
  

conference

proceedings

Proceedings of the 2022 U
SEN

IX A
nnual Technical Conference 

Carlsbad, CA
, USA    July 11–13, 2022

Sponsored by 

ISBN 978-1-939133-29-8

2022 USENIX 
Annual Technical Conference

Carlsbad, CA, USA 
July 11–13, 2022



USENIX Supporters

USENIX Patrons
Amazon • Ethyca • Google • Meta 
Microsoft • NetApp • Salesforce

USENIX Benefactors
AuriStor • Bloomberg • Discernible • Goldman Sachs • IBM 

Shopify • Thinkst Canary • Transcend • Two Sigma

USENIX Partner
Blameless • Lightstep • Top10VPN

Open Access Supporter
Google

Open Access Publishing Partner
PeerJ

USENIX ATC ’22 Sponsors

Media Sponsor

Silver Sponsors

General Sponsors

Bronze Sponsors

No Starch Press

Open Access Sponsor





USENIX Association

July 11–13, 2022 
Carlsbad, CA, USA

Proceedings of the 
2022 USENIX Annual Technical Conference



Conference Organizers
Program Co-Chairs
Jiri Schindler, Tranquil Data
Noa Zilberman, University of Oxford

Program Committee
Reto Achermann, University of British Columbia
Gustavo Alonso, ETH Zurich
Raja Appuswamy, EURECOM
Anys Bacha, University of Michigan
Saurabh Bagchi, Purdue University
Yungang Bao, Institute of Computing Technology, Chinese 

Academy of Sciences
Antonio Barbalace, University of Edinburgh
Yaniv Ben Itzhak, VMware Research
Annette Bieniusa, TU Kaiserslautern
Roberto Bifulco, NEC Laboratories Europe
Laurent Bindschaedler, Massachusetts Institute of Technology
William Bolosky, Microsoft Research
James Bottomley, IBM Research
Nathan Bronson, Rockset
Mihai Budiu, VMware Research
Somali Chaterji, Purdue University
Lydia Chen, Delft University of Technology
Young-ri Choi, UNIST (Ulsan National Institute of Science and 

Technology)
David Cock, ETH Zurich
Dilma Da Silva, Texas A&M University
Angela Demke Brown, University of Toronto
Fred Douglis, Peraton Labs
Abhinav Duggal, Dell EMC
Pascal Felber, University of Neuchatel
Pedro Fonseca, Purdue University
Wei Gao, University of Pittsburgh
Eran Gilad, Yahoo Research
Yotam Harchol, DFINITY Foundation
Tim Harris, Microsoft
Niranjan Hasabnis, Intel Labs
David Hay, Hebrew University
Michio Honda, University of Edinburgh
Jon Howell, VMware
Yu Hua, Huazhong University of Science and Technology
Joo-young Hwang, Samsung Electronics
Rebecca Isaacs, Twitter
Zsolt Istvan, TU Darmstadt
Anand Iyer, Microsoft Research
Bill Jannen, Williams College
Theo Jepsen, Stanford University
Anuj Kalia, Microsoft
Michael Kozuch, Intel Labs
John Kubiatowicz, University of California, Berkeley
Youngjin Kwon, Korea Advanced Institute of Science and 

Technology (KAIST)
Sándor Laki, ELTE Eötvös Loránd University

Shir Landau Feibish, The Open University of Israel
Alberto Lerner, University of Fribourg
Youyou Lu, Tsinghua University
Xiaosong Ma, Qatar Computing Research Institute
Ilias Marinos, Microsoft Research
A. Theodore Markettos, University of Cambridge
Ali Mashtizadeh, University of Waterloo
Michael Mesnier, Intel
Ethan Miller, University of California, Santa Cruz / Pure Storage
Changwoo Min, Virginia Tech
Subrata Mitra, Adobe Research
Jayashree Mohan, Microsoft Research India
Sue Moon, Korea Advanced Institute of Science and Technology 

(KAIST)
Kiran-Kumar Muniswamy-Reddy, Amazon
Onur Mutlu, ETH Zurich
Khanh Nguyen, Texas A&M University
Ruslan Nikolaev, The Pennsylvania State University
Shadi Noghabi, Microsoft Research
Fernando Pedone, Università della Svizzera italiana
Adrian Perrig, ETH Zurich
Babu Pillai, Intel Labs
Thanumalayan Pillai, Google
Fernando Ramos, Universidade de Lisboa
Kaveh Razavi, ETH Zurich
Elissa M. Redmiles, Max Planck Institute for Software Systems
Larry Rudolph, Two Sigma Investments, LP
Russell Sears, Apple
Mark Silberstein, Technion—Israel Institute of Technology
Georgios Smaragdakis, Delft University of Technology
Keith A. Smith, MongoDB
Ripduman Sohan, Xilinx
Patrick Stuedi, Meta
Nik Sultana, Illinois Institute of Technology
Vasily Tarasov, IBM Research - Almaden
Alain Tchana, ENS Lyon, France
Jens Teubner, TU Dortmund
Eno Thereska, Amazon
Daniel Thomas, University of Strathclyde
Theodore Ts’o, Google
Shay Vargaftik, VMware Research
Nandita Vijaykumar, University of Toronto
Haris Volos, University of Cyprus
Keval Vora, Simon Fraser University
Han Wang, Intel
Ric Wheeler, Facebook
Avani Wildani, Emory University
Dan Williams, Virginia Tech
Youjip Won, Korea Advanced Institute of Science and Technology 

(KAIST)
Eiko Yoneki, University of Cambridge
Yibo Zhu, ByteDance

© 2022 by The USENIX Association

All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the author or the author’s 
 employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research 
purposes.  Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings. 
USENIX  acknowledges all trademarks herein.

ISBN 978-1-939133-29-8

External Reviewers
Amit Levy

Aravind Machiry
Calin Iorgulescu

Chia-Che Tsai
Jasmina Malicevic

Minjia Zhang

Reza Yazdani Aminabadi
Roberto Palmieri
Valerio Schiavoni



Message from the 
USENIX ATC ’22 Program Co-Chairs

Introduction
Welcome to the 2022 USENIX Annual Technical Conference (ATC). We are excited that, after two years of being virtual 
due to the COVID-19 pandemic, this year’s conference is held again in person. Because of the ongoing special circumstances, 
USENIX has adopted a hybrid model with some attendees and presenters connecting remotely. 

Similar to last year, ATC 2022 is co-located with OSDI. Our 2021 predecessors have already written extensively about the 
opportunities and challenges of running two systems conferences at the same time (https://www.usenix.org/sites/default/files/
atc21_message.pdf). This year brings the new challenge of running the two co-located events in a hybrid model. We very 
much look forward to meeting everyone in the systems community whether they attend ATC, OSDI, or both.

The rest of this document provides some insights into the submission and selection process that culminated in 64 accepted 
works that will be presented at the conference.

Submissions process
We have solicited full length and short papers presenting new and original computer systems work. We adopted a double-blind 
review process to minimize bias. To further  the USENIX mission of bringing together researchers in academia and systems 
practitioners, we have designated a special Operational Systems Track (OST) category to solicit submissions describing the 
experiences from deployed systems at “production” scale with real-world data. OST submissions received the same rigorous 
review process but with different criteria. The submission’s novelty bar was lower, and system and organization names did not 
have to be blinded. Switching submission tracks after the deadline was forbidden.

Authors were requested to provide additional information with their submission. First, we asked whether the paper was a 
re-submission from prior ATC or some other conference. 65% of the papers were marked as first-time submissions and 45% 
of the accepted papers were first time submissions. In case of a resubmission, authors provided a description of what changes 
they made since the previous submission. The reviewers and the program committee (PC) had access to this information, but 
they did not know the venue where the paper was submitted or specific review comments (unless provided by the authors). 
Prior submission information had no bearing on assigning reviewers.

We also asked the authors to indicate whether they would make an artifact available. 70% of submissions indicated they 
would, if accepted.  With all else being equal, the PC viewed more favorably submissions that would share an artifact over 
those that did not. As researchers, we need to ensure reproducibility of published works. As members of the USENIX 
community, we want to provide free and open access to data. The artifact evaluation process, which we instituted this year 
together with OSDI, provides this assurance.

We received 394 submissions, of which 21 (5%) were in OST and 23 (6%) were short papers. This was about 15% more 
submissions than in the previous two years.  We rejected 5 submissions without a review due to violating one or more direc-
tives stated in the call for papers (CFP). The most popular submission topics were Distributed System (26%), Storage (24%), 
Machine Learning (21%), Operating Systems (15%), Networking (14%), Databases (13%) and Security (13%).

In the end, the PC accepted 64 submissions for an overall 16.5% acceptance rate. Acceptance was based on the quality of the 
submissions, while in-person conference constraints had no bearing on our decisions. Of the 64 accepted submissions, 7 (33% 
acceptance rate) were in Operational Systems Track and 2 (9% acceptance rate) were short papers.

Program Committee
We have assembled a program committee with many goals in mind: good coverage across diverse computer systems topics, 
balance between academia and industry, a mix of veterans of prior ATC PCs with individuals in early stages of their profes-
sional careers, geographic diversity, and adherence to the USENIX diversity and inclusion principles.

The assembled PC had 97 members from 15 countries, 52% from North America, 37% from EMEA and 10% from APAC. 
60% of the PC were from academia and 40% from industry, though some PC members from academia were also affiliated 
with industry. 36% of the reviewers were early career researchers. Women were 64% more likely to decline an invitation to join 
the PC, which we find to be an alarming indication. 

The main areas of expertise of PC members were Storage (22%), Distributed Systems (20%), Operating Systems (14%), 
Security (13%), Networking (12%) and Databases (9%). This was a good match to the submissions topics, given the PC was 
assembled in advance. As only 9% of PC members indicated that Machine Learning is their main expertise, a mismatch with 
21% of submissions, we expanded the PC post submission deadline with more machine learning experts and recruited the help 
of a few expert external reviewers.

Reviewing Process
We proceeded with two double-blind review rounds with the authors’ response after round 2 and before the PC meeting. We 
sent early rejection notifications to 58% of papers 10 weeks after the initial submission to allow authors a quick turnaround 
on their resubmission. In the first round, we assigned 3 reviewers per paper, in the vast majority of cases, complementing the 
expertise with external reviewers as necessary. In the second round, we assigned at least two additional reviewers to the 162 
submissions not rejected earlier.

After the authors’ response and an online discussion among the reviewers (with some papers receiving over 20 comments), 
we pre-accepted 48 papers. We identified additional 39 papers for discussion at the face-to-face (virtual) PC meeting, of 
which 42% of papers were accepted, and PC members had the opportunity to “revive” papers. Despite having PC members 
spanning a geographic area of 13 time zones, we conducted the virtual meeting “live”. While the day (and night) was long, 
with the usual logistical challenges of handling conflicts virtually in break-out rooms, we found that the ability to discuss and 
calibrate our acceptance criteria during the PC meeting was very important and proved very useful.

Artifact Evaluation Process
For the first time this year, ATC adopted an artifact evaluation process. The process ran jointly with OSDI, led by Anuj Ka-
lia, Neeraja J. Yadwadkar, and Chengyu Zhang. The artifact evaluation committee chairs assembled a committee consisting 
of 118 members.

The authors of all accepted papers were invited to submit an artifact for an evaluation. 52 out of 64 papers (81%) had done so. 
88% of artifacts received an “Available” badge, 76% received a “Functional” badge, and 61% received a “Reproduced” badge. 
51% of papers received all three badges (some artifacts were reproduced, but are not available). Only one artifact received no 
badge.

Additional Observations
Strong papers easily stood out; 38% of the accepted papers received only positive reviews, and an additional 44% had only a 
single weak-reject initial recommendation. This is also why so many papers were accepted prior to the PC discussion.

The Operational System Track (OST) was intended only for operational systems, especially those deployed at scale. In par-
ticular, there was an interest in the experience using these operational systems. Some authors mistook a working prototype 
for an operational system. While all submissions to ATC are expected to describe working systems, a prototype implementa-
tion to gather experimental results is not the same. OST submissions required describing the experience of using the system.

Anonymization rules were not always followed. Only one paper was rejected immediately during post-submission checks 
for deblinding authors names and affiliations. However, several papers were rejected following the first round of reviews, as 
authors had a technical report using a similar title or a similar system name. This, in turn, led to unblinding the papers to re-
viewers and violated the submission rules. Anonymization rules, especially when applied to technical reports, vary from year 
to year and between conferences. Authors should be extra vigilant when submitting blinded manuscripts. 

Acknowledgements
More than 200 people have contributed to the organization of the USENIX ATC ’22, most of them in a voluntary capacity. 
We would like to thank each and every one of them.  We are tremendously grateful to the program committee members for 
a job extremely well done, and for their personal sacrifices.  We thank the Artifact Evaluation committee and the Artifact 
Evaluation Committee Chairs for their work and contribution, which improves our community and enables future research. 
Last, we thank the USENIX organization, the USENIX ATC steering committee and OSDI ’22 co-chairs. The amount of 
work and preparation that goes into organizing a conference is immense, and we were astounded by the help and support 
provided by everyone involved.

USENIX ATC ’22 Program Co-Chairs 
Noa Zilberman, University of Oxford 
Jiri Schindler, Tranquil Data



DVABatch: Diversity-aware Multi-Entry Multi-Exit Batching for Efficient Processing of DNN Services on GPUs  . 183
Weihao Cui, Han Zhao, Quan Chen, Hao Wei, and Zirui Li, Shanghai Jiao Tong University; Deze Zeng, China University 
of Geosciences; Chao Li and Minyi Guo, Shanghai Jiao Tong University

Serving Heterogeneous Machine Learning Models on Multi-GPU Servers with Spatio-Temporal Sharing   .  .  .  .  .  .  . 199
Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin Kwon, and Jaehyuk Huh, KAIST

PilotFish: Harvesting Free Cycles of Cloud Gaming with Deep Learning Training   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .217
Wei Zhang and Binghao Chen, Shanghai Jiao Tong University; Zhenhua Han, Microsoft Research Asia; Quan Chen, 
Shanghai Jiao Tong University; Peng Cheng, Fan Yang, Ran Shu, and Yuqing Yang, Microsoft Research; Minyi Guo, 
Shanghai Jiao Tong University

Operating Systems 1
Privbox: Faster System Calls Through Sandboxed Privileged Execution .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 233
Dmitry Kuznetsov and Adam Morrison, Tel Aviv University

BBQ: A Block-based Bounded Queue for Exchanging Data and Profiling   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 249
Jiawei Wang, Huawei Dresden Research Center, Huawei OS Kernel Lab and Technische Universität Dresden; Diogo 
Behrens, Ming Fu, Lilith Oberhauser, Jonas Oberhauser, and Jitang Lei, Huawei Dresden Research Center, Huawei OS 
Kernel Lab; Geng Chen, Huawei OS Kernel Lab; Hermann Härtig, Technische Universität Dresden; Haibo Chen, Huawei 
OS Kernel Lab and Shanghai Jiao Tong University

Disaggregated Systems
Sibylla: To Retry or Not To Retry on Deep Learning Job Failure  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 263
Taeyoon Kim, Suyeon Jeong, Jongseop Lee, Soobee Lee, and Myeongjae Jeon, UNIST

Speculative Recovery: Cheap, Highly Available Fault Tolerance with Disaggregated Storage   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 271
Nanqinqin Li, Anja Kalaba, Michael J. Freedman, Wyatt Lloyd, and Amit Levy, Princeton University

Direct Access, High-Performance Memory Disaggregation with DirectCXL  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 287
Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo Jung, Computer Architecture and Memory Systems 
Laboratory, Korea Advanced Institute of Science and Technology (KAIST)

Networking 1
Not that Simple: Email Delivery in the 21st Century  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 295
Florian Holzbauer, SBA Research; Johanna Ullrich, University of Vienna; Martina Lindorfer, TU Wien; Tobias Fiebig, 
Max-Planck-Institut für Informatik

AddrMiner: A Comprehensive Global Active IPv6 Address Discovery System  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 309
Guanglei Song, Jiahai Yang, Lin He, Zhiliang Wang, Institute for Network Sciences and Cyberspace, BNRist, Tsinghua 
University and Quan Cheng Laboratory, Jinan, Shandong, China; Guo Li and Chenxin Duan, Institute for Network 
Sciences and Cyberspace, BNRist, Tsinghua University; Yaozhong Liu, Tsinghua University; Zhongxiang Sun, School of 
Computer and Information Technology, Beijing Jiaotong University

Co-opting Linux Processes for High-Performance Network Simulation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 327
Rob Jansen, U.S. Naval Research Laboratory; Jim Newsome, Tor Project; Ryan Wails, Georgetown University, U.S. 
Naval Research Laboratory

Finding Bugs
KSG: Augmenting Kernel Fuzzing with System Call Specification Generation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 351
Hao Sun, Yuheng Shen, Jianzhong Liu, Yiru Xu, and Yu Jiang, Tsinghua University

DLOS: Effective Static Detection of Deadlocks in OS Kernels   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 367
Jia-Ju Bai, Tuo Li, and Shi-Min Hu, Tsinghua University

Modulo: Finding Convergence Failure Bugs in Distributed Systems with Divergence Resync
Models   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 383
Beom Heyn Kim, Samsung Research and University of Toronto; Taesoo Kim, Samsung Research and Georgia Institute of 
Technology; David Lie, University of Toronto

2022 USENIX Annual Technical Conference
July 11–13, 2022

Monday, July 11
Storage 1
ZNSwap: un-Block your Swap  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1
Shai Bergman, Technion; Niklas Cassel and Matias Bjørling, Western Digital; Mark Silberstein, Technion

Building a High-performance Fine-grained Deduplication Framework for Backup Storage with High  
Deduplication Ratio   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 19
Xiangyu Zou and Wen Xia, Harbin Institute of Technology, Shenzhen; Philip Shilane, Dell Technologies; Haijun Zhang 
and Xuan Wang, Harbin Institute of Technology, Shenzhen

Secure and Lightweight Deduplicated Storage via Shielded Deduplication-Before-Encryption  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 37
Zuoru Yang, The Chinese University of Hong Kong; Jingwei Li, University of Electronic Science and Technology of 
China; Patrick P. C. Lee, The Chinese University of Hong Kong

Containers
RunD: A Lightweight Secure Container Runtime for High-density Deployment and
High-concurrency Startup in Serverless Computing   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 53
Zijun Li, Department of Computer Science and Engineering, Shanghai Jiao Tong University and Alibaba Group; Jiagan 
Cheng, and Quan Chen, Department of Computer Science and Engineering, Shanghai Jiao Tong University; Eryu Guan, 
Zizheng Bian, Yi Tao, Bin Zha, Qiang Wang, and Weidong Han, Alibaba Group; Minyi Guo, Department of Computer 
Science and Engineering, Shanghai Jiao Tong University

Help Rather Than Recycle: Alleviating Cold Startup in Serverless Computing Through
Inter-Function Container Sharing   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 69
Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng, and Chuhao Xu, Shanghai Jiao Tong University; Deze Zeng, School of 
Computer Science, China University of Geosciences; Zhuo Song, Tao Ma, and Yong Yang, Alibaba Cloud; Chao Li and 
Minyi Guo, Department of Computer Science and Engineering, Shanghai Jiao Tong University

RRC: Responsive Replicated Containers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 85
Diyu Zhou, UCLA and EPFL; Yuval Tamir, UCLA

Distributed Systems 1
uKharon: A Membership Service for Microsecond Applications  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .101
Rachid Guerraoui and Antoine Murat, École Polytechnique Fédérale de Lausanne (EPFL); Javier Picorel, Huawei 
Technologies; Athanasios Xygkis, EPFL; Huabing Yan and Pengfei Zuo, Huawei Technologies

KRCORE: A Microsecond-scale RDMA Control Plane for Elastic Computing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 121
Xingda Wei, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University, and Shanghai AI 
Laboratory; Fangming Lu, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University; 
Rong Chen, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University, and Shanghai AI 
Laboratory; Haibo Chen, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University

Zero-Change Object Transmission for Distributed Big Data Analytics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 137
Mingyu Wu, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University and Shanghai AI 
Laboratory; Shuaiwei Wang, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University; 
Haibo Chen and Binyu Zang, Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University and 
Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

Sift: Using Refinement-guided Automation to Verify Complex Distributed Systems  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 151
Haojun Ma, Hammad Ahmad, Aman Goel, Eli Goldweber, Jean-Baptiste Jeannin, Manos Kapritsos, and Baris Kasikci, 
University of Michigan

Machine Learning 1
Faith: An Efficient Framework for Transformer Verification on GPUs   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 167
Boyuan Feng, Tianqi Tang, Yuke Wang, Zhaodong Chen, Zheng Wang, Shu Yang, Yuan Xie, and Yufei Ding, University of 
California, Santa Barbara



Memory Harvesting in Multi-GPU Systems with Hierarchical Unified Virtual Memory  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 625
Sangjin Choi and Taeksoo Kim, KAIST; Jinwoo Jeong, Ajou University; Rachata Ausavarungnirun, KMUTNB; 
Myeongjae Jeon, UNIST; Youngjin Kwon, KAIST; Jeongseob Ahn, Ajou University

Deployed Systems 1
Zero Overhead Monitoring for Cloud-native Infrastructure using RDMA  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 639
Zhe Wang, Shanghai Jiao Tong University; Teng Ma, Alibaba Group; Linghe Kong, Shanghai Jiao Tong University; 
Zhenzao Wen, Jingxuan Li, Zhuo Song, Yang Lu, Yong Yang, and Tao Ma, Alibaba Group; Guihai Chen, Shanghai Jiao 
Tong University; Wei Cao, Alibaba Group

CRISP: Critical Path Analysis of Large-Scale Microservice Architectures   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 655
Zhizhou Zhang, UC Santa Barbara; Murali Krishna Ramanathan, Prithvi Raj, and Abhishek Parwal, Uber Technologies Inc.; 
Timothy Sherwood, UC Santa Barbara; Milind Chabbi, Uber Technologies Inc.

Whale: Efficient Giant Model Training over Heterogeneous GPUs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 673
Xianyan Jia, Le Jiang, Ang Wang, and Wencong Xiao, Alibaba Group; Ziji Shi, Alibaba Group and National University 
of Singapore; Jie Zhang, Xinyuan Li, Langshi Chen, Yong Li, Zhen Zheng, Xiaoyong Liu, and Wei Lin, Alibaba Group

Machine Learning 3
Cachew: Machine Learning Input Data Processing as a Service   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 689
Dan Graur, Damien Aymon, Dan Kluser, and Tanguy Albrici, ETH Zurich; Chandramohan A. Thekkath, Google; Ana 
Klimovic, ETH Zurich

CoVA: Exploiting Compressed-Domain Analysis to Accelerate Video Analytics   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 707
Jinwoo Hwang, Minsu Kim, Daeun Kim, Seungho Nam, Yoonsung Kim, and Dohee Kim, KAIST; Hardik Sharma, 
Google; Jongse Park, KAIST

Soter: Guarding Black-box Inference for General Neural Networks at the Edge  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 723
Tianxiang Shen, Ji Qi, Jianyu Jiang, Xian Wang, Siyuan Wen, Xusheng Chen, and Shixiong Zhao, The University of Hong 
Kong; Sen Wang and Li Chen, Huawei Technologies; Xiapu Luo, The Hong Kong Polytechnic University; Fengwei Zhang, 
Southern University of Science and Technology (SUSTech); Heming Cui, The University of Hong Kong

Storage 2
IPLFS: Log-Structured File System without Garbage Collection  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 739
Juwon Kim, Minsu Jang, Muhammad Danish Tehseen, Joontaek Oh, and YouJip Won, KAIST 

Vigil-KV: Hardware-Software Co-Design to Integrate Strong Latency Determinism into Log-Structured Merge  
Key-Value Stores  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 755
Miryeong Kwon, Seungjun Lee, and Hyunkyu Choi, KAIST; Jooyoung Hwang, Samsung Electronics Co., Ltd.; 
Myoungsoo Jung, KAIST

Pacman: An Efficient Compaction Approach for Log-Structured Key-Value Store on Persistent Memory  .  .  .  .  .  .  .  . 773
Jing Wang, Youyou Lu, Qing Wang, and Minhui Xie, Tsinghua University; Keji Huang, Huawei Technologies Co., Ltd; 
Jiwu Shu, Tsinghua University

Networking 2
Towards Latency Awareness for Content Delivery Network Caching  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 789
Gang Yan and Jian Li, SUNY-Binghamton University

Hashing Design in Modern Networks: Challenges and Mitigation Techniques  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 805
Yunhong Xu, Texas A&M University; Keqiang He and Rui Wang, Google; Minlan Yu, Harvard University and Google; 
Nick Duffield, Texas A&M University; Hassan Wassel, Shidong Zhang, Leon Poutievski, Junlan Zhou, and Amin Vahdat, 
Google

Firebolt: Finding Bugs in Programmable Data Plane Generators   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 819
Jiamin Cao, Tsinghua University; Yu Zhou and Chen Sun, Alibaba Group; Lin He, Zhaowei Xi, and Ying Liu, Tsinghua 
University

Tuesday, July 12
Security
SoftTRR: Protect Page Tables Against Rowhammer Attacks Using Software-Only Target Row Refresh  .  .  .  .  .  .  .  .  . 399
Zhi Zhang, CSIRO’s Data61, Australia; Yueqiang Cheng, NIO Security Research; Minghua Wang, Baidu Security; Wei 
He and Wenhao Wang, State Key Laboratory of Information Security, Institute of Information Engineering, CAS, and 
University of Chinese Academy of Sciences; Surya Nepal, CSIRO’s Data61, Australia; Yansong Gao, Nanjing University 
of Science and Technology, China; Kang Li, Baidu Security; Zhe Wang and Chenggang Wu, State Key Laboratory of 
Computer Architecture, Institute of Computing Technology, CAS, and University of Chinese Academy of Sciences

Hardening Hypervisors with Ombro  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 415
Ethan Johnson, Colin Pronovost, and John Criswell, Department of Computer Science, University of Rochester

HyperEnclave: An Open and Cross-platform Trusted Execution Environment  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 437
Yuekai Jia, Tsinghua University; Shuang Liu, Ant Group; Wenhao Wang, SKLOIS, Institute of Information Engineering, 
CAS, and School of Cyber Security, University of Chinese Academy of Sciences; Yu Chen, Tsinghua University; Zhengde 
Zhai, Shoumeng Yan, and Zhengyu He, Ant Group

Pridwen: Universally Hardening SGX Programs via Load-Time Synthesis   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 455
Fan Sang, Georgia Institute of Technology; Ming-Wei Shih, Microsoft; Sangho Lee, Microsoft Research; Xiaokuan 
Zhang, Georgia Institute of Technology; Michael Steiner and Mona Vij, Intel Labs; Taesoo Kim, Georgia Institute of 
Technology

Machine Learning 2
Tetris: Memory-efficient Serverless Inference through Tensor Sharing   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 473
Jie Li, Laiping Zhao, and Yanan Yang, College of Intelligence & Computing (CIC), Tianjin University, and Tianjin Key 
Lab of Advanced Networking (TANKLAB); Kunlin Zhan, 58.com; Keqiu Li, College of Intelligence & Computing (CIC), 
Tianjin University, and Tianjin Key Lab of Advanced Networking (TANKLAB)

PetS: A Unified Framework for Parameter-Efficient Transformers Serving   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 489
Zhe Zhou, Peking University; Xuechao Wei, Peking University and Alibaba Group; Jiejing Zhang, Alibaba Group; 
Guangyu Sun, Peking University

Campo: Cost-Aware Performance Optimization for Mixed-Precision Neural Network Training  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 505
Xin He, CSEE, Hunan University & Xidian University; Jianhua Sun and Hao Chen, CSEE, Hunan University; Dong Li, 
University of California, Merced

Primo: Practical Learning-Augmented Systems with Interpretable Models  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 519
Qinghao Hu, Nanyang Technological University and S-Lab, NTU; Harsha Nori, Microsoft; Peng Sun, SenseTime; 
Yonggang Wen and Tianwei Zhang, Nanyang Technological University

Distributed Systems 2
Meces: Latency-efficient Rescaling via Prioritized State Migration for Stateful Distributed Stream  
Processing Systems  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 539
Rong Gu, Han Yin, Weichang Zhong, Chunfeng Yuan, and Yihua Huang, State Key Laboratory for Novel Software 
Technology, Nanjing University

DepFast: Orchestrating Code of Quorum Systems  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 557
Xuhao Luo, University of Illinois at Urbana-Champaign; Weihai Shen and Shuai Mu, Stony Brook University;  
Tianyin Xu, University of Illinois at Urbana-Champaign

High Throughput Replication with Integrated Membership Management  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 575
Pedro Fouto, Nuno Preguiça, and João Leitão, NOVA LINCS & NOVA University Lisbon

Operating Systems 2
CBMM: Financial Advice for Kernel Memory Managers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 593
Mark Mansi, Bijan Tabatabai, and Michael M. Swift, University of Wisconsin - Madison

EPK: Scalable and Efficient Memory Protection Keys  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 609
Jinyu Gu, Hao Li, Wentai Li, Yubin Xia, and Haibo Chen, Engineering Research Center for Domain-specific Operating 
Systems, Ministry of Education, China, Institute of Parallel and Distributed Systems (IPADS), SEIEE, Shanghai Jiao 
Tong University



Wednesday, July 13
Compilers and PL
Investigating Managed Language Runtime Performance: Why JavaScript and Python are 8x and 29x slower than 
C++, yet Java and Go can be Faster?   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 835
David Lion, University of Toronto and YScope Inc.; Adrian Chiu and Michael Stumm, University of Toronto; Ding Yuan, 
University of Toronto and YScope Inc.

Automatic Recovery of Fine-grained Compiler Artifacts at the Binary Level  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 853
Yufei Du, University of North Carolina at Chapel Hill; Ryan Court and Kevin Snow, Zeropoint Dynamics; Fabian 
Monrose, University of North Carolina at Chapel Hill

JITServer: Disaggregated Caching JIT Compiler for the JVM in the Cloud  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 869
Alexey Khrabrov, University of Toronto; Marius Pirvu and Vijay Sundaresan, IBM; Eyal de Lara, University of Toronto

Riker: Always-Correct and Fast Incremental Builds from Simple Specifications  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 885
Charlie Curtsinger, Grinnell College; Daniel W. Barowy, Williams College

Storage 3
FlatFS: Flatten Hierarchical File System Namespace on Non-volatile Memories  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 899
Miao Cai, Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University; School of 
Computer and Information, Hohai University; State Key Laboratory for Novel Software Technology, Nanjing University; 
Junru Shen, School of Computer and Information, Hohai University; Bin Tang, School of Computer and Information, 
Hohai University; Hao Huang, State Key Laboratory for Novel Software Technology, Nanjing University; Baoliu Ye, State 
Key Laboratory for Novel Software Technology, Nanjing University; Key Laboratory of Water Big Data Technology of 
Ministry of Water Resources, Hohai University; School of Computer and Information, Hohai University

StRAID: Stripe-threaded Architecture for Parity-based RAIDs with Ultra-fast SSDs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 915
Shucheng Wang, Qiang Cao, and Ziyi Lu, Wuhan National Laboratory for Optoelectronics, HUST; Hong Jiang, 
Department of Computer Science and Engineering, UT Arlington; Jie Yao, School of Computer Science and Technology, 
HUST; Yuanyuan Dong, Alibaba Group

Vinter: Automatic Non-Volatile Memory Crash Consistency Testing for Full Systems  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 933
Samuel Kalbfleisch, Lukas Werling, and Frank Bellosa, Karlsruhe Institute of Technology

NICs
AlNiCo: SmartNIC-accelerated Contention-aware Request Scheduling for Transaction Processing  .  .  .  .  .  .  .  .  .  .  .  .  . 951
Junru Li, Youyou Lu, Qing Wang, Jiazhen Lin, Zhe Yang, and Jiwu Shu, Beijing National Research Center for 
Information Science and Technology (BNRist)

FpgaNIC: An FPGA-based Versatile 100Gb SmartNIC for GPUs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 967
Zeke Wang, Hongjing Huang, Jie Zhang, Collaborative Innovation Center of Artificial Intelligence, Zhejiang University, 
China; Fei Wu, Collaborative Innovation Center of Artificial Intelligence, Zhejiang University, China, and  Shanghai 
Institute for Advanced Study of Zhejiang University, China; Gustavo Alonso, ETH Zurich

Faster Software Packet Processing on FPGA NICs with eBPF Program Warping  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 987
Marco Bonola, CNIT/Axbryd; Giacomo Belocchi, Angelo Tulumello, and Marco Spaziani Brunella, Axbryd/University of 
Rome Tor Vergata; Giuseppe Siracusano, NEC Laboratories Europe; Giuseppe Bianchi, University of Rome Tor Vergata; 
Roberto Bifulco, NEC Laboratories Europe

Deployed Systems 2
NVMe SSD Failures in the Field: the Fail-Stop and the Fail-Slow  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1005
Ruiming Lu, Shanghai Jiao Tong University; Erci Xu, PDL; Yiming Zhang, Xiamen University; Zhaosheng Zhu, 
Mengtian Wang, and Zongpeng Zhu, Alibaba Inc.; Guangtao Xue, Shanghai Jiao Tong University; Minglu Li, Shanghai 
Jiao Tong University & Zhejiang Normal University; Jiesheng Wu, Alibaba Inc.

CacheSack: Admission Optimization for Google Datacenter Flash Caches  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .1021
Tzu-Wei Yang, Seth Pollen, Mustafa Uysal, Arif Merchant, and Homer Wolfmeister, Google

Amazon DynamoDB: A Scalable, Predictably Performant, and Fully Managed NoSQL Database Service   .  .  .  .  .  . 1037
Mostafa Elhemali, Niall Gallagher, Nicholas Gordon, Joseph Idziorek, Richard Krog, Colin Lazier, Erben Mo, Akhilesh 
Mritunjai, Somu Perianayagam ,Tim Rath, Swami Sivasubramanian, James Christopher Sorenson III, Sroaj Sosothikul, 
Doug Terry, Akshat Vig, Amazon Web Services



ZNSwap: un-Block your Swap

Shai Bergman
Technion

Niklas Cassel
Western Digital

Matias Bjørling
Western Digital

Mark Silberstein
Technion

Abstract
We introduce ZNSwap, a novel swap subsystem optimized

for the recent Zoned Namespace (ZNS) SSDs. ZNSwap lever-

ages ZNS’s explicit control over data management on the

drive and introduces a space-efficient host-side Garbage Col-

lector (GC) for swap storage co-designed with the OS swap

logic. ZNSwap enables cross-layer optimizations, such as di-

rect access to the in-kernel swap usage statistics by the GC

to enable fine-grain swap storage management, and correct

accounting of the GC bandwidth usage in the OS resource

isolation mechanisms to improve performance isolation in

multi-tenant environments. We evaluate ZNSwap using stan-

dard Linux swap benchmarks and two production key-value

stores. ZNSwap shows significant performance benefits over

the Linux swap on traditional SSDs, such as stable through-

put for different memory access patterns, and 10× lower 99th

percentile latency and 5× higher throughput for memcached
key-value store under realistic usage scenarios.

1 Introduction

Swap is regaining interest from the academia, industry, and

kernel communities [2, 3, 12–14, 42, 43, 53, 54] as SSDs are

getting faster with both low-latency NAND and high-speed

PCIe interfaces [5, 11, 51]. Swap on SSDs is no longer viewed

as a last-resort memory-overflow mechanism, but as a crucial

system component essential for effective memory reclamation

and high system efficiency [3, 14, 18].

Unfortunately, the broader deployment of SSDs as swap

devices is overshadowed by several notable performance is-

sues. One of the key limitations is the system performance

degradation as the SSD utilization increases. For example,

Figure 1 shows a drastic swap bandwidth drop as the device

space usage grows beyond 20%, forcing low space utilization

to maintain high performance. In § 3 we thoroughly analyze

this and other performance issues with swap on SSDs, such

as bandwidth variations for different memory access patterns,

and poor isolation in a multi-tenant setting.

These performance anomalies have no simple solution.

They stem from the inherent mismatch between the easy-to-

use block-interface abstraction and the intrinsic flash media

Figure 1: Swap-out bandwidth of random memory accesses

(a common swap access pattern [43, 55]), with default Linux

swap on Block SSD and ZNSwap on ZNS SSD. The two 1TB

SSDs share the same hardware platform and media. WAF–

Write Amplification Factor.

properties. In particular, this interface deliberately conceals

the absence of in-place updates to flash-based media. Under

the hood, updates are written out-of-place to a specifically al-

located set of flash blocks (i.e., erase-block). To this end, SSD

controllers implement a Flash Translation Layer (FTL), which

translates the host-side random writes into sequential writes

required by the media, and maintains logic-to-physical map-

ping for each block. It further entails a device-side Garbage

Collection (GC) process to free up erase blocks and reclaim

capacity for new writes.

More crucially, this interface decouples the media manage-

ment from the host-side software stack, so neither the software

using the SSD nor the SSD’s management logic have any vis-

ibility into each other activities. In the context of swap, this

decoupling hinders the OS’s ability to optimize data place-

ment on the device, and the device’s ability to leverage unique

characteristics of the swap mechanisms and its usage of the

device. For example, the performance degradation observed

in Figure 1 is caused by Write Amplification (WA), i.e., the

extra data movements performed by the GC. Notably, as we

show in § 3, the Write Amplification Factor (WAF) (Figure 1,

right) could have been reduced if only the GC were aware of

the OS-managed validity status of the stored blocks.

Zoned Storage interface for SSDs (ZNS) [4] aims to reestab-

lish the host’s control over key aspects of the storage device

management [25]. ZNS opens unique opportunities for cross-

layer optimizations that allow novel storage-application co-

design simultaneously tailored to the properties of the storage

USENIX Association 2022 USENIX Annual Technical Conference    1



media and its use by applications [25].

At a high level, ZNS introduces the concepts of zones.

Zones disallow in-place updates and require their blocks to be

written sequentially. To reclaim the space in a zone it needs

to be reset, and new writes can be issued. One important

benefit of the ZNS interface over prior attempts to expose

flash media control to applications (i.e., raw flash or open-

channel SSD [26]), is that it enables host-side storage control

without having to deal with low-level media management

such as wear-leveling or error correction.

In this work, we introduce ZNSwap, a novel swap sub-

system for Linux that explores the advantages of the syn-

ergy between the SSD management and the OS swap logic,

leveraging the ZNS interface to overcome the swap perfor-

mance issues with block-interface SSDs. While prior works

observed that the direct application control over SSDs can

be beneficial in the context of file-systems and key-value

stores [25, 26, 30, 59], ZNSwap is the first to leverage such

control for the OS swap on SSDs.

ZNSwap provides a novel, space-efficient host-side mecha-

nism for SSD space reclamation we call ZNS Garbage Collec-
tor (ZNGC). Unlike the device-side GC of traditional SSDs,

ZNGC is tightly integrated with the OS and has direct access

to OS data structures which it uses to optimize its operation.

ZNGC design poses a conceptual challenge, however. The

space reclamation process naturally involves the migration of

logical blocks on the device, without coordinating the block

location changes with the applications that own the stored

data. This is not a problem for an SSD-side GC because the

user-visible Logical Block Addresses (LBA) remain intact.

However, applying this solution to the host-side ZNGC would

incur unacceptable space overheads in the host, requiring

to maintain reverse mapping for every 4KiB block in TB-

scale devices. ZNSwap avoids these overheads in the host

by storing the reverse mapping information into the logical

block metadata being written alongside the swapped-out page

contents. The mapping is guaranteed to be correct during the

page lifetime.

More specifically, ZNSwap brings the following benefits:

Fine-grain space management. ZNSwap obviates the need

for TRIM commands, achieving higher performance and better

space utilization. The OS uses TRIMs to hint to a Block SSD to

deallocate specific LBAs, reducing the load on the SSD-side

GC. Unfortunately, the use of TRIMs have been mostly dis-

abled in the OS swap for their large overheads [35, 39, 50, 54],

at the expense of significant bandwidth drop due to the artifi-

cial space bloat (§ 3.1.1). In ZNSwap, the ZNGC leverages

the direct access to the OS internal page validity structures,

without the costly overheads associated with TRIMs.

Dynamic ZNGC optimization. ZNSwap dynamically ad-

justs the number of swapped-in pages that are also stored in

the swap device, improving the performance for read-mostly

and mixed read-write workloads. The OS keeps a copy of

unmodified swapped-in memory pages in the swap device

to avoid the swap-out penalty for those pages. The amount

of disk space such pages may occupy is statically capped

by the OS (50% in Linux, non-configurable). However, this

static threshold does not fit all workloads: lower values de-

grade read-mostly workloads, whereas higher values affect

mixed read-write workloads (§ 3.1.2). ZNSwap monitors the

WAF and decreases the storage occupancy when necessary

by reclaiming the SSD space from swapped-in pages.

Flexible data placement and space reclaim policies. ZN-

Swap allows easy customization of the disk space manage-

ment policies to tailor the GC logic to the swap requirements

of a specific system. For example, a policy may force co-

location of data with similar lifetimes onto the same zone,

which was shown to be useful before [28, 34, 44, 56], or

achieve better performance isolation by dedicating a separate

zone to handle swap from a specific tenant.

Accurate multi-tenancy accounting. As the ZNGC runs on

the host, ZNSwap integrates with the cgroup accounting mech-

anisms to explicitly attribute GC overheads to different ten-

ants, thus improving performance isolation between them.

To summarize, our main contributions are as follows:

• Thorough analysis of traditional Block SSDs’ drawbacks

when used as swap devices.

• A mechanism to enable ZNS SSDs to serve for swap, with-

out resource-expensive redirection mechanisms in the host,

by leveraging logical block metadata for efficient reverse-

mapping.

• Custom swap-aware SSD storage management policies

which reduce WA, improve performance, and achieve bet-

ter isolation in multi-tenant environments.

• Extensive evaluation on standard benchmarks and real appli-

cations, demonstrating ZNSwap’s performance gains, e.g., up

to 10× lower 99th percentile latency and 5× higher through-

put for memcached, with 2.5× lower WAF when compared

to traditional swap on Block SSD.

2 Background

OS swap. When a system encounters memory pressure, it

selects victim memory pages for eviction to a swap device.

The OS unmaps the page chosen for eviction from the page-

tables and swaps-out the page, writing it to the swap device.

Linux divides the space on a swap device into memory-

page-sized blocks called swap-slots. The OS allocates a

new slot for each page being swapped-out. When a page

is swapped-in and the utilized swap device capacity is below

50%, Linux keeps the copy of the page both in memory and

in the swap. Such pages belong to the swap-cache. The OS

evicts swap-cache pages without writing them back to the

swap. The swap-slot is freed upon the first write to a swap-

cache page, and the page is removed from the swap-cache.

Block SSD space management. The SSD’s FTL maps Log-

ical Block Addresses (LBAs) to the physical data locations

2    2022 USENIX Annual Technical Conference USENIX Association



within erase-blocks on the device. An update to a logical

block is implemented by writing the new data to a separate

erase-block, and then remapping the host-side LBA to the

new block, followed by invalidating the old one. To free space

for new writes, a Garbage Collector (GC), executed by the

SSD controller, reclaims the invalidated blocks and consol-

idates the still-valid blocks from multiple erase-blocks to a

new erase-block, and then erases the freed erase-blocks. This

operation requires over-provisioning (OP) of the flash media

in the drive in order to reduce the number of copies during

the GC operation.

The device-side GC competes for bandwidth with the user

I/O. The relative increase in the amount of data written due

to GC vs. the external writes is called a Write Amplification
Factor (WAF). The smaller the OP, the higher the WAF and

the lower the user-visible performance of the device [34].

Zoned Namespace (ZNS) is a new storage interface for

SSDs [25]. A ZNS SSD is organized as a set of logically-

addressable zones. Each zone is physically aligned to an

SSD’s erase-block size. Reads inside a zone can be random,

but writes must be sequential. Writing to a zone can be done

via the common write command or through the Zone Append
command. The latter works by the host specifying the zone,

and the SSD returning the specific write location upon com-

pletion, which allows multiple in-flight requests to the same

zone [24] (unlike the write command).

Each zone may be either Empty (initial state), Open (after

the first write) or Full (no longer writable). The SSD main-

tains a write pointer to the next logical block for each Open
zone. To rewrite a zone, it must be reset, which transitions it

into an Empty state. There is a hardware limit on the number

of simultaneously Open zones.

3 Motivation

Swap performance is important for data centers. The pro-

liferation of fast flash-based storage revitalized the use of

swap as a way to maximize memory utilization and reduce

costs. Today, swapping does not serve for sustaining severe

memory pressure alone. Rather, swap acts as a memory

extension during moderate loads, e.g., to optimize the in-

memory balance between file-backed and anonymous mem-

ory pages [3].

Thus, the swap performance is becoming increasingly im-

portant. Recent works propose to accelerate the swap with

dedicated hardware [42]. Linux kernel added optimizations

to its memory reclamation mechanism [13]. Alibaba Cloud

added a per-cgroup background reclaim mechanism [12] to

improve multi-tenancy support in data centers. Facebook in-

troduced swap controls for the cgroupv2 mechanism and used

it in the fbtax2 project to improve system efficiency [10].

This trend highlights the importance of swap in modern

systems. However, most of the current works focused on the

OS logic alone. Here we present a thorough analysis of the

Linux swap performance focusing on the interplay between

the swap logic and the SSD behavior.

3.1 Performance anomalies of swap on SSDs

3.1.1 GC is not aware of deallocated swap-slots

As shown in Figure 1, the swap bandwidth decreases as the

swapped-out data occupies a larger part of the device. In

general, this behavior is expected because the GC overheads

grow proportionally to the amount of actively updated data.

However, the drop should not occur when a device is almost

empty (occupied only 10% of its capacity).

The root cause is that the device-side GC is not aware
that the OS discards some swapped-out pages and invalidates
their respective swap-slots because the OS does not by default

notify the SSD. Therefore, the actual occupancy of the swap

device is much higher than the one visible to the OS, leading

to higher GC overheads.

To cope with this issue, most SSDs implement a TRIM com-

mand that allows the OS to hint to the SSD to reclaim the stor-

age of invalidated swap-slots. However, in practice, popular

Linux distributions (e.g., Debian, Ubuntu) disable the use of

TRIM command for swap [7, 9, 15, 21]. The reasons include

TRIM dispatching overheads, the long latency of the TRIM
command, and the complexity of supporting asynchronous

TRIMs [35, 39, 50, 54, 54].

When TRIMs for swap are explicitly enabled, Linux issues

the command once for a batch (cluster) of 512 invalidated

swap-slots, to reduce the overheads. Notably, these swap-slots

must be contiguous in the LBA address space [1].

To see the performance effect of TRIMs, we run the same

random-write vm-scalability benchmark as in Figure 1,

but with TRIMs enabled (see § 6 for the setup). We measure

the swap-out bandwidth and WAF over time as the device is

being used to illustrate gradual performance degradation.

Figure 2 shows that TRIMs (512-slot) have negligible ef-

fect. This is because the LBA contiguity requirement of TRIM
clusters in Linux effectively prevents issuing TRIMs for the

majority of the invalidated slots. These results corroborate the

note in the swapon man page [20] that enabling TRIMs often

does not improve swap performance.

Finer-grain TRIMs are not effective either. To demonstrate

this, we develop a special mechanism that enables TRIMs for

small contiguous clusters of eight swap-slots. This is not a

practical approach, however, due to its high overheads (see

§ 6.1.1) Figure 2 shows slight performance improvement, but

still 2× lower than the maximum bandwidth. Clusters smaller

than 8 slots result in a prohibitively high rate of TRIMs, so the

SSD cannot keep up with the swap-slot invalidation rate.

Observation I: TRIMs are not effective at lowering GC
overheads for swap.

USENIX Association 2022 USENIX Annual Technical Conference    3



Figure 2: Swap-out band-

width over time. Random

memory writes using 40% of

swap capacity.

Figure 3: Swap-in bandwidth

of random reads as a function

of swap capacity utilization.

3.1.2 Swap cache is not aware of GC

We execute the vm-scalability benchmark to perform uni-

form random reads on a large chunk of memory exceeding

physical RAM and measure the swap performance for differ-

ent values of the swap device utilization. Ideally, we expect

the read performance to be independent of the utilization. In-

stead, Figure 3 shows a 6.9× slowdown and 2.5× WAF above

50% occupancy.

Our analysis shows that this problem occurs due to the

way Linux implements its swap-cache. Recall that this cache

is comprised of pages that are swapped into memory but

the OS still maintains a copy in the swap. When the swap de-

vice’s utilization exceeds 50% – a hard-coded static parameter

we call swap reclamation cutoff, Linux stops adding newly

swapped-in pages to the swap-cache, invalidating their swap-

slots immediately. As a result, the swap-out penalty for such

pages incurs writing a page to the swap device, rather than

discarding them from memory if they were in the swap-cache.

We suggest two possible reasons for this implementation.

First, as the swap device gets full, the swap-slot allocation

algorithm scans the swap-slot array linearly, which becomes

slow [6]. Second, in the context of SSDs, deferring the swap-

slot invalidation for in-memory pages effectively increases

the device occupancy and eventually reduces performance

due to the GC.

Unfortunately, the swap reclamation cutoff establishes

a trade-off between the swap-out performance (preferring

higher cutoff), and WAF (preferring lower cutoff). To illus-

trate, we measure the performance of two applications: one

performing reads, and the other mixing both reads and writes.

This setup aims to show that lower values of the reclamation

cutoff are good for write-intensive workloads and bad for

read-intensive ones. Higher values mirror this behavior.

We execute vm-scalability configured to use 80% of the

swap device’s capacity. Half of the working set fits in RAM.

Figure 4 shows the swap-in and swap-out bandwidth and

WAF as a function of the swap reclamation cutoff. For random

reads, the swap-in performance increases with the reclamation

Figure 4: Swap-in and swap-out bandwidth for random reads

and mixed reads and writes workloads respectively for differ-

ent swap reclamation cutoffs.

cutoff, as fewer pages need to be written back upon eviction,

with all the pages having copies both in the swap and in

memory at the extreme. For the mixed workload, the effect of

the cutoff is not visible with the default Linux configuration

because the performance is low anyway. But with fine-grain

TRIMs and higher baseline performance, smaller cutoff values

are preferable.

Observation 2: The static reclamation cutoff strives to
strike a balance between read and write performance, but
instead aggressively prioritizes write workloads when the
swap occupancy grows.

3.1.3 GC is not aware of page access pattern

We evaluate the performance of workloads with different

memory access patterns using pmbench. We consider two

write workloads: with uniform and with skewed access dis-

tributions (normal, σ = 1
12 of the working set size, the de-

fault in pmbench). The swap-out bandwidth is 480MiB/sec

(maximum for this SSD), and 195MiB/sec (WAF is 2.5) re-

spectively, when using 5% of the swap capacity and 512-slot

TRIMs enabled.

This difference stems from the different lifetimes of

swapped-out pages. With the skewed distribution of memory

writes, there are fewer opportunities for the swap subsystem to

find large contiguous clusters of swap-slots to perform TRIMs,

whereas uniformly distributed writes result in the swap-slots

of similar lifetimes, increasing the chances of finding such

clusters. 8-slot TRIMs are better, but the performance is still

suboptimal: 324MiB/sec, with WAF of 1.5×.

Observation 3: Swap performance may vary significantly
depending on the memory access pattern.

3.1.4 GC is not aware of OS’s performance isolation

Linux’s cgroup mechanism enforces resource isolation among

different processes. In particular, it is possible to isolate

swap bandwidth via blk-throttle. This is useful, e.g., in

container-based virtualized environments to prevent perfor-

mance interference between containers.

4    2022 USENIX Annual Technical Conference USENIX Association



Figure 5: Swap-in bandwidth and WAF of 100%-random-

read cgroup (A) and 50/50%-random-read/write cgroup (B)

co-running together, each throttled to 300MiB/sec reads and

300MiB/sec writes.

We now evaluate the quality of the performance isolation

in a scenario where we expect no interference. We run two

processes, each in its own cgroup limited to 300MiB/sec reads

and 300MiB/sec writes from/to the swap device. One process

performs 100% reads and the other executes an equal mix

of reads and writes, all uniformly distributed. To prevent any

interference the processes are pinned to separate sets of cores,

each with its own device queue. The aggregate bandwidth of

the SSD does not reach its limit (1GiB/sec).

We expect both processes to achieve their maximum band-

width allocation. In practice, during the first 20min of the

execution (Figure 5) no GC is performed, thus the SSD sus-

tains the cumulative request rate from both processes. When

the GC is triggered, the swap-in bandwidth of both cgroups

drops. Importantly, the first process performs only reads, and

should not have been affected by the GC overheads caused

only by the writes of the second process. This behavior stems

from the GC’s inability to distinguish between the I/Os from

different processes, and the OS’s inability to enforce band-

width limits on the GC.

Observation 4: The GC impairs performance isolation
dictated by the host OS.

3.2 Opportunities with swap on ZNS

ZNS SSDs provide better control over physical data place-

ment, thereby enabling tighter coupling between the appli-

cation logic and the device management, and have already

been shown to offer new optimization opportunities for pro-

duction Key-Value-Stores [25]. These results motivate a new

GC-swap subsystem co-design that can leverage this coupling

to mitigate the performance problems of traditional SSDs

discussed above.

Is ZNS essential for performance? An important question

is whether there is an inherent benefit to using ZNS SSDs

over traditional ones, or one can redesign the swap subsystem

alone to achieve the same outcome. In other words, can we

achieve the performance of ZNS by emulating it on top of a

Block SSD?

To answer, we run an experiment on a Block SSD while

using a write access pattern that mimics the one enforced

by ZNS zones. We run multiple threads, each performing

Figure 6: Write bandwidth and WA of sequential writes and

TRIM operations to erase-block sized regions on Block SSD

and ZNS SSD as a function of device utilization.

4KiB logically sequential writes with 1GiB-TRIMs (the size

of an erase-block and a ZNS zone on our device). Each thread

accesses its own part of a drive, and overwrites the available

space, issuing a TRIM for the whole next 1GiB chunk. Multiple

threads are used to emulate typical swap behavior.

We run the experiment for different values of device utiliza-

tion. Figure 6 shows the results. We observe that the perfor-

mance starts to decrease when a device is 30% full, drops to a

half of the maximum bandwidth at 50%, and degrades down

to a quarter at 80%. This is expected because the Block SSD

cannot ensure that host-side TRIMs are aligned with physical

erase-blocks as the writes from different threads get mixed in

the device, even though the host strives to align them at the

LBA level. In contrast, the same experiment on ZNS drives

maintains full bandwidth no matter how full the device is.

We conclude that the ZNS interface offers unique advan-
tages that cannot be achieved with traditional Block SSDs.

ZNS adoption. ZNS SSDs are expected to gain broader adop-

tion in the near future. They hold the promise to reduce stor-

age costs as they lower the internal DRAM size requirements,

and might help reduce media overprovisioning via application-

optimized software stack [25].

While the ZNS interface is not backward compatible with

the in-place block interface, there is growing support for ZNS

at the file system level. For example, F2FS and Btrfs in Linux

can utilize ZNS drives.

These trends motivate us to tailor OS swap for ZNS SSDs.

4 Design

ZNSwap addresses three key design goals.

Resource-efficient Host-side GC. Reclaiming storage space

in ZNS SSDs requires a host-side process akin to a GC that

consolidates valid blocks from fragmented zones into new

ones, subsequently erasing the freed zones. The primary chal-

lenge is in minimizing the memory and CPU overheads as-

sociated with the host-GC operation. This is because, unlike

the device-side GC, the host-side GC directly competes for

these host resources with regular applications. In essence, we

need to on-load the GC onto the CPU from the device with

minimal costs, thereby enabling its tighter integration with

the swap.

USENIX Association 2022 USENIX Annual Technical Conference    5



ZNS Page 
Reclaim

znGC NVME

Policy 
Manager

blkmq
I/O 

manager

VM subsystem Block layer

Drivers

DATA
MD

Zone 
allocator

......

ZNS 
SSD

11

Swap 
Cache
Swap 
Cache

Page 
Tables
Page 

Tables 22 33

44

77 88

55
66

99
Mem. reclaim

Figure 7: ZNSwap overview. Shaded shapes are internal ZN-

Swap components.

These resource constraints preclude direct porting of ex-

isting host-side GC implementations. In particular, such im-

plementations commonly maintain large translation tables

(FTL) [32, 37], which consume about 1GiB for every TiB

of data. The tables are frequently updated by writes and GC

operations and accessed during reads. Given the typically

poor locality of swap-induced I/O accesses [43, 55], these

tables have to be resident in host memory. Maintaining the

extra level of indirection between logical and physical block

addresses appears to be inevitable to allow the host-side GC

to move data without affecting the applications using it.

Our host-side GC, znGC, eliminates the need for the extra

level of indirection entirely. It takes advantage of the fact that

the swapped-out pages are still maintained in their owner’s

page tables, and thus stores the relevant kernel reverse map-

ping metadata alongside the swapped-out page in the SSD. It

also avoids I/O overheads to manage the reverse mappings

by using the per-LBA metadata region available in NVMe

devices as we describe in §§ 4.2 and 5.1.

ZNGC-OS integration. The key benefit of ZNGC over

device-side GC is the ability to access the information ex-

posed by the OS to optimize the swap I/O performance. For

example, ZNGC may consult the OS-maintained swap-slot ar-

ray to identify OS-invalidated swap-slots and avoid redundant

copies without using TRIMs. We explain this and additional

optimizations in § 4.3.

Swap data placement policies. Swap data placement may

have a significant effect on the system performance, but the

placement policy may depend on the specific execution en-

vironment. For example, a policy to achieve better resource

isolation between a pair of processes might prefer storing all

the pages of the same process in the same SSD zone. We

strive to facilitate the implementation of such policies via a

set of APIs that hide the complexity of zone management and

ZNGC logic. We explain the API and the policies in § 4.3.

4.1 Overview

Figure 7 shows ZNSwap’s main design components. We ex-

plain each component and its role using the swap-out path as

an example.

After a page to be swapped-out is selected by the OS, it is

passed to the ZNS page reclaim 1 which handles the page-

table and swap-cache operations 2 . In contrast to the original

swap logic, it updates the destination location for the swapped-

Page 
Tables

vm_area_struct ZNS SSDProcess “A” virtual 
address space

...

Process “B” virtual 
address space

...
struct page
index
mapping...

...

vm_area_struct

anon_vma
mm_struct
pgd ..

..

Block MD 
anon_vma
index ...

Block Data
Block MD 
anon_vma
index ...

Block Data

11

2233

44
55

Figure 8: Linux reverse mapping overview. Shaded shapes

are data structures accessed during ZNGC reverse mapping.

out page after it has been written, as dictated by the ZNS zone-

append interface. Before writing a page, the page reclaim

module consults the policy manager 3 which determines

the destination zone and may guide ZNGC to free certain

zones on the device. The policy manager incorporates custom

policies that can be tailored to specific system requirements.

The zone allocator 4 seamlessly handles Full zones and

allocates a new zone when necessary.

The page is then submitted to the block layer 5 , which

subsequently passes the page to ZNSwap’s I/O manager 6 .

The I/O manager merges zone-append operations whenever

possible, and generates an I/O request containing the page’s

data and reverse mapping information used by ZNGC. Finally,

the I/O manager hands off the I/O requests to the NVMe driver

7 which writes to the ZNS SSD 8 , and updates the reclaim

module with the page location on the SSD 9 .

4.2 ZNGC

ZNSwap’s reclamation mechanism, ZNGC, is tightly inte-

grated with the kernel virtual memory (VM) subsystem.

ZNGC runs as a daemon in the kernel and is triggered ei-

ther when the number of Empty zones is low, or via explicit

requests by the ZNSwap policy.

Contrary to Block SSDs, a page moved by ZNGC is as-

signed a new host-visible address. Without an additional trans-

lation layer, ZNGC must update the page tables holding the

original page swap-slot to reflect the new location. To this end,

ZNGC stores the relevant reverse-mapping metadata along-

side the data in the ZNS SSD’s per-LBA metadata region to

assist later in updating the page tables. The storage interface

(i.e., NVMe) allows to retrieve the metadata together with the

respective data block in a single I/O operation. Thus, ZNGC

retrieves the metadata to perform the reverse lookup of a given

page and then updates the page table(s) that own it.

An important question remains: which information needs

to be stored in the page metadata to guarantee that the reverse

mapping remains correct during its lifetime?

To answer it, we leverage the same main data structures and

procedures in the Linux kernel used to implement its reverse

mapping scheme (Figure 8).

Background: Linux memory mapping structures. Recall

that virtual memory pages in a process’ address space belong

to virtual memory areas (vmas) that represent virtual mem-

ory allocations. vmas belong to a processes’ virtual memory

6    2022 USENIX Annual Technical Conference USENIX Association



address spaces (mm_structs), which hold the page table di-

rectory (pgd). The physical page descriptor (struct page)

holds metadata enabling the reverse mapping. ZNGC stores

the same metadata fields in the logical block’s metadata on

the SSD.

To locate all page table entries associated with a physical

page, the reverse mapping procedure accesses the anon_vma
1 data structure, which is present between each physical page

and the virtual memory area (vma) structures that map it1. The

anon_vma structure holds a list of vmas which may map the

page 2 and accounts for changes to the virtual mappings of

the physical page. The physical page’s descriptor (struct
page) does not not directly account virtual mapping changes,

rather, the descriptor holds a pointer to the anon_vma in its

mapping field.

The mm_structs of each of the vmas that may map the page

are accessed 3 , and their page tables are walked 4 to locate

the page table entries. To calculate the virtual address used

to walk the page tables, the index metadata value 5 along

with the vma’s start virtual memory address are used. The

physical address corresponding to the physical page we have

initialized the reverse mapping procedure is located in the

last level page table entries and subsequently returned. Since

swapped-out pages do not have a valid physical address in

their page table entry, ZNGC returns the entries that hold the

swapped-out location of the swap-slot we were performing

the reverse mapping procedure.

