
; LO G I N : J U N E 201 0 M I N IX 3 : STATUS RE P O RT A N D CU RRE NT RESE A RCH 7

MINIX 3: status
report and current
research
Despite the fact that Andrew Tanenbaum
has been producing open source code for 30
years as a professor at the Vrije Universiteit,
somehow he found the time to (co)author 18
books and 150 papers and become a Fellow
of the ACM and of the IEEE. He was awarded
the USENIX Flame Award in 2008. He believes
that computers should be like TV sets: you
plug them in and they work perfectly for the
next 10 years.

ast@cs.vu.nl

Raja Appuswamy is a PhD student at Vrije
Universiteit. His research interests include
file and storage systems, and operating
system reliability. He received his BE from
Anna Univeristy, India, and his MS from the
University of Florida, Gainesville.

rappusw@few.vu.nl

Herbert Bos obtained his MSc from the
University of Twente in the Netherlands
and his PhD from the Cambridge University
Computer Laboratory (UK). He is currently an
associate professor at the Vrije Universiteit
in Amsterdam, with a keen research interest
in operating systems, high-speed networks,
and security.

herbertb@cs.vu.nl

Lorenzo is a post-doctorate researcher at
Vrije Universiteit Amsterdam, where he
joined Prof. Tanenbaum and his team work-
ing on systems dependability and security.
Lorenzo’s passion for systems security was
further inspired by work at UC Santa Barbara
and Stony Brook University. Lorenzo received
an MSc and a PhD in computer science from
the University of Milan, Italy.

l.cavallaro@few.vu.nl

Cristiano Giuffrida is a PhD student at Vrije
Universiteit, Amsterdam. His research inter-
ests include self-healing systems and secure
and reliable operating systems. He received
his BE and ME from University of Rome “Tor
Vergata,” Italy.

c.giuffrida@few.vu.nl

Jorrit Herder holds an MSc degree in computer
science (cum laude) from the Vrije Universiteit in
Amsterdam and will get his PhD there in Sept. 2010.
His research focused on operating system reliability
and security, and he was closely involved in the
design and implementation of MINIX 3. He is now at
Google in Sydney.

jnherder@gmail.com

Tomáš Hrubý has master’s degrees from both the
Charles University in Prague and the Vrije Universi-
teit. After graduating, he decided to go down under
and spent some time at the University of Otago in
New Zealand and NICTA in Australia. He is currently
a PhD student at the Vrije Universiteit, working on
how to match multiserver operating systems to
multicore chips.

thruby@few.vu.nl

Erik van der Kouwe got his master’s degree at the
Vrije Universiteit and is now a PhD student in com-
puter science there. He works on virtualization and
legacy driver support.

vdkouwe@cs.vu.nl

David van Moolenbroek has an MSc degree in
computer science from the Vrije Universiteit in Am-
sterdam, and is currently working as a PhD student
there. His research interests include file and storage
systems and operating system reliability.

dcvmoole@few.vu.nl

M O S T P E O P L E W A N T T H E I R C O M P U T E R
to be like their TV set: you buy it, plug it
in, and it works perfectly for the next 10
years. Suffice it to say that current comput-
ers—and especially their operating sys-
tems—are not even close. We will consider
the job done when the average user has
never experienced a system crash in his or
her lifetime and no computer has a RESET
button. In the MINIX project, we are trying

A N D R E W TA N E N B A U M , R A J A A P P U S W A M Y, H E R B E R T
B O S , L O R E N Z O C AVA L L A R O , C R I S T I A N O G I U F F R I D A ,
T O M ÁŠ H R U BÝ, J O R R I T H E R D E R , E R I K VA N D E R
K O U W E , A N D D AV I D VA N M O O L E N B R O E K

mailto:jnherder@gmail.com

8 ; LO G I N : VO L . 35, N O. 3

to get closer to that goal by improving the reliability, availability, and
security of operating systems.

