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at ta c k s  a g a I n s t  W e b - s e r v e r  a p p l I -
cations and their clients’ Web browsers have 
recently increased in popularity. These auto-
mated attacks rely not only on weaknesses 
in a wide variety of applications but also on 
identifying potential victims with popular 
search engines. We have built a system 
that attracts these attacks by representing 
many different victims in Web searches and 
simulating their behavior when attacked. 
Its deployment has succeeded in attracting 
hundreds of thousands of attacks in a two-
month period.

As time passes and system security improves, fa-
miliar attack vectors become less common and 
new, more successful techniques emerge. For in-
stance, the increased presence of end-user fire-
walls, NAT (network address translation), and 
better operating systems security have reduced the 
presence and potency of malware worms, despite 
their broad notoriety just five years ago. Also, the 
monetization of vulnerabilities and stolen personal 
data motivates more clandestine attacks. Conse-
quently, it is no longer common for attackers to 
write worms that randomly scan the Internet for 
potential victims, and attackers are forced to shift 
their strategy to promote wide-scale malware in-
fection accordingly. Increasingly, attackers now co-
vertly compromise servers, lying dormant except to 
covertly infect their visitors as well. This method 
of infection is commonly referred to as a drive-by 
download and its victims are typically Web servers 
running vulnerable software and personal com-
puters with browser vulnerabilities [1]. Left unde-
tected, this method of infection affords attackers 
the opportunity to control large networks of com-
promised machines.

Crawling for Victims

The recent increase in this underhanded tactic, in-
fecting visitors to compromised Web sites and au-
tomatically installing executables on the victims’ 
machines unbeknownst to them, was well docu-
mented by Provos et al. [2]. Their investigation 
showed that during a 10-month period, more than 
1% of all queries to the Google search engine yield 
at least one recommended URL that resolves to a 
Web server suspected of hosting malicious content. 
After categorizing a subset of the malicious URLs 
with the Open Directory  Project [3], the research-
ers discovered that, although user browsing be-
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havior can affect the likelihood of encountering such URLs, Web servers in all major content 
categories are affected. Among other causes, Web servers are often compromised via unre-
ported vulnerabilities in insecure third-party Web applications (e.g., popular online discus-
sion forum software, administrative interfaces, and content management systems).

F i g u r e  1 :  S e a r c h  w O r m S  a u t O m a t i c a L Ly  i D e n t i F y  h O S t S  r u n n i n g  V u L n e r a b L e 
w e b  a p p L i c a t i O n S  b y  ( a )  u S i n g  D i r e c t e D  S e a r c h - e n g i n e  q u e r i e S  t h a t  ( b ) 
r e V e a L  V i S i b L e  i n S t a L L a t i O n S .  S O m e t i m e S  t h e S e  q u e r i e S  a r e  a S  S i m p L e  a S 
D e p i c t e D  i n  t h e  F i g u r e ,  a Lt h O u g h  a t  O t h e r  t i m e S  t h e y  a r e  m O r e  a D V a n c e D , 
t a k i n g  a D V a n t a g e  O F  O b S c u r e  S e a r c h - e n g i n e  F e a t u r e S .

Attackers find Web applications an attractive target for many reasons. A unique combination 
of insecure or amateur development, far-reaching network visibility, and the opportunity to 
further infect Web site visitors provides attackers with strong motive to target Web applica-
tions. Moreover, Web applications are notoriously insecure. The SANS Institute has reported 
that, from November 2006 to October 2007, Web application vulnerabilities were responsible 
for just under half of all reported vulnerabilities and that hundreds of new vulnerabilities and 
exploits in both commercial and open-source Web applications are reported each week [4].

Worse yet, under some circumstances, by abusing popular search engines attackers can eas-
ily identify Web servers hosting vulnerable Web applications. As depicted in Figure 1, if an 
attacker has discovered a vulnerability in version 1.0 of a Web application named Photo Gal-
lery, the attacker can identify Web servers running the application (i.e., potential victims) by 
simply submitting the query “Powered by Photo Gallery 1.0” to a search engine. If we assume 
that the software always displays the phrase in question, the search engine will likely identify 
URLs to these Web servers, which the attacker then attempts to compromise. As demonstrated 
in Figure 2, these attacks are typically constructed the same way.