Since the anon_vma structure is freed when there are no

more vmas which may map the page and the anon_vma pointer

in the struct page does not change, storing the pointer to

the anon_vma as well as the mapping’s offset (index) within

the logical block’s metadata on the SSD enables the same

functionality as reverse mapping within the kernel.

4.3 ZNGC-swap integration

Physical zone information. Each zone is associated with a

map of swap-slots. The map holds information on the use

of each swap-slot, and whether it is valid, or swap-cached

(similar to Linux’s swap_map). This information is used by

ZNGC during the space reclamation. Note that a swap-slot

can be discarded by the OS and ZNGC becomes immediately

aware of the change, without using TRIMs as in Block SSDs.

ZNGC may decide to reclaim some zones that are mostly free

but hold some of the swap cache pages if it runs out of free

storage space, making the swap reclamation cutoff parameter

in Linux unnecessary.

Swap-zone abstraction. Active zones that can be used for

swap-slot allocation are exposed via a swap-zone abstraction.

A swap-zone is a virtual entity used to hide the complexity

of managing physical SSD zones. Swap-zones are backed by

Open zones. When an underlying physical zone transitions

1anonymous pages and vmas only

Function Purpose

void rec_zn(int zn) Reclaim specified zone

void pg_inf(pg_i*, u64 pfn) Get page statistics

void vm_inf(vm_i*, u64 pfn) Get information on VMA

void zn_inf(zn_i*, int zn) Get information on zone

void swap_inf(swap_i*) Get ZNSwap statistics

typedef struct {
u64 last_swapout_t;
u16 access_bit_vec;
int owner_pid;
u64 cgroup_id;

} pg_i;

typedef struct {
u64 vm_flags;
u64 size;
int readahead_win_sz;
u64 cgroup_id;

} vm_i;

typedef struct {
int zone_id;
int capacity;
int occupied_slots;
int invalid_slots;
int swap_cache_slots;
int swap_zone_id;

} zn_i;

typedef struct {
u64 num_{slots ,zns};
u64 free_{slots ,zns};
u8 zslot_array_sz;
u32 {high ,low}_wmark;
bool gc_running;

} swap_i;

Table 1: ZNGC policy API.

to the Full state, it is seamlessly replaced by another Open
physical zone. The total number of swap-zones is determined

by the limit on the number of Open zones in the device.

ZNSwap policies. ZNSwap provides an API to facilitate the

development of custom data placement and zone reclamation

policies. A policy is invoked when the OS swaps-out a page,

and its primary goal is to determine which swap-zone the page

is written to. If there is a need to reclaim some of the zones,

the policy may (asynchronously) invoke ZNGC to do so for a

specific set of zones. The policies are implemented in a kernel

module. Note that the swap-slot allocation policy operates

at the granularity of swap-zones rather than swap-slots to

conform to the ZNS interface.

API. A policy receives the page frame number (pfn) of the

page being swapped-out and returns the swap_zone_id of the

swap-zone where the swap-slot should be allocated. Table 1

lists the functions that can be invoked by the policy.

We define three sample policies:

per-core policy Attempts to assign a swap-zone per-CPU-

core. If there are more cores than Open zones, the swap-zones

are multiplexed. This mimics Linux’s swap-cluster per core

policy and reduces contention on swap-zones.

hot/cold policy Utilizes a per-page access history bit-vector

maintained by the OS and assigns hot and cold pages to dif-

ferent swap-zones.

cgroup policy Attempts to assign a swap-zone per-cgroup. If

more cgroups are available, the swap-zones are multiplexed.

If cgroup swap limits are set (max number of swap-slots),

the policy will reclaim a zone used by the cgroup whose

number of used zones exceeds the limit the most (as zones

may contain invalidated swap-slots).

Example policy. We use cgroup policy to illustrate the use

of the policy API. When invoked, the policy:

1. Selects the destination swap-zone for the cgroup (using

USENIX Association 2022 USENIX Annual Technical Conference    7



the cgroup_id from pg_inf()).

2. If the number of free physical zones is below a prede-

fined low watermark (swap_inf()):

2.1. Selects a victim cgroup whose number of utilized

physical zones exceed its allocated swap-slot ca-

pacity the most.

2.2. Iterates over the cgroup’s physical zones (obtained

via swap_zone_id from zn_inf() corresponding

to the swap-zone allocation of the cgroup) and

selects the zone with the least amount of valid slots.

2.3. Triggers an asynchronous explicit reclaim on the

victim zone (rec_zn()).

2.4. Repeats the procedure until enough zones have

been reclaimed (step 2.1).

3. Returns the destination swap-zone.

cgroup accounting. When a cgroup’s swapped-out data is

copied during the ZNGC operation, ZNGC’s bandwidth is

accounted as part of the cgroup’s total bandwidth to the device.

We do not yet implement the CPU accounting, but this is not

critical as ZNGC’s CPU overhead is low as we show in § 6.1.1.

4.4 Discussion
ZNSwap introduces the zoned namespace interface to core

kernel mechanisms which used to support only traditional

block devices. The ZNSwap’s design is driven by the fun-

damental characteristics of ZNS SSDs, that are unattainable

with traditional Block SSD, and which dictate the following

design choices:

• Zoned interface: ZNSwap fully adheres to the zoned stor-

age specification, therefore it inherits the specification’s in-

tegral benefits. For example, ZNSwap utilizes zone-append

operations to enable concurrent writes to sequential-write-

only zones, accelerating the swap-out procedure to ZNS SSD

by sequentially appending page data.

• ZNS-related host responsibilities as opportunities: ZNS

requires implementing host-side GC, which present new op-

portunities for WA mitigation, better utilization of the SSD’s

capacity for swap-cache pages, and for improving perfor-

mance isolation.

• Tight integration of ZNSwap with kernel mechanisms:
utilizing fine granularity information the OS attains per swap-

slot enables better synergy between the OS and ZNS SSD.

Hardware limitations. The number of possible destination

zones for swapped-out pages in ZNSwap’s data placement

policies are limited by the number of Open zones the ZNS

SSD supports, which is device specific. The limit affects the

granularity of the policies’ classifications. ZNSwap is de-

signed to support ZNS SSDs with varying number of Open
zones and zone sizes, and abstracts the intricacies of zone

management via the swap-zone abstraction (§ 4.3).

ZNSwap also requires the use of the ZNS SSD’s per-block

metadata (64B). While per-block metadata is currently sup-

ported primarily in enterprise NVMe-SSDs, we believe that

it will be a common feature among ZNS-SSDs.

5 Implementation

ZNSwap adds support for the zoned-interface model to key

kernel mechanisms located in several subsystems. We imple-

mented ZNSwap in Linux 5.12 with 4K LOC2 (CLOC [8]).

5.1 ZNS page reclaim
Linux’s reclamation algorithm is incompatible with the zone-

append interface because it assumes that the write location of

the swapped-out data is known before the write completion.

Specifically, the algorithm uses the swap-slot as the key in the

swap-cache for the page currently undergoing reclamation. If

a page is accessed while it is being written to the swap device,

a page-fault is raised, and the kernel locates the page in the

swap-cache using the swap-slot entry to remap it.

ZNSwap redesigns the swap-out mechanism not to rely on

the pre-acquired swap-slot entry. The main idea is to utilize

the dirty bit of the page’s page-table entry to indicate whether

the page has been dirtied during the data transfer to the swap

device. Write access to such a page does not raise a page-fault

since the page is still mapped in the page-table. Rather, we

check the dirty bit in the page-table when unmapping it. We

provide more details in Appendix A.

5.2 ZNGC
We now describe the zone reclamation process in detail.

ZNGC first selects a candidate zone from a preselected set

of zones supplied by the policy. Given a zone, ZNGC scans

through batches of pages until a whole zone is reclaimed.

Figure 9 depicts the main stages:

Gather. ZNGC checks the swap-slots in the candidate zone.

Swap-slots of the pages currently cached by the swap-cache

are removed from the swap-cache and their swap-slots are

invalidated. Occupied valid swap-slots are gathered into a

pre-allocated array of block IOs to perform device reads. This

stage completes when the block IO array is full, or until it

reaches the end of the zone.

Read. The occupied blocks IOs containing the read opera-

tions are dispatched as a batch of requests to the device. The

destination of each read operation corresponds to a page from

a pre-allocated page pool. The metadata for each swap-slot is

read from the device into a buffer.

Write. Once all read operations are complete, each occupied

page from the page pool is examined and assigned a desti-

nation zone based on the ZNGC-swap policy. The block IO

array is subsequently reused to hold all the pending write

requests, which are dispatched as a batch.

2https://github.com/acsl-technion/znswap

8    2022 USENIX Annual Technical Conference USENIX Association



Victim swap-
zone map

1. Gather

Unused swap slot
Swap slot is cached
Occupied swap slot

Gather slots for reads

Sc
an

Remove from swap cache 
and unuse swap slot

Reserved BIO 
structs

Reverse-mapping 
MD - from per block 
MD in SSD

2. Read
Reserved BIO 

structs
Submit requests 

to ZNS SSD

Page
data

3. Write

Submit requests 
to ZNS SSD

Prealloced 
page pool
Prealloced 
page pool

Reserved BIO 
structs

Select destination 
zone based on 

policy and prior 
location

Mark victim and destination swap 
entry as having cache

4. Activate

Reverse map lookup
(get PTEs)

VictimDest.
Remap PTEs to new 

swap slot

Clear source and 
destination slot 

cache
Page MD 

buffer
Page MD 

buffer

Prealloced 
page pool
Prealloced 
page pool

Figure 9: ZNGC: main stages in garbage-collecting a victim zone.

Activate. After the write operations complete, the correspond-

ing swap-slots in the victim’s zone are re-examined. If a swap-

slot is still valid and occupied, it is marked as if it resides in

swap-cache in both victim and destination zones, to indicate

to other kernel procedures that these swap-slots are currently

in use. The page-table entries corresponding to the victim

swap-slots are subsequently remapped to hold the destination

swap-slots with the help of the reverse mapping information

obtained from the metadata (mapping and index). Finally,

the victim swap-slots are cleared. After ZNGC traversal over

a zone is complete, the zone is reset.

Concurrent accesses to swapped-out pages undergoing mi-

gration trigger a regular swap-in operation. ZNGC will skip

the corresponding swap-slot’s migration as the page resides in

memory, and will continue with the reclamation of the zone.

ZNGC does not perform dynamic memory allocations and

is designed to occupy a minimal amount of physical memory

(up to 5MiB).

5.3 I/O manager
ZNSwap’s I/O manager adds support for zone-append merges

and seamlessly stores the per-page reverse-mapping informa-

tion into the metadata region of each written LBA.

Zone append merges. ZNGC and the page-out procedures

take advantage of the blk_plug mechanism to batch together

zone-append operations destined to the same zone. We add

support for zone-append merges in the block layer by iden-

tifying block IOs destined towards the same zone that are

waiting to be drained and merge the page-list of each block

IO, creating a single block IO request. Once the request has

been completed, we iterate over the pages in the request and

generate an independent completion notification to each of

the merged block IOs with their respective write location,

calculated from their offset within the merged block IO and

its final location.

Reverse mapping metadata. The I/O manager allocates a

DMA-mapped physical page pool for metadata associated

operations. The pages serve as a host buffer for the per-page

metadata, and act either as a source or target location for

append and read I/Os, respectively. The DMA address of the

pages is supplied as part of the per-LBA metadata for each

command. When serving a swap-out append operation, each

LBA stores 16 bytes of metadata for the reverse mapping

information of the page (mapping and index).

6 Evaluation

Our evaluation demonstrates the benefits of ZNSwap using

ZNS SSDs over the Linux swap using Block SSDs. In particu-

lar, we focus on the benefits of integrating the ZNGC with the

host OS and the usefulness of ZNGC policies. We note that

all our benchmarks perform direct memory accesses only, and

impose SSD accesses due to the swap activity. Thus, the ac-

tual SSD access pattern might differ from the memory access

pattern in the benchmark.

Can ZNS drives be used via compatibility layers? Linux

swap does not work on top of ZNS drives, either as a swap-file

or a swap partition. Existing Linux device-mappers such as

dm-zoned [49] and dm-zap [33] aim to expose zoned devices

as regular block devices without any write-pattern constraints

but require large mapping structures for indirection. However,

they do not currently support ZNS SSDs. Therefore, the only

plausible baseline is Linux swap with block SSDs.

Hardware. We use a server with 2× Intel Xeon Silver 4216

CPU and 512 GiB of memory (2× 256 GiB DDR4 2933 Hz),

with Ubuntu 20.04, Linux 5.12.0. HyperThreading is disabled,

the frequency governor is "performance", and "turbo" is dis-

abled to achieve stable results. We use a 1 TB production-

grade Western Digital ZN540 ZNS SSD and an equiva-

lent 1TB conventional Block SSD (with 7% OP) that uses

the same hardware platform and media. Both SSD’s max-

imum sequential read and write bandwidth is 3.2 GiB/sec

and 1 GiB/sec respectively. Random 4 KiB reads and writes

reach 1.4 GiB/sec and 1 GiB/sec respectively. For the ZNS

SSD, the writeable capacity of each zone is 1077 MiB, and is

formatted with the ability to store 64 B of metadata per LBA.

Setup. We configure the swap size to be the size of the system

memory (512 GiB) according to the common practice [19].

The remaining capacity on the drives is filled with data. The

resulting effective OP of the swap partition in the Block SSD

is 12%, therefore we configure ZNSwap to use the same OP.

Before each experiment, the SSD is formatted, followed by

a ramp-up until the workload has reached its steady state [17].

Bandwidth and WAF measurements are sampled at 10 min

USENIX Association 2022 USENIX Annual Technical Conference    9



Figure 10: Swap-out bandwidth of vm-scalability with

random memory writes. As expected, higher device utilization

results in higher GC load.

intervals. The Block SSD’s WAF is measured through the

device’s internal host- and media-writes counters, and the

ZNS SSD’s WAF is measured by recording the number of

writes performed by ZNGC.

Performance metrics and optimal performance. We pri-

marily focus on the swap-out bandwidth as the main per-

formance metric. The rationale is that under write-intensive

memory access pattern, swap-in operations trigger the evic-

tion of an equal amount of dirty pages to the drive. Hence,

the resulting SSD access pattern is an equal mixture of 4KiB

random reads and mostly random writes for Block SSD, and

random reads and sequential writes for ZNS SSD.

The maximum write bandwidth for such a 50%/50% access

pattern on both Block SSD and ZNS SSD drives is measured

to be 488 MiB/sec. Therefore, we claim that the ZNSwap’s

performance benefits over the Linux swap baseline presented

in this section stem primarily from ZNSwap design rather
than from the performance differences among the drives or
the difference in the access patterns.

6.1 Synthetic benchmarks

We use the standard swap performance benchmarks,

vm-scalability [22] and pmbench [58] which allow evalu-

ating the performance of the swap subsystem and the swap

device under different memory access patterns.

We rerun several experiments from the Motivation section

on ZNSwap, to show how it recovers the system performance

for the cases where the standard Linux swap on Block SSDs

suffers from the performance anomalies.

6.1.1 Benefits of ZNGC-swap subsystem integration

Swapping without TRIMs. We execute vm-scalability in

a 2 GiB memory-limited cgroup. In each experiment, we pre-

allocate different amounts of memory to evaluate different lev-

els of the swap device’s capacity utilization. We then perform

random writes to that memory (case-anon-w-rand-mt), re-

sulting in random read/writes from/to the swap device. To

maximize throughput, we execute 64 threads (2× the number

of available cores). This is the same experiment as in § 3.1.1.

Figure 10 shows the results. ZNSwap immediately observes

the OS-managed swap-slot allocation without using TRIMs,

and as such only moves the valid pages when running ZNGC.

While ZNGC adds overheads to the host, ZNSwap outper-

forms the Linux swap in all cases but at 10% utilization due

to the device WA being lower.

CPU overheads of ZNGC vs. fine-grain TRIMs with Block
SSD. We measure the maximum CPU overhead of ZNGC

under 80% swap device utilization in Figure 10. We observe

that ZNGC occupies 15% of a single CPU core. At 10% swap

device utilization, the overhead drops to a negligible 0.3%.

In contrast, the CPU overhead for dispatching 8-slot TRIMs

is 32% of a single CPU core with lower swap performance

compared to ZNSwap.

Swapping without swap reclamation cutoff. We run the

same experiment with read-only and mixed read-write bench-

marks as in § 3.1.2 where we established the performance

degradation due to the static swap reclamation cutoff in the

standard swap. When invoked with ZNSwap, the performance

matches the “ideal” line in Figure 4.

6.1.2 Skewed workloads

We run pmbench configured to allocate 320 GiB of memory

and perform skewed memory writes with the default normal

distribution parameters (σ = 1
12 of the allocated memory). The

distribution directs 80% of the memory accesses to 20% of

the allocated memory considered “hot”. The other 80% of the

allocated “cold” memory occupies 50% of the swap capacity.

The “hot” pages’ lifetime in swap tends to be shorter than for

other pages. In each experiment, we modify the amount of

RAM available to pmbench thus varying the proportion of the

working set swapped-out from 50% to 90%. This allows to

vary the swap device utilization without changing the working

set size and page access pattern across the experiments.

We compare the baseline with ZNSwap with the per-core

policy that ignores the page access frequency, and ZNSwap

with the hot/cold policy that strives to group pages with simi-

lar access frequencies into the same zone (see § 4.3).

We make two observations. First, ZNSwap achieves the

same performance regardless of the access pattern up to 2×
higher bandwidth compared to the baseline for both ZNSwap

policies. Second, the hot/cold policy exhibits 15-20% lower

WA compared to the naive policy, even though this benefit

is not reflected in the swap-out bandwidth in this workload.

Reducing WA is important on its own to achieve a higher

device lifetime [31].

6.1.3 Swap performance isolation in cgroups

We execute two instances of the vm-scalability bench-

mark, each in a different cgroup. Both cgroup A (CG. A) and

cgroup B (CG. B) run with 16 threads. CG. A utilizes 30%

of the swap capacity, and performs random writes, whereas

10    2022 USENIX Annual Technical Conference USENIX Association



Figure 11: Bandwidth distribution among different cgroups,

one reading and another writing data.

CG. B utilizes 10% of the swap capacity and performs only

random reads. In addition, A’s and B’s swap bandwidth is

limited via blk-throttle to 300 MiB/sec. This is the same

experiment as in § 3.1.4.

Figure 11 shows the swap-in bandwidth for each cgroup

under different configurations. If the swap performance isola-

tion was perfect, each cgroup would behave as if it runs with

its own SSD, reaching its target bandwidth (red line). With

Block SSD, however, the target bandwidth cannot be attained.

Figure 5 shows that without the device-GC overhead, the up-

per bound is reached, implying that in this experiment this

overhead indeed causes performance degradation. Similar to

Block SSD, ZNS SSD with ZNSwap’s per-core placement

policy fails to provide swap isolation.

In contrast, with ZNSwap’s cgroup policy, the bandwidth of

the writer process (CG. A) fully absorbs the ZNGC bandwidth

overheads because only the data attributed to that cgroup is

moved by ZNGC. Note that the sum of the bandwidth used

by the swap and ZNGC operations in that cgroup does not

exceed the predefined limit. CG. B attains full bandwidth, and

it is not affected by the ZNGC bandwidth overheads.

6.1.4 Raw swap performance

We stress-test the raw swap-out performance of ZNSwap and

its multi-core scaling. We execute vm-scalability to se-

quentially write (case-anon-w-seq-mt) 500 GiB of data in

a contiguous memory region, while limiting the memory size

to 2 GiB via cgroup. By choosing the sequential access pat-

tern, not reusing the same pages, and limiting the number of

writes to not surpass the device’s capacity, we force the system

to avoid reusing swap-slots thus preventing device-side GC

and swap-in operations. This is done to achieve the highest

performance, stressing the swap software mechanisms.

ZNSwap exhibits the same performance as the traditional

Linux swap, achieving 740 MiB/sec swap-out bandwidth

for a single core, and the maximum device bandwidth of

1 GiB/sec with 4 cores (no graph shown).

6.2 End-to-end application Benchmarks
We evaluate two popular key-value store servers, demonstrat-

ing the benefits of ZNSwap to run large-memory produc-

tion applications. The throughput and latency we obtain are

consistent with those reported for other flash-assisted KVS

works [36, 46, 57].

We execute the KV servers on one NUMA node, and the

client on the other; hence we set the affinity of both NUMA

nodes’ kswapd threads as well as the kznsd thread that ex-

ecutes ZNGC to run on the first NUMA node to co-locate

them with the application. Thus, both ZNSwap and traditional

Linux swap are allocated the same amount of compute re-

sources which they share with the application threads.

6.2.1 memcached-ETC

We run a memcached key-value store [29] using the mutilate
client [45] and Facebook’s ETC benchmark [23]. We eval-

uate a random-skewed access pattern with 90% of requests

accounting for 10% of the keys. Despite this skewness, the dis-

tribution of popular keys in the memory is mostly uniformly

random because they are scattered across different memory

pages. This also dictates random access to the SSD.

We configure memcached to use 32 threads on one NUMA

node, and invoke 32 mutilate client threads on the other

NUMA node. We load the data to the server until we reach

the target swap device capacity utilization. We do not limit

the amount of memory available to the server, thus utiliz-

ing all memory (from both NUMA nodes) for the workload.

For example, 10% swap utilization (51 GiB) implies the total

working set of 563GB. We report the 99p latency of the KV

store, maximum throughput, as well as the WAF of the SSD.

Figure 12 shows that ZNSwap consistently outperforms

Block SSD-based swap in all performance metrics under the

evaluated swap device utilization: under 10% swap device

utilization ZNSwap exhibits 10× lower 99p latency and 5×
higher maximum QPS while not experiencing any WA, as op-

posed to Block SSD which suffers from a 2.5× WAF. With the

added 8 blk. TRIM support for Block SSD, ZNSwap achieves

5× lower 99p, 1.6× higher QPS and 1.1× lower WAF.

6.2.2 redis-YCSB

We use an in-memory redis data store [16] with the YCSB
client [27] configured with 50% reads and 50% updates

(update-heavy configuration) in a 20-80 hotspot distribution

(80% of accesses target 20% of the working set) which is one

of the standard options. This memory access pattern induces

the same distribution of accesses as we evaluated in § 6.1.2,

thereby allowing us to show the application performance im-

pact of the hot/cold placement policy.

redis is executed in cluster-mode consisting of 32 servers-

threads, running on one NUMA node in a RAM-limited

cgroup. It loads a 320 GiB dataset to the cluster. 64 client

threads are spawned on the other NUMA node. Similar to the

microbenchmark in § 6.1.2, we vary the amount of available

RAM while keeping the working set size constant.

USENIX Association 2022 USENIX Annual Technical Conference    11



Figure 12: memcached Facebook ETC 99 percentile latency at the highest throughput

Figure 13: redis 20-80 hotspot distribution 50/50 read/write, 99p latency at maximum throughput

Figure 13 shows the 99p latency, throughput and WA for

ZNSwap’s per-core and hot-cold policies, as well as Block

SSD. Both ZNSwap’s policies outperform Block SSD in

all performance metrics. We observe a 1.27× speedup in

throughput and 1.4× drop in latency with 1.1× lower WA for

ZNSwap’s hot/cold policy compared to the per-core policy.

7 Related work

SSD-friendly swap support. SSDs’ unique characteristics

warranted a body of works [48, 54] that aim to optimize swap

on Block SSDs. These works modify Linux’s page reclaim

policy (similar to CFLRU [52]) to prioritize reclamation of

clean pages and reduce device-side GC overheads without

modifying the GC itself. In contrast, ZNSwap offers a novel

co-design of the host-side GC and the swap mechanisms and

achieves its benefits via tighter coupling between them.

Swap on raw flash. Several early works proposed swap to

raw flash [38, 41, 47] thereby avoiding GC overheads due

to copying blocks of discarded swap-slots. These papers pre-

dated the introduction of native TRIM support in SSDs, which

was supposed to achieve the same effect. ZNSwap shows that

even fine-grain TRIMs are not sufficient, and demonstrates

other benefits of the tight coupling with the OS enabled by

the host-side GC.

Open-channel SSDs [26] expose a low-level storage manage-

ment interface, similarly to ZNS. ZNSwap’s main contribu-

tion is its study of the benefits of host-side SSD management

and swap co-design, not considered in prior works. Further,

unlike ZNS, the adoption of OC-SSDs so far has been limited

due to poor portability and the complexity of the host-side

media control they require, such as media wear-levelling.

Stream-SSDs [40] expose a traditional block interface, and

can reduce WA by utilizing hints so the device may attempt

to co-locate data with similar lifetimes onto the same erase-

blocks. However, Stream-SSDs’ block-interface hinders sup-

port for cross-layer optimizations introduced by ZNSwap on

ZNS-SSDs, which are key to ZNSwap’s performance gains.

Implementing swap data placement support for Stream-

SSDs, akin to ZNSwap’s swap policies, will offer certain ben-

efits in the scenarios where data lifetime can be predicted and

data consolidated into a set number of streams, such as hot/-

cold access patterns (as noted in § 6.1.2). However, under ran-

dom access patterns, Stream-SSDs would perform similarly

to traditional Block SSDs. The performance gains pertaining

to ZNSwap’s cross-layer optimizations that aren’t related to

data-placement policies (i.e., the elimination of TRIMs) ex-

hibit higher performance gains than data-placement policies,

as shown in Figure 10.

8 Conclusion

ZNSwap leverages the recent ZNS SSD interface to enable

tight integration of the storage management mechanisms with

the swap subsystem. ZNSwap introduces a host-side ZNGC

that is co-designed with the swap logic to reduce garbage-

collection overheads and improve system performance, while

also leveraging the tight coupling with the OS and NVMe

metadata interface to avoid the costly flash translation layer

in the host. ZNSwap demonstrates significant performance

advantages of using ZNS for swap in realist scenarios, paving

the way to broader adoption of this new technology.

Acknowledgements

We gratefully acknowledge support from Israel Science Foun-

dation (grants 980/21 and 1027/18) and financial support from

Western Digital.

12    2022 USENIX Annual Technical Conference USENIX Association



References

[1] Swapfile: swap allocation use discard. https:
//git.kernel.org/pub/scm/linux/kernel/
git/torvalds/linux.git/commit/?id=
7992fde72ce06c73280a1939b7a1e903bc95ef85,

2009.

[2] Making swapping scalable. https://lwn.net/
Articles/704478/, 2016.

[3] Reconsidering swapping. https://lwn.net/
Articles/690079/, 2016.

[4] NVM Express 2.0 Zoned Namespace Command

Set Specification. https://nvmexpress.org/
specifications, 2018.

[5] SAMSUNG. Ultra-low latency with Samsung Z-NAND

SSD. http://www.samsung.com/us/labs/pdfs/
collateral/Samsung_ZNAND_Technology_Brief_
v5.pdf, 2019.

[6] Swap: try to scan more free slots even when fragmented.

https://git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/commit/?id=
ed43af10975eef7e21abbb81297d9735448ba4fa,

2020.

[7] Archlinux SSD Optimizations. https:
//wiki.archlinux.org/title/Solid_state_
drive#Continuous_TRIM, 2021.

[8] cloc: Count lines of code. https://github.com/
AlDanial/cloc, 2021.

[9] Debian SSD Optimizations. https://wiki.
debian.org/SSDOptimization#Mounting_SSD_
filesystems, 2021.

[10] Facebook cgroupv2 memory controller. https:
//facebookmicrosites.github.io/cgroup2/
docs/memory-controller.html, 2021.

[11] Kioxia’s PCIe 5.0 SSD Just Hit 14,000 MBps.

https://www.tomshardware.com/news/
kioxia-pcie-5-ssd-just-hit-140000-mbps,

2021.

[12] Memcg backend asynchronous reclaim. https:
//partners-intl.aliyun.com/help/doc-detail/
169535.htm, 2021.

[13] Multi-generational LRU: the next generation. https:
//lwn.net/Articles/856931/, 2021.

[14] OpenStack: Overcommitting CPU and RAM.

https://docs.openstack.org/arch-design/
design-compute, 2021.

[15] Red Hat: Discarding Unused Blocks. https:
//access.redhat.com/documentation/en-us/
red_hat_enterprise_linux/8/html/managing_
file_systems/discarding-unused-blocks_
managing-file-systems, 2021.

[16] Redis. https://redis.io, 2021.

[17] Solid State Storage Performance Test Specification.

https://www.snia.org/sites/default/files/
technical_work/PTS/SSS_PTS_2.0.2.pdf, 2021.

[18] Swap file on Amazon EC2. https://aws.
amazon.com/premiumsupport/knowledge-center/
ec2-memory-swap-file/, 2021.

[19] Swap space on Amazon EC2. https://aws.
amazon.com/premiumsupport/knowledge-center/
ec2-memory-partition-hard-drive/, 2021.

[20] swapon(8) Linux man pages. https://man7.org/
linux/man-pages/man8/swapon.8.html„ 2021.

[21] Ubuntu: TRIM the swap partition. https:
//wiki.ubuntuusers.de/SSD/TRIM/
#TRIM-der-Swap-Partition, 2021.

[22] vm-scalability. https://git.kernel.org/pub/scm/
linux/kernel/git/wfg/vm-scalability.git,

2021.

[23] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song

Jiang, and Mike Paleczny. Workload analysis of a large-

scale key-value store. In ACM SIGMETRICS Perfor-
mance Evaluation Review, volume 40, pages 53–64.

ACM, 2012.

[24] Matias Bjørling. Zone Append: A New Way of

Writing to Zoned Storage. In Vault Linux Storage
and Filesystems Conference, Santa Clara, CA, February

2020. USENIX Association.

[25] Matias Bjørling, Abutalib Aghayev, Hans Holmberg,

Aravind Ramesh, DL Moal, G Ganger, and George

Amvrosiadis. ZNS: Avoiding the Block Interface Tax for

Flash-based SSDs. In Proceedings of the 2021 USENIX
Annual Technical Conference (USENIX ATC’21), 2021.

[26] Matias Bjørling, Javier Gonzalez, and Philippe Bonnet.

LightNVM: The linux open-channel SSD subsystem. In

15th USENIX Conference on File and Storage Technolo-
gies FAST 17, pages 359–374, 2017.

[27] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu

Ramakrishnan, and Russell Sears. Benchmarking cloud

serving systems with YCSB. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154,

2010.

USENIX Association 2022 USENIX Annual Technical Conference    13



[28] Peter Desnoyers. Analytic models of SSD write perfor-

mance. ACM Transactions on Storage (TOS), 10(2):1–

25, 2014.

[29] Brad Fitzpatrick. Distributed caching with memcached.

Linux journal, 2004(124):5, 2004.

[30] Javier González, Matias Bjørling, Seongno Lee, Charlie

Dong, and Yiren Ronnie Huang. Application-driven

flash translation layers on open-channel SSDs. In Pro-
ceedings of the 7th non Volatile Memory Workshop
(NVMW), pages 1–2, 2016.

[31] Laura M Grupp, John D Davis, and Steven Swanson.

The bleak future of NAND flash memory. In FAST,

volume 7, pages 10–2, 2012.

[32] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar.

DFTL: a flash translation layer employing demand-

based selective caching of page-level address mappings.

ACM SIGPLAN Notices, 44(3):229–240, 2009.

[33] Hans Holmberg. dm-zap: Host-based FTL

for ZNS SSDs. https://github.com/
westerndigitalcorporation/dm-zap, 2021.

[34] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias

Iliadis, and Roman Pletka. Write amplification analy-

sis in flash-based solid state drives. In Proceedings of
SYSTOR 2009: The Israeli Experimental Systems Con-
ference, pages 1–9, 2009.

[35] Choulseung Hyun, Jongmoo Choi, Donghee Lee, and

Sam H Noh. To TRIM or not to TRIM: Judicious trim-

ing for solid state drives. In Poster presentation in the
23rd ACM Symposium on Operating Systems Principles,

2011.

[36] Junsu Im, Jinwook Bae, Chanwoo Chung, Sungjin Lee,

et al. Pink: High-speed in-storage key-value store with

bounded tails. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC’ 20), pages 173–187, 2020.

[37] Song Jiang, Lei Zhang, XinHao Yuan, Hao Hu, and

Yu Chen. S-FTL: An efficient address translation for

flash memory by exploiting spatial locality. In 2011
IEEE 27th Symposium on Mass Storage Systems and
Technologies (MSST), pages 1–12. IEEE, 2011.

[38] Dawoon Jung, Jin-soo Kim, Seon-yeong Park, Jeong-

uk Kang, and Joonwon Lee. Fass: A flash-aware swap

system. In Proc. of International Workshop on Software
Support for Portable Storage (IWSSPS). Citeseer, 2005.

[39] Dong Hyun Kang and Young Ik Eom. TO FLUSH or

NOT: Zero padding in the file system with SSD devices.

In Proceedings of the 8th Asia-Pacific Workshop on Sys-
tems, pages 1–9, 2017.

[40] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and

Sangyeun Cho. The multi-streamed solid-state drive. In

6th {USENIX} Workshop on Hot Topics in Storage and
File Systems (HotStorage 14), 2014.

[41] Sohyang Ko, Seonsoo Jun, Yeonseung Ryu, Ohhoon

Kwon, and Kern Koh. A new linux swap system for

flash memory storage devices. In 2008 International
Conference on Computational Sciences and Its Applica-
tions, pages 151–156. IEEE, 2008.

[42] Gyusun Lee, Wenjing Jin, Wonsuk Song, Jeonghun

Gong, Jonghyun Bae, Tae Jun Ham, Jae W Lee, and

Jinkyu Jeong. A case for hardware-based demand pag-

ing. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pages

1103–1116. IEEE, 2020.

[43] Jaehun Lee, Sungmin Park, Minsoo Ryu, and Sooyong

Kang. Performance evaluation of the SSD-based swap

system for big data processing. In 2014 IEEE 13th Inter-
national Conference on Trust, Security and Privacy in
Computing and Communications, pages 673–680. IEEE,

2014.

[44] Jongsung Lee and Jin-Soo Kim. An empirical study

of hot/cold data separation policies in solid state drives

(SSDs). In Proceedings of the 6th International Systems
and Storage Conference, pages 1–6, 2013.

[45] Jacob Leverich. Mutilate: high-performance mem-

cached load generator, 2014.

[46] Cheng Li, Hao Chen, Chaoyi Ruan, Xiaosong Ma, and

Yinlong Xu. Leveraging NVMe SSDs for building a

fast, cost-effective, LSM-tree-based KV Store. ACM
Transactions on Storage (TOS), 17(4):1–29, 2021.

[47] Mingwei Lin and Shuyu Chen. Flash-aware linux swap

system for portable consumer electronics. IEEE Trans-
actions on Consumer Electronics, 58(2):419–427, 2012.

[48] Mingwei Lin, Shuyu Chen, and Guiping Wang. Greedy

page replacement algorithm for flash-aware swap sys-

tem. IEEE Transactions on Consumer Electronics,

58(2):435–440, 2012.

[49] Damien Le Moal. dm-zoned: Zoned Block Device de-

vice mapper. https://lwn.net/Articles/714387/,

2017.

[50] Trong-Dat Nguyen and Sang-Won Lee. I/O charac-

teristics of MongoDB and trim-based optimization in

flash SSDs. In Proceedings of the Sixth International
Conference on Emerging Databases: Technologies, Ap-
plications, and Theory, pages 139–144, 2016.

14    2022 USENIX Annual Technical Conference USENIX Association



[51] Ohshima, S. Scaling flash technology to meet appli-

cation demands. Keynote 3 at Flash Memory Summit

2018, 2018.

[52] Seon-yeong Park, Dawoon Jung, Jeong-uk Kang, Jin-

soo Kim, and Joonwon Lee. CFLRU: a replacement

algorithm for flash memory. In Proceedings of the 2006
international conference on Compilers, architecture and
synthesis for embedded systems, pages 234–241, 2006.

[53] SeongJae Park, Yunjae Lee, Moonsub Kim, and Heon Y

Yeom. Automating context-based access pattern hint

injection for system performance and swap storage dura-

bility. In 11th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 19), 2019.

[54] Mohit Saxena and Michael M Swift. FlashVM: Virtual

Memory Management on Flash. In USENIX Annual
Technical Conference, 2010.

[55] Taejoon Song, Gunho Lee, and Youngjin Kim. En-

hanced flash swap: Using NAND flash as a swap device

with lifetime control. In 2019 IEEE International Con-
ference on Consumer Electronics (ICCE), pages 1–5.

IEEE, 2019.

[56] Benny Van Houdt. Performance of garbage collection

algorithms for flash-based solid state drives with hot/-

cold data. Performance Evaluation, 70(10):692–703,

2013.

[57] Shuotao Xu. Bluecache: A scalable distributed flash-
based key-value store. PhD thesis, Massachusetts Insti-

tute of Technology, 2016.

[58] Jisoo Yang and Julian Seymour. Pmbench: A micro-

benchmark for profiling paging performance on a system

with low-latency SSDs. In Information Technology-New
Generations, pages 627–633. Springer, 2018.

[59] Jiacheng Zhang, Youyou Lu, Jiwu Shu, and Xiongjun

Qin. FlashKV: Accelerating KV performance with open-

channel SSDs. ACM Transactions on Embedded Com-
puting Systems (TECS), 16(5s):1–19, 2017.

USENIX Association 2022 USENIX Annual Technical Conference    15



A Pageout process

Figure 14 illustrates the operations performed during the pa-

geout process in detail.

Traditional page-out. A candidate anonymous memory page

from the inactive-list 1 is selected to be evicted (not recently

accessed 2 ) and is not in the swap cache 3 , it is assigned

a swap-slot entry 4 . The swap-slot entry is used both as

the destination of the page in the swap device, as well as

its identifier within the swap-cache. After the page has been

inserted into the swap-cache and subsequently unmapped

from the page tables 6 , the swap-slot entry value is inserted

instead. If the page is dirty 7 , it is unmarked as such, the

write operation to the swap device initiates 8 , and the page

is reinserted into the head of the inactive list 9 .

After the page has been successfully written to the swap

device, it is moved to the tail of the inactive list 10 , where it

is then removed for the second time 11 and passes through

the same conditions as in the first iteration. Finally, the page

is freed along with its swap-cache entry 16

If the page is accessed during the write to the swap device,

it is located in the swap-cache using the swap-slot entry, and

will subsequently fail one of the conditions in 12-15 .

ZNSwap page-out. Apart from sampling the accessed bit

in 2 , the dirty bit is sampled, cleared, and stored in the

PG_dirty flag of the struct page. The page is then as-

signed a zone per the defined policy 4 and the append op-

eration to the swap device initiated 5 ; the page is then rein-

serted to the inactive-list 6 . Once the append operation has

been completed and the location of the written data retrieved,

the page is inserted into the swap-cache. The PG_dirty flag

is cleared and the page is moved to the tail of the inactive-list

7 . The page then traverses through 8-11 and is unmapped

from the page tables 13 . If the page has been dirtied since

the append operation has initiated 14-15 , the page-out oper-

ation is aborted. The page is finally freed at 16 .

Unlike the traditional page-out algorithm, an access to the

page while it undergoing write-back to the swap device will

not raise a page-fault and subsequently remapped since it is

still mapped in the page-tables. Rather, the dirty bit in the

page tables is evaluated during the unmapping process 14 ,

which indicates whether it is safe to free the page or not.

16    2022 USENIX Annual Technical Conference USENIX Association



Inactive List Tail Check 
accessed

Yes

No

Assign swap slot + 
add to swap cache

Unmap page. Populate 
PTE with swap slot

Clear dirty and start 
write to swap

Page is in 
swap cache

No

Page present 
in PT

Yes No Page is dirty

Yes Yes

Free page 
and remove 
from swap 

cache

No

Inactive List Tail Check 
accessed and 
sample dirty 
to PG_dirty

Yes

No

Assign zone to 
page per 

policy

Yes Page present 
in PT

Traditional page-out for regular block devices

Page-out for nameless / zone append block devices

Page is in 
swap cache

No Yes

Start page 
write to swap

No

Yes

1 DM1 DM 2 DM2 DM 3 DM3 DM

4 DM$4 DM$

5 DM$5 DM$

6 D$6 D$

7 D$7 D$11 $11 $ 12 $12 $ 13 $13 $ 14 $14 $ 15 $15 $ 1616

Activate / 
rotate page

Reinsert to head of inactive list

When write finishes, 
page is moved to the tail

8 $R8 $R

9 $R9 $R

10 $10 $

Populate PTE with old 
mapping and rotate page

Activate / 
rotate page

Page has been 
assigned a 

zone
Unmap page. 
Populate PTE 

with swap slot

Check if old mapping 
has dirty bit set

No
No

Page under 
writeback: 

rotate

Page is 
dirty

Free page 
and remove 
from swap 

cache

Reinsert to head of inactive list

When write finishes, 
add to swap cache, 
clear PG_dirty and 

move to the tail

Yes

No

No

Yes

D : dirty PTE
M: mapped in PT
$ : swap-cached
R : reclaim
Z: assigned zone

1 DM1 DM 2 M2 M 3 M3 M

5 MZR5 MZR
6 MZR6 MZR

7 MZ$7 MZ$
4 MZ4 MZ

8 MZ$8 MZ$ 9 MZ$9 MZ$ 10 MZ$10 MZ$ 11 MZ$11 MZ$ 12 MZ$12 MZ$

13 Z$13 Z$

14 Z$14 Z$

15 Z$15 Z$ 1616

first iter. 
through PFRA
second iter. 
through PFRA

Figure 14: Page-out procedure for inactive pages

USENIX Association 2022 USENIX Annual Technical Conference    17





Building a High-performance Fine-grained Deduplication Framework
for Backup Storage with High Deduplication Ratio

Xiangyu Zou†, Wen Xia†, Philip Shilane∗, Haijun Zhang†, and Xuan Wang†

† Harbin Institute of Technology, Shenzhen ∗ Dell Technologies
Corresponding author: xiawen@hit.edu.cn

Abstract
Fine-grained deduplication, which first removes identical

chunks and then eliminates redundancies between similar
but non-identical chunks (i.e., delta compression), could ex-
ploit workloads’ compressibility to achieve a very high dedu-
plication ratio but suffers from poor backup/restore perfor-
mance. This makes it not as popular as chunk-level dedupli-
cation thus far. This is because allowing workloads to share
more references among similar chunks further reduces spa-
tial/temporal locality, causes more I/O overhead, and leads to
worse backup/restore performance.

In this paper, we address issues for different forms of
poor locality with several techniques, and propose MeGA,
which achieves backup and restore speed close to chunk-
level deduplication while preserving fine-grained deduplica-
tion’s significant deduplication ratio advantage. Specifically,
MeGA applies 1© a backup-workflow-oriented delta selector
to address poor locality when reading base chunks, and 2© a
delta-friendly data layout and “Always-Forward-Reference”
traversing in the restore workflow to deal with the poor spa-
tial/temporal locality of deduplicated data.

Evaluations on four datasets show that MeGA achieves a
better performance than other fine-grained deduplication ap-
proaches. In particular, compared with the traditional greedy
approach, MeGA achieves a 4.47–34.45× higher backup per-
formance and a 30–105× higher restore performance while
maintaining a very high deduplication ratio.

1 Introduction
Chunk-level deduplication [2, 7, 18, 20, 27, 28, 40, 45, 54] has
been widely used in backup storage systems to reduce stor-
age costs, but it is limited by its coarse-grained processing
granularity (i.e., file/chunk level) and can not completely ex-
ploit data workloads’ compressibility. To achieve a higher
deduplication ratio, fine-grained deduplication [22, 38, 47] is
proposed.

Fine-grained deduplication, sometimes previously called
"delta compression," not only focuses on duplicate chunks
but also removes sub-chunk-level redundancies existing in

 0

 600

 1200

 1800

 0  30  60  90  120  150  180

2.0X

88.5X

B
a
c
k
u
p
/R

e
s
to

re
S

p
e
e
d
 (

M
B

/s
)

DedupRatio

MeGA FGDedup CLDedup MFDedup

Figure 1: Performance of MeGA (our approach), FGDedup
(a typical fine-grained deduplication approach similar to
SDC [53]), CLDedup (a typical chunk-level deduplication
approach [23]), and MFDedup (a special chunk-level dedupli-
cation approach [58]) on a website snapshot dataset.

similar but non-identical chunks, and it has been studied in
several use cases [15,37,38,51]. Typically, fine-grained dedu-
plication first deduplicates identical chunks, then finds similar
base chunks (among non-duplicates), and finally runs delta
encoding between the new and base chunks to only store their
differences (a.k.a., delta chunks) for space-saving. As a result,
fine-grained deduplication could achieve a much higher dedu-
plication ratio than chunk-level deduplication [37]. We use
the term fine-grained deduplication, though some previous lit-
erature uses the term delta compression to refer to this entire
process.

However, fine-grained deduplication’s performance is usu-
ally much worse than that of chunk-level deduplication be-
cause of further reducing data locality. Chunk-level dedu-
plication usually suffers from the poor locality of dedupli-
cated data, which has been mentioned in several previous
works [12, 23, 58]. For example, when deduplicating a work-
load, we only store unique chunks and “share” chunks that
appear in stored workloads as duplicates. Because chunks are
stored in chronological order, this kind of “sharing” results in
duplicate chunks and other unique chunks of this workload
being scattered across the storage media, which leads to poor
performance when restoring this workload. This problem is
aggravated by fine-grained deduplication. It is because fine-
grained deduplication introduces delta compression to exploit
more compressibility among workloads, so workloads “share”

USENIX Association 2022 USENIX Annual Technical Conference    19



more data, decreasing locality, increasing I/O overheads, and
leading to worse backup/restore performance.

Generally, different forms of the poor locality caused by
delta compression impact backup and restore workflows. In
the backup workflow, reading base chunks for delta encoding
suffers from poor locality of base chunks (denoted by Read-
ing Base Issue). Specifically, this issue is related to local com-
pression, since consecutive chunks are compressed and must
be decompressed together, which makes the compression unit
become the I/O unit [6, 25, 44]. Thus, we have to read a com-
pression unit even when only one or a few base chunks are
needed, which leads to huge I/O amplification. In the restore
workflow, the Fragmentation Issue [12,23,53] (that also ex-
ists in chunk-level deduplication) is exacerbated by the more
complex dependencies in fine-grained deduplicated data. It is
caused by a new kind of reference relationship between delta
and base chunks, and this new kind of reference relationship
further breaks spatial locality in fine-grained deduplicated
data. Meanwhile, additional reference relationships between
delta and base chunks also lead to a poor temporal locality in
fine-grained deduplicated data. During delta decoding, base
chunks and delta chunks must both be read, unlike restoring
deduplicated data that only requires a single I/O read for a
needed chunk, which makes the restore workflow repeatedly
access containers to gather delta-base pairs (denoted by the
Repeatedly Accessing Issue).

In this paper, we aim to improve these locality issues based
on several observations and techniques.

For the Reading Base Issue, we apply a backup-workflow-
oriented delta selector to improve the efficiency of reading
base chunks in the backup workflow. It is based on an obser-
vation that most base chunks are located in a few containers
(e.g., 64.1% containers only include 8.31% of the base chunks
when running a backup workflow in a studied dataset). Ac-
cording to this observation, our delta selector skips delta com-
pression when base chunks are located in those “base-sparse
containers”. Without reading these “inefficient” containers,
the efficiency of reading base chunks will be improved.

For the Fragmentation Issue, we propose a delta-friendly
data layout, which covers the two-level reference relationships
in fine-grained deduplicated data: the chunks–workloads ref-
erence relationship (also exists in chunk-level deduplication)
and the additional delta–base reference relationship (caused
by delta compression). The delta-friendly data layout handles
the new dependencies and improves the spatial locality in
fine-grained deduplicated data.

For the Repeatedly Accessing Issue, we observe the ex-
istence of “Always-Forward-Reference” traversing. It is a
special path to traverse restore-involved containers, in which
delta chunks always appear before their base chunks. By
using this feature and exploiting the asymmetry of the I/O
characteristics of storage media, we design a delta prewrit-
ing mechanism to deal with the poor temporal locality in
deduplicated data, which first prewrites delta chunks to their

location in the to-be-restored workload and then reloads them
for decoding when later accessing their base chunks.

We propose MeGA, a fine-grained deduplication frame-
work, by using the above techniques to address the Reading
Base Issue, Fragmentation Issue, and Repeatedly Accessing
Issue. As shown in Fig. 1, MeGA achieves performance close
to chunk-level deduplication while preserving fine-grained
deduplication’s significant deduplication ratio advantage. The
contributions of this paper are threefold:

• We analyzed several forms of poor locality caused by
fine-grained deduplication, which leads to additional I/O
overhead and poor backup/restore performance.

• We proposed techniques (i.e., the backup-workflow-
oriented delta selector, the delta-friendly data layout,
the “Always-Forward-Reference” traversing, and delta
prewriting) to deal with these different issues caused by
the poor locality.

• We proposed MeGA with these techniques to achieve
performance close to chunk-level deduplication while
preserving fine-grained deduplication’s significant dedu-
plication ratio advantage. Especially, compared with
the traditional greedy approach [53], MeGA achieves
a 4.47–34.45× higher backup performance and a 30–
105× higher restore performance, while maintaining a
very high deduplication ratio.

2 Background and Related Works
2.1 Fine-grained Deduplication
Fine-grained deduplication [10, 15, 37, 38, 44, 51] could
achieve a much higher deduplication ratio than deduplication
alone [9, 11, 17, 19, 21, 32–34, 39]. It focuses on redundancies
not only between duplicate chunks but also between similar
but non-identical chunks, and finally achieves sub-chunk-level
detection as well as byte/string-level elimination.

However, fine-grained deduplication achieves a higher
deduplication ratio while introducing additional computa-
tion and I/O overhead when applying delta compression be-
tween similar chunks. To address these challenges, many
previous works have been proposed, and the additional com-
putation overhead has been hugely reduced. For example,
Zhang et al. [52] and Zou et al. [57] proposed much faster
sketch methods by exploiting the locality in backup streams
and content-based sampling, respectively. MacDonald [26]
proposed Xdelta for fast delta encoding. Xia et al. [48, 49]
and Tan et al. [41] presented chunking-inspired methods to
further improve delta encoding/decoding speeds. Zhang et
al. [53] extended the rewriting techniques [12,23] from chunk-
level deduplication to fine-grained deduplication to reduce the
additional I/O overhead only in fine-grained deduplication’s
restore workflow.

Fine-grained deduplication has been employed in many
other works. Xu et al. [50] introduced fine-grained dedupli-
cation for databases to reduce storage cost. Jain et al. [16]
applied the idea of fine-grained deduplication in replica syn-

20    2022 USENIX Annual Technical Conference USENIX Association



… …
Backup Stream

Step A: Eliminating 
Duplicate Chunks

Step B: Similarity-
based Matching

Backup Space (HDD)

Cache (Memory)

Step C: Delta 
Encoding

Step D: Storing 
Deduplicated Data 

and RecipeReading Base Chunks 

Recipe

Figure 2: The backup workflow of fine-grained deduplication.

chronization. Pucha et al. [35], Mogul et al. [30], and Zhou
et al. [55] designed a detection mechanism for p2p system,
which finds both identical and similar sources to accelerate
downloads.

Fig. 2 shows a standard workflow for fine-grained dedu-
plication: 1© Split backup streams into chunks and calculate
a fingerprint for each chunk. 2© Check and eliminate dupli-
cate chunks using the fingerprint index. 3© Calculate each
unique chunk’s sketches. Super Feature [5,22,24,37] is a typ-
ical kind of sketch. It first generates multiple local-sensitive
hashes with rolling hashes and linear transformations, and
then packs these local-sensitive hashes together into fewer
Super Features to detect highly similar chunks. 4© Find sim-
ilar candidates for unique chunks using a sketch index or
cache. 5© If a similar candidate exists, read it as a base chunk,
and delta encode the incoming chunk relative to the base,
often generating a much smaller delta chunk. 6© All dedu-
plicated chunks are stored in containers in order, and then
each container will be compressed. 7© Generate a recipe for a
backup stream by recording fingerprints of all needed chunks,
including indirectly referenced base chunks.

2.2 Backup Workloads
In backup storage systems [29], workloads usually are a series
of backups (i.e., successive snapshots of the primary data),
and consecutive backups are usually similar, which has been
reported and exploited in many existing studies [13, 47, 52].
Thus, due to the highly redundant nature of the data, backup
storage often leverages data deduplication to greatly reduce
the size of backups and save hardware costs.

Deduplicated data (i.e., chunks) are usually locally com-
pressed and stored in immutable and fixed-size containers
(e.g., 4MB). Containers are compatible with striping across
multiple drives in a RAID configuration, and writing in large
units achieves the maximum sequential throughput [23].

3 Observation and Motivation
3.1 Challenges
Fine-grained deduplication obtains a higher deduplication
ratio than chunk-level deduplication with much worse
backup/restore performance, but further fragments data lo-
cality. As mentioned in several previous works [12, 23, 58],
chunk-level deduplication usually suffers from poor locality
because chunks from a workload that are logically consecu-

To-be-restored Workload

Container n

FP1:cid1

FP2:cid2

FP3:cid3

FP4:cid4

…

1. Traversing Recipe

2. Reading required container
 to cache for delta chunk 

(Container-based I/O)

Container n-1

5. Writing to its offset

3. Requiring another container for 
the base chunk

Container n-1 Container n+1

Container n+1

 Cache(Memory)

Recipe

4. Decoding the delta 
chunk with the base chunk

Backup Space (HDD)

User Space (SSD)

Figure 3: Restoring a delta chunk in the restore workflow of
fine-grained deduplication.

0%

20%

40%

60%

80%

100%

1 20 40 60 80 100

P
ro

p
o
rt

io
n
 o

f 
S

to
ra

g
e
 I
/O

 i
n
 B

a
c
k
u
p

#-th of Backups

WriteDeduplicated
ReadBase

(a) I/O in Backup workflow

0%

20%

40%

60%

80%

100%

1 20 40 60 80 100

P
ro

p
o
rt

io
n
 o

f 
S

to
ra

g
e
 I
/O

 i
n
 R

e
s
to

re

#-th of Backups

NeededChunks
Fragmentation

RepeatedlyAccess

(b) I/O in Restore workflow

Figure 4: I/O overheads in backup and restore workflow.

tive may refer to previously written chunks scattered across
the disks. However, fine-grained deduplication has more se-
rious locality issues. Specifically, fine-grained deduplication
eliminates redundancies among similar chunks by creating
more references to previously written chunks, which increases
fragmentation. Meanwhile, this observation also means that
as more space is saved, locality becomes worse. Poor locality
harms both backup and restore performance.

Fig. 2 demonstrates the poor locality involved in reading
base chunks for fine-grainded deduplication. Specifically, this
issue is related to the local compression, since consecutive
chunks must be decompressed entirely according to the com-
pression unit (that also becomes the I/O unit) [6,25,44], which
could be containers or compression regions (i.e., containers’
sub-unit). Therefore, reading a compression unit when only
one or a few base chunks are needed leads to I/O amplifica-
tion. Generally, a larger I/O unit (e.g., containers) may cause
a larger I/O amplification, but it also could opportunistically
prefetch more base chunks and reduce costly random accesses
on HDDs (due to locality of backup stream [38, 52]). Even
with a smaller I/O unit (e.g., 128KB container regions), read-
ing bases remains a bottleneck [38]. Though it may cause less
I/O amplification, reading some base chunks having locality
with a small I/O unit can be disrupted by write tasks and
result in more random seeks, because the backup workflow
of fine-grained deduplication mixes reads and writes (i.e.,
reading base chunks and writing deduplicated data). Thus,
we learn Challenge 1: Poor locality in the backup workflow
causes inefficient I/O when reading base chunks.

In the restore workflow (like Fig. 3), there are two chal-
lenges. The first challenge in the restore workflow is the frag-
mentation problem, which is caused by poor spatial locality in

USENIX Association 2022 USENIX Annual Technical Conference    21



deduplicated data. It also exists in chunk-level deduplication,
but it becomes more serious in fine-grained deduplication.
It is because fine-grained deduplication allows workloads to
share more similar chunks, but it also produces more refer-
ences to previously written chunks. Therefore, fine-grained
deduplication introduces another kind of reference relation-
ship (i.e., between the base and delta chunks) and no longer
only has one kind of reference relationship (i.e., between
chunks and workloads). This makes the fragmentation prob-
lem more complex since the dependencies of each workload
are distributed more widely. Thus, there exists Challenge 2:
Delta-base relationships lead to more complex fragmentation
problems than deduplication alone. The restore workflow
also has Challenge 3: Delta-base dependencies cause poor
temporal locality during delta decoding and causes repeated
container reads. Without fine-grained deduplication, individ-
ual chunks can be read as needed to restore a file, but for fine-
grained deduplication, base chunks and delta chunks must
both be read. When chunks in a container are used (for unique
or base chunks) across long time intervals, the restore work-
flow needs to alternately and repeatedly access containers to
gather delta-base pairs for delta decoding.

Finally, Fig. 4 suggests the seriousness of these challenges.
It studies the I/O overheads of a basic fine-grained deduplica-
tion system with container I/O when backing up and restoring
backup workloads from a WEB dataset (detailed in §5.1),
which consists of 100 snapshots of a website. “WriteDedu-
plicatedData” means I/O for writing deduplicated data in
the backup workflow, and “NeededChunks” means I/O for
reading needed chunks. “ReadBase”, “Fragmentation”, and
“RepeatedlyAccess” map to the above three challenges, re-
spectively. We learn that these three challenges cause huge
I/O overheads, and even “WriteDeduplicated” and “Needed-
Chunks” only take about 0.3% and 1.12% of the total I/O in
backup and restore workflows.

3.2 Selective Delta Compression
As Challenge 1 mentioned, poor locality in reading base
chunks causes large I/O overheads in the backup workflow.

To this end, we studied datasets and observed that base
chunks are not distributed evenly. For example, Fig. 5 gives
the distribution of base chunks when backing up the 100th

backup in the WEB dataset. Fig. 5(a) suggests that 64.1% of
containers include fewer than 30 base chunks, and Fig. 5(b)
demonstrates that these containers only hold 8.31% of the
total base chunks. We call these containers “base-sparse con-
tainers”. Though there are only a few base chunks in these
base-sparse containers, when requiring base chunks in one
of them, we have to load the whole container from the disk,
which causes a significant read amplification.

Thus, these observations motivate us to design a backup-
workflow-oriented delta selector, which skips delta com-
pression whose base chunks are located in “base-sparse con-
tainers” to avoid reading these “inefficient” containers. Thus,

0%

20%

40%

60%

80%

100%

1 20 40 60 80 100

(30, 64.1%)

C
D

F
 o

f 
C

o
n
ta

in
e
rs

Amount of Base Chunks in Containers

(a) 64.1% of containers contain only
∼30 base chunks.

0%

10%

20%

30%

40%

1 20 40 60 80 100

(30, 8.31%)

C
D

F
 o

f 
B

a
s
e
 C

h
u
n
k
s

Amount of Base Chunks in Containers

(b) These 64.1% containers only in-
cludes 8.31% of the total base chunks.

Figure 5: Base chunks are not distributed evenly.
the 1st backup stream

the 2nd backup stream

the 3rd backup stream

A B C D E F G

A B' C' H I F' G

A J C H' I F' G'

(a) An example of three backup streams before deduplication.

A B C D E F G Δ(B') Δ(C') 

H I Δ(F') J Δ(H') Δ(G') 

Container 1 Container 2 Container 3

Container 4 Container 5

(b) The order-based data layout after fine-grained deduplicated.

D E B FCA G

Δ(F')IH

Δ(G')Δ(H') J

Δ(B') Δ(C')

Cat.(1,1) Cat.(1,2) Cat.(1,3)

Cat.(2,2) Cat.(2,3)

Cat.(3,3)

(c) The delta-friendly data layout for fine-grained deduplication.

Figure 6: An example of the order-based data layout versus
the delta-friendly data layout.

it could reduce the I/O overheads in the backup workflow,
and finally greatly improve the backup speed in fine-grained
deduplication, which will be evaluated in §5.2.

3.3 Delta-friendly Data Layout
For Challenge 2, we use the example in Fig. 6 to discuss
the fragmentation problem in fine-grained deduplicated data.
Fig. 6(a) lists three backup streams, and Fig. 6(b) suggests the
order-based data layout after fine-grained deduplicating these
three backup streams. The order-based data layout allocates
chunks in containers according to their written order and is
widely used in previous works [12,23,37,52]. When restoring
a backup, the needed and unneeded chunks are always mixed
in this data layout. Consider Container 2 in Fig. 6(b) for
example: when restoring the 3rd backup, chunk F is needed
while chunks D and E are unneeded, but all of them will be
read as a whole container due to container I/O, which causes
extra I/O overheads.

Rewriting-like defragmentation approaches could be ex-
tended to fine-grained deduplication to alleviate the fragmen-
tation problem [53]. Their mechanisms can be summarised as
skipping deduplicating chunks already in sparse containers,
but this cannot stop the locality of deduplicated data becoming
increasingly poorer as the number of backups increases, which
thus makes the restore speed continually decrease [13,23,53].

22    2022 USENIX Annual Technical Conference USENIX Association



MFDedup [58] introduces a lifecycle-based data layout and
eliminates the fragmentation problem in chunk-level dedu-
plication. The lifecycle-based data layout classifies chunks
into categories according to whether they are always refer-
enced by the same set of consecutive backup workloads (i.e.,
lifecycles), and stores chunks in the same category together.
Lifecycle-based classification of chunks ensures whichever
backup workload is to be restored, chunks in any categories
are always either all needed together or all not needed together.
Thus, reading needed chunks in the unit of categories will
never cause unneeded chunks to be read. Generally, MFD-
edup only considers one-level simple reference relationships
(between chunks and backup workloads), which is the only
type of reference relationship in chunk-level deduplication.

