
 ;login: JUNE 2011 Conference Reports 59

CONFERENCE
FAST ’11: 9th USENIX Conference on File and
Storage Technologies

San Jose, CA
February 15–17, 2011

Opening Remarks and Best Paper Awards
Summarized by Rik Farrow (rik@usenix.org)

The FAST ’11 chairs, Greg Ganger (CMU) and John Wilkes
(Google), opened the workshop by explaining the two-day
format. Past workshops extended two and one-half days, but
by leaving out keynotes and talks, they fit the same number of
refereed papers, 20, into just two days. There was also a WiPs
session and two poster sessions with accompanying dinner
receptions.

The Best Paper awards went to Dutch Meyer and Bill Bolosky
for A Study of Practical Deduplication and to Nitin Agrawal et
al. for Emulating Goliath Storage Systems with David.

The total attendance at FAST ’11 fell just three short of the
record, set in 2008, with around 450 attendees.

Deduplication
Summarized by Puranjoy Bhattacharjee (puran@vt.edu)

A Study of Practical Deduplication
Dutch T. Meyer, Microsoft Research and the University of British

Columbia; William J. Bolosky, Microsoft Research

n Awarded Best Paper!

Dutch Meyer gave a lively presentation of this paper, winner
of a Best Paper award, about deduplication research in the
form of a study of the files involved. Meyer started by saying
that dedup is a good idea, but he is not sold on it because of
fragmentation and loss of linearity against the potential
storage savings. Storage space being cheap, this is counter-
intuitive. He said that dedup is important in cases where the
tradeoff achieved is high. This is what this paper focused on.
At Microsoft Research, the authors were able to recruit 875

In this issue:

FAST ’11: 9th USENIX Conference on File and Storage
 Technologies 59
Summarized by Puranjoy Bhattacharjee, Vijay Chidambaram, Rik
Farrow, Xing Lin, Dutch T. Meyer, Deepak Ramamurthi, Vijay
Vasudevan, Shivaram Venkataraman, Rosie Wacha, Avani Wildani,
and Yuehai Xu

NSDI ’11: 8th USENIX Symposium on Networked Systems
Design and Implementation 80
Summarized by Rik Farrow, Andrew Ferguson, Aaron Gember,
Hendrik vom Lehn, Wolfgang Richter, Colin Scott, Brent Stephens,
Kristin Stephens, and Jeff Terrace

LEET ’11: 4th USENIX Workshop on Large-Scale Exploits
and Emergent Threats 100
Summarized by Rik Farrow, He Liu, Brett Stone-Gross, and
Gianluca Stringhini

Hot-ICE ’11: Workshop on Hot Topics in Management of
Internet, Cloud, and Enterprise Networks and
Services 106
Summarized by Theophilus Benson and David Shue

Conference Reports

 60 ;login: VOL. 36, NO. 3

described their approach of using super chunks (a consecu-
tive group of chunks) and deduping node by node at chunk
level. This means that the same chunk might appear on
multiple nodes, leading to opportunities for balanced storage
and scalable throughput, because routing super chunks pro-
vides better throughput than routing chunks. He discussed
their techniques of stateless (with low overhead) and stateful
(with more overhead but better load balancing) routing pro-
tocols. In stateless, chunks are migrated when a node exceeds
105% of average disk usage. In stateful, chunks are routed
to nodes where it matches the best, but it avoids flooding by
adding more new chunks. If no clear winner is found in terms
of match, the algorithm defaults to a stateless approach.

He then talked about how contents of each node are tracked
using a Bloom filter and their strategy of reducing overhead
by sampling with a rate of 1/8. He then described their evalu-
ation to find the best super chunk feature and granularity.
They used trace data from a production environment with
three large backup sets and five smaller sets with indi-
vidual data types and one synthetic dataset. They found
that a hash of 64 bits works well for small clusters and that
bin migration indeed helps to reduce skew and increase
effective dedup. Stateful routing was found to offer further
improvement. Larger superchunks gave better throughput.
He also cautioned that dedup improves after migration but
may drop between migration intervals. He talked about the
Global Deduplication Array product, which was based on
the research presented here. Finally, he talked about future
directions: investigating conditions causing data skew, scal-
ability over a broad range of cluster sizes, and supporting
cluster reconfiguration with bin migration.

During questions, Michael Condict (NetApp) asked if bin
content was accounted for to maximize performance. Doug-
lis replied that they did it in the simulator, but in practice
they did not notice sufficient improvement. Geoff Kuenning
(Harvey Mudd) said that the probability of troublesome
chunk boundaries with Exchange was low, and asked if the
authors had fiddled with the hashing algorithm and chunk
boundaries to get around that problem. Douglis replied that
if the masks were changed, Exchange could work better but
other cases might be hit. If they were to start from scratch,
a whole chunk hash instead of a first few bits might have
worked but at large cluster sizes, a hash is only one of the
factors that have to be accounted for. Keith Smith (NetApp)
asked about hardware cost tradeoff and said that perhaps
bigger nodes could perform better than a cluster. Douglis
said that was a possibility. Finally, Christian (NEC) won-
dered if the tradeoff of 8% decrease in dedup was worth the
50% increase in throughput for routing by chunk and super

people to investigate their file system states once a week for
four weeks, yielding around 40 TB of data.

Analysis of the files revealed that the median file size is 4K
and that the files are linear. However, a lot of the bytes are
concentrated in a few files, mostly of type .iso (disk images)
and .vhd (virtual hard disks). He also talked about the differ-
ent kinds of dedup techniques out there, such as whole file,
fixed chunk, and Rabin fingerprinting. Applying these tech-
niques, they were able to achieve 70% storage saving with
Rabin, 60% with fixed chunk, and 50% with whole file. With
support for sparse files, another 8% savings were achieved.
Further analysis showed that there are two classes of files—
small at 10 MB and emerging class of big 8–10 GB files of
type .iso, .vhd, .null, etc. They observed that Rabin works well
on the big files, such as .vhd. Hence the authors suggested a
mixed technique of doing whole file dedup on most files and
Rabin on some special files, to reduce the gap of 20% between
whole file and Rabin performance. Meyer also announced
that they are working to release the dataset.

During the questions, Michael Condict (NetApp) pointed
out that people usually care more about the amount of space
remaining than about space saved. Assar Westerlund (Per-
mabit) wondered about lower performance than expected for
4K Rabin, and Dutch answered that this might be workload
specific, with more bytes in .vhd than earlier, making whole
file dedup gains harder. He speculated that techniques to
open up the .vhd and examine subfile structures could lead
to more gains. Ben Reed (Yahoo) asked about the methodol-
ogy of the one machine numbers. Bill Bolosky, the co-author,
replied that it was for each of the 875 machines. Reed asked
whether the dedup numbers were evenly distributed or heav-
ily biased, but the authors had not looked into that. Chris
Small (NetApp) had a suggestion for the authors to look into
the tradeoff between smaller chunk size for dedups vs. local
compression and backup.

Tradeoffs in Scalable Data Routing for Deduplication
Clusters
Wei Dong, Princeton University; Fred Douglis, EMC; Kai Li, Princeton

University and EMC; Hugo Patterson, Sazzala Reddy, and Philip Shilane,

EMC

Fred Douglis presented this paper on the performance in
dedup clusters with existing high throughput single-node
systems. The requirement for clusters was motivated by
situations where backups do not fit in a single appliance, and
hence dedup clusters are needed that provide throughput
comparable to single node along with load balancing on the
cluster nodes. Douglis described how fingerprint lookup
tends to be the bottleneck and how cache locality and disk
avoidance via containers and Bloom filters can help. He

 ;login: JUNE 2011 Conference Reports 61

the central storage system. They also observed that reads to
system files can be shared with multiple virtual machines
within a host. Implementing local persistent caching which
supports both write-through and write-back policies did a
good job of eliminating duplicate reads. He also introduced
the idea of a multi-host preloader which, because duplicate
data is shared among multiple hosts, enables shared data
to be multi-casted to all interested hosts. And, finally, the
differential durability mechanism enables users to specify
different synchronization policies for different directories.
For example, user data uses write-through to provide a strong
consistency while the page file is totally eliminated from
being written back to the central storage system. Jake then
provided a micro-benchmark of the preloader, showing that
it does eliminate duplicate reads effectively. He also showed
how they evaluated their system with trace replay. Write-
back caching and differential durability eliminate I/O opera-
tions significantly.

Steve Kleiman from NetApp asked whether the timestamp
was updated for each write, since it would double the number
of writes. Dutch Meyer, who was sitting in the auditorium,
said that it was turned on. Steve Byan from NetApp asked
whether they noticed any drive scan activities. Jake said
that they found some and also found some defragmentation
activities. Keith Smith (NetApp) encouraged people from
other companies and universities to ask questions and asked
why the write-back window of 10 minutes was used and
whether it came from stream analysis. Jake replied that they
did analyze the data trace and found 10 minutes is a sweet
point to coalesce the writes. A researcher from VMware
asked about the overhead of cache mechanism, especially of
memory. Jake replied that their cache was located in disk, not
in memory. She asked about the CPU overhead of the cache
mechanism. Jake replied that their mechanism did introduce
a little overhead by looking up the cache in the local disk.

Exploiting Half-Wits: Smarter Storage for Low-Power
Devices
Mastooreh Salajegheh, University of Massachusetts Amherst; Yue Wang,

Texas A&M University; Kevin Fu, University of Massachusetts Amherst;

Anxiao (Andrew) Jiang, Texas A&M University; Erik Learned-Miller,

University of Massachusetts Amherst

Mastooreh Salajegheh began by introducing small embed-
ded devices. Although these devices are small, the market for
them is huge, so it is important to solve the challenges they
pose.

The flash for these devices is small and embedded in the
same chip as the CPU, but since the voltage requirements
for the CPU and flash are different, they should ideally use
separate power lines. In actual practice, however, they share

chunk. Douglis replied that they were more concerned about
throughput, so it was acceptable in their case.

Specializing Storage
Summarized by Xing Lin (xinglin@cs.utah.edu)

Capo: Recapitulating Storage for Virtual Desktops
Mohammad Shamma, Dutch T. Meyer, Jake Wires, Maria Ivanova,

Norman C. Hutchinson, and Andrew Warfield, University of British

Columbia

Jake Wires introduced himself as a member of the storage
team of XenSource (now acquired by Citrix) for about five
years and currently in Andrew’s group at UBC, focusing on
how virtualization will affect storage. Then he introduced
some interesting predictions from Gartner, one being that by
2013, 40% of desktops will be virtualized. He claimed that
he was not trying to argue the accuracy of these predictions
but did believe that virtualization is trying to take over the
world. To demonstrate this trend, he cited some companies
investigating and deploying virtual desktop infrastructure
(VDI). For example, UBC tried to deploy 2000 virtual desk-
tops this year. Administrators love VDI because it makes it
easy for them to manage desktops centrally while reducing
hardware and maintenance costs. And users will embrace it
if VDI provides a familiar working environment and compa-
rable performance. Jake then turned to the topic of how VDI
changes storage.

He introduced the typical architecture of storage in VDI. A
central storage system is used to store disk images for virtual
machines, and gold images are used to create a virtual disk
with copy-on-write. Such architectures enable sharing of
gold images and fast cloning. To facilitate system upgrades,
user directories are isolated from system directories in
practice. In order to identify what can be done to improve
the storage system in the VDI, they did a workload analysis
in UBC. They profiled 55 Windows machines for one week
by installing drivers which can capture file- and block-level
operations. In total, they got 75 GB of compressed logs. After
that Jake showed the day-to-day activity and analyzed some
peaks. An important observation is that the fraction of
accesses to user data is rather small. Most of the accesses are
to system directories or metadata updates. He also showed
that 50% of the data was rewritten within 24 hours and that
the average divergence was 1 GB through a week.