When automated, this attack strategy can be quite virile. These attacks enable fast propagation 

owing to their ability to quickly and accurately identify potential victims (i.e., generate a hit 
list). The automated variant of this attack is referred to as a search worm [5].

Although it is well known that this category of attacks has recently become more popular, 
little is known about the scope of this growing trend. In response, researchers have begun to 
develop low-interaction, Web-based honeypots to monitor automated attacks directed at vul-
nerable Web applications by extending the scope of more traditional, daemon-centric honey-
pots [6]. Historically, honeypot systems have significantly helped researchers to identify the 

F i g u r e  2 :  a n  e x a m p L e  O F  a  p h p  r e m O t e  i n c L u S i O n  a t t a c k ,  a  V e r y  c O m m O n 
a t t a c k  O w i n g  t O  t h e  p O p u L a r i t y  O F  p h p  a S  a  D e V e L O p m e n t  L a n g u a g e  a n D 
t h e  F r e q u e n t Ly  D e m O n S t r a t e D  i n S e c u r i t y  O F  w e b  a p p L i c a t i O n S
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extent to which automated network attacks take place, to identify new patterns in malware, and 
to generate signatures for security appliances and applications [7].

However, merely adopting the tools and techniques typically used to monitor traditional auto-
mated attacks (i.e., random-scanning worms) would be ineffective. Herein lies a significant chal-
lenge: To effectively monitor meaningful attacks, a Web-based honeypot must be indexed under 
the queries used by attackers; however, attacks for which queries (or signatures) are already 
known have diminished utility to researchers, since they are often abandoned by attackers once 
disclosed and patched.

For instance, one might consider instrumenting the most common Web applications to create a 
Web-based honeypot. This approach illustrates a number of problems. First, many applications 
are neither free nor open source. Second, the sheer diversity and availability of Web applications 
across the Internet render this approach insufficient, inefficient, and intractable as a general ap-
proach. Simply put, it is too difficult to predict which of the thousands of widely installed Web 
applications attackers will target next.

The Great Pretender

To address these limitations and quantify the scope of this threat, we developed a method that, 
when disguised as a Web server, simultaneously and efficiently represents a wide range of Web 
applications [8]. Its implementation elicited over 368,000 attacks from more than 29,000 unique 
hosts, which targeted hundreds of distinct Web applications in under two months. The observed 
attacks include several exploits detected the same day the related vulnerabilities were disclosed 
publicly. Furthermore, an analysis of the captured payloads highlights some interesting insights 
into current malware trends and the post-infection process.

To provide some grasp of its function, consider the automated voice-driven systems commonly 
used to handle customer-service phone calls. These systems prompt customers to state the pur-
pose of their call so that each is directed to either an appropriate service department or a rel-
evant recorded response. The best of these systems are remarkably effective despite the unique 
speaking characteristics of each user and the diversity of spoken words and phrases with similar 
meanings. Behind the scenes, such systems employ an amalgam of technologies built on concepts 
developed by the natural-language processing and machine-learning research communities.

Scientists train such systems to automatically evaluate and estimate the meaning of requests in 
real time, using large sample sets of requests and responses. For our example, the requests in 
these sets likely represent diverse diction and speech patterns. The content and meaning of the 
sample data are known a priori and treated as catalysts; therefore, each system’s response can be 
conditioned on known responses to a known catalyst. Once this training process is complete, re-
sponses to unobserved requests (such as those posed by a new customer) are often estimated by, 
for instance, identifying a request’s most similar counterpart from the sample set and selecting 
its response. This entire process is referred to traditionally as supervised learning, and it is in this 
manner that many systems are often able to satisfy online requests accurately [9].