However, directly applying this lifecycle-based data layout
to fine-grained deduplication is not feasible since fine-grained
deduplication introduces an additional kind of reference re-
lationship between delta and base chunks and causes new
fragmentation. In the 2nd backup stream, there are two-level
reference relationships:

• Between workloads and chunks.
i.e., the 2nd backup stream⇔ {A, B’, C’, H, I, F’, G}

• Between base chunks and delta chunks.
i.e., B⇔ ∆(B); C⇔ ∆(C); F⇔ ∆(F)

Therefore, we need a new data layout that considers both
kinds of reference relationships to eliminate the fragmentation
problem in fine-grained deduplicated data.

We first need a new way to describe chunks’ lifecycles with
the additional introduced reference relationship’s impacts.
Here we define the Necessary Chunks (denoted by NC) of a
backup workload as the combination of its directly referenced
chunks (i.e., the 1st level) and its indirectly referenced chunks
(i.e., the 2nd level). Accordingly, we redefine a chunk’s lifecy-
cle in fine-grained deduplication as which backup workloads’
NCs refer to this chunk, which could cover the two-level ref-
erence relationships. In Fig. 6, we can list the NCs for the
three backups:

• NC_Backup1: A, B, C, D, E, F, G
• NC_Backup2: A, B, ∆(B’), C, ∆(C’), H, I, F, ∆(F’), G
• NC_Backup3: A, J, C, H, ∆(H’), I, F, ∆(F’), G, ∆(G’)

In this example, the lifecycle of chunk G is from NC_Backup1
to NC_Backup3, since G is used as a unique chunk for
NC_Backup1 & NC_Backup2 and then as a base for
NC_Backup3.

After that, we could build a delta-friendly data layout by
integrating the second level of reference relationship into the
lifecycle management as well. As shown in Fig. 6(c), the delta-
friendly data layout consists of categories, which includes
several chunks. To clearly present them, we use Cat.(X,Y) to
indicate the category, which includes all chunks whose lifecy-
cles are only from NC_BackupX to NC_BackupY. All dedupli-
cated data are classified and sequentially stored in categories
according to their lifecycles, which hugely benefits the re-
store workflow. In this example, NC_Backup1 is composed of

Traversing Assumption: Always first meeting 
delta chunks then meeting their base chunks. Backup Space (HDD)

User Space 

(SSD) To-be-restored Workload

2. When meeting its base chunk, 
reloading the delta chunk from 

User Space.

3.Decoding them and writing back

1.Prewriting a delta chunk

Figure 7: The delta prewriting mechanism. Here the half
shaded chunk is a delta chunk.

Cat.(1,1), Cat.(1,2) and Cat.(1,3); NC_Backup2 is composed
of Cat.(1,2), Cat.(2,2), Cat.(1,3) and Cat.(2,3); NC_Backup3
is composed of Cat.(1,3), Cat.(2,3) and Cat.(3,3). When
restoring any of these three backups, we can select categories
according to the above lists, and all chunks in selected cate-
gories are all needed. In this way, the restore workflow never
needs to read any unneeded chunks, and the Fragmentation
Issue in Challenge 2 could be eliminated.

To simplify the implementation of the delta-friendly data
layout, we only deduplicate redundancies between adjacent
backups to ensure that chunks’ lifecycles are always consec-
utive (composed of successive backup streams’ Necessary
Chunks), similar to the approach in MFDedup [58]. This strat-
egy may reduce the total deduplication ratio, but it will not be
significant according to several previous works [38, 44, 58],
which will be also further studied in §5.4.

3.4 Forward Reference and Delta Prewriting
For Challenge 3, we design a delta prewriting mechanism. It
relies on two things: 1© The storage media’s I/O characteris-
tics between User Space and Backup Space are asymmetric.
Backup Space usually uses HDDs as storage media due to its
lower price, while User Space usually uses SSDs or NVMs
since better I/O performance is essential for business [58]. 2©
When performing a restore, delta-encoded chunks are always
accessed before their base chunks, which we call “Forward
Reference.”

Fig. 7 shows the basic idea of the delta prewriting mecha-
nism. For each delta chunk, the prewriting mechanism will
prewrite it to the offset where it should be after delta decoding
in the to-be-restored backup workload (in User Space). And
then, when meeting its base chunk later, the prewriting mech-
anism will read the delta chunk from the prewritten position,
decode the delta chunk with the base, and finally write back
the decoded chunk to its offset. Through this mechanism, we
ensure that when restoring, all restore-involved containers
only need to be read only once, which hugely reduces the I/O
overheads on Backup Space.

The next issue is how to make the assumption always
hold. By studying the data layout proposed in §3.3, we
find it is possible to design a special path for traversing
restore-involved containers when restoring, in which delta
chunks always appear in front of their base chunks. We call
it “Always-Forward-Reference” traversing (shortened to

USENIX Association 2022 USENIX Annual Technical Conference    23



AFR traversing), whose details will be introduced in §4.4.
Due to improved spatial locality (delta-friendly data layout

in §3.3) and temporal locality (the AFR traversing and delta
prewriting in §3.4) in deduplicated data, the I/O overheads in
the restore workflow are hugely reduced. Meanwhile, there
exists only sequential I/O to the Backup Space when restoring,
which is optimized for HDDs. Finally, the restore speed could
be greatly improved, which we evaluate in §5.3.

4 Design and Implementation
4.1 General Description
The overall framework of MeGA is shown in Fig. 8. In gen-
eral, 1© For the backup workflow, MeGA first runs Chunk-
level Deduplication to remove duplicate chunks according
to Local-based FP Index, and then, it finds similar matches
for unique chunks according to Local-based Sketch Index and
selectively applies delta compression using Delta Selector. 2©
For the storage organization, MeGA stores and manages the
deduplicated and delta compressed data in the Delta-Friendly
Data Layout. 3© For the restore workflow, MeGA generates an
Offset Hash Table according to the recipe of a to-be-restored
workload; then, MeGA accesses all restore-involved contain-
ers with AFR Traversing and Delta Prewriting.

Specifically, there are several modules in MeGA:
• Local-based FP Index and Local-based Sketch Index

maintain fingerprints and sketches of each backup work-
load’s chunks in separate hash tables per backup. They
only retain the current and last backup’s tables (simi-
lar to some previous works [44, 58]), because MeGA
only deduplicates a backup within itself and the previous
backup (mentioned in §3.3).

• Chunk-level Deduplication first splits the backup stream
into chunks with Content-Defined Chunking [31, 46]
and then calculates a fingerprint (i.e., SHA1 digest) for
each chunk. After that, it detects and eliminates identical
chunks with a Local-based FP index.

• Delta Selector first generates sketches with the resem-
blance detection approaches [4, 5, 37, 52, 57] for unique
chunks and identifies similar candidates according to
the Local-based Sketch index for further delta compres-
sion. Then, it delta-encodes chunks unless the referenced
bases are in base-sparse containers.

• Base Cache holds cached containers to provide base
chunks for delta compression in the backup workflow.

• Delta-Friendly data layout manages fine-grained dedu-
plicated chunks according to their lifecycles, reflecting
which backup workloads require these chunks. As a re-
sult, the delta-friendly data layout promises to eliminate
the fragmentation problem in fine-grained deduplicated
data and reduce I/O overheads in the restore workflow.

• AFR Traversing applies “Always-Forward-Reference”
traversing on fine-grained deduplicated data in a restore
workflow, which guarantees that delta chunks are always
accessed before their base chunks and provides the pre-

Backup SpaceUser Space

Workload

Chunk-level
Deduplication

Local-based
FP Index

Local-based
Sketch index

Delta-Friendly 
Data Layout

Delta
Selector

AFR 
Traversing

Offset Hash 
Table

Delta 
Prewriting

Recipes

Memory

Restored
Workload

B
ac

k
u

p
W

o
rk

fl
o

w
R

es
to

re
W

o
rk

fl
o

w

Base
Cache

Figure 8: An overview of MeGA framework.

condition for Delta Prewriting.
• Delta Prewriting transfers the random operations from

Backup Space to User Space, exploiting the asymmetry
of storage media characteristics between the two spaces.
This also avoids repeatedly accessing containers when
restoring files.

• Offset Hash Table is built according to a to-be-restored
backup workload’s recipe and provides offsets of chunks
(three kinds of chunks: unique, base, and delta) in the
to-be-restored backup workload.

Details of each workflow using our proposed key tech-
niques will be introduced in the following §4.2–§4.4.

4.2 Backup Workflow
The backup workflow runs Chunk-level Deduplication and
Delta Selector to eliminate duplicate chunks and redundancies
among similar chunks, respectively.

Chunk-level Deduplication. The chunk-level deduplica-
tion step splits the backup stream into chunks with Content-
Defined Chunking [31, 46] and then calculates a fingerprint
(i.e., SHA1 digest) for each chunk. After that, MeGA detects
and removes duplicate chunks according to the Local-based
FP Index, as we introduced in §4.1.

Delta Selector. Then, the backup workflow runs Delta Se-
lector with the following steps. 1© Delta Selector first com-
bines several successive chunks (from Chunk-level Dedu-
plication) into fix-sized segments (e.g., 20MB). 2© In each
segment, Delta Selector generates sketches (i.e., Super Fea-
tures [22]) for each (unique) chunk, and then tries to find for
each chunk a similar chunk as its base chunk with the Local-
based Sketch Index. 3© For chunks that have a potential base
chunk, Delta Selector records their base chunk’s container ID
in a ‘selector table’, which counts the times each container is
referenced for base chunks within a segment. 4© Then, Delta
Selector observes which containers are rarely referenced (with
a threshold) in the ‘selector table’ and considers these con-
tainers as ‘sparse-base containers’, which are inefficient to
read for base chunks. 5© Finally, for chunks having a similar
chunk that is not in sparse-base containers, Delta Selector will
run delta compression to calculate and store their differences
(i.e., delta chunk) for saving space; For the remaining chunks,
they will be directly stored as unique chunks. Base chunks in
delta compression are acquired from the base cache, and if a
cache miss occurs, the base cache will read related containers

24    2022 USENIX Annual Technical Conference USENIX Association



Cat.(1,1) Cat.(1,2) Cat.(1,3)

Cat.(2,2) Cat.(2,3)

Cat.(3,3)Migrating chunks which are 
referenced by the next backup

Column 1 Column 2 Column 3

R
o
w

 1
R

o
w

 2
R

o
w

 3

Duplicate

Base

Delta

Unique

Figure 9: An example of maintaining data layout after storing
the 3rdbackup. Chunks, which are duplicate to the 3rd backup
and referenced as base chunks in the 3rd backup, will be
migrated to new categories. Cat(1,3) and Cat.(2,3) do not
exist before migrations.

from disks and add them to the cache.
As a result, Delta Selector could improve the efficiency of

reading base chunks and then accelerate the backup workflow.
Next, we will introduce how to store these deduplicated data.

4.3 Maintaining Delta-Friendly Data Layout
In this subsection, we will introduce how to locate the dedu-
plicated data in the delta-friendly data layout. There are two
steps: 1© Store the incoming deduplicated data of a new
backup in the delta-friendly data layout. 2© Process the in-
coming and previous backups’ deduplicated data to ensure
each chunk’s location is consistent with the principle of our
delta-friendly data layout.

Storing New Fine-grained Deduplicated Data and Data
Organization. For storing fine-grained deduplicated data, we
first consider their lifecycles. After running the backup work-
flow (introduced in §4.2), the fine-grained deduplicated data
consists of the latest backup workload’s unique and delta
chunks. Since these chunks are only referenced by the lat-
est backup, they should have the same lifecycle, and their
lifecycle should be different from previously stored chunks.

Then, considering the definition of the lifecycle and the
naming style of categories (shorten to Cat.) introduced
in §3.3, these chunks (assuming they are from the nth Backup)
should be classified into a new category Cat.(n,n).

Considering the sizes of categories are usually variable, we
design a two-level storage organization: fix-sized Containers
(e.g., 4MB) and variable-sized Categories. Containers directly
hold chunks, and categories hold containers whose chunks
have the same lifecycle. For example, Cat.(1,2) could include
one or several containers, and each container holds chunks
whose lifecycle is from NC_Backup1 to NC_Backup2.

Data Migration. After storing fine-grained deduplicated
data of the latest backup workload, we should consider up-
dating the data layout to handle the issue that some chunks’
lifecycles are changed. In general, storing a new backup in the
delta-friendly data layout only changes the lifecycles of its ad-
jacent backups’ chunks, because MeGA only allows adjacent
backups to share common chunks (i.e., MeGA deduplicates
a backup within itself and its previous backup). Therefore,

these shared chunks’ lifecycles should be extended to the
latest backup. Thus, we need to migrate these shared chunks
into new categories to match their updated lifecycles, and we
call these migrations the maintenance workflow.

An example of the maintenance workflow is shown in
Fig. 9. It shows a situation that the 1st and 2nd backups have
been stored in the data layout, and the 3rd backup is the latest
one, whose fine-grained deduplicated data have been stored
in Cat.(3,3), as discussed earlier in this subsection. At this
time, some chunks located in Cat.(1,2) and Cat.(2,2) are ref-
erenced by the 3rd backup (as duplicate or base chunks).
Thus, these chunks’ lifecycles newly include NC_Backup3
and they should be migrated into new categories. In this exam-
ple, chunks in Cat.(1,2) and Cat.(2,2) will be traversed, and
duplicate/base chunks will be migrated into new categories
Cat.(1,3) and Cat.(2,3), respectively.

Note that the maintenance workflow (i.e., data migra-
tion) only works on related categories and does not in-
volve all categories.. As the example in Fig. 9 shows, a main-
tenance workflow after storing the 3rd backup only impacts
Column 2. Similarly, the maintenance workflow always runs
on one column, and its overhead is also limited (will be stud-
ied in §5.6). With support of the maintenance workflow, the
delta-friendly data layout is preserved, which benefits restore
performance.

Features in Migration. There exist two interesting fea-
tures when the maintenance workflow involves delta and base
chunks. For clarity, here we say Cat.(X,Y) is in Row X, and
Column Y, as shown in Fig. 9.

Feature 1: base chunks are always in the same or an
earlier Row than their delta chunks. It could be easily ex-
plained by the example in Fig. 9. For delta chunks of the 3rd

backup (must be in Cat.(3,3)), their base chunks can only be
from two sources: 1© from the 3rd backup itself. In this case,
the bases are also in Cat.(3,3), the same Row as the delta. 2©
from the 2nd backup. In this case, the bases must be migrated
into Cat.(1,3) or Cat.(2,3), the earlier Row than the delta.

Feature 2: base chunks are always in the same or a later
Column than their delta chunks. Here we also take Fig. 9 as
an example: When the duplicate chunks in Fig. 9 contain base
or delta chunks, there are two cases: 1©If a delta chunk is a
duplicate of another delta chunk (i.e., its “original” chunk is
a duplicate of delta-encoded chunk) to the 3rd backup and
should be migrated, its base must be also migrated as the
delta’s dependency, since both of them should be included in
NC_Backup3. Therefore, in this case, they will be migrated
into the same Column (Column 3). 2©If a base chunk is dupli-
cate (i.e., is itself a duplicate) to the 3rd backup and should be
migrated, its delta will not be migrated, since the 3rd backup
does not require this delta chunk. In this case, the base (mi-
grated to Column 3) will be in a later Column than the delta
(left in Column 2).

These two features will help to achieve “Always-Forward-
Reference” traversing, which will be further used in §4.4.

USENIX Association 2022 USENIX Annual Technical Conference    25



Table 1: Possible category locations of the corresponding base
chunks for the delta chunks in the 2nd backup.

Delta Chunks’ Positions Corresponding Base Chunks’
Possible Positions

Cat.(1,2) ⇒ Cat.(1,2), Cat.(1,3)
Cat.(2,2) ⇒ Cat.(1,2), Cat.(2,2), Cat.(1,3), Cat.(2,3)
Cat.(1,3) ⇒ Cat.(1,3)
Cat.(2,3) ⇒ Cat.(1,3), Cat.(2,3)

4.4 Restore Workflow
As introduced in §4.1, the restore workflow of MeGA relies
on AFR traversing and Delta Prewriting. In the beginning,
the restore workflow needs to determine which containers are
needed for restoring the required backup workload.

Identifying All Required Containers. All the required con-
tainers could be simply calculated in a delta-friendly data
layout. For example, there are n backup workloads stored,
and we want to restore a backup Bk. According to the naming
style of categories (mentioned in §3.3), all categories whose
lifecycles include NC_Backupk are required, and they are
∪n

j=k ∪
j
i=1 Cat.(i, j),where 1 ≤ i ≤ k ≤ j ≤ n. For example,

when restoring the 2nd backup in Fig. 9, Cat.(1,2), Cat.(2,2),
Cat.(1,3), Cat.(2,3) are required.

Then all containers in these categories are the restore-
required ones. Benefiting from the delta-friendly data layout,
all chunks in these containers are exactly what we need, which
avoids reading unneeded chunks when restoring. Next, we
present how to traverse them for restoring a workload.

AFR Traversing. As mentioned in §4.1, AFR traversing
promises that when traversing the restore-involved contain-
ers, delta chunks always appear in front of their base chunks.
For the example in Fig. 6(c), when restoring the 2nd backup,
restore-involved categories are Cat.(1,2), Cat.(2,2), Cat.(1,3)
and Cat.(2,3) (according to “Identifying All Required Con-
tainers”). In this case, we can achieve AFR traversing with
the following order: Cat.(2,2) ⇒ Cat.(1,2) ⇒ Cat.(2,3) ⇒
Cat.(1,3), in which we always meet the delta chunks before
their base chunks.

Next, we explore how and why MeGA can achieve AFR
traversing, also with the example of restoring the 2nd backup
in Fig. 6(c). Consider the two key Features about the rela-
tive positional relationship (i.e., the located categories’ Rows
and Columns) between the delta and base chunks (learned
from §4.3). We can get Table 1, listing all possible positions
(i.e., located categories) of delta and based chunks of the 2nd

backup. To achieve AFR traversing (accessing delta chunks
and then their bases), Cat.(2,2) must be first accessed, which
is because the base chunks of Cat.(2,2)’s delta chunks could
be in all four categories as shown in Table 1. With similar anal-
ysis, we could finally get the previous example path: Cat.(2,2)
⇒ Cat.(1,2) ⇒ Cat.(2,3) ⇒ Cat.(1,3). Additionally, AFR
traversing should go through chunks and also containers of
each category in reverse order in case there are delta and
base chunks in the same category or container, since the delta

User Space 

(SSD) To-be-restored Workload (Bk)

Base 

Chunk?

Loading

Delta

Prewriting Delta 

or Writing Unique

Decoding 

& Writing

Yes

No

Bk's
Recipe

Container n-1 Container n Container n+1

Always-forward-reference traversing
Backup Space (HDD)

FP1 FP2 FP3

Offset1 Offset2 Offset7

Offset9

Offset8

Offset7
Offset Hash 
Table of Bk

(Memory)

T
ra

v
er

si
n
g

Figure 10: An example of the restore workflow.

must be generated and then appear after its base in the backup
workflow.

To this end, we can summarize three rules to achieve
AFR traversing on our delta-friendly data layout in general
cases:

• Between columns, access columns in positive order. This
is deduced from Feature 2 (in Section 4.3).

• In the same column, access categories in reverse order.
This follows from Feature 1 (in Section 4.3).

• In a category, access containers in each category and
chunks in each container in reverse order. This is because
delta chunks can only reference earlier chunks by design.

Delta Prewriting. As shown in Fig. 10, Delta Prewriting
requires an Offset Hash Table, which is generated accord-
ing to the to-be-restored backup’s recipe. The Offset Hash
Table records key/value pairs: each chunk’s offset (in the
to-be-restored backup) and whether it is a base chunk (i.e.,
<offset, base tag>). For unique chunks in the recipe, we only
insert its offset into its FP’s entry list and tag this record as
not a base (e.g., <offsetUniqueK, false>). For a delta chunk
in the recipe, we first process it as a unique chunk (e.g., insert
<offsetDeltaN, false> in its FP’s entry list) and then addition-
ally insert a record into the entry list of its base’s FP and tag
this record as a base chunk (e.g., <offsetDeltaN, true>).

Then, we apply AFR traversing on restore-involved con-
tainers. For each chunk, we acquire its entry list according to
its fingerprint. We check each record in the entry list: If it is
not a base chunk record, we directly write the chunk (it may
be a delta or unique chunk) to the offset in the record; If it is
a base chunk, we read the delta chunk from the offset in the
record (the delta should already be written before), decode
the delta chunk with the base chunk, and then write back the
decoded chunk to the offset in the record.

Finally, MeGA could achieve a much higher restore speed
with the benefits of the delta-friendly data layout, AFR travers-
ing and delta prewriting, since it no longer reads unneeded
chunks and repeatedly accesses restore-involved containers.

4.5 Discussion
In this subsection, we discuss several features and issues.

26    2022 USENIX Annual Technical Conference USENIX Association



Deletion. Different from the order-based data layout, the
delta-friendly data layout supports direct deletions without
GC. Because MeGA allows workloads to share chunks as
duplicate chunks or base chunks, deleting the nth backup only
needs to remove its unique chunks. According to the category
naming rule, Cat.(n,n) only contains chunks unique to backup
n. Thus, deleting the nth backup could be achieved by directly
removing this category, instead of the way in the order-based
data layout, which first runs logical deletion and later runs
garbage collection to reclaim storage space [3, 9, 14].

Delta Prewriting. This mechanism introduces additional
I/O on User Space, including prewriting and reading delta
chunks. Our observations suggest these issues cause about
5%-10% additional I/O overheads on User Space. Moreover,
since delta chunks are usually much smaller than unique ones,
we could also introduce a delta cache in memory and prewrite
delta chunks into the cache as an alternative solution.

Memory Overhead. Since the size of the base chunk cache
(in a backup workflow) is configurable, the other memory
overhead of MeGA is mainly from the local-based indexes
(in backup workflow) and the offset hash table (in restore
workflow). 1© Instead of putting the whole index in memory,
MeGA only maintains the index of the last two backups and
thus costs less memory, which is similar to some previous
work [44, 58]. Moreover, a stream-informed index [56] could
also be applied to our local-based index to further reduce
memory overhead. 2© The overhead of the offset hash table
is related to the number of chunks in a single backup. Some
previous works [1, 43] suggest that the majority of single
backups were 4–128GB, and for these cases, RAM usage
for the Offset Hash Table could be 12.9–445.6MB, which
is feasible for a server. To reduce this RAM usage for large
backups, we could keep the offset hash table in an on-disk
key-value store, but it would require indexing time.

Maintenance’s (i.e., Migrations) Overheads. The Mainte-
nance process in MeGA replaces Garbage Collection (GC)
in previous works, and its overhead could be offset since
both techniques are offline processes, which will be evalu-
ated in §5.6. Through the Maintenance process, MeGA could
achieve direct deletion (to immediately reclaim storage space)
instead of logical deletion followed by GC. Besides, the Main-
tenance process also addresses two interesting issues [36]:
knowing how much space will be freed after deletion and
estimating the remaining logical space of a fine-grained dedu-
plication system.

Incremental Backups. Although MeGA focuses on full
backups (i.e., a full snapshot of primary storage), we present
a plan to support incremental backups by generating “virtual”
full backups.

When handling an incremental backups, we generate a
“virtual” full backup according to the previous full backup’s
recipe, and then process the “differences” included in the
incremental backup. Specifically, 1© non-modified (i.e., not
listed in the incremental backup) parts of the “virtual” full

backup are duplicates, and we can directly copy correspond-
ing records from the previous full backup’s recipe to the
“virtual” full backup’s recipe; 2© modified (i.e., listed in the
incremental backup) parts have potentially new content, and
we need to apply fine-grained deduplication. Chunk bound-
aries need to be recalculated due to the modified data regions,
so we could combine the new data with their surrounding
duplicate chunks to make up a local stream and run content-
defined chunking on this stream to determine new chunks.
Then, MeGA could process these chunks normally, and finally
record these “modifications” in the “virtual” full backup’s
recipe.

5 Evaluation
5.1 Configuration
We perform our experiments on a workstation running Ubuntu
18.04 with an Intel Core i7-8700 @ 3.2GHz CPU, 64GB
memory, and a 7200rpm HDD. To better evaluate MeGA, the
following five approaches are considered:

• Greedy: applying the greedy strategy for fine-grained
deduplication, often evaluated as the baseline [44, 53].

• FGD: Fine-Grained Deduplication with the Capping
rewriting technique [23], which skips some deduplica-
tion and delta compression whose duplicate chunks or
base chunks are located in a few referenced containers.
This is similar to a recent work called SDC [53].

• CLD: Chunk-Level Deduplication with the Capping
rewriting technique [23], considered as a typical ap-
proach of chunk-level deduplication defragmentation.

• MFD: Chunk-level deduplication with the previous
lifecycle-based data layout, which only deduplicates
chunks between adjacent backups [58].

These approaches are implemented according to related
papers, and they all follow these common configurations:

• Chunking backups uses FastCDC [46] with the mini-
mum, average, and maximum chunk sizes set to 2KB,
8KB, and 64KB; SHA1 is used for chunk identification.

• Their resemblance detection generates 12 features and
3 super-features as sketches for each unique chunk, as
suggested in previous works [22, 24, 37].

• Consecutive chunks are compressed together with ZSTD
and stored in containers.

• The delta encoding stage uses Xdelta to calculate differ-
ences between unique chunks and its similar candidates,
as configuration in previous works [52, 57].

• MeGA only requires a container cache in the backup
workflow, and the other four non-trivial approaches re-
quire two container caches in both backup and restore
workflows. The cache of each workflow totals 512MB.
When loading base chunks into the cache, all approaches
apply container I/O for fair comparison.

To focus on testing the performance of the deduplica-
tion storage side (i.e., running deduplication on HDD me-
dia), tested datasets are backed up from User Space (i.e., a

USENIX Association 2022 USENIX Annual Technical Conference    27



 0

 500

 1000

 1500

1 20 40 60 80 100

B
a

c
k
u

p
 S

p
e

e
d

 (
M

B
/s

)

#-th of Backups

CLD
MFD

Greedy

FGD20
FGD40
FGD80

MG0
MG20
MG40

(a) WEB Dataset

 0

 100

 200

 300

 400

 500

1 20 40 60 80 100B
a

c
k
u

p
 S

p
e

e
d

 (
M

B
/s

)

#-th of Backups

CLD
MFD

Greedy

FGD10
FGD20
FGD40

MG0
MG30
MG60

(b) CHM Dataset

 0

 1000

 2000

 3000

1 40 80 120 160 200

B
a

c
k
u

p
 S

p
e

e
d

 (
M

B
/s

)

#-th of Backups

CLD
MFD

Greedy

FGD10
FGD20
FGD40

MG0
MG3
MG5

(c) SYN Dataset

 0

 500

 1000

 1500

 2000

 2500

 3000

1 20 40 60 80 100

B
a

c
k
u

p
 S

p
e

e
d

 (
M

B
/s

)

#-th of Backups

CLD
MFD

Greedy

FGD20
FGD40
FGD80

MG0
MG20
MG40

(d) VMS Dataset
Figure 11: Backup speed of five deduplication approaches on four datasets.

0
200
400
600
800

1000
1200
2200
2400

M
G
0

M
G
30

M
G
60

FG
D
10

FG
D
20

FG
D
40

30k

40k

50k

60k

70k

A
v
g
. 
D

is
k
 A

c
c
e
s
s
 T

im
e
s

A
v
g
. 
A

c
c
e
s
s
 T

im
e
 C

o
s
t 
(u

s
)

Approaches

Avg.Times
Avg.TimeCost

(a) WEB Dataset

0
200
400
600
800

1000
1600
1800
2000

M
G
0

M
G
30

M
G
60

FG
D
10

FG
D
20

FG
D
40

50k

60k

70k

80k

90k

A
v
g
. 
D

is
k
 A

c
c
e
s
s
 T

im
e
s

A
v
g
. 
A

c
c
e
s
s
 T

im
e
 C

o
s
t 
(u

s
)

Approaches

Avg.Times
Avg.TimeCost

(b) CHM Dataset

Figure 12: Disk access times and time cost in MeGA and
FGD. We only show WEB and CHM due to the space limit.

Table 2: Four backup datasets used in evaluation.
Name Original Size Versions Workload Descriptions

WEB 269 GB 100 Backups of website: news.sina.com,
captured from Jun. to Sep. in 2016.

CHM 279 GB 100 Source codes of Chromium project
from v82.0.4066 to v85.0.4165

SYN 1.38 TB 200 Synthetic backups by simulating file
create/delete/modify operations [42]

VMS 1.55 TB 100 Backups of an Ubuntu 12.04
Virtual Machine

RamDisk) to Backup Space (i.e., a 7200rpm HDD) one by one
while the restore runs in the reverse direction. For speed of
backup and restore in our evaluation, we present the average
results of five runs.

Four backup datasets are used for evaluation, as shown
in Table 2. These datasets represent various typical backup
workloads, including website snapshots, an open-source code
project, virtual machine images, and a synthetic dataset. They
have been used in several deduplication studies [8, 46, 53].

5.2 Backup Speed
The backup speed of five approaches are evaluated and shown
in Fig. 11, and the results vary by 5.2% on average in mul-
tiple runs. FGD# and MG# represent FGD and MeGA with
different parameters (the capping level in FGD and the delta
selector threshold in MeGA). The capping level L indicates
that when processing a backup stream segment, containers
will be considered as sparse containers except for the L most
referenced (for duplicate or base chunks). Chunks in the seg-
ment, whose duplicate or base chunks are in sparse containers,
will be processed as unique chunks. A delta selector thresh-
old T means that when processing a backup stream segment,
containers, which are referenced for base chunks less than
T times, will be considered as base-sparse containers. Delta
compression in the segment, whose base chunks are in base-
sparse containers, will be skipped. Considering that datasets

have different characteristics and require different parameters,
we optimized the parameters for each dataset. The backup
speed is calculated by T he−Size−o f−Backup−or−Restore−Workload

Backup−or−Restore−Time−Cost .
Because deduplicated and compressed data is much smaller
than their original size and writing to disk takes less time, the
backup speed could exceed the disk speed.

With the benefits of the delta selector, MeGA outperforms
other fine-grained deduplication approaches (i.e., Greedy
and FGD). On the SYN dataset, MeGA reads increasingly
fewer containers when processing later backups, which makes
MeGA’s backup speed increase. VMS is a virtual machine
dataset and its modification style (i.e., trending to change
the same region in each backup) makes distribution of base
chunks uneven, which makes MeGA0’s performance jittery.
Generally, MeGA achieves a 4.47–34.45× higher backup
speed than Greedy.

Fig. 11 also suggests a stricter (smaller) capping level
in FGD and a stricter (bigger) delta selector threshold in
MeGA both accelerate backup speed, due to skipping some
potential delta compression and the need to read more base
chunks. Note that if delta selector threshold and capping level
were strict enough, all delta compression would be skipped.
Though the delta selector and the capping rewriting have sim-
ilar mechanisms, their results are much different due to their
different views on container utilization. The capping rewrit-
ing is restore-workflow-oriented and focuses on how many
needed chunks (all kinds of chunks) are in containers. But the
delta selector is backup-workflow-oriented, and only concerns
how many base chunks are in containers.

Fig. 12 further studies why MeGA could achieve a much
higher backup speed than FGD, which lists the disk access
times for acquiring base chunks (within the unit of containers)
and average access time cost when storing backup. On the one
hand, MeGA has much lower disk access time due to skipping
reading “inefficient” containers. On the other hand, MeGA
has a lower average access time cost, since it only finds base
chunks in adjacent backups and its accessed containers will
be located closer. These two efforts ensures MeGA’s better
performance.

Note that MeGA achieves similar results with chunk-level
deduplication approaches (CLD and MFD) on most datasets.
It is because the additional I/O and computation overhead both
have been hugely limited by our delta selector and previous
computation optimization works, respectively. Besides, SYN
is a synthetic dataset and its modified parts are distributed ran-

28    2022 USENIX Annual Technical Conference USENIX Association



 0

 300

 600

 900

 1200

 1500

 1800

1 20 40 60 80 100

R
e

s
to

re
 S

p
e

e
d

 (
M

B
/s

)

#-th of Backups

CLD
MFD

Greedy

FGC20
FGC40
FGC80

MG0
MG20
MG40

(a) WEB Dataset

 0

 100

 200

 300

 400

 500

 600

 700

1 20 40 60 80 100

R
e

s
to

re
 S

p
e

e
d

 (
M

B
/s

)

#-th of Backups

CLD
MFD

Greedy

FGC10
FGC20
FGC40

MG0
MG30
MG60

(b) CHM Dataset

 0

 50

 100

 150

 200

 250

 300

1 40 80 120 160 200

R
e

s
to

re
 S

p
e

e
d

 (
M

B
/s

)

#-th of Backups

CLD
MFD

Greedy

FGC10
FGC20
FGC40

MG0
MG3
MG5

(c) SYN Dataset

 0

 100

 200

 300

 400

 500

1 20 40 60 80 100

R
e

s
to

re
 S

p
e

e
d

 (
M

B
/s

)

#-th of Backups

CLD
MFD

Greedy

FGC10
FGC20
FGC40

MG0
MG20
MG40

(d) VMS Dataset
Figure 13: Restore speed of five deduplication approaches on four datasets.

0
200
400
600
800

6600
6800

18000
18200

M
G
0

M
G
30

M
G
60

FG
D
10

FG
D
20

FG
D
40

C
LD

N
u
m

b
e
r 

o
f 
C

o
n
ta

in
e
rs Avg.Involved

Avg.Read

(a) WEB Dataset

0
200
400
600
800

1000
1200
4200
4400

M
G
0

M
G
30

M
G
60

FG
C
10

FG
C
20

FG
C
40

C
LD

N
u
m

b
e
r 

o
f 
C

o
n
ta

in
e
rs Avg.Involved

Avg.Read

(b) CHM Dataset

Figure 14: Number of restore-involved containers and actually
read containers in MeGA, FGD and CLD. Only WEB and
CHM are shown due to the space limit.

domly instead of having more typical locality, which makes
MeGA slightly slower than CLD and MFD.

5.3 Restore Speed
Fig. 13 shows the restore speed of all five approaches, and
the results vary by 2.6% on average in multiple runs. Among
all approaches, MeGA consistently achieves a better restore
performance than other approaches, which reflects MeGA’s
restore techniques (i.e., the delta-friendly data layout, delta
prewriting and AFR traversing). MeGA solves the Fragmen-
tation Issue and Repeatedly Accessing Issue and improves
the spatial and temporal locality in fine-grained deduplicated
data. It also ensures that MeGA’s restore performance is more
consistent, while FGD, CLD and Greedy all have a decreasing
restore speed. Note that the local compression ratio increases
when storing more backups on SYN, which makes the restore
speed faster. Generally, MeGA achieves a 30–105× higher
restore speed than Greedy.

Fig. 14 shows the number of restore-involved containers
(i.e., containers with restore-required chunks) and contain-
ers read from disk during restore of MeGA, FGD, and CLD.
These two metrics reflect the seriousness of the Fragmentation
Issue and Repeatedly Accessing Issue, respectively. Compared
with FGD and CLD, MeGA has lower results on both of the
metrics due to applying our data layout and AFT traversing
with delta prewriting. Consequently, MeGA achieves a much
higher restore performance, as shown in Fig. 13.

5.4 Deduplication Ratio
Fig. 15 studies deduplication ratios of five approaches with
different parameters mentioned in the above subsections. All
three fine-grained deduplication approaches (i.e., Greedy,
FGD, and MeGA) have higher deduplication ratios than
chunk-level deduplication approaches (i.e., CLD and MFD),
since they can exploit compressibillity among similar chunks.

Greedy always achieves the highest deduplication ratio, and
MeGA achieves similar results. For FGD and MeGA, a stricter
capping level in FGD or threshold in MeGA will lower the
deduplication ratio but lead to a better backup or restore speed,
as reported in the above subsections.

MeGA’s advantage is relatively smaller on the VMS and
SYN datasets. For VMS, its modification style (i.e., trending
to change the same region in each backup) leads to fewer
similar chunks, which limits the benefits of fine-grained dedu-
plication, regardless of the approach. For SYN, its modifica-
tions are completely random because it is a synthetic dataset,
and the locality of base chunks is not as strong as that of
other datasets. Therefore, MeGA’s delta selector causes more
reduction in the compression ratio.

Generally, MeGA preserves fine-grained deduplication’s
significant advantage by achieving a 1.18–8.73× higher dedu-
plication ratio than chunk-level approaches.

5.5 Overall Performance
The three metrics discussed above are of the most interest to
users. Fig. 16 shows the overall performance with different
parameters (used in Fig. 11 and 13) from the above section. It
is obvious that MeGA significantly improves over other fine-
grained deduplication approaches (i.e., FGD and Greedy) on
both backup and restore speed while preserving the deduplica-
tion ratio advantage of fine-grained deduplication. It reflects
the performance improvement that our proposed technology
brings. MeGA’s advantage is relatively smaller on SYN and
VMS datasets. As we mentioned in § 5.4, it is because VMS
does not have many similar chunks, and SYN lacks natural
locality, which is unfriendly for our delta selector.

5.6 I/O Overhead in Maintaining Data Layout
In this subsection, we evaluate I/O overheads of maintaining
the delta-friendly data layout (shortened to "Maintenance")
compared with traditional garbage collection (GC).

Our experiments are based on MeGA and FGD using the
median parameters as in Fig. 11 and 13, and MeGA runs main-
tenance while FGD runs GC. For GC, a container liveness
threshold is usually considered to make a tradeoff between
more storage space cost and more GC overheads. Here we
use three liveness thresholds: 0%, 25%, and 50%, mapping
to toleration up to 0%, 25%, 50% invalid chunks in each
container, respectively. In order to make the results among
different datasets comparable, we measure their time costs.
Both approaches retain the last 20 backups; thus GC would

USENIX Association 2022 USENIX Annual Technical Conference    29



Local CompressionChunk-level Deduplication Delta Compression

 0

 50

 100

 150

 200

C
LD

M
FD

G
reedy

FG
D
20

FG
D
40

FG
D
80

M
G
0

M
G
20

M
G
40

D
e

d
u

p
 R

a
ti
o

(a) WEB Dataset

 0

 20

 40

 60

 80

 100

C
LD

M
FD

G
reedy

FG
D
10

FG
D
20

FG
D
40

M
G
0

M
G
30

M
G
60

D
e

d
u

p
 R

a
ti
o

(b) CHM Dataset

 0

 50

 100

 150

 200

C
LD

M
FD

G
reedy

FG
D
20

FG
D
40

FG
D
80

M
G
0

M
G
20

M
G
40

D
e

d
u

p
 R

a
ti
o

(c) SYN Dataset

 0

 30

 60

 90

 120

C
LD

M
FD

G
reedy

FG
D
20

FG
D
40

FG
D
80

M
G
0

M
G
20

M
G
40

D
e

d
u

p
 R

a
ti
o

(d) VMS Dataset
Figure 15: Deduplication ratio achieved by the ten approaches on four datasets.

MFDCLD Greedy FGD# MeGA#

 0  200 400 600 800 1000
400

800
1200

50

100

150

BackupSpeed (MB/s) RestoreSpeed

    
 (M

B/s)

D
ed

up
R

at
io

(a) WEB

 0  100  200  300  400

200
400

60025

50

75

100

BackupSpeed (MB/s) RestoreSpeed

    
 (M

B/s)

D
ed

up
R

at
io

(b) CHM

 0
 500

 1000
 1500

 2000
100

200
300

50
100
150
200

BackupSpeed
(MB/s)     

RestoreSpeed

   (M
B/s)

D
ed

up
R

at
io

(c) SYN

 0
 500

 1000
 1500

 2000
 2500

100
200

300
400

25
50
75

100

BackupSpeed
(MB/s)     

RestoreSpeed

   (M
B/s)

D
ed

up
R

at
io

(d) VMS

Figure 16: A general view of five approaches. MeGA and FGD use three different parameters as used in Fig. 11, 13 and 15. The
results of backup and restore speed are from the average performance on each dataset’s last 10 backups.

Maintaince GC:0% GC:25% GC:50%

 0

 4

 8

 12

 16

 20

1 20 40 60 80 100

G
C

/M
a

in
ta

in
in

g
T

im
e

 C
o

s
t 

(s
)

#-th of Versions

(a) WEB Dataset

 0

 8

 16

 24

 32

 40

1 20 40 60 80 100

G
C

/M
a

in
ta

in
in

g
T

im
e

 C
o

s
t 

(s
)

#-th of Versions

(b) CHM Dataset

 0

 30

 60

 90

 120

 150

1 40 80 120 160 200

G
C

/M
a

in
ta

in
in

g
T

im
e

 C
o

s
t 

(s
)

#-th of Versions

(c) SYN Dataset

 0

 50

 100

 150

 200

1 20 40 60 80 100

G
C

/M
a

in
ta

in
in

g
T

im
e

 C
o

s
t 

(s
)

#-th of Versions

(d) VMS Dataset

Figure 17: The delta-friendly data layout’s maintenance vs. the order-based data layout’s garbage collection.

not run for the first 20 backups, though the maintenance does.
Fig. 17 compares time cost of maintenance and GC. For

GC, a bigger threshold does not always lead to a lower I/O
overhead, since tolerating invalid chunks will make the next
GC need to clean more containers, which causes additional
I/Os. In general, maintenance and GC have similar I/O over-
heads, and compared with the best version of GC (“GC:25%”),
maintenance costs about 0.32–1.92× the GC I/O overheads,
which suggests maintenance and GC’s overhead have differ-
ent characteristics and have an overall similar impact.

Note that in maintenance of MeGA, if all chunks in a con-
tainer are needed to be migrated to a new category, we can
directly let this container belong to that new category without
any chunk migration. It is interesting to observe that about
25.13% (WEB), 14.57% (CHM), 59.13% (SYN), and 72.95%
(VMS) of containers do not need chunk migrations.

6 Conclusion
This paper proposes MeGA, a fine-grained deduplication
framework, with three techniques: backup-workflow-oriented
delta selector, delta-friendly data layout, and AFR traversing
with delta prewriting, to address the three issues for different
forms of poor locality caused by the introduction of delta

compression: reading base chunks, fragmentation, and repeat-
edly accessing containers, respectively. Evaluations show that
MeGA achieves performance close to chunk-level deduplica-
tion while preserving fine-grained deduplication’s significant
deduplication ratio advantage.

Acknowledgments

We are grateful to our shepherd and the anonymous re-
viewers for their insightful comments. This work was sup-
ported in part by NSFC under Grant 61972441, 61972112
and 61832004, in part by Shenzhen Science and Tech-
nology Program under Grants RCYX20210609104510007,
JCYJ20210324131203009, JCYJ20200109113427092, and
GXWD20201230155427003-20200821172511002, in part by
Guangdong Basic and Applied Basic Research Foundation un-
der Grant 2021A1515012634, 2021B1515020088 and in part
by the HITSZ-J&A Joint Laboratory of Digital Design and In-
telligent Fabrication under Grant no. HITSZ-J&A-2021A01.

Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and
do not necessarily reflect the views of the funding agencies.

30    2022 USENIX Annual Technical Conference USENIX Association



References
[1] George Amvrosiadis and Medha Bhadkamkar. Identi-

fying trends in enterprise data protection systems. In
Proceedings of the 2015 USENIX Annual Technical Con-
ference, 2015.

[2] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Dedup est machina: Memory deduplication
as an advanced exploitation vector. In Proceedings of
the IEEE Symposium on Security and Privacy, 2016.

[3] Fabiano C. Botelho, Philip Shilane, Nitin Garg, and
Windsor Hsu. Memory efficient sanitization of a dedu-
plicated storage system. In Proceedings of the 11th
USENIX conference on File and Storage Technologies,
pages 81–94, 2013.

[4] Andrei Z. Broder. On the resemblance and containment
of documents. In Proceedings of 1997 Compression and
Complexity of SEQUENCES, 1997.

[5] Andrei Z. Broder. Identifying and filtering near-
duplicate documents. In Proceedings of the 11th Com-
binatorial Pattern Matching Annual Symposium, 2000.

[6] Zhichao Cao, Shiyong Liu, Fenggang Wu, Guohua
Wang, Bingzhe Li, and David H. C. Du. Sliding look-
back window assisted data chunk rewriting for improv-
ing deduplication restore performance. In Proceedings
of the 17th USENIX Conference on File and Storage
Technologies, 2019.

[7] Licheng Chen, Zhipeng Wei, Zehan Cui, Mingyu Chen,
Haiyang Pan, and Yungang Bao. CMD: classification-
based memory deduplication through page access char-
acteristics. In Proceedings of the 10th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Ex-
ecution Environments, 2014.

[8] Liangfeng Cheng, Yuchong Hu, Zhaokang Ke, and
Zhongjie Wu. Coupling right-provisioned cold stor-
age data centers with deduplication. In Proceedings
of the the 50th International Conference on Parallel
Processing, 2021.

[9] Fred Douglis, Abhinav Duggal, Philip Shilane, Tony
Wong, Shiqin Yan, and Fabiano C. Botelho. The logic
of physical garbage collection in deduplicating storage.
In Proceedings of the 15th USENIX Conference on File
and Storage Technologies, pages 29–44, 2017.

[10] Idilio Drago, Marco Mellia, Maurizio M. Munafò, Anna
Sperotto, Ramin Sadre, and Aiko Pras. Inside drop-
box: understanding personal cloud storage services. In
Proceedings of the 12th ACM SIGCOMM Internet Mea-
surement Conference, 2012.

[11] Abhinav Duggal, Fani Jenkins, Philip Shilane, Ram-
prasad Chinthekindi, Ritesh Shah, and Mahesh Kamat.
Data domain cloud tier: Backup here, backup there,
deduplicated everywhere! In Proceedings of the 2019
USENIX Annual Technical Conference, 2019.

[12] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen,
Jingning Liu, Wen Xia, Fangting Huang, and Qing
Liu. Reducing fragmentation for in-line deduplica-
tion backup storage via exploiting backup history and
cache knowledge. IEEE Trans. Parallel Distributed
Syst., 27(3):855–868, 2016.

[13] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuoning Chen,
Wen Xia, Fangting Huang, and Qing Liu. Accelerating
restore and garbage collection in deduplication-based
backup systems via exploiting historical information.
In Proceedings of the 2014 USENIX Annual Technical
Conference, 2014.

[14] Fanglu Guo and Petros Efstathopoulos. Building a high-
performance deduplication system. In Proceedings of
2011 USENIX Annual Technical Conference, pages 1–
14, 2011.

[15] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan
Savage, Alex C. Snoeren, George Varghese, Geoffrey M.
Voelker, and Amin Vahdat. Difference engine: Harness-
ing memory redundancy in virtual machines. In Pro-
ceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation, 2008.

[16] Navendu Jain, Michael Dahlin, and Renu Tewari. TA-
PER: tiered approach for eliminating redundancy in
replica synchronization. In Proceedings of the 3rd Con-
ference on File and Storage Technologies, 2005.

[17] Keren Jin and Ethan L. Miller. The effectiveness of
deduplication on virtual machine disk images. In Pro-
ceedings of of SYSTOR 2009: The Israeli Experimental
Systems Conference, 2009.

[18] Jonghwa Kim, Choonghyun Lee, Sang Yup Lee, Ikjoon
Son, Jongmoo Choi, Sungroh Yoon, Hu-ung Lee, Sooy-
ong Kang, Youjip Won, and Jaehyuk Cha. Deduplication
in ssds: Model and quantitative analysis. In Proceedings
of the IEEE 28th Symposium on Mass Storage Systems
and Technologies, 2012.

[19] Keonwoo Kim, Jee-hong Kim, Changwoo Min, and
Young Ik Eom. Content-based chunk placement scheme
for decentralized deduplication on distributed file sys-
tems. In Proceedings of the 13th International Confer-
ence on Computational Science and Its Applications,
2013.

USENIX Association 2022 USENIX Annual Technical Conference    31



[20] Ricardo Koller and Raju Rangaswami. I/O deduplica-
tion: Utilizing content similarity to improve I/O perfor-
mance. In Proceedings of the 8th USENIX Conference
on File and Storage Technologies, 2010.

[21] Lucas Kuhring and Zsolt István. Storing parquet tile
by tile: Application-aware storage with deduplication.
In Proceedings of the 29th International Conference on
Field Programmable Logic and Applications, 2019.

[22] Purushottam Kulkarni, Fred Douglis, Jason D. LaVoie,
and John M. Tracey. Redundancy elimination within
large collections of files. In Proceedings of the 2004
USENIX Annual Technical Conference, 2004.

[23] Mark Lillibridge, Kave Eshghi, and Deepavali Bhag-
wat. Improving restore speed for backup systems that
use inline chunk-based deduplication. In Proceedings
of the 11th USENIX conference on File and Storage
Technologies, 2013.

[24] Xing Lin, Guanlin Lu, Fred Douglis, Philip Shilane, and
Grant Wallace. Migratory compression: coarse-grained
data reordering to improve compressibility. In Proceed-
ings of the 12th USENIX conference on File and Storage
Technologies, 2014.

[25] Jian Liu, Yunpeng Chai, Chang Yan, and Xin Wang.
A delayed container organization approach to improve
restore speed for deduplication systems. IEEE Trans.
Parallel Distributed Syst., 27(9):2477–2491, 2016.

[26] Joshua P. MacDonald. File system support for delta
compression, 2000.

[27] Sonam Mandal, Geoff Kuenning, Dongju Ok, Varun
Shastry, Philip Shilane, Sun Zhen, Vasily Tarasov, and
Erez Zadok. Using hints to improve inline block-layer
deduplication. In Proceedings of the 14th USENIX Con-
ference on File and Storage Technologies, 2016.

[28] Dutch T. Meyer and William J. Bolosky. A study of
practical deduplication. ACM Trans. Storage, 7(4):14:1–
14:20, 2012.

[29] Jaehong Min, Daeyoung Yoon, and Youjip Won. Effi-
cient deduplication techniques for modern backup oper-
ation. IEEE Trans. Computers, 60(6):824–840, 2011.

[30] Jeffrey C. Mogul, Fred Douglis, Anja Feldmann, and
Balachander Krishnamurthy. Potential benefits of delta
encoding and data compression for http. SIGCOMM
Comput. Commun. Rev., 27(4):181–194, 1997.

[31] Athicha Muthitacharoen, Benjie Chen, and David Maz-
ières. A low-bandwidth network file system. In Proceed-
ings of the 18th ACM Symposium on Operating System
Principles, 2001.

[32] Mohammad Nasirifar and Angela Demke Brown. Dedu-
plicating future data transfer using data exchanged in
the past to decrease mobile bandwidth usage. In Pro-
ceedings of the 18th Annual International Conference
on Mobile Systems, Applications, and Services, 2020.

[33] Lars Nielsen, Dorian Burihabwa, Valerio Schiavoni, Pas-
cal Felber, and Daniel E. Lucani. Minervafs: A user-
space file system for generalised deduplication: (prac-
tical experience report). In Proceedings of the 40th
International Symposium on Reliable Distributed Sys-
tems, 2021.

[34] Sungbo Park, Ingab Kang, Yaebin Moon, Jung Ho Ahn,
and G. Edward Suh. BCD deduplication: effective mem-
ory compression using partial cache-line deduplication.
In Proceedings of the 26th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, 2021.

[35] Himabindu Pucha, David G. Andersen, and Michael
Kaminsky. Exploiting similarity for multi-source down-
loads using file handprints. In Proceedings of the 4th
Symposium on Networked Systems Design and Imple-
mentation, 2007.

[36] Philip Shilane, Ravi Chitloor, and Uday Kiran Jonnala.
99 deduplication problems. In Proceedings of the 8th
USENIX Workshop on Hot Topics in Storage and File
Systems, 2016.

[37] Philip Shilane, Mark Huang, Grant Wallace, and Wind-
sor Hsu. Wan-optimized replication of backup datasets
using stream-informed delta compression. ACM Trans.
Storage, 8(4):13:1–13:26, 2012.

[38] Philip Shilane, Grant Wallace, Mark Huang, and Wind-
sor Hsu. Delta compressed and deduplicated storage
using stream-informed locality. In Proceedings of the
4th USENIX Workshop on Hot Topics in Storage and
File Systems, 2012.

[39] Mark W. Storer, Kevin M. Greenan, Darrell D. E. Long,
and Ethan L. Miller. Secure data deduplication. In
Proceedings of the 2008 ACM Workshop On Storage
Security And Survivability, StorageSS, 2008.

[40] Zhen Jason Sun, Geoff Kuenning, Sonam Mandal, Philip
Shilane, Vasily Tarasov, Nong Xiao, and Erez Zadok.
Cluster and single-node analysis of long-term dedupli-
cation patterns. ACM Trans. Storage, 14(2):13:1–13:27,
2018.

[41] Haoliang Tan, Zhiyuan Zhang, Xiangyu Zou, Qing Liao,
and Wen Xia. Exploring the potential of fast delta en-
coding: Marching to a higher compression ratio. In
Proceedings of the 2020 IEEE International Conference
on Cluster Computing, 2020.

32    2022 USENIX Annual Technical Conference USENIX Association



[42] Vasily Tarasov, Amar Mudrankit, Will Buik, Philip Shi-
lane, Geoff Kuenning, and Erez Zadok. Generating
realistic datasets for deduplication analysis. In Proceed-
ings of the 2012 USENIX Annual Technical Conference,
2012.

[43] Grant Wallace, Fred Douglis, Hangwei Qian, Philip Shi-
lane, Stephen Smaldone, Mark Chamness, and Windsor
Hsu. Characteristics of backup workloads in production
systems. In Proceedings of the 10th USENIX conference
on File and Storage Technologies, 2012.

[44] Chunzhi Wang, Yanlin Fu, Junyi Yan, Xinyun Wu,
Yucheng Zhang, Huiling Xia, and Ye Yuan. A
cost-efficient resemblance detection scheme for post-
deduplication delta compression in backup systems.
Concurrency and Computation: Practice and Experi-
ence, 2021.

[45] Avani Wildani, Ethan L. Miller, and Ohad Rodeh.
HANDS: A heuristically arranged non-backup in-line
deduplication system. In Proceedings of the 29th IEEE
International Conference on Data Engineering, 2013.

[46] Wen Xia, Hong Jiang, Dan Feng, Fred Douglis, Philip
Shilane, Yu Hua, Min Fu, Yucheng Zhang, and Yukun
Zhou. A comprehensive study of the past, present, and
future of data deduplication. Proc. IEEE, 104(9):1681–
1710, 2016.

[47] Wen Xia, Hong Jiang, Dan Feng, and Lei Tian. DARE:
A deduplication-aware resemblance detection and elim-
ination scheme for data reduction with low overheads.
IEEE Trans. Computers, 65(6):1692–1705, 2016.

[48] Wen Xia, Hong Jiang, Dan Feng, Lei Tian, Min Fu, and
Yukun Zhou. Ddelta: A deduplication-inspired fast delta
compression approach. Perform. Evaluation, 79:258–
272, 2014.

[49] Wen Xia, Chunguang Li, Hong Jiang, Dan Feng, Yu Hua,
Leihua Qin, and Yucheng Zhang. Edelta: A word-
enlarging based fast delta compression approach. In
Proceedings of the 7th USENIX Workshop on Hot Top-
ics in Storage and File Systems, 2015.

[50] Lianghong Xu, Andrew Pavlo, Sudipta Sengupta, and
Gregory R. Ganger. Online deduplication for databases.
In Proceedings of the 2017 ACM International Confer-
ence on Management of Data, 2017.

[51] Lianghong Xu, Andrew Pavlo, Sudipta Sengupta, Jin Li,
and Gregory R. Ganger. Reducing replication bandwidth
for distributed document databases. In Proceedings of
the Sixth ACM Symposium on Cloud Computing, 2015.

[52] Yucheng Zhang, Wen Xia, Dan Feng, Hong Jiang,
Yu Hua, and Qiang Wang. Finesse: Fine-grained fea-
ture locality based fast resemblance detection for post-
deduplication delta compression. In Proceedings of the
17th USENIX Conference on File and Storage Technolo-
gies, 2019.

[53] Yucheng Zhang, Ye Yuan, Dan Feng, Chunzhi Wang,
Xinyun Wu, Lingyu Yan, Deng Pan, and Shuanghong
Wang. Improving restore performance for in-line backup
system combining deduplication and delta compression.
IEEE Trans. Parallel Distributed Syst., 31(10):2302–
2314, 2020.

[54] Nannan Zhao, Hadeel Albahar, Subil Abraham, Keren
Chen, Vasily Tarasov, Dimitrios Skourtis, Lukas Rup-
precht, Ali Anwar, and Ali Raza Butt. Duphunter: Flexi-
ble high-performance deduplication for docker registries.
In Proceedings of the 2020 USENIX Annual Technical
Conference, 2020.

[55] Feng Zhou, Li Zhuang, Ben Y. Zhao, Ling Huang, An-
thony D. Joseph, and John Kubiatowicz. Approximate
object location and spam filtering on peer-to-peer sys-
tems. In Proceedings of the 2003 ACM/IFIP/USENIX
International Middleware Conference, 2003.

[56] Benjamin Zhu, Kai Li, and R. Hugo Patterson. Avoiding
the disk bottleneck in the data domain deduplication file
system. In Proceedings of the 6th USENIX Conference
on File and Storage Technologies, 2008.

[57] Xiangyu Zou, Cai Deng, Wen Xia, Philip Shilane, Hao-
liang Tan, Haijun Zhang, and Xuan Wang. Odess: Speed-
ing up resemblance detection for redundancy elimina-
tion by fast content-defined sampling. In Proceedings
of the 37th IEEE International Conference on Data En-
gineering, 2021.

[58] Xiangyu Zou, Jingsong Yuan, Philip Shilane, Wen Xia,
Haijun Zhang, and Xuan Wang. The dilemma between
deduplication and locality: Can both be achieved? In
Proceedings of the 19th USENIX Conference on File
and Storage Technologies, pages 171–185, 2021.

USENIX Association 2022 USENIX Annual Technical Conference    33



A Artifact Appendix

Abstract

The artifact is source code of a prototype deduplication system for backups that
follows the ideas in the paper.

Scope

It could suggest the details and effectiveness of the delta selector, the delta-
friendly data layout, the ”Always-Forward-Reference” traversing, and the delta
prewriting mechanism.

Contents

The artifact is source code of a prototype deduplication system for backups
that follows the ideas in the paper. It mainly supports two main operations:
(1) deduplicating and storing backup workloads and (2) restoring stored backup
workloads.

Detailed manuals are introduced in our GitHub repository. In brief, the ar-
tifact supports the two operations with the following two commands.

=============================================
# deduplicating and storing a new backup
./MeGA --ConfigFile=[config file path] --task=write --InputFile=[backup work-
load] --DeltaSelectorThreshold=[Delta Selector Threshold]

# restoring a stored backup
./MeGA --ConfigFile=[config file path] --task=restore --RestorePath=[path
to restore] --RestoreRecipe=[which backup to restore (1 ∼ n)]
==============================================

MeGA generates several outputs when executing. Note that:
1○ MeGA includes chunk-level deduplication, delta compression, and local

compression. The “total reduction ratio” suggests the benefits from all these
parts on a single backup.

2○ The “total reduction ratio” simply indicates how many times the size
of a single backup has been reduced. For the entire dataset, the user needs to
add up the original size of all backups in a dataset and divide it by the ”After
Compression” of all backups to get the general ”Dedup ratio” of the dataset,
which is suggested in Figure 15.

3○ The backup speed is related to the results in Figure 11.
4○ The cache misses and average time cost are related to the results in Figure

12.
6○ The arrangement duration is related to the results in Figure 17.
7○ The restore speed is related to the results in Figure 13.

34    2022 USENIX Annual Technical Conference USENIX Association



5○ Figure 16 is just a general view, and it does not have new results.

Hosting

The source cost is available at https://github.com/Borelset/MeGA (the ”Con-
tainerBased” branch).

Requirements

The Artifact has the following requirements.
Hardware Requirement:

• CPUs supporting AVX2 instructions.
• 32GB or larger RAM
• 7200rpm HDD drivers for experiments.
• Another storage device for datasets. (400GB for full evaluations or 100GB
for partly evaluations)

Software Requirement:
• isal crypto [https://github.com/intel/isa-l crypto]
• jemalloc [https://github.com/jemalloc/jemalloc]
• openssl [https://github.com/openssl/openssl]
• zstd [https://github.com/facebook/zstd]
• Reformat your HDD and deploy an XFS file system, as fragmentation of
the file system will affect performance.

USENIX Association 2022 USENIX Annual Technical Conference    35





Secure and Lightweight Deduplicated Storage via
Shielded Deduplication-Before-Encryption

Zuoru Yang†, Jingwei Li‡*, and Patrick P. C. Lee†

†The Chinese University of Hong Kong ‡University of Electronic Science and Technology of China

Abstract
Outsourced storage should fulfill confidentiality and storage
efficiency for large-scale data management. Conventional ap-
proaches often combine encryption and deduplication based
on deduplication-after-encryption (DaE), which first performs
encryption followed by deduplication on encrypted data. We
argue that DaE has fundamental limitations that lead to vari-
ous drawbacks in performance, storage savings, and security
in secure deduplication systems. In this paper, we study an
unexplored paradigm called deduplication-before-encryption
(DbE), which first performs deduplication and encrypts only
non-duplicate data. DbE has the benefits of mitigating the per-
formance and storage penalties caused by the management of
duplicate data, but its deduplication process is no longer pro-
tected by encryption. To this end, we design DEBE, a shielded
DbE-based deduplicated storage system that protects dedu-
plication via Intel SGX. DEBE builds on frequency-based
deduplication that first removes duplicates of frequent data
in a space-constrained SGX enclave and then removes all
remaining duplicates outside the enclave. Experiments show
that DEBE outperforms state-of-the-art DaE approaches.