What started in 1987 as MINIX 1, a tool to teach students about operating systems,
has become MINIX 3, a more mature operating system whose internal structure
promotes high availability while preserving the well-established POSIX interface to
application programs and users. Although the name has been kept, the two systems
are very different, just as Windows 3 and Windows 7 are both called Windows but
are also very different. In this article, we will briefly describe the architecture of
MINIX 3 and what it is like now—as an update to the February 2007 ;login: article
[1]—and the work currently in progress to develop it further.

The impetus for much of this work was a grant to one of us (Tanenbaum) from the
Netherlands Royal Academy of Arts and Sciences for 1 million euros to develop
a highly reliable operating system, followed four years later by a 2.5 million euro
grant from the European Research Council to continue this work. This funding has
primarily supported PhD students, postdocs, and a couple of programmers to work
on the project, which has led to a series of releases, of which 3.1.7 is the latest one.

The MINIX 3 vision has been guided by a number of core principles:

■■ Separation of concerns: Split the OS into components that are well isolated from
each other.

■■ Least authority: Grant each component only the powers it needs to do its job and
no more.

■■ Fault tolerance: Admit that bugs exist and plan to recover from them while con-
tinuing to run.

■■ Dynamic update: Plan on staying up all the time, even in the face of major soft-
ware updates.

■■ Standards compliance: Be POSIX-compliant on the outside but don’t fear change
on the inside.

We believe we have made a good start toward producing a general-purpose, POSIX-
compliant operating system with excellent fault tolerance. As hardware speeds have
shot up over the past two or three decades, we do not believe that most users really
care about squeezing the last drop of performance out of the hardware. For exam-
ple, in MINIX 3, a build of the entire operating system (about 120 compilations and
a dozen links) takes under 10 seconds on a modern PC. Good enough.

If you get the MINIX 3.1.7 CD-ROM from www.minix3.org and install it, to the
user it looks like other UNIX systems, albeit with fewer ported application pro-
grams (so far), since that has not been our focus. But on the inside it is completely
different. It is a multiserver operating system based on a small microkernel that
handles interrupts, low-level process management, and IPC, and not much more.
The bulk of the operating system runs as a collection of user-mode processes. The
key concept here is “multiserver operating system”—the design of the system as a
collection of user-mode drivers and servers with independent failure modes. While
the term “microkernel” gets a lot of attention—and microkernels are widely used in
cell phones, avionics, automotive, and other embedded systems where reliability is
crucial [2]—it is the multiserver aspect of the system that concerns us here.

The microkernel runs in kernel mode, but nearly all the other OS components run
in user mode. The lowest layer of user-mode processes consists of the I/O device
drivers, each driver completely isolated in a separate process protected by the MMU
and communicating with the kernel via a simple API and with other processes by
message passing. The next layer up consists of servers, including the virtual file
server, the MINIX file server, the process manager, the virtual memory manager,
and the reincarnation server. Above this layer are the normal user processes, such
as X11, shells, and application programs (see Figure 1).

; LO G I N : J U N E 201 0 M I N IX 3 : STATUS RE P O RT A N D CU RRE NT RESE A RCH 9

F I G U R E 1 : T H E S T R U C T U R E O F M I N I X 3

The reincarnation server is the most unusual part of the design. Its job is
to monitor the other servers and drivers, and when it detects a problem,
it replaces the faulty component (driver or server) on the fly with a clean
version taken from the disk (or, in the case of the disk driver, from RAM).
Since most errors are transient, even after a driver crashes (e.g., due to a seg-
mentation fault after dereferencing a bad pointer), the system can, in many
cases, continue without user processes even knowing part of the system has
been replaced. We ran a fault-injection test in which 2.4 million faults were
intentionally injected into drivers, and although we got thousands of driver
crashes, the system continued to run correctly in all trials [3]. It didn’t crash
even once.

Current Status of MINIX 3

MINIX 3 is not standing still. The MINIX 3 Web site has been visited 1.7
million times and the CD-ROM image has been downloaded over 300,000
times. We have been selected to participate in the Google Summer of Code
in 2008, 2009, and 2010. There is a wiki, a twitter feed, an RSS feed, and an
active Google newsgroup.