Our method is similarly built using a statistical response-estimation engine. Unlike the previous 
example, however, our approach produces responses to protocol requests rather than vocal re-
quests. Rather than determine whether the demands of two customers are similar using only in-
formation from sample requests, we instead consider whether two network requests are similar. 
In this case, requests come from the search-engine spiders that index Web pages and the auto-
mated attacks launched by search worms. The produced responses are aimed at ultimately entic-
ing search worms to contact our “honeypot,” allowing us to observe the scope and nature of such 
attacks.

unDEr ThE hooD

For new and unfamiliar requests, simulating a response requires identifying which sample re-
quests are most similar. During initialization, similar sample requests are partitioned using a 
variant of the k-means clustering algorithm so that, generally, each cluster loosely represents a 
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specific type of application request [10]. New requests are then paired with the most repre-
sentative cluster. The metric used to quantify the difference between each pair of requests is 
called term-frequency/inverse document frequency cosine-similarity, or simply TF/IDF dis-
tance [11]. This metric is an attractive choice because its construction is purely statistical and 
does not rely on any protocol-specific knowledge. TF/IDF distance is also commonly used to 
match queries with relevant documents in information retrieval and data-mining applications.

Assigned to each cluster is a smoothed n-gram language model [12]. Each cluster’s language 
model is trained with the set of responses that correspond to each request in the cluster. 
Then, when handling an unobserved request, the language model paired with the cluster it 
best fits generates a dynamic (and statistical) response. Many messages contain session-spe-
cific fields that match between requests and response pairs (e.g., sequence numbers or session 
identifiers). When this behavior can be inferred, we post-process responses to satisfy such de-
pendencies by using byte-sequence alignment algorithms [13].

VaLiDaTion

The success of this approach is predicated on a simple assumption in analogy with the exam-
ple provided earlier: To elicit protocol interaction, the protocol responses artificially produced 
for online network requests must be acceptable to network agents much the way the responses 
produced by automated telephone systems must be accepted by its callers to guarantee their 
participation. To frame this assumption differently, consider that such a system is built and 
no one attacks. Some form of validation is necessary to determine whether our assumptions 
simply do not hold or the method is flawed, whether the data sets used to train the system are 
unrepresentative or (less likely) whether the attackers have given up.

To assess whether these techniques (typically used with natural languages) could synthesize 
network traffic and elicit Web-based attacks is a challenging problem in its own right. After 
all, there is hardly a rigid or universal definition governing the acceptability of HTML. Al-
though standards do exist, HTML is overwhelmingly parsed by best-effort means. However, 
since these techniques represent knowledge derived only from the inferences and estimation 
encapsulated in sample data, we reason that the method can be validated under the strict 
guidelines of a less-forgiving protocol such as DNS. Again, since none of the methods used 
to simulate responses is protocol-specific and relies only on inferences from sample data, the 
method is fundamentally protocol-agnostic.

Unlike HTTP, the DNS protocol has a fixed binary format and its correctness is well defined 
for all messages, providing us with a quantitative benchmark for validation. First, we used 
DNS traffic produced by our colleagues over the course of three months as the training data 
set. We then generated and submitted 20,000 random queries to what is essentially an impos-
tor DNS server and evaluated the correctness of its responses. The experiment confirmed our 
assumption: Valid responses are produced with a success rate that correlates positively to the 
size and diversity of its training set.

in-the-Wild Evaluation

Earlier, we asserted that the automated exploitation of Web applications poses a serious threat 
to the Internet. To support this hypothesis we built a system to catch and detect search worms 
using the techniques previously described. Since building a useful supervised learning system 
requires representative sample data, we obtained a list of over 3000 of the most searched queries 
to Google by known search worms and queried Google for the top 20 results associated with 
each query. Our corpus is comprised of the protocol interaction captured when requesting these 
URLs. 