1 Introduction
Data outsourcing to public cloud storage provides a plausible
solution for low-cost, large-scale data storage management in
the face of explosive data growths [71]. To defend against data
privacy leakage [57], clients require end-to-end encryption,
such that their outsourced data be encrypted before being
stored in (untrusted) public cloud storage. However, tradi-
tional symmetric encryption prohibits cross-user deduplica-
tion (i.e., removing duplicate data from multiple clients), since
each client encrypts its own outsourced data with a distinct
secret key, implying that the encrypted outputs from multiple
clients are also distinct.

The literature has numerous studies (e.g., [3, 7, 8, 18, 23,
72, 74, 79]) on how to seamlessly combine encryption and
deduplication for secure deduplicated storage in data out-
sourcing, which we collectively refer to as deduplication-
after-encryption (DaE). DaE first performs encryption on the
outsourced data on the client side for confidentiality, followed
by applying cross-user deduplication in the cloud to remove
duplicate encrypted data for storage savings. To preserve the
identical content after encryption, DaE encrypts data using a

*Corresponding author: Jingwei Li (jwli@uestc.edu.cn)

symmetric key derived from the content of each chunk (the ba-
sic unit of deduplication), such that duplicate original chunks
(called plaintext chunks) are always encrypted by the same
key into duplicate encrypted chunks (called ciphertext chunks)
that are later removed by deduplication.

Despite its popularity, we argue that DaE has fundamental
limitations including high key management overhead, incom-
patibility with compression, and security risks (see §2.1 for
details). Since DaE always manages a key for each chunk
for encryption before deduplication, it not only unnecessarily
generates a huge number of keys for duplicate chunks that
will later be removed by deduplication, but also incurs high
storage overhead for managing a huge number of keys for all
duplicate and non-duplicate chunks [47]. In addition, DaE
stores non-duplicate encrypted chunks, whose contents look
randomized and have limited room for further space reduction
from compression. Furthermore, DaE necessitates determin-
istic encryption to preserve the deduplication capability on
ciphertext chunks. Such a deterministic nature is vulnerable
to information leakage through frequency analysis [48, 49].

The limitations of DaE motivate us to explore a simple but
unexplored paradigm called deduplication-before-encryption
(DbE), which first performs deduplication on the plaintext
chunks and then encrypts the remaining non-duplicate plain-
text chunks with any key that is independent of the chunk
content. A major distinction from DaE is that DbE does not
need to manage per-chunk keys for encryption/decryption, and
we argue that DbE addresses the limitations of DaE (§2.2).
However, DbE remains unexplored in secure deduplicated
storage, mainly because the chunks are no longer protected
by encryption in deduplication processing, which is carried
out in the cloud for cross-user deduplication.

Our insight is that the deduplication process in DbE can
be protected with shielded execution [4, 37]. To this end,
we present DEBE, a shielded DbE-based deduplicated stor-
age system with performance, storage savings, and security
in mind. DEBE builds on Intel Software Guard Extensions
(SGX) [41], which provides a shielded execution environment,
called an enclave, for secure deduplication processing. A key
challenge of realizing DEBE in SGX is the limited enclave
space (e.g., up to 128 MiB [36]). Thus, we propose frequency-
based deduplication, a two-phase deduplication scheme that
can realize secure and lightweight deduplication with the
space-constrained enclave. Specifically, DEBE first performs
deduplication on the most frequent chunks inside an enclave,

USENIX Association 2022 USENIX Annual Technical Conference    37

jwli@uestc.edu.cn


motivated by our observation that the most frequent chunks
often contribute to a large fraction of duplicates in real-world
backup workloads (§4.1). It then performs deduplication on
the remaining less frequent chunks outside the enclave. With
frequency-based deduplication, DEBE has the key advantages
of: (i) high performance, as it removes most duplicates in the
first-phase deduplication and incurs limited performance over-
head for the second-phase deduplication outside the enclave;
(ii) high storage savings via both deduplication and compres-
sion; and (iii) security, as it protects the most frequent chunks
(which are more vulnerable to frequency analysis attacks [48])
inside the enclave.

We evaluate our DEBE prototype in a LAN testbed. DEBE
achieves significant speedups over state-of-the-art DaE ap-
proaches (e.g., 10.09× and 13.08× speedups over DupLESS
[7] in uploading non-duplicate and duplicate data, respec-
tively). In our technical report [81], we also show that DEBE
achieves high storage savings (e.g., 93.8% of key metadata
storage savings compared with DaE) and reduces information
leakage without compromising storage savings (e.g., by 87.7%
of the relative entropy over TED [49], while TED incurs a
storage blowup). The source code of our DEBE prototype is
at: https://github.com/yzr95924/DEBE.

2 Background and Motivation
2.1 Limitations of Deduplication-after-Encryption

Deduplication is a widely deployed data reduction technique
in modern storage [26, 27, 59, 77, 85]. We focus on chunk-
based deduplication, which removes duplicates at the granu-
larity of a chunk. Specifically, a deduplicated storage system
partitions input file data into chunks. It identifies each chunk
by a cryptographic hash (e.g., SHA-256), called a fingerprint,
of the chunk content (assuming that fingerprint collisions of
distinct chunks are practically impossible [10]). It maintains
a key-value store, called the fingerprint index, to track the
fingerprints of all existing stored chunks, and stores only the
non-duplicate chunks. It also stores a manifest file, called
the file recipe, for each file to track all chunks of the file in
storage for file reconstruction. In addition, it may further ap-
ply compression to remove byte-level duplicates within the
non-duplicate chunks for more storage savings [27, 73, 85].

Deduplication-after-encryption (DaE) combines dedupli-
cation and encryption for both confidentiality and storage
savings. In DaE, a client locally encrypts the plaintext chunks
and uploads the ciphertext chunks to the cloud, which then
performs deduplication on the ciphertext chunks. One popular
cryptographic primitive for DaE is message-locked encryption
(MLE) [8], which formalizes that the key for chunk encryp-
tion/decryption is derived from the content of each chunk,
so that identical plaintext chunks are always encrypted into
identical ciphertext chunks for deduplication. An instantiation
of MLE is convergent encryption (CE) [3, 18, 23, 72, 74, 79],
which derives each chunk’s key based on its fingerprint.

CE is vulnerable to offline brute-force attacks [7], in which
an adversary enumerates all possible plaintext chunks to de-
rive their secret keys, attempts to decrypt a ciphertext chunk
using each key, and deduces the plaintext chunk if the decryp-
tion succeeds. DupLESS [7] defends against offline brute-
force attacks in CE via server-aided key management, by
deploying a key server that generates the key of each chunk
based on a global secret (securely owned by the key server)
and the chunk fingerprint. Also, DupLESS implements key
generation based on an oblivious pseudorandom function
(OPRF) [63] to prevent the key server from learning the
chunks or the keys during key generation, and rate-limits
the key generation requests from clients to defend against
online brute-force attacks, in which a malicious client aggres-
sively issues key generation requests for different plaintext
chunks to the key server.
Limitations. DaE is the state-of-the-art paradigm for building
secure deduplicated storage systems. However, we argue that
DaE suffers from three fundamental limitations.

• L1 (High key management overhead). DaE generates one
key per chunk, leading to huge overheads for maintaining
all chunk-based keys. Also, each client needs to encrypt
its chunk-based keys via its own master secret key for pro-
tection. Thus, the key storage overhead increases propor-
tionally with the numbers of chunks and clients, and is
particularly significant for the workloads with high content
redundancy (e.g., backups [77]) as they store only small
amounts of non-duplicate data after deduplication. Also,
DupLESS [7], which realizes server-aided key management,
generates a key for the encryption of each chunk before the
chunk is uploaded to the cloud, even though the chunk is a
duplicate and is later removed by deduplication. As Dup-
LESS employs OPRF and rate-limiting in key generation
(see above), its key generation is shown to be expensive [70].
In short, DaE incurs high key management overhead, both
in terms of key storage and key generation.

• L2 (Incompatibility with compression). In DaE, the cloud
cannot further save additional storage space of non-
duplicate encrypted chunks via compression, as encrypted
chunks have high-entropy (almost random) contents. While
a client may apply compression to the plaintext chunks
before encryption and upload the encrypted compressed
chunks, this leaks the compressed chunk lengths and intro-
duces security risks [13].

• L3 (Security risks). Server-aided key management in Dup-
LESS [7] makes the key server a single point-of-attack. If
an adversary compromises the key server and has access to
the global secret, it can infer the secret keys of chunks via
offline brute-force attacks as in CE. Also, DaE is determin-
istic by nature and realizes one-to-one mappings between
plaintext chunks and ciphertext chunks. An adversary can
launch frequency analysis to infer the original plaintext
chunks from the frequency distribution of ciphertext chunks
in deduplicated storage [48].

38    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/yzr95924/DEBE


2.2 Moving to Deduplication-before-Encryption
Given the limitations of DaE (§2.1), we study an unexplored
paradigm, namely deduplication-before-encryption (DbE),
for secure deduplicated storage. Its idea is to first perform
deduplication on the plaintext chunks to remove duplicates,
followed by encrypting the non-duplicate plaintext chunks
into ciphertext chunks for storage.

DbE naturally offers several benefits over DaE. First, since
deduplication is applied first, DbE can encrypt each non-
duplicate plaintext chunk with a content-independent key as in
traditional symmetric encryption (§1) without compromising
deduplication. This avoids generating and storing per-chunk
content-derived keys and reduces the key management over-
head (i.e., L1 addressed). Second, DbE can apply compres-
sion to the non-duplicate plaintext chunks after deduplication
for further storage savings, followed by encrypting the com-
pressed non-duplicate plaintext chunks (i.e., L2 addressed).
Finally, since DbE can perform encryption with a content-
independent key, it no longer needs a key server for per-chunk
key generation as in DupLESS. This removes the single point-
of-attack in the key server (i.e., L3 addressed).

The major challenge of DbE, however, is to decide whether
clients or the cloud should perform deduplication, which is no
longer protected by encryption. We consider three scenarios:

• Each client maintains a local fingerprint index for its own
plaintext chunks. It encrypts the non-duplicate plaintext
chunks and uploads the ciphertext chunks to the cloud.
However, this approach prohibits cross-user deduplication.

• The cloud maintains a global fingerprint index to track the
stored chunks of all clients. Each client first submits the
fingerprints of its own plaintext chunks to the cloud to query
if they can be deduplicated. It encrypts the non-duplicate
plaintext chunks identified by the cloud, and uploads the
ciphertext chunks to the cloud. This approach, also referred
to as source-based deduplication [35], is vulnerable to side-
channel attacks [35,62] since any malicious client can infer
if some target chunk has already been stored by querying if
the target chunk can be deduplicated.

• Each client uploads all chunks to the cloud. The cloud per-
forms deduplication based on its global fingerprint index
that tracks the stored chunks of all clients, followed by
encrypting the non-duplicate chunks. This approach, also
referred to as target-based deduplication [35], hides the
deduplication pattern from the clients and is secure against
side-channel attacks. However, each client inevitably ex-
poses its plaintext chunks to the cloud.

Thus, DbE remains unexplored in the literature, while existing
studies mostly focus on DaE for secure deduplicated storage.

2.3 Intel SGX
In this work, we realize DbE with target-based deduplication
and show how we protect DbE via shielded execution. We
implement shielded execution using Intel SGX [41]. As our

major requirement is to provide a secure memory region for
data processing in the untrusted cloud, we conjecture that
our design can be supported with other shielded execution
technologies (e.g., ARM TrustZone [67] and AMD SEV [2]).
SGX basics. SGX is a set of extended instructions for In-
tel CPUs to realize a shielded execution environment, called
an enclave, in an encrypted and integrity-protected memory
region called the enclave page cache (EPC). It ensures confi-
dentiality and integrity for in-enclave contents with hardware
protection. It provides two interfaces to interact with untrusted
applications outside the enclave: (i) enclave calls (ECalls),
which permit applications to safely access in-enclave contents,
and (ii) outside calls (OCalls), which allow in-enclave code
to issue function calls in applications.
Challenges. Realizing DbE in SGX is non-trivial due to the
resource constraints of an enclave. First, the EPC size is lim-
ited (e.g., up to 128 MiB [36]). When an enclave has memory
usage exceeding the EPC size, it encrypts and evicts the un-
used memory pages to the unprotected main memory, and
decrypts and verifies the integrity of the evicted pages when
loading them back to the EPC. This incurs expensive EPC
paging overhead [5, 21]. Although recent SGX designs sup-
port a large EPC size of up to 1 TiB [44], they provide weaker
security guarantees due to the loss of integrity tree protec-
tion [28]. Second, both ECalls and OCalls involve expensive
hardware operations (e.g., flushing TLB entries [5]) that lead
to significant context switching overhead (e.g., around 8,000
CPU cycles per call [66, 78]).

3 Design Overview
3.1 DEBE Architecture

We make a case for DbE by designing DEBE, a shielded DbE-
based deduplicated storage system based on Intel SGX [41].
Figure 1 presents the architecture of DEBE; note that DEBE
does not maintain a key server as in DupLESS [7] (§2.1). We
consider a multi-tenant scenario, in which the clients from dif-
ferent organizations store outsourced data to a cloud storage
service (or the cloud in short). DEBE performs target-based
deduplication [35] (§2.2) to remove the duplicate data of
multiple clients in the cloud. Currently, each DEBE client
uploads all its data to the cloud for deduplication. Although a
client may apply deduplication to its own data to save upload
bandwidth without introducing side-channel attacks [50], our
design does not make this assumption.

To prevent the cloud from accessing any plaintext chunks
during deduplication processing, DEBE hosts an enclave in
the cloud and performs deduplication inside the enclave. To
support the multi-tenant scenario, we assume that a trusted
third party (e.g., a certificate authority in the public key in-
frastructure (PKI) [56]) is responsible for the enclave setup.
Specifically, the trusted third party compiles the enclave code
into a shared object (as a .so file). It distributes the shared
object to the cloud, along with its signature for integrity ver-

USENIX Association 2022 USENIX Annual Technical Conference    39



Cloud

Enclave

Storage

pool

Control channel

Data channel
Clients

Chunk … Chunk

Figure 1: DEBE architecture.

ification. The cloud loads the shared object to bootstrap the
enclave. The trusted third party can initiate remote attesta-
tion [41] to ensure that the correct code is loaded into the
enclave, and it can go offline after the enclave is bootstrapped.

After the enclave is bootstrapped, each client sets up two
secure communication channels: (i) the control channel with
the cloud for transmitting the commands of storage operations
and (ii) the data channel with the enclave for transmitting the
plaintext chunks originated by the client. Currently, DEBE
sets up the control channel between a client and the cloud
using traditional SSL/TLS authentication. To set up the data
channel between a client and the enclave, since the enclave
cannot directly access the network socket of the cloud [41],
DEBE implements the Diffie-Hellman key exchange to agree
on a session key between a client and the enclave (§4.2), and
the session key is used to protect the data channel. Note that
other key exchange algorithms can be used for session key
establishment.

To upload a file to the cloud, a client divides the file data
into fixed-size or variable-size plaintext chunks as in tradi-
tional chunk-based deduplication (§2.1). It issues an upload
request to the cloud through the control channel, and sends all
plaintext chunks to the enclave through the data channel. The
enclave deduplicates and compresses the received plaintext
chunks on a per-batch basis (§4.1), encrypts the remaining
non-duplicate compressed chunks into ciphertext chunks, and
emits the ciphertext chunks and the file recipe to the storage
pool.

To download a file, the client issues a download request
to the cloud through the control channel. The enclave then
retrieves the file’s recipe and the corresponding ciphertext
chunks. Finally, it decrypts the ciphertext chunks, and decom-
presses and returns the plaintext chunks to the client through
the data channel.
Practical relevance of DEBE. DEBE focuses on multi-
tenant deduplication, which is widely deployed in practice
(e.g., Dropbox [24], Druva [25], Cohesity [14], and Memo-
pal [58]) and is shown to achieve higher storage savings than
single-tenant deduplication by removing the duplicate data
from multiple clients [50,59,83]. Existing DaE approaches are
also designed for multi-tenant deduplication, while DEBE ad-
dresses the limitations of DaE (§2.1). Although DEBE incurs
costs due to shielded execution (e.g., the enclave verification
fee from a trusted third party), its improvements over DaE
approaches (in terms of performance, storage savings, and
robustness; see §3.3) provide incentives for a cloud storage
provider to use DEBE to provide secure and cost-effective
cloud storage services for customers.

3.2 Threat Model
We consider an honest-but-curious adversary that does not
modify the system protocol but aims to compromise data
confidentiality by identifying the original content of the out-
sourced data stored in the cloud. The adversary can tap into
the cloud and gain access to any data stored in the unpro-
tected main memory of the cloud as well as the ciphertext
chunks in the storage pool. It can also eavesdrop on the con-
tent of OCalls issued to the unprotected main memory (e.g.,
the parameters and untrusted functions used by OCalls).

Our threat model assumes that the enclave is trusted and
reliable; its authenticity is verified by remote attestation [41]
when it is created (§3.1). Any denial-of-service or side-
channel attack against SGX is protected by existing solu-
tions [64, 76]. Also, if the adversary has access to a com-
promised client, then it can access all the plaintext chunks
of the client. However, since DEBE performs target-based
deduplication (§3.1), the adversary cannot access or infer the
plaintext chunks of other non-compromised clients.

3.3 Design Goals
DEBE is designed for clients from multiple tenants (§3.1)
to securely outsource their storage management to public
cloud storage services. It targets storage workloads with high
content redundancy (e.g., backups [77] and file system snap-
shots [59]) that can be effectively removed by deduplication
and compression. DEBE has the following design goals:

• High performance. DEBE has significantly lower key man-
agement overhead than DaE approaches. It also incurs lim-
ited overhead in SGX.

• High storage savings. DEBE supports exact deduplication
(§4.4), i.e., all duplicates from multiple clients can be re-
moved. It also applies compression to the non-duplicate
chunks after deduplication for extra storage savings.

• Confidentiality. DEBE preserves the security of DaE by
enforcing end-to-end encryption for the plaintext chunks be-
tween each client and the enclave, and the plaintext chunks
are inaccessible by the cloud provided that the enclave is
trusted and reliable (§3.2). DEBE remains secure against
offline brute-force attacks in CE (§2.1), without the need
of server-aided key management as in DupLESS [7].

• Robustness over DaE. DEBE mitigates the single point-of-
attack of DaE by eliminating the key server. It also miti-
gates the information leakage caused by frequency analysis
against DaE [48, 49].

4 Detailed Design
4.1 Main Idea
DEBE’s core idea is to perform deduplication inside the en-
clave (hosted in the cloud), so as to provide confidentiality
guarantees for the plaintext chunks during the deduplication
process. Keeping a full fingerprint index (or the full index
in short) inside the enclave can track the fingerprints of all

40    2022 USENIX Annual Technical Conference USENIX Association



  0
 20
 40
 60
 80
100

  0  20  40  60  80 100
Top-#% Frequent Chunks

D
up

lic
at

e 
Ra

te
 (%

)

DOCKER
LINUX

VM
FSL

MS

Figure 2: Duplicate rate versus top-percentage of frequent chunks
in five real-world traces.

non-duplicate chunks being stored, but incurs significant EPC
paging overhead due to the limited EPC size (§2.3). Alter-
natively, managing the full index outside the enclave saves
the EPC usage, but incurs expensive context switching due to
excessive OCalls for querying the full index (§2.3).

We propose frequency-based deduplication, which per-
forms secure deduplication subject to the resource constraints
of the enclave. Our insight is that the frequencies (i.e., num-
bers of duplicates) of chunks are highly skewed in practical
backup workloads, such that a small fraction of chunks can
contribute to a large fraction of duplicates. To justify, we con-
duct trace analysis on five real-world backup traces (see §6.1
for the trace details). We measure the duplicate rate for a sub-
set of input chunks, defined as the ratio between the total size
of duplicate chunks derived from the subset of chunks and the
total size of duplicate chunks in the whole trace (note that a
chunk is said to be a duplicate chunk if its identical copy has
already been stored and it can be removed by deduplication).
Figure 2 shows the duplicate rate versus the top-percentage
of frequent chunks (ranked by their frequencies in descending
order). For example, in the VM trace, the top-5% of frequent
chunks contribute to a duplicate rate of around 97%. This
implies that if we maintain a small fingerprint index to track
the top-5% of frequent chunks, we can remove around 97%
of duplicate data and achieve high storage savings.

The idea of frequency-based deduplication is to separate
the deduplication process based on chunk frequencies. It man-
ages a small fingerprint index inside the enclave to remove the
duplicates from the most frequent chunks. It also maintains
the full index outside the enclave to remove the remaining du-
plicates for the less frequent chunks. Frequency-based dedu-
plication addresses both performance and security concerns.
For performance, it only manages a small fingerprint index
for the most frequent chunks inside the enclave to remove
a large fraction of duplicate chunks. Thus, it mitigates the
EPC paging overhead. It also reduces the context switching
overhead as it only queries the full index outside the enclave
via OCalls for a limited fraction of less frequent chunks. For
security, since the most frequent chunks are more vulnerable
to frequency analysis [48], we remove the duplicates of the
most frequent chunks with in-enclave processing only. Thus,
an adversary in the cloud cannot readily learn the frequen-
cies of the most frequent chunks, and hence the information

Storage

pool

Cloud

frequency-based 

deduplication

key management

frequency 

tracking

e
n

c
ry

p
tio

n

Enclave

c
o

m
p

re
s
s
io

n
full index

q
u

e
ry

 k
e

y

data key

2

3 4

1

Figure 3: Architecture of the enclave.

leakage caused by frequency analysis is limited.
Enclave architecture and design roadmap. Figure 3 de-
picts the architecture of the enclave in DEBE. Initially, the
enclave is bootstrapped with a set of keys and establishes
secure data channels with each client (§4.2). Then the enclave
tracks the frequency of each plaintext chunk received from the
data channel of a client (§4.3). Based on the chunk frequen-
cies, frequency-based deduplication removes the duplicates
of the most frequent plaintext chunks and interacts with the
full index outside the enclave to remove the duplicates of the
remaining less frequent plaintext chunks (§4.4). The enclave
performs compression on the non-duplicate plaintext chunks
and encrypts the compressed plaintext chunks. Finally, the
enclave stores the ciphertext chunks in the storage pool (§4.5).

4.2 Key Management
The enclave maintains a set of keys for the secure storage of
chunks after deduplication and compression as well as for
secure communication with clients.
Data key and query key. The enclave maintains two long-
term keys, which remain valid throughout the lifetime of the
enclave (i.e., the whole duration when DEBE is running): (i)
the data key for encrypting and decrypting the compressed
non-duplicate plaintext chunks in secure storage, and (ii) the
query key for protecting the information of plaintext chunks
when querying the full index outside the enclave (§4.4). When
the enclave is bootstrapped, it initializes both the data key
and the query key via the on-chip hardware random num-
ber generator (i.e., sgx read rand [42]). Both keys can be
periodically renewed via existing approaches (e.g., key regres-
sion [30]), without compromising deduplication as DEBE
performs deduplication before encryption.
Session key. Recall that each client maintains a data chan-
nel with the enclave for secure data communication (while
maintaining a control channel with the cloud for securely is-
suing storage operations) (§3.1). Each data channel protects
its communication using a short-term session key, which re-
mains valid for a single communication session. It establishes
a session key for the data channel using Diffie-Hellman key
exchange through the control channel. The session key is
kept in the enclave during the communication session of the
client, and will be freed after the session is completed (both
the control and data channels will be released as well).
Per-client master key. The enclave requires each client to

USENIX Association 2022 USENIX Annual Technical Conference    41



submit a master key through the data channel for each storage
request. It uses the master key to protect the file recipes for
the client’s files and enforces the client’s ownership of the
files. Similar to the session keys, the enclave only keeps the
master key of the client for a single communication session
and will destroy the master key at the end of the session, so
the storage overhead for the master keys is also limited.

4.3 Frequency Tracking
The enclave needs to track the frequencies of plaintext chunks
to identify the most frequent and less frequent chunks for
frequency-based deduplication. To mitigate the EPC usage
(§2.3), the enclave uses a Count-Min Sketch (CM-Sketch) [16]
to track the approximate frequency of each chunk with fixed-
size space and small errors.

The CM-Sketch is a two-dimensional array with r rows
of w counters each. One key design here is to limit the com-
putational overhead of mapping the plaintext chunks to the
counters. To do so, our insight is that the chunk fingerprint is
computed as a cryptographic hash (e.g., SHA-256 in our case),
so we can treat the chunk fingerprint as a random input value
and map it directly to a counter without compromising the
accuracy of the CM-Sketch. Specifically, for each plaintext
chunk M, the enclave partitions the fingerprint of M into r
pieces. It takes the i-th piece modulo w to find one of the w
counters, indexed from 0 to w− 1, in row i (1 ≤ i ≤ r) and
increments each of the mapped counters by one; this is in
contrast to the traditional CM-Sketch, which maps the input
to the counters of different rows using pairwise independent
hash functions [16] and hence has extra computational over-
head. To estimate the frequency of a chunk, the enclave uses
the minimum value of the r mapped counters of the chunk. By
default, we configure r = 4, w = 256 K, and 4-byte counters,
so the overall EPC usage of the CM-Sketch is only 4 MiB.

4.4 Frequency-based Deduplication
We present the design of frequency-based deduplication,
which removes all duplicate plaintext chunks in two phases
based on their estimated frequencies (§4.3).
First-phase deduplication. The enclave maintains a small
fingerprint index, called the top-k index, to deduplicate the k
most frequent plaintext chunks. We implement the top-k index
as a combination of a min-heap and a hash table, as shown
in Figure 4. The min-heap differentiates the top-k-frequent
and less frequent plaintext chunks. It tracks top-k estimated
frequencies of the plaintext chunks, such that the root heap
entry corresponds to the plaintext chunk with the minimum
frequency in the current top-k estimated frequencies. Each
heap entry in the min-heap stores a pointer to a hash entry in
the hash table. On the other hand, the hash table is used for
duplicate detection, as in conventional deduplication. Each
hash entry stores a mapping from the chunk fingerprint to a
tuple of elements: (i) the pointer to the heap entry (i.e., both
the heap entry and the hash entry reference each other), (ii)

hash table

………

………

………

min-heap

FP addrfreq size

FP addrfreq size

FP addrfreq size

Figure 4: Overview of the top-k index.

the estimated frequency of the chunk, (iii) the chunk address
(including the container ID and the internal offset within the
container; see §4.5), and (iv) the compressed chunk size (i.e.,
the size of the chunk after compression).

Given a plaintext chunk, to perform the first-phase dedu-
plication, the enclave takes the estimated frequency of the
plaintext chunk obtained from the CM-Sketch (§4.3) and the
chunk fingerprint as inputs. It first checks against the root heap
entry of the min-heap. If the input frequency is smaller than
the minimum frequency of the min-heap (i.e., the chunk is a
less frequent chunk), the enclave skips querying the hash table
for the chunk and proceeds to the second-phase deduplica-
tion (see below); otherwise (i.e., the chunk is a top-k-frequent
chunk), the enclave uses the input fingerprint to look up the
hash table. We have the following two cases:

• If the fingerprint is found in the hash table (i.e., the chunk is
a duplicate), the enclave updates the frequency in the hash
table and adds both the chunk address and the compressed
chunk size to the file recipe (§4.5). Since the frequency is
updated, it also adjusts the min-heap based on the pointer
to the heap entry in the min-heap.

• If the fingerprint is not found in the hash table (i.e., the
chunk is a new top-k-frequent chunk), the enclave creates
a new hash entry in the hash table and inserts a new heap
entry containing the pointer to the new hash entry into the
min-heap. If the min-heap has already stored k heap entries,
the enclave deletes the current root heap entry of the min-
heap (with the minimum frequency) and also deletes the
corresponding hash entry in the hash table via the pointer
stored in the root heap entry. Since the chunk may have
already been stored (but not tracked by the top-k index as its
frequency is low), the enclave also runs the second-phase
deduplication on the chunk and updates the chunk address
and the compressed chunk size according to the result of
the second-phase deduplication.

We show that the top-k index has low space usage. Suppose
that the chunk fingerprint has 32 bytes (a SHA-256 hash), the
chunk address has 12 bytes (an 8-byte container ID and a
4-byte internal offset; see §4.5), and the compressed chunk
size has 4 bytes. For each top-k-frequent chunk, the hash
entry additionally stores a 4-byte frequency and a pointer to a
heap entry. Since we implement the min-heap as an array, the
pointer to a heap entry can be represented as a 4-byte integer
array index. Also, the heap entry keeps an 8-byte pointer to a
hash entry. Overall, each top-k-frequent chunk uses 64 bytes

42    2022 USENIX Annual Technical Conference USENIX Association



in the top-k index (excluding the internal pointers of the hash
table, which we now implement as an unordered map of
the C++ standard library). For example, to track 512 K most
frequent chunks, the EPC usage of the top-k index is 32 MiB.

We further show that the top-k index has low time complex-
ity. For each plaintext chunk, the top-k index can return the
minimum frequency (from the root heap entry) in the current
min-heap in constant time. For a top-k-frequent chunk, the
top-k index needs to further check the hash table (in constant
time) and update the min-heap. Since we store the pointer
to the heap entry in the hash entry, we can directly update
the corresponding heap entry when the frequency is changed,
without searching the whole min-heap for its location. Thus,
the time complexity of updating the min-heap is O(logk).
Second-phase deduplication. The second-phase deduplica-
tion is performed on the plaintext chunks that are not removed
by the first-phase deduplication, including the less frequent
chunks and the fresh new top-k-frequent chunks whose fin-
gerprints are new to the top-k index. DEBE manages a full
index outside the enclave as the EPC size is limited (§2.3).
We implement the full index as a hash table, in which each
entry stores the mapping from the encrypted fingerprint of a
plaintext chunk to the encrypted chunk information (i.e., the
chunk address and the compressed chunk size, both of which
are encrypted by the query key) of the corresponding cipher-
text chunk. Our rationale of encrypting both the fingerprint
and the chunk information is to prevent any adversary in the
cloud from inferring the plaintext chunks, since the full index
is not protected by the enclave.

Given a plaintext chunk, to perform the second-phase dedu-
plication, the enclave deterministically encrypts the finger-
print of the plaintext chunk (not removed by the first-phase
deduplication) with the query key (§4.2), so that duplicate
plaintext chunks from different clients are always mapped to
duplicate encrypted fingerprints for cross-user deduplication.
It then queries the full index based on the encrypted fingerprint
via an OCall. If the encrypted fingerprint is found in the full
index, the OCall returns the encrypted chunk information that
will be decrypted by the query key inside the enclave. Then
the enclave will update the address and the compressed chunk
size into the file recipe (§4.5). Otherwise, if the encrypted
fingerprint is new to the full index, the enclave identifies this
chunk as a non-duplicate chunk, assigns the chunk an address,
compresses the chunk to obtain its compressed chunk size,
and encrypts both the address and the compressed chunk size
with the query key. It then updates the encrypted fingerprint
and the corresponding encrypted chunk information in the full
index. Note that the context switching overhead due to OCalls
is limited, as a large fraction of duplicates are expected to
have been removed by the first-phase deduplication.
Remarks. Traditional efficient indexing techniques for dedu-
plication, such as similarity-based [9] and locality-based dedu-
plication [52] approaches, can also address the limited EPC
size by loading only a portion of the full index into the en-

clave. However, they only achieve near-exact deduplication
(i.e., some duplicates cannot be removed), while DEBE can
achieve exact deduplication (§3.3).

Note that the CM-Sketch may overestimate the chunk fre-
quencies as multiple chunks can be mapped to the same coun-
ters (§4.3). Thus, the enclave may track some less frequent
chunks in the top-k index. Nevertheless, it does not affect
the storage savings from deduplication, as the full index still
tracks all currently stored non-duplicate chunks.

4.5 Storage Management
Container storage. DEBE manages physical chunks in fixed-
size containers to mitigate disk I/O costs [51]. The en-
clave performs compression on the non-duplicate plaintext
chunks after deduplication, and encrypts the compressed non-
duplicate plaintext chunks into ciphertext chunks with the
data key. It writes each ciphertext chunk, together with an
initialization vector (IV) (§5), into an in-memory container
inside the enclave. When the in-memory container is full,
the enclave emits it to persistent storage in the cloud. Note
that DEBE only stores an IV (of size 16 bytes in AES-256)
for each non-duplicate ciphertext chunk after deduplication,
while DaE approaches store an encrypted key (of size 32 bytes
in AES-256) for each ciphertext chunk before deduplication
and incurs substantial key storage overhead when there exist
many duplicate chunks (§2.1).

Also, the enclave creates and manages the file recipe for
each uploaded file. Each entry in the file recipe keeps the
chunk address and the compressed chunk size of each cipher-
text chunk of the file. Note that when the enclave adds entries
to the file recipe, it does not need to perform compression for
the duplicate chunk to obtain its compressed chunk size, since
the compressed chunk size has been stored in both the top-k
index and the full index. To guarantee the ownership of the
file, the enclave encrypts the file recipe by the client’s master
key and stores the encrypted file recipe as a regular file. Since
the enclave treats containers (each of which contains multiple
ciphertext chunks) as the basic I/O units and the chunk size
is stored in the file recipe (protected by the per-user master
key), DEBE preserves the security of compression as it avoids
leaking the lengths of compressed chunks [13].
Downloads. To download a file, the client issues a download
request and its master key to the enclave through the secure
data channel. The enclave retrieves the file recipe and de-
crypts the file recipe with the given master key. It then parses
the decrypted file recipe to obtain the chunk addresses and
compressed chunk sizes. To restore all chunks, the enclave
exposes the container IDs of the requested chunks to the cloud
to perform I/Os via OCalls. Once the cloud fetches the corre-
sponding containers into the unprotected main memory, the
enclave accesses the ciphertext chunks based on their internal
offsets and decrypts the ciphertext chunks by the data key.
Finally, it decompresses and sends the plaintext chunks to the
client through the data channel.

USENIX Association 2022 USENIX Annual Technical Conference    43



4.6 Security Discussion
We discuss the security of DEBE in response to our threat

model (§3.2). We focus on two cases.
Case 1: A snapshot adversary gains one-time access to
contents in unprotected memory and storage pool. DEBE
enforces end-to-end encryption for the plaintext chunks be-
tween each client and the enclave, and provides semantic
security [33] for the ciphertext chunks stored in the cloud.
Specifically, it sets up a secure data channel that encrypts
all plaintext chunks exchanged between a client and the en-
clave by a session key. It performs deduplication inside the
enclave (that is oblivious to the adversary), and encrypts the
non-duplicate plaintext chunks into ciphertext chunks by the
data key before the ciphertext chunks are stored. Note that
both data-in-transit and data-at-rest encryption operations are
based on traditional symmetric encryption, and semantic se-
curity is achieved.
Case 2: A persistent adversary eavesdrops on OCalls in
deduplication. DEBE encrypts both chunk fingerprints and
chunk information by the query key inside the enclave before
it includes them as the inputs of OCalls for accessing the full
index outside the enclave. Thus, even though an adversary can
eavesdrop on the OCalls, it cannot infer the original inputs
from the OCalls.

One potential information leakage is that a persistent ad-
versary (that stays in the cloud for a long time) can learn
the chunk frequencies in the deduplication process, as the
enclave maps duplicate plaintext chunks into duplicate en-
crypted fingerprints when querying the full index. Specifically,
the adversary can track the frequency distribution of encrypted
fingerprints by monitoring the OCalls, and launch frequency
analysis to infer the plaintext chunks. However, DEBE limits
such information leakage to the less frequent chunks, which
are relatively robust against frequency analysis [48] (for com-
parisons, DaE leaks the frequencies of all chunks since it
is deterministic by nature; see §2.1). Our evaluation shows
that DEBE mitigates information leakage more effectively
than TED [49], a state-of-the-art approach that trades storage
savings for security (see our technical report [81]).
Remarks. A powerful adversary may launch frequency-based
side-channel attacks by simultaneously compromising a client
and the cloud. If it proactively lets the compromised client
upload artificial chunks to the cloud and monitors OCalls in
the cloud, the adversary could infer chunk frequencies and
even identify the most frequent chunks among the clients.
While the practical damage caused by such side-channel at-
tacks remains an open question, we can obfuscate the chunk
frequency information by perturbing the OCalls patterns (e.g.,
adding dummy OCalls), at the expense of incurring extra
performance overhead.

5 Implementation
We have implemented a prototype of DEBE in C++ on Linux
based on Intel SGX SDK Linux 2.7 [42]. It uses OpenSSL-

1.1.1 [65] and Intel SGX SSL [43] for cryptographic opera-
tions. Our current prototype contains 17.5 K LoC.

Each client implements FastCDC [80] to realize content-
defined chunking, where the minimum, average, and maxi-
mum chunk sizes are configured at 4 KiB, 8 KiB, and 16 KiB,
respectively. The container size is 4 MiB. We implement
Diffie-Hellman key exchange based on NIST P-256 ellip-
tic curve for session key management of the data channel
between the client and the enclave. The enclave computes the
fingerprints of plaintext chunks via SHA-256 and encrypts
each unique plaintext chunk via AES-256 in GCM mode with
a random 16-byte IV. Also, it encrypts the fingerprint of each
plaintext chunk via AES-256 in CMC mode with a 16-byte
zero IV to support queries over encrypted fingerprints (as in
CryptDB [68]). Both SHA-256 and AES-256 are configured
to use (via OpenSSL EVP API) the Intel New Instructions
Set for hardware-accelerated operations [39, 40]. We also im-
plement LZ4 [15] for lossless stream-based compression in
the enclave for chunk compression after deduplication.

To mitigate context switching overhead of the enclave,
DEBE transmits and processes chunks on a per-batch ba-
sis (the default batch size is 128 chunks). Also, to speed up
downloads, the cloud keeps an in-memory least-recently-used
cache (256 MiB by default) to hold the recently accessed
containers. For each container access request issued by the
enclave (§4.5), the cloud first checks the cache and retrieves
the containers from local storage only if they are not in cache.
Limitations. DEBE currently does not address crash con-
sistency. We now discuss how to extend DEBE with crash
consistency, and pose the implementation as future work.

When a system crash occurs, DEBE would lose its in-
enclave contents (i.e., the query key, the data key, the CM-
Sketch, the top-k index, and the in-memory container pending
to be persisted into the storage pool). We can extend DEBE to
recover the query and data keys, the CM-Sketch, and the top-k
index via sealing, an SGX feature that encrypts in-enclave
content for secure out-enclave storage on disk [41]. When
the enclave is bootstrapped (§3.1), DEBE stores a persistent
copy of both the query key and data key by sealing. Also, it
makes periodic snapshots of the CM-Sketch and top-k index
by sealing. To restore the enclave states from a system crash,
the cloud re-initializes the enclave by unsealing the keys and
snapshots back to the enclave.

To realize crash consistency, we can augment DEBE with
write-ahead logging [61] to record updates in on-disk logs
before updating the in-memory CM-Sketch and top-k index.
To recover from the data loss of the in-memory container,
the enclave can log the IDs of the persisted containers for
the currently uploaded file in on-disk logs. If a system crash
occurs during the current upload, DEBE can roll back to the
state before the upload starts based on the logs. It finally
notifies the client to re-upload the file. Note that logging
the changes into on-disk logs would incur extra OCalls. To
mitigate the context switching overhead of logging, we can

44    2022 USENIX Annual Technical Conference USENIX Association



batch multiple logging operations in a single OCall.
We can initialize a new CM-Sketch and a new top-k in-

dex after enclave recovery. This would not affect the storage
savings from deduplication, provided that the full index is
crash-consistent (e.g., via its implementation in a persistent
key-value store) and tracks all currently stored non-duplicate
chunks. However, DEBE incurs extra performance overhead,
as it cannot learn frequent chunks and hence incurs more
OCalls to build the top-k index from scratch.

6 Evaluation
We deploy DEBE in a local cluster of 11 machines connected
with 10 GbE. Each machine has a quad-core 3.4 GHz Intel
Core i5-7500 CPU and 32 GiB RAM, and is installed with
Ubuntu 16.04. We deploy one or multiple clients, a key server
(for DaE only), or a cloud storage backend on distinct ma-
chines. The machine for the cloud storage backend is attached
with a TOSHIBA DT01ACA 1 TiB 7200 rpm SATA hard disk.
By default, DEBE sets k =512 K for the top-k index and con-
figures the CM-Sketch with r =4 and w =256 K, so as to
keep the overall EPC usage within 64 MiB to limit the paging
overhead in SGX. Note that we can tune the parameters based
on the available EPC size.

We evaluate DEBE using both synthetic and real-world
datasets. We summarize our evaluation results as follows.

• DEBE accelerates the uploads of non-duplicate and du-
plicate data of state-of-the-art DaE approaches by up to
10.09× and 13.08×, respectively (Exp#1). Its frequency-
based deduplication only takes 5.8-18.4% of the overall
upload time (Exp#2). It preserves high performance for
multi-client uploads/downloads (Exp#3) and various syn-
thetic workloads (Exp#4).

• For real-world workloads, DEBE achieves 1.17-2.76×
speedups over state-of-the-art deduplication alternatives
(Exp#5), and preserves high performance in long-term up-
loads and downloads (Exp#6).

In our technical report [81], we present additional evalua-
tion results and show that DEBE achieves high storage savings
and preserves security against frequency analysis.

6.1 Datasets
Synthetic datasets. We consider two synthetic datasets for
our evaluation. The first dataset, namely SYN-Unique, in-
cludes non-duplicate and individually compressible chunks.
Specifically, we generate SYN-Unique as a set of 2 GiB com-
pressible files via the LZ data generator [38], which generates
synthetic data based on SDGen [34]. The LZ data gener-
ator takes two parameters as inputs: (i) a compression ra-
tio, which specifies the compressibility of the generated data,
and (ii) a random seed for data generation. We configure the
compression ratio as 2 to resemble real-world backup work-
loads [77], and vary the random seeds to generate distinct
synthetic files. We perform chunking on each synthetic file

to ensure that its chunks are globally unique over all files.
We use the dataset for stress-testing different schemes with
non-duplicate chunks.

The second dataset, namely SYN-Freq, includes the original
chunks (before deduplication) following a target frequency
distribution. We build a synthetic file generator that gener-
ates files whose chunk frequencies follow a Zipf distribution
as shown by prior work [83, 84]. Our generator takes three
parameters as inputs: (i) the number of original chunks, (ii)
the deduplication ratio (i.e., the ratio between the original
data size and the non-duplicate data size), and (iii) the Zipfian
constant (a larger constant implies higher skewness). To gen-
erate a synthetic file, we prepare a set of non-duplicate 48-bit
fingerprints based on the expected number of non-duplicate
chunks (i.e., the number of original chunks divided by the
deduplication ratio). We assign each fingerprint with a com-
pression ratio based on the normal distribution with a mean
of 2 and a variance of 0.25 [46, 77]. To generate each original
chunk, we sample its fingerprint from the fingerprint set based
on the target Zipf distribution, and construct its content using
the LZ data generator [38] with the compression ratio and fin-
gerprint (as the random seed) as inputs. Finally, we generate
the SYN-Freq dataset as a set of synthetic files, each of which
contains 13,107,200 8-KiB original chunks (i.e., 100 GiB)
and a deduplication ratio of 5×. The number of non-duplicate
chunks is large enough that only a subset of non-duplicate
chunks can be tracked by the top-k index.
Real-world datasets. We consider five real-world datasets of
backup workloads, which are also used in previous studies
for trace-driven evaluation [49, 50, 69, 70, 80, 86]:

• DOCKER: docker snapshots (from v4.1.0 to v7.0.0) of
Couchbase [17] from Docker Hub [22];

• LINUX: snapshots (from stable versions between v2.6.13
and v5.9) of Linux source code [54], in which each snapshot
is stored in the mtar format [53];

• FSL: home directory snapshots [29], among which we select
42 snapshots from nine users in 2013;

• MS: Windows file system snapshots [59], among which we
select 30 snapshots of size around 100 GiB each; and

• VM: virtual machine snapshots [50] collected by ourself.

Table 1 shows the statistics of the five real-world datasets.
Previous studies have shown that multi-tenant deduplication
can achieve higher storage savings than single-tenant dedu-
plication in FSL, MS, and VM [50, 59, 75]. Given the limited
available disk space in our testbed, we sample a subset of
snapshots from the original datasets [29, 59] for FSL and MS
as in [49]. As FSL, MS, and VM only contain fingerprints,
we generate compressible chunk contents as in SYN-Freq.

6.2 Evaluation on Synthetic Data

To examine the maximum achievable performance without
disk I/O overhead, we load the synthetic files into each client’s
memory before each test and let the cloud store all post-

USENIX Association 2022 USENIX Annual Technical Conference    45



Dataset Raw size Snapshots Dedup Ratio Compress Ratio
DOCKER 70.2 GiB 94 4.2 1.7

LINUX 44.6 GiB 82 2.8 2.3
VM 3.0 TiB 660 33.4 2.0
FSL 3.0 TiB 42 8.2 2.0
MS 3.9 TiB 30 4.1 2.0

Table 1: Characteristics of real-world datasets.

deduplicated data in memory (we include the disk I/O over-
head in the evaluation in §6.3). We report the average results
over five runs and include the 95% confidence intervals based
on student’s t-distribution (except for line graphs).
Exp#1 (Overall performance). We evaluate the upload
(download) performance of overall systems. We consider a
single client that successively uploads the same 2 GiB file
from SYN-Unique twice. The client then downloads the same
file. We measure the upload (download) speed of each op-
eration. Our goal is to examine the maximum achievable
performance of all schemes for storing all non-duplicate data
and all duplicate data. Note that the file size is small here,
such that all fingerprints can be tracked in the top-k index in
DEBE (we consider large-scale datasets in §6.3).

We compare DEBE with three DaE approaches: (i) Dup-
LESS [7], which implements server-aided key management
based on OPRF (§2.1); (ii) TED [49], which generates the
key of each chunk based on lightweight hash computations
in the key server; and (iii) CE [23], the convergent encryp-
tion scheme (§2.1). To study the security overhead of DEBE,
we include plain deduplication (Plain), in which the client
uploads the plaintext chunks to the cloud for deduplication
and compression through a communication channel protected
by SSL/TLS. Unlike DEBE and Plain, the DaE schemes (i.e.,
DupLESS, TED, and CE) do not realize compression due to
incompatibility (§2.1). For fair comparisons, we re-implement
all baselines based on their original papers under the same
implementation setting (§5) in C++.

Figure 5(a) shows the upload speeds. DEBE outperforms
all DaE schemes. When uploading non-duplicate data, DEBE
achieves 10.09×, 1.42×, and 1.25× speedups over DupLESS,
TED, and CE, respectively, by avoiding the generation of
chunk-based keys (note that DupLESS has very low up-
load speeds due to the expensive OPRF operations). Even
though DEBE applies compression, its compression overhead
is masked by the performance gain over the key generation
overhead of DaE. When uploading duplicate data, DEBE be-
comes more efficient. Its speedups increase to 13.08×, 1.88×,
and 1.65× over DupLESS, TED, and CE, respectively, since
it avoids performing encryption and compression on the du-
plicate chunks. Compared with plain deduplication, DEBE
only incurs 21.6% and 7.4% performance overhead for the
uploads of non-duplicate and duplicate data, respectively.

Figure 5(b) shows the download speeds. All DaE schemes
follow the same download paradigm, in which the client re-
trieves both ciphertext chunks and encrypted chunk-based
keys from the cloud, decrypts each key and the corresponding

22

156 178
222

283

23

160 182

301
325

  0

100

200

300

400

DupLESS TED CE DEBE Plain

S
p
e
e
d
 (

M
iB

/s
) Upload-Unique Upload-Duplicate

646
706

785

  0

300

600

900

DEBE DaE Plain

S
p
e
e
d
 (

M
iB

/s
)

(a) Upload (b) Download

Figure 5: (Exp#1) Overall performance.

Steps 1st upload 2nd upload
Chunking 0.61 ± 0.01 ms

Transmission Protection 0.37 ± 0.01 ms
Fingerprinting 2.27 ± 0.04 ms

Frequency tracking 0.06 ± 0.01 ms
First-phase dedup 0.10 ± 0.01 ms 0.14 ± 0.01 ms

Second-phase dedup 0.80 ± 0.02 ms -
Compression 0.67 ± 0.01 ms -
Encryption 0.33 ± 0.01 ms -

Table 2: (Exp#2) Breakdown of computational time per processing
1 MiB data in two successive uploads.

chunk, and reconstructs the original file. Compared with DaE,
DEBE incurs 8.5% download speed drop due to the OCalls
for moving chunks into the enclave for decryption and de-
compression (§4.5). Also, DEBE and DaE have 17.7% and
10.1% download speed drops compared with Plain, respec-
tively, since they perform decryption on retrieved chunks.
Exp#2 (Upload breakdown). We study the breakdown of
the upload performance. We consider the same scenario as
Exp#1 (i.e., a client successively uploads the same 2 GiB file
from SYN-Unique twice) and measure the computational
time of the client and the enclave in different steps in uploads:
(i) chunking, in which the client partitions the input file into
plaintext chunks; (ii) transmission protection, in which the
enclave exchanges a session key with the client and decrypts
received ciphertext chunks; (iii) fingerprinting, in which the
enclave computes the fingerprint of each plaintext chunk;
(iv) frequency tracking, in which the enclave estimates the
frequency of each plaintext chunk via the CM-Sketch; (v)
first-phase deduplication, in which the enclave removes dupli-
cate plaintext chunks via the top-k index; (vi) second-phase
deduplication, in which the enclave queries the full index via
OCalls to remove remaining duplicates; (vii) compression,
in which the enclave compresses the non-duplicate chunks;
and (viii) encryption, in which the enclave encrypts the com-
pressed chunks with the data key.

Table 2 shows the results (measured by the computational
time per 1 MiB of uploads). In the first upload (i.e., up-
loading non-duplicate data), fingerprinting is the most time-
consuming step since it performs expensive computations on
all chunks. On the other hand, frequency-based deduplication
(including frequency tracking plus first-phase and second-
phase deduplication) takes only 18.4% of the overall time.
Note that since the storage is empty before the upload, each
non-duplicate chunk is treated as a frequent chunk and exam-
ined by both the first-phase and second-phase deduplication.

46    2022 USENIX Annual Technical Conference USENIX Association



   0
 200
 400
 600
 800
1000

 1  5 10 15 20
Number of Clients

Sp
ee

d 
(M

iB
/s

)

Upload Download

Figure 6: (Exp#3) Multi-client
uploads and downloads.

  0

100

200

300

0.8 0.9 1 1.1
Zipfian Constant

Sp
ee

d 
(M

iB
/s

)

128K
256K

512K
768K

1M
2M

Figure 7: (Exp#4) Impact of fre-
quency distribution.

In the second upload (i.e., uploading duplicate data), all du-
plicate chunks are removed by the first-phase deduplication
and hence the second-phase deduplication is skipped. In this
case, frequency-based deduplication takes only 5.8% of the
overall upload time.
Exp#3 (Multi-client uploads and downloads). We evaluate
DEBE when multiple clients issue upload/download requests
concurrently. In addition to the cloud, we deploy 10 machines,
with two client instances each, so as to simulate the concurrent
uploads/downloads by up to 20 clients. Each client uploads a
2 GiB synthetic file from SYN-Unique to the cloud, and then
downloads the same 2 GiB file. We measure the aggregate
upload (download) speed as the ratio of the total uploaded
(downloaded) data size to the total time all clients complete
the uploads (downloads).

Figure 6 shows the results versus the number of clients.
The aggregate upload speed first increases with the number
of clients and reaches 791.1 MiB/s for 10 clients, followed
by dropping to 755.8 MiB/s for 20 clients due to the resource
contention in the enclave. The aggregate download speed has
a similar trend, and first increases to 870.0 MiB/s and finally
drops to 835.7 MiB/s.
Exp#4 (Impact of frequency distribution). We evaluate
DEBE on processing the chunks from different frequency
distributions. We configure a single client to upload each orig-
inal chunk of SYN-Freq without chunking, and measure the
computational speed of the enclave (i.e., including the steps
of Table 2 except chunking).

Figure 7 shows the results for different k in the top-k index
versus the Zipfian constant. A larger k implies lower perfor-
mance for all Zipfian constants, since SGX incurs significant
paging overhead when the size of enclave contents is greater
than 64 MiB [45]. For example, when the Zipfian constant is
0.8, the computational speeds for k =512 K and k =1 M are
282.5 MiB/s and 147.3 MiB/s, respectively. In addition, the
computational speed of the enclave increases in more skewed
distribution (i.e., a larger Zipfian constant), since the most
frequent chunks contribute more duplicates. This mitigates
the OCall overhead of querying the full index.

6.3 Evaluation on Real-world Traces

Exp#5 (Performance of deduplication approaches).
DEBE’s key design is frequency-based deduplication, and
we compare it with other design alternatives. We consider two
state-of-the-art memory-efficient deduplication approaches,

namely similarity-based deduplication [9] and locality-based
deduplication [52]. Both approaches store a small in-enclave
fingerprint index based on the feature of each segment of
chunks and perform deduplication by loading a portion of
the full index (outside the enclave) into the enclave based
on the matched feature. Similarity-based deduplication de-
rives the feature based on the minimum chunk fingerprint of
each segment of chunks, while locality-based deduplication
generates it by sampling a few fingerprints. As in [9, 52], we
choose the segment size as 10 MiB, and the sampling rate of
locality-based deduplication as 1/64. While both approaches
aim to mitigate disk I/O in plain deduplication, our idea is
that they can also be applied to reduce EPC usage, but can
only support near-exact deduplication (§4.4).

In addition to the above near-exact deduplication ap-
proaches, we include the naı̈ve but exact deduplication base-
lines for comparisons. Specifically, in-enclave deduplication
attempts to manage the full index in the enclave; when the
full index increases in size and cannot fit into the EPC, it
triggers page swapping to evict unused EPC pages to memory.
Out-enclave deduplication manages the full index in memory,
and detects duplicates by issuing OCalls to the full index. For
fair comparisons, we include compression over non-duplicate
chunks into all baseline approaches. We upload the snapshots
of each real-world backup dataset (§6.1) in the order of their
creation times. We measure the computational speed of the
enclave as in Exp#4.

Figure 8 shows the results. DEBE generally outperforms all
approaches. For example, in FSL, it achieves 1.17×, 1.20×,
1.25×, and 2.76× average speedups over the similarity-based,
locality-based, out-enclave, and in-enclave approaches, re-
spectively. The reason is that DEBE avoids the extra compu-
tational overhead of compressing and encrypting some du-
plicate chunks in both similarity-based and locality-based
approaches (which perform near-exact deduplication). Also,
it performs the first-phase deduplication and filters out many
queries to the full index, thereby mitigating the OCall over-
head of the out-enclave deduplication. Although in-enclave
deduplication outperforms DEBE when the workload size
is small (e.g., the first few snapshots in DOCKER and
LINUX), its performance drops dramatically in subsequent
snapshots due to expensive paging overhead. DEBE manages
lightweight data structures (a CM-Sketch and the small top-k
index) in the enclave and mitigates the paging overhead.
Exp#6 (Trace-driven upload and download). Unlike in
Exp#1, we evaluate the upload and download performance of
DEBE based on real-world data. We enable cloud-side disk
I/O, upload all snapshots of each dataset, and finally let the
client download them on disk. Here, we only compare DEBE
with CE, which is the fastest DaE approach. Since FSL, VM,
and MS only include the compressible chunks (§6.1), we let
the client machine directly upload chunks without chunking.

Figure 9 shows the speeds for uploading and download-
ing each snapshot in DEBE and CE. The upload speed of

USENIX Association 2022 USENIX Annual Technical Conference    47



DEBE similarity-based locality-based in-enclave out-enclave

  0
100
200
300
400

 1 20 40 60 80 94
Snapshot

Sp
ee

d 
(M

iB
/s

)

  0
100
200
300
400

 1 20 40 60 82
Snapshot

Sp
ee

d 
(M

iB
/s

)

  0
100
200
300
400

  1 250 500 660
Snapshot

Sp
ee

d 
(M

iB
/s

)

  0
100
200
300
400

 1 10 20 30 42
Snapshot

Sp
ee

d 
(M

iB
/s

)

  0
100
200
300
400

 1 10 20 30
Snapshot

Sp
ee

d 
(M

iB
/s

)

(a) DOCKER (b) LINUX (c) VM (d) FSL (e) MS

Figure 8: (Exp#5) Performance comparison of different deduplication approaches.

DEBE-Upload DEBE-Download CE-Upload CE-Download

  0

100

200

300

 1 20 40 60 80 94
Snapshot

Sp
ee

d 
(M

iB
/s

)

  0

100

200

300

 1 20 40 60 82
Snapshot

Sp
ee

d 
(M

iB
/s

)

  0

100

200

300

  1 250 500 660
Snapshot

Sp
ee

d 
(M

iB
/s

)

  0

100

200

300

 1 10 20 30 42
Snapshot

Sp
ee

d 
(M

iB
/s

)

  0

100

200

300

 1 10 20 30
Snapshot

Sp
ee

d 
(M

iB
/s

)

(a) DOCKER (b) LINUX (c) VM (d) FSL (e) MS

Figure 9: (Exp#6) Trace-driven upload and download performance.

DEBE gradually increases in subsequent snapshots, which
include more duplicate plaintext chunks, so DEBE does not
need to perform compression and encryption on the dupli-
cate plaintext chunks (removed by deduplication). In contrast,
CE is consistently slower than DEBE in uploads, as it per-
forms key generation and encryption for all duplicate plaintext
chunks. For example, in FSL, the upload speed of DEBE is
246.5 MiB/s for the first snapshot, and reaches 277.5 MiB/s
for the last snapshot. In contrast, the upload speed of CE is
163.5-179.1 MiB/s across all snapshots.

The download speeds of both DEBE and CE are almost
the same, since they are throttled by disk I/O. Also, their
download speeds decrease across snapshots due to chunk
fragmentation [51] (i.e., the chunks of subsequent snapshots
become scattered after deduplication), which increases I/O
overhead. For example, the download speed of DEBE in FSL
is 131.4 MiB/s for the first snapshot, and drops to 95.1 MiB/s
for the last snapshot (the download speed of CE is almost the
same). Chunk fragmentation can be mitigated via existing
approaches [11, 12, 31, 51, 86] and we pose the integration of
such approaches into DEBE as future work.

7 Related Work
DaE approaches. Several approaches realize secure dedu-
plication via DaE. In addition to those described in §2.1,
some approaches are designed from the security perspectives.
Random MLE [1] and iMLE [6] apply non-deterministic en-
cryption to prevent frequency leakage, but they use expensive
primitives (e.g., non-interactive zero-knowledge proofs [1],
fully homomorphic encryption [6]) that are not ready to be
implemented. Liu et al. [55] propose to share keys via a de-
centralized agreement protocol without relying on a dedicated
key server, but it introduces expensive performance overhead
of interactions among different clients. TED [49] mitigates
frequency leakage with a configurable storage blowup. In con-
trast, DEBE realizes DbE to address both key management
overhead and security issues simultaneously.

SGX meets secure deduplication. SGX has been used in
secure deduplication. Dang et al. [20] employ SGX as a
trusted proxy to save network bandwidth for secure dedupli-
cation. SPEED [19] performs deduplication for computations
inside the enclave to improve resource utilization. You et
al. [82] leverage SGX to verify the ownership of dedupli-
cated data for secure deduplication. SeGShare [32] builds on
a server-side enclave for file-based deduplication, but does not
consider fingerprint indexing for chunk-based deduplication.
S2Dedup [60] uses a server-side enclave to eliminate a trusted
key server for key generation, and it performs deduplication
outside the enclave via re-encrypting chunks; in contrast,
DEBE directly performs deduplication inside the enclave to
protect plaintext chunks. SGXDedup [70] leverages SGX to
improve the performance of client-side secure deduplication
under DaE. Note that the above SGX-based deduplication
approaches are still based on DaE.

8 Conclusion
DEBE realizes an unexplored paradigm, deduplication-before-
encryption (DbE), for secure deduplicated storage. It builds
on SGX and applies frequency-based deduplication to man-
age a small fingerprint index for most frequent chunks in
the enclave. We show that DEBE outperforms conventional
deduplication-after-encryption (DaE) approaches in perfor-
mance, storage savings, and security.

Acknowledgments
We thank our reviewers and shepherd for their comments. This
work was supported in part by the National Natural Science
Foundation of China (61972073), the Key Research Funds
of Sichuan Province (2021YFG0167, 2020YFG0298), the
Sichuan Science and Technology Program (2020JDTD0007),
the Fundamental Research Funds for Chinese Central Univer-
sities (ZYGX2020ZB027, ZYGX2021J018), CUHK Direct
Grant (4055148), and the Research Matching Grant Scheme.

48    2022 USENIX Annual Technical Conference USENIX Association



References
[1] M. Abadi, D. Boneh, I. Mironov, A. Raghunathan,

and G. Segev. Message-locked encryption for lock-
dependent messages. In Proc. of CRYPTO, 2013.

[2] Advanced Micro Devices Inc. AMD Secure Encrypted
Virtualization (SEV). https://developer.amd.com/
sev/.

[3] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,
R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer. FARSITE: Feder-
ated, available, and reliable storage for an incompletely
trusted environment. In Proc. of USENIX OSDI, 2002.

[4] I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Inno-
vative technology for CPU based attestation and sealing.
In Proc. of ACM HASP, 2013.

[5] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin,
C. Priebe, J. Lind, D. Muthukumaran, D. O’keeffe, M. L.
Stillwell, et al. SCONE: Secure Linux containers with
Intel SGX. In Proc. of USENIX OSDI, 2016.

[6] M. Bellare and S. Keelveedhi. Interactive message-
locked encryption and secure deduplication. In Proc. of
PKC, 2015.

[7] M. Bellare, S. Keelveedhi, and T. Ristenpart. DupLESS:
Server-aided encryption for deduplicated storage. In
Proc. of USENIX Security, 2013.