His discussion turned to improving VDI scalability. The
main finding from their analysis is that the life of written
data is short, and virtual machine hosts usually have local
disks which are not used. By using local disks as a persistent
cache, VDI can coalesce a significant portion of writes to

 62 ;login: VOL. 36, NO. 3

interested in using a voltage where an error did not happen.
William Bolosky from Microsoft Research suggested that for
in-place writes, it might be possible to read the data back and
check to see whether it is written correctly before a second
write. Mastooreh agreed and said this is what they have done
and that measurements reflect the savings from this feed-
back system. Another researcher was curious about whether
the authors had investigated the temperature factor for error
rate, since high temperatures improve flash memory reli-
ability while low temperatures result in a higher error rate.
Mastooreh replied that they did consider the temperature
factor and did see a decreased error rate when they increased
the temperature. She admitted that they had not put the chip
in a fridge, but they expected the error rate to be increased at
low temperatures. A researcher from EMC asked whether it
is difficult to do a read after write to verify whether the data
was correctly written. Mastooreh said that it is easy for flash
memory (especially the smaller ones) to check the result of
write operations. This researcher pointed out that the worst
bound of rewrite may take more energy than what would be
saved. Mastooreh agreed and said that it depends on the volt-
age the chip is working on. Another researcher asked whether
the authors had any ideas about predetermining the number
of in-place writes for applications. Mastooreh answered that
it depends on the chip, and if the application developers tell
them what error rate they want, they can set parameters for
them.

Consistent and Durable Data Structures for
Non-Volatile Byte-Addressable Memory
Shivaram Venkataraman, HP Labs, Palo Alto, and University of Illinois at

Urbana-Champaign; Niraj Tolia, Maginatics; Parthasarathy Ranganathan,

HP Labs, Palo Alto; Roy H. Campbell, University of Illinois at Urbana-

Champaign

Shivaram Venkataraman began with the scalability wall of
DRAM, which prevents it from scaling for future computer
architectures. There are several new memory technologies
such as Phase Change Memory (PCM) and Memristor, non-
volatile memory devices in which the access time is projected
to be in 50–150 nanoseconds, which is much nearer to DRAM
access time than Flash’s. With non-volatile memory replac-
ing traditional storage architectures DRAM and disk, only a
single copy of data will exist in the system. They called such
storage architectures single-level stores.

Shivaram demonstrated that it is not easy to maintain the
consistency of a binary tree based on these new stores. To
deal with such challenges, he introduced “consistent and
durable data structures,” defining four properties for such
structures: versioning, restoration, atomic change, and no
processor extensions. He discussed how they implemented

the same power line, which results in excessive energy con-
sumption.

Mastooreh said that the goal of their research is to reduce
the energy consumption for embedded storage. Traditionally,
there are two ways to set the voltage for embedded systems:
pick the highest voltage, which results in a huge energy
consumption, or dynamically scale the power, which results
in complex design. They suggested another approach—to
write to flash with low voltage. However, there are occasional
failures with this approach, and she gave an example. Then
she introduced three factors which may influence the error
rate: operating voltage level, hamming weight of data, and
wear-out history. She showed their testbed and the error
rates for different settings. With different operating volt-
ages, the error rate is nearly 100% at 1.8V, but it drops sharply
when the voltage changes to 1.85V. The error rate reaches 0
well before 2.2V, which is the voltage suggested for the micro-
controller. She also showed that the heavier the hamming
weight, the smaller the error will be, since there are fewer 1s
which need to be changed to 0s.

By designing an abstract model of flash memory and intro-
ducing the accumulative behavior of the flash memory, they
developed several ways to cope with partial failure. One is
in-place writes which repeatedly write to the same location.
The idea is to recharge the cell repeatedly until it is written
correctly. She illustrated the error rates for different voltages
with different number of sequential in-place writes. The
effect of in-place writes did show up when the number of
writes was increased. The second approach is multiple-place
writes. The basic idea is to write to multiple locations so that
reliability is increased. She also showed the results of this
approach.

After this, she compared energy consumptions for three
operations—RC5, retrieve, and store—at different voltages:
1.8V, 1.9V, 2.2V, and 3.0V. The RC5 and retrieve operations
required less energy than the store operation. She hypoth-
esized that CPU-bounded workloads, which have fewer
store operations, should save energy. Then she introduced
their synthetic application, which reads 256 bytes, does an
aggregation of these bytes, and writes the result back. For
this workload, their scheme saves as much as 34% energy. At
the end of her talk, she suggested two further improvements:
store the complement of a data item if it has a light hamming
weight; use a mapping table to map frequently used numbers
to numbers which have heavier hamming weights.

A researcher from EMC was confused by the distinction
between 1.8V and 1.9V and asked why 1.8 is a useful number
and not the higher 1.9. Mastooreh answered that they were
trying to find the voltage that worked best and were not

 ;login: JUNE 2011 Conference Reports 63

store and there’s no need to wait another two years for new
memory technologies.

Flash
Summarized by Puranjoy Bhattacharjee (puran@vt.edu)

CAFTL: A Content-Aware Flash Translation Layer
Enhancing the Lifespan of Flash Memory based Solid
State Drives
Feng Chen, Tian Luo, and Xiaodong Zhang, The Ohio State University

Feng Chen described SSDs, discussed their merits, and
highlighted the concern of limited lifespan caused by limited
program/erase (P/E) cycles. He talked about the prevalence
of redundancy-based solutions for wear-leveling in Flash
Translation Layers (FTL), but noted that prior work has
been inconclusive regarding the benefits of this approach.
Chen presented a formula for endurance of a flash-based
system: Endurance = (CxS)/(VxE), where C = P/E cycles, E =
Efficiency of FTL designs, V = Write volume per day, and S =
available space. Thus, Chen pointed out that flash endurance
can be increased if V is reduced and S increased. The insight
here is that data duplication is common, and deduplication
can help reduce V. In addition, coalescing redundant data will
help increase S, thus leading to higher endurance.

Chen talked about the challenges in implementing such a
scheme, such as availability of only block-level information
and lack of any file-level semantic hints for deduplication. To
overcome these, CAFTL uses a hash function and finger-
printing to identify duplicate blocks. However, the authors
observed that most fingerprints are not duplicates; hence
they need to store the fingerprints for the ones which are
most likely to be duplicates. The other challenge is for reverse
mapping from PBAs to LBAs (since there is an N-to-1 corre-
spondence between the logical and physical block addresses
because of deduplication); Chen described their solution,
VBA (virtual block address). He also talked about an accel-
eration method of sampling of pages for hashing based on
the idea that if a page in a write is a duplicate page, the other
pages are also likely to be duplicates. He discussed various
sampling strategies and talked about their content-based
scheme, where the first four bytes of a page are selected
for sampling. He then talked about the evaluation based on
an SSD simulator for desktop and office workloads and on
TPC-H benchmark, leading to a dedup rate of 4.6% to 24%
and space savings of up to 31.2%.

This was a popular talk and there were a lot of people queuing
up to ask questions, but only a few got to ask because of time
constraints. Assar Westerlund (Permabit) asked about the
estimate of storing overhead information on the flash and

a consistent and durable B-tree based on these guidelines.
They chose B-tree because it is a complex data structure and
is widely used in file systems. In addition to keeping a data
value in a node, they introduced start and end version num-
bers to keep version information. Then he walked through
lookup and insert/split operations and explained how version
number is used and how end version is calculated.

He then explained how they incorporated their consistent
and durable B-tree into the key-value store system, Redis,
producing their system, Tembo. It is rather easy to integrate
their consistent and durable B-tree into other systems; in
their case, it only required modifying 1.7% of Redis. They
evaluated their system at three levels: micro-benchmarks,
end-to-end comparison, and real cluster deployment. They
found that for small value size such as 256 bytes, a hashtable
with logging performs better than their consistent and
durable B-tree. But when the data size becomes 4K, their
B-tree achieves higher throughput. For end-to-end compari-
son, they used the Yahoo Cloud serving benchmark, Cassan-
dra. Tembo outperformed Cassandra in-memory by 286%.
He also mentioned additional details in their paper, such as
deletion algorithms and analysis for space usage.

Edward Denali (UC Berkeley) asked about the advantages
of the authors’ approach when compared with transaction
memory. Shivaram acknowledged that transaction memory
is a way to provide consistent updates but it is too heavy-
weight for certain applications. A researcher from NetApp
asked whether the garbage collector will produce more
garbage. Shivaram replied that it will not, since they can
safely remove all versions before the last consistent version.
Margo Seltzer (Harvard) asked how their version compared
to B-trees of 30 years ago. Shivaram said they didn’t want to
include old data. Seltzer persisted, pointing out that multi-
versioning concurrency control is really a very old technique.
Shivaram replied that even for a single update, they can go
back and safely recover, do rollbacks. Seltzer responded that
multi-level concurrency could do this 30 years ago.

Ethan L. Miller from UCSC found this work very interest-
ing and asked whether they did an error test in the middle
of the flush process. Shivaram said it is one part of their
current work to improve system robustness. A researcher
from Stanford asked whether their key-value system handles
node failure when they compared their system with other
key-value systems. Shivaram replied that they replicate data
to multiple nodes, using consistent hashing, but did not per-
form any experiments with failures. Michael Condict from
NetApp pointed out that for read-only portions of programs
and memory-mapped files, there is only one copy of data
either in RAM or disk. So these are also a form of single-level

 64 ;login: VOL. 36, NO. 3

dedup degradation. Gupta then discussed their evaluation
strategy using Web workloads. He said that workload writes
and garbage collection writes were both reduced, leading to
improved lifetimes.

Someone asked how their work differed from least popu-
lar value replacement work published earlier. Gupta said
they were not aware of this. Jonathan Amit (IBM) wanted
examples of value locality in real applications. Gupta pointed
out spam deliveries to all users in a mail workload. Mark Lil-
libridge (HP) and Gupta then discussed the different kinds
of localities. Mark also pointed out the need for a distinction
between static and dynamic deduplication, and Gupta agreed.
Dongchul Park (U. Minn) asked about the recovery procedure
when power is cut down before all the tables can be updated,
and Gupta replied that they roll back.

Reliably Erasing Data from Flash-Based Solid State
Drives
Michael Wei, Laura Grupp, Frederick E. Spada, and Steven Swanson,

University of California, San Diego

Michael Wei discussed the reasons why SSDs pose problems
for erasing data with confidence. SSDs are new devices, and
the existing erasing techniques are tailored for hard disks.
The presence of FTLs poses another problem, since the OS is
not aware of the actual data layout on the flash drives. There
is the problem of incorrect implementation of FTLs, because
there are many manufacturers. Since FTLs are cheap and
easier to disassemble/reassemble, Wei contended that
someone could steal data overnight from an SSD. Wei then
presented some background on sanitization, following which
he described their custom hardware platform to validate
sanitization efficacy of various techniques and reported the
results. Built-in commands were unreliable, since one disk
reported data as erased when it was not. The technique of
crypto-scramble encrypts data online but at the same time
makes drives unverifiable, so Wei said they could not vouch
for this technique. Finally, with software overwrites from
various government standards, Wei said that sometimes
two passes of overwrites were required; at other times, even
20 passes were not enough, thus rendering this technique
unreliable as well.

Wei then discussed their technique of scrubbing—an
enhancement to FTL for single file sanitization. He found
that flash devices can be made to program pages in order,
with some restrictions for single-page overwrites to work.
With multi-level cells (MLCs), however, there is a limit on
the number of scrubs possible, called the scrub budget. Three
modes of scrubbing are possible: immediate, background,
and scan. Wei then discussed the different sanitization levels
achievable with the different modes. It was found that SLC

RAM. Chen replied that it is on the order of 10s of MB for 32
GB flash drives. He said that other techniques, such as the
FTLs described in the next paper, could be used. In addi-
tion, he said that SSD manufacturers maintain that the most
significant production cost is flash chips. So, adding more
RAM could be a solution. Peter Desnoyers (Northeastern U.)
talked about SANForce controllers which appear to be doing
dedup similar to the CAFTL scheme. Chen said that they had
not looked at it, but agreed it was a nice idea and said that
runtime compression could provide more space savings, at
the cost of more complexity. Raghav (Penn State) asked how
old VBA values are updated when a new unique value comes
in pointing at the same VBA. Chen answered that there is an
offline deduplication method and it is done when the flash is
idle.