As mentioned previously, search worms only target Web servers that are indexed by search 
engines. To artificially boost the popularity of our system, we first placed hyperlinks on sev-
eral popular pages. Additionally, we were able to expedite the indexing process by disclosing 
the existence of a minor bug in a common UNIX application to the Full-Disclosure security 
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mailing list. Bulletins from this list are mirrored on several high-ranking Web sites and are 
crawled extensively by search-engine spiders.

Shortly after being indexed, search worms began to attack at an alarming rate, with attacks rap-
idly increasing over a two-month deployment period. The results are shown in Figure 3. The 
sheer volume of attacks is shocking: In total, we observed well over 368,000 attacks targeting 
just under 45,000 unique scripts. During this time, we also recorded the number of times Google 
indexed our system (in total, just shy of 12,000). As expected, our results indicate a positive cor-
relation between the index rate and the attack rate. The attacks we captured also reveal that many 
search worms target multiple vulnerabilities and distinct Web applications in tandem. In many 
cases, different worms attempt to inject malware hosted on the same remote servers. 

In general, classifying the number of unique Web applications targeted by search worms is dif-
ficult, because many of the targeted script names are ubiquitous (e.g., index.php). In these cases, 
search worms are either targeting a vulnerability in one specific Web application or arbitrarily 
attempting to inject malicious scripts. Despite this difficulty, we were able to map the content 
in our sample data to over 500 unique Web applications. We then linked the attacks themselves 
back to 295 distinct Web applications, which is indicative of the overall diversity of targets being 
attacked.

EmErGEnT ThrEaTs

Although the original intent of our deployment was to elicit attacks from search worms exploit-
ing known vulnerabilities, we became indexed under broader conditions owing to the variability 
of our sample data. As a result, we sometimes attracted attacks targeting undisclosed vulner-
abilities. For instance, according to milw0rm, over 65 PHP remote-inclusion vulnerabilities were 
released during the time span of our deployment. Since our deployment used the same training 
data for its entire duration, we know that captured attacks against these vulnerabilities were not 
explicitly represented by data in the training set.

Nonetheless, we witnessed several emergent threats, because many of the original queries used 
to bootstrap the supervised learning process were generic, representing a wide number of ap-
plications. During the deployment, we identified more than 10 attacks against vulnerabilities 
disclosed after its launch (see Table 1); thus, these attacks were not explicitly represented by the 
training data. It is unlikely that we witnessed these attacks simply because of arbitrary attempts 
to exploit random Web sites; indeed, we never witnessed many of the other disclosed vulnerabil-
ities being attacked.

F i g u r e  3 :  D a i Ly  p h p  a t t a c k S  a n n O t a t e D  w i t h  S e a r c h - e n g i n e  i n D e x  r a t e .  i n 
t O t a L ,  w e  O b S e r V e D  O V e r  3 6 8 , 0 0 0  a t t a c k S  i n  j u S t  O V e r  2  m O n t h S .  t h e  V a L L e y 
O n  D a y  4 4  i S  D u e  t O  a n  8 - h O u r  p O w e r  O u t a g e .  t h e  p e a k  O n  D a y  5 6  i S  b e c a u S e 
t w O  b O t S  L a u n c h e D  O V e r  2 , 0 0 0  S c r i p t  a t t a c k S .
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Disclosure Attack Signature 

Day 9 6 days later 
/starnet /themes/c-sky/main.inc 
.php?cmsdir= 

Day 26 2 days later 
/comments-display-tpl.php 
?language_file= 

Day 27 Same day 
/admin /kfm/initialise.php 
?kfm_base_path= 

Day 30 Same day 
/Commence/ includes/db_connect 
.php?phproot\ _path= 

Day 33 Same day 
/decoder/gallery.php?ccms 
_library_path=

t a b L e  1 :  S O m e  O F  t h e  a t t a c k S  t a r g e t i n g  V u L n e r a b i L i t i e S  t h a t  w e r e  u n k n O w n 
a t  t h e  t i m e  O F  D e p L O y m e n t .  i n  a t  L e a S t  3  c a S e S ,  w e  O b S e r V e D  a t t a c k S  O n  t h e 
S a m e  D a y  t h a t  t h e i r  V u L n e r a b i L i t i e S  w e r e  D i S c L O S e D .