[8] M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-
locked encryption and secure deduplication. In Proc. of
EuroCrypto, 2013.

[9] D. Bhagwat, K. Eshghi, D. D. Long, and M. Lillibridge.
Extreme binning: Scalable, parallel deduplication for
chunk-based file backup. In Proc. of IEEE MASCOTS,
2009.

[10] J. Black. Compare-by-hash: A reasoned analysis. In
Proc. of USENIX ATC, 2006.

[11] Z. Cao, S. Liu, F. Wu, G. Wang, B. Li, and D. H. Du.
Sliding look-back window assisted data chunk rewriting
for improving deduplication restore performance. In
Proc. of USENIX FAST, 2019.

[12] Z. Cao, H. Wen, F. Wu, and D. H. Du. ALACC: Accel-
erating restore performance of data deduplication sys-
tems using adaptive look-ahead window assisted chunk
caching. In Proc. of USENIX FAST, 2018.

[13] D. Chen, M. Factor, D. Harnik, R. Kat, and E. Tsfadia.
Length preserving compression: Marrying encryption
with compression. In Proc. of ACM SYSTOR, 2021.

[14] Cohesity Inc. Cohesity. https://

www.cohesity.com/.

[15] Y. Collet. LZ4: Extremely fast compression algorithm.
https://lz4.github.io/lz4/.

[16] G. Cormode and S. Muthukrishnan. An improved data
stream summary: The count-min sketch and its applica-
tions. Journal of Algorithms, 55(1):58–75, 2005.

[17] Couchbase Inc. Couchbase: The modern database for en-
terprise applications. https://www.couchbase.com.

[18] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche:
Making backup cheap and easy. In Proc. of USENIX
OSDI, 2002.

[19] H. Cui, H. Duan, Z. Qin, C. Wang, and Y. Zhou. SPEED:
Accelerating enclave applications via secure deduplica-
tion. In Proc. of IEEE ICDCS, 2019.

[20] H. Dang and E.-C. Chang. Privacy-preserving data
deduplication on trusted processors. In Proc. of IEEE
CLOUD, 2017.

[21] T. Dinh Ngoc, B. Bui, S. Bitchebe, A. Tchana, V. Schi-
avoni, P. Felber, and D. Hagimont. Everything you
should know about Intel SGX performance on virtual-
ized systems. In Proc. of ACM SIGMETRICS, 2019.

[22] Docker Inc. Docker Hub. https://hub.docker.com/.

[23] J. R. Douceur, A. Adya, W. J. Bolosky, P. Simon, and
M. Theimer. Reclaiming space from duplicate files in
a serverless distributed file system. In Proc. of IEEE
ICDCS, 2002.

[24] Dropbox Inc. Dropbox. https://www.dropbox.com/.

[25] Druva Inc. Druva. https://www.druva.com/.

[26] A. Duggal, F. Jenkins, P. Shilane, R. Chinthekindi,
R. Shah, and M. Kamat. Data domain cloud tier: Backup
here, backup there, deduplicated everywhere! In Proc.
of USENIX ATC, 2019.

[27] A. El-Shimi, R. Kalach, A. Kumar, A. Ottean, J. Li, and
S. Sengupta. Primary data deduplication-large scale
study and system design. In Proc. of USENIX ATC,
2012.

[28] E. Feng, X. Lu, D. Du, B. Yang, X. Jiang, Y. Xia,
B. Zang, and H. Chen. Scalable memory protection
in the PENGLAI enclave. In Proc. of USENIX OSDI,
2021.

[29] File System and Storage Lab at Stony Brook Univer-
sity. Traces and snapshots public archive. http:

//tracer.filesystems.org.

[30] K. Fu, S. Kamara, and T. Kohno. Key regression: En-
abling efficient key distribution for secure distributed
storage. In Proc. of NDSS, 2006.

[31] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia,
F. Huang, and Q. Liu. Accelerating restore and garbage
collection in deduplication-based backup systems via
exploiting historical information. In Proc. of USENIX
ATC, 2014.

USENIX Association 2022 USENIX Annual Technical Conference    49

https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://www.cohesity.com/
https://www.cohesity.com/
https://lz4.github.io/lz4/
https://www.couchbase.com
https://hub.docker.com/
https://www.dropbox.com/
https://www.druva.com/
http://tracer.filesystems.org
http://tracer.filesystems.org


[32] B. Fuhry, L. Hirschoff, S. Koesnadi, and F. Kerschbaum.
SeGShare: Secure group file sharing in the cloud using
enclaves. In Proc. of IEEE/IFIP DSN, 2020.

[33] S. Goldwasser and S. Micali. Probabilistic encryption.
Journal of computer and system sciences, 1984.

[34] R. Gracia-Tinedo, D. Harnik, D. Naor, D. Sotnikov,
S. Toledo, and A. Zuck. SDGen: Mimicking datasets
for content generation in storage benchmarks. In Proc.
of USENIX FAST, 2015.

[35] D. Harnik, B. Pinkas, and A. Shulman-Peleg. Side chan-
nels in cloud services: Deduplication in cloud storage.
IEEE Security & Privacy, 8(6):40–47, 2010.

[36] D. Harnik, E. Tsfadia, D. Chen, and R. Kat. Securing
the storage data path with SGX enclaves. https://

arxiv.org/abs/1806.10883, 2018.

[37] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and
J. Del Cuvillo. Using innovative instructions to create
trustworthy software solutions. In Proc. of ACM HASP,
2013.

[38] J. Ibsen. LZ data generator. https://github.com/
jibsen/lzdatagen.

[39] Intel Corporation. Intel(R) Advanced En-
cryption Standard Instructions (AES-NI).
https://software.intel.com/content/www/
us/en/develop/articles/intel-advanced-

encryption-standard-instructions-aes-

ni.html.

[40] Intel Corporation. Intel(R) SHA Extensions.
https://software.intel.com/content/
www/us/en/develop/articles/intel-sha-

extensions.html.

[41] Intel Corporation. Intel(R) Software Guard Extensions.
https://software.intel.com/content/www/us/
en/develop/documentation/sgx-developer-

guide/top.html.

[42] Intel Corporation. Intel(R) Software Guard Exten-
sions SDK for Linux. https://01.org/intel-
softwareguard-extensions.

[43] Intel Corporation. Intel(R) Software Guard Exten-
sions SSL. https://github.com/intel/intel-
sgx-ssl.

[44] Intel Corporation. Supporting Intel SGX on multi-socket
platforms. https://www.intel.com/content/
www/us/en/architecture-and-technology/

software-guard-extensions/supporting-sgx-

on-multi-socket-platforms.html.

[45] T. Kim, J. Park, J. Woo, S. Jeon, and J. Huh. ShieldStore:
Shielded in-memory key-value storage with SGX. In
Proc. of ACM EuroSys, 2019.

[46] C. Li, P. Shilane, F. Douglis, H. Shim, S. Smaldone, and
G. Wallace. Nitro: A capacity-optimized SSD cache for
primary storage. In Proc. of USENIX ATC, 2014.

[47] J. Li, P. P. C. Lee, Y. Ren, and X. Zhang. Metadedup:
Deduplicating metadata in encrypted deduplication via
indirection. In Proc. of IEEE MSST, 2019.

[48] J. Li, P. P. C. Lee, C. Tan, C. Qin, and X. Zhang. Informa-
tion leakage in encrypted deduplication via frequency
analysis: Attacks and defenses. ACM Trans. on Storage,
16(1):1–30, 2020.

[49] J. Li, Z. Yang, Y. Ren, P. P. C. Lee, and X. Zhang. Bal-
ancing storage efficiency and data confidentiality with
tunable encrypted deduplication. In Proc. of ACM Eu-
roSys, 2020.

[50] M. Li, C. Qin, and P. P. C. Lee. CDStore: Toward reli-
able, secure, and cost-efficient cloud storage via conver-
gent dispersal. In Proc. of USENIX ATC, 2015.

[51] M. Lillibridge, K. Eshghi, and D. Bhagwat. Improving
restore speed for backup systems that use inline chunk-
based deduplication. In Proc. of USENIX FAST, 2013.

[52] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar,
G. Trezis, and P. Camble. Sparse indexing: Large scale,
inline deduplication using sampling and locality. In
Proc. of USENIX FAST, 2009.

[53] X. Lin, F. Douglis, J. Li, X. Li, R. Ricci, S. Smaldone,
and G. Wallace. Metadata considered harmful ... to
deduplication. In Proc. of USENIX HotStorage, 2015.

[54] Linux Foundation. The Linux kernel archives. https:
//www.kernel.org/.

[55] J. Liu, N. Asokan, and B. Pinkas. Secure deduplication
of encrypted data without additional independent servers.
In Proc. of ACM CCS, 2015.

[56] U. Maurer. Modelling a public-key infrastructure. In
Proc. of ESORICS, 1996.

[57] M. Meehan. Data privacy will be the most important
issue in the next decade. https://www.forbes.com/
sites/marymeehan/2019/11/26/data-privacy-

will-be-the-most-important-issue-in-the-

next-decade/.

[58] Memopal. Memopal. https://www.memopal.com/.

[59] D. T. Meyer and W. J. Bolosky. A study of practical
deduplication. In Proc. of USENIX FAST, 2011.

[60] M. Miranda, T. Esteves, B. Portela, and J. Paulo.
S2Dedup: SGX-enabled secure deduplication. In Proc.
of ACM SYSTOR, 2021.

[61] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: A transaction recovery method
supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Trans. on Database
Systems, 17(1):94–162, 1992.

50    2022 USENIX Annual Technical Conference USENIX Association

https://arxiv.org/abs/1806.10883
https://arxiv.org/abs/1806.10883
https://github.com/jibsen/lzdatagen
https://github.com/jibsen/lzdatagen
https://software.intel.com/content/www/us/en/develop/articles/intel-advanced-encryption-standard-instructions-aes-ni.html
https://software.intel.com/content/www/us/en/develop/articles/intel-advanced-encryption-standard-instructions-aes-ni.html
https://software.intel.com/content/www/us/en/develop/articles/intel-advanced-encryption-standard-instructions-aes-ni.html
https://software.intel.com/content/www/us/en/develop/articles/intel-advanced-encryption-standard-instructions-aes-ni.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sha-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sha-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sha-extensions.html
https://software.intel.com/content/www/us/en/develop/documentation/sgx-developer-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/sgx-developer-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/sgx-developer-guide/top.html
https://01.org/intel-softwareguard-extensions
https://01.org/intel-softwareguard-extensions
https://github.com/intel/intel-sgx-ssl
https://github.com/intel/intel-sgx-ssl
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions/supporting-sgx-on-multi-socket-platforms.html
https://www.kernel.org/
https://www.kernel.org/
https://www.forbes.com/sites/marymeehan/2019/11/26/data-privacy-will-be-the-most-important-issue-in-the-next-decade/
https://www.forbes.com/sites/marymeehan/2019/11/26/data-privacy-will-be-the-most-important-issue-in-the-next-decade/
https://www.forbes.com/sites/marymeehan/2019/11/26/data-privacy-will-be-the-most-important-issue-in-the-next-decade/
https://www.forbes.com/sites/marymeehan/2019/11/26/data-privacy-will-be-the-most-important-issue-in-the-next-decade/
https://www.memopal.com/


[62] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber,
and E. Weippl. Dark clouds on the horizon: Using cloud
storage as attack vector and online slack space. In Proc.
of USENIX Security, 2011.

[63] M. Naor and O. Reingold. Number-theoretic construc-
tions of efficient pseudo-random functions. Journal of
the ACM, 51(2):231–262, 2004.

[64] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and
C. Fetzer. Varys: Protecting SGX enclaves from prac-
tical side-channel attacks. In Proc. of USENIX ATC,
2018.

[65] OpenSSL. Cryptography and SSL/TLS toolkit. https:
//www.openssl.org/.

[66] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein.
Eleos: Exitless OS services for SGX enclaves. In Proc.
of ACM EuroSys, 2017.

[67] S. Pinto and N. Santos. Demystifying ARM TrustZone:
A comprehensive survey. ACM Computing Surveys,
51(6):1–36, 2019.

[68] R. A. Popa, C. M. Redfield, N. Zeldovich, and H. Bal-
akrishnan. CryptDB: Protecting confidentiality with
encrypted query processing. In Proc. of SOSP, 2011.

[69] C. Qin, J. Li, and P. P. C. Lee. The design and imple-
mentation of a rekeying-aware encrypted deduplication
storage system. ACM Trans. on Storage, 13(1):1–30,
2017.

[70] Y. Ren, J. Li, Z. Yang, P. P. C. Lee, and X. Zhang. Ac-
celerating encrypted deduplication via SGX. In Proc. of
USENIX ATC, 2021.

[71] Seagate Technology LLC. Data Age 2025. https:

//www.seagate.com/files/www-content/our-
story/trends/files/idc-seagate-dataage-

whitepaper.pdf.

[72] P. Shah and W. So. Lamassu: Storage-efficient host-side
encryption. In Proc. of USENIX ATC, 2015.

[73] K. Srinivasan, T. Bisson, G. R. Goodson, and K. Voru-
ganti. iDedup: Latency-aware, inline data deduplication
for primary storage. In Proc. of USENIX FAST, 2012.

[74] M. W. Storer, K. Greenan, D. D. Long, and E. L. Miller.
Secure data deduplication. In Proc. of ACM StorageSS,
2008.

[75] Z. Sun, G. Kuenning, S. Mandal, P. Shilane, V. Tarasov,
N. Xiao, et al. A long-term user-centric analysis of
deduplication patterns. In Proc. of IEEE MSST, 2016.

[76] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx. Foreshadow: Extracting the
keys to the Intel SGX kingdom with transient out-of-
order execution. In Proc. of USENIX Security, 2018.

[77] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone,
M. Chamness, and W. Hsu. Characteristics of backup
workloads in production systems. In Proc. of USENIX
FAST, 2012.

[78] O. Weisse, V. Bertacco, and T. Austin. Regaining lost
cycles with HotCalls: A fast interface for SGX secure
enclaves. In Proc. of ACM ISCA, 2017.

[79] Z. Wilcox-O’Hearn and B. Warner. Tahoe: The least-
authority filesystem. In Proc. of ACM StorageSS, 2008.

[80] W. Xia, Y. Zhou, H. Jiang, D. Feng, Y. Hua, Y. Hu,
Q. Liu, and Y. Zhang. FastCDC: A fast and efficient
content-defined chunking approach for data deduplica-
tion. In Proc. of USENIX ATC, 2016.

[81] Z. Yang, J. Li, and P. P. C. Lee. Secure and lightweight
deduplicated storage via shielded deduplication-before-
encryption. Technical report, The Chinese University
of Hong Kong, 2022. http://www.cse.cuhk.edu.hk/
~pclee/www/pubs/tech debe.pdf.

[82] W. You and B. Chen. Proofs of ownership on encrypted
cloud data via Intel SGX. In Proc. of ACNS, 2020.

[83] W. Zhang, D. Agun, T. Yang, R. Wolski, and H. Tang.
VM-centric snapshot deduplication for cloud data
backup. In Proc. of IEEE MSST, 2015.

[84] W. Zhang, H. Tang, H. Jiang, T. Yang, X. Li, and Y. Zeng.
Multi-level selective deduplication for VM snapshots in
cloud storage. In Proc. of IEEE CLOUD, 2012.

[85] B. Zhu, K. Li, and R. H. Patterson. Avoiding the disk
bottleneck in the data domain deduplication file system.
In Proc. of USENIX FAST, 2008.

[86] X. Zou, J. Yuan, P. Shilane, W. Xia, H. Zhang, and
X. Wang. The dilemma between deduplication and
locality: Can both be achieved? In Proc. of USENIX
FAST, 2021.

A Artifact Appendix
Abstract
Our artifact consists of the prototypes of DEBE and all base-
line approaches, a trace analysis tool for frequency leakage
measurement, and the scripts to run all our experiments in §6.
The DEBE prototype is a shielded DbE-based deduplicated
storage system that supports secure deduplication via Intel
SGX. It supports upload/download operations to allow multi-
ple clients to securely outsource their data storage to the cloud.
It applies frequency-based deduplication and implements the
designs described in §4.

Scope
Our artifact can be used to validate our main claim that DEBE
outperforms conventional DaE approaches in performance,
storage efficiency, and security. Specifically, our artifact can
be used to validate the results shown in the figures and tables

USENIX Association 2022 USENIX Annual Technical Conference    51

https://www.openssl.org/
https://www.openssl.org/
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
http://www.cse.cuhk.edu.hk/~pclee/www/pubs/tech_debe.pdf
http://www.cse.cuhk.edu.hk/~pclee/www/pubs/tech_debe.pdf


in §6 to support our main claim. In addition, our artifact can
be used to run the workloads independent of our evaluation
in §6.

Contents
The artifact comprises the following sub-directories:
• ./Prototype, which includes the implementation of the
DEBE prototype.

• ./Baseline, which includes the implementation of all
baseline approaches (e.g., DupLESS, TED, CE, and Plain)
used in Exp#1 and Exp#6.

• ./Sim, which includes a trace analysis tool to measure
frequency leakage of CE, TED, and DEBE (see Exp#9 in
our technical report [81]).
Also, each sub-directory has a separate README file to

introduce the build instructions and usage.

Hosting
Our artifact is available on GitHub. Users can obtain the arti-
fact from the repository https://github.com/yzr95924/
DEBE. The version we provided for the artifact evalua-
tion is marked with the atc22ae tag. We encourage the
users to use the latest version of the repository, since it
may include bug fixes. We also release the traces used in
§6. The README file (https://github.com/yzr95924/
DEBE/blob/master/README.md) describes the detailed in-
structions to collect the traces.

Requirements
We developed and evaluated our artifact on a local cluster
of 11 machines connected with 10 GbE. Each machine has
a quad-core 3.4 GHz Intel Core i5-7500 CPU and 32 GiB
RAM running Ubuntu 16.04. We implement DEBE based on
Intel SGX SDK Linux 2.7 [42], OpenSSL 1.1.1 [65], and
Intel SGX SSL 1.1.1 [43]. The DEBE prototype is writ-
ten in C++ and compiled by Clang 3.8.0. To validate the
basic upload/download operations of DEBE, users need to
prepare at least two machines, one of which needs to sup-
port Intel SGX to run as the cloud. We recommend users to
check the SGX-supported device in https://github.com/
ayeks/SGX-hardware.

Note that if the user’s OS version is higher than Ubuntu
16.04 LTS (e.g., Ubuntu 20.04 LTS), it might not be able to
install the packages with the same versions as in our paper.
Nevertheless, we expect that the impact of using the packages
with newer versions would be limited and our prototype can
still run correctly.

Workflow
To reproduce the experiments in §6, users can refer to
./Prototype/ae instruction.md for the detailed instruc-
tions.

52    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/yzr95924/DEBE
https://github.com/yzr95924/DEBE
https://github.com/yzr95924/DEBE/blob/master/README.md
https://github.com/yzr95924/DEBE/blob/master/README.md
https://github.com/ayeks/SGX-hardware
https://github.com/ayeks/SGX-hardware


RunD: A Lightweight Secure Container Runtime for High-density Deployment
and High-concurrency Startup in Serverless Computing

1,2Zijun Li, 1Jiagan Cheng, 1Quan Chen, 2Eryu Guan, 2Zizheng Bian, 2Yi Tao, 2Bin Zha,
2Qiang Wang, 2Weidong Han, 1Minyi Guo

1Department of Computer Science and Engineering, Shanghai Jiao Tong University
2Alibaba Group

Abstract
The secure container that hosts a single container in a mi-
cro virtual machine (VM) is now used in serverless comput-
ing, as the containers are isolated through the microVMs.
There are high demands on the high-density container de-
ployment and high-concurrency container startup to improve
both the resource utilization and user experience, as user
functions are fine-grained in serverless platforms. Our in-
vestigation shows that the entire software stacks, containing
the cgroups in the host operating system, the guest operating
system, and the container rootfs for the function workload,
together result in low deployment density and slow startup
performance at high-concurrency. We propose and imple-
ment a lightweight secure container runtime, named RunD,
to resolve the above problems through a holistic guest-to-
host solution. With RunD, over 200 secure containers can
be started in a second, and over 2,500 secure containers can
be deployed on a node with 384GB of memory. RunD is
adopted as Alibaba serverless container runtime to support
high-density deployment and high-concurrency startup.

1 Introduction

With serverless computing (Function-as-a-Service), ten-
ants submit functions directly to the Cloud without rent-
ing virtual machines, and the cloud provider uses contain-
ers to host invocations on-demand [26, 31, 35, 48, 48, 56].
Most cloud providers publish the serverless computing ser-
vices with the pay-for-use pricing model, such as Amazon
Lambda [4], Google Cloud Function [11], Microsoft Azure
Functions [13], and Alibaba Function Compute [2].

When hosting function invocations, traditional contain-
ers (e.g., Docker, LXC) only provide process level isola-
tion [22, 38], as they are implemented based on Namespace
and Cgroup. They cannot prevent privilege escalation, in-
formation disclosure side channels, and covert channel com-
munication [20]. To this end, secure containers that achieve
the same isolation with the traditional virtual machines are

Guest Linux Kernel

MicroVM (Pod)

Host Linux Kernel

Container

Container

agent

(a) Secure Container model

User Code

Guest OS

Rootfs

Cgroups
CPU scheduler

MicroVM

Host Linux Kernel

User Privacy

Concurrency 
bottlenecks

Density 
bottlenecks

Container Runtime

(b) Secure Container stacks

Figure 1: The state-of-the-art secure container model, and
several bottlenecks in the architecture stacks.

often preferred. MicroVM is for isolation, and the container
is for abstraction [30]. Secure container often creates a nor-
mal container within the lightweight microVM as shown in
Figure 1(a). In such way users can build serverless services
based on exsiting container infrastructure and ecosystem. It
ensures compatibility with the container runtime in the Mi-
croVM. Kata Containers [19] and FireCracker [20] provide
practical experience in implementing such secure containers.

Figure 1(b) shows the architecture hierarchy of a secure
container. In general, the guest operating system (GuestOS)
in the microVM and resource scheduling on the host are of-
floaded to the cloud provider. The rootfs is a filesystem and
acts as the execution environment of user code. It is cre-
ated by the host and passed to the container runtime in the
microVM. On the host side, cgroups are used to allocate re-
sources to secure containers, and the CPU scheduler man-
ages the resource allocation. The complex hierarchy of se-
cure containers brings extra overhead.

The lightweight and short-term features of functions make
high-density container deployment and high-concurrency
container startup essential for serverless computing. For in-
stance, 47% of Lambdas run with the minimum memory
specification of 128MB [5] in AWS, about 90% of the ap-
plications never consume more than 400MB in Microsoft
Azure [49]. Since a physical node often has large memory
space (e.g., 384GB), it should be able to host many func-

USENIX Association 2022 USENIX Annual Technical Conference    53



tions. Meanwhile, a large number of function invocations
may arrive in a short time. However, the overhead of secure
containers significantly reduces the deployment density of
functions, and the concurrency of starting containers.

Our investigation identifies two key factors in secure con-
tainers that result in low concurrent startup. First of all,
rootfs either results in unacceptable long latency for writable
device provisioning or high CPU overhead under consider-
able I/O stress, when many containers are started concur-
rently. Secondly, concurrently starting multiple containers
brings a large number of cgroups operations on the host side.
However, the cgroup-related operations are serialized in the
operating systems. The serialization is due to several mutex
locks introduced in the kernel to handle a complex hierar-
chy of cgroup subsystems. The serial operations slow down
cgroups creation for microVMs.

Meanwhile, secure containers amplify the resource over-
head of each function, multiply host-side resource consump-
tion with more microVMs, and lower the deployment den-
sity. Firstly, for microVMs, the standard Linux kernel is
heavyweight for a small-sized memory specification. Sec-
ondly, the mainstream block-based solution for container
rootfs in microVM generates the same page cache in both
host and guest, resulting in a duplicated memory overhead.
Lastly, CFS (Completely Fair Scheduler) in the host operat-
ing system traverses all the cgroups (containers) for balanc-
ing the processes, resulting in a significant scheduling over-
head at high-density deployment.

We propose and implement a lightweight secure con-
tainer runtime, named RunD, to resolve the above problems
through a holistic guest-to-host solution. According to our
evaluation, RunD boots to application code in 88ms, and can
launch 200 secure containers per second on a node. On a
node with 384GB memory, over 2,500 secure containers can
be deployed with RunD.

The main contributions of this paper are as follows.

1. Bottlenecks identification in high-density deploy-
ment and high-concurrency startup of secure con-
tainers in serverless. We analyze the shortcomings and
bottlenecks through a holistic guest-to-host solution, in
terms of container rootfs storage, the microVM memory
footprint, and the overhead of cgroups.

2. A guest-to-host solution to secure containers for
high-density and high-concurrency targets in server-
less. The practice including: 1) a better container rootfs
implementation based on read/write splitting for server-
less; 2) the method to condense the guest kernel and im-
prove kernel sharing by a pre-patched kernel image; 3)
the host-side lightweight cgroup design and the rename-
based cgroup pool management.

3. A lightweight serverless runtime RunD for server-
less architecture. We design and open-source RunD
based on Kata-runtime, and it shows much higher de-

Container

Container

Container

Container

Fragmentation

VM pod of Function A

VM pod of Function B

(a) Multi-container-per-VM

Container

Container

Function A Pool

Function B Pool

Multiplied 
Footprint

(b) Single-container-per-VM

Figure 2: Two practices of the secure container model.

ployment density and startup concurrency compared
with the state-of-the-arts.

RunD is adopted as Alibaba serverless container runtime
serving more than 1 million functions and almost 4 billion in-
vocations daily. The online statistics demonstrate that RunD
enables the maximum deployment density of over 2,000 con-
tainers per node and supports booting at most 200 containers
concurrently with a quick end-to-end response.

2 Background

In this section, we will discuss the current secure container
design, and concerning problems motivating this work.

2.1 Secure Container Models
Based on different levels of security/isolation requirements,
there are generally two categories of secure containers in the
production environments.

Figure 2(a) shows the multi-container-per-VM secure con-
tainer model that only isolates functions. In the model, a vir-
tual machine (VM) hosts the containers for the invocations of
the same function. The containers in the same VM share the
guest operating system of the VM. In this case, the invoca-
tions to different functions are isolated, but the invocations
to the same function are not isolated. Since the number of
required containers for each function varies, this model re-
sults in memory fragmentations [34]. Though the memory
fragmentations can be reclaimed at runtime, it may signif-
icantly affect the function performance, and even crash the
VM when the memory hot-unplug fails.

Figure 2(b) shows the single-container-per-VM secure
container model that isolates each function invocation. Cur-
rent serverless computing providers [1, 20] mainly use this
secure container model. In this model, each invocation is
served with a container in a microVM. This model does not
introduce memory fragmentations, but the microVMs them-
selves show heavy memory overhead. It is obvious that each
microVM needs to run its exclusive guest operating system,
multiplying the memory footprints.

54    2022 USENIX Annual Technical Conference USENIX Association



The secure container depends on the security model of
hardware virtualization and VMM, explicitly treating the
guest kernel as untrusted through syscall inspections. With
the prerequisite of isolation and security, this work targets
the single-container-per-VM secure container model.

2.2 Problems with Secure Containers
In production serverless platforms, achieving high container
startup concurrency, and high container deployment den-
sity are the two key requirements [20]. With the single-
container-per-VM secure container model, there are prob-
lems in achieving the two purposes.

Requirement on high-concurrency container startup.
In serverless platforms, each function invocation is short, and
a large number of function invocations may arrive in a short
time. For example, in Alibaba serverless platform, more
than 200 container-launch requests arrive nearly simultane-
ously on a node. The latency until all containers have entered
main() can swell super-proportionally due to resource con-
tention among the simultaneously launching VMs. Mean-
while, emerging internet services often show a diurnal load
pattern and have bursty loads [18]. A large number of con-
tainers are required to be created when the load bursts. Some
techniques, such as prewarming containers [31, 42, 49], are
able to alleviate container cold startups.

However, bursty loads are inevitable can easily exhaust the
limited prewarmed containers. The ability to startup contain-
ers at high-concurrency is crucial for serverless platforms.

Requirement on high-density container deployment.
The small container specification in a serverless computing
platform brings the requirement to deploy containers densely
on a node. For instance, 47% of lambda functions run with
the minimum memory specification of 128MB in AWS [5].
The actual memory usage of a container may also be smaller
than its specifications. As Azure reports [49], about 90% of
the applications never consume more than 400MB of mem-
ory. A node with 256GB of memory can host 8×256 = 2048
containers if there is no other overhead. In Alibaba serverless
platform, over 2,500 secure containers that 128MB-sized can
be deployed on a node with 384GB memory.

Without proactive customizations, secure containers in-
cur extra memory overhead, reducing deployment density in
serverless computing. Increasing deployment density greatly
improves resource utilization and multi-tenant serving effi-
ciency with the same infrastructure.

3 Problem Analysis and Insights

In this section, we analyze the problems of achieving high-
concurrency startup and high-density deployment with se-
cure containers. We use Kata container [19] as the repre-
sentative secure container to perform the following studies.

Containerd

Kata-runtime

VMM

VMM

Container 
environment

rootfs

Kata-runtime Guest OS 

MicroVM

cgroups

cgroups

①

②

③

rootfs
Workload

Guest OS 

MicroVM
rootfs

Workload

Figure 3: The steps of starting up multiple Kata containers
concurrently. The concurrency bottleneck results from cre-
ating rootfs (step ¬ in red block) and creating cgroups (step
® in red flowline). The density bottlenecks result from the
memory footprint of the microVM (step  in blue block) and
the scheduling of massive cgroups (step ® in blue block).

Figure 3 shows the steps of starting Kata containers. First,
containerd concurrently creates the container runtime Kata-
runtime and prepares runc-container rootfs. Second, the hy-
pervisor loads the GuestOS and the prepared rootfs to launch
a runc-container in the microVM. Third, the function work-
load is downloaded into the container and may start to run.

Comparing with starting traditional containers [53], we
have two observations when starting up secure containers.

• When starting 100 or more Kata containers concur-
rently, there is a distinct performance degradation of
creating rootfs and cgroups, during the Kata-runtime
preparation. The degradation results in the low concur-
rency of starting containers.

• When deploying more than 1,000 Kata containers with
128MB memory specification on a single node with
384GB memory and 104 cores, the microVMs’ mem-
ory footprint (due to the guest kernel and rootfs) already
occupies most of the memory space. Meanwhile, the
containers’ I/O performance is also seriously degraded.

Figure 3 also shows three bottlenecks we found that result
in the above two observations. In general, the inefficiency of
creating rootfs and cgroups results in low container startup
concurrency. The high memory footprint and scheduling
overhead result in low container deployment density. We an-
alyze the bottlenecks in the following subsections.

3.1 Bottleneck of Container Rootfs Storage
In general, rootfs can be exposed to the container runtimes
in the microVMs through two interfaces to construct the im-
age layers: filesystem sharing (e.g. 9pfs [45], virtio-fs [16])
and block device (e.g. virtio-blk [46]). Filesystem sharing
enables microVMs to access a directory tree on the host di-
rectly. When the block device is used, the host creates block
devices through the device-mapper [8] and passes them to
the microVMs, so that containers can access data at the block
level, rather than the file level.

USENIX Association 2022 USENIX Annual Technical Conference    55



Figure 4: The IOPS/bandwidth performance of rand/seq di-
rectIO/BufferIO read/write when using different rootfs map-
ping in Kata-runtime (dev-mapper represents that virtio-blk
is used, ext4+overlayfs represent the baseline of default
runc-container rootfs implementation).

Figure 4 shows the IOPS (IO-Per-Second) and IO band-
width of the random/sequential read and random/sequential
write, when Kata uses 9pfs, virtio-fs, and virtio-blk, respec-
tively. We also measure the metrics of using ext4 file system
and overlayfs file access interface on the host node, to denote
the case of the traditional containers [50, 51]. As observed,
microVMs should not use 9pfs as rootfs storage interface due
to the poor performance.

With the default configuration (cache enabled), virtio-blk
performs best at random/sequential writing. However, the
device-mapper who prepares the block device in the host
cannot meet the high-concurrency requirement [59]. Ac-
cording to our measurement, it takes as high as 10 seconds
to prepare a rootfs when 200 containers are started concur-
rently, while it only takes about 30 milliseconds for a single
container startup. In this case, the operation of preparing
rootfs timeouts, resulting in the container breakdown. More-
over, virtio-blk inherently does not support the page cache
sharing between host and guest operating systems. When
virtio-blk backend reads rootfs files into the host page cache,
the mapped content reproduces the same page cache in the
guest. The issue of duplicated page cache brings a high
memory footprint overhead.

Virtio-fs resolves the problem of duplicating page cache.
When DAX is enabled in virtio-fs, it allows bypassing guest
page cache and mapping host page cache directly in guest
address space [16]. However, virtio-fs results in poor ran-
dom/sequential write performance (Figure 4). In addition,
each container has to employ a client daemon to support
virtio-fs I/O operations, leading to excessive CPU usage
when enormous containers colocate. Things get worse for

128 256 512 1024 2048 4096
0

50
100
150
200
250
300

M
em

or
y 

ov
er

he
ad

 (M
B)

(a) Impact of specification (solo)

1 10 100 500 1k 1.5k

kata-qemu
kata-FireCracker

(b) Impact of density (128MB)

Figure 5: The memory overhead of a secure container.

either large I/O stress under high-concurrency or massive op-
erations of metadata processing.

The above investigation shows that either virtio-fs or
virtio-blk can compromise either deployment density or
startup concurrency of secure containers. An exploratory
alternative would be: using virtio-fs to support the read-
only part of rootfs for sharing page cache between host and
guests, and using virtio-blk to support the writeable part of
rootfs for high I/O performance. A solution is also required
to further reduce the duplicated writable part for rootfs.

3.2 High Memory Overhead Per Container
Except for the memory used by the user function, the mem-
ory footprint of other components in the secure container is
the memory overhead. The 5MB memory overhead reported
in FireCracker [52] is the overhead of the FireCracker VMM
itself. In the microVM of a secure container, the guest oper-
ating system, the struct page for memory management, and
other components (e.g., baseOS, shimv2, agent) also con-
sume additional memory space [52].

Figure 5 shows the per-container memory overhead of se-
cure containers with different memory specifications and at
different deployment densities. In the figure, Kata-qemu is
the secure container that uses qemu as the hypervisor, and
Kata-FireCracker uses FireCracker as the hypervisor. As ob-
served in Figure 5(a), the memory overheads of a 128MB
container are 94MB and 168MB with Kata-FireCracker and
Kata-qemu, respectively. The overhead increases with the
memory specification of the container.

The average memory footprint of a single microVM can
be reduced by sharing the text/rodata segment among multi-
ple microVMs. Mainstream MicroVMs achieve it by map-
ping the kernel file to the guest memory directly using mmap.
As shown in Figure 5(b), the per-microVM memory over-
head of kata-qemu and kata-FireCracker reduce to 145MB
and 71MB when 1,000 VMs are deployed on a node. How-
ever, the overhead is still too large for a serverless container
with only 128MB memory specification.

MicroVM template (e.g., Kata template) [17, 29, 52] is a
popular method to further reduce the per-microVM mem-
ory overhead, while preserving microVM consistency. The

56    2022 USENIX Annual Technical Conference USENIX Association



template serves as a primary image for a microVM copy
that includes disks, devices, and settings. New microVMs
are created by on-demand forking from a pre-created tem-
plate microVM, and text/rodata segments are also shared
among multiple microVMs [54] in read-only mode. The un-
accessed kernel files of the template will not consume the
physical memory, reducing the memory overhead.

However, the template technique is not as efficient as we
thought, due to the self-modifying codes in the operating
system kernel [24, 25]. The self-modifying code technique
alters the instructions on-demand as it runs, and the Linux
kernel relies heavily on self-modification code to improve
performance on boot and during runtime. We start a clean
microVM with CentOS 4.19 guest kernel from a template to
investigate the impact of self-modifying codes. The investi-
gation shows that 10,012KB of the code and the read-only
data is accessed in the memory, but 7,928KB of them were
modified during boot. This case in point reveals that the self-
modifying codes degrade the efficiency when using mmap
for less memory consumption of kernel image files.

The code self-modifying reduces the shareable memory
when using microVM template. Reducing the self-modifying
codes in the guest kernel is worth investigating if they are not
necessary for the serverless computing scenario.

3.3 High Host-side Overhead of Cgroups

Cgroup is designed for resource control and abstraction of
processes. In serverless computing, the frequency of func-
tion invocations shows high variation. In this case, the cor-
responding secure containers are frequently created and re-
cycled. For instance, in our serverless platform, at most 200
containers would be created and recycled on a physical node
concurrently in a second. The frequent creating and recy-
cling challenge the cgroup mechanism on the host.

We measure the performance of cgroup operations when
creating 2,000 containers concurrently. In the experiment,
we use different numbers of threads to perform cgroup op-
erations. Figure 6(a) shows the cumulative distribution of
container creating latencies. Counter-intuitively, the latency
increases when more threads are used, even if each thread
needs to create fewer containers.

The reason behind the above fact is that the Linux ker-
nel introduces several global locks (e.g., cgroup_mutex,
css_set_lock, freezer_mutex) to serialize cgroup operations.
The global locks are used to coordinate more than 10 re-
source subsystems (aka. the cgroup subsys) involved in
cgroup. Figure 6(b) shows the flame graph of creating 2,000
cgroups using 10 threads concurrently. In the figure, the red
parts show the case that “mutex locks” are active. When the
cgroup mutex uses the optimistic spinning by default, the
spinner cgroups experience the optimistic spinning if they
fail to acquire the lock. It will lead to heavy CPU consump-
tion and belated exiting of the critical section in the multi-

1.0 1.1 1.2 1.3
The latency of each client(s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

10 threads
50 threads

100 threads
200 threads

(a) Latency distribution

Timeline

Function stacks

(b) The flame graph of Perf

Figure 6: The performance of cgroup operations when cre-
ating 2,000 containers concurrently. Due to the mutex lock,
the cgroup operations have higher latencies as the concur-
rency increases.

threaded scenarios. Therefore, the locks serialize the opera-
tions of cgroups and drag down the latencies.

Besides, a common observation is that there are often
more than 10,000 cgroups with thousands of containers on
a compute node. The PELT (Per-Entity Load Tracking) for
load balancing in CFS will iterate over all cgroups and pro-
cesses when scheduling these containers. In this scenario,
the frequent context switching and hotspot functions that in-
volve high-precision calculation in the scheduler become a
bottleneck, accounting for 7.6% of the CPU cycles of the
physical node, according to our measurement.

The host-side overhead of cgroups prohibits the high-
density deployment and high-concurrency startup in server-
less computing. Simplifying the cgroup design, and reducing
the critical section introduced by the mutex locks, are funda-
mental solutions to eliminate the high host-side overhead.

4 Methodology of RunD

The above analysis reveals the bottlenecks in the host, the
microVM, and the guest in achieving the high-concurrency
startup and high-density deployment. We propose RunD, a
holistic secure container solution that resolves the problem
of duplicated data across containers, high memory footprint
per VM, and high host-side cgroup overhead.

In this section, we first show a general design overview
of RunD, and then present the design of each component to
resolve the corresponding problem.

4.1 Design Overview

When designing RunD, we have a key implication for server-
less runtime. The negligible host-side overhead in a tradi-
tional VM can cause amplification effects in the FaaS sce-
nario with high-density and high-concurrency, and any triv-
ial optimization can bring significant benefits. Utilizing the

USENIX Association 2022 USENIX Annual Technical Conference    57



overlayfs

guest kernel

MicroVM

Container

agent-rust

virtio-fs virtio-blk

ro rw

mmap

......

cgroup 
pool 

Lightweight cgroup 

Containerd guest kernel

MicroVM

Container

agent-rust

virtio-fs virtio-blk

ro rw

mmap

    MicroVM 
    Template Condensed kernel pre-patched image

RunD RunD

read/write splitting

Figure 7: The lightweight serverless runtime of RunD.
The condensed kernel and pre-patched image land in the
guest domain, while read/write splitting-based rootfs and a
lightweight cgroup pool land in the host domain.

features of read-only data/runtime and non-persistent storage
in serverless, RunD proposes guest-to-host solutions.

Figure 7 shows the RunD design and summarizes our
methodologies. RunD runtime makes a read/write splitting
by providing the read-only layer to virtio-fs, using the built-
in storage file to create a volatile writeable layer to virtio-
blk, and mounting the former and latter as the final container
rootfs using overlayfs. RunD leverages the microVM tem-
plate that integrates the condensed kernel and adopts the pre-
patched image to create a new microVM, further amortizing
the overhead across different microVMs. RunD renames and
attaches a lightweight cgroup from the cgroup pool for man-
agement when a secure container is created.

Based on the above optimizations, a secure container (re-
ferred to as a “sandbox”) is started in the following steps,
when RunD is used as the secure container runtime.

• In the first step, once containerd receives a user invoca-
tion, it forwards the request to RunD runtime.

• Second, RunD prepares the runc-container rootfs for the
virtual machine hypervisor. The rootfs is separated into
read-only layer and writable layer. (Section 4.2).

• Third, the hypervisor uses the microVM template to
create the required sandbox (Section 4.3), and mount
the runc-container rootfs into the sandbox by overlayfs.

• Lastly, a lightweight cgroup is attached to the sandbox
(Section 4.4), to manage the resource allocation for this
sandbox in the host.

4.2 Efficient Container Rootfs Mapping

Section 3.1 examines the challenges in the high-density and
high-concurrency scenario for container rootfs. The cur-
rent secure container fails to discriminate between serverless
platforms and traditional infrastructure-as-a-service environ-
ments. The mainstream solutions are designed for persistent

Storage Image
Template

Overlay Snapshotter

Built-in 
Storage Image 

Virtio-blk device

Virtio-blk driver

Ext4 (rw)

VMM 1

Guest kernel

Guest OS

Virtio-fs device

Virtio-fs (ro)

Virtio-fs driver

Container

rootfs (rw) 

Reflink 
copy

Open-but-unlink

Overlayfs

OS

kernel

VMMs

Figure 8: The read/write splitting of container rootfs. Virtio-
fs is used to handle the read-only layer and virtio-blk is used
to handle the volatile writable layer.

data storage, and it is the key point why container rootfs stor-
age imposes restrictions on our goals.

We investigate the data in a sandbox in the serverless
computing scenario, and find that user-provided code/data
is read-only for the operating system, and the system-
provided runtime files are also read-only for user func-
tions. Meanwhile, the data in the local memory or storage
generated in a sandbox will not be used by subsequent func-
tion invocations, due to the stateless feature of serverless
computing. The temporary and intermediate data generated
during the function execution is not required to be persisted.

Based on the above finding, it is possible to split the rootfs
into a read-only layer and a writable layer, and then handle
them in different ways [32]. The sandboxes can share the
read-only layer on the same node, and the writable layer has
to be prepared separately for each sandbox.

Figure 8 shows the way to split rootfs into a read-only
layer and a volatile writable layer. According to the investi-
gation in Section 3.1, virtio-fs is used to handle the read-only
layer, and virtio-blk is used to handle the volatile writable
layer for better performance. The read-only layer is stored in
the host and can be prepared in negligible time when using
the overlay snapshotter provided by the container runtime.
However, it is challenging to handle the volatile writable
layer efficiently. By default, the host operating system needs
to prepare a logic storage volume for the sandbox. This op-
eration is time-consuming and is one of the most important
reasons that result in the long latency of preparing rootfs.

We propose the volatile block device as the volatile
writable layer, considering the volatile feature of the writable
layer in serverless platforms. The volatile block device will
not persist temporary data from user functions to the disk,
unlike the logic storage volume. A storage image template
is pre-created in the host as the base file. When creating a
volatile block device for a new sandbox, a build-in storage
image is created and linked to the storage image template,
using reflink [60]. reflink enables storage image template to

58    2022 USENIX Annual Technical Conference USENIX Association



share data with build-in storage images in a CoW (Copy-
on-Write) fashion. Then a volatile block device is created
associated with the build-in storage image. Once the hyper-
visor opens the device, the build-in storage image will be
deleted. The volatile block device ensures that user func-
tions can perform writing as usual without persisting data on
the local disk.

We compare our solution with the traditional ones in
which the entire rootfs is created by the device-mapper as a
block device. When 200 sandboxes are started concurrently,
traditional solutions incur 4,500 IOPS and use 100MB/s IO
bandwidth. On the contrary, our solution incurs only 1,500
IOPS and uses 8MB/s IO bandwidth. Better, the time needed
to prepare the rootfs decreases from 207ms to only a negligi-
ble 0.2ms, and the writing performance of our solution is the
same as that of the mainstream transmission.

4.3 Condensed and Pre-patched Guest Kernel
In this subsection, we present two techniques used to reduce
the memory used by each sandbox, so that the deployment
density can be significantly increased.

4.3.1 Reducing the guest kernel size

Following the abstraction premise in current serverless plat-
forms, the guest environment management for serverless
containers is offloaded to the cloud provider. Meanwhile,
RunD depends on the security model of hardware virtual-
ization and VMM, explicitly treating the guest kernel as
untrusted through syscall inspections. Based on this fact,
there is an opportunity to condense the guest kernel for the
lightweight characteristic of serverless functions. Consider-
ing that several features in the guest kernel are redundant and
memory intensive in the serverless context, RunD condenses
these features at compile-time. When customizing the con-
densed guest kernel, the principles behind it are as follows:

- Minimize kernel memory footprint and image size.
- Retain features required in the serverless context.
- Without runtime performance degradation.

Following the above principles, we build the condensed ker-
nel for the guest operating system based on Linux kernel, by
disabling features:

- Do not pre-create loop device (2.2MB Mem reduced).
- Disable acpi and ftrace (2MB and 6MB Mem reduced).
- Disable graphics-related items (2MB Mem reduced).
- Disable i2c and ceph (3MB Mem reduced, and 4MB

reduced of kernel image size).
- Kernel files (560K Mem and 571K image size reduced).
Validating all features at compile-time case by case, RunD

effectively reduces the memory footprint of a CentOS 4.19
Linux kernel by about 16MB and condenses the kernel image
by about 4MB. Based on this condensed guest kernel, we

review several investigations of the self-modifying code and
propose our solution to reduce the memory overhead further.

4.3.2 Alleviating code self-modification

As mentioned before, cloud providers manage and maintain
the underlying hardware and execution runtimes in server-
less context, standing for that all microVMs on the same
node generally use the same guest kernel. In this scenario,
the sandboxes on the same node generate the same patched
kernel code, even if they execute the self-modification patch
logic. This is because the self-modifying code of ker-
nel text segments only occurs at the startup phase, after
which the kernel code area becomes “read-only after ini-
tialization”. In this case, sandboxes experience the same
initialization phase and generate predicable self-modifying
code segments.

Based on the above observation, there is an opportunity to
generate a pre-patch guest kernel image file already patched
with self-modified code segments. The MicroVM template
technique discussed in Section 3.2 may work efficiently
without self-modifying code.

Adapting to this optimization, we also resolve the poten-
tial kernel panic issues when loading the pre-patched ker-
nel image for higher stability. RunD tries to share as many
kernel files as possible across different secure containers.
With a pre-patched microVM template, RunD not only re-
duces the memory footprint of a single container for higher-
density deployment, but also allows to quickly fork multiple
instances [29, 52].

4.4 Lightweight Cgroup and Cgroup Pool

In Section 3.3, we analyze that serialized cgroups operations
in the host become one of the bottlenecks of secure con-
tainers with high-density deployment and high-concurrency
startup. The intuitions are to efficiently handle synchroniza-
tion access on mutex structures and reduce the number of
cgroups with a better design.

Our further investigations reveal the optimization oppor-
tunities in two aspects. Firstly, creating containers involves
multiple cgroup subsystems (e.g. cpu, cpuacct, cpuset, mem-
ory, and blkio). Because the Linux kernel cannot parallelize
these cgroup-related operations, creating these groups for
each sandbox is time-consuming. Secondly, pre-creating
and maintaining cgroups in a pool can effectively reduce
the creation overhead, since afterward only the cgroup
rename is used. The cgroup rename, as a special case,
is a lightweight operation without acquiring any global lock.
Following these two observations, we propose a lightweight
cgroup and the cgroup pool, as shown in Figure 9.

The lightweight cgroup decreases the total number of
cgroups and system calls. Rather than creating the cgroup for
each subsystem, we aggregate necessary cgroup subsystems

USENIX Association 2022 USENIX Annual Technical Conference    59



Lightweight Cgroup

Cgroup subsys

Joint controller

Lightweight Cgroup Pool 

...

Fn create Fn startCgroups creation

...
Idle Busy

...

rename attach

join

user

Figure 9: The lightweight Cgroup aggregates all subsys-
tems, eliminating the time-consuming creation by renaming
from the Cgroup pool.

(aka the cpu, cpuacct, cpuset, memory, and blkio) into one
single dedicated lightweight cgroup. The implementation of
the joint cgroup controller helps RunD reduce the redundant
cgroup operations when a container is started, significantly
decreasing the total number of cgroups and system calls.

The cgroup pool with renaming mechanism eliminates the
time-consuming cgroup creation and initialization. RunD
pre-creates corresponding lightweight cgroups and main-
tains them in a cgroup pool based on the pre-defined node
capacity. These cgroups are marked idle when initialized,
and are protected in a linked list. For each created container,
RunD simply allocates an idle cgroup, updates the state to
busy, performs the cgroup rename operation, and then at-
taches the container to this renamed cgroup when a container
is started. If a container triggers recycling, RunD will take
the cgroup back to the pool, kill the corresponding instance
process, and then update the returned cgroup state to idle for
subsequent allocating and renaming.

Adopting the above optimizations in kernel mode, we re-
play the evaluation in Section 3.3. The cgroups creation only
consumes 0.09s (1 thread), 0.1s (50 threads), and 0.14s (200
threads), respectively. Compared with the default mecha-
nism, the lightweight cgroup and the rename-based cgroup
pool reduce 94% of the cgroups creation time.

5 Evaluation

In this section, we evaluate the performance of RunD in sup-
porting high-concurrency startup and high-density deploy-
ment of secure containers, and introduce the performance of
RunD in production usage.

5.1 Evaluation Setup

We have implemented and open-sourced RunD with Rust,
a more memory-efficient and thread-safe programming
language. RunD runtime involves four main modules:
Containerd-shim (21k LOC), Device (4.4k LOC), Hypervi-
sor (5.6k LOC), and Lightweight-cgroup (20k LOC).

Table 1: Experiment setup in our evaluation.
Configuration

Hardware
CPU: 104 vCPUs (Intel Xeon Platinum 8269CY)

Memory: 384GB, two SSD drives: 100GB, 500GB
Software OS: CentOS7, kernel: Linux kernel 4.19.91

Container

kata-qemu containerd 1.3.10, kata 1.12.1
kata-FC containerd 1.5.8, kata 2.2.3
kata-template containerd 1.3.10, kata 1.12.1
RunD containerd 1.3.10

Baselines: we compare RunD with the state-of-the-
art secure container, Kata Containers [19]. Specifically,
we use three popular configurations of Kata containers:
Kata-qemu, Kata-template, and Kata-FC. Kata-qemu uses
QEMU [15, 23] as the microVM hypervisor, Kata-template
uses QEMU while integrating container template, Kata-FC
uses lightweight FireCracker [20] as the microVM hypervi-
sor. Kata-qemu and kata-template use an old version of Kata
Containers, as the new version has some bugs that result in
poor performance. Table 1 shows the detailed setups.

Testbed: we run the experiments on a node with 104 vir-
tual cores, 384GB memory, and two SSD drives of 100GB
and 500GB. Such specification is widely-used in production
clouds. The 100GB drive is used as the root filesystem of the
host operating system, and the 500GB drive is used by the
secure containers. We use Alibaba Cloud Linux 2 for RunD
and Alpine Linux [3] for others, as the guest operating sys-
tems in the microVM for a low memory footprint.

Measurement: in the CRI specification [6], a pod sand-
box refers to a microVM with a lightweight pause con-
tainer [12]. In all the tests, we only create the pod sand-
boxes without other containers inside, through the crictl
command. In the following evaluations, the memory speci-
fication of a container denotes the size of memory that can
be used by itself. The actual memory usage of a container is
collected using the smem command.

As RunD is proposed to maximize the supported container
startup concurrency and deployment density, in the experi-
ment, we start empty secure containers without user codes
or data considering that it is a common practice in FaaS to
start empty containers concurrently for prewarming. The in-
production results show the performance of RunD for actual
workloads with all the steps involved.

5.2 Concurrent Startup Measurement
In this experiment, we focus on three critical metrics related
to user experience: (1) the time needed to start a large num-
ber of sandboxes concurrently, (2) the startup latency distri-
bution of the sandboxes, and (3) the CPU overhead on the
host. The first metric reveals the throughput of starting sand-
boxes, and the second metric reveals the experience of every
user.

As for the first metric, Figure 10(a) shows the time needed
to start a large number of sandboxes concurrently. In the fig-

60    2022 USENIX Annual Technical Conference USENIX Association



(a) End-to-end startup latency with different concurrency

0 5 10 15 20
Startup latency (s)

0.00

0.25

0.50

0.75

1.00

CD
F

Kata-qemu
Kata-template

Kata-FC
RunD

(b) Latency distribution

Kata-
qemu

Kata-
template

Kata-
FC

RunD0.0

0.5

1.0

1.5

2.0

2.5

3.0

To
ta

l C
PU

 ti
m

e 
(s

) 10-concurrency
50-concurrency
100-concurrency
200-concurrency
400-concurrency

(c) CPU time

Figure 10: The startup metrics with different runtime and concurrency: (a) The end-to-end latency of concurrent startups. The
right figure is an enlargement of the left one (y ∈ [0,10]). (b) The CDF of startup latencies from a 200-way concurrent launch.
(c) The CPU usage of concurrent startups.

ure, the x-axis shows the number of sandboxes to be started
concurrently, the y-axis shows the overall time needed to
startup all the sandboxes.

As shown in the figure, RunD uses the shortest time to
start a large number of sandboxes for all concurrency levels.
When 200 containers are created concurrently (we already
observe such high-concurrency in Alibaba serverless plat-
form), Kata-FC, kata-qemu, kata-template, and RunD needs
47.6s, 6.85s and 2.98s and 1s to create them. Kata-FC re-
quires a much longer time to startup the sandboxes when the
concurrency is high. This is because Kata-FC uses virtio-
blk to create rootfs, and the performance is poor at high-
concurrency, as we measured in Section 3. There is no such
bottleneck in Kata-template and Kata-qemu. Kata-template
simply uses template to reduce the overhead of guest kernel
and rootfs loading, but the inefficient rootfs mapping, code
self-modification and high host-side overhead of the cgroup
operations still exists. As a result, it performs worse than
RunD at high startup concurrency. The overall optimizations
suggest that RunD provides the performance improvement of
about 40% over its nearest baseline, Kata-template, at high-
concurrency (e.g., 400-way) startup.

As for the second metric, Figure 10(b) shows the latency
distribution of starting each sandbox, when 200 sandboxes
are started concurrently. RunD and Kata-template are able
to start sandboxes in a stable short time, but the latencies of
starting sandboxes with others are out of expected. Users can
have identical good experiences with RunD.

As for the CPU overhead, Figure 10(c) shows the CPU
time needed on the host to startup sandboxes. When the
concurrency is high, RunD greatly reduces the CPU over-
head. For instance, when 200 sandboxes are started concur-
rently, RunD reduces 89.3%, 74.5% and 62.1% CPU over-
head compared with Kata-qemu, Kata-template, and Kata-
FC, respectively. In addition, the CPU overhead of RunD
only increases slightly, when the concurrency increases. This
is due to the read/write split policy and the reduction of
compute-intensive operations in cgroups. Therefore, RunD

128MB 256MB 512MB 1024MB 2048MB 4096MB0

50

100

150

200

250

M
em

or
y 

ov
er

he
ad

 (M
B) Kata-qemu

Kata-template
Kata-FC
RunD

Figure 11: The memory overhead of Kata-qemu, Kata-
template, Kata-FC, and RunD (100 sandboxes are deployed).

is scalable in starting more sandboxes concurrently.
In summary, RunD is able to start a single sandbox in

88ms and launch 200 sandboxes simultaneously within 1s,
with minor latency fluctuation and CPU overhead.

5.3 Deployment Density
In this experiment, we evaluate the effectiveness of RunD in
increasing the sandbox deployment density. In general, the
memory used by each container determines the deployment
density, while the CPU time needed by each function invo-
cation is minor in the serverless platform. Figure 11 shows
the memory overhead when 100 sandboxes are deployed on
the experimental node. In the figure, the x-axis shows the
memory specification of each sandbox.

As observed, RunD has the least memory overhead among
four runtimes, and does not increase with the memory spec-
ification. The memory overhead is less than 20MB per sand-
box with RunD. Compared to kata-qemu, kata-template and
kata-FC, the overhead of RunD is reduced by 54.9%, 27.2%,
and 18.9%, respectively, even when the memory specifica-
tion is 128MB. The memory overhead does not increase, be-
cause the microVM template technique uses the on-demand
memory loading for the containers. Therefore, the page ta-
ble required for memory management is determined by the
actually used memory space. On the contrary, the memory
overheads introduced by Kata-qemu and Kata-FC increase

USENIX Association 2022 USENIX Annual Technical Conference    61



1 10 100 500 1000 20000

50

100

150

200

M
em

or
y 

ov
er

he
ad

 (M
B)

kata-qemu kata-template kata-FC RunD

Figure 12: The memory overhead and the amortization by
multiple secure containers. The missing point around 2,000
indicates the over-subscription for physical memory space.

100-density 200-density 500-density 1000-density

0.1

1

10

100

St
ar

tu
p 

la
te

nc
y 

(s
)

kata-qemu(10c)
Delta(200c)

kata-template(10c)
Delta(200c)

kata-FC(10c)
Delta(200c)

RunD(10c)
Delta(200c)

Figure 13: The end-to-end startup latency at different de-
ployment densities. (10c/200c means a 10/200-way concur-
rent startup, and the Delta means the overhead increment
compared with a 10-way concurrent statrup).

with larger memory specifications, as the page table is built
for all available memory. In addition, the pre-patched kernel
image in RunD further reduces memory overhead.

Figure 12 shows the average memory overhead of the
sandboxes when different numbers of sandboxes are de-
ployed on a node. The x-axis shows the deployment den-
sity. As observed, the average memory overhead reduces
with the deployment density, as the sandboxes share the
mapped code/data segments. RunD reduces the memory
overhead by 87.7%, 82.4%, and 75.1% when 1,000 sand-
boxes are deployed, respectively, compared with kata-qemu,
kata-template, and kata-FC.

RunD supports to deploy over 2,500 sandboxes of 128MB
memory specification on the node with 384GB memory.

5.4 Impact of Deployment Density on Startup
Latency and Concurrency

When some sandboxes are already deployed on a node, the
performance of starting sandboxes concurrently is affected.
Figure 13 shows the time needed to boot 10 and 200 sand-
boxes, when some sandboxes are already deployed on the
node. The x-axis shows the number of already deployed
sandboxes. The y-axis is in the log10 scale.

When 1,000 sandboxes are already deployed, the time
needed to startup 10 containers increases by 1.69s, 0.41s,

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00
Timeline (min)

500
1000
1500

La
te

nc
y 

(m
s)

0

100

200

Co
nc

ur
re

nc
y Node-1

Node-2
Node-3
Node-4

Node-5
Node-6

Figure 14: The startup latency and concurrency tracing of
RunD in Alibaba serverless platform.

10.8s, and 0.22s compared with the cases in Figure 10(a)
with Kata-qemu, Kata-template, Kata-FC, and RunD. In ad-
dition, the time needed already increases with the number of
already deployed sandboxes.

We can also observe that, the time needed to start 200
sandboxes is at least 10 times as much as that needed to start
10 sandboxes at a 1,000-density deployment in all the tests.
The significant increase originates from a large number of
cgroups in the host operating system. Scheduling and man-
aging containers with these cgroups consume more CPU cy-
cles, thus resulting in CPU bottlenecks appearing earlier than
a low-density deployment. The increased time is the small-
est with RunD, because it already eliminates many time-
consuming cgroup operations.

RunD shows better performance and stability in support-
ing high-concurrency startups at high-density deployment.

5.5 In-Production Usage for Serverless

Currently, Alibaba serverless computing platform has
adopted RunD. The platform serves almost 4 billion invo-
cations from more than 1 million different functions per day.

Figure 14 reports the sandbox startup concurrency and the
corresponding startup latency from six nodes. The specifi-
cation of each node is the same as our experimental setup
in Table 1. The data is collected between 08:00 and 18:00
of Jan 10th, 2022. There are about 800 active sandboxes on
each node, when the concurrency data is collected. The in-
production startup latency of sandboxes at high-concurrency
is consistent with that reported in Section 5.4.

As observed from the figure, the startup concurrency
bursts at the beginning of each hour. At most 191 sandboxes
are started concurrently around 10:00. RunD starts the 191
sandboxes in 1.6 seconds. We look into the function invo-
cation logs, and find that the periodic burst is caused by the
an-hour time trigger and cluster-level load balancing. The
periodical burst is pervasive, as the Azure serverless platform
traces [14] show the same pattern. In the figure, the sandbox
startup latency occasionally increases when the concurrency
is low. The long time results from the operation in loading
large-scale workloads from the tenants. Although the startup

62    2022 USENIX Annual Technical Conference USENIX Association



18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00
Timeline (min)

0

25

50

Co
nc

ur
re

nc
y500

1000
1500
2000

De
ns

ity

Node-1
Node-2

Node-3
Node-4

Node-5
Node-6

Figure 15: The deployment density and concurrency of
RunD in 1 minute intervals, from Alibaba production traces.

concurrency is not always high, it is crucial to ensure a quick
startup for a good user experience.