Leveraging Value Locality in Optimizing NAND Flash-
based SSDs
Aayush Gupta, Raghav Pisolkar, Bhuvan Urgaonkar, and Anand

Sivasubramaniam, The Pennsylvania State University

Aayush Gupta presented the authors’ look at different dimen-
sions of value locality and how to develop a new kind of SSD
called CA-SSD based on that. He discussed temporal and
spatial localities but focused on another form of locality,
called value locality, where certain content is accessed pref-
erentially and can be exploited by data dedup using content-
addressable storage. He discussed out-of-place updates
and loss of sequentiality of writes, challenges which need
to be overcome. However, this analysis works only if real
workloads exhibit value locality. To quantify this, he talked
about a new metric the authors introduced, value popularity,
which indicates the potential of a workload to be value-local.
They found that 50% of writes have only 8% unique values,
so real workloads are indeed value local. He then described
the design of their system, which added a hash co-processor
to prevent that from being the bottleneck, and also added
persistent storage with battery-backed RAM. Simply stated,
when new content arrives, compute the hash and lookup if
it is new or existing; if existing, update the data structure,
otherwise write the page.

To implement this, Gupta talked about maintaining two
tables, iLPT (inverse logical to physical table) and iHPT
(inverse hash to physical table), in addition to LPT and HPT.
He then described the metadata management policy used in
CA-SSD. Since three extra tables might not fit in RAM, they
exploited the property of temporal value locality. They store
only a few entries in the HPT and iHPT, and discard using
an LRU (least recently used) policy. This raises the possibil-
ity of affecting the dedup rate but not the correctness of the
policy; in any case, experimentally they did not observe any

 ;login: JUNE 2011 Conference Reports 65

which the judicious decision is to wait for more requests.
Streams can be identified as sequences of requests where
intra-stream locality is stronger than inter-stream locality,
and which grow as requests within a certain range of each
other are queued. Streams are ended when the time allotted
to them expires, an urgent request arrives, or the stream is
broken by a request that does not exhibit locality. Song also
showed the evaluation of a Linux prototype stream sched-
uler, which was shown to have a factor of 2 or 3 performance
increase in scenarios where multiple independent workloads
are run in parallel.

Arkady Kanevsky of VMware asked how well stream sched-
uling scaled with number of streams. Song acknowledged
that the wait times could grow long but said that in such a
scenario, other non-work-conserving schedulers (such as AS
and CFQ) would have problems as well. Currently, there’s no
general solution for this problem, but Song suggested that a
high QoS requirement might still be met using multiple disks,
as different disk heads could then serve different streams.
Vasily Tarasov from Stony Brook University asked how
stream scheduling scaled to multiple queues. Song answered
that stream scheduling shows an advantage as the number of
clients increase relative to the number of queues. However,
an implementation artifact in NFS led them to measure this
effect using multiple NFS servers, as opposed to multiple
threads on the same server.

Improving Throughput for Small Disk Requests with
Proximal I/O
Jiri Schindler, Sandip Shete, and Keith A. Smith, NetApp, Inc.

Jiri Schindler presented his work on proximal I/O, a disk
access pattern for small updates to data sets that require
both good sequential read performance and frequent modifi-
cation. Existing disk layouts require in-place updates for effi-
cient sequential access, while small updates are better served
by log-style appends. Unfortunately, these two layouts are
at odds. Log-style appends fragment on-disk layout, which
makes serial reads inefficient. This type of mixed workload
is extremely challenging to system designers and occurs in a
number of practical workloads, such as when data is written
in small transactions, then read in bulk for business intel-
ligence purposes.

Schindler and his team developed a new approach that
uses a flash-based staging buffer for writes, which are then
committed to disk in batches. The writes are placed near
related data to provide the required locality for reads, and the
flash-based staging area provides the sufficient I/O density
to be able to retire multiple user I/Os in a single disk revolu-
tion. Proximal I/O exploits hard disk drive mechanisms that
allow for scheduling multiple writes per revolution within

scrubbing can be done in a couple of seconds, but MLCs take
longer.

Nitin Agarwal (NEC) wondered if scrubbing causes dis-
turbances in nearby cells. Wei said that scrubbing works by
writing a single page to all zeroes and that it works fine for
SLCs and for some MLCs. As a follow-up, Agarwal asked
whether they had any idea what a reasonable scrub budget
was. Wei said that this varied from manufacturer to manu-
facturer, but that they had not tested how many exactly. He
added that they had not seen any corruption on adjacent
pages. Keith Smith (NetApp) suggested integrating their
approach throughout the file system stack to avoid problems
where file systems did not store new data in place of the old
data, resulting in stale blocks. Wei agreed that this was one
way to improve the process, but said they did not have time
to modify the file system. Michael Condict (NetApp) asked if
the authors had explored techniques which would not involve
increasing the error rates, such as immediate block copies.
Wei said this would result in too much latency. Finally, Peter
Desnoyers (Northeastern U.) pointed out that hardware to
steal data from flash drives is available for a thousand dollars
or so. In addition, he wanted to know the block size, but Wei
did not know. Peter also wondered what hardware support-
sthe authors would ask for if they could and Wei had sugges-
tions for switching mechanisms in the FTL to use the three
methods of sanitization along with new command sets.

The Disk Ain’t Dead
Summarized by Dutch T. Meyer (dmeyer@cs.ubc.ca)

A Scheduling Framework That Makes Any Disk
Schedulers Non-Work-Conserving Solely Based on
Request Characteristics
Yuehai Xu and Song Jiang, Wayne State University

A work-conserving scheduler is one in which disk requests
are scheduled immediately, while non-work-conserving
schedulers instead choose to delay some requests when doing
so may lead to a better schedule. Despite the potential delay,
the tradeoff is sometimes attractive because it can better
eliminate costly seeks in magnetic disks. Current non-work-
conserving schedulers, like the Linux anticipatory scheduler,
take advantage of process information to predict the local-
ity of future requests, but that information is not available
in some environments. In response to this deficiency, Song
Jiang presented a new scheduling framework based exclu-
sively on observed characteristics of incoming requests.

Their approach is called stream scheduling. The authors
observe that requests can be grouped into streams based on
locality. A stream is defined as a sequence of requests for

 66 ;login: VOL. 36, NO. 3

in 2007. In addition, the lower overhead of FastScale was
shown to result in lower latency during the block migration
process.

Bill Bolosky from Microsoft Research noted that during reor-
ganization, the block address space in the RAID appeared to
be made less linear. He asked if sequential I/O performance
might be harmed by the approach. The author believed that
the 64K block size was large enough to avoid many seeks,
but Bolosky disagreed. He suggested they try the approach
with a larger block size. Keith Smith from NetApp asked why
the authors had not extended the technique to work with
RAID-4, which he believed was similar in difficulty to what
the team already supported, unlike RAID-5. The discussion
was eventually taken offline, where Zhang noted that the
percentage increase of RAID-4 scaling with FastScale would
be smaller, because there was a constant overhead required
to compute parity information.

Wednesday Poster Session

First set of posters summarized by Vijay Chidambaram (vijayc@cs.wisc.
edu)

Improving Adaptive Replacement Cache (ARC) by Reuse
Distance
Woojoong Lee, Sejin Park, Baegjae Sung, and Chanik Park, Pohang

University of Science and Technology, Korea

Sejin Park presented a new block replacement algorithm
for second-level caches. The Adaptive Replacement Cache
(ARC) algorithm dynamically balances recency and fre-
quency. However, it doesn’t take into account the reuse
distance of I/O requests and hence doesn’t perform well for
second-level caches. The authors propose an enhancement
to ARC called Reuse-Distance Aware ARC (RARC). RARC
maintains a history buffer over all I/O requests and uses a
sliding window on the history buffer in order to determine
which I/O blocks are kept in the recency queue. The size of
the sliding window is equal to the size of the recency queue in
RARC.

Email-based File System for Personal Data
Jagan Srinivasan, EMC; Wei Wei, North Carolina State University;

Xiaosong Ma, Oak Ridge National Laboratory and North Carolina State

University; Ting Yu, North Carolina State University

Xiaosong Ma proposed engineering a highly available stor-
age service based on email services such as Gmail, building
upon the reliability of cloud storage. The authors create the
abstraction of virtual storage disks on top of email accounts
and employ RAID techniques such as space aggregation, data
striping, and data replication. They have implemented the

a span of hundreds of thousands of logical blocks of the disk
interface. This combination of leveraging magnetic disk
behavior characteristics and a small amount of non-volatile
memory performs well and is well suited to file systems with
no-overwrite semantics such as the write-anywhere method
used by NetApp.

Schindler’s performance evaluation of proximal I/O dem-
onstrated that the flash could be small—just 1% of the total
active working set. He also showed results against an aged
file system and a 90% full disk. Despite these disadvantages,
proximal I/O was able to provide RAID-1–like performance
on a RAID-4 disk configuration that provides parity.

Someone asked how proximal I/O compared to free block
scheduling (FAST ’02). In free block scheduling, updates
could be made to any free block, while proximal I/O em-
ploys a minimal staging area to keep the costs of flash low.
Schindler concluded that the two techniques were useful in
different applications. Aayush Gupta (Penn State) asked if
flash lifetimes have been considered. Schindler replied that
while writes were random from the application’s perspec-
tive, they may be placed anywhere on a device, so the aging of
flash memory will occur evenly.

FastScale: Accelerate RAID Scaling by Minimizing Data
Migration
Weimin Zheng and Guangyan Zhang, Tsinghua University

Guangyan Zhang presented this research that attempts to
accelerate RAID scaling, where a new disk is added to an
existing RAID set. FastScale works on RAID-0, RAID-01,
RAID-10, and RAID-1. Zhang’s team started with several
goals. While scaling a RAID set, they needed to ensure that
data was spread across the disks uniformly, so no hotspots
would be created. They also sought minimal data migration,
so that the scaling could be done quickly. Finally, they needed
to maintain fast addressing, to not impair the overall perfor-
mance. To meet these requirements, they developed a new
approach to migration and on-disk layout.

To reduce the cost of migration, FastScale groups blocks that
must be migrated to new disks into groups that can be moved
together. This allows multiple blocks to be read with a single
I/O request. Blocks are then arranged in memory to form
sequential sets of blocks that can be written linearly as well.
In addition, by separating the migration process into phases
which copy data, and phases which replace existing data,
FastScale is able to lazily update the state of migration infor-
mation. This limits the number of metadata writes required
to ensure consistency in the event of a failure.

With a simulator, Zhang showed an 86% shorter RAID scal-
ing time as compared to SLAS, a scaling approach proposed

 ;login: JUNE 2011 Conference Reports 67

their comprehensive model, which uses different policies
such as localized and staggered scrubbing.

Polymorphic Mapping for Tera-scale Solid State Drives
Sungmin Park, Jaehyuk Cha, and Youjip Won, Hanyang University,

Korea; Sungroh Yoon, Korea University, Korea; Jongmoo Choi, Dankook

University, Korea; Sooyong Kang, Hanyang University, Korea

Sungmin Park proposed a scheme to manage the mapping
information for tera-scale solid state drives. For such large
drives, the size of the mapping information itself is on the
order of gigabytes and new techniques to manage the map-
ping table in SRAM are required. The proposed mapping
scheme, polymorphic mapping, exploits the spatial locality of
requests to store only part of the complete mapping informa-
tion in SRAM, thus reducing the space needed for the map-
ping. This is done at different granularities from the block
to the page. The authors evaluate their system using several
real-world workloads. The results show that polymorphic
mapping outperforms DFTL in most cases.