Since the 2007 paper in ;login:, there have been numerous improvements
to MINIX 3, large and small. Here is a brief summary of where the system
stands now.

■■ POSIX-compliant operating system with virtual memory and TCP/IP
 networking

■■ User interface is typically X11, although a simple GUI (EDE) is also
 available

■■ Various device drivers (e.g., Gigabit Ethernet, OSS audio framework)
■■ Virtual file system with support for various file systems (e.g., MFS, ISO,

HGFS)
■■ Three C compilers (ACK, gcc, LLVM), as well as C++, Perl, Python, PHP,

and more
■■ Various shells (bash, pdksh, sh)
■■ Choice of BSD, GNU, or V7 utilities (awk, grep, ls, make, sed, and all the

others)
■■ Many packages (e.g., Apache, Emacs, Ghostscript, mplayer, PostgreSQL,

QEMU, vi)
■■ Software RAID-like layer that protects integrity even from faulty disk

 drivers
■■ Numerous correctness, conformance, code coverage, and performance test

suites

In addition, other changes to the system are planned for the near future,
including:

10 ; LO G I N : VO L . 35, N O. 3

■■ Porting of the DDEkit [4], which will give us many new Linux device
 drivers

■■ Asynchronous messaging (which means a faulty client cannot hang a
server)

■■ Kernel threads

In short, while the system is not nearly as complete as Linux or FreeBSD,
neither is it a toy kernel. It is a full-blown UNIX system but with a com-
pletely different and highly modular, reliable structure internally. This also
makes it a good research vehicle for testing out new OS ideas easily.

Current Research

We have various ongoing research areas, all focused on the goal of produc-
ing a highly reliable, modular system according to the principles given above
on modern hardware. We are also committed to producing a usable proto-
type that clearly demonstrates that you can build a real system using our
ideas. Here is a brief rundown of five of the projects.

LIVE UPDATE

Due to its modular structure, we would like to be able to update large parts
of the system on the fly, without a reboot. We believe it will be possible to
replace, for example, the main file system module with a later version while
the system is running, without a reboot, and without affecting running pro-
cesses. While Ksplice [5] can make small patches to Linux on the fly, it can-
not update to a whole new version without a reboot (and thus downtime).

Our starting point for the live update is that the writer of the component
knows that it will be updated some day and takes that into account. In par-
ticular, the old and new components actively cooperate to make the update
process go smoothly. Nearly all other work on live update assumes that the
update comes in as a bolt out of the blue and has to be done instantly, no
matter how complicated the state the old component is in. We believe this
is the wrong approach and that by delaying the update for a few seconds we
can often make it much easier and more reliable.

Live-updating MINIX 3 is much easier than live-updating monolithic
kernels, because each component runs as a separate process. To update a
component, the reincarnation server sends the component an update mes-
sage. The component then finishes its current work and queues, but does
not start, any new requests that come in while it is finishing up. It then
carefully saves its state in the data store so the new component can find it
later. After the new version has been started, it goes to the data store to fetch
the saved state, reformats and converts it as necessary, and starts process-
ing the queued requests. The other components should not even notice this
upgrade—certainly, not those running user programs.

It is entirely possible that some data structures have been reorganized in
the new version. For example, information previously stored as a list may
now be in a hash table, so it is the job of the new version to first convert the
stored data to the new format before running. In this way, the system may
be able to run for months or years, surviving many major upgrades, without
ever needing a reboot.

; LO G I N : J U N E 201 0 M I N IX 3 : STATUS RE P O RT A N D CU RRE NT RESE A RCH 11

CRASH RECOVERY OF STATEFUL SERVERS

The current system can handle recovery from crashes of stateless drivers and
servers but cannot transparently recover components that have a lot of in-
ternal state, which is lost in a crash. We need to make sure that the internal
state can be recovered after a crash. Checkpointing is not a good approach
for components such as the file system, which have a huge amount of state
that changes thousands of times every second. Instead, we are experiment-
ing with techniques to replicate and checksum the state internal to each pro-
cess in real time, as it changes. To do this we need to change the compiler to
insert code to do this, which is why we switched to LLVM, which has hooks
for this (which ACK and gcc do not).