Figure 15 shows the deployment density of the sandboxes
on each node. We collect the density statistics of the six
nodes between 18:00 of Jan 10th to 10:00 of Jan 11th, 2022.
As observed, more than 2,000 sandboxes are deployed on a
node at most. We can also find that the high-density deploy-
ment happens at the same time as high concurrent startups.
This is because many tasks are triggered at the beginning of
each hour. The deployment density does not achieve the the-
oretical upper limit of 384GB/(128+20)MB=2656 contain-
ers, as some functions use more than 128MB memory, and
the workloads are also balanced to other nodes.

RunD is production-verified to meet the high-concurrency
startup and high-density deploymant requirements.

5.6 Lessons Learned from Production Usage
Besides the RunD secure container, we have some insights
about designing secure containers for serverless systems.

Lesson-1: the CRI specification designed for Kubernetes
is not suitable for serverless system. In CRI, multiple re-
lated containers can co-locate in the same sandbox, and a
lightweight pause container is started first to prepare the
cgroups for the remaining containers. This pause container-
based solution is negative for serverless computing, as each
sandbox only has a single container for security and privacy.

Lesson-2: Functions tend to use the same standard guest
environment provided by the serverless platform. In this
case, the language environment (e.g., JVM) can also be inte-
grated into the microVM template. However, the language-
level template will invalidate the on-demand memory load-
ing in the guest because some language runtimes need to pre-
allocate the available memory. There are tradeoffs between
higher memory utilization and less startup time, and the deci-
sion should be made based on how often the functions share
the language environment.

Lesson-3: The memory usage of user functions is the key
aspect determining the upper limit of the deployment den-
sity. Most functions are lightweight. When 2,000 sandboxes
are deployed on a node of our serverless platform, the CPU

utilization does not achieve 50%, and there is no complaint
on the poor performance from users. One reason for the low
CPU utilization is that many sandboxes are actually idle and
“kept-alive” after its function invocation is completed in a
serverless scenario.

6 Related Work

The most closely related work to RunD is FireCracker [20],
which proposes a lightweight VMM for serverless runtime.
It provides fast startup within 125ms, allowing 150 VMs to
start concurrently per second per node, with less than 5MB
footprint per VM. However, FireCracker only serves as the
hypervisor stack in the Security Container model, without
other complex related processes, e.g., rootfs [52]. By con-
trast, RunD investigates the guest-to-host solution through
all stacks and provides higher concurrency and density.

Higher-density deployment. Regarding serverless com-
puting, in the space of higher function deployment density
of Secure Containers and VMs [57], the key is designing a
more lightweight container runtime both in guest and host.
Unikernel [36, 37, 43, 47] runs as a built-in GuestOS with-
out necessary add-ons, demonstrating great potential for de-
ploying containers with less overhead. Kuo [33] Explores
lightweight guest kernel configurations for use in Unikernel
environments, which has similarity to the approach towards
reducing guest kernel size. However, Unikernel is hard to
be changed once after compilation with the application. Its
compile-time invariance results in poor flexibility in prac-
tice. SAND [21] adopts the multi-container-per-VM model
to amortize the memory footprint of sandboxing. However,
they do not further investigate the utilization impact of mem-
ory fragmentations in a real-system with high-density de-
ployment. Gsight [61] observes that fine-grained function-
level profiling can expose more predictability system-level
features in the partial interference. With a more accurate in-
terference predicting [27, 44], the function density can get
improved with QoS guaranteed.

The above studies make sense in improving the effective
density with less interference for serverless. They are or-
thogonal to our work, because RunD is motivated to improve
the maximum deployment density on a signe node.

Higher-concurrency startup. In the space of higher
function startup concurrency, recent approaches leverage the
container prewarm pool [9, 40, 49, 58]. The state-of-the-art
on container prewarming, SOCK [42], uses a benefit-to-cost
model to select packages pre-installed in zygotes, and builds
a tree cache to ensure that the forked zygote container does
not import any additional packages other than the private
ones the handler specifies. The C/R (Checkpoint/Restore) [7,
31, 39] supporting the VM snapshotting [10, 28, 29, 41, 54]
captures the state of a running instance as a checkpoint,
and then restores it once cold startup. Observing that most
functions only access a small fraction of the files and mem-

USENIX Association 2022 USENIX Annual Technical Conference    63



ory loaded in the initialization stage, Catalyzer [29] and
Replayable Execution [55] extend the C/R mechanism to
achieve a faster on-demand recovery and paging when start
containers. REAP [52] identifies the guest-side page when
loading a VM snapshot and records the metadata during
the record phase. Then, for subsequent invocations, REAP
proactively prefetches and load the recorded pages into the
guest memory for faster and higher-concurrency startup.

The above studies reduce the startup and recovery phases
to partially improve the capability of higher-concurrency
startup. From a different angle, RunD holistically focuses on
prominent bottlenecks through a guest-to-host investigation
when start secure containers with high-concurrency. We also
proposes a lightweight serverless runtime that production-
verfied in practice.

7 Conclusion

In serverless computing, the lightweight and short-term
functions leads to the requirement of high-density container
deployment and high-concurrency container startup. This
work dives into the bottlenecks from the entire software
stack and proposes RunD, a lightweight secure container
runtime for serverless through a holistic guest-to-host solu-
tion. The evaluation results and in-production usage prove
the efficiency of RunD to launch 200 secure containers in one
second, and deploy over 2,500 secure containers per node.
RunD is used in Alibaba production serverless platform, and
shows good performance in terms of high-density deploy-
ment and high-concurrency startup.

Acknowledgment

We would thank Tianlong Wu, Haoran Yang, Xing Di, Xian-
bin Tang, Tao Ma, Jiang Liu, Zhiyuan Hou, Lei Wang, Zheng
Liu, Gang Deng and Huaixin Chang from Alibaba Group for
their contributions to this work. We also thank Jon Howell
and our anonymous reviewers, for their helpful comments
and suggestions.

This work is partially sponsored by the National Nat-
ural Science Foundation of China (62022057, 61832006,
61872240), and Shanghai international science and technol-
ogy collaboration project (21510713600). Quan Chen and
Minyi Guo are the corresponding authors.

References

[1] gvisor: Protecting gke and serverless users
in the real world. cloud.google.com/
blog/products/containers-kubernetes/
how-gvisor-protects-google-cloud-services.
.., 2020.

[2] Alibaba function compute. https://alibabacloud.
com/product/function-compute, 2021.

[3] Alpine linux. https://www.alpinelinux.org, 2021.

[4] Aws lambda. https://aws.amazon.com/lambda/,
2021.

[5] Aws lambda: The state of serverless. https://www.
datadoghq.com/state-of-serverless-2020/,
2021.

[6] Container runtime interface (cri) - a plugin interface
which enables kubelet to use a wide variety of con-
tainer runtimes. https://github.com/kubernetes/
cri-api, 2021.

[7] Criu: A utility to checkpoint/restore linux
tasks in userspace. https://github.com/
checkpoint-restore/criu, 2021.

[8] Device-mapper. http://www.sourceware.org/dm/,
2021.

[9] Execute mode in fission. https://docs.fission.
io/docs/usage/executor/, 2021.

[10] Firecracker snapshotting. https://github.com/
firecracker-microvm/firecracker/blob/
master/docs/snapshotting/snapshot-support.
md, 2021.

[11] Google cloud functions. https://cloud.google.
com/functions, 2021.

[12] Lightweight pause container. https://groups.
google.com/g/kubernetes-users/c/jVjv0QK4b_
o, 2021.

[13] Microsoft azure functions. https://azure.
microsoft.com/en-us/services/functions,
2021.

[14] Microsoft azure functions traces. https://github.
com/Azure/AzurePublicDataset, 2021.

[15] Qemu. https://www.qemu.org, 2021.

[16] virtio-fs. https://virtio-fs.gitlab.io, 2021.

[17] What is vm templating and how to enable
it. https://github.com/kata-containers/
kata-containers/blob/main/docs/how-to/
what-is-vm-templating-and-how-do-I-use-it.
md, 2021.

[18] Help rather than recycle: Alleviating cold startup in
serverless computing through Inter-Function container
sharing. In 2022 USENIX Annual Technical Confer-
ence (USENIX ATC 22), Carlsbad, CA, July 2022.
USENIX Association.

64    2022 USENIX Annual Technical Conference USENIX Association

cloud.google.com/blog/products/containers-kubernetes/how-gvisor-protects-google-cloud-services...
cloud.google.com/blog/products/containers-kubernetes/how-gvisor-protects-google-cloud-services...
cloud.google.com/blog/products/containers-kubernetes/how-gvisor-protects-google-cloud-services...
cloud.google.com/blog/products/containers-kubernetes/how-gvisor-protects-google-cloud-services...
https://alibabacloud.com/product/function-compute
https://alibabacloud.com/product/function-compute
https://www.alpinelinux.org
https://aws.amazon.com/lambda/
https://www.datadoghq.com/state-of-serverless-2020/
https://www.datadoghq.com/state-of-serverless-2020/
https://github.com/kubernetes/cri-api
https://github.com/kubernetes/cri-api
https://github.com/checkpoint-restore/criu
https://github.com/checkpoint-restore/criu
http://www.sourceware.org/dm/
https://docs.fission.io/docs/usage/executor/
https://docs.fission.io/docs/usage/executor/
https://github.com/firecracker-microvm/firecracker/blob/master/docs/snapshotting/snapshot-support.md
https://github.com/firecracker-microvm/firecracker/blob/master/docs/snapshotting/snapshot-support.md
https://github.com/firecracker-microvm/firecracker/blob/master/docs/snapshotting/snapshot-support.md
https://github.com/firecracker-microvm/firecracker/blob/master/docs/snapshotting/snapshot-support.md
https://cloud.google.com/functions
https://cloud.google.com/functions
https://groups.google.com/g/kubernetes-users/c/jVjv0QK4b_o
https://groups.google.com/g/kubernetes-users/c/jVjv0QK4b_o
https://groups.google.com/g/kubernetes-users/c/jVjv0QK4b_o
https://azure.microsoft.com/en-us/services/functions
https://azure.microsoft.com/en-us/services/functions
https://github.com/Azure/AzurePublicDataset
https://github.com/Azure/AzurePublicDataset
https://www.qemu.org
https://virtio-fs.gitlab.io
https://github.com/kata-containers/kata-containers/blob/main/docs/how-to/what-is-vm-templating-and-how-do-I-use-it.md
https://github.com/kata-containers/kata-containers/blob/main/docs/how-to/what-is-vm-templating-and-how-do-I-use-it.md
https://github.com/kata-containers/kata-containers/blob/main/docs/how-to/what-is-vm-templating-and-how-do-I-use-it.md
https://github.com/kata-containers/kata-containers/blob/main/docs/how-to/what-is-vm-templating-and-how-do-I-use-it.md


[19] Kata containers - open source container runtime soft-
ware. https://katacontainers.io/, 2022.

[20] Alexandru Agache, Marc Brooker, Alexandra Ior-
dache, Anthony Liguori, Rolf Neugebauer, Phil
Piwonka, and Diana-Maria Popa. Firecracker:
Lightweight virtualization for serverless applications.
In Ranjita Bhagwan and George Porter, editors, 17th
USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2020, Santa Clara, CA,
USA, February 25-27, 2020, pages 419–434. USENIX
Association, 2020.

[21] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac,
Manuel Stein, Klaus Satzke, Andre Beck, Paarijaat
Aditya, and Volker Hilt. SAND: towards high-
performance serverless computing. In Haryadi S.
Gunawi and Benjamin Reed, editors, 2018 USENIX
Annual Technical Conference, USENIX ATC 2018,
Boston, MA, USA, July 11-13, 2018, pages 923–935.
USENIX Association, 2018.

[22] S. Barlev, Z. Basil, S. Kohanim, R. Peleg, S. Regev,
and Alexandra Shulman-Peleg. Secure yet usable: Pro-
tecting servers and linux containers. IBM J. Res. Dev.,
60(4):12, 2016.

[23] Fabrice Bellard. Qemu, a fast and portable dynamic
translator. In Proceedings of the FREENIX Track:
2005 USENIX Annual Technical Conference, April 10-
15, 2005, Anaheim, CA, USA, pages 41–46. USENIX,
2005.

[24] Guillaume Bonfante, Jean-Yves Marion, and Daniel
Reynaud-Plantey. A computability perspective on self-
modifying programs. In Dang Van Hung and Pad-
manabhan Krishnan, editors, Seventh IEEE Interna-
tional Conference on Software Engineering and Formal
Methods, SEFM 2009, Hanoi, Vietnam, 23-27 Novem-
ber 2009, pages 231–239. IEEE Computer Society,
2009.

[25] Marcus Botacin, Marco Antonio Zanata Alves, and
André Grégio. The self modifying code (smc)-aware
processor (SAP): a security look on architectural im-
pact and support. J. Comput. Virol. Hacking Tech.,
16(3):185–196, 2020.

[26] Rajkumar Buyya, Satish Narayana Srirama, Giu-
liano Casale, Rodrigo N. Calheiros, Yogesh Simmhan,
Blesson Varghese, Erol Gelenbe, Bahman Javadi,
Luis Miguel Vaquero, Marco A. S. Netto, Adel Nad-
jaran Toosi, Maria Alejandra Rodriguez, Igna-
cio Martín Llorente, Sabrina De Capitani di Vimer-
cati, Pierangela Samarati, Dejan S. Milojicic, Car-
los A. Varela, Rami Bahsoon, Marcos Dias de As-
sunção, Omer Rana, Wanlei Zhou, Hai Jin, Wolfgang

Gentzsch, Albert Y. Zomaya, and Haiying Shen. A
manifesto for future generation cloud computing: Re-
search directions for the next decade. ACM Comput.
Surv., 51(5):105:1–105:38, 2019.

[27] Quan Chen, Shuai Xue, Shang Zhao, Shanpei Chen,
Yihao Wu, Yu Xu, Zhuo Song, Tao Ma, Yong Yang,
and Minyi Guo. Alita: comprehensive performance
isolation through bias resource management for pub-
lic clouds. In Christine Cuicchi, Irene Qualters, and
William T. Kramer, editors, Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2020, Virtual
Event / Atlanta, Georgia, USA, November 9-19, 2020,
page 32. IEEE/ACM, 2020.

[28] Christopher Clark, Keir Fraser, Steven Hand, Ja-
cob Gorm Hansen, Eric Jul, Christian Limpach, Ian
Pratt, and Andrew Warfield. Live migration of vir-
tual machines. In Amin Vahdat and David Wether-
all, editors, 2nd Symposium on Networked Systems De-
sign and Implementation (NSDI 2005), May 2-4, 2005,
Boston, Massachusetts, USA, Proceedings. USENIX,
2005.

[29] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guan-
glu Yan, Chenggang Qin, Qixuan Wu, and Haibo Chen.
Catalyzer: Sub-millisecond startup for serverless com-
puting with initialization-less booting. In James R.
Larus, Luis Ceze, and Karin Strauss, editors, ASP-
LOS ’20: Architectural Support for Programming Lan-
guages and Operating Systems, Lausanne, Switzerland,
March 16-20, 2020, pages 467–481. ACM, 2020.

[30] Dawson R. Engler, M. Frans Kaashoek, and James
W. O’Toole Jr. Exokernel: An operating system ar-
chitecture for application-level resource management.
In Michael B. Jones, editor, Proceedings of the Fif-
teenth ACM Symposium on Operating System Princi-
ples, SOSP 1995, Copper Mountain Resort, Colorado,
USA, December 3-6, 1995, pages 251–266. ACM,
1995.

[31] Scott Hendrickson, Stephen Sturdevant, Edward
Oakes, Tyler Harter, Venkateshwaran Venkataramani,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Serverless computation with openlambda. lo-
gin Usenix Mag., 41(4), 2016.

[32] Ricardo Koller and Dan Williams. An ounce of preven-
tion is worth a pound of cure: Ahead-of-time prepara-
tion for safe high-level container interfaces. In Daniel
Peek and Gala Yadgar, editors, 11th USENIX Workshop
on Hot Topics in Storage and File Systems, HotStorage
2019, Renton, WA, USA, July 8-9, 2019. USENIX As-
sociation, 2019.

USENIX Association 2022 USENIX Annual Technical Conference    65

https://katacontainers.io/


[33] Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and
Sibin Mohan. A linux in unikernel clothing. In Angelos
Bilas, Kostas Magoutis, Evangelos P. Markatos, Dejan
Kostic, and Margo I. Seltzer, editors, EuroSys ’20: Fif-
teenth EuroSys Conference 2020, Heraklion, Greece,
April 27-30, 2020, pages 11:1–11:15. ACM, 2020.

[34] Zijun Li, Linsong Guo, Jiagan Cheng, Quan Chen,
BingSheng He, and Minyi Guo. The serverless comput-
ing survey: A technical primer for design architecture.
ACM Comput. Surv., dec 2021. Just Accepted.

[35] Zijun Li, Yushi Liu, Linsong Guo, Quan Chen, Jia-
gan Cheng, Wenli Zheng, and Minyi Guo. Faasflow:
enable efficient workflow execution for function-as-a-
service. In Babak Falsafi, Michael Ferdman, Shan Lu,
and Thomas F. Wenisch, editors, ASPLOS ’22: 27th
ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, Lausanne, Switzerland, 28 February 2022 - 4
March 2022, pages 782–796. ACM, 2022.

[36] Anil Madhavapeddy, Richard Mortier, Charalampos
Rotsos, David J. Scott, Balraj Singh, Thomas Gazag-
naire, Steven Smith, Steven Hand, and Jon Crowcroft.
Unikernels: library operating systems for the cloud.
In Vivek Sarkar and Rastislav Bodík, editors, Archi-
tectural Support for Programming Languages and Op-
erating Systems, ASPLOS ’13, Houston, TX, USA -
March 16 - 20, 2013, pages 461–472. ACM, 2013.

[37] Filipe Manco, Costin Lupu, Florian Schmidt, Jose
Mendes, Simon Kuenzer, Sumit Sati, Kenichi Ya-
sukata, Costin Raiciu, and Felipe Huici. My VM is
lighter (and safer) than your container. In Proceed-
ings of the 26th Symposium on Operating Systems Prin-
ciples, Shanghai, China, October 28-31, 2017, pages
218–233. ACM, 2017.

[38] Massimiliano Mattetti, Alexandra Shulman-Peleg, Yair
Allouche, Antonio Corradi, Shlomi Dolev, and Luca
Foschini. Securing the infrastructure and the work-
loads of linux containers. In 2015 IEEE Conference
on Communications and Network Security, CNS 2015,
Florence, Italy, September 28-30, 2015, pages 559–
567. IEEE, 2015.

[39] M. Garrett McGrath and Paul R. Brenner. Serverless
computing: Design, implementation, and performance.
In Aibek Musaev, João Eduardo Ferreira, and Teruo Hi-
gashino, editors, 37th IEEE International Conference
on Distributed Computing Systems Workshops, ICDCS
Workshops 2017, Atlanta, GA, USA, June 5-8, 2017,
pages 405–410. IEEE Computer Society, 2017.

[40] Anup Mohan, Harshad Sane, Kshitij Doshi, and Saikr-
ishna Edupuganti. Agile cold starts for scalable server-

less. In Christina Delimitrou and Dan R. K. Ports, ed-
itors, 11th USENIX Workshop on Hot Topics in Cloud
Computing, HotCloud 2019, Renton, WA, USA, July 8,
2019. USENIX Association, 2019.

[41] Michael Nelson, Beng-Hong Lim, and Greg Hutchins.
Fast transparent migration for virtual machines. In Pro-
ceedings of the 2005 USENIX Annual Technical Con-
ference, April 10-15, 2005, Anaheim, CA, USA, pages
391–394. USENIX, 2005.

[42] Edward Oakes, Leon Yang, Dennis Zhou, Kevin
Houck, Tyler Harter, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. SOCK: rapid task pro-
visioning with serverless-optimized containers. In
Haryadi S. Gunawi and Benjamin Reed, editors, 2018
USENIX Annual Technical Conference, USENIX ATC
2018, Boston, MA, USA, July 11-13, 2018, pages 57–
70. USENIX Association, 2018.

[43] Pierre Olivier, Daniel Chiba, Stefan Lankes, Chang-
woo Min, and Binoy Ravindran. A binary-compatible
unikernel. In Jennifer B. Sartor, Mayur Naik, and
Chris Rossbach, editors, Proceedings of the 15th ACM
SIGPLAN/SIGOPS International Conference on Vir-
tual Execution Environments, VEE 2019, Providence,
RI, USA, April 14, 2019, pages 59–73. ACM, 2019.

[44] Pu Pang, Quan Chen, Deze Zeng, and Minyi Guo.
Adaptive preference-aware co-location for improving
resource utilization of power constrained datacenters.
IEEE Trans. Parallel Distributed Syst., 32(2):441–456,
2021.

[45] Rob Pike, David L. Presotto, Sean Dorward, Bob Flan-
drena, Ken Thompson, Howard Trickey, and Phil Win-
terbottom. Plan 9 from bell labs. Comput. Syst.,
8(2):221–254, 1995.

[46] Rusty Russell. virtio: towards a de-facto standard for
virtual I/O devices. ACM SIGOPS Oper. Syst. Rev.,
42(5):95–103, 2008.

[47] Florian Schmidt. uniprof: A unikernel stack profiler. In
Posters and Demos Proceedings of the Conference of
the ACM Special Interest Group on Data Communica-
tion, SIGCOMM 2017, Los Angeles, CA, USA, August
21-25, 2017, pages 31–33. ACM, 2017.

[48] Mohammad Shahrad, Jonathan Balkind, and David
Wentzlaff. Architectural implications of function-as-
a-service computing. In Proceedings of the 52nd An-
nual IEEE/ACM International Symposium on Microar-
chitecture, MICRO 2019, Columbus, OH, USA, Octo-
ber 12-16, 2019, pages 1063–1075. ACM, 2019.

66    2022 USENIX Annual Technical Conference USENIX Association



[49] Mohammad Shahrad, Rodrigo Fonseca, Iñigo Goiri,
Gohar Chaudhry, Paul Batum, Jason Cooke, Eduardo
Laureano, Colby Tresness, Mark Russinovich, and Ri-
cardo Bianchini. Serverless in the wild: Characterizing
and optimizing the serverless workload at a large cloud
provider. In Ada Gavrilovska and Erez Zadok, editors,
2020 USENIX Annual Technical Conference, USENIX
ATC 2020, July 15-17, 2020, pages 205–218. USENIX
Association, 2020.

[50] Vasily Tarasov, Lukas Rupprecht, Dimitris Skourtis,
Wenji Li, Raju Rangaswami, and Ming Zhao. Eval-
uating docker storage performance: from workloads to
graph drivers. Clust. Comput., 22(4):1159–1172, 2019.

[51] Vasily Tarasov, Lukas Rupprecht, Dimitris Skourtis,
Amit Warke, Dean Hildebrand, Mohamed Mohamed,
NagaPramod Mandagere, Wenji Li, Raju Rangaswami,
and Ming Zhao. In search of the ideal storage con-
figuration for docker containers. In 2nd IEEE Inter-
national Workshops on Foundations and Applications
of Self* Systems, FAS*W@SASO/ICCAC 2017, Tuc-
son, AZ, USA, September 18-22, 2017, pages 199–206.
IEEE Computer Society, 2017.

[52] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias,
Edouard Bugnion, and Boris Grot. Benchmarking,
analysis, and optimization of serverless function snap-
shots. In Tim Sherwood, Emery D. Berger, and Chris-
tos Kozyrakis, editors, ASPLOS ’21: 26th ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Virtual
Event, USA, April 19-23, 2021, pages 559–572. ACM,
2021.

[53] William Viktorsson, Cristian Klein, and Johan Tords-
son. Security-performance trade-offs of kubernetes
container runtimes. In 28th International Symposium
on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, MASCOTS 2020,
Nice, France, November 17-19, 2020, pages 1–4. IEEE,
2020.

[54] Michael Vrable, Justin Ma, Jay Chen, David Moore,
Erik Vandekieft, Alex C. Snoeren, Geoffrey M.
Voelker, and Stefan Savage. Scalability, fidelity, and
containment in the potemkin virtual honeyfarm. In An-
drew Herbert and Kenneth P. Birman, editors, Proceed-
ings of the 20th ACM Symposium on Operating Systems
Principles 2005, SOSP 2005, Brighton, UK, October
23-26, 2005, pages 148–162. ACM, 2005.

[55] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. Re-
playable execution optimized for page sharing for a
managed runtime environment. In George Candea,
Robbert van Renesse, and Christof Fetzer, editors, Pro-
ceedings of the Fourteenth EuroSys Conference 2019,

Dresden, Germany, March 25-28, 2019, pages 39:1–
39:16. ACM, 2019.

[56] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas
Ristenpart, and Michael M. Swift. Peeking behind the
curtains of serverless platforms. In Haryadi S. Gunawi
and Benjamin Reed, editors, 2018 USENIX Annual
Technical Conference, USENIX ATC 2018, Boston,
MA, USA, July 11-13, 2018, pages 133–146. USENIX
Association, 2018.

[57] Andrew Whitaker, Marianne Shaw, and Steven Gribble.
Denali: Lightweight virtual machines for distributed
and networked applications. 03 2002.

[58] Zhengjun Xu, Haitao Zhang, Xin Geng, Qiong Wu, and
Huadong Ma. Adaptive function launching accelera-
tion in serverless computing platforms. In 25th IEEE
International Conference on Parallel and Distributed
Systems, ICPADS 2019, Tianjin, China, December 4-6,
2019, pages 9–16. IEEE, 2019.

[59] Shuai Xue, Shang Zhao, Quan Chen, Gang Deng,
Zheng Liu, Jie Zhang, Zhuo Song, Tao Ma, Yong Yang,
Yanbo Zhou, Keqiang Niu, Sijie Sun, and Minyi Guo.
Spool: Reliable virtualized nvme storage pool in pub-
lic cloud infrastructure. In Ada Gavrilovska and Erez
Zadok, editors, 2020 USENIX Annual Technical Con-
ference, USENIX ATC 2020, July 15-17, 2020, pages
97–110. USENIX Association, 2020.

[60] Yang Zhan, Alexander Conway, Yizheng Jiao, Nir-
jhar Mukherjee, Ian Groombridge, Michael A. Bender,
Martin Farach-Colton, William Jannen, Rob Johnson,
Donald E. Porter, and Jun Yuan. How to copy files. In
Sam H. Noh and Brent Welch, editors, 18th USENIX
Conference on File and Storage Technologies, FAST
2020, Santa Clara, CA, USA, February 24-27, 2020,
pages 75–89. USENIX Association, 2020.

[61] Laiping Zhao, Yanan Yang, Yiming Li, Xian Zhou,
and Keqiu Li. Understanding, predicting and schedul-
ing serverless workloads under partial interference. In
Bronis R. de Supinski, Mary W. Hall, and Todd Gam-
blin, editors, SC ’21: The International Conference
for High Performance Computing, Networking, Stor-
age and Analysis, St. Louis, Missouri, USA, November
14 - 19, 2021, pages 22:1–22:15. ACM, 2021.

A Artifact Appendix

A.1 Abstract
We choose Kata containers and its three configurations kata-
qemu, kata-FC, kata-template as baselines for comparison
with RunD. For measuring the startup latency, we use the

USENIX Association 2022 USENIX Annual Technical Conference    67



crictl command to start pod sandboxes and measure the time
between the first crictl runp invocation and the last ready
pod sandbox. For measuring the memory footprint, we use
the smem command and the PSS column of its output. All
the tests are run on a machine with 104 vCPUs and 384GB
of memory running CentOS7.

A.2 Artifact Check-list (Meta-information)
• Run-time environment: Alibaba ECS instance;
• Hardware: Intel Xeon(Cascade Lake) Platinum 8269CY,

CPU and Memory: 104 cores and 384GiB, Storage: Two
ESSDs (100GB + 500GB);

• Software: Aliyun Cloud OS 2, with Linux kernel 4.19.91,
Kata container 1.12.1 and 2.2.3, containerd 1.3.10, smem 1.4;

• Metrics: average latency and average memory footprint;
• Time is needed to complete experiments: 10 hours;
• Available: https://github.com/chengjiagan/RunD_ATC22
• Code Licenses: Apache-2.0 license

A.3 How to Access and Installation
Github Link: https://github.com/chengjiagan/RunD_ATC22.
Then you should follow the README instructions to get in-
stallation.

A.4 Experiment Workflow
A.4.1 High-concurrency Experiment (Section 5.2)

Scripts are provided to run the high-concurrency test
for kata-qemu, kata-fc and kata-template. To run high-
concurrency tests:

$ ./script/time_kata_test.sh
$ ./script/time_katafc_test.sh
$ ./script/time_katatemplate_test.sh

They may take several hours to finish. Some concur-
rency tests can be removed by removing the correspond-
ing concurrency setting in file time_test.conf to shorten the
time. The scripts will create a directory (e.g., named like
time_kata_05120948) to store the logs.

We provide python scripts to analyze logs from the tests:

$ python3 data/time.py
$ python3 data/cpu.py

The python script will create two .csv files in the result
directory: time.csv and cpu.csv. Each line in the csv file in-
dicates the average cold-start latency and cpu time of a con-
tainer runtime.

A.4.2 High-density Experiment (Section 5.3)

Scripts are provided to run the high-density test for kata-
qemu, kata-fc and kata-template. To run high-density tests:

$ ./script/mem_kata_test.sh
$ ./script/mem_katafc_test.sh
$ ./script/mem_katatemplate_test.sh

Density and memory capacity of containers in the tests
can be changed in the file mem_test.conf. The scripts will
create a directory named like mem_kata_05120948 to store
the logs.

We provide a python script to analyze logs from the tests:
$ python3 data/mem.py

The python script will create a csv file for each runtime,
named like mem_kata.csv, containing the average memory
consumption of containers with different memory capacity
in different density.

A.4.3 Density Impact on Concurrency (Section 5.4)

Scripts are provided to run the high-density test for kata-
qemu, kata-fc and kata-template. To run tests:
$ ./script/density_kata_test.sh
$ ./script/density_katafc_test.sh
$ ./script/density_katatemplate_test.sh

The background density and the concurrency of the tests
can be changed in the file density_test.conf. The scripts will
create a directory (e.g., named like density_kata_05120948)
to store the logs.

We provide a python script to analyze logs from the tests:
$ python3 data/density.py

The python script will create a csv file for each runtime,
named like density_kata.csv, containing the average cold-
start latency under different background densities and con-
currencies.

A.5 Expected Results and Notes
The expect results are all stored in ae_data directory. Con-
sidering that some related binary packages are tightly in-
tegrated with our internal system, we provide a screencast
ATC_RunD_AE.mp4 of the tool along with the results. You
can also find RunD-related performance and execution logs
in our artifact..

68    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/chengjiagan/RunD_ATC22
https://github.com/chengjiagan/RunD_ATC22


Help Rather Than Recycle: Alleviating Cold Startup in Serverless Computing
Through Inter-Function Container Sharing

1,3Zijun Li, 1Linsong Guo, 1Quan Chen, 1Jiagan Cheng, 1Chuhao Xu, 2Deze Zeng, 3Zhuo Song,
3Tao Ma, 3Yong Yang, 1Chao Li, 1Minyi Guo

1Department of Computer Science and Engineering, Shanghai Jiao Tong University
2School of Computer Science, China University of Geosciences

3Alibaba Cloud

Abstract
In serverless computing, each function invocation is exe-
cuted in a container (or a Virtual Machine), and container
cold startup results in long response latency. We observe
that some functions suffer from cold container startup, while
the warm containers of other functions are idle. Based on the
observation, other than booting a new container for a func-
tion from scratch, we propose to alleviate the cold startup by
re-purposing a warm but idle container from another func-
tion. We implement a container management scheme, named
Pagurus, to achieve the purpose. Pagurus comprises an
intra-function manager for replacing an idle warm container
to be a container that other functions can use without intro-
ducing additional security issues, an inter-function scheduler
for scheduling containers between functions, and a sharing-
aware function balancer at the cluster-level for balancing the
workload across different nodes. Experiments using Azure
serverless traces show that Pagurus alleviates 84.6% of the
cold startup, and the cold startup latency is reduced from
hundreds of milliseconds to 16 milliseconds if alleviated.

1 Introduction

Owing advantages of high maintainability and testability,
serverless computing is suitable for the ever-growing Inter-
net services (the tenants are charged per invocation). As a re-
sult, hyperscalers now provide serverless computing services
(e.g., Amazon Lambda [5], Google Cloud Function [11], Mi-
crosoft Azure Functions [12], and Alibaba Function Com-
pute [1]). Meanwhile, some open-source serverless com-
puting solutions like Apache OpenWhisk [3] and Fission [9]
have also been developed and released.

In serverless computing, user functions run in containers
(or Virtual Machines), and the containers are specialized for
a function (a container is not allowed to run different user
functions). Warm containers refer to the keep-alive contain-
ers that serve subsequent invocations (warm startup). If there
is no warm container for a function invocation, a new con-
tainer is started from scratch (cold startup). The cold startup

Function A

Function B

Function A

Function B

Timeline

Timeline

Fork

Cold startup

Better startup

Original 
Case

Sharing 
Case

Startup 
& initializing 

Query 
Serving

Keep-alive 
(Idle)

Figure 1: “Fork” an idle container of Function A for Function
B to alleviate its cold startups.

latency is more than 10× of the warm startup latency due to
the container creation, software environment setup, and code
initialization [40,44,47,49,59,61]. It is ideal if all functions
can run in warm containers. However, keep-alive containers
are recycled to save resources once no new invocation arrives
during the lifetime.

Many efforts have been devoted to speeding up the con-
tainer cold startup [7, 28, 31, 32, 45, 46, 54–56, 58]. The
prewarm-based methods create containers and runtime in ad-
vance, one method of which is prewarming customized con-
tainers for each function that includes all its required soft-
ware packages [8, 15, 27, 28, 60]. However, it brings heavy
memory consumption. Another method of prewarming con-
tainers is only installing common packages, and all functions
share the prewarmed container pool [14,45,46]. This method
is more memory space-efficient, but generating customized
containers for a function from the prewarmed containers suf-
fers from package download and installing latency overhead.
Current solutions mainly adopt the second method [14, 46].

To alleviate the memory waste and minimize the function
response time, instead of prewarming containers, we pro-
pose to alleviate the cold container startup through container
sharing. For instance, if function A in Figure 1 can “fork or
lend” the runtime checkpoint from its idle warm containers
for function B, the cold startup of B is eliminated. By such
means, we can leverage a function’s idle warm containers
before being recycled to help others that tend to experience
cold container startup.

USENIX Association 2022 USENIX Annual Technical Conference    69



Container pool

Function Workload

idle

Configs

Pkg a

Pkg b

Pkg c

Additional packages

Container pool Container pool

B C D E

Different Functions

Cold startup container (Private) Shared container (Zygote)

Step 1: Identify the
idle container

Step 2: Replace it as 
the zygote container

Step 3: Share it  
to avoid cold startups

Function A

Zygote
image

replace

Figure 2: The container sharing logic and challenging steps.

Analyzing the container sharing procedure, we find three
challenges in achieving such goal. 1) The function invo-
cation loads are not stable [51]. It is difficult to identify
whether function A’s warm containers are actually idle or
not. If the warm containers of A are always used to help
B, A’s invocation may not be able to get a warm container
and may even suffer from Quality-of-Service (QoS) viola-
tion. 2) Functions rely on different software packages.
When function A “forks” a warm container for function B,
the warm container has to install extra packages. Installing
and importing these packages may take longer than the cold
container startup. Worse still, greedy re-packaging for exces-
sive functions can also lead to huge image size or incur pack-
age version contradictions. 3) “Forking” an idle container
from other functions may introduce security vulnerabil-
ities. While a function’s code or data are stored privately,
sharing the container with other functions is risky.

We propose a container management system, named
Pagurus to tackle these challenges. Figure 2 shows the
steps of using function A’s idle warm containers to allevi-
ate the cold container startup of other functions. The key
idea is to replace its idle containers with new containers that
other functions can safely use. The new container is cre-
ated through a new image that already installs the required
software packages of other functions, without including the
code/data of the original function A. In this way, the warm
containers of a function are classified into three categories:
private containers, zygote containers, and helper containers.
A function’s private containers can only be used by itself. Its
zygote containers are the new containers that other functions
can use. Its helper containers are the containers forked from
other functions’ zygotes. A helper container already loads its
user code for future invocations. By using privilege control
in the operating system, a function that uses a helper con-
tainer cannot obtain any code, data, or package information
of other functions.

Pagurus uses an intra-function container manager for
each function to manage its containers, an inter-function
scheduler on each node to manage the “fork” action be-
tween functions, and a sharing-aware function balancer to
schedule functions across the nodes. For a function, the

intra-function manager monitors the status of each container,
identifies idle warm containers, and re-purposes an idle con-
tainer based on a QoS-based timer. The inter-function sched-
uler, acting as an orchestrator, determines the to-be-helped
functions of each function. We design a Similarity Filtered
Weighted Random Sampling (SF-WRS) algorithm to find
an appropriate set of to-be-helped functions. Besides, the
sharing-aware function balancer distributes function invo-
cations to different nodes to achieve efficient inter-function
container sharing.

Pagurus requires no offline analysis or profile on the func-
tions, thus can be easily adopted in production. The main
contributions of this paper are as follows.

• A resource-friendly design of zygote and helper
container. Zygote container enables resource-saving
through package and function reclamation, without in-
curring any additional security issues meanwhile.

• The design of a SF-WRS re-packing policy. Based on
the package similarity between functions and the fre-
quency of function cold startups, SF-WRS policy re-
duces the number of packages to-be-installed, thus min-
imizing the memory needed and the overhead of creat-
ing zygote containers.

• The design of an efficient container sharing mecha-
nism. Pagurus divides the warm containers of a func-
tion into three types and manages the three types of con-
tainers in different ways. The mechanism efficiently al-
leviates the cold container startup.

We evaluate Pagurus using both best-practice AWS server-
less functions [6] and Azure traces [50]. Experiments show
that Pagurus alleviates 84.6% of cold startups on average in
Azure traces, and the cold startup latency is reduced from
hundreds of milliseconds to 16 milliseconds if alleviated.

2 Background and Related Work

If a function is invoked for the first time or there is no
alive (or warm) container for it, the serverless system starts
a new container to encapsulate its function runtime, ini-
tializes the software environment, loads application-specific
code, and runs the function. All these steps make up a cold
startup and may even take several seconds [21, 36, 59]. The
cold startup significantly increases queries’ end-to-end la-
tency [23, 33, 47, 49]. The long latency problem worsens
when the function invocation is short (e.g., hundreds of mil-
liseconds).

Prewarm startup spawns template containers that are al-
ready initialized with the software environment. Though
it skips the container startup and users only need to per-
form application-specific code initialization [2, 3, 32, 46],
its pre-loaded packages can either make the image size too
large [20, 32, 53], or cause more memory consumption for
the prewarm container [24, 46, 50].

70    2022 USENIX Annual Technical Conference USENIX Association



Many prior studies have been conducted to reduce the con-
tainer startup latency [19, 28, 34, 48, 52, 54]. However, exist-
ing works mainly focused on seeking lightweight virtualiza-
tion technologies to pursue lower overhead [17] or optimiz-
ing prewarm strategies for more accurate prediction models
and less initialization cost []. A common optimization is to
pause the container when idle to save resources consumed by
function codes and packages, and then reload it for reusing
when invoked [34, 44, 45, 57].

SAND [19] separated applications via containers while
allowing functions of one application to run in the same
container by different processes. FaasCache [31] took the
caching model for objects into serverless context, and imple-
mented the Greedy-Dual keep-alive caching mechanism to
reduce the resource requirement and keep containers warm.
Shahrad et al. [50] proposed to dynamically change the in-
stance lifetime of the recycling and provisioning instances
according to the time series prediction. Some researchers
use C/R (Checkpoint and Restore) [7, 55, 56, 58] that re-
stores container images from checkpoints to speed up the
cold startup. For example, Catalyzer [28] utilized C/R to
realize on-demand recovery. However, it still incurs long
latency compared with a warm startup. The above technolo-
gies are orthogonal to us, and Pagurus can be combined with
them to reduce the cold startup latency further. SOCK [46]
introduced a tree cache and uses the benefit-to-cost model to
update packages in the prewarmed containers dynamically,
but the zygote design consumes more memory when main-
taining packages by a cache-tree. Moreover, the cache-tree
does not work if functions require conflicted package ver-
sions.

Pagurus resolves the problems through inter-function con-
tainer sharing with conflict concerns, and needs neither pool-
size tradeoffs nor time-consuming model training.

3 Investigation and Motivations

In this section, we discuss the current prewarm-based mech-
anism for alleviating the cold container startups, and show
the possibility of eliminating the cold container startup with
inter-function container sharing.

3.1 Latencies of Cold and Prewarm Startups
A cold container startup is done in three time-consuming
steps: create container from the image, initialize software
environment, and initialize application-specific code. With
the prewarm mechanism (used in OpenWhisk [3] and pro-
duction platforms), several containers that already import
common libs/packages are hatched in a container pool. A
function invocation with no warm container can specialize
the prewarmed container by installing the extra packages.

We use prewarm-enabled OpenWhisk with local cache as
the serverless platform, and use the best practice serverless

bot      eco       ddns etl   rek  file     tok    cart         pod  rep
Application Name

0.0

0.5

1.0

1.5

St
ar

tu
p 

La
te

nc
y 

(s
) Cold Startup (from image) Prewarm Startup

Figure 3: The cold startup latency and prewarm startup la-
tency of the benchmarks in OpenWhisk.

applications in AWS [6] as the benchmarks, to investigate
the impacts of cold and prewarm startup on the end-to-end
latency of a function invocation. A benchmark may have
several functions [41]. As for the hardware, we use one node
to perform the computation and one node to generate func-
tion invocations. The benchmarks, software, and hardware
setups are described in Section 8.

Figure 3 shows the time of generating a container when it
is started from the image, or is specialized from a common
prewarmed container. As shown, the cold container startup
takes about 500 milliseconds. The prewarm startup takes 15
milliseconds in the best case, but takes more than 1500 mil-
liseconds in the worst case (e.g., function union in the bench-
mark ddns). This is because union requires to load/install
many additional packages in the prewarmed containers, and
the package loading is time-consuming.

Intuitively, a prewarmed container may install all the soft-
ware packages required by all the functions on a physical
node to speed up the prewarm startup. It is possible because
for most serverless systems, the packages needed by a func-
tion (besides the private ones) are usually given by its user
in a requirements.txt, and are publicly accessible for FaaS
providers. However, many functions require software pack-
ages of contradicting versions. In addition, such a solution
may expose the package information of other functions. The
pre-imported requirements will implicitly embody user pri-
vacy. Due to the software conflict and privacy concerns, it is
not a good option to install packages for all functions in the
prewarmed containers.

3.2 Limitations of Prewarm Schemes
We then explore the effectiveness of the prewarm schemes
in alleviating the cold startup. In this experiment, we run all
the benchmarks on a single node, and the invocation patterns
of the functions are the same as the patterns in the Azure
serverless traces. The invocation patterns actually follow the
Pareto distribution (most of the invocations are for a small
part of the functions) [15]. By default, a prewarm container
pool has two prewarmed containers on a node [2].

Figure 4 shows the percentage of the remaining cold star-
tups with the prewarm mechanism. Many cold startups are
not eliminated (e.g., functions in eco and cart). This phe-

USENIX Association 2022 USENIX Annual Technical Conference    71



bot       eco       ddns etl   rek   file     tok    cart         pod  rep
Application Name

0.00

0.25

0.50

0.75

1.00

Pe
rc

en
ta

ge
 o

f 
 C

ol
d 

St
ar

tu
ps

 R
em

ai
ne

d

Figure 4: The remained cold startup in prewarm-enabled
OpenWhisk compared with the disabled one.

nomenon attributes to the inappropriate pool size of the pre-
warm container pool. For eco and cart, their functions are in-
voked simultaneously/or in short intervals to satisfy complex
business logic, such as workflows [18, 22, 25]. For instance,
five functions are triggered simultaneously by a caller in eco.
These functions contend for the prewarmed containers.

It is nontrivial to appropriately configure the prewarm
scheme due to two considerations. 1) Pool-size and mem-
ory overhead trade-off. If we prewarm more containers,
larger additional memory space is used. In our experiment,
the prewarmed containers use more than 1GB of memory
(on a node with 16GB memory) to eliminate 80% of the cold
startup. The prewarm mechanism is not able to effectively
eliminate the cold startup with reasonable memory overhead.
2) User experience and system efficiency contradiction.
As discussed, most of the invocations are from a small part
of the functions [15], and a prewarmed container can only
cache a small number of packages for the low memory over-
head. Caching packages for frequently invoked functions
improves the system efficiency (frequent invocations have
low startup time), but results in poor user experience (invoca-
tions of most functions tend to suffer from the long package
installation time), and vice versa.

The current container prewarm scheme is not efficient due
to several inevitable trade-offs. It is beneficial to alleviate
cold startups without trapping in the same dilemmas.

3.3 Opportunity of Reusing Idle Containers
We therefore propose to alleviate cold startup without relying
on prewarming containers. The key idea is leveraging the
warm but idle containers of some functions to alleviate the
cold startups. A function invocation that requires cold startup
may “steal” an idle warm container from other functions.

The proposed scheme is effective only when there are idle
warm containers in some functions when an invocation tends
to suffer from the cold container startup. In principle, only
underutilized warm containers that are active due to the keep-
alive strategy can be used by other functions. Otherwise,
always stealing a warm container directly may result in the
cold container startup of the victim function.

We analyze the day07 trace of Azure serverless plat-
form [50] (the trace contains invocations of over 44,000

0h 2h 4h 6h 8h 10h 12h
Timeline

25

50

75

100

Co
un

t (
40

0 
Fu

nc
tio

ns
)

Cold startup Idle containers

Figure 5: The number of container cold startups and idle
containers from 400 randomly selected functions.

functions) to verify the above requirement. If a container
triggers recycling, it must be an idle warm container because
of no new invocation during its lifetime. By replaying the
trace, we find that the warm containers for some functions
are idle (no invocation is received during this idle time),
while some other functions suffer from cold startup. We refer
to idle warm containers as idle containers.

Figure 5 shows the number of idle containers and cold
startups when replaying the trace. As observed, the time that
idle containers and cold startup happen are similar, and there
are more idle containers than the cold startups. If the time
does not match, the functions that suffer from cold startup
cannot find idle containers from other functions.

The time matches because many containers are prepared
and invoked to serve the high load, and they become inactive
when the load drops. We can observe a significant discon-
tinuity at the beginning of each hour as there is a certain
number of functions with a 1-hour timer trigger, and they
are invoked once and will keep idle during the rest of their
lifetime. In this case, excessive idle containers are pervasive.

In summary, serverless computing systems usually adopt
a keep-alive strategy (e.g., 15 minutes) to reduce the cold
startup. The kept-alive containers are idle before they are re-
cycled. The widely-existed diurnal load pattern also makes
containers over-provisioned at the high load. These contain-
ers will become idle when the load drops as well.

Based on the investigation, we observe the opportunity to
leverage the idle containers of some functions to help others
that suffer from cold startup on the same node.

4 Design of Pagurus

There are two prerequisites to alleviate the cold container
startup with the warm containers of other functions. First, the
container manager has to identify the actual idle warm con-
tainers. Otherwise, the “steal” results in the container cold
startup of the victim function. Second, the proposed strategy
should not expose any information of a function (e.g., data,
code, package requirements) to other functions from the con-
sideration of security.

We propose and implement Pagurus, a container man-
agement system that fulfills the two prerequisites. Figure 6

72    2022 USENIX Annual Technical Conference USENIX Association



Sharing-aware function balancer
(Head Node)

Inter-function container scheduler

Helper

Functionk

…

Function database

Worker Node0 Worker Nodem

…Users

Function query Function info

Pagurus Runtime System

Intra-function manager

Zygote Container pool
Private Container pool
Helper Container poolImages

(Function1)
Function①

②

①Re-pack ② Code copy & fork

③

Create③

Figure 6: Design of Pagurus.

shows the design of Pagurus. It comprises an intra-function
container manager for each function, an inter-function con-
tainer scheduler on each node, and a sharing-aware function
balancer at the cluster level. The intra-function container
manager of a function manages its three types of containers
(private containers, zygote containers, and helper contain-
ers) (Section 5). The inter-function scheduler manages the
zygotes sharing between functions (Section 6). The sharing-
aware function balancer maps the functions across multiple
nodes to minimize the system-wide cold startup (Section 7).

Based on runtime statistics, a function’s idle warm con-
tainers are replaced with its zygote containers that are newly
created from its zygote image ( in Figure 6). The zy-
gote image does not include the code or data of any func-
tions. Pagurus uses the inter-function container scheduler
on each node to generate the zygote image of each func-
tion (¬ in Figure 6). Creating zygote images does not in-
troduce extra runtime latency overhead, as it is done asyn-
chronously before replacing the idle container with a zygote
container. The inter-function container scheduler determines
the possible to-be-helped functions of each function based on
Similarity-Filtered Weighted Random Sampling (SF-WRS)
policy, which will be detailed in Section 6.1. A function’s zy-
gote container additionally installs the required packages of
its to-be-helped functions in an anonymous fashion. Based
on the privilege control of the Linux operating system, a
function is only able to access its own packages.

Specifically, when an invocation of a function f arrives, it
obtains a container to host the invocation in four steps.

1) It first tries to obtain an idle warm private container
from its own private container pool directly. Then, if its
private container pool is empty, it checks whether its helper
container pool has containers for queries.

2) If both the private pool and the helper pool are empty,
it will further check whether its zygote container pool has
some containers already adapted for other functions. If not

empty, a zygote container can be used to host the invocation.
3) If its zygote container pool is also empty, Pagurus tries

to find a container that includes the required packages of f
from other functions’ zygote container pool. The forked zy-
gote then joins the helper container pool of f (® in Figure 6).

4) If all the above steps fail, the invocation of f would
suffer from a cold container startup.

5 Intra-function Container Management

The key points of the intra-function manager are identifying
the actual idle containers, and designing an efficient sharing
mechanism.

5.1 Identifying Idle Containers
In principle, a container is idle when it does not host function
invocations for a long time. For a function f , we introduce
a timer in each of its containers to measure the free time.
A warm container is treated to be idle if its timer exceeds
threshold Tidle( f ). The timer is reset once the container re-
ceives an invocation.

The design principle here is that most function invocations
can still get warm containers, even when a container is iden-
tified to be idle and “stolen” by other functions. Different
functions should have different idle thresholds because of
their diverse invocation patterns. We explore the runtime in-
vocation arrival pattern to determine the value of Tidle( f ) for
a function f . Specifically, we use all the m invocations dur-
ing the container lifetime, and let T1, T2, ..., Tm represent
the time intervals between the adjacent invocations (the time
interval is sorted in the ascending order). Equation (1) calcu-
lates the idle threshold Tidle( f ) for the function f in the next
time period.

Tidle( f ) =

{
Td0.95me ,m≥ 30,

Tde f ault ,m < 30.
(1)

In the equation, Td0.95me is the 95%-ile time interval of
the m samples. In this case, for frequent invoked functions
(m≥ 30), more than 95% invocations of f tend to get warm
containers, if the invocation arrival patterns remain. We use
30 to be the sampling target for stability considerations. For
occasionally invoked functions, Tidle( f ) is set to be Tde f ault ,
and almost all the invocations get warm containers. Tde f ault
may impact the overall efficiency for idle identification, and
Section 8.4.3 evaluates the sensitivity of Pagurus to it.

5.2 Replacing Idle Containers with Zygotes
A function’s idle containers cannot be used by other func-
tions directly, as the data and code of the function may still
reside in the memory of the idle containers. To this end,
Pagurus creates a zygote container that does not include any

USENIX Association 2022 USENIX Annual Technical Conference    73



anonymous

Function executor (non-root) pkgm pkgn

pkgY

Private
package

Private
package

Zygote Container

enter corresponding privilege domain (ro)

shared domain
read 
only

pkgX

Private
package

fA fB
fC

fA

fB

fC

Host

Figure 7: Security assurance of a zygote container.

data or code of the owner function, and uses the zygote con-
tainer to replace the original idle warm container. The zygote
container is created from an image that installs the shared
packages of all the to-be-helped functions. Section 6 dis-
cusses the policies used to determine the to-be-helped func-
tions and generate the zygote image of a function.

One may be concerned about the security and privacy of
the zygote container for re-purposing. Figure 7 shows the
way to avoid package information leakage in zygote con-
tainers. All the functions run as non-root users [4, 10, 16].
In the figure, fB and fC are the to-be-helped functions in fA’s
zygote container. In general, the common intersectant pack-
ages required by all functions are installed as a shared do-
main (pkgm, pkgn) in the zygote container, and the additional
complementary and private packages of to-be-helped func-
tions are cached in different directories of the host. These
directories are mounted anonymously into the zygote, thus
ensuring that others cannot identify a function.

Each function that may use the zygote container is given
a privilege domain and is only allowed to access its corre-
sponding package directory. The privilege domain and priv-
ilege control are provided by Linux operating system and
different non-root users. For instance, in Figure 7, when
function fB obtains the zygote container, it can only enter
its own privilege domain for fB’s packages (private packages
and pkgY ) to specialize its software runtime. In this way, the
zygote container serves as a safety checkpoint. Because it
does not import any user-related code and data, the function
privacy of the software environment is also protected.

6 Inter-function Container Scheduling

The inter-function container scheduler selects to-be-helped
functions for zygotes, re-packs zygote images, and manages
the fork operation for helper containers.

6.1 Selecting To-be-helped Functions
A straightforward approach is to treat all the other co-located
functions as the candidate to-be-helped functions, and in-
stall all the required packages into a zygote image. However,
this approach suffers from extremely high re-packing over-
head, in terms of both time and resource consumption. When

re-packing a zygote image, we have two important observa-
tions. On the one hand, if the set of to-be-installed packages
is large, it is time-consuming and resource-unfriendly to cre-
ate a giant zygote image. On the other hand, some functions
tend to have more cold startups than others (as observed from
Azure traces [12]), inappropriate selection of to-be-helped
functions is inefficient in alleviating the system-wide cold
startups. Taking the above challenges into consideration,
we propose SF-WRS (Similarity Filtered Weighted Random
Sampling) algorithm, which contains:

• A Similarity-based Filter to find out to-be-helped candi-
dates based on the similarity of functions’ packages. In
this way, a zygote installs fewer complementary pack-
ages, thereby lowering the re-packing overhead.

• A WRS (Weighted Random Sampling) strategy [29]
to select K to-be-helped functions based on the cold
startup frequency of each function on the node. Pagu-
rus tends to prepare zygote images for the functions that
suffer from more cold startups with high possibility.

Similarity-based Filter. Focusing on the package infor-
mation, a function f can be viewed as a set of packages, i.e.,
f = {pkg1, pkg2, ...}, where pkgi is assigned in the require-
ments.txt and refers to the required package in f ’s runtime
environment. Let Fn = { f ′1, f ′2, ...},∀ f ′i 6= f represent the set
of functions on node n when function f triggers re-packing.
The package difference between f and f ′i ∈ Fn imposes a
deep influence on the re-packing overhead. Let us denote the
containment relationship of a package pkg in fA and another
function fB as

con(pkg, fA) =

{
1 , if pkg∈ fA,

0 ,others,
∀pkg∈ fA

⋃
fB. (2)

We can then derive the containment relationship vector
of f and f ′i ∈ Fn as ~f = {con(pkg, f )|∀pkg ∈ f

⋃
f ′i } and

~f ′i = {con(pkg, f ′i )|∀pkg ∈ f
⋃

f ′i }, respectively. The simi-
larity between f and f ′i thus can be calculated as their cosine
distance by

Cos(~f ,~f ′i ) =


~f ·~f ′i
‖~f‖‖~f ′i ‖

, ‖~f‖‖~f ′i ‖ 6= 0,

1 , ‖~f‖‖~f ′i ‖= 0.

∀ f ′i ∈ Fn. (3)

Thereafter, we can obtain an initial f ’s to-be-helped function
candidate set C f

n by removing those functions with similarity
lower than TargetSimilarity from Fn. TargetSimilarity can
be set as the median similarity in default.

Note that, as discussed before, a package may be specified
in different versions, and a zygote image with version con-
flict (i.e., the same package but different versions) could not
be re-purposed by another function. Denoting the version of
a package pkg in function f as V (pkg, f ), we can express the
version conflict relationship between f and f ′ as

Con f lict( f , f ′)=

{
1 ,∃ pkg ∈ f ,V (pkg, f ) 6=V (pkg, f ′),

0 ,others.
(4)

74    2022 USENIX Annual Technical Conference USENIX Association



Then, we first ensure that there is no conflict between
function f and its candidates, by removing the functions with
version conflict from the candidate set. However, it is still
possible that some candidates conflict with each other. For
instance, candidates f ′1 and f ′2 do not conflict with f , but f ′1
conflicts with f ′2. In this case, they cannot be packed into a
single zygote image either. The candidate set C f

n should be
further updated by Equation (5), where C f

n\ f ′i represents the
complement of f ′i in C f

n .

C f
n = { f ′i |Con f lict( f , f ′i ) = 0,

Con f lict( f ′i , C
f
n\ f ′i ) = 0,∀ f ′i ∈ C f

n ,},
(5)

Take the package conflict in AWS application benchmarks
as an example, function tcp_check_transcribe requires the
package aws_requests_auth with version 0.4.1, while func-
tion ep_delivery_on_package_created requires that with
version 0.4.3. It denotes that applications have various pack-
age similarities, and two functions may rely on conflicted
packages. By selecting the to-be-helped functions based on
package similarity, a zygote image installs fewer packages
for zygote images with less re-packing overhead.

WRS selection. After the similarity filter and conflict
recognition, the to-be-helped function candidates can be sig-
nificantly reduced. However, it is still nontrivial for the inter-
function scheduler to determine the appropriate number of
to-be-helped functions without resulting in too large image
size, too long image generation time, or failing to eliminate
most cold startups. Therefore, we should choose an appro-
priate number, say K, of functions from candidates C f

n that
tends to eliminate the cold startups with high probability.

Therefore, we first remove the functions never re-invoked
from C f

n . Let I be the number of remaining functions that
have been invoked more than once. We can calculate K as

K=
∑

I
n=1 Kn

I
=

I

∑
n=1

[
∑

I
n=1 Cold( f ′n)+∑

I
n=1 Zygote( f ′n)

(Cold( f ′n)+Zygote( f ′n))Num(Zygote)
]/I,

(6)
Ki is the expected number of to-be-helped functions for f ′i ,
Num(Zygote) is the average number of active zygotes in the
system, Zygote( f ′i ) and Cold( f ′i ) indicate the times a func-
tion experiences zygote-based invocation and cold startups
of f ′i , respectively. Ki ensures that each to-be-helped func-
tion f ′i can be re-packed into a zygote container at least once.

Algorithm 1 summarizes the SF-WRS algorithm. First,
the inter-function scheduler filters out the candidate func-
tions with low similarity values (lines 1-3), recognizes the
package conflicts (lines 4-6), and then selects K to-be-helped
ones by the A-ExpJ algorithm, which is a variation of WRS
(Weighted Random Sampling) algorithm [29] (lines 9-12).
Compared with naive WRS, A-ExpJ shows much lower time
complexity. The time complexity of selecting K functions is
O(K log( n

K )) with A-ExpJ, and the time complexity of naive
WRS is O(n).

Algorithm 1 SF-WRS Selection Algorithm

Require: To-be-helped function candidates C f
n

Require: Cold( f ′i ) and Zygote( f ′i ) of function f ′i in last hour
1: C f

n = Sample.init(Fn)

2: for f ′i in C f
n do

3: if Cos(~f , f ′i )< TargetSimilarity then: C f
n .delete( f ′i )

4: for f ′j in C f
n do

5: if Con f lict( f , f ′j)=1 or Con f lict( f ′j, C
f
n\ f ′j)=1 then

6: C f
n .delete( f ′j)

7: if C f
n 6= Null then

8: Total = ∑
K
n=1 Cold( f ′i )+∑

K
n=1 Zygote( f ′i )

9: for f ′k in C f
n do

10: Prepack( f ′k) = [Cold( f ′k)+Zygote( f ′k]/Total
11: Sample.append(( f ′k,Prepack( f ′k)))

12: A−ExpJ(Sample,K)

Function
Database

Intra-function
manager

Inter-function
scheduler

f

Original image Zygote image

Extracted packages

+
Idle

Arises Invoke

To-be-helped

Idle identify model Re-packing algorithm

Trigger

Return the updated re-packed zygote image

Inform

Functions

Local cache

Figure 8: The key steps (represented in green) of re-packing
a zygote image for the first time.

6.2 Re-packing a Zygote Image
Figure 8 shows the steps of re-packing the zygote image
for a function f . When the intra-function container man-
ager of f identifies an idle container, it informs the inter-
function scheduler, then selects the to-be-helped functions
of f based on the SF-WRS algorithm. After that, the inter-
function scheduler triggers the re-packing operation, obtains
the packages, and re-packs the zygote image. Only the pack-
ages shared by all the to-be-helped functions are installed
in the shared domain. Finally, the re-packed zygote image
is returned to the intra-function container manager of f for
building zygote containers to replace f ’s idle containers.

The inter-function container manager has an advantage
compared with the traditional building method, where the
image is built through the network from the container repos-
itory. Pagurus omits the downloading of the required pack-
ages in a zygote image through the network again, benefiting
from the locally cached packages, when creating the private
container images [26, 39]. By reusing cached packages, re-
packing a zygote image takes a much shorter time.

Besides, the zygote image of a function is asynchronously
re-packed before its to-be-helped functions actually meet in
cold startups. Re-packing a zygote image does not result in
long response latencies of to-be-helped function invocations.