DBLK: Deduplication for Primary Block Storage
Yoshihiro Tsuchiya and Takashi Watanabe, Fujitsu Limited

Yoshihiro Tsuchiya presented the Deduplication Block
Device (DBLK), a primary-storage device with in-line block-
level deduplication. DBLK uses an innovative multi-layer
Bloom filter (MBF) in order to index the data in the system.
The MBF works like a binary tree, with a Bloom filter present
at each node. The system uses techniques such as bitwise
transposition in order to optimize the Bloom filter access.
Micro-benchmarks show that DBLK’s performance is com-
parable to the base RAID system, and that using the MBF to
index metadata leads to reduced latency.

Implementing a Key-Value Store based MapReduce
Framework
Hirotaka Ogawa, Hidemoto Nakada, and Tomohiro Kudoh, AIST, Japan

Hirotaka Ogawa presented SSS, a MapReduce system based
on distributed key-value stores. SSS seeks to eliminate the
shuffle and sort phase of MapReduce using the properties
of the key-value stores, while enabling intuitive access to
the MapReduce data. Building SSS on distributed key-value
stores makes Map and Reduce tasks equivalent, enabling
combinations of multiple maps and reduces in an individual
workload. The authors evaluated their prototype using the
wordcount benchmark. They demonstrated performance
comparable to Hadoop. The results also show that an
optimized version of SSS is almost three times faster than
Hadoop.

Email-based File System (EMFS), which exports a subset of
the POSIX interface and is built on FUSE. They evaluated its
performance on the Postmark benchmark. Results show that
the performance of EMFS is comparable to that of commer-
cial solutions such as JungleDisk.

Solid State Disk (SSD) Management for Reducing Disk
Energy Consumption in Video Servers
Minseok Song and Manjong Kim, Inha University, Incheon, Korea

Minseok Song proposed a scheme for using solid state disks
to reduce disk energy consumption in video servers. The zip
distribution of block requests allows the use of small SSDs
as effective caches for the disks, thereby allowing the system
to run the disks at a lower speed. This enables the video
servers to reduce their power consumption without a drastic
reduction in performance. This raises the question of which
videos should be cached on the SSD. The authors formulate
this as an integer linear problem, with the solution minimiz-
ing energy consumption. Simulation results show up to 33%
reduction in power consumption when a 256 GB SSD is used.

Object-based SCM: An Efficient Interface for Storage
Class Memories
Yangwook Kang, Jingpei Yang, and Ethan L. Miller, University of

California, Santa Cruz

Yangwook Kang pointed out that using SCMs in the storage
hierarchy today leads to the choice between major changes
to the file system and suboptimal performance. The authors
aim to solve this problem using an object-based model,
enabling integration of a range of storage class memories
into the file system and drop-in replacement of different
SCMs. The object-based model also enables performance
optimization for each SCM, since more information is known
about the I/O requests in this model. The authors have
implemented a prototype in Linux and evaluated it using the
Postmark benchmark. Results show significant performance
improvements when the object-based model is used.

Latent Sector Error Modeling and Detection for NAND
Flash-based SSDs
Guanying Wu, Chentao Wu, and Xubin He, Virginia Commonwealth

University

Guanying Wu explained that the increasing density of NAND
Flash SSDs leads to higher probability of latent sector errors.
Latent-sector errors in NAND Flash are not well understood,
due to the limited population of SSDs in the field. The authors
propose a new model for latent sector errors in NAND Flash
SSDs that takes into account the write/erase cycles in NAND
flash, retention, and electrical disturbances. The authors
also propose an optimized disk scrubbing strategy based on

 68 ;login: VOL. 36, NO. 3

Accelerating NFS with Server-side Copy
James Lentini, Anshul Madan, and Trond Myklebust, NetApp, Inc.

James Lentini presented a new NFS server-side file copy
interface that does away with the two-step approach by first
fetching the file from the server and then writing it again to
the destination location on the server. This single message
contains the source and destination information, which saves
a lot of client-side and network resources. Applications of
such a mechanism include VM backup, cloning or migration,
and file backup restoration.

Cluster Storage System, RAID and Solid State Drive
Emulation with David
Leo Arulraj, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau,

University of Wisconsin—Madison

Leo Arulraj presented interesting extensions to David, a
lightweight storage system emulator that currently allows
the emulation of large disks by much smaller disks. Incorpo-
rating complex RAID setups into the emulator and on-the-fly
generation of parity is one possible extension. Extending
David to emulate SSDs is not trivial, because of the differ-
ence in latencies of I/O from an SSD and a disk.

Tamias: a privacy aware distributed storage
Jean Lorchat, Cristel Pelsser, Randy Bush, and Keiichi Shima, Internet

Initiative Japan, Inc.

Jean Lorchat presented a distributed storage system that
enables users to share data while giving them fine-grained
control over the sharing process. The authors use Tahoe-
LAFS, an open source storage system, as a foundation
for their system, and build in additional features such as
capabilities and user identification. They achieve capabilities
through public-key cryptography. They maintain a directory
of public keys of friends and use this information for access
control.

Mercury: Host-Side Flash Caching for the Datacenter
Steve Byan, James Lentini, Luis Pabón, Christopher Small, and Mark W.

Storer, NetApp, Inc.

Steve Byan and his team propose Mercury, a system that uses
flash storage as a cache in a datacenter environment. With
increasing amounts of flash being integrated into shared
VM servers, they can be used for storage purposes. But using
them as primary storage would break the shared storage
model of a datacenter. The authors have built a block-oriented
write through cache with this flash storage. Their results
show that this leads to a very healthy reduction in mean I/O
service time as well as in the number of requests sent to the
server.

Hot and Cold Data Identification for Flash Memory
Using Multiple Bloom Filters
Dongchul Park and David H.C. Du, University of Minnesota—Twin Cities

Dongchul Park pointed out that current schemes for identi-
fying hot data in flash memory focus only on the frequency
of data access, ignoring the recency of the data access. The
authors present a new classification algorithm, window-
based direct address counting (WDAC), which also takes
into account the recency of data access. Multiple Bloom
filters are used in order to efficiently capture recency and
frequency information. The key idea is that each Bloom
filter uses a different recency weight to capture fine-grained
recency. Experimental results show that WDAC improves
performance by 65%, with lower overhead and memory
requirements.

Second set of posters summarized by Deepak Ramamurthi (scdeepak@
cs.wisc.edu)

An FCoE Direct End-to-End Connectivity Scheme
Michael Ko, Li Ke, Wang Yuchen Wu Xueping, Yang Qiang, Liu Lifeng,

Meng Jian, and Yang Qinqin, Huawei Symantec Technologies Co., Ltd.

Michael Ko explained how the forwarder becomes a bottle-
neck in a Fibre Channel over Ethernet (FCoE) network, when
it is required to mediate all data and control information,
including those between FCoE end nodes. The authors pro-
pose the introduction of a fabric login wherein each end node
is assigned a unique Fibre Channel identifier. All data plane
functions between the end nodes use this identifier to com-
municate directly, thereby bypassing the FCoE forwarder.
This eases the load handled by the FCoE forwarder. As native
FCoE devices become commonplace, the forwarder is no
longer a time-critical component and can be implemented in
software.

What makes a good OS page replacement scheme for
Smart-Phones?
Hyojun Kim, Moonkyung Ryu, and Umakishore Ramachandr, Georgia

Institute of Technology

Hyojun Kim explained the need for OS-level support for
better management of low-end flash storage used in smart-
phones. The authors present data to show that write request
ordering is a key factor in the performance of flash storage,
with sequential writes offering better performance than
random writes. They present two write ordering-aware page
replacement algorithms—Sorted Clock and Sorted Clock-
WSR (Write Sequence Reordering)—and quantitatively show
that they perform better than replacement policies that do
not respect write ordering.

 ;login: JUNE 2011 Conference Reports 69

need to be over-provisioned by 300% to handle a spike of this
magnitude on any data item. So it is important to leverage the
elasticity from cloud storage.

Beth then introduced SCADS, an eventually consistent key/
value store that has three features: partitioning, replica-
tion, and add/remove servers. All the data is kept in memory,
which avoids the latency of disk accesses. With SCADS, it
seemed quite straightforward to use classical closed-loop
control for elasticity. But she illustrated that closed-loop
control cannot handle oscillations from a noisy signal well,
and smoothing can result in a long delay to react to spikes.
In order to solve these problems, the authors proposed a new
control framework called model-predictive control (MPC).
This framework uses per-server workload as a predictor of
upper-percentage tile latency and needs a model to map the
workload to SLO violations. The MPC knows the current
state of the system and can determine actions to be taken to
meet constraints. Beth then showed how to transition from
the classic closed-loop control to the MPC model. The upper-
percentage tile latency is replaced with a workload histo-
gram, and the controller refers to the performance model to
decide actions. The authors built the performance model by
benchmarking SCADS servers on Amazon’s EC2. Using this
performance model, the MPC can decide when and where
to migrate the data, but it still does not know which piece of
data is hot and should be migrated. So, they introduced the
idea of finer-granularity workload monitoring. The benefit
from this approach is that hot data can be identified and
moved back and forth much more quickly. With both the per-
formance model and fine-grained monitoring, it can deter-
mine the amount of data to be moved, what the hot data is,
and when to coalesce servers. Beth also pointed out that they
used replication for prediction and robustness; she referred
interested audiences to read their paper for more details.

Next she illustrated how their system decides the amount
of data and the idle server to be moved. Then she introduced
the experiment setup and workload profiles for Hotspot and
Diurnal. The aggregate request rate appeared to be flat, but
the per-bin request rate increased sharply at the beginning
for the hot bins. For the other 199 bins, the per-bin request
rate remained almost constant. Their system dynamically
replicated hot data among more servers, which succeeded in
keeping the 99% tile latency almost constant.

Fred Douglis from EMC asked whether it is possible to use
past behavior to predict future workload. Beth replied that
the experiment they showed today involved observing the
workload and reacting directly to it but that it is possible
to use yesterday’s workload trace as input to the controller.
Brent Welch (Panasas) asked about the cost model of moving
data around the servers. Beth agreed that if moving data

DADA: Duplication Aware Disk Array
Yiying Zhang, University of Wisconsin—Madison; Vijayan Prabhakaran,

Microsoft Research

Yiying Zhang presented DADA, a duplication-aware disk
array which identifies and retains the duplicated blocks
on primary storage systems. This additional knowledge
is put to use in different ways. Disk background activities
like scrubbing are made faster by scrubbing only a unique
block among duplicates and skipping the rest. Recovering
only unique blocks improves RAID reconstruction time and
hence improves availability. She also explained some of the
avenues explored in choosing a representative block among
the duplicates, which included a simple random selection
policy to more complex heuristics based on region density of
unique blocks.

MAPL: Move-anywhere proximate layout
Peter Corbett, Rajesh Rajaraman, Jiri Schindler, Keith A. Smith, and Pelle

Wåhlström, NetApp, Inc.

Keith Smith presented MAPL, a journaling file system that
tries to preserve the physical sequentiality of logically related
blocks of data. By achieving this, the file system is able to
provide good performance even for sequential-read-after-
random-writes workload. MAPL allocates regions of the disk
to a file. Space is over-provisioned for a file so that a portion
of the file, called the snapshot reserve, is used to accommo-
date logically overwritten blocks of data in a snapshot. Once
a region fills up, the snapshot data is copied out in bulk to a
different region of the disk. Good performance is achieved by
a sequential read of a full region for actual random reads. The
cost of the copy-out of snapshot data is also amortized.