The idea is that after the crash of a stateful component, a scavenger process
comes in and inspects the core image of the now-dead component. Using
the replicated data and checksums, it can determine which items are valid
and which are not and so recover the good ones. For example, if we can tell
which entries in the inode table are corrupted (if any) and which are correct,
we can do a much better job of recovering files that are fully recoverable. To
some extent, journaling can also achieve this goal, but at greater expense.

SUPPORT FOR MULTICORE CHIPS

We are working on supporting multicore chips in a scalable way. Intel has
already demonstrated an 80-core CPU, and larger ones may be on the way.
We do not believe the current approach of treating these chips as multipro-
cessors is the right way to go, since future chips may not be cache-coherent
or may waste too much time fighting for cache lines and software locks.
Instead, we intend to treat each core as a separate computer and not share
memory among them. In effect, our approach is to treat a multicore chip
more or less like a rack full of independent PCs connected by Ethernet, only
smaller. But we are not sure yet quite how this will work out, so we may
allow some restricted sharing. We do believe (along with the designers of
Barrelfish [6]) that not sharing kernel data structures across cores will scale
better to the large chips expected in the future.

While some people are looking at how to parallelize applications, fewer are
looking at how to parallelize the operating system. In the case of the multi-
server MINIX 3, in which the processor has many cores and the operating
system is made up of many processes, it seems a natural fit to put each pro-
cess on its own dedicated core and not have it compete for resources with
any other processes. These resources include L1 and L2 cache lines, TLB en-
tries, entries in the CPU’s branch prediction table, and so on, depending on
hardware constraints. In other words, when work comes in, the component
is all set up and ready to go, with no process-switching time. If cores are es-
sentially free and the multiserver/multicore design speeds up the OS by, say,
20% or 50% or 100%, even if it uses, say, 3, 5, or 10 cores to do so, that is a
gain that you would not otherwise have. Having a lot of cores sitting around
idle is worth nothing (except slightly lower energy costs).

NEW FILE SYSTEM

Pretty much all current file systems are recognizably derived from the 1965
MULTICS file system [7], but a lot has changed in 45 years. Modern disk
drives exhibit partial failures, such as not writing a data block or writing
it to a different location from the intended one, but may still report back
success. New classes of devices such as SSDs and OSD (Object-based Stor-

12 ; LO G I N : VO L . 35, N O. 3

age Devices) are being introduced. These devices differ from disk drives in
several ways, with different price/performance/reliability trade-offs. Volume
managers and other tools have broken the “one file system per disk” bond
but have also complicated storage administration significantly.

When RAID was introduced, it was made to look like “just another disk” to
be backward compatible with existing systems. Placing RAID at the bottom
of the storage stack has caused several reliability, heterogeneity, and flexibil-
ity problems. In the presence of partial failures, block-level RAID algorithms
may propagate corruption, leading to unrecoverable data loss. Block-level
volume management is incompatible with new device access granularities
(such as byte-oriented flash interfaces). Even a simple task such as adding a
new device to an existing installation involves a series of complicated, error-
prone steps.

In order to solve these problems, we are working on a clean-slate design for
a new storage stack. Similar to the network stack, the new storage stack has
layers with well-defined functionalities, namely:

■■ The naming layer (handles name and directory handling)
■■ The cache layer (handles data caching)
■■ The logical layer (provides RAID and volume management)
■■ The physical layer (provides device-specific layout schemes)

The interface between these layers is a standardized file interface. Since the
new stack breaks compatibility with the traditional stack, we run it under
the virtual file system, so the OS can mount both a disk partition containing
a legacy file system and a partition containing the new one. Thus old and
new programs can run at the same time.