Given the frequency with which these types of vulnerabilities are released, we argue that a 
honeypot without dynamic response generation will likely miss an overwhelming amount of 
attack traffic. In the attacks we witnessed, several search worms began attacking vulnerabili-
ties on the same day as their disclosure! An even more compelling case for our architecture is 
embodied by the attacks against the vulnerabilities that have not yet been disclosed. We be-
lieve that the potential to identify these attacks exemplifies the real promise of this approach. 

PayLoaD anaLysis

To better understand what the post-infection process entails, we conducted a rudimentary 
analysis of the remotely injected malicious scripts and its malware. We analyzed malware 
using a basic sand-boxed environment that hooks system calls and libraries to discover mal-
ware functionality. Table 2 provides an abbreviated summary. Overwhelmingly, the attacks 
attempt to install PHP Web-based shells. These provide attackers with a direct and easy way 
to arbitrarily control infected systems. As is now typical, many of the scripts are obfuscated, 
erase evidence of infection, and perform automated self-updates. In some cases, the malware 
profiled the systems (e.g., by copying /etc/passwd and performing local scans). To our sur-
prise, only eight scripts contained functionality to automatically obtain root access.

Script Classification Representation (%) 

PHP Web-based shells 32

Echo notification 22 

PHP bots 14 

Spammers 13 

Downloaders 7

Perl bots 5 

Email notification 3 

Text injection 1 

Information farming <1 

Uploaders <1 

Image injection <1 

UDP flooders <1 

t a b L e  2 :  c L a S S i F i c a t i O n  O F  O b S e r V e D  m a L w a r e .  w e  a n a Ly z e D  m O r e  t h a n 
2 , 6 0 0  m a L i c i O u S  S c r i p t S  a n D  i n S t a n c e S  O F  m a L w a r e  O r i g i n a t i n g  F r O m 
a u t O m a t e D  a t t a c k S .



12 ; LO G I N :  vO L .  33,  N O.  6

As can be expected, we also observed several instances of spamming malware using email 
addresses pulled from the databases on infected machines. For Web servers hosting applications 
such as phpBB, this can be highly effective, because most users enter an email address during 
registration. Cross-checking the IP addresses of these worms with the Spamhaus project 
revealed that roughly 36% of them currently appear in its spam blacklist [14]. Lastly, we note 
that although we observed what appeared to be over 5,648 unique injection scripts from distinct 
worms, nearly half of them belonged to orphan botnets. These networks no longer have a 
centralized control mechanism and the remotely included scripts are no longer accessible. They 
are, however, still responsible for an overwhelming amount of our observed HTTP traffic.

Conclusions

Our work uses a number of multidisciplinary techniques to generate dynamic responses to pro-
tocol interactions. We demonstrate the utility of our approach through the deployment of a dy-
namic content generation system targeted at eliciting attacks against Web-based exploits. During 
a two-month period we witnessed an unrelenting barrage of attacks from attackers that scour 
search-engine results to find victims (in this case, vulnerable Web applications). The attacks were 
targeted at a diverse set of Web applications and employed a myriad of injection techniques. We 
believe that the results herein provide valuable insight into the nature and scope of this increas-
ing Internet threat.

For real-world honeypot deployments, detection and exploitation of the honeypot itself can be a 
concern. Clearly, our system is not a true Web server and, like other honeypots, it can be trivi-
ally detected using various fingerprinting techniques. The fact that our Web honeypot can be 
detected is a clear limitation of our approach, but in practice it has not hindered our efforts to 
characterize current attack trends. The search worms we witnessed all appear to use search en-
gines to find the identifying information of a Web application and attack the vulnerability upon 
the first visit to the site without verifying its presence, presumably because explicit verification 
reduces the rate of infection. Nonetheless, dealing with multi-stage attacks is an area of future 
work. For information, see our publication from USENIX Security ’08 [8].
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