Scaling Well
Summarized by Xing Lin (xinglin@cs.utah.edu)

The SCADS Director: Scaling a Distributed Storage
System Under Stringent Performance Requirements
Beth Trushkowsky, Peter Bodík, Armando Fox, Michael J. Franklin,

Michael I. Jordan, and David A. Patterson, University of California,

Berkeley

Beth Trushkowsky started her talk by introducing the elas-
ticity to scale up and down provided by clouds and turned to
talk about her work on how to dynamically allocate storage
resource for workload changes. The challenge for this is that
they must satisfy service level objectives (SLO). Then she
showed a trace of Wikipedia workload which shows that hits
are rather bursty. If they were to replay it on a system with
10 storage servers, the hotspot would affect one of those 10
servers. For this hypothetical example, the system would

 70 ;login: VOL. 36, NO. 3

that splits can happen concurrently at multiple servers with-
out any synchronization. Swapnil described the performance
of GIGA+ during the incremental splitting phase as dropping
once until all the servers are used, then scaling linearly. He
also mentioned that interested readers should look at the
paper for additional details.

Assar Westerlund (Permabit) pointed out that for check-
points, the directories do not shrink. He asked whether their
system will rebalance for shrinking. Swapnil replied that
currently they do not consider shrinking, but it is possible
to deal with this. Servers can shrink their directories and
the client mapping will be updated lazily. Thomas Schwarz
from UCSC pointed out that Ceph’s performance stats cited
in the paper were five years old and that Ceph has been
actively developed and has many improvements; why didn’t
the authors compare the scalability of the latest version with
GIGA+ directly? Swapnil said that by default, Ceph does not
support distributed directories. They tried to run it but, due
to time pressure, they could not complete their evaluation.
They do believe the latest Ceph will have better scalability
than the old version. A researcher said he understood the goal
of this work and asked why not just ask the programmers not
to create so many files in one directory. Swapnil replied that
some of the applications are legacy and it is better to provide
file system support for them. What will the performance be
when reading or deleting all the files? Swapnil replied that
doing a read of millions of files is interesting, because you
will get two-day vacations. A researcher from NetApp asked
whether it will cross partitions when renaming a file. Swap-
nil said it is possible and they can reuse the atomic renaming
function provided in the cluster file systems.

AONT-RS: Blending Security and Performance in
Dispersed Storage Systems
Jason K. Resch, Cleversafe, Inc.; James S. Plank, University of Tennessee

Jason Resch introduced the basic idea of dispersed stor-
age, which is to computationally massage data into multiple
pieces and store them at different locations. It allows owners
to reconstruct the original data by using any K out of N
pieces. K and N can be arbitrarily chosen. The reliability of a
storage system is improved since only K pieces are needed to
reconstruct the original data, and it allows for disaster recov-
ery without replication. It also provides for strong security, as
discussed later.

The conventional approach to storing data securely is to
encrypt it, but this requires users to protect and store their
keys. Another problem with this approach is that users will
lose their data if they lose their keys, and increasing the
reliability of keys by replication opens more opportunities
for attacks. In 1979 Adi Shamir and George Blakely inde-

is too costly, you might need to trade off the decision about
scaling up or scaling down. Brent continued to point out that
the cost models of SLO and moving data are different and
encouraged Beth to look into that model in the future. Margo
Seltzer (Harvard) said that from their experience, they can
see a stable behavior for minutes or hours but the variabil-
ity of day-to-day behavior is huge. She asked whether the
authors have noticed this phenomenon and how this variance
will affect their system’s behavior. Beth replied that they
did several things to deal with this. Although they did not
evaluate the performance on different days, they built their
model on different days and their experiments ran success-
fully. They used replications to improve the stability of their
system. Margo asked what factor of replication they used.
Beth replied they used a replication factor of 2 in their result.
Xiaodong Zhang from OSU said moving data is expensive
and caching is more effective. Beth replied that their system
keeps data in memory and functions as if it were adding
another cache.

Scale and Concurrency of GIGA+: File System
Directories with Millions of Files
Swapnil Patil and Garth Gibson, Carnegie Mellon University

Swapnil Patil started his presentation by noting that check-
points in supercomputing require each thread to write states
periodically into a new file. As a result, it requires huge
directories. He also pointed out that future massively paral-
lel applications and diverse small file workloads may need
huge directories. File systems today provide parallel access
to the file data but not to the metadata. So they decided to
build a scalable and parallel file system directory subsystem.
Their goal is to support high file insert rates in directories
and complement existing cluster file systems by providing
POSIX-like semantics. Swapnil illustrated how small and
large directories are stored on three servers: the smallest
directory is hosted by a single server, while the largest direc-
tory is split into three partitions based on a hash scheme, and
each partition is stored at one server. Then he discussed how
the GIGA+ client and server components work and interact
and showed that GIGA+ can achieve 98K file creates/s, which
far exceeds the HPCS goal of 32K. He also compared the
scalability of GIGA+ with HBASE and Ceph, and GIGA+ has
much better scalability than both of them.

With the observation that directories start small and most
remain small, directories in GIGA+ start with one parti-
tion on one server. When the number of files in a directory
reaches a threshold, the hash space is split into two equal
halves and half of the files are moved to a second server. It
continues this split repeatedly when the directory size keeps
increasing. The uniqueness of the split process in GIGA+ is

 ;login: JUNE 2011 Conference Reports 71

described a real-world deployment of their system for the
Museum of Broadcast Communications which spans three
power grids.

Mark Lillibridge (HP Labs) asked why not encrypt the data
and only distribute the key with secret sharing, since keys
are much smaller. Jason replied that in order to provide high
availability and reliability of the data, they had to ensure the
security of both the keys and the data. If the data is stored
in a single or unsafe storage system, it may be corrupted or
deleted, leaving you unable to restore the data. Bill Bolosky
(Microsoft Research) asked why they used a secure hash
in their AONT and suggested CRC might be enough. Jason
said that secure hash ensures the integrity of their data and
agreed that if AES were used to do encryption, the CRC
could be enough to do the hash. Assar Westerlund (Perm-
abit) suggested that it might be more helpful if the authors
could pre sent their threat model more clearly and pointed out
that with their scheme, it would be possible for the storage
providers to get together to figure out the information. Jason
acknowledged this and said they had described their threat
model in their paper. Their threat model is for enterprise
storage which wants to maintain control of their data and
does not want to recover data from node failures. Organiza-
tion managers do not need to worry about encryption keys
which can be taken and used by their employees.

Making Things Right
Summarized by Dutch T. Meyer (dmeyer@cs.ubc.ca)

Emulating Goliath Storage Systems with David
Nitin Agrawal, NEC Laboratories America; Leo Arulraj, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau, University of Wisconsin—

Madison

n Awarded Best Paper!

Leo Arulraj presented David, an emulator for evaluating new
storage systems in this Best Paper award winner. Arulraj
explained that researchers face a dilemma in trying to mea-
sure future storage systems with current hardware. David
is designed around the observation that most benchmarks
measure performance but require only valid, not exact, file
content. The emulator works by storing metadata but throw-
ing away and regenerating fake data content as needed. In
doing so Arulraj showed how they could accurately emulate
a 1 TB disk using an 80 GB disk, or a multiple disk RAID with
only RAM.

A key requirement of the system was being able to accurately
classify blocks as data or metadata. Two such methods were
provided. For ext3, David uses implicit classification, where
the stream of requests is monitored and knowledge of the file

pendently discovered a better way, called Secret Sharing, in
which a secret is divided into N shares. You can get the secret
with any threshold (K) number of shares. However, you can-
not get any information about the secret with fewer than K
shares. This provides a high degree of privacy and reliabil-
ity. Actually, encryption is a specific case of secret sharing,
where N = K = 2. However, Secret Sharing has several draw-
backs which prevent it from being used for performance- or
cost-sensitive bulk data storage. The first drawback is the
storage overhead. For Shamir’s scheme, it requires N times
storage and bandwidth, while for Blakely’s method it is even
worse: N*K times. The encoding time is another drawback. It
grows with N*K. To deal with these two challenges, Michael
O. Rabin designed another method, called Information
Dispersal Algorithm (IDA), which can achieve efficiency,
security, load balancing, and fault tolerance. Storage require-
ments are reduced to be (N/K) times of original data and
(N/K) can be chosen close to 1. However, the security of
Rabin’s method is not as strong as Shamir.

In 1993, Secret Sharing Made Short (SSMS) was designed
by Hugo Krawczyk by combining Shamir’s Secret Shar-
ing with Rabin’s IDA. It works as follows: first, the input
is encrypted with a random encryption key; the encrypted
result is then dispersed using Rabin’s IDA, while the random
key is dispersed using Shamir’s Secret Sharing. The result of
this combination is a computationally secure secret sharing
scheme with good security and efficiency.

After this introduction to related work, Jason discussed
their new scheme, called AONT-RS. It combines Ron Rivest’s
All-or-Nothing Transform with Systematic Reed-Solomon
encoding. The security and efficiency properties are simi-
lar to SSMS. However, it has another four properties: faster
encoding, protected integrity, shorter output, and simpler
rebuilding. In the All-or-Nothing Transform it is trivial to
reverse the transformation once one has all the output, but it
is very difficult to invert without all of the output. So by com-
bining an All-or-Nothing Transform with Reed-Solomon, a
computationally secure secret sharing scheme was achieved.
Jason then showed a complete view of their system. AONT
is used to pre-process the data and IDA is used to create N
slides. Without a threshold number of slides, it is impossible
to recreate the original data. If there are some bit flips in the
encrypted packets, then you will get a different hash value
and a different key to decrypt the packets. You can easily tell
this from the decrypted canary value.

The observed performance and the expected performance
derived from their performance model for AONT-RS, Rabin,
and Shamir were shown. The authors implemented two ver-
sions of AONT-RS, optimized for performance and secu-
rity, by using different ciphers and hash functions. Jason

 72 ;login: VOL. 36, NO. 3

early. In the second, the random walk is expanded to include
random subdirectories in a breadth-first search manner.
The system was evaluated on an impressive set of traces,
including file systems up to 1 billion files, assembled from
a Microsoft file system study, a pair of 2 million file traces
from Bell Labs, a 2.4 million file NFS trace from Harvard,
and a synthetic file system generated by impressions.

The Q&A was lively. Michael Condict from NetApp noted
that the accuracy of the results should be independent of
file system size, as is true in calculating a margin of error
of a poll. Margo Seltzer from Harvard asked how the work
compared to online aggregation estimates research in the
database community. Bill Bolosky from Microsoft Research
noted that many distributions in storage are highly skewed;
he pointed to his own work published earlier the previous
day, which showed that 40% of bytes were stored in 0.02% of
files. Both Bolosky and the author agreed that you would need
many more samples to capture distributions such as this.

Making the Common Case the Only Case with
Anticipatory Memory Allocation
Swaminathan Sundararaman, Yupu Zhang, Sriram Subramanian,

Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau, University of

Wisconsin—Madison

The common paths in a file system’s code are usually well
tested by users and can be considered hardened against bugs.
Unfortunately, rarely executed paths such as error handling
routines do not see the same degree of use. When this error
handling code has bugs, it can cause serious file-system and
application-level errors, sometimes even silently corrupting
data. Sundararaman’s presentation detailed their approach,
Anticipatory Memory Allocation (AMA), and how it can
ensure that memory allocation errors are handled correctly
inside the operating systems in the context of file system
requests.

Sundararaman started by showing how more than a half-
dozen Linux file systems responded to fault injection during
memory allocation. Each showed some potential to arrive at
an inconsistent or unusable on-disk state. Sundararaman
and his colleagues proposed to use static analysis to deter-
mine the location and factors that determine the size of each
memory allocation on the request path, then runtime support
to preallocate this memory at the start of the request and to
draw from this preallocated pool so that the memory alloca-
tion does not fail. This has the advantage of easy recovery,
because early in request handling there is little or no state
to unwind. It also has the effect of centralizing all of the
recovery code, so failures need only be handled in one place.
At two points in the talk, Sundararaman relayed the project’s
mantra: “The most robust recovery code is recovery code

system’s operation is used to make the correct classification.
For Btrfs, an explicit classifier was shown, which passes
hints through the file system stack. In addition to classifica-
tion, David must also model device behavior. In evaluating
the system, Arulraj showed how they could model both device
and I/O request queue behavior. Together these techniques
allow a file system evaluator to accurately emulate, and thus
measure, the performance of a new file system on faster and
larger hardware than they have access to. As future work,
the team intends to model a storage cluster with just a few
machines.