The new storage stack solves all the aforementioned problems. By perform-
ing checksumming in the physical layer, all requests undergo verification,
thus providing end-to-end data integrity. By having device-specific layout
schemes isolated to the physical layer, RAID and volume management algo-
rithms can be used across different types of devices. By presenting a device
management model similar to ZFS’s storage pools, the new stack automates
several aspects of device administration. In addition, since the logical layer
is file-aware, RAID algorithms can be provided on a per-file basis. For
instance, a user could have crucial files automatically replicated on his own
PC, on a departmental or master home PC, and on a remote cloud, but not
have compiler temporary files even written to the disk.

Virtualization

The original work on virtual machine monitors, which goes back over 35
years [8], focused on producing multiple copies of the underlying IBM 360
hardware. Modern virtualization work is based on hypervisors to which
guest operating systems can make numerous calls to access services and get
work done. In effect, they are more like microkernels than virtual machine
monitors. We believe the boundary between microkernels and virtual
machines is far from settled and are exploring the space of what exactly the
hypervisor should do.

One of the ideas we are looking at is having a dual kernel. In addition to the
regular microkernel to handle interrupts, service requests from drivers and
servers, and pass messages, there is a component running in kernel mode to
handle VM exits. However, the two parts—microkernel and hypervisor—
run in different address spaces (but both in kernel mode) to avoid interfer-
ing with one another. Taking this idea to its logical conclusion, we may have
one microkernel and as many hypervisors as there are virtual machines, all

; LO G I N : J U N E 201 0 M I N IX 3 : STATUS RE P O RT A N D CU RRE NT RESE A RCH 13

protected from one another. This arrangement will, hopefully, give us the
best of both worlds and allow us to explore the advantages and trade-offs of
putting functionality in different places. In addition, we will look at moving
as much of the hypervisor functionality to user mode as possible.

We also have some novel ideas on ways to employ this technology to reuse
some legacy software, such as device drivers.

Conclusion

MINIX 3 is an ongoing research and development project that seeks to pro-
duce a highly dependable open source operating system with a flexible and
modular structure. While the grants pay for the PhD students and postdocs
and a small number of programmers, we are dependent, like most open
source projects, on volunteers for much of the work. If you would like to
help out, please go to www.minix3.org to look at the wish list on the wiki,
and read the Google MINIX 3 newsgroup. But even if you don’t have time to
volunteer, go get the CD-ROM image and give it a try. You’ll be pleasantly
surprised.

ACKNOWLEDGMENTS

We would like to thank Ben Gras, Philip Homburg, Kees van Reeuwijk,
Arun Thomas, Thomas Veerman, and Dirk Vogt for their great work in pro-
gramming various parts of the system. Without their efforts, we would have
a paper design but not an actual working system that people can use. They
also gave feedback on this paper.

REFERENCES

[1] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum, “Road-
map to a Failure-Resilient Operating System,” ;login:, vol. 32, no. 1, Feb.
2007, pp. 14–20.

[2] G. Heiser, “Secure Embedded Systems Need Microkernels,” ;login:, vol.
30, no. 6, Dec. 2005, pp. 9–13.

[3] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum, “Fault
Isolation for Device Drivers,” Proceedings of the 39th International Conference
on Dependable Systems and Networks, 2009, pp. 33–42.

[4] http://wiki.tudos.org/DDE/DDEKit.

[5] J. Arnold and M. F. Kaashoek, “Ksplice: Automatic Rebootless Kernel Up-
dates,” Proceedings of the 2009 ACM SIGOPS EuroSys Conference on Computer
Systems, 2009, pp. 187–198.

[6] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania, “The Multikernel: A New OS
Architecture for Scalable Multicore Systems,” Proceedings of the ACM SIGOPS
22nd Symposium on OS Principles, 2009, pp. 29–43.

[7] R. C. Daley. and P. G. Neumann, “A General-Purpose File System for
Secondary Storage,” Proceedings of the AFIPS Fall Joint Computer Conference,
1965, pp. 213–229.

[8] R. P. Parmelee, T. I. Peterson, C. C. Tillman, and D. J. Hatfield, “Virtual
Storage and Virtual Machine Concepts,” IBM Systems Journal, vol. 11, 1972,
pp. 99–130.