USENIX Association 2022 USENIX Annual Technical Conference    75



Function fA

Function fB

Step 1:  
Zygote fork

ZygotePrivateHelper

ZygotePrivateHelper

 
Code

Step 2: 
Code copy

 
Code

Step 3:
Specialize 

(e.g., 
Function fA 
load burst)

Step 3: Specialize 
(e.g., Function fB 

cold startup)

(a) Security

OpenWhisk

Pagurus

Container
Function fA query

Container
Function fB query

Private
Function fA query

fork and specialize
Zygote

Helper
Function fB query

Function fB

Function fA

Function fA

Function fB

Function fA

(b) Process tree

Figure 9: Security guarantee when forking a zygote.

6.3 Forking a Zygote Container

The rest undertaking is to safely and efficiently share zygote
containers for other functions. To provide higher availabil-
ity for multiple to-be-helped functions getting zygote con-
tainers, we fork the zygote container to be helper contain-
ers, rather than directly specializing it. The zygote container
remains there for other to-be-helped functions. The forked
containers also ensure software security by the anonymous
mounting and privilege domain as zygote containers do.

When a zygote container is forked from function fA to be
fB’s helper container, the code of fB is copied into the forked
one. We implement two plugins Zygote fork and Code copy,
in the inter-function scheduler. The Zygote fork plugin forks
a container asynchronously, un-mounts the package directo-
ries of functions other than fB, and transfers the control ac-
cess to fB’s corresponding privilege domain. The Code copy
plugin copies the code of fB to the helper container.

Figure 9(a) shows the steps of fB forking a zygote con-
tainer of function fA. In Step 1, a zygote container of fA is
forked through the Zygote fork plugin. Then, the Code copy
plugin copies the code of fB into the forked zygote (Step 2).
Lastly, the forked container joins the helper container pool
of fB (Step 3). It also provides process-level isolation for
queries, as shown in Figure 9(b).

7 Sharing-aware Function Balancing

In existing serverless computing clusters, hash-based meth-
ods or resource usage-based methods are often used to route
user queries [13, 30, 35, 37, 38, 42, 43]. It is possible that the
functions on a node do not share many packages. In this case,
the host node needs to create many private directories with
many packages, resulting in poor resource efficiency. To ad-
dress such a problem, a straightforward solution is checking
the package similarities of all the active functions, and as-
signing the functions that share more packages to the same

node. However, it is not always a good solution, as the func-
tions sharing many packages may not have idle containers.

To resolve the problems above, we propose a function bal-
ancing strategy based on the statistics of zygote containers
and the available resources Un={UCPU ,UIO,Unet , ...}n on ev-
ery node. The function balancer is implemented on the head
node of the cluster, to obtain the statistics from all the nodes.
For a function fB that requires package pkga and pkgb, if
it fails to find a zygote container during its invocation on a
node, its future invocations should be redirected to another
node with potential zygote images.

To this end, Pagurus runs the sharing-aware function bal-
ancer on the head node based on the resource usage Un, and
the similarity between the redirected fA and functions with
idle containers on node n. Let N= {n|maxUn ≤ Tres} repre-
sent the set of nodes where the resource utilization is under
the threshold Tres (80% by default). The head node will se-
lect a new node with the most zygote containers from N and
inform the API gateway accordingly. After that, the queries
of fB will be routed to this new node.

8 Evaluation of Pagurus

In this section, we evaluate Pagurus in reducing the cold star-
tups and end-to-end latencies when a function does not have
warm containers. Then, we evaluate Pagurus by a large-scale
evaluation with Azure trace. After that, we show the integra-
tion with other techniques and overhead.

8.1 Experimental Setup

We use 10 best-practice applications with the most GitHub
stars from Amazon AWS samples as the benchmarks [6].
We use these applications for revealing the performance
of Pagurus for real applications. Experiments with small
scale benchmarks in serverless benchmark suites, e.g., FaaS-
Profiler [49] and ServerlessBench [61] show similar results.
We run the benchmarks on a 6-node cluster. A node gener-
ates function invocations, and the other 5 nodes serve invo-
cations. Table 1 shows the configurations of each node.

Pagurus does not rely on the function invocation arrival
distribution. In Section 8.2-8.3, we send queries to each ap-
plication following a Poisson distribution by randomly sam-
pling λ between 0 and 5 queries per second. We co-locate
all the benchmarks, and run 20 tests with different sam-
ples to avoid randomness. More experiments are done with
the Pareto distribution-based invocation pattern of the Azure
serverless trace in Section 8.4.

We compare Pagurus, prewarm-disabled OpenWhisk,
prewarm-enabled OpenWhisk (OpenWhisk-Prewarm), and
SOCK [46]. SOCK also prewarms containers by dynami-
cally updating packages in the prewarmed containers to al-
leviate cold startups. When a function obtains a prewarmed

76    2022 USENIX Annual Technical Conference USENIX Association



bot       eco        ddns  etl   rek   file     tok     cart          pod  rep
Application Name

0%

20%

40%

60%

Pe
rc

en
ta

ge
 o

f 
 C

ol
d 

St
ar

tu
ps

 R
em

ai
ne

d

500

1k

1.5k

Sy
st

em
-le

ve
l C

ol
d 

St
ar

tu
psPagurus SOCK OpenWhisk Prewarm OpenWhisk Prewarm-Disabled

Figure 10: Remained cold startups of OpenWhisk-Prewarm, SOCK and Pagurus, compared with prewarm-disabled OpenWisk.
The left figure shows the remained cold startups (all bars are normalized to the number of cold startups of OpenWhisk Prewarm-
Disabled) of each function, while the right figure shows the remained cold startups of all functions in the system.

Table 1: Hardware, software, and benchmark setups
Configuration

Node
CPU: Intel Xeon(Ice Lake) Platinum 8369B @3.5GHz

Cores: 8, DRAM: 16GB, Disk: 100GB SSD (3000 IOPS)

Software
Operating system: Linux with kernel 4.15.7, Docker: 20.10.6

Nginx version: nginx/1.10.3, Database: Couchdb:3.1.1
runc version: 1.0.0-rc93, containerd version: 1.4.4

Container

Container runtime: Python-3.7.0, Linux with kernel 4.15.7
Resource limit and Lifetime: 1-core with 256MB, 600s

Function container limit: 10 for each function on each node
prewarm pool size in OpenWhisk: 2 on each node

Benchmarks ( serverless-ecommerce-platform (eco), etl-orchestrator (etl)
38 functions in cost-explorer-report (rep), serverless-tokenization (tok)

10 AWS Lambda transcribe-comprehend-podcast (pod), serverless-chatbot (bot)
best practice serverless-shopping-cart (cart), refarch-fileprocessing (file)
applications) finding-missing-persons-using-rekognition (rek), ddns

container, SOCK and OpenWhisk-Prewarm copy the miss-
ing packages into the prewarmed container for its invocation.

8.2 Alleviating Container Cold Startups
Figure 10 shows the percentages of the cold startups not
eliminated by Pagurus, SOCK, and OpenWhisk-Prewarm,
compared with prewarm disabled OpenWhisk. On aver-
age, Pagurus alleviate 83.1% of the cold startups, while
OpenWhisk-Prewarm and SOCK alleviate 68.9% and 64.4%
of that. Meanwhile, as Pagurus does not need to prewarm
containers, there is no extra memory overhead introduced by
the prewarm container pool with Pagurus.

As observed, SOCK and OpenWhisk-Prewarm only re-
duce a small percentage of cold startups for many functions
(e.g., functions of eco and cart). This is because the func-
tions tend to contend for the limited prewarmed containers.
On the contrary, Pagurus alleviates the cold startups by fork-
ing other functions’ zygote containers, without trapping in
the same dilemmas. We can also find that Pagurus alleviates
slightly fewer container cold startups for several functions,
compared with SOCK and OpenWhisk-Prewarm. This is be-
cause these functions have low cold startup frequency by de-
fault, and SF-WRS policy does not tend to re-pack them into
zygotes for achieving higher system-level cold startup alle-

bot      eco       ddns  etl  rek  file    tok    cart        pod  rep
Application Name

0.0

0.5

1.0

1.5

St
ar

tu
p 

La
te

nc
ie

s (
s) OpenWhisk Prewarm-Disabled

OpenWhisk Prewarm
Pagurus
SOCK

Figure 11: The latency of starting up a prewarmed container
in OpenWhisk-Prewarm and SOCK, and the latency of fork-
ing a zygote container in Pagurus.

viation. The percentage looks large when the original cold
startup frequency is low, even if a small number of cold con-
tainer startup is not eliminated.

In our experiment, 27.8% of the warm containers are
turned into zygote containers, then are forked by other func-
tions. When a function does not have a warm container for
its queries, 60.5% of the obtained containers are forked.

8.3 Reducing Startup and E2E Latency

Figure 11 shows the latencies of starting a container from
a prewarmed one (OpenWhisk-Prewarm and SOCK), and
forking a zygote container (Pagurus). As observed, all the
benchmarks have the shortest startup latencies with Pagurus.

If a function invocation is hosted by a helper container
with Pagurus, the packages are ready beforehand, and only
the user-specific code initialization is needed. Pagurus is
able to fork a zygote container in 11ms, and completes the
code initialization in 5ms.

With OpenWhisk-Prewarm, starting from prewarmed con-
tainers takes longer than directly cold startup a container
from the image (e.g., functions in ddns, pod, and rep).
SOCK reduces the latency of the prewarm startup leverag-
ing the packages cached with higher benefit-to-cost.

Figure 12 shows the average end-to-end latency of each
function normalized to its latency with prewarm-disabled

USENIX Association 2022 USENIX Annual Technical Conference    77



Functions in 10 applications0.0

0.5

1.0

En
d-

to
-e

nd
 L

at
en

cie
s(

s) OpenWhisk Prewarm-Disabled

(a) OpenWhisk Prewarm-Disabled

Functions in 10 applications0.0

0.5

1.0

OpenWhisk Prewarm

(b) OpenWhisk-Prewarm

Functions in 10 applications0.0

0.5

1.0

En
d-

to
-e

nd
 L

at
en

cie
s(

s) SOCK

(c) Sock

Functions in 10 applications0.0

0.5

1.0

Pagurus

(d) Pagurus

Figure 12: The end-to-end latencies of Prewarm-Disabled
OpenWhisk, OpenWhisk Prewarm, SOCK and Pagurus.

OpenWhisk. Pagurus reduces the end-to-end latency of the
benchmark functions by 475ms and 479ms on average, while
OpenWhisk-Prewarm and SOCK reduce the end-to-end la-
tency by 237ms and 286ms.

By mounting packages beforehand with privilege control,
zygote containers can better reduce the startup latency, thus
the end-to-end latency.

8.4 Large-scale Evaluation with Azure Trace

In this subsection, we evaluate Pagurus by replaying the
Azure serverless trace [50] on a 31-node cluster. The soft-
ware and hardware configuration of each node is the same
as Table 1. We use all the 40,000 functions from the day07
trace [12], generate function invocations, and randomly route
the invocations to the 30 nodes.

The Package similarity in Pagurus is used to shrink the
searching space for identifying to-be-helped candidates and
reducing the re-packing overhead. However, the Azure
trace does not provide package information for the func-
tions, but only the function duration and invocation arrival
time. Lacking the package information, it is impossible
to evaluate the similarity-filtered WRS selection policy in
Pagurus, nor OpenWhisk-Prewarm or SOCK. With no pack-
age information and similarity-filtered re-packing for Azure
trace, Pagurus identifies to-be-helped candidates based on
the basic WRS policy. We therefore only compare similarity-
disabled Pagurus, with the prewarm-disabled OpenWhisk for
the large-scale evaluation , to show the effectiveness of alle-
viating cold startups by simply replacing idle containers with
zygotes.

0 10000 20000 30000 40000
Function ID

0
41k

100k

200k

270k
300k

To
ta

l C
ol

d 
St

ar
tu

p

frequent

middle
infrequent

OpenWhisk Pagurus

(a) Cumulative cold startups

1 5 20 40 60
Cold Startup

25%

50%

68.5%
75%

90.1%
100%

Fu
nc

tio
ns

 C
DF

OpenWhisk
Pagurus

(b) Frequencies of cold startups

Figure 13: The effect of alleviating cold startup, and the CDF
that functions suffer from different cold startup frequencies.

8.4.1 Alleviating Cold Startup

We report two user experience-related metrics in this exper-
iment. First, how many cold startups are alleviated by Pagu-
rus? Second, how many functions seldom experience cold
startups (e.g., one cold startup) in one day with Pagurus?

Figure 13(a) shows the total number of cold startups
with Pagurus and prewarm-disabled OpenWhisk (denoted by
“OpenWhisk” for short in this subsection). In the figure, the
functions are sorted in the descending order of their invoca-
tion frequencies. The smaller the function ID, the more fre-
quent the function is invoked. As shown in the figure, Pagu-
rus reduces the number of cold startups by 84.6%. We can
also find that OpenWhisk results in the frequent cold startup
for the functions of middle-popularity. It is because the
warm containers of these middle-popularity functions tend
to be recycled due to the relatively low invocation frequen-
cies. Pagurus efficiently alleviates the cold startups for the
middle-popularity functions through zygote containers.

Figure 13(b) shows the cumulative distribution of the
functions with different container cold startup frequencies.
As observed, 73.4% and 52.1% of all functions experience
cold startup less than once in a day with Pagurus and Open-
Whisk, respectively. Meanwhile, 90.1% of the functions ex-
perience cold startups less than 5 times daily with Pagurus.
In the figure, sudden jumps happen around 24 and 48 cold
startups for OpenWhisk. The jumps are caused by functions
with a 1-hour or 30-minutes trigger in the trace.

Pagurus effectively alleviates the cold container startup,
especially for middle-popularity and low-popularity func-
tions in production. It greatly improves the user experience.

8.4.2 Reducing Tail Latency

Figure 14 shows the 95%-ile latencies of the 40,000 func-
tions with Pagurus and OpenWhisk. The left y-axis shows
the 95%-ile latencies of functions with Pagurus, and the right
y-axis shows that with OpenWhisk normalized to the for-
mer. OpenWhisk results in longer 95%-ile latencies for most
functions than Pagurus (the right y-axis is larger than 1).

We can also observe that popular functions (functions

78    2022 USENIX Annual Technical Conference USENIX Association



0 10000 20000 30000 40000
Function ID

2

4

6

8

10

Pa
gu

ru
s E

nd
-to

-E
nd

 L
at

en
cie

s (
s)

Pagurus

1

2

4

10

Op
en

W
hi

sk
 E

nd
-to

-E
nd

 L
at

en
cie

s
 (N

or
m

al
ize

d 
to

 P
ag

ur
us

) OpenWhisk

Figure 14: The end-to-end 95%-ile latency of 40,000 func-
tions with Pagurus and OpenWhisk.

2 4 6 8 16
K = {2,4,6,8,16}

60%

70%

80%

90%

100%

Al
le

vi
at

ed
 C

ol
d 

St
ar

tu
ps

convergency

Tdefault = 30s
Tdefault = 60s
Tdefault = 120s

Figure 15: The convergency and the percentages of cold star-
tups alleviated by Pagurus with different Tde f ault .

with ID smaller than 15,000) have similar 95%-ile latency
with OpenWhisk and Pagurus. This is because the slowest
95%-ile invocations of these functions still experience warm
startup, as these functions are frequently invoked. For the
middle-popularity and low-popularity functions, their 95%-
ile latencies are the latency of the function invocation that
suffers from the cold container startup with OpenWhisk.

8.4.3 Impacts of Hyperparameters

In this experiment, we evaluate the impact of Tde f ault (the
value is set as 60s by default), and the number of to-be-
helped functions K, on Pagurus. Figure 15 shows the per-
centages of cold startups alleviated by Pagurus with differ-
ent Tde f ault and different K. As observed, the performance of
Pagurus is stable when Tde f ault varies. The performance of
Pagurus is not sensitive to Tde f ault .

We also find the number of to-be-helped functions, K,
gradually converges to 8. Moreover, the appropriate value
of K is not affected by Tde f ault . For Azure workloads, Pagu-
rus should generate a zygote for 8 to-be-helped functions on
average. It is consistent with the calculated one in Equa-
tion 6. We also measure the impact of larger prewarm pool
size in OpenWhisk, and find that the improvement becomes
marginal but with significant resource waste.

8.5 Integrating with Orthogonal Techniques
The decoupled hierarchy design of Pagurus provides easy-
to-use APIs for container orchestrators. Pagurus can be inte-
grated with prior work on speeding up the cold startup.

Table 2: Overheads of the components in Pagurus
Sources Type Overheads (each node)

CPU overhead 0.345 core
Intra-container manager Memory overhead 228MB

Storage overhead 485MB for each zygote image

Inter-function scheduler
CPU overhead 0.66 core (re-packing included)

Memory overhead 315MB

Pagurus brings shorter end-to-end latency when it is in-
tegrated with Checkpoint/Restore [7] (denoted by C/R) and
Catalyzer [28], respectively. With C/R, a container is recov-
ered from a checkpoint image. With Catalyzer, more data are
already loaded in the image stored in memory. By replaying
the evaluation, we find that C/R+Pagurus reduces the cold
startup time of the benchmarks by 78.9% on average com-
pared with C/R; Catalyzer+Pagurus reduces the cold startup
time by 15.1% on average compared with Catalyzer. Even if
no appropriate forked zygote container returns, Pagurus does
not slow down the container startup.

8.6 Overheads of Pagurus Components
In Pagurus, packing zygote images, generating zygote con-
tainers from the images, and determining the to-be-helped
functions for each function introduce runtime overhead.

According to our measurement, each container in Pagurus
uses smaller memory on average than OpenWhisk. The re-
duction originates from the design of the zygote container.
Although packages are pre-installed in zygote containers,
they are imported into memory only when a zygote container
is forked. On the contrary, warm containers (private contain-
ers) always keep the packages in memory for low latency.
The reduction of memory usage is not affected by the num-
ber of to-be-helped functions.

Table 2 shows the CPU, memory, and storage over-
head caused by the intra-container managers and the inter-
function schedulers when replaying the Azure trace. As re-
ported, less than one core is required to run all the intra-
container managers and the inter-function scheduler on a
node. If fewer functions are executed on a node, the over-
head will be smaller.

9 Conclusion

Pagurus alleviates cold startups with inter-function container
sharing rather than popular prewarm-based methods. It com-
prises an intra-function manager for idle container identifi-
cation and management, an inter-function scheduler for safe
container scheduling, and a sharing-aware function balancer
for resource-aware workload balancing. Our experimental
results based on both real system benchmarks and Azure
trace show that Pagurus significantly alleviates the cold con-
tainer startup. The cold startup latency is reduced from hun-
dreds of milliseconds to 16ms if Pagurus alleviates it.

USENIX Association 2022 USENIX Annual Technical Conference    79



Acknowledgment

We would thank our anonymous reviewers and shepherd, for
their helpful comments and suggestions. This work is par-
tially sponsored by the National Natural Science Foundation
of China (62022057, 61832006, 61872240), Open Research
Projects of Zhejiang Lab (2021KE0AB02), and Shanghai
international science and technology collaboration project
(21510713600). Quan Chen and Minyi Guo are the corre-
sponding authors.

References

[1] Alibaba function compute. https://alibabacloud.
com/product/function-compute, 2021.

[2] Annotations on openwhisk assets. https:
//github.com/apache/openwhisk/blob/
90c20a847b9a70b43e316fd89a0a15ae2ee39cc4/
docs/annotations.md, 2021.

[3] Apache openwhisk. https://openwhisk.apache.
org, 2021.

[4] Authentication and authorization in azure
functions. https://docs.microsoft.
com/en-us/azure/app-service/
overview-authentication-authorization,
2021.

[5] Aws lambda. https://aws.amazon.com/lambda/,
2021.

[6] Aws samples. https://github.com/aws-samples/,
2021.

[7] Checkpoint/restore. https://criu.org/
Checkpoint/Restore, 2021.

[8] Execute mode in fission. https://docs.fission.
io/docs/usage/executor/, 2021.

[9] Fission workflows: Fast, reliable and lightweight func-
tion composition for serverless functions. https://
docs.fission.io/docs/workflows/, 2021.

[10] Function identity in google cloud functions.
https://cloud.google.com/functions/docs/
securing/function-identity, 2021.

[11] Google cloud functions. https://cloud.google.
com/functions, 2021.

[12] Microsoft azure functions. https://azure.
microsoft.com/en-us/services/functions,
2021.

[13] Nginx. https://www.nginx.com/, 2021.

[14] Prewarm in apache openwhisk. https:
//github.com/apache/openwhisk/blob/master/
docs/actions-python.md, 2021.

[15] Prewarm in azure functions. https://docs.
microsoft.com/en-us/azure/azure-functions/
functions-premium-plan, 2021.

[16] Troubleshooting aws lambda identity and access.
https://docs.aws.amazon.com/lambda/latest/
dg/security_iam_troubleshoot.html, 2021.

[17] RunD: A lightweight secure container runtime for
high-density deployment and high-concurrency startup
in serverless computing. In 2022 USENIX Annual
Technical Conference (USENIX ATC 22), Carlsbad,
CA, July 2022. USENIX Association.

[18] Mainak Adhikari, Tarachand Amgoth, and
Satish Narayana Srirama. A survey on schedul-
ing strategies for workflows in cloud environment and
emerging trends. ACM Comput. Surv., 52(4):68:1–
68:36, 2019.

[19] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac,
Manuel Stein, and Klaus Satzke. SAND: Towards high-
performance serverless computing. In ATC, pages 923–
935, 2018.

[20] Ali Anwar, Mohamed Mohamed, Vasily Tarasov,
Michael Littley, Lukas Rupprecht, Yue Cheng, Nan-
nan Zhao, and Dimitris Skourtis. Improving docker
registry design based on production workload analysis.
In Nitin Agrawal and Raju Rangaswami, editors, 16th
USENIX Conference on File and Storage Technologies,
FAST 2018, Oakland, CA, USA, February 12-15, 2018,
pages 265–278. USENIX Association, 2018.

[21] Ioana Baldini, Paul C. Castro, Kerry Shih-Ping Chang,
Perry Cheng, Stephen Fink, Vatche Ishakian, Nick
Mitchell, Vinod Muthusamy, Rodric Rabbah, Alek-
sander Slominski, and Philippe Suter. Serverless com-
puting: Current trends and open problems. In Sanjay
Chaudhary, Gaurav Somani, and Rajkumar Buyya, ed-
itors, Research Advances in Cloud Computing, pages
1–20. Springer, 2017.

[22] Kahina Bessai, Samir Youcef, Ammar Oulamara,
Claude Godart, and Selmin Nurcan. Bi-criteria work-
flow tasks allocation and scheduling in cloud comput-
ing environments. In 2012 IEEE Fifth International
Conference on Cloud Computing, Honolulu, HI, USA,
June 24-29, 2012, pages 638–645. IEEE Computer So-
ciety, 2012.

[23] Sol Boucher, Anuj Kalia, David G. Andersen, and
Michael Kaminsky. Putting the "micro" back in mi-
croservice. In Haryadi S. Gunawi and Benjamin Reed,

80    2022 USENIX Annual Technical Conference USENIX Association

https://alibabacloud.com/product/function-compute
https://alibabacloud.com/product/function-compute
https://github.com/apache/openwhisk/blob/90c20a847b9a70b43e316fd89a0a15ae2ee39cc4/docs/annotations.md
https://github.com/apache/openwhisk/blob/90c20a847b9a70b43e316fd89a0a15ae2ee39cc4/docs/annotations.md
https://github.com/apache/openwhisk/blob/90c20a847b9a70b43e316fd89a0a15ae2ee39cc4/docs/annotations.md
https://github.com/apache/openwhisk/blob/90c20a847b9a70b43e316fd89a0a15ae2ee39cc4/docs/annotations.md
https://openwhisk.apache.org
https://openwhisk.apache.org
https://docs.microsoft.com/en-us/azure/app-service/overview-authentication-authorization
https://docs.microsoft.com/en-us/azure/app-service/overview-authentication-authorization
https://docs.microsoft.com/en-us/azure/app-service/overview-authentication-authorization
https://aws.amazon.com/lambda/
https://github.com/aws-samples/
https://criu.org/Checkpoint/Restore
https://criu.org/Checkpoint/Restore
https://docs.fission.io/docs/usage/executor/
https://docs.fission.io/docs/usage/executor/
https://docs.fission.io/docs/workflows/
https://docs.fission.io/docs/workflows/
https://cloud.google.com/functions/docs/securing/function-identity
https://cloud.google.com/functions/docs/securing/function-identity
https://cloud.google.com/functions
https://cloud.google.com/functions
https://azure.microsoft.com/en-us/services/functions
https://azure.microsoft.com/en-us/services/functions
https://www.nginx.com/
https://github.com/apache/openwhisk/blob/master/docs/actions-python.md
https://github.com/apache/openwhisk/blob/master/docs/actions-python.md
https://github.com/apache/openwhisk/blob/master/docs/actions-python.md
https://docs.microsoft.com/en-us/azure/azure-functions/functions-premium-plan
https://docs.microsoft.com/en-us/azure/azure-functions/functions-premium-plan
https://docs.microsoft.com/en-us/azure/azure-functions/functions-premium-plan
https://docs.aws.amazon.com/lambda/latest/dg/security_iam_troubleshoot.html
https://docs.aws.amazon.com/lambda/latest/dg/security_iam_troubleshoot.html


editors, 2018 USENIX Annual Technical Conference,
USENIX ATC 2018, Boston, MA, USA, July 11-13,
2018, pages 645–650. USENIX Association, 2018.

[24] Eric A. Brewer. Kubernetes and the path to cloud
native. In Shahram Ghandeharizadeh, Sumita Barah-
mand, Magdalena Balazinska, and Michael J. Freed-
man, editors, SoCC, page 167. ACM, 2015.

[25] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal,
James Broberg, and Ivona Brandic. Cloud comput-
ing and emerging IT platforms: Vision, hype, and re-
ality for delivering computing as the 5th utility. Future
Gener. Comput. Syst., 25(6):599–616, 2009.

[26] James Cadden, Thomas Unger, Yara Awad, and Han
Dong. SEUSS: skip redundant paths to make server-
less fast. In EuroSys ’20: Fifteenth EuroSys Con-
ference 2020, Heraklion, Greece, April 27-30, 2020,
pages 32:1–32:15. ACM, 2020.

[27] Nilanjan Daw, Umesh Bellur, and Purushottam Kulka-
rni. Xanadu: Mitigating cascading cold starts in server-
less function chain deployments. In Dilma Da Silva
and Rüdiger Kapitza, editors, Middleware ’20: 21st In-
ternational Middleware Conference, Delft, The Nether-
lands, December 7-11, 2020, pages 356–370. ACM,
2020.

[28] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guan-
glu Yan, Chenggang Qin, Qixuan Wu, and Haibo Chen.
Catalyzer: Sub-millisecond startup for serverless com-
puting with initialization-less booting. In James R.
Larus, Luis Ceze, and Karin Strauss, editors, ASP-
LOS ’20: Architectural Support for Programming Lan-
guages and Operating Systems, Lausanne, Switzerland,
March 16-20, 2020, pages 467–481. ACM, 2020.

[29] Pavlos S. Efraimidis and Paul G. Spirakis. Weighted
random sampling with a reservoir. Inf. Process. Lett.,
97(5):181–185, 2006.

[30] Kaihua Fu, Wei Zhang, Quan Chen, Deze Zeng, Xin
Peng, Wenli Zheng, and Minyi Guo. Qos-aware and
resource efficient microservice deployment in cloud-
edge continuum. In 35th IEEE International Parallel
and Distributed Processing Symposium, IPDPS 2021,
Portland, OR, USA, May 17-21, 2021, pages 932–941.
IEEE, 2021.

[31] Alexander Fuerst and Prateek Sharma. Faascache:
keeping serverless computing alive with greedy-dual
caching. In Tim Sherwood, Emery Berger, and Chris-
tos Kozyrakis, editors, ASPLOS ’21: 26th ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Virtual
Event, USA, April 19-23, 2021, pages 386–400. ACM,
2021.

[32] Tyler Harter, Brandon Salmon, Rose Liu, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Slacker: Fast distribution with lazy docker
containers. In Angela Demke Brown and Florentina I.
Popovici, editors, FAST, pages 181–195. USENIX As-
sociation, 2016.

[33] Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonza-
lez, and Johann Schleier-Smith. Serverless computing:
One step forward, two steps back. In CIDR 2019, 9th
Biennial Conference on Innovative Data Systems Re-
search, Asilomar, CA, USA, January 13-16, 2019, On-
line Proceedings. www.cidrdb.org, 2019.

[34] Scott Hendrickson, Stephen Sturdevant, Edward
Oakes, Tyler Harter, Venkateshwaran Venkataramani,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Serverless computation with openlambda. lo-
gin Usenix Mag., 41(4), 2016.

[35] M. Reza HoseinyFarahabady, Albert Y. Zomaya, and
Zahir Tari. A model predictive controller for managing
qos enforcements and microarchitecture-level interfer-
ences in a lambda platform. IEEE Trans. Parallel Dis-
tributed Syst., 29(7):1442–1455, 2018.

[36] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti,
Chia-Che Tsai, Anurag Khandelwal, Qifan Pu,
Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja
Yadwadkar, et al. Cloud programming simplified: a
berkeley view on serverless computing. arXiv preprint
arXiv:1902.03383, 2019.

[37] Kostis Kaffes, Neeraja J. Yadwadkar, and Christos
Kozyrakis. Centralized core-granular scheduling for
serverless functions. In Proceedings of the ACM Sym-
posium on Cloud Computing, SoCC 2019, Santa Cruz,
CA, USA, November 20-23, 2019, pages 158–164.
ACM, 2019.

[38] Young Ki Kim, M. Reza HoseinyFarahabady,
Young Choon Lee, and Albert Y. Zomaya. Automated
fine-grained CPU cap control in serverless computing
platform. IEEE Trans. Parallel Distributed Syst.,
31(10):2289–2301, 2020.

[39] Huiba Li, Yifan Yuan, Rui Du, Kai Ma, Lanzheng Liu,
and Windsor Hsu. DADI: block-level image service
for agile and elastic application deployment. In Ada
Gavrilovska and Erez Zadok, editors, 2020 USENIX
Annual Technical Conference, USENIX ATC 2020, July
15-17, 2020, pages 727–740. USENIX Association,
2020.

[40] Zijun Li, Linsong Guo, Jiagan Cheng, Quan Chen,
BingSheng He, and Minyi Guo. The serverless comput-
ing survey: A technical primer for design architecture.
ACM Comput. Surv., dec 2021. Just Accepted.

USENIX Association 2022 USENIX Annual Technical Conference    81



[41] Zijun Li, Yushi Liu, Linsong Guo, Quan Chen, Jia-
gan Cheng, Wenli Zheng, and Minyi Guo. Faasflow:
enable efficient workflow execution for function-as-a-
service. In Babak Falsafi, Michael Ferdman, Shan Lu,
and Thomas F. Wenisch, editors, ASPLOS ’22: 27th
ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, Lausanne, Switzerland, 28 February 2022 - 4
March 2022, pages 782–796. ACM, 2022.

[42] Nima Mahmoudi, Changyuan Lin, Hamzeh Khazaei,
and Marin Litoiu. Optimizing serverless computing:
introducing an adaptive function placement algorithm.
In Tima Pakfetrat, Guy-Vincent Jourdan, Kostas Kon-
togiannis, and Robert F. Enenkel, editors, Proceed-
ings of the 29th Annual International Conference on
Computer Science and Software Engineering, CAS-
CON 2019, Markham, Ontario, Canada, November 4-
6, 2019, pages 203–213. ACM, 2019.

[43] Sean McDaniel, Stephen Herbein, and Michela Taufer.
A two-tiered approach to I/O quality of service in
docker containers. In 2015 IEEE International Confer-
ence on Cluster Computing, CLUSTER 2015, Chicago,
IL, USA, September 8-11, 2015, pages 490–491. IEEE
Computer Society, 2015.

[44] M. Garrett McGrath and Paul R. Brenner. Serverless
computing: Design, implementation, and performance.
In Aibek Musaev, João Eduardo Ferreira, and Teruo
Higashino, editors, ICDCS Workshop, pages 405–410.
IEEE Computer Society, 2017.

[45] Anup Mohan, Harshad S. Sane, Kshitij Doshi, Saikr-
ishna Edupuganti, Naren Nayak, and Vadim Sukhom-
linov. Agile cold starts for scalable serverless. In
Christina Delimitrou and Dan R. K. Ports, editors, 11th
USENIX Workshop on Hot Topics in Cloud Comput-
ing, HotCloud 2019, Renton, WA, USA, July 8, 2019.
USENIX Association, 2019.

[46] Edward Oakes, Leon Yang, Dennis Zhou, Kevin
Houck, Tyler Harter, Andrea Arpaci-Dusseau, and
Remzi Arpaci-Dusseau. {SOCK}: Rapid task pro-
visioning with serverless-optimized containers. In
{USENIX} Annual Technical Conference (ATC), pages
57–70, 2018.

[47] Qifan Pu, Shivaram Venkataraman, and Ion Stoica.
Shuffling, fast and slow: Scalable analytics on server-
less infrastructure. In Jay R. Lorch and Minlan Yu,
editors, NSDI, pages 193–206. USENIX Association,
2019.

[48] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari.
Icebreaker: warming serverless functions better with
heterogeneity. In Babak Falsafi, Michael Ferdman,

Shan Lu, and Thomas F. Wenisch, editors, ASPLOS
’22: 27th ACM International Conference on Architec-
tural Support for Programming Languages and Op-
erating Systems, Lausanne, Switzerland, 28 February
2022 - 4 March 2022, pages 753–767. ACM, 2022.

[49] Mohammad Shahrad, Jonathan Balkind, and David
Wentzlaff. Architectural implications of function-as-a-
service computing. In Micro, pages 1063–1075. ACM,
2019.

[50] Mohammad Shahrad, Rodrigo Fonseca, Iñigo Goiri,
Gohar Chaudhry, Paul Batum, Jason Cooke, Eduardo
Laureano, Colby Tresness, Mark Russinovich, and Ri-
cardo Bianchini. Serverless in the wild: Characterizing
and optimizing the serverless workload at a large cloud
provider. In Ada Gavrilovska and Erez Zadok, editors,
ATC, pages 205–218. USENIX Association, 2020.

[51] Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas,
Shivaram Venkataraman, Ion Stoica, Benjamin Recht,
and Jonathan Ragan-Kelley. numpywren: serverless
linear algebra. CoRR, abs/1810.09679, 2018.

[52] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bag-
dasaryan, Christina Delimitrou, Robbert van Renesse,
and Hakim Weatherspoon. X-containers: Breaking
down barriers to improve performance and isolation of
cloud-native containers. In ASPLOS, pages 121–135,
2019.

[53] Eli Tilevich and Hanspeter Mössenböck, editors. Inter-
national Conference on Managed Languages & Run-
times. ACM, 2018.

[54] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias,
Edouard Bugnion, and Boris Grot. Benchmarking,
analysis, and optimization of serverless function snap-
shots. In Tim Sherwood, Emery Berger, and Christos
Kozyrakis, editors, ASPLOS ’21: 26th ACM Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Virtual
Event, USA, April 19-23, 2021, pages 559–572. ACM,
2021.

[55] Ranjan Sarpangala Venkatesh, Till Smejkal, Dejan S.
Milojicic, and Ada Gavrilovska. Fast in-memory criu
for docker containers. In International Symposium on
Memory Systems, pages 53–65, New York, NY, USA,
2019. Association for Computing Machinery.

[56] Michael Vrable, Justin Ma, Jay Chen, David Moore,
Erik Vandekieft, Alex C. Snoeren, Geoffrey M.
Voelker, and Stefan Savage. Scalability, fidelity, and
containment in the potemkin virtual honeyfarm. In An-
drew Herbert and Kenneth P. Birman, editors, SOSP,
pages 148–162. ACM, 2005.

82    2022 USENIX Annual Technical Conference USENIX Association



[57] T. Wagner. Understanding container reuse in
aws lambda. https://aws.amazon.com/blogs/
compute/container-reuse-in-lambda/, 2021.

[58] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. Re-
playable execution optimized for page sharing for a
managed runtime environment. In George Candea,
Robbert van Renesse, and Christof Fetzer, editors, Eu-
rosys, pages 39:1–39:16. ACM, 2019.

[59] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas
Ristenpart, and Michael M. Swift. Peeking behind the
curtains of serverless platforms. In Haryadi S. Gunawi
and Benjamin Reed, editors, 2018 USENIX Annual
Technical Conference, USENIX ATC 2018, Boston,
MA, USA, July 11-13, 2018, pages 133–146. USENIX
Association, 2018.

[60] Zhengjun Xu, Haitao Zhang, Xin Geng, Qiong Wu, and
Huadong Ma. Adaptive function launching accelera-
tion in serverless computing platforms. In 25th IEEE
International Conference on Parallel and Distributed
Systems, ICPADS 2019, Tianjin, China, December 4-6,
2019, pages 9–16. IEEE, 2019.

[61] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu
Zang, Ziqian Lu, Pingchao Yang, Chenggang Qin, and
Haibo Chen. Characterizing serverless platforms with
serverlessbench. In Rodrigo Fonseca, Christina Delim-
itrou, and Beng Chin Ooi, editors, SoCC ’20: ACM
Symposium on Cloud Computing, Virtual Event, USA,
October 19-21, 2020, pages 30–44. ACM, 2020.

A Artifact Appendix

A.1 Abstract
Our artifact includes the prototype implementation of
Zygote-based mechanism in Pagurus, 10 masked applica-
tions (including 38 functions) benchmarks, and mapped
functions from Azure Trace. The artifact provides experi-
ment workflow scripts to perform the measurement.

A.2 Artifact Check-list (Meta-information)
• Run-time Environment: Ubuntu 18.04, Docker 20.10.6,

CouchDB 3.2.2 and Python are required.
• Data set: The artifact uses 10 masked application bench-

marks from AWS samples and Azure traces.
• Execution workflows: For reproducing our paper’s results,

we provide the corresponding scripts for each evaluation sec-
tion (from Section 8.2 to Section 8.4) to send queries, collect
the execution metrics, and draw the comparison plots.

• Time needed to complete: see the instruction of each Exp.
• Publicly available: https://github.com/lzjzx1122/Pagurus
• Code Licenses: Apache-2.0 license

A.3 Hardware and Software Dependencies

• Hardware: The hardware is configured by {CPU: Intel
Xeon(Ice Lake) Platinum 8369B @3.5GHz, Cores: 8,
DRAM: 16GB, Disk: 200GB SSD with 4200 IOPS.}

• Software environment: Operating system: {Linux
with kernel 4.15.0, Docker: {20.10.15}, Container run-
time: {Python-3.6.9, Linux with kernel 4.15.7}, Nginx
version: {nginx/1.10.3}, Database: {Couchdb with ver-
sion 3.2.2}, runc version: {1.0.0-rc93}, containerd ver-
sion: {1.4.4}, and Pagurus. Detailed software depen-
dencies are all listed and scripted in the artifact.

A.4 How to Access and Install

GitHub link: https://github.com/lzjzx1122/Pagurus. Clone
the GitHub repository and then run the quick setup script to
deploy Pagurus.

A.5 Experiment and Expected Results

A.5.1 AWS applications (Section 8.2 and 8.3)

Under the path Pagurus/aws/trace, there are 18 different
sampling test results for AWS applications, and the expected
test results for each sampling are stored in the directory
aws/expected_result. You can directly run aws/plot.py
to generate the plots, or replay the trace using a testing script
to run the AWS experiment:

$ python3 aws/run_experients.py 1

Experiment customization: The above script performs
the 1st sampling test with Openwhisk, Pagurus, OpenWhisk-
Prewarm and SOCK. Other sampling tests can also be per-
formed by changing "1" to other test numbers. To fully re-
produce our result, it additionally takes at least 160-hours (20
tests with different sampling parameters) to generate the exe-
cution logs for 4 platforms. To ensure that the zygote repack-
ing mechanism and prewarm works efficiently, the running
time should be at least 2-hours for both 4 platforms (8 hours
for each test number).

After running the sampling tests under four platforms, the
script will generate the results under aws/result. Run the
following script to generate three .csv files:

$ python3 aws/summary_from_results.py

• cold_start.csv shows the remained cold startups
of OpenWhisk, SOCK and Pagurus, compared with
prewarm-disabled OpenWhisk (Figure 11).

• startup_time.csv shows latencies of starting up con-
tainers in prewarm-disabled OpenWhisk, OpenWhisk
and SOCK, respectively. It also contains latencies of
forking zygote containers in Pagurus (Figure 12).

USENIX Association 2022 USENIX Annual Technical Conference    83

https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
https://github.com/lzjzx1122/Pagurus
https://github.com/lzjzx1122/Pagurus


• e2e_latency.csv shows e2e latencies of benchmarks
in Pagurus, SOCK, OpenWhisk, and prewarm-disabled
OpenWhisk, respectively. (Figure 13).

Then run the following script to generate the plots:
$ python3 aws/plot_from_results.py

A.5.2 Azure Trace mapping (Section 8.4)

In the Azure trace experiment (Day07), invoke more than
40,000 functions will take 24 hours and more than 800
vCPUs by default. To reduce the computation resources
needed, we randomly select about 4,000 functions to
generate several small-scale Azure traces under the path
Pagurus/azure/trace. The functions in each small-scale
trace are all different from each other. A larger trace with
more functions can be replayed if only more computation
resources or nodes are provided.

Considering that the experiment will take about 24 hours,
we already pre-run each small-scale Azure trace and save
their execution results. You can directly run azure/plot.py
to generate the plots, or replay the trace using the following
script:

$ python3 azure/run_experients.py 1

Experiment customization: Each small-scale Azure
trace can be replayed by changing "1" to other trace numbers.
The script will replay the trace in Openwhisk and Pagurus,
respectively, and then generate results under azure/result.
Run the following script to generate two .csv files:

$ python3 azure/summary_from_results.py

• cold_start.csv shows the remained cold startups of
OpenWhisk and Pagurus, respectively (Figure 14).

• e2e_latency.csv shows end-to-end 95%-ile latencies
of benchmarks in Openwhisk and Pagurus, respectively
(Figure 15).

Then run the following script to generate the plots:

$ python3 azure/plot_from_results.py

84    2022 USENIX Annual Technical Conference USENIX Association



RRC: Responsive Replicated Containers

Diyu Zhou
UCLA and EPFL

Yuval Tamir
UCLA

Abstract
Replication is the basic mechanism for providing application-
transparent reliability through fault tolerance. The design and
implementation of replication mechanisms is particularly chal-
lenging for general multithreaded services, where high latency
overhead is not acceptable. Most of the existing replication
mechanisms fail to meet this challenge.

RRC is a fully-operational fault tolerance mechanism for
multiprocessor workloads, based on container replication. It
minimizes the latency overhead during normal operation by
addressing two key sources of this overhead: (1) it decouples
the latency overhead from checkpointing frequency using a
hybrid of checkpointing and replay, and (2) it minimizes the
pause time for checkpointing by forking a clone of the con-
tainer to be checkpointed, thus allowing execution to proceed
in parallel with checkpointing. The fact that RRC is based on
checkpointing makes it inherently less vulnerable to data races
than active replication. In addition, RRC includes mechanisms
that further reduce the vulnerability to data races, resulting
in high recovery rates, as long as the rate of manifested data
races is low. The evaluation includes measurement of the re-
covery rate and recovery latency based on thousands of fault
injections. On average, RRC delays responses to clients by
less than 400µs and recovers in less than 1s. The average
pause latency is less than 3.3ms. For a set of eight real-world
benchmarks, if data races are eliminated, the performance
overhead of RRC is under 48%.

1 Introduction
For many applications hosted in data centers, high reliability
is a key requirement, demanding fault tolerance. The key de-
sirable properties of a fault tolerance mechanism, especially
for server applications, are: A) Low throughput and latency
overheads; B) Support for multithreaded applications; and
C) Application transparency. Replication, has long been used
to implement application-transparent fault tolerance, espe-
cially for server applications.

The two main approaches to replication, specifically, du-
plication, are: (1) high-frequency checkpointing of the pri-
mary replica state to a passive backup [33], and (2) active
replication, where the primary and backup both execute the
application [38, 47]. A key disadvantage of the first approach
is that, for consistency between server applications and their
clients after failover, outputs must be delayed before being
released to the client, typically for tens of milliseconds. Such
delays are unacceptable for many server applications.

To support active replication of multiprocessor workloads,

where there are many sources of nondeterminism, active repli-
cation is implemented using a leader-follower algorithm. With
this algorithm, the outcomes of identified nondeterministic
events on the primary, namely synchronization operations
and certain system calls, are recorded and sent to the backup.
This allows the backup to deterministically replay their out-
comes [38, 47]. A disadvantage of this approach is that it
is vulnerable to even rare replay failures due to untracked
nondeterministic events, such as those caused by data races.
Another disadvantage is that, for application with a high rate
of synchronization operations, the replay on the backup may
be significantly slower than the execution on the primary, re-
sulting in high throughput overhead [38]. This is due to the
interaction between thread scheduling by the OS and the need
to mirror on the backup the execution on the primary.

This paper presents a fault tolerance scheme, based on con-
tainer replication, called RRC (Responsive Replicated Con-
tainers). RRC targets server applications and is thus optimized
to minimize response latency overhead. RRC overcomes the
disadvantages of existing approaches using a combination of
periodic checkpointing [33, 62] and externally-deterministic
replay [29]. The primary sends periodic checkpoints to the
passive backup. While executing, the primary logs to the
backup the outcomes of nondeterministic events. Upon failure,
the backup restores the latest checkpoint and deterministically
replays the execution up to the last external output. Hence,
external outputs only need to be delayed by the short amount
of time it takes to send and commit the relevant portion of the
nondeterministic event log to the backup.

RRC minimizes request-reply latency overhead, not only
for the average case, but also the tail latency overhead. To
that end, RRC had to overcome a key challenge, namely, that
while the state of the primary is collected for transmission to
the backup, execution has to be paused. Even with various op-
timizations, this latency is often tens of milliseconds, largely
due to the cost of retrieving in-kernel state associated with the
container, such as the state of open file descriptors [62]. To
meet this challenge, RRC introduces a new kernel primitive:
container fork. For checkpointing, RRC pauses the primary
container, forks a shadow container, and resumes execution.
This results in pause times of less than 3.5ms. The checkpoint
is obtained from the shadow container.

RRC decouples the response latency from the checkpoint-
ing duration. This enables high performance by allowing the
tuning of epoch duration to trade off performance and re-
source overheads with recovery latency and vulnerability to
untracked nondeterministic events. The latter is important

USENIX Association 2022 USENIX Annual Technical Conference    85



since applications may contain data races (§3, §6.3). RRC is
focused on dealing with data races that rarely manifest and
are thus more likely to remain undetected (§3). Since RRC
only requires replay during recovery and for the short interval
since the last checkpoint, it is inherently more resilient to data
races than active replication schemes that rely on replay of
the entire execution [38]. Furthermore, RRC includes timing
adjustment mechanisms that result in a high recovery rate
even for applications that include data races, as long as their
rate of unsynchronized writes is low (§4.7).

RRC also decouples the performance on the primary from
the backup. Thus, unlike active replication schemes [38], the
backup is not a performance bottleneck (§6.1).

Replication can be at the level of VMs [27, 33, 35, 53, 58],
processes [32, 38, 47], or containers [62]. Containers have
advantages over VMs due to smaller memory and storage
footprints, faster startup, and avoiding the need to manage
updates of multiple VMs [25,45]. Furthermore, containers are
the best fit for mechanisms such as RRC. Applying RRC’s ap-
proach to VMs would be complicated since there would be a
need to track and replay nondeterministic events in the kernel.
On the other hand, with processes, it is difficult to avoid po-
tential name conflicts (e.g., process IDs) upon failover. While
such name conflicts can be solved, the existing container
mechanism already solves them efficiently.

The implementation of RRC involved developing solutions
to implementation challenges that have not been addressed
by prior works. The most important of these is dealing with
the integration of timer-triggered checkpointing, that is not
synchronized with the application, and user-level recording of
nondeterministic events (§4.2). RRC also efficiently handles
the failover of TCP connections through checkpoint restora-
tion, a replay phase, and finally resumption of live execution
(§4.3, §4.4). RRC is application-transparent and does not re-
quire any changes to the application code.

We have implemented a prototype of RRC and evaluated its
performance and reliability. With 1s epochs, RRC’s through-
put and average latency overheads were less than 49% and
230µs, respectively, for all eight benchmarks. With 100ms
epochs, the corresponding overheads were less than 53% and
291µs for seven benchmarks, 86% and 264µs for the eighth.
RRC is designed to recover from fail-stop faults. We used
thousands of fault injections to validate and evaluate RRC’s
recovery mechanism. For all eight benchmarks, after data
races identified by ThreadSanitizer [6] were resolved, RRC’s
recovery rate was 100% for 100ms and 1s epochs. Three
of the benchmarks originally included data races. For two
of these, without any modifications, with 100ms epochs and
RRC’s timing adjustments, the recovery rate was over 99.1%.

RRC achieves both low response latency overhead and
resilience to infrequently-manifested data races. This com-
bination provides a fundamental advance over both Remus-
based techniques [33] and active replication [38, 47], respec-
tively. Specifically, we make the following contributions: 1) a

fault tolerance scheme based on container replication, using
a unique combination of periodic checkpointing, determinis-
tic replay, and an optimized scheme for failover of network
connections; 2) a new system call, container fork, used to min-
imize tail latency overhead; 3) a replication mechanism with
inherent resilience to untracked nondeterministic events, fur-
ther enhanced by mechanisms that increase recovery success
rate in the presence of data races; 4) a thorough evaluation
of RRC with respect to performance overhead, resource over-
head, and recovery rate, demonstrating the lowest reported
external output delay compared to competitive mechanisms.

Section 2 presents two key building blocks for RRC: NiL-
iCon [62] and deterministic replay [21, 29, 44, 50, 57]. An
overview of RRC is presented in §3. RRC’s implementation
is described in §4, with a focus on key challenges. The ex-
perimental setup and evaluation are presented in §5, and §6,
respectively. Limitation of RRC and of our prototype imple-
mentation are described in §7. §8 provides a brief overview
of related work.

2 Background
RRC integrates container replication based on periodic check-
pointing [33, 62], described in §2.1, and deterministic replay
of multithreaded applications, described in §2.2.

2.1 NiLiCon
Remus [33] introduced a practical application-transparent
fault tolerance scheme based on VM replication using high-
frequency checkpointing. NiLiCon [62] is an implementation
of the Remus mechanism for containers. A key challenge
faced by NiLiCon is that, compared to VMs, there is much
tighter coupling between the container state and the state
of the underlying platform. NiLiCon meets this challenge,
based on a tool called CRIU (Checkpoint/Restore in User
Space) [4], with novel optimizations that significantly reduce
overhead. CRIU checkpoints and restores the user-level and
kernel-level state of a container, except for disk state. NiLiCon
handles disk state by adding system calls to checkpoint and
restore the page cache and a modified version of the DRBD
module [8]. NiLiCon relies on CRIU to preserve established
TCP connections across failover, using a special repair mode
of the socket provided by the Linux kernel [18].

2.2 Deterministic Replay on Multiprocessors
Deterministic replay is the reproduction of some original
execution in a subsequent execution. During the original ex-
ecution, the results of nondeterministic events/actions are
recorded in a log. This log is used in the subsequent exe-
cution [29]. With a uniprocessor, nondeterministic events
include: asynchronous events, such as interrupts; system calls,
such as gettimeofday(); and inputs from the external world.

With shared-memory multiprocessors, there is a higher
frequency of nondeterministic events related to the order of

86    2022 USENIX Annual Technical Conference USENIX Association



Request

PackGate

Backup
Agent

Re
le

as
e

Heart 
Beats

Container 
Checkpoint

Primary
Agent

Application

RR Lib

Container

Heart 
Beats Checkpoint ND 

Log

Reply

Primary Backup

PackRec

Request1

4

2

3

5

Reply 6

Figure 1: Architecture and workflow of RRC.

accesses to the same memory location by different processors.
For such systems, a common approach is to support determin-
istic replay only for programs that are data-race-free [49]. For
such programs, as long as the results of synchronization oper-
ations are deterministically replayed, the ordering of shared
memory accesses are preserved. The recording of nondeter-
ministic events can occur at different levels: hardware [40,59],
hypervisor [36, 37, 41], OS [39, 43], or library [49, 54]. With-
out dedicated hardware support, it is advantageous to record
the events at the user level, thus avoiding the overhead for
entering the kernel or hypervisor [44].

To support seamless failover with replication, it is suffi-
cient to provide externally deterministic replay [44]. This
means that, with respect to what is visible to external clients,
the replayed execution is identical to the original execution.
Furthermore, the internal state at the end of replay must be
a state that corresponds to a possible original execution that
could result in the same external behavior. This latter require-
ment is needed so that the replayed execution can transition
to consistent live execution at the end of the replay phase.

3 Overview of RRC
RRC provides fault tolerance by maintaining a primary-
backup pair with an inactive backup that takes over when
the primary fails. Execution on the primary is divided into
epochs and the primary state is checkpointed to an inactive
backup at the end of each epoch [33, 62]. Upon failure of the
primary, the backup begins execution from the last primary
checkpoint and then deterministically replays the primary’s
execution of its last partial epoch, up to the last external out-
put. The backup then proceeds with live execution. To support
the backup’s deterministic replay, RRC ensures that, before
an external output is released, the backup has the log of non-
deterministic events on the primary since the last checkpoint.
Thus, external outputs are delayed only by the time it takes to
commit the relevant last portion of the log to the backup.

Figure 1 shows the overall architecture of RRC. The pri-
mary records nondeterministic events: operations on locks
and nondeterministic system calls. The record and replay are
done at the user level, by instrumentation of glibc source code.
When the primary executes, the instrumented code invokes
functions in a dedicated RR (Record and Replay) library that
create logs used for replay. There is a separate log for each

Execute
Epoch N+1 Epoch N+2

MEM
COPY

Other
COPY

Send
CKPTRRC

CFORKContainer

Epoch N

…
…

Execute COW

pause pause

CFORK

Figure 2: Timeline of an epoch on the primary replica.

lock. For each thread, there is a log of the nondeterministic
system calls it invoked, with their arguments and return values.
Details are presented in §4.1.

Figure 1 shows the processing of requests and replies for
server applications. (1) Client requests are sent to the backup.
(2) To support TCP failover, the backup records incoming
packets and forwards them to the primary. (3) Replies from
the primary are forwarded to the backup and blocked by the
PackGate queueing discipline kernel module. (4) The pri-
mary sends the nondeterministic event log to the backup.
(5) Upon receiving the log, PackGate releases the correspond-
ing replies.

Figure 2 shows a timeline of each epoch on the primary
replica. First, the container is paused and a container fork is
performed. Execution is then resumed. The first write to a
page results in a Copy On Write (COW) so that the state of
the forked shadow container is maintained. Concurrently, the
pages modified since the last checkpoint are copied to a stag-
ing buffer (MEM COPY). Once this copy is completed, the
original container ceases to perform the COW operations. A
container checkpoint includes in-kernel state associated with
the container, such as the state of open file descriptors [62].
This state is obtained from the shadow container and written
to the staging buffer (Other COPY). The entire checkpoint is
then sent from the primary to the backup.

RRC is based on having the ability to identify all sources of
nondeterminism that are potentially externally visible, record
their outcomes, and replay them when needed. Thus, unsyn-
chronized accesses to shared memory during the epoch in
which the primary fails may cause replay on the backup to
fail to correctly reproduce the primary’s execution, leading
the backup to proactively terminate. This implies that appli-
cations are expected to be free of data races. However, not all
multithreaded programs meet this expectation. Furthermore,
precise race detection is NP-hard [48]. Hence, it is not possi-
ble to ensure that all data races are detected and eliminated.
Fortunately, frequently-manifested data races are detectable
using tools such as ThreadSanitizer [6]. Hence, only rarely-
manifested data races are likely to remain in applications.

Since RRC only requires replay of short intervals (up to one
epoch), it is inherently more tolerant to rarely-manifested data
races than schemes that rely on accurate replay of the entire
execution [38]. As an addition to this inherent advantage of
RRC, RRC includes optional mechanisms that significantly
increase the probability of correct recovery despite data races,
as long as the manifestation rate is low (§4.7). During execu-
tion on the primary, these mechanisms record the order and
timing of returns from nondeterministic system calls by all
the threads. During replay, the recorded order and relative

USENIX Association 2022 USENIX Annual Technical Conference    87



timing are enforced.
If the primary fails, network connections must be main-

tained and migrated to the backup [19, 20, 22, 60]. Like
CoRAL [19, 20], requests are routed through backup by ad-
vertising the service IP address in the backup. Unlike FT-
TCP [22, 60] or CoRAL, replies are also routed through the
backup, resulting in lower latency (§4.3).

As with most other state replication work [33, 53, 58, 62],
RRC assumes fail-stop faults. Either the primary or the backup
may fail. Heartbeats are exchanged between the primary and
backup so failures are detected as missing heartbeats. Thus,
RRC relies in the synchrony assumption [34] with respect to
both the hosts and the network. If the backup fails, the primary
configures its network, advertises the service IP address, and
communicates with the clients directly. To maintain redun-
dancy, a new backup needs to be instantiated and take over
the service IP address.

4 Implementation
This section presents the implementation of RRC, focusing
on the mechanisms used to overcome key challenges. RRC is
implemented mostly at the user level but also includes small
modifications to the kernel. At the user level, the implemen-
tation includes: agent processes on the primary and backup
hosts that run outside the replicated container; a special ver-
sion of the glibc library (that includes Pthreads), where some
of the functions are instrumented (wrapped), used by the ap-
plication in the container; and a dedicated RR (record and
replay) library, that provides functions that actually perform
the record and replay of nondeterministic events, used by the
application in the container.

The kernel modifications include: an ability to record and
enforce the order of access to key data structures (§4.1); sup-
port for a few variables shared between the kernel and RR li-
brary, used to coordinate checkpointing with record and replay
(§4.2); a new queueing discipline kernel module used to pause
and release network traffic (§4.3); and container fork (§4.6).

In the rest of this section, §4.1 presents the basic record
and replay scheme. §4.2 deals with the challenge of inte-
grating checkpointing with record and replay. §4.3 presents
the handling of network traffic. The transition from replay
to live execution is discussed in §4.4. The performance-
critical operation of transmitting the nondeterministic event
log to the backup is explained in §4.5. Container fork is pre-
sented in §4.6. §4.7 presents our best-effort mechanism for
increasing the probability of correct replay in the presence of
infrequently-manifested data races.

4.1 Nondeterministic Events Record/Replay

To minimize overhead and implementation complexity, RRC
records synchronization operations and system calls at the
user level. This is done by code added in glibc before (before

hook) and after (after hook) the original code. Recording is
done in the after hook, replay is in the before hook.

For each lock, there is a log of lock operations in the order
of returns from those operations. The log entry includes the ID
of the invoking thread and the return value. The return values
are recorded to handle the trylock variants as well as errors.
During replay, synchronization operations must actually be
performed in order to properly enforce the correct semantics.
For each lock, the ordering of successful lock acquires is
enforced. Since there is no need to enforce ordering among
different locks, it is sufficient to maintain a separate log for
each lock.

For each thread, there is a log of invoked system calls. The
log entry includes the parameters and return values. During
replay, the recorded parameters are used to detect divergence
(replay failure). For some functions, such as gettimeofday(),
replay does not involve the execution of the function and the
recorded return values are returned. However, as discussed in
§4.4, functions, such as open(), that involve the manipulation
of kernel state, are actually executed during replay.

There can be dependencies among system calls, even if they
are invoked by different threads. For example, this is the case
for system calls whose execution involve writes and reads
from kernel data structures, such as the file descriptor table.
Hence, simply maintaining a separate log for each thread is
not sufficient. To handle such cases, the kernel was modified
to maintain an access sequence number for each such shared
kernel resource. Each thread registers the address of a per-
thread variable with the kernel. When the thread executes a
system call accessing a shared resource, the kernel increments
the sequence number and copies its value to the registered
address. At the user level, this sequence number is attached
to the corresponding system call log entry. During replay, the
before and after hooks enforces the recorded execution order.

4.2 Integrating Checkpointing with
Record/Replay

Checkpointing is triggered by a timer external to the con-
tainer [62], and is thus not synchronized with the recording of
nondeterministic events on the primary. This has the potential
of resulting in a checkpoint and log contents on the backup
from which correct replay cannot proceed. One example is
that the checkpoint may include a thread in the middle of exe-
cuting code in the RR library, resulting in the backup, during
replay, attempting to send the nondeterministic event log to
the backup. A second example is that there may be ambiguity
at the backup as to whether a particular system call, such as
open(), was executed after the checkpoint and thus needs to be
reexecuted during replay, or executed before the checkpoint
and thus should not be reexecuted during replay.

A naive solution to the above problem would be to delay
the checkpointing of a thread if it is in execution anywhere
between the beginning of the before hook and the end of

88    2022 USENIX Annual Technical Conference USENIX Association



the after hook. However, this could delay checkpointing for
arbitrarily long time if a thread is blocked on a system call,
such as read().

The actual solution in RRC has two properties: (I) check-
pointing of a thread is delayed if the thread is within the
before hook or within the after hook, and (II) checkpointing
of a thread can occur even if the thread is between the end of
the before hook and the beginning of the after hook.

To enforce property (I), each thread registers with the ker-
nel the address of a per-thread in_rr variable. In user mode,
the RR library sets/clears the in_rr when it respectively en-
ters/leaves the hook function. An addition to the kernel code
prevents the thread from being paused if the thread’s in_rr
flag is set.

To deal with property (II), RRC includes mechanisms to:
(A) detect that this scenario has occurred, and (B) elimi-
nate the potential ambiguities, such as the one mentioned
above and take appropriate actions during replay. To imple-
ment the required mechanisms, RRC uses three variables: two
per-thread flags – in_hook and syscall_skipped, as well as a
global current_phase variable [63]. These variables are shared
between the user level and the kernel. In the record phase,
in_hook is set in the before hook and cleared in the after hook
– this is mechanism (A) above.