During the question period, Arulraj explained that they must
exert great effort to make the correct classification. Nitin
Jain from Riverbed Technology asked if file system–level
caching complicates block classification decisions. Arulraj
explained that no decision will be made about an unclassified
block until it can be made definitively. Geoff Kuenning from
Harvey Mudd asked if explicit classification would incor-
rectly identify data blocks written to the journal as metadata
if full journaling was enabled. Arulraj explained that they
would need to use knowledge of the file system’s operation in
addition to explicit classification in that case. Vasily Tarasov
from Stony Brook University asked about positioning David
lower in the stack, below the I/O request queue. Arulraj
explained that being above the request queue provides an
opportunity to speed up benchmarking through emulation.

Just-in-Time Analytics on Large File Systems
H. Howie Huang, Nan Zhang, and Wei Wang, George Washington

University; Gautam Das, University of Texas at Arlington; Alexander S.

Szalay, Johns Hopkins University

Howie Huang presented research that addresses the difficul-
ties of quickly generating statistics about a large file system.
As a motivating example, Huang imagined a border patrol
agent tasked with checking travelers’ laptops for pirated
media. The analytics engine developed at George Washing-
ton University, called Glance, delivers approximate results
to aggregate query processing and top-k style queries. This
gives quick answers to questions like, “What is the total
count of a specific type of document?” or “What are the top
100 files in the file system that meet some criteria?” respec-
tively.

The system works by walking the tree structure of a file
system on a random path while evaluating the query. Each
random walk constitutes a trial and the expected result of
each of those trials is the actual value in the file system. The
problem with this approach is that high variance can result in
inaccuracy. Huang elaborated on two techniques to decrease
variance. In the first, his tool visits all directories high in the
tree to eliminate high-level leaf nodes that might end a trial

 ;login: JUNE 2011 Conference Reports 73

that their intuition is correct. They also demonstrated how
their method worked in simulation.

OS Support for High-Performance NVMs using Vector
Interfaces
Vijay Vasudevan and David G. Andersen, Carnegie Mellon University;

Michael Kaminsky, Intel Labs

Vijay Vasudevan began by describing how we have a shrink-
ing I/O gap, and yet the methodologies we use have not
caught up to the hardware. Historically, the CPU-I/O gap
has increased sharply, but recently this has changed because
of the move to multi-core processors and the limit of single
thread execution. Additionally, NVRAM is very fast and has
become widely available. Modern systems are capable of over
a million random I/Os per second instead of thousands, but
we still use the same technologies to support these systems!
Vasudevan defines this problem as the shrinking I/O gap.

You could reduce access latency, but more and more people
are increasing device parallelism. Instead, the authors
suggest issuing enough concurrent I/Os to saturate devices
whose queue depths are increasing over time. Vasudevan
introduced a vector operating system interface where
independent threads calling files are replaced by a vector
of OS calls. Combining threads into a vector limits context
switches, and interrupts, and even reduces the path resolu-
tion operations if the files are in the same directory. The
questions that remain are, “What are the interfaces?’’ “What
is the impact on the latency?’’ and “What algorithms will best
maintain the queue depth?’’

During Q&A someone asked, “If operations are sent simulta-
neously, how do you aggregate?” Vasudevan replied that this
is based on the operating system.

PreFail: Programmable and Efficient Failure Testing
Framework
Pallavi Joshi, Haryadi S. Gunawi, and Koushik Sen, University of

California, Berkeley

Pallavi Joshi discussed failure testing in large, distributed
systems composed of commodity machines. In the cloud era,
these systems are prevalent and failures in these systems are
both frequent and diverse. The state-of-the-art for testing for
such failures is testing single failures and testing multiple
random failures to see if the system correctly recovers. Tests
against single failures are straightforward, requiring one test
execution per failure. For multiple failures, however, there
are too many potential sequences of failure to test every
sequence separately, necessitating sub-sampling.

Joshi proposed improving on the random selection typically
used to do this by identifying the failure paths that most need

that never runs at all.” Before closing, the author showed how
his team had minimized the memory overheads by reusing
objects in the cache and recycling memory in the prealloca-
tion pool.

Jiri Simsa from CMU asked how long the semi-automated
approach to determining allocation sizes took, and how
human error might be handled. Sundararaman explained
that the approach took just a few seconds and could be fully
automated. He also explained that it does assume that find-
ing bounds for the memory sizes was decidable, based on the
reasonable structure of file system code. Nitin Jain from
Riverbed Technology thought it would be interesting to see
the difference in the number of outstanding requests that can
be sustained, given the memory overhead of the approach,
and the author agreed. Danilo Almeida from Likewise
Software asked how the tool tracks allocations to the associ-
ated memory waiting in the preallocated pool. This led to
an explanation that tracking allocations happen inside each
request and the called memory-allocation function and its
input parameters help determine the type and size of object
that needs to be returned back to the calling function.

Work-in-Progress Reports (WiPs)

First set of WiPS summarized by Avani Wildani (avani@soe.ucsc.edu)

New Cache Writeback Algorithms for Servers and
Storage
Sorin Faibish, Peter Bixby, John Forecast, Philippe Armangau, and

Sitaram Pawar, EMC

Sorin Faibish presented a new cache writeback algorithm
for servers, storage, and file systems. Their previous work,
published in SYSTOR2010, defined the algorithm and dem-
onstrated that it provided a 30% improvement to perfor-
mance on their system. The goal of this project is to adapt the
algorithm to make it usable in a general environment. They
want to change the paradigm of using metrics to prevent I/O
bottlenecks and stoppage in systems, some ideas for which
were presented at LFS 2010.

So far, they have used measurement tools to pinpoint the
problem and have written a Linux utility that will be made
publicly available. They have identified room for improve-
ment in ext3, ext4, and ReiserFS. Many applications use
aggressive caching, but they are slowed by flushing to disk.
They would like to solve memory swap, which is a big issue
for cache writeback. Their end goal is to completely move
memory swap on Linux. Their results show that the cache
writeback took 3200 seconds with 8 GB of memory, 4300
with 4 GB, and never finished at 2 GB of memory. This shows

 74 ;login: VOL. 36, NO. 3

Their goal is to keep the file system as small and simple as
possible to keep overhead down. They propose to do this by
utilizing the memory management module in the operating
system, removing the block management in traditional file
systems, and simplifying the file system design by allocating
space contiguously per file. Instead of building over blocks,
they build over the memory manager. Their code is 2700+
lines vs. 27000+ lines for ext3, and they have a small over-
head compared to memory-based file systems.

Repairing Erasure Codes
Dimitris S. Papailiopoulos and Alexandros G. Dimakis, University of

Southern California

The speaker presented a novel application of a new theoreti-
cal result in information theory to better rebuild erasure-
coded systems. The speaker briefly introduced erasure
coding, essentially a method of calculating parity over k data
blocks such that any k blocks of your data+parity set can be
used to restore the original data. While any MDS code can be
used, Reed-Solomon is common.

Assume all n blocks of a particular piece of data are on differ-
ent nodes. On rebuild, k nodes need to be spun up to recon-
struct the original data. The data from these k blocks needs
to be sent to a centralized location to calculate the value for
the lost disk. However, if the code used is regenerating, the
speaker claimed that the rebuild could occur with (n-1)*B/
(n-k)*K blocks using a matroid property. For parity blocks,
they read more than they send and calculate intermediate
results.

Rewriting the storage stack for Big Data
A. Byde, G. Milos, T. Moreton, A. Twigg, T. Wilkie, and J. Wilkes, Acunu

This talk was presented by the Acunu company, and it
describes their motivation for rewriting the middle of the
storage stack to better suit modern applications and stor-
age hardware. The speaker began by showing an old storage
stack, and then pointed out that it has not changed much in
many years. While there has been innovation at both ends,
representing applications and hardware, there has been little
work to redefine the middle.

Applications want new stuff, but they need to work around all
the assumptions in the stack because the abstraction given
to them is not immediately compatible with their goals. They
termed this an impedance mismatch: the abstraction is fun-
damentally wrong. As a result, some applications built over
this outdated stack are slow, unstable, and unpredictable.

Acunu proposes rethinking the stack by throwing away the
file system interface and replacing it with a shared memory
ring buffer in the stack. This allows a range of improve-

testing and avoiding retesting failures that lead to the same
recovery behaviors. He outlined an example of testing points
where the number of test sequences required to provide full
coverage is significantly smaller than the combinatorial
maximum. Developers can use this to easily identify the code
snippets to test failures and define failure coverage.

Don’t Thrash: How to Cache your Hash on Flash
Michael A. Bender, Stony Brook University and Tokutek, Inc.; Martin

Farach-Colton, Rutgers University and Tokutek, Inc.; Rob Johnson, Stony

Brook University; Bradley C. Kuszmaul, MIT and Tokutek, Inc.; Dzejla

Medjedovic, Stony Brook University; Pablo Montes, Pradeep Shetty, and

Richard P. Spillane, Stony Brook University

Pradeep Shetty presented an alternative to Bloom filters
for efficient cache indexing. Bloom filters are common for
efficient indexing but do not scale well out of RAM. Bloom
filters are used in BigTable, deduplication, network comput-
ing, bioinformatics, and a variety of other applications. These
organizations handle the Bloom filter scaling issue using
techniques such as MapReduce, LFS/merge trees, etc.

There is an underlying issue to merging two Bloom filters.
Particularly, it is difficult to recover hashes and rehash them
in a larger Bloom filter. It is necessary to reduce random
I/Os, but even buffered Bloom filters result in random I/Os.
The solution that Shetty proposed is to use compact hash-
ing, abandoning Bloom filters entirely. Compact hashing, a
CPU-bound vs. an I/O bound technique, preserves hashes
and stores them in increasing order, allowing iteration. This
is defined as a “quotient filter.’’ Similar to merging two sorted
lists using merge sort, the quotient filter merges serial cache.
With its lookahead array, compact hashing has great scaling
properties with inserts and deletes occurring at the band-
width of the disk. The primary negative is that compact hash-
ing takes twice the disk space of an equivalent Bloom filter.
Otherwise, compact hashing is 3000 times faster than Bloom
filters, 100 times faster than buffered Bloom filters, and has a
comparable lookup throughput.

A File System for Storage Class Memory
Xiaojian Wu and A.L. Narasimha Reddy, Texas A&M University

Wu discussed how to design a file system for storage class,
byte-addressable memory. A new file system is needed for
SCMs because current file systems are not designed for
non-volatile memory devices. For one, they have a very large
overhead. Typically, this overhead is written off because I/O
latency is so high on standard disks. SCMs, however, have
significantly faster I/O, so this overhead presents a problem.
A memory-based file system will also not suffice for SCMs
because memory-based file systems assume that the devices
are using a page cache that will be lost on restore.

 ;login: JUNE 2011 Conference Reports 75

To efficiently execute such top-k queries, they proposed
maintaining skylines. Without knowing the scoring func-
tions, which are based on device characteristics, you can get
the answer from the skyline data. Their work-in-progress
includes how to identify dimensions of interest, constructing
the optimal skylines, and using approximate processing to
improve efficiency.

Load-Aware Replay of I/O Traces
Sankaran Sivathanu, Georgia Institute of Technology; Jinpyo Kim and

Devaki Kulkarni, VMware Inc.; Ling Liu, Georgia Institute of Technology

Jinpyo began by asking, “Why do we need a load-aware trace
replayer?” When traces are replayed on different systems, the
characteristics of the system can show a different I/O profile,
making performance debugging and analysis more difficult.
Jinpyo provided an example of a database program replayed
on another system, showing two very different behaviors.

