loop to reduce the effect of the attacks. In the line analogy,
Stormdrain is just a person walking around and contending with others
doing the same. We put a lot of work into developing heuristics to differ-
entiate Storm peers from third parties but none had the 100% accuracy we
 really wanted.

Through some reverse-engineering work on the Storm binary, it was discov-
ered that Storm had a badly flawed pseudo random number generator that
caused the OIDs it picked randomly to follow a specific pattern [2]. Using
this knowledge as an oracle allowed Stormdrain to differentiate real Storm
peers from impostors in the network. Suddenly it became very easy to mea-
sure the effect each of the other researchers had in the network and even to
track the various attacks as researchers would evolve and adapt new tech-
niques. It was an epiphany. Using this oracle to separate impostors from
Storm has allowed us to create a virtual “police lineup” of others participat-
ing in the Storm network that are not Storm bots. Here are a few of the dif-
ferent types of “people” in that lineup:

Babbling Idiots
These people constantly walk up to Stormdrain and say something—any-
thing. Sometimes it’s a search; other times it’s a publicize. It’s never useful,
but they just won’t leave Stormdrain alone. Stormdrain currently does not
bother to blacklist these peers because they aren’t harmful enough.

The Deaf
These people periodically ask Stormdrain questions but don’t even acknowl-
edge the answers. When Stormdrain queries them, they don’t respond. NAT
can cause this sort of behavior but NAT has other qualities to it that these
people don’t exhibit. This also wastes Stormdrain’s time but the design of
Stormdrain keeps these peers from causing any real harm.

The Schizophrenic
These people answer all queries with imaginary friends. Stormdrain does
not know this at first but later queries always fail to contact the peers they
claimed to know. This is a very common attack in the network, and Storm-
drain uses heuristics to identify and blacklist peers poisoning the network
in this manner.

Pathological Liars
Some peers in the network respond with exceptionally poor results. When
Stormdrain queries peers like this, the search result is intentionally crafted
in a way to throw Stormdrain as far from the right peers as possible. In the
envelope analogy, this would be like maliciously responding to a search for
number 34 by claiming that person 90 is actually person 32. These peers
can reduce the search efficiency of the Storm network but don’t negatively
impact Stormdrain, because crawling the network does not require actually
locating content, just other peers.

Junk-mailers
A person can only hold a small number of envelopes without dropping
some. To prevent legitimate notes being found, junk-mailing peers con-
stantly publish random notes to everyone holding a particular envelope
number. Those searching for that envelope number will then likely re-
ceive only the random notes. In the Storm network this attack is performed
against any peer with an OID that happens to be close to the 32 daily ren-
dezvous hash locations. This is known as the Eclipse attack and has proven
very successful in tests [6].

12 ; LO G I N : VO L . 33, N O. 4

Gangs of Friends
These groups of peers all choose OIDs very close to some content hash lo-
cation. When Stormdrain searches these peers for content, they always re-
spond claiming another in their group is closer. In this manner, these peers
will pass any searching node around in circles until the peer gives up,
thinking that no content has been published at that hash. This is referred
to as the Sybil attack and is used by some researchers to attack the 32 daily
Storm proxy-advertisement hashes [6].

Tonya Harding Wannabees
Sometimes Stormdrain gets punished (via a DoS) for searching for particular
content. When more than one peer is involved in this behavior the result is
a DDoS. Stormdrain has had to contend with attacks like this on more than
one occasion. It isn’t clear whether this bat-to-the-kneecaps approach is the
result of vigilante researchers, rival spam gangs, or some other players.

researchers collide

The trouble with having so many easily performed attacks is that invariably
they are used often. Indeed, at one point or another all of these attacks have
been performed in the Storm network—often several of them concurrently.
To successfully crawl the network a researcher must put extensive engineer-
ing time into detecting and reducing the effectiveness of each of these at-
tacks. This, in turn, encourages other researchers to perform more stealthy
and difficult to detect attacks. There was a joke at a recent security confer-
ence [7] that eventually the Storm network would shrink to a handful of real
bots and there would still be an army of rabid researchers fighting with each
other to measure whatever was left!

Although this is certainly an exaggeration, it leads to the moral of the story:
Engineering time and care must be taken not to inadvertently measure the
activities of other researchers and network disruptors. Addressing this prob-
lem is perplexing because there is nothing fundamental that allows one to
make this determination; a sufficiently sophisticated disruptor can design
software that is indistinguishable from a bot at the network layer or simply
infect a large number of honeypots with the bot itself and manipulate their
behavior.

Thus, the question becomes, “At what point is the signal-to-noise ratio so
low that there is no meaningful signal left to do research on?” We do not
have an answer. One thing is certain, though: The unique architecture of
Storm has given researchers around the world an unprecedented view of the
future of botnets.

AcknOwLeDgMenTs

Our thanks are owed to Vern Paxson and Christian Kreibich for detailed
discussions and feedback on investigating the Storm botnet, Joe Stewart of
SecureWorks for offering his insight into the workings of Storm, and Gabriel
Lawrence and Jim Madden for supporting this activity on UCSD’s systems
and networks.

references

[1] The Spread of the Sapphire/Slammer Worm: http://www.caida.org/
publications/papers/2003/sapphire/sapphire.html.

; LO G I N : Au Gust 20 0 8 stO R m : wh E N REsE A RCh E R s CO LLI d E 13

[2] “The Heisenbot Uncertainty Problem: Challenges in Separating Bots
from Chaff,” USENIX LEET ’08: http://www.usenix.org/events/leet08/tech/
full_papers/kanich/kanich.pdf.

[3] Storm: http://www.usenix.org/publications/login/2007-12/pdfs/
stover.pdf.

[4] “On the Spam Campaign Trail,” USENIX LEET ’08: http://www.usenix
.org/events/leet08/tech/full_papers/kreibich/kreibich.pdf.

[5] Kademlia: A Peer-to-Peer Information System Based on the XOR Metric:
http://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf.

[6] “Measurements and Mitigation of Peer-to-Peer-based Botnets: A Case
Study on Storm Worm,” USENIX LEET ’08: http://www.usenix.org/events/
leet08/tech/full_papers/holz/holz.pdf.

[7] First USENIX Workshop on Large-Scale Exploits and Emergent Threats
(LEET ’08): http://www.usenix.org/events/leet08/.

The 8th USENIX Symposium on Operat-

ing Systems Design and Implementation

(OSDI ’08) brings together pro fessionals

from academic and industrial backgrounds

in what has become a premier forum for

discussing the design, implemen tation,

and implications of systems software.

The OSDI Symposium emphasizes both

 innovative research and quantified or

 illuminating experience.

8Th USENIX SympOSIUm
ON OpEraTINg SySTEmS
DESIgN aND ImplEmENTaTION
December 8–10, 2008, San Diego, Ca

Save the Date!

www.usenix.org/osdi08/lg

The following workshops will be co-located
with OSDI ’08:

Fourth Workshop on hot Topics in System
Dependability (hotDep ’08),
December 7
http://www.usenix.org/hotdep08

First USENIX Workshop on the analysis of
System logs (WaSl ’08),
December 7
http://www.usenix.org/wasl08

Workshop on power aware Computing and
Systems (hotpower ’08),
December 7
http://www.usenix.org/hotpower08

Third Workshop on Tackling Computer
 Systems problems with machine learning
Techniques (Sysml08), December 11
http://www.usenix.org/sysml08