They proposed using a load-based metric called “outstand-
ing I/O requests” (OIO) to evaluate I/O load-balancing
algorithms on large-scale cluster systems. Using load-based
replay of original traces from a hypervisor and replaying it
on a guest OS showed similar, reproducible behaviors across
different systems. Their future work includes generalizing to
distributed environments and improving replay accuracy.

Flash SSD Oriented IO Management for Data Intensive
Applications
Yongkun Wang, Kazuo Goda, Miyuki Nakano, and Masaru Kitsuregawa,

The University of Tokyo

Kazuo talked about optimizing flash I/O. One major direc-
tion for flash has been to develop log-structured or copy-
on-write techniques to avoid random writes. But few have
explored whether these techniques achieve the potential
performance of the device. The goal of this work is to look
at how to optimize I/O to achieve the device’s full potential.
They identified the performance gap from random writes vs.
sequential writes using DB benchmarks, and they found that
LFS gives improvement but does not reach the potential of
pure sequential writes.

They proposed “eager scheduling” using database check-
point cues, deferring write requests, and performing write
scheduling techniques such as coalescing, LFS-like address
conversion, and block alignment, all within a small buf-
fer until the checkpoint. They demonstrated a trace driven
experiment showing that even a small buffer improved per-
formance. Simply deferring the writes without the aforemen-
tioned write scheduling techniques wasn’t as helpful. Their
ongoing work is focusing on how more information from the

ments such as extremely fast versioning, control of the page
cache, cache-oblivious algorithms, the ability to rewrite
RAID, etc. Fast versioning means no B-trees, since they are
slow on disk. Performance is linear at eight cores, and it is
maintained for billions of inserts. They currently have a
product that sits above the hardware and provides a memory
monitoring stack. They will issue patches for Cassandra and
Voldemort so they can run over their existing stack.

Acunu is hiring (http://www.acunu.com/jobs). They will also
be in beta soon.

Second set of WiPs summarizerd by Vijay Vasudevan (vrv+usenix@
cs.cmu.edu)

T2M: Converting I/O Traces to Workload Models
Vasily Tarasov, Koundinya Santhosh Kumar, and Erez Zadok, Stony Brook

University; Geoff Kuenning, Harvey Mudd College

When evaluating or benchmarking systems, researchers
today commonly generate a workload and monitor output
parameters. But benchmarks themselves have a complex set
of parameters and languages to express the workload; these
benchmarks are becoming more expressive over time. Alter-
natively, people use I/O traces from real-world workloads,
which are typically more credible. Many researchers release
these real-world workloads and datasets, and as a result
these trace repositories are growing larger.

The key idea of this work, presented by Vasily, is to convert
traces to benchmark workload descriptions. Their system
takes in traces such as system call traces, file system traces,
etc., and generates an intermediate workload model, which
hooks into adapters for different benchmark frameworks.
These adapters take in the model and write the proper
parameters for each output benchmark tool. For example,
they have currently used system call traces and hooked it into
Filebench.

Skyline-enabled Storage System
H. Howie Huang and Nan Zhang, George Washington University

This talk presented S3, the Skyline-enabled Storage System,
designed to automatically manage heterogeneous storage
systems by moving files around among devices. Devices have
different characteristics (capacity, bandwidth, IOPS), and
choosing the right set of files to move can be difficult. When
a new large disk is added to a system, one would like to move
large files. This request can be expressed as a top-k SQL-like
query. If you add flash memory, you have a top-k query with a
different scoring function based on the characteristics of the
device. The scoring function therefore varies by device.

 76 ;login: VOL. 36, NO. 3

opens, but not great for writes, so the best option for a write-
optimized file system was the parallel-read approach.

Their future work focused on several research opportunities:
first, a parallel file system that uses decoupled log-structured
files presents a unique opportunity to reconsider the down-
sides of log structured file systems; second, they are inves-
tigating a scalable key-value store to hold the file offset map,
a feature they think will become important in the exascale
era.

OrangeFS: Advancing PVFS
Michael Moore, David Bonnie, Walt Ligon, Nicholas Mills, and

Shuangyang Yang, Clemson University; Becky Ligon, Mike Marshall,

Elaine Quarles, Sam Sampson, and Boyd Wilson, Omnibond Systems

Michael talked about OrangeFS (a continuation of PVFS),
a parallel open-source file system aimed at obtaining high
performance. Michael described several goals for OrangeFS.
First, they want to move file systems to fault-acceptance
rather than just fault tolerance. As systems scale, failures
increase. The systems that use parallel file systems exist in
environments that require high availability, need replication,
etc.

Support for distributed directories: applications often put
lots of files in a single directory, a challenging require-
ment for most parallel file systems. They are changing the
granularity of their directory implementation and are using
techniques from GIGA+, presented the day before at FAST ’11.

Capabilities: assumptions about trust in HPC environments
have changed, so security must be improved. Their system
uses a capability-based system to verify trust before per-
forming operations.

OrangeFS clients: they are developing for Windows and have
a working implementation.

Redundancy: they are duplicating objects between servers,
assigning different roles for metadata and data, and working
on integrating hierarchical storage, replication for perfor-
mance, and off-site replication once this is done.

Flash the Second
Summarized by Rosie Wacha (rwacha@gmail.com)

Exploiting Memory Device Wear-Out Dynamics to
Improve NAND Flash Memory System Performance
Yangyang Pan, Guiqiang Dong, and Tong Zhang, Rensselaer Polytechnic

Institute, USA

The reliability of NAND flash memory cells degrades over
time and data becomes increasingly noisy with bad data. In

application and device specifications can improve perfor-
mance.

A Novel Nested Qos Model for Efficient Resource Usage
in Storage Servers
Hui Wang and Peter Varman, Rice University

Server consolidation, bursty workloads, and single-level QoS
make performance guarantees hard to achieve. Capacity
provisioning provided by burst rate or long-term average are
both insufficient: one has low server utilization and the other
provides no strong guarantees.

In response, Hui proposed a nested QoS model. Each class
is characterized by a traffic envelope and response time
limit. If a request falls within that class, it is provided a
guarantee of that time limit. The initial results showed that
a nested QoS system could reduce the provisioned capacity
significantly in terms of IOPS compared to a single-level QoS
model, and could provide comparable performance.

Reading from a Write Optimized Parallel File System
Under Highly Concurrent Shared File Workloads
Adam Manzanares, Los Alamos National Laboratory; Milo Polte, Carnegie

Mellon University; Meghan Wingate and John Bent, Los Alamos National

Laboratory; Garth Gibson, Carnegie Mellon University

Adam explained that HPC apps have thousands of clients
writing to a single file (an N-to-1 writing pattern), which
performs poorly on parallel file systems for a number of
reasons. In response, they built an interposition layer atop
a parallel file system that converts N-to-1 writes to N-to-N.
Doing this improved write performance significantly: an
example graph showed a factor-of-50 improvement. But this
made subsequent read open times much worse. On opening
a file read-only, all processes individually try to reconstruct
a file offset map, which significantly degrades performance
because each of N clients needs to aggregate N index files,
which requires N^2 work.

They explored three different possible solutions. First, they
developed an aggregation technique that uses a root process
to perform the reconstruction exactly once, then distributing
the resulting map to all the processes. While this improves
performance over the naive approach, it unnecessarily
serializes the work onto one process. This work can be
parallelized and distributed over many nodes, which they
called the “parallel read” approach. Finally, they noted an
opportunity to write the map out to the file system on file
close because the data would likely be in memory already,
which they called the flatten-on-close approach. In their
evaluation, the flatten-on-close was actually the best for read

 ;login: JUNE 2011 Conference Reports 77

ment in application launch time using sorted prefetch. This
work eliminates seek delay by moving applications to SSDs,
resulting in some improvement in application launch time.
However, traditional HDD optimizers based on minimizing
disk head movement are not very effective on SSDs. Sorted
prefetch on SSDs results in a 7% improvement in application
launch time.

FAST overlaps CPU computation with SSD accesses by
initiating application prefetching first and starting CPU
computation when data is available. This is possible because
there is determinism in the set of blocks requested by most
application launches. FAST is implemented in Linux and it
first uses the blktrace tool to determine the blocks neces-
sary to the application, then replays block requests according
to the observed launch sequence to generate the prefetcher,
and finally executes that prefetcher simultaneously with the
original application by wrapping the exec() system call. The
challenge in prefetching the LBA from the inode informa-
tion given by blktrace was solved by building a partial inode
to LBA map for each application using a system call log.
They measured a 16–46% reduction (average: 28%) in Linux
application launch time, with higher reduction found for
applications with a higher ratio of SSD to CPU usage and
better distribution of SSD access over the launch process.
This work could be ported to smartphones, with expected
improvement of up to 37% based on measured cold and warm
start times of 14 iPhone applications.

Assar Westerlund (Permabit) asked why not use strace to
capture all the file-level I/Os such as read() system calls
and replay them instead of converting the block-level I/Os
from the blktrace into the file-level I/Os. Joo answered that,
although it is possible, capturing all the read system calls
generates an extremely huge trace size even though very few
of the read() calls will actually trigger the block requests.
Therefore, it is not an efficient approach in terms of the func-
tion call overhead and the prefetcher size. Ethan Miller from
UCSC asked about how the cold start process was done and
whether they used the application to do any work. If you use
an application, it will involve a different set of blocks than if
you simply open it. Joo answered that they flushed the page
cache and only prefetched the blocks accessed during the
measured cold start. This limits the approach in that it asso-
ciates a fixed set of blocks for launch with each application.

order to accommodate noisy media, manufacturers incor-
porate additional NAND flash memory cells to store error
correction codes (ECC). With each program/erase cycle,
charge traps are accumulated in the cells, resulting in higher
error rates. Especially at the beginning of a device’s lifetime,
the cells storing ECCs are largely underutilized. Tong Zhang
presented a mathematical channel model that treats data
retention as a Gaussian process with mean and variance
scaling with P/E cycling and time in a power law fashion.
Using this model, he introduced two techniques that better
utilize the additional flash memory cells.

The first technique improves program speed by adaptively
adjusting the voltage range, dV, for each bit. In the early
stages, a larger dV is used to speed up the program and intro-
duce some additional tolerable errors. The other technique
improves technology scalability by allocating some redun-
dant cells to compensate for defective ones. Because the
defect rate in different blocks will be different, individual
blocks will have unique P/E limits and wear leveling algo-
rithms will handle this issue. Trace-based simulations were
done using the SSD module in DiskSim. The program speed
was increased by a factor of 1.5 by varying dV throughout the
device lifetime, without violating ECC redundancy. For tech-
nology scalability, 30% higher endurance was shown with
differential wear leveling compared to uniform wear leveling.

Brent Welch from Panasas asked if they could simulate the
reduced lifetime of the device due to writing with higher volt-
ages. Zhang said yes, it’s a mathematical model and he could
modify the parameters that are based on underlying physics.
Another question was whether using redundant cells earlier
and with higher voltage than necessary causes additional
wear on cells that you would later need for redundancy.
Zhang answered that all cells are erased in every P/E cycle
anyway and because the erase cycle is a stronger contributor
to wear-out, the impact on the overall cycle limit is small.

FAST: Quick Application Launch on Solid-State Drives
Yongsoo Joo, Ewha Womans University; Junhee Ryu, Seoul National

University; Sangsoo Park, Ewha Womans University; Kang G. Shin, Ewha

Womans University and University of Michigan

Yongsoo Joo presented an application prefetcher for solid
state drives (SSDs) called FAST (Fast Application STarter).
The amount of time it takes for an application to become
responsive upon launch is a critical indicator of user satis-
faction. Hard disk drive (HDD) access latency has scaled
linearly while CPU, DRAM throughput, and HDD have scaled
exponentially. Several software schemes have addressed
this issue, including Windows sorted prefetch, which
prefetches the set of blocks historically accessed during the
launch of each application. They measured a 40% improve-

 78 ;login: VOL. 36, NO. 3

Gulati from VMware asked if they evaluated configurations
using only SSD and SATA. Guerra answered that some of
the traces have highly sequential access periods and require
SAS to match necessary throughput. Westerlund asked about
factoring the operational cost into the cost model. Guerra
showed that power is significantly reduced but hasn’t yet
incorporated that into the total system cost model.

Thursday Poster Session

First set of posters summarized by Shivaram Venkataraman (venkata4@
illinois.edu)

A File System for Storage Class Memory
Xiaojian Wu and A.L. Narasimha Reddy, Texas A&M University

Xiaojian Wu presented a poster on designing a new file
system for non-volatile memory devices. Based on the virtual
memory subsystem, the poster proposed a new layout for files
and directories to avoid overheads associated with repeatedly
accessing page tables. When asked how this differs from
existing in-memory file systems like tmpfs, Xiaojian said
that existing file systems are not optimal for Storage Class
Memory and that the newly proposed file system provides
better performance and metadata consistency.

RAMCloud: Scalable Storage System in Memory
Nanda Kumar Jayakumar, Diego Ongaro, Stephen Rumble, Ryan

Stutsman, John Ousterhout, and Mendel Rosenblum, Stanford University

Nanda Kumar Jayakumar presented RAMCloud, a cluster-
wide in-memory storage system. The storage system is
designed for applications which require low latency accesses
and was based on a log-structured design. Updates to the
system are appended to an in-memory log and these updates
are then asynchronously flushed to disk to ensure reliability.
Nanda explained that the design was also optimized for high
throughput and acknowledged that while the cost of build-
ing such a system might be high, there were many real-world
applications for which this would be affordable.

Rewriting the Storage Stack for Big Data
A. Byde, G. Milos, T. Moreton, A. Twigg, T. Wilkie, and J. Wilkes, Acunu

Andy Twigg presented a poster on changing the storage stack
in operating systems to enable high performance storage
systems. Andy explained that distributed storage systems
like Cassandra and HBase were built on top of legacy designs
like file system buffer caches. Instead, the group proposed
using a new, fully persistent, versioned B-tree which would
provide fast updates and also be optimized for SSDs. When
asked if some of their changes would conflict with the design
of Cassandra, Andy acknowledged that they had made some

Cost Effective Storage using Extent Based Dynamic
Tiering
Jorge Guerra, Florida International University; Himabindu Pucha,

Joseph Glider, and Wendy Belluomini, IBM Research Almaden; Raju

Rangaswami, Florida International University

This work investigates the area of tiered storage systems
using SSDs and shows that SATA and SAS drives still hold
a useful place in the hierarchy. The two questions are how
to choose the most cost-effective set of devices and how
to best use those devices. Jorge Guerra discussed several
initial approaches that motivated the design of the final data
placement algorithm, called Extent-based Dynamic Tier-
ing (EDT). EDT monitors the workload for each data extent
and migrates extents in 30-minute epochs. The goal of EDT
is to reduce both the initial system cost and the operational
cost. SATA drives are best used for idle data, SAS drives for
sequentially accessed data, and SSDs for randomly accessed
data. The total utilization for a given extent on each tier
is computed using the time utilization, a measure of both
IOPS and access sequentiality, and the capacity utilization,
a measure of the fraction of space used to store that extent.
By choosing the lowest-cost tier for each extent, the tiered
system response time is 43% better than an all-SAS system
while using about half the power.

Another issue is how to initially configure a tiered system
using this approach to minimize costs and maximize per-
formance. Guerra discussed a configuration advisor based
on four steps. The approach is to use a representative I/O
trace, divide the trace into fixed-length epochs, estimate the
minimum cost per epoch, and, finally, estimate the overall
set of resources needed across all epochs. For each epoch,
the minimum-cost hardware set is computed based on all
extents accessed in that epoch. Then looking at all epochs,
the maximum number of resources of each tier-type is
needed for the overall configuration.

The system is implemented in Linux and evaluated with
SSDs, SAS, and SATA drives and a power meter. The paper
contains results for SPC1-like benchmarks as well as several
Microsoft traces, but Guerra presented only the server work-
load results. EDT reduced the capital needed to build the sys-
tem by 36% from an all-SAS solution. More importantly, the
response time is 60% better than SAS and 50% better than
their initial approach. Because EDT migrates data to SSD
when it’s most frequently accessed, power is reduced by 57%.

Fred Douglis from EMC clarified that EDT is not strictly bet-
ter than the simpler IOPS-DT approach in all workloads, then
asked about data migration and whether EDT prefers to not
move data. Guerra answered that yes, at every epoch there
are several optimizations to minimize data movement. Ajay

 ;login: JUNE 2011 Conference Reports 79

dBug: Systematic Testing of Distributed and Multi-
Threaded Systems
Jiri Simsa, Garth Gibson, and Randy Bryant, Carnegie Mellon University

Jiri Simsa presented the poster on dBug, a testing frame-
work for distributed and multi-threaded systems. The poster
described how dBug worked by intercepting system calls
made by the program and had been used to find bugs in Sta-
sis, a transactional storage system. Jiri also pointed out that
these were not limited to multi-threaded programs and that
dBug could also be used to find any implementation errors in
protocols used in RPC-based message-passing systems.

Second set of posters summarized by Yuehai Xu (yhxu@wayne.edu)

PreFail: Programmable and Efficient Failure Testing
Framework
Pallavi Joshi, Haryadi S. Gunawi, and Koushik Sen, University of

California, Berkeley

Pallavi Joshi introduced a testing framework (PreFail) to
address the challenges on how to systematically explore
failures of large-scale distributed systems. Through Pre-
Fail, testers can easily express failure exploration polices of
various complexities. Evaluation showed that the framework
can produce improvements up to a factor of 21, depending on
workload and failure type.

Repairing Erasure Codes
Dimitris S. Papailiopoulos and Alexandros G. Dimakis, University of

Southern California

Alex Dimakis surveyed recent developments in the infor-
mation theory community on designing new erasure codes
that have efficient rebuild properties. He gave us an example
about how to set the extra repair traffic to theoretic mini-
mum cut-set bound when the coding was using maximum
distance separable (MDS) erasure codes such as Reed-Solo-
mon codes.

T2M: Converting I/O Traces to Workload Models
Vasily Tarasov, Koundinya Santhosh Kumar, and Erez Zadok, Stony Brook

University; Geoff Kuenning, Harvey Mudd College

Traces are cumbersome to replay and do not scale well as
a system becomes more complicated. Vasily Tarasov said
their objectives are to investigate the possibility of automati-
cally creating workload models from existing traces and to
produce scalable and easy-to-use models while maintaining
realism of the traces. Currently, three main directions are
considered: the set of parameters extracted from the traces,
the level at which the traces need to be generated, and the
language used for expressing the traces.

modifications to Cassandra and would be releasing patches
for that.

DiskReduce: RAIDing the Cloud
Bin Fan, Wittawat Tantisiriroj, Lin Xiao, and Garth Gibson, Carnegie

Mellon University

DiskReduce, presented by Wittawat Tantisiriroj, explored
the possibility of integrating RAID with distributed file
systems like HDFS. With traces from Facebook, Yahoo, and
a research cluster at Carnegie Mellon University, the authors
found that in most clusters, around 80% of the files were
smaller than 64 MB, the block size used in HDFS. Hence they
implemented RAID encoding algorithms for all the files in a
particular directory and found that there was little perfor-
mance degradation and no significant change in the data loss
rate.

OrangeFS: Advancing PVFS
Michael Moore, David Bonnie, Walt Ligon, Nicholas Mills, and

Shuangyang Yang, Clemson University; Becky Ligon, Mike Marshall,

Elaine Quarles, Sam Sampson, and Boyd Wilson, Omnibond Systems

Michael Moore presented the poster on OrangeFS, which is
an effort to improve PVFS, a parallel file system deployed in
clusters. When asked about the similarities between meta-
data layout in OrangeFS and the paper on GIGA+ presented
at the conference, Michael clarified that the implementation
in OrangeFS was a simplified version of what was discussed
in the paper. He also said that they were implementing
OrangeFS to be “failure accepting,” which meant that the file
system was robust against events such as disk failures.

New Cache Writeback Algorithms for Servers and
Storage
Sorin Faibish, Peter Bixby, John Forecast, Philippe Armangau, and

Sitaram Pawar, EMC

The cache writeback algorithms used in the Linux kernel
were the subject of the poster presented by Sorin Faibish.
Based on multiple workloads, the poster presented evidence
on how the existing cache writeback algorithms were detri-
mental to the performance and reliability of the system. The
poster also proposed many new cache writeback algorithms;
when asked which of those performed better, Sorin explained
that the effort was meant to raise awareness about the prob-
lems associated with swapping and that the final solution
could be any one of them.

 80 ;login: VOL. 36, NO. 3

Analysis of Workload Behavior in Scientific and
Historical Long-Term Data Repositories
Ian F. Adams, University of California, Santa Cruz; Mark W. Storer,

NetApp; Ethan L. Miller, University of California, Santa Cruz

In this work, Ian F. Adams presented results of their recent
study on the archival system’s characteristics through ana-
lyzing access behavior data. The results are useful to guide
the design of future archival systems. They discovered that
storage systems appear to be becoming more disk-centric
and the assumption of write-once read-maybe doesn’t hold
universally. Additionally, they discovered that it is extremely
challenging to acquire useful datasets. To this end, data-
centric tools for long-term tracing are needed.

Skyline-enabled Storage System
H. Howie Huang and Nan Zhang, George Washington University

Nan Zhang presented the idea of enabling efficient and auto-
mated management over a large-scale file system, in which
the key prerequisite is the ability to process top-k queries
in an efficient manner. They borrow the idea of the skyline
operator from the database community and extend it to auto-
mated management of large file and storage systems. Their
approach is to maintain a list of skyline files in the system
that can support efficient processing of all top-k queries,
regardless of what the scoring function might be.

Load-Aware Replay of I/O Traces
Sankaran Sivathanu, Georgia Institute of Technology; Jinpyo Kim and

Devaki Kulkarni, VMware Inc.; Ling Liu, Georgia Institute of Technology

Jinpyo Kim introduced an I/O load-aware replay mechanism,
so that the load profile of the original application/system can
be matched with that of the replay system, even when the
environments of these two systems are different. Number of
pending requests is the key metric used for making the load-
aware replay keep the trace performance behaviors. Evalua-
tion showed that the objective is achieved pretty well.

A Novel Nested Qos Model for Efficient Resource Usage
in Storage Servers
Hui Wang and Peter Varman, Rice University

Hui Wang proposed a nested QoS service model to provide
flexible QoS performance guarantees to clients. This model
places requests into different classes according to a user’s
SLO (service level objective) in terms of response time. A
class tag is then set for each request to guide its scheduling.
Evaluation showed that resources required for implementing
the nested QoS model is several times smaller than that for a
single-level QoS, while the service quality experienced by the
clients is minimally degraded.

Reading from a Write Optimized Parallel File System
Under Highly Concurrent Shared File Workloads
Adam Manzanares, Los Alamos National Laboratory; Milo Polte, Carnegie

Mellon University; Meghan WingazMellon University

Adam Manzanares improved the read bandwidth of the
Parallel Log-Structured File System (PLFS) by introducing
several index aggregation optimizations. PLFS is a write-
optimized file system that was designed for shared file work-
loads. PLFS transforms a logical shared file into independent
log-structured components. Planned future work includes a
thorough investigation into the read performance of PLFS
using representative scientific workloads and the develop-
ment of a scalable shared indexing mechanism for PLFS.