For mechanism (B), syscall_skipped is used, during the
replay phase, to determine whether, during the record phase,
the checkpoint was taken before or after executing the system
call. During the record phase, this flag is cleared during ini-
tialization and is not otherwise read or written. With CRIU
(§2.1), if a checkpoint is triggered while a thread is executing
a system call, before that call performs any state changes, the
system call is retried after the checkpoint is restored. In the
replay phase, at an early point in the kernel code executing a
system call, if in_hook is set, the system call is skipped and
syscall_skipped is set. Thus, if the system call was not exe-
cuted before the checkpoint, it will be initially skipped during
replay. During replay, if the after hook finds that in_hook and
syscall_skipped are set, it passes control back to the before
hook and the system call is then replayed or re-executed.

The handling of lock operations is similar to the handling
of system calls. In the after hook, if in_hook is set, the lock
is released and control is passed to the before hook, thus
allowing enforcement of the order of lock acquires.

4.3 Handling Network Traffic

The current RRC implementation assumes that all network
traffic is via TCP. To ensure failure transparency with re-
spect to clients, there are three requirements that must be met:
(1) client packets that have been acknowledged must not be
lost; (2) packets to the clients that have not been acknowl-
edged may need to be resent; (3) packets to the clients must
not be released until the backup is able to recover the primary
state past the point of sending those packets.

Requirements (1) and (2) have been handled in connection
with other mechanisms, such as [20, 60]. With RRC, this is
done by routing incoming and outgoing packets through the
backup (§3). Incoming packets are recorded by the PackRec
thread in the agent. Outgoing packets are sent to the backup
as part of the nondeterministic event log.

The PackGate kernel module on the backup is used to meet
requirement (3). PackGate maintains a release sequence num-
ber (RSN) for each TCP stream. When the primary container
sends an outgoing message, the nondeterministic event log it
sends to the backup (§3) includes a release request that up-
dates the stream’s RSN. The outgoing packets with sequence
numbers lower than the RSN are then released.

PackGate is implemented in the kernel since it operates
frequently and must thus be efficient. PackGate maintains
fairness among the TCP streams using a FIFO queue of re-
lease requests ordered by the order of sends.

4.4 Transition to Live Execution

As with [38, 43] and unlike the deterministic replay tools for
debugging [44, 55–57], RRC needs to transition from replay
mode to live mode. This occurs when the backup replica
finishes replaying the nondeterministic event log, specifically,
when the last system call that generated an external output
during the original execution is replayed. To identify this last
call, after the checkpoint is restored, the RR library scans the
nondeterministic event log and counts the number of system
calls that generated an external output. Once replay starts,
this count is atomically decremented and the transition to live
execution is triggered when the count reaches 0.

To support live execution, after replay, the kernel state must
be consistent with the state of the container and with the state
of the external world. For most kernel state, this is achieved
by actually executing during replay system calls that change
kernel state. For example, this is done for system calls that
change the file descriptor table, such as open(), or change the
memory allocation, such as mmap(). However, this approach
does not work for system calls that interact with the external
world. Specifically, in the context of RRC, these are reads
and writes on sockets associated with a connection to an
external client. As discussed in §4.1, such calls are replayed
from the nondeterministic event log. However, there is still
a requirement of ensuring that, before the transition to live
execution, the state of the socket, e.g., sequence numbers,
must be consistent with the state of the container and with the
state of external clients.

To overcome the above challenge, when replaying system
calls that affect socket state, RRC records the state changes on
the sockets based on the nondeterministic event logs. When
the replay phase completes, RRC updates all the sockets based
on the recorded state. Specifically, the relevant components
of socket state are: the last sent sequence number, the last
acknowledged (by the client) sequence number, the last re-

USENIX Association 2022 USENIX Annual Technical Conference    89



ceived (from the client) sequence number, the receive queue,
and the write queue. The initial socket state is obtained from
the checkpoint. The updates to the sent sequence number and
the write queue contents are determined based on writes and
sends in the nondeterministic event log. For the rest of the
socket state, RRC cannot rely on the event log since some
packets received and acknowledged by the kernel may not
have been read by the application. Instead, RRC uses infor-
mation obtained from PackRec (§4.3).

With respect to incoming packets, once the container tran-
sitions to live execution, RRC must provide to the container
all the packets that were acknowledged by the primary but
were not read by applications. During normal operation, on
the backup host, PackRec keeps copies of incoming packets
while PackGate extracts the acknowledgment numbers on
each outgoing stream. If the primary fails, PackGate stops re-
leasing outgoing packets and it thus has the last acknowledged
sequence number of each incoming stream. PackRec obtains
the last acknowledged sequence number of each stream from
PackGate and stops recording when it has all the required
(acknowledged) incoming packets. Before the container is re-
stored on the backup, PackRec copies the recorded incoming
packets to a log. Using the information from the nondeter-
ministic event log and PackRec, before the transition to live
execution, the packet repair mode (§2.1) is used to restore
the socket state so that it is consistent with the state of the
container and the external world.

4.5 Transferring the Event Logs

Whenever the container on the primary sends a message to
an external client, it must collect the corresponding entries
from the multiple nondeterministic event logs (§4.1) and send
them to the backup (§3). Hence, the collection and sending
of the log is a frequent activity, which is thus performance
critical. Specifically, with our initial implementation, with the
Memcached benchmark under maximum load, the throughput
overhead was approximately 300%.

To address the performance challenge above, RRC offloads
the transfer of the nondeterministic event log from the ap-
plication threads to a dedicated logging thread added by the
RR library to the application process (as in [47]). With avail-
able CPU cycles, such as additional cores, this minimizes the
overhead for the application threads. Furthermore, if multiple
application threads generate external messages at approxi-
mately the same time, the corresponding multiple transfers of
the logs are batched together, further reducing the overhead.
When an application thread sends an external message, it no-
tifies the logging thread via a shared ring buffer. The logging
thread continuously collects all the notifications in the ring
buffer and then collects and sends the nondeterministic logs to
the backup. To reduce CPU usage and enable more batching,
the logging thread sleeps for the minimum time allowed by
the kernel between scans of the buffer.

To maximize performance, RRC allows concurrent access
to different logs. One application thread may log a lock opera-
tion concurrently with another thread that is logging a system
call, while the logging thread is collecting log entries from a
third log for transfer to the backup. This enables the logging
thread to collect entries from different logs out of execution
order. Thus, there is the potential for the log transferred to the
backup for a particular outgoing message to be incomplete –
missing an entry for an event on which the outgoing message
depends. This can lead to replay failure.

There are two key properties of RRC that help address the
correctness challenge above: (A) there is no need to replay
the nondeterministic event log beyond the last system call that
outputs to the external world, and (B) when an application
thread logs a system call that outputs to the external world,
all nondeterministic events on which this system call may
depend are already logged in nondeterministic event logs.

To exploit the two properties above, the RR library main-
tains two corresponding global sequence numbers: primary
batch sequence number (PBSN) and backup batch sequence
number (BBSN) in the primary and backup, respectively.
They are both initialized to 0. Application threads attach
the PBSN to the entries they log for nondeterministic events.
When the logging thread picks up an entry from the afore-
mentioned ring buffer, that is a request to collect and send the
current event log. Before taking any other action, the logging
thread scans the ring buffer to determine the number of pend-
ing requests. It then increments the PBSN by that number.
Thus, every event log entry that is created after the logging
thread begins collecting the log, has a higher PBSN tag. After
the logging thread sends the log, it sends to the backup a mes-
sage that directs the backup to increment the BBSN by the
most recent increment of the PBSN. If the primary fails, be-
fore replay is initiated on the backup, all the nondeterministic
event logs collected during the current epoch are scanned and
the entries for system calls that output to the external world
are counted if their attached sequence number is not greater
than the BBSN. During replay, this count is decremented for
each such system call replayed. When it reaches 0, replay
terminates and live execution commences.

4.6 Container Fork

The new container fork (cfork) system call is based on the
existing process fork. Given a process ID in a container, cfork
duplicates the container state shared among its processes and
threads: namespaces (e.g., mount points, network interfaces)
and control groups. Cfork then duplicates all the processes
and their threads in the container and assigns them to the new
container. Fork duplicates the file descriptor state, but does
not duplicate the underlying state, such as socket state or pipe
state. However, cfork does duplicate this underlying state.

The implementation of cfork for RRC includes optimiza-
tions to minimize the container fork time. We identified two

90    2022 USENIX Annual Technical Conference USENIX Association



major sources of overhead: (1) duplicating the namespaces
and control groups, and (2) page table copy. To minimize (1),
RRC exploits the fact that most namespace and control group
state rarely changes after initialization [62]. Thus, at the first
checkpoint, RRC creates a staging container with an idle pro-
cess. Cfork assigns the forked container to the namespace and
control group of the staging container instead of creating new
ones. To ensure correctness, RRC detects state changes of
the namespaces and control groups of the service container
using hooks, added with ftrace to the kernel functions that can
change the namespace and cgroup state. Cfork updates those
changes to the staging container. Ftrace only incurs overhead
if a hooked function is invoked. Since the namespace and
cgroup states rarely change, such functions are rarely invoked
and ftrace does not incur high overhead.

To minimize the latency of the page table copy, RRC avoids
copying the page table of the data region of the RR library,
whose size can be up to several gigabytes and thus takes tens
of milliseconds to copy. Specifically, the RR library tags the
VMA of the data region with a new special flag and thus
informs the cfork to skip copying its page table. This opti-
mization is correct because RRC does not need to checkpoint
the data region of the RR library; its state is initialized upon re-
play by reading the saved nondeterministic logs in the backup.

4.7 Mitigating the Impact of Data Races

As discussed in §3, RRC includes mechanisms that signifi-
cantly increase the probability of successful recovery in the
presence of rarely-manifested data races. Specifically, RRC
mitigates the impact of data races by adjusting the relative
timing of the application threads during replay to approxi-
mately match the timing during the original execution. As
a first step, in the record phase, the RR library records the
order and the TSC (time stamp counter) value when a thread
leaves the after hook of a system call. In the replay phase,
the RR library enforces the recorded order on threads before
they leave the after hook. As a second step, during replay,
the RR library maintains the TSC value corresponding to the
time when the after hook of the last-replayed system call was
exited. When a thread is about to leave a system call after
hook, the RR library delays the thread until the difference
between the current TSC and the TSC of that last-replayed
system call is larger than the corresponding difference in the
original execution. System calls are used as the basis for the
timing adjustments since they are replayed (not executed) and
are thus likely to cause the timing difference. This mechanism
is evaluated in §6.3.

5 Experimental Setup
All the experiments were hosted on Fedora 29 with the 4.18.16
Linux kernel. The containers were hosted using runC [12]
(version 1.0.1), a popular container runtime used in Docker.
The primary and backup replicas were hosted on different

36-core servers, using modern Xeon chips. These hosts were
connected to each other through a dedicated 10Gb Ethernet
link. The clients were hosted on a 10-core server, based on a
similar Xeon chip. The client host was in a different building,
interconnected through a Cisco switch, using 1Gb Ethernet.

Five benchmarks were in-memory databases handling short
requests: Redis [13], Memcached [10], SSDB [15], Taran-
tool [16] and Aerospike [2]. These benchmarks were evalu-
ated with 50% read and 50% write requests to 100,000 100B
records, driven by YCSB [31] clients. The number of user
client threads ranged from 60 to 480. The evaluation also in-
cluded a web server, Lighttpd [7], and two batch PARSEC [26]
benchmarks: Swaptions and Streamcluster. Lighttpd was eval-
uated using 20-40 clients retrieving a 1KB static page. For
Lighttpd, benchmarking tools SIEGE [14], ab [1] and wget [5]
were used to evaluate, respectively, the performance overhead,
response latency, and recovery rate. Swaptions and Stream-
cluster were evaluated using the native input test suites. We
evaluated only two benchmarks from the PARSEC suite since
RRC targets server applications and its design is thus focused
on low latency overhead. Low latency overhead is not rele-
vant for the batch applications, such as those included in the
PARSEC suite. Nonetheless, we show that such applications
can be handled by RRC with very low throughput overhead.

We used fault injection to evaluate RRC’s recovery mech-
anism. Since fail-stop failures are assumed, a simple failure
detector was sufficient. Failures were detected based on heart
beats exchanged every 30ms between the primary and backup
hosts. The side not receiving heart beats for 90ms identified
the failure of the other side and initiates recovery.

For Swaptions and Streamcluster, recovery was “successful”
if the output was identical to the golden copy. For Lighttpd,
we used multiple wget instances that concurrently fetched a
static page. Recovery was “successful” if all the fetched pages
were identical to the golden copy. For the in-memory database
benchmarks, we developed customized clients, using existing
client libraries [3, 9, 11, 17], that spawn multiple threads and
let each thread work on separate set of database records. Each
thread records the value it stores with each key, compares
that value with the value returned by the corresponding get
operation and flags an error if there is a mismatch. Recovery
was considered successful if no errors were reported.

For the fault injection experiments, for server programs, the
clients were configured to run for at least 30 seconds and drive
the server program to consume around 50% of the CPU cycles.
A fail stop failure was injected at a random time within the
middle 80% of the execution time, using the sch_plug module
to block network traffic on all the interfaces of a host. To
emulate a real world cloud computing environments, while
also stressing the recovery mechanism, we used a perturb
program to compete for CPU resources on the primary host.
The perturb program busy loops for a random time between
20 to 80 ms and sleeps for a random time between 20 to
120ms. During fault injection, a perturb program instance

USENIX Association 2022 USENIX Annual Technical Conference    91



TP Overhead Avg. Latency(µs)
Redis Taran Aero Redis Taran Aero

Custom 49% 31% 153% 574 471 456
RRC-LE 31% 26% 47% 543 564 602

Table 1: Throughput overhead and average latency. RRC vs.
custom replication mechanisms.

was pinned to each core executing the benchmark.

6 Evaluation
This section presents RRC’s performance overhead and CPU
usage overhead (§6.1), the added latency for server responses
(§6.2), as well as the recovery rate and recovery latency (§6.3).
Two configurations of RRC are evaluated: RRC-SE (short
epoch) and RRC-LE (long epoch), with epoch durations of
100ms and 1s, respectively. Setting the epoch duration is a
tradeoff between the lower overhead with long epochs and
the lower susceptibility to data races and lower recovery time
with short epochs. Hence, RRC-LE may be used if there is
high confidence that the applications are free of data races.
Thus, with the RRC-SE configuration, the data race mitigation
mechanism described in §4.7 is turned on, while it is turned
off for RRC-LE.

RRC is compared to NiLiCon (§2.1) with respect to the
performance overhead under maximum CPU utilization and
the server response latency. NiLiCon is configured to run with
an epoch interval of 30ms, as in [62]. The short epochs of NiL-
iCon are required since, unlike RRC, the epoch duration with
NiLiCon determines the added latency in replying to client
requests (§2.1). Thus, for many server applications, even with
30ms epochs, NiLiCon provides unacceptably long response
latencies. In all cases, the “stock setup” is the application
running in an unreplicated container.

Some server applications can be configured to enable their
own custom fault tolerance mechanisms. However, develop-
ing and validating such mechanisms is time consuming and
error prone. Hence, mechanisms, such as RRC, that can be de-
ployed for many applications, are likely to be of higher quality
(reliability) and incur lower total development cost. Table 1
compares the overhead of RRC with the custom mechanisms
of three of our benchmarks (§5). The custom mechanisms are
all configured to provide strong consistency (outputs are not
released until the changes are reflected in the backup), which
RRC also provides. The results show that RRC-LE actually
has lower throughput overhead. On average, the custom mech-
anisms do result in lower response latency. This is mainly due
to their ability to release the outputs of read requests without
waiting for acknowledgments from the backup. However, on
average, the overall results are comparable.

6.1 Overheads: Performance, CPU Utilization
Two key overhead measures of RRC are: for a fixed amount
of work, the increase in execution time and the increase in
the utilization of CPU cycles. These measures are distinct

0% 20% 40% 60% 80% 100% 120% 140%

Record

Pause

COW

Others, mostly page faults

18%
4%
4%

31%
5%

2%

25%
18%
17%

56%
46%

31%

62%
37%

26%

85%

52%

35%
17%

128%

47%

139%

48%

62%

SwapT

StrmC

Lig

Redis

Taran

SSDB

Mem$

Aero
NILI
SE
LE

NILI
SE
LE

NILI
SE
LE

NILI
SE
LE

NILI
SE
LE

NILI
SE
LE

NILI
SE
LE

NILI
SE
LE

Figure 3: Performance overheads: NiLiCon, RRC-SE, RRC-
LE.

since many of the actions of RRC are in parallel with the main
computation threads.

For the six server benchmarks, the measurements reported
in this subsection were done with workloads that resulted in
maximum CPU utilization for the cores running the applica-
tion worker threads1 with the stock setup.

With four of the server benchmarks, the number of the
worker threads cannot be configured (Lighttpd, Redis: 1,
Tarantool: 2, SSDB: 12). The remaining four benchmarks
were configured to run with four worker threads.

For each benchmark, the workload that saturates the cores
in the stock setup was used for the stock, RRC, and NiLiCon
setups. With NiLiCon, due to its large latency overhead (§6.2),
it is impossible to saturate the server with this setup. Hence,
for the NiLiCon measurements in this subsection, the buffer-
ing of the server responses was removed. This is not a valid
NiLiCon configuration, but it provides a comparison of the
overheads excluding buffering of external outputs.
Performance overhead. The performance overhead is re-
ported as the percentage increase in the execution time for
a fixed amount of work compared to the stock setup. Fig-
ure 3 shows the performance overheads of NiLiCon, RRC-SE,
and RRC-LE, with the breakdown of the sources of overhead.
Each benchmark was executed 50 times. The margin of error
of the 95% confidence interval was less than 2%.

The record overhead is caused by the RR library recording
nondeterministic events. The pause overhead is due to the
time the container is paused during the container fork. The
COW overhead is caused by the time to copy the pages after
the container fork. The page fault overhead is caused by the
page fault exceptions that track the memory state changes of
each epoch (§2.1).

With RRC-SE, the average incremental checkpoint size
per epoch was 0.2MB for Swaptions, 15.6MB for Redis, and
41.2MB for Aerospike. With RRC-SE, the average number of

1Some application “helper threads” are mostly blocked sleeping.

92    2022 USENIX Annual Technical Conference USENIX Association



WWSS Redis Taran SSDB Mem$
1x 47% (1.00) 37% (1.00) 53% (1.00) 36% (1.00)
2x 56% (1.19) 51% (1.38) 57% (1.08) 58% (1.61)
3x 73% (1.55) 63% (1.70) 62% (1.17) 73% (2.03)

Table 2: The impact of the write working set size (WWSS),
relative to the WWSS used in Figure 3, on the performance
overhead with RRC-SE. The overheads relative to the 1x case
are in prentheses.

ST SC Lig Redis Taran SSDB Mem$ Aero

C
P Primary 3% 5% 8% 30% 16% 8% 13% 31%

Backup 1% 2% 5% 26% 15% 4% 13% 18%

R
R Primary 4% 1% 34% 47% 46% 55% 36% 77%

Backup ∼0 ∼0 33% 29% 20% 11% 15% 19%

T
C

P Primary ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0
Backup ∼0 ∼0 59% 86% 54% 23% 40% 43%

total 8% 8% 139% 218% 151% 101% 117% 188%

Table 3: CPU utilization overhead for RRC-SE. CP: check-
pointing. RR: recording nondeterministic events. TCP: han-
dling TCP failover.

logged lock operations plus system calls per epoch was 9 with
Streamcluster, 907 with Tarantool, and 2137 with Aerospike,
partially explaining the differences in record overhead. How-
ever, the overhead of logging system calls is much higher than
for lock operations. Memcached is comparable to Aerospike
in terms of the rate of logged system calls plus lock opera-
tions, but has 341 compared to 881 logged system calls per
epoch and thus lower record overhead.

The number of pages modified during an epoch determines
the rate of page faults and COW operations, as well as the size
of the incremental checkpoint that is transferred to the backup
(§3). Hence, this write working set size (WWSS) impacts the
performance overhead. Table 2 shows the performance over-
head of RRC-SE with four of our benchmarks as the WWSS is
increased to 2x and 3x of the WWSS used in Figure 3. These
measurements were obtained by increasing the number of
records and then, with a fixed number of records, varying the
ratio of writes to reads to obtain the different WWSS values.
As expected, the checkpointing component of the overhead
(“COW” plus “Others” in Figure 3) increases approximately
linearly with the WWSS. As shown in Figure 3, as the epoch
duration is increased, the checkpointing component of the
overhead is decreased and thus the impact of the WWSS be-
comes less significant. It should be noted that the number of
pages read during an epoch has no impact on the performance
overhead. The footprint of the application has only negligible
impact that is due to the time to scan the page table to identify
the modified pages.
CPU utilization overhead. The CPU utilization (Table 3)
is the product of the average numbers of CPUs (cores) used
and the total execution time. The CPU utilization overhead
is the percentage increase in utilization with RRC compared
to with the stock setup. The breakdown of the overhead into
its components was obtained by incrementally enabling each
component and measuring the corresponding increase in CPU

Lig1K Lig100K Redis Taran SSDB Mem$ Aero

S avg 549 2059 406 393 388 643 373
99% <1ms <3ms 734 617 622 2982 711

R avg 694 2203 604 604 651 812 663
99% <1ms <3ms 969 992 988 3941 1273

N avg 38ms 38ms 42ms 42ms 45ms 45ms 51ms
99% <39ms <39ms 44ms 42ms 47ms 53ms 63ms

Table 4: Response latency in µs. S: Stock, R: RRC-SE, N:
NiLiCon

overhead. A significant factor in the CPU utilization overhead
is for packet handling in the backup kernel needed to support
TCP failover. This overhead is mostly due to routing. Tech-
niques for optimizing software routing [42] can be used to
reduce this overhead.

The overheads shown in Table 3 should be evaluated in
the context of comparable alternative techniques. The only
alternatives that can achieve low latency overheads neces-
sary for many server applications are based on active repli-
cation [38, 47]. Such techniques have CPU overheads com-
parable to RRC’s for recording nondeterministic events and
handling TCP failover. They do not have the overhead for
checkpointing but instead have 100% overhead for execution
on the backup. Table 3 shows the with RRC-SE the overhead
for checkpointing is 4%-56%. Hence, RRC’s CPU overhead
is significantly smaller than the comparable alternatives’.
Performance decoupling. An important property of RRC is
that, unlike active replication, it decouples the performance
of the application on the primary host from the performance
on the backup. To illustrate the impact of this, we selected
two representative benchmarks: Redis and Aerospike, which
incur a significant CPU usage on the backup host, and ran
them with RRC-SE. We ran the perturb program (§5), which
consumes 40% of a CPU, first on all the cores of the primary
and then the backup. When the perturb program runs on the
primary, the performance overhead increases from 46% to
71% and 85% to 116% for Redis and Aerospike, respectively.
However, when the perturb program runs on the backup, the
execution time remains the same.

6.2 Response Latency
Table 4 shows the response latencies with the stock setup,
RRC-SE and NiLiCon. The numbers of client threads for stock
and RRC-SE are adjusted so that the CPU load on the cores
running application worker threads is 50%. For NiLiCon, the
number of client threads is the same as with RRC-SE, resulting
in CPU utilization of less than 5%, thus favoring NiLiCon.
To evaluate the impact of response size, Lighttpd is evaluated
serving both 1KB as well as 100KB files.

With RRC, there are three potential sources for the in-
crease in response latency: forwarding packets through the
backup, the need to delay packet release until the correspond-
ing event log is received by the backup, and increased request
processing time on the primary. With RRC-SE, the increase

USENIX Association 2022 USENIX Annual Technical Conference    93



ST SC Lhttpd Redis Taran SSDB Mem$ Aero
C

F avg 0.7 2.7 0.5 1.6 2.4 2.6 1.5 3.2
90% 0.7 3.1 0.6 1.9 2.7 2.9 1.7 3.5

N
C

F avg 5.9 7.6 7.2 14.9 18.4 13.9 28.7 42.9
90% 5.9 8.0 7.4 16.7 20.2 14.8 33.7 45.8

Table 5: The pause time of RRC with container fork (CF) and
without container fork (NCF) in millisecond.

ST SC Lhttpd Redis Taran SSDB Mem$ Aero
avg 3.1 3.9 2.5 9.1 11.5 6.5 15.6 27.4

Table 6: The average time (ms) between resuming container
execution and the stop of COW.

 0

 1000

 2000

 3000

 4000

 0  5  10  15  20  25  30R
e
sp

o
n
se

 L
a
te

n
cy

 (
u
s)

Time since container fork (ms)

Memcached

 0

 150

 300

 450

 0  5  10  15  20  25  30

#
 o

f 
p

a
g

e
 c

o
p

ie
s

Time since container fork (ms)

Figure 4: Average response latency and the number of COW
since container fork.

in average latency is only 144µs to 290µs. The worst case is
with Aerospike, which has the highest checkpointing overhead
(COW+Others in Figure 3) and a high rate of nondetermin-
istic events and thus long logs that have to be transferred to
the backup. The increase in 99th percentile latency is 235µs
to 959µs. The worst case is with Memcached. As shown in
Table 4, in terms of increase in response latency, NiLiCon is
not competitive, as also indicated by the results in [62].

With RRC-LE, the increase in the average response latency
is from 42µs to only 229µs, due to the the lower checkpointing
overhead. The increase in the 99th percentile latency is under
510µs since the container fork are much less frequent and
thus less likely to interrupt the processing of a request.
The impact of container fork. The tail response time latency
overhead is determined by the time the primary is paused for
checkpointing. Table 5 shows RRC’s pause time with and
without the container fork. Without the container fork, the
container has to be paused during the entire checkpointing
process, leading to a pause time between 5.9ms to 45.8ms.
The pause time with the container fork is only from 0.5ms
to 3.5ms. Most of the container fork time is spent on copy-
ing page tables and thus can be further reduced with recent
techniques on optimizing fork() [61].

Due to the reduction in the pause time, with the SE setup,
the container fork reduces the average response latency over-
head from 156µs-581µs to 144µs-290µs, and the worst-case
99% response latency overhead from 6ms to 959µs. The
throughput overhead is reduced from 8%-145% to 4%-85%.

Immediately after the container fork there is a period dur-
ing which there is additional overhead due to COW of pages
on the primary (§3). Table 6 shows that this period termi-
nates at an early stage of each epoch. To evaluate the impact
of the COW on response latency, we obtained fine grained
measurements with Memcached. Figure 4 shows the results.

Recovery Rate Replay Time
Mem$ Aero Mem$ Aero

10
0m

s stock 94.3% 84.5% 20 28
+ Total order of syscalls 94.3% 92.7% 131 299
+ Timing adjustment 99.2% 99.8% 234 383

1s

stock 51.4% 34.8% 249 373
+ Total order of syscalls 51.6% 76.5% 1122 1345
+ Timing adjustment 99.0% 99.4% 1230 1460

Table 7: Recovery rate and replay time (in ms). RRC with
different levels of mitigation of data race impact.

Immediately after the container fork, due to the pause and a
high rate of page copies, the response latency is around 3.5ms.
However, the response latency almost immediately drops to
around 1.5ms and then to 700µs, where it remains for the rest
of the epoch.

6.3 Recovery Rate and Latency
This subsection presents an evaluation of the recovery mech-
anism and the data race mitigation mechanism. The service
interruption time is obtained by measuring, at the client, the
increase in response latency when a fault occurs. The service
interruption time is the sum of the recovery latency plus the
detection time. With RRC, the average detection time is 90ms
(§5). Hence, since our focus is not on detection mechanisms,
the average recovery latency reported is the average service
interruption time minus 90ms.
Backup failure. 50 fault injection runs are performed for
each benchmark. Recovery is always successful. The service
interruption duration is dominated by the Linux TCP retrans-
mission timeout, which is 200ms. The other recovery events,
such as detector timeout and broadcasting the ARP requests
to update the service IP address, occur concurrently with this
200ms. Thus, the measured service interruption duration is
between 203ms and 208ms.
Primary failure recovery rate. Three of our benchmarks con-
tain data races that may cause recovery failure: Memcached,
Aerospike, and Tarantool. Running Tarantool with RRC-SE,
through 50 runs of fault injection in the primary, we find that,
due to data races, in all cases replay fails and thus recovery
fails. Due to the high rate of data race manifestation, this is
the case even with the mechanism described in §4.7. Thus,
we use a version of Tarantool in which the data races are
eliminated by manually adding locks.

We divide the benchmarks into two sets. The first set con-
sists of the five data-race-free benchmarks and a modified
version of Tarantool. For these, 50 fault injections are per-
formed for each benchmark. Recovery is always successful.

The second set of benchmarks, Memcached and Aerospike,
is used to evaluate the the data race mitigation mechanisms
(§4.7). For these, to ensure statistically significant results,
1000 fault injection runs are performed with each benchmark
with each setup. The results are presented in Table 7. For both
the recovery rate and replay time, the 95% confidence interval

94    2022 USENIX Annual Technical Conference USENIX Association



se le se le se le se le se le se le
Lig Redis Taran SSDB Mem$ Aero

818

200

400

600

800 763

647
573

676

442474
425409 358355 361

read log
restore

replay
others

Figure 5: Recovery latency (ms) breakdown with RRC-SE
and RRC-LE.

is less than 1%. Without the §4.7 mechanism, the recovery
rate for RRC-LE is much lower than with RRC-SE, demon-
strating the benefit of short epochs and thus shorter replay
times. Enforcing a total order of the recorded system calls in
the after hook is not effective for Memcached but increases
the recovery rate of Aerospike for both RRC setups. However,
with the timing adjustments, both benchmarks achieve high
recovery rates, even with RRC-LE. The total order of the sys-
tem calls is the main factor that increase the replay time. Thus,
there is no reason to not also enable the timing adjustments.

We measured the rate of racy memory accesses in Taran-
tool, Memcached and Aerospike. To identify “racy memory ac-
cesses”, we first fixed all the identified data races by protecting
certain memory access with locks. We then removed the added
locks and added instrumentation to count the corresponding
memory accesses. For Tarantool, the rates of racy memory
writes and reads are, respectively, 328,000 and 274,000 per
second. For Memcached the respective rates are 1 and 131,000
per second and for Aerospike they are 250 and 372,000 per
second. These results demonstrate that, when the rate of ac-
cesses potentially affected by data races is high, our mitigation
scheme is not effective. Fortunately, in such cases, data races
are unlikely to remain undetected.
Primary failure recovery latency. Figure 5 shows a break-
down of the factors that make up the recovery latency for the
server benchmarks with RRC-SE and RRC-LE. With RRC-
SE, the data race mitigation scheme is enabled, while with
RRC-LE it is disabled. The 95% confidence interval margin
of error is less than 5%. Restore is the time to restore the
checkpoint, mostly for restoring the in-kernel states of the
container (e.g., mount points and namespaces). Read log is
the time to process the stored logs in preparation for replay.
Others include the time to send ARP requests and connect the
backup container network interface to the bridge.

The recovery latency differences among the benchmarks
are due mainly to the replay time. It might be expected that
the average replay time would be approximately half an epoch
duration. However, replay time is increased due to different
thread scheduling by the kernel that causes some threads
to wait to match the order of the original execution. This
increase is more likely when the data race impact mitigation
mechanism is enabled since it enforces more strict adherence

footprint Redis Taran SSDB Mem$ Aero
1x 409 (1.00) 425 (1.00) 442 (1.00) 573 (1.00) 763 (1.00)
2x 424 (1.04) 460 (1.08) 479 (1.08) 583 (1.02) 836 (1.10)
3x 463 (1.13) 493 (1.16) 524 (1.18) 609 (1.06) 917 (1.20)

Table 8: The impact of the footprint size, relative to the foot-
print size used in Figure 5, on the primary recovery latency
(in ms) with RRC-SE. The latencies relative to the 1x case are
in parentheses.

to the original execution. A second factor that impact the
replay time is a decrease due to system calls that are replayed
from the log and not executed.

With the current RRC implementation, the total memory
occupancy of the application, i.e., its footprint, has an im-
pact on the recovery latency. Specifically, during recovery
on the backup host, all the pages are copied from the mem-
ory area where they are saved during prior checkpointing to
new locations. Hence, as shown in Table 8, as the footprint
is increased, there is a small increase in the recovery latency.
In these measurements, the footprint was determined by the
final checkpoint size. It should be noted that the impact of
the footprint on recovery latency is a limitation of the current
implementation. An optimization with kernel support would
avoid copying the pages from one memory location to another
by simply updating the page table.

7 Limitations
An inherent limitation is that the mechanism used for mitigat-
ing the impact of data races (§4.7) is incapable of handling
a high rate of racy accesses (§6.3). However, as discussed in
§3, such data races are easily detectable and are thus easy to
eliminate, even in legacy applications.

The prototype implementation of RRC is restricted to
single-process containers. This is not a major restriction
since, in most cases, containers are used to run only a sin-
gle process. Cito et al. [30] analyzed 38,079 Docker projects
on Github and concluded that only 4% of the projects in-
volved multi-process containers. This is reinforced by Inter-
net searches regarding this issue that yield numerous hits on
pages, such as [23], that suggest that running single-process
containers is best practice. To overcome this limitation, the
RR library would need to support inter-process communica-
tions via shared memory. Techniques presented in [24] may
be applicable.

RRC also does not handle asynchronous signals. This can
be resolved by techniques used in [43], that delay signal de-
livery until a system call or certain page faults.

The current implementation of RRC only supports C/C++
applications. Adding support for non-C/C++ applications
would require instrumenting their runtimes to track nondeter-
ministic events. RRC does not handle C atomic types, func-
tions, intrinsics and inline assembly code that performs atomic
operations transparently. In this work, such cases were han-
dled by protecting such operations with locks.

USENIX Association 2022 USENIX Annual Technical Conference    95



8 Related Work
RRC is related to prior fault-tolerance works on replication
based on high-frequency checkpointing, replication based on
deterministic replay, and network connection failover.

Early work on VM replication is based on leader-follower
active replication using deterministic replay [27]. This is com-
bined with periodic checkpointing in [28], based on use of this
technique for debugging [41]. These works focused on unipro-
cessor systems. Extending them to multiprocessors is imprac-
tical, due to the overhead of recording shared memory access
order for a VM [37, 52]. Remus [33] (§2.1) and its follow-on
works [46, 53, 62] focus on multiprocessor workloads and
implement replication using high-frequency checkpointing.
Plover [58] optimizes Remus by using an active replica to re-
duce the size of transferred state and by performing state syn-
chronization adaptively, when VMs are idle. All the Remus-
based mechanisms release outputs only after the primary and
backup synchronize their states, Hence, outputs are delayed by
multiple (often, tens of) milliseconds. COLO [35] compares
outputs from two active VM replicas and synchronizes their
states on a mismatch, resulting in high throughput and latency
overheads for applications with significant nondeterminism.

For process-level checkpointing, libckpt [51] implements
“forked checkpointing,” where the unmodified fork() system
call is used to minimize the pause time for checkpointing.

To handle nondeterminism in parallel applications, as with
RRC, some works rely on replaying the order of synchroniza-
tion operations [32, 38, 47]. Rex [38] and Crane [32] cannot
handle state divergences caused by data races and require man-
ual modifications of the application source code. Castor [47]
handles data races by buffering outputs until the backup fin-
ishes replaying the associated logs. If divergence due to data
races occurs, the two replicas synchronize their state.

Comparing RRC with Rex, Crane, and Castor, for data-race-
free applications, RRC is likely to have a smaller throughput
overhead. Specifically, Rex reports that under heavy load,
replay may be slower than the original execution and thus the
active replica is a performance bottleneck. With a data-race-
free setup, both Rex and RRC are evaluated with Memcached,
and the performance overheads are 40% vs. 17%.

For applications that have data races, the only relevant com-
parison is with Castor. Castor is likely to have higher response
delays since outputs cannot be released until the backup fin-
ishes replaying the associated log. Additionally, a data race
can also cause Castor to fail. Specifically, if the primary fails
in the middle of state synchronization caused by a data race,
the system fails. Hence, for an application with a high rate of
racy memory accesses, such as Tarantool (§6.3), Castor would
be frequently synchronizing the state and thus have low recov-
ery rate (like RRC) and also high performance overhead. For
applications with a lower rate of racy memory accesses, such
as Memcached and Aerospike, Castor also has lower recov-
ery rate. For example, for Memcached, based on Table 7, the
probability of execution divergence in 50ms is 0.059. Hence,

execution diverges approximately every 0.85s. With our setup,
the time it takes to create and transfer the checkpoint for Mem-
cached is 48ms. Hence, an upper bound on the recovery rate
with Castor is expected be 94.7% versus 99.2% with RRC
(Table 7). A similar calculation for Aerospike, taking into ac-
count 76ms to create and transfer the checkpoint, results in a
recovery rate for Castor of 79.8% versus 99.8% for RRC.

9 Conclusion
RRC is a unique point in the design space of application-
transparent fault tolerance schemes for multiprocessor work-
loads. By combining checkpointing, with externally determin-
istic replay, and container fork, it provides all the desirable
properties of a fault tolerance scheme listed in §1, with spe-
cific emphasis on low latency overhead, which is critical for
server applications. RRC facilitates trading off performance
and resource overheads with vulnerability to data races and
recovery latency. Critically, the response latency is decoupled
from the frequency of checkpointing, and sub-millisecond
added delay is achieved with all our server applications. RRC
is a full fault tolerance mechanism. It can recover from pri-
mary or backup host failure and includes transparent failover
of TCP connections.

As we have found (§6.3), legacy applications may have
data races. RRC targets data races that are most likely to re-
main undetected and uncorrected, namely, rarely-manifested
data races. Unlike mechanism based strictly on active repli-
cation and deterministic replay [38], RRC is not affected by
data races that manifest during normal operation, long before
failure. For data races that manifest right before failure, RRC
introduces simple mechanisms that significantly reduce the
probability of the data races causing recovery failure.

This paper describes key implementation challenges en-
countered in the development of RRC and outlines their reso-
lution. The extensive evaluation of RRC, based on eight bench-
marks, included performance and resource overheads, impact
on response latency, as well as recovery rate and latency.
The recovery rate evaluation, based on fault injection, sub-
jected RRC to particularly harsh conditions by intentionally
perturbing the scheduling on the primary, thus challenging
the deterministic replay mechanism (§5). With high check-
pointing frequency (RRC-SE), RRC’s throughput overhead is
less than 53% for seven of our benchmarks and 85% for the
eighth. If the applications are known to be data-race-free, with
a lower checkpointing frequency (RRC-LE), the overhead is
less than 49% for all benchmarks, significantly outperforming
NiLiCon [62]. With data-race-free applications, RRC recov-
ers from all fail-stop failures. With two applications with
infrequently-manifested data races, the recovery rate is over
99% with RRC-SE.

Acknowledgments
We thank our reviewers, especially our shepherd, for construc-
tive feedback that significantly improved this paper.

96    2022 USENIX Annual Technical Conference USENIX Association



References
[1] ab - Apache HTTP server benchmarking tool. https://

httpd.apache.org/docs/2.4/programs/ab.html.

[2] Aerospike. https://https://www.aerospike.
com/.

[3] Aerospike C Client. https://www.aerospike.com/
apidocs/c/.

[4] CRIU: Checkpoint/Restore In Userspace. https://
criu.org/Main_Page.

[5] GNU Wget. https://www.gnu.org/software/
wget/.

[6] Google threadsanitizer. https://
github.com/google/sanitizers/wiki/
ThreadSanitizerCppManual.

[7] Home - Lighttpd. https://www.lighttpd.net/.

[8] Install Xen 4.2.1 with Remus and DRBD on Ubuntu
12.10. https://wiki.xenproject.org/wiki/
Install_Xen_4.2.1_with_Remus_and_DRBD_on_
Ubuntu_12.10.

[9] libMemcached. https://libmemcached.org/
libMemcached.html.

[10] memcached. https://memcached.org.

[11] Minimalistic C client for Redis. https://github.
com/redis/hiredis.

[12] opencontainers/runc. https://github.com/
opencontainers/runc.

[13] Redis. https://redis.io.

[14] Siege Home. https://www.joedog.org/
siege-home/.

[15] SSDB - A fast NoSQL database, an alternative to Redis.
https://github.com/ideawu/ssdb.

[16] Tarantool - In-memory DataBase. https://
tarantool.io.

[17] Tarantool C client libraries. https://github.com/
tarantool/tarantool-c.

[18] TCP connection repair. https://lwn.net/Articles/
495304/.

[19] Navid Aghdaie and Yuval Tamir. Client-Transparent
Fault-Tolerant Web Service. In 20th IEEE International
Performance, Computing, and Communications Confer-
ence, pages 209–216, Phoenix, AZ, April 2001.

[20] Navid Aghdaie and Yuval Tamir. CoRAL: A Transpar-
ent Fault-Tolerant Web Service. Journal of Systems and
Software, 82(1):131–143, January 2009.

[21] Gautam Altekar and Ion Stoica. ODR: Output-
Deterministic Replay for Multicore Debugging. In ACM
SIGOPS 22nd Symposium on Operating Systems Princi-
ples, page 193–206, Big Sky, Montana, USA, October
2009.

[22] Lorenzo Alvisi, Thomas C. Bressoud, Ayman El-
Khashab, Keith Marzullo, and Dmitrii Zagorodnov.
Wrapping Server-Side TCP to Mask Connection Fail-
ures. In IEEE INFOCOM, pages 329–337, Anchorage,
AK, April 2001.

[23] Rafael Benevides. 10 Things to Avoid
in Docker Containers. https://
developers.redhat.com/blog/2016/02/24/
10-things-to-avoid-in-docker-containers,
February 2016. Accessed: 2022-04-25.

[24] Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven D.
Gribble. Deterministic Process Groups in dOS. In 9th
USENIX Conference on Operating Systems Design and
Implementation, page 177–191, Vancouver, BC, Canada,
October 2010.

[25] David Bernstein. Containers and Cloud: From LXC to
Docker to Kubernetes. IEEE Cloud Computing, 1(3):81–
84, September 2014.

[26] Christian Bienia. Benchmarking Modern Multiproces-
sors. PhD thesis, Princeton University, January 2011.

[27] Thomas C. Bressoud and Fred B. Schneider. Hypervisor-
based Fault Tolerance. In 15th ACM Symposium on Op-
erating Systems Principles, Copper Mountain, Colorado,
USA, December 1995.

[28] Peter M. Chen, Daniel J. Scales, Min Xu, and
Matthew D. Ginzton. Low Overhead Fault Tolerance
Through Hybrid Checkpointing and Replay, August
2016. Patent No. 9,417,965 B2.

[29] Yunji Chen, Shijin Zhang, Qi Guo, Ling Li, Ruiyang
Wu, and Tianshi Chen. Deterministic Replay: A Survey.
ACM Computing Surveys, 48(2):17:1–17:47, September
2015.

[30] Jurgen Cito, Gerald Schermann, John Erik Wittern,
Philipp Leitner, Sali Zumberi, and Harald C. Gall. An
Empirical Analysis of the Docker Container Ecosystem
on GitHub. In IEEE/ACM 14th International Confer-
ence on Mining Software Repositories, pages 323–333,
Buenos Aires, Argentina, May 2017.

USENIX Association 2022 USENIX Annual Technical Conference    97

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://https://www.aerospike.com/
https://https://www.aerospike.com/
https://www.aerospike.com/apidocs/c/
https://www.aerospike.com/apidocs/c/
https://criu.org/Main_Page
https://criu.org/Main_Page
https://www.gnu.org/software/wget/
https://www.gnu.org/software/wget/
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://www.lighttpd.net/
https://wiki.xenproject.org/wiki/Install_Xen_4.2.1_with_Remus_and_DRBD_on_Ubuntu_12.10
https://wiki.xenproject.org/wiki/Install_Xen_4.2.1_with_Remus_and_DRBD_on_Ubuntu_12.10
https://wiki.xenproject.org/wiki/Install_Xen_4.2.1_with_Remus_and_DRBD_on_Ubuntu_12.10
https://libmemcached.org/libMemcached.html
https://libmemcached.org/libMemcached.html
https://memcached.org
https://github.com/redis/hiredis
https://github.com/redis/hiredis
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://redis.io
https://www.joedog.org/siege-home/
https://www.joedog.org/siege-home/
https://github.com/ideawu/ssdb
https://tarantool.io
https://tarantool.io
https://github.com/tarantool/tarantool-c
https://github.com/tarantool/tarantool-c
https://lwn.net/Articles/495304/
https://lwn.net/Articles/495304/
https://developers.redhat.com/blog/2016/02/24/10-things-to-avoid-in-docker-containers
https://developers.redhat.com/blog/2016/02/24/10-things-to-avoid-in-docker-containers
https://developers.redhat.com/blog/2016/02/24/10-things-to-avoid-in-docker-containers


[31] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In 1st ACM Symposium
on Cloud Computing, pages 143–154, June 2010.

[32] Heming Cui, Rui Gu, Cheng Liu, Tianyu Chen, and
Junfeng Yang. Paxos Made Transparent. In 25th Sympo-
sium on Operating Systems Principles, pages 105–120,
Monterey, California, October 2015.

[33] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike
Feeley, Norm Hutchinson, and Andrew Warfield. Re-
mus: High Availability via Asynchronous Virtual Ma-
chine Replication. In 5th USENIX Symposium on Net-
worked Systems Design and Implementation, pages 161–
174, April 2008.

[34] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer.
On the Minimal Synchronism Needed for Distributed
Consensus. Journal of the ACM, 34(1):77–97, January
1987.

[35] YaoZu Dong, Wei Ye, YunHong Jiang, Ian Pratt,
ShiQing Ma, Jian Li, and HaiBing Guan. COLO:
COarse-grained LOck-stepping Virtual Machines for
Non-stop Service. In 4th ACM Annual Symposium on
Cloud Computing, Santa Clara, CA, October 2013.

[36] George W. Dunlap, Samuel T. King, Sukru Cinar, Mur-
taza A. Basrai, and Peter M. Chen. ReVirt: Enabling
Intrusion Analysis through Virtual-Machine Logging
and Replay. In 5th Symposium on Operating Systems
Design and Implementation, pages 211–224, Boston,
MA, USA, December 2003.

[37] George W. Dunlap, Dominic G. Lucchetti, Michael A.
Fetterman, and Peter M. Chen. Execution Replay of
Multiprocessor Virtual Machines. In Fourth ACM SIG-
PLAN/SIGOPS International Conference on Virtual Ex-
ecution Environments, page 121–130, Seattle, WA, USA,
March 2008.

[38] Zhenyu Guo, Chuntao Hong, Mao Yang, Dong Zhou,
Lidong Zhou, and Li Zhuang. Rex: Replication at the
Speed of Multi-Core. In 9th European Conference on
Computer Systems, pages 161–174, Amsterdam, The
Netherlands, April 2014.

[39] Zhenyu Guo, Xi Wang, Jian Tang, Xuezheng Liu, Zhilei
Xu, Ming Wu, M. Frans Kaashoek, and Zheng Zhang.
R2: An Application-Level Kernel for Record and Re-
play. In 8th USENIX Conference on Operating Systems
Design and Implementation, page 193–208, San Diego,
CA, USA, December 2008.

[40] Derek R. Hower and Mark D. Hill. Rerun: Exploit-
ing Episodes for Lightweight Memory Race Recording.

In 35th Annual International Symposium on Computer
Architecture, page 265–276, Beijing, China, June 2008.

[41] Samuel T. King, George W. Dunlap, and Peter M. Chen.
Debugging Operating Systems with Time-Traveling Vir-
tual Machines. In 2005 USENIX Annual Technical Con-
ference, pages 1–15, Anaheim, CA, USA, April 2005.

[42] Eddie Kohler, Robert Morris, Benjie Chen, and John
Jannottiand Frans M. Kaashoek. The Click Modu-
lar Router. ACM Transactions on Computer Systems,
18(3):263–297, August 2000.

[43] Oren Laadan, Nicolas Viennot, and Jason Nieh. Trans-
parent, Lightweight Application Execution Replay on
Commodity Multiprocessor Operating Systems. In ACM
SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems, page 155–166,
New York, New York, USA, June 2010.

[44] Dongyoon Lee, Benjamin Wester, Kaushik Veeraragha-
van, Satish Narayanasamy, Peter M. Chen, and Jason
Flinn. Respec: Efficient Online Multiprocessor Re-
playvia Speculation and External Determinism. In
Fifteenth International Conference on Architectural
Support for Programming Languages and Operating
Systems, page 77–90, Pittsburgh, Pennsylvania, USA,
March 2010.

[45] Wubin Li, Ali Kanso, and Abdelouahed Gherbi. Lever-
aging Linux Containers to Achieve High Availability
for Cloud Services. In IEEE International Conference
on Cloud Engineering, pages 76–83, March 2015.

[46] Jacob R. Lorch, Andrew Baumann, Lisa Vlendenning,
Dutch Meyer, and Andrew Warfield. Tardigrade: Lever-
aging Lightweight Virtual Machines to Easily and Ef-
ficiently Construct Fault-Tolerant Services. In 12th
USENIX Symposium on Networked Systems Design and
Implementation, Oakland, CA, May 2015.

[47] Ali Jose Mashtizadeh, Tal Garfinkel, David Terei, David
Mazieres, and Mendel Rosenblum. Towards Practical
Default-On Multi-Core Record/Replay. In 22nd Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, page 693–708,
Xi’an, China, April 2017.

[48] Robert H. B. Netzer and Barton P. Miller. What Are
Race Conditions?: Some Issues and Formalizations.
ACM Letters on Programming Languages and Systems,
1(1):74–88, March 1992.

[49] Marek Olszewski, Jason Ansel, and Saman Amaras-
inghe. Kendo: Efficient Deterministic Multithreading in

98    2022 USENIX Annual Technical Conference USENIX Association



Software. In 14th International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems, page 97–108, Washington, DC, USA,
March 2009.

[50] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning
Yin, Rini Kaushik, Kyu H. Lee, and Shan Lu. PRES:
Probabilistic Replay with Execution Sketching on Mul-
tiprocessors. In ACM SIGOPS 22nd Symposium on Op-
erating Systems Principles, SOSP ’09, page 177–192,
Big Sky, Montana, USA, October 2009.

[51] James S. Plank, Micah Beck, Gerry Kingsley, and Kai
Li. Libckpt: Transparent Checkpointing under Unix. In
USENIX 1995 Technical Conference, pages 213–224,
New Orleans, LA, January 1995.

[52] Shiru Ren, Le Tan, Chunqi Li, Zhen Xiao, and Weijia
Song. Samsara: Efficient Deterministic Replay in Mul-
tiprocessor Environments with Hardware Virtualization
Extensions. In 2016 USENIX Conference on Usenix
Annual Technical Conference, page 551–564, Denver,
CO, USA, June 2016.

[53] Shiru Ren, Yunqi Zhang, Lichen Pan, and Zhen Xiao.
Phantasy: Low-Latency Virtualization-based Fault Toler-
ance via Asynchronous Prefetching. IEEE Transactions
on Computers, 68(2):225–238, February 2019.

[54] Michiel Ronsse and Koen De Bosschere. RecPlay: A
Fully Integrated Practical Record/Replay System. ACM
Transactions on Computer Systems, 17(2):133–152,
May 1999.

[55] Yasushi Saito. Jockey: A User-Space Library for
Record-Replay Debugging. In Sixth International Sym-
posium on Automated Analysis-Driven Debugging, page
69–76, Monterey, California, USA, September 2005.

[56] Sudarshan M. Srinivasan, Srikanth Kandula, Christo-
pher R. Andrews, and Yuanyuan Zhou. Flashback: A
Lightweight Extension for Rollback and Deterministic
Replay for Software Debugging. In 2004 USENIX An-
nual Technical Conference, pages 29–44, Boston, MA,
USA, June 2004.

[57] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin
Wester, Jessica Ouyang, Peter M. Chen, Jason Flinn,
and Satish Narayanasamy. DoublePlay: Parallelizing
Sequential Logging and Replay. In Sixteenth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, page 15–26,
Newport Beach, California, USA, March 2011.

[58] Cheng Wang, Xusheng Chen, Weiwei Jia, Boxuan
Li, Haoran Qiu, Shixiong Zhao, and Heming Cui.
PLOVER: Fast, Multi-core Scalable Virtual Machine

Fault-tolerance. In 15th USENIX Symposium on Net-
worked Systems Design and Implementation, pages 483–
499, Renton, WA, April 2018.

[59] Min Xu, Rastislav Bodik, and Mark D. Hill. A “Flight
Data Recorder” for Enabling Full-System Multiproces-
sor Deterministic Replay. In 30th Annual International
Symposium on Computer Architecture, page 122–135,
San Diego, California, USA, May 2003.

[60] Dmitrii Zagorodnov, Keith Marzullo, Lorenzo Alvisi,
and Thomas C. Bressoud. Practical and Low-Overhead
Masking of Failures of TCP-Based Servers. ACM Trans-
actions on Computer Systems, 27(2):4:1–4:39, May
2009.

[61] Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca.
On-demand-fork: A Microsecond Fork for Memory-
Intensive and Latency-Sensitive Applications. In 16th
European Conference on Computer Systems, pages 540–
555, Virtual, April 2021.

[62] Diyu Zhou and Yuval Tamir. Fault-Tolerant Containers
Using NiLiCon. In 34th IEEE International Parallel and
Distributed Processing Symposium, pages 1082–1091,
New Orleans, LA, May 2020.

[63] Diyu Zhou and Yuval Tamir. HyCoR: Fault-Tolerant
Replicated Containers Based on Checkpoint and Replay.
Computing Research Repository, arXiv:2101.09584
[cs.DC], January 2021.

USENIX Association 2022 USENIX Annual Technical Conference    99





uKharon: A Membership Service for Microsecond Applications

Rachid Guerraoui1, Antoine Murat1, Javier Picorel2, Athanasios Xygkis1, Huabing Yan2, and Pengfei Zuo2

1École Polytechnique Fédérale de Lausanne (EPFL)
2Huawei Technologies

Abstract
Modern data center fabrics open the possibility of microsec-
ond distributed applications, such as data stores and message
queues. A challenging aspect of their development is to ensure
that, besides being fast in the common case, these applications
react fast to changes in their membership, e.g., due to recon-
figuration and failures. This is especially important as they
form the backbone of numerous cloud-powered services, such
as analytics and trading systems, trying to meet ever-stringent
tail latency requirements. As the microservices-oriented ar-
chitecture is the de facto standard for building cloud services,
a single user request translates to a wide fan-out of microser-
vices interactions sitting on the critical path. The outcome is
implacable: the traditionally uncommon events of reconfig-
uration and failures are exacerbated by the fan-out of com-
munication, making user requests commonly experience such
events and quickly impacting the tail latency of the service.

We present uKharon, a microsecond-scale membership
service that detects changes in the membership of applications
and lets them failover in as little as 50µs. uKharon consists of
(1) a multi-level failure detector, (2) a consensus engine that
relies on one-sided RDMA CAS, and (3) minimal-overhead
membership leases, all exploiting RDMA to operate at the
microsecond scale. We showcase the power of uKharon by
building uKharon-KV, a replicated Key-Value cache based
on HERD [24]. uKharon-KV processes PUT requests as fast
as the state-of-the-art and improves upon it by (1) removing
the need for replicating GET requests and (2) bringing the
end-to-end failover down to 53µs, a 10× improvement.

1 Introduction

State-of-the-art data centers form the backbone of today’s
online services, including social networks, search engines,
video streaming, e-commerce and banking platforms. The
ever-increasing popularity of online services and their perva-
sive role manifest in both huge-scale requirements as well
as stringent tail latency to guarantee smooth user interaction.

The tail of a cloud service refers to the latency of the slow-
est requests, and thus provides a limit to the maximum la-
tency experienced by the end user. Despite substantial efforts
in both hardware (e.g., InfiniBand/RDMA [40], RoCE [4],
FPGA [6], Gen-Z [28], CXL [50]) and hardware-accelerated
software [15, 21–23, 38, 52, 53, 55], keeping the tail short at
large scale is one of the most important challenges in the
cloud computing industry.

Dean et al. [9] shed light on the challenge of building
tail-tolerant software at data center scale. This challenge
mainly stems from the architecture of modern online services,
which are composed of a plethora of layers that communicate
frequently. Despite the scalability and cost benefits of such ar-
chitectures, each end-user request results in a wide fan-out of
interaction across tiers, each of which lies in the critical path
between the service and its reply to the user. The probability
of the traditionally rare reconfiguration and failure events is
thus multiplied by the fan-out of the communication. As a
result, user requests encounter such events more frequently,
which quickly impacts the tail latency of the services.

Existing systems are not capable of handling failures within
microseconds. Key-Value stores like Hermes [26], state ma-
chine replication [44] systems like Mu [2] and Hovercraft [29],
and transactional systems like FaRM [12], process requests
in a few microseconds in failure-free scenarios, but miss the
microsecond envelope when handling failures. Mu and Hover-
Craft take 0.5ms and 10ms respectively to failover. Aguilera
et al. [2] reported that Hermes has a failover of 150ms, while
FaRM mentioned ZooKeeper [20], a widely used distributed
coordination service that offers at-best millisecond failover,
for its membership management.

This paper builds on the observation that a crucial step
in making tail-tolerant microsecond applications is reacting
fast to failures. We thus propose uKharon1, a membership
service tailored to the microsecond scale. Apart from acting
as a distributed membership storage for (distributed) applica-
tions, uKharon monitors their nodes, detects their failures and

1“u” stands for microsecond, and Kharon is the carrier of the souls of the
dead in Greek mythology. It is pronounced ma · ka · ron.

USENIX Association 2022 USENIX Annual Technical Conference    101



changes their membership within 50µs. When uKharon itself
experiences a failure, it recovers within 64µs. uKharon partic-
ularly benefits applications with efficient state transfer which
can swap a faulty replica with a hot one in microseconds, for
example via shadow replication. It targets cloud services that
require seamless reconfiguration for fault tolerance and scala-
bility, such as indexes, datastores and transactional systems.

The key to the performance of uKharon is the careful de-
sign of three fundamental components, all of which leverage
RDMA to operate at the microsecond scale. First, uKharon
achieves microsecond failure detection by employing a multi-
level failure detector. It distinguishes the failures related to
the application (e.g., segmentation faults), from those related
to the kernel (e.g., driver faults), and failures related to the
hardware (e.g., RDMA NIC faults), employing for each a
different failure detector. Second, uKharon decides on mem-
berships using a consensus engine which solely relies on one-
sided RDMA verbs. This engine takes advantage of RDMA
Compare-and-Swap (CAS) to handle leader changes within
10µs. Third, uKharon provides membership leases that add
minimal overhead to the end application and last ∼20µs. As
a result, our membership service combines typically opposing
forces: having applications with low-overhead dynamicity in
failure-free scenarios and very fast failover upon failures.

We showcase the benefits of our membership service by
building uKharon-KV, a replicated in-memory KV-cache
based on HERD [24]. It uses uKharon to track the set of
nodes and react to node failures. We compare uKharon-KV
against HERD+Mu [2] (i.e., HERD replicated by Mu), a
system which—to the best of our knowledge—achieved the
lowest replication latency to date. Our evaluation shows that
uKharon-KV processes PUT requests as fast as HERD+Mu in
failure-free periods. Moreover, thanks to its leasing mecha-
nism, uKharon-KV manages to spare the replication of GET
requests, an optimization that is algorithmically impossible
in HERD+Mu. As a result, uKharon-KV GETs are 31.8%
faster than HERD+Mu’s. uKharon-KV, though, shines in the
event of failures, achieving an end-to-end failover of 53µs,
improving on HERD+Mu’s failover of 531µs by up to a factor
of 10.

In a nutshell, we present uKharon, the first ever member-
ship service suitable for the needs of tail-tolerant microsecond
applications. We make the following contributions:

• A multi-level failure detector for the microsecond scale.

• A consensus engine that relies on one-sided RDMA CAS
to change leader within microseconds.

• Microsecond leases that have minimal impact on the
performance of the end application.

• uKharon-KV, a replicated KV-cache which outperforms
the previous state of the art.

• The source code of uKharon is available at
https://github.com/LPD-EPFL/ukharon.

The rest of this paper is organized as follows: Section 2
introduces background concepts. Section 3 gives an overview
of uKharon’s design. Sections 4, 5 and 6 discuss the failure
detection, consensus and leasing components, respectively.
Section 7 reports on the performance of uKharon. Finally,
Section 8 discusses related work and Section 9 concludes.

2 Background

2.1 Membership Service
To achieve resilience, long-lived distributed systems must
be dynamic. Many systems [30, 31, 39, 45, 47] achieve dy-
namicity by relying on a coordination substrate, such as
ZooKeeper [20] or etcd [14]. Among the various services
(e.g., atomic locks, registers) these substrates offer, dynamic-
ity is fundamentally addressed via their membership service.

A membership services offers dynamicity both in graceful
executions and upon failures. In the former case, it serves join
and leave requests issued by processes that want to become
part of a distributed application or exit it. In the latter, it de-
tects process failures and reacts to them. All these events are
reflected through new configurations (called views or simply
memberships). Essentially, a membership service acts as a
storage of configuration information, keeping track of how
the set of processes evolves, and exposes this information.

Typically, membership services rely on consensus [16] to
establish a totally ordered sequence of views. Such services,
including Zookeeper and etcd, offer strong semantics as all
processes using the membership service transition through
the same sequence of views.

Consensus-based membership services also offer real-time
semantics. Apart from knowing the sequence of member-
ships, it is also important to know which is the (single) active
membership. To understand why this real-time property is
useful, consider the following example that incorrectly builds
a cache storage solely relying on the sequence of member-
ships: The cache serves READ and WRITE requests. Initially,
membership M1 = {S1} designates server S1 as responsible
for the cache (i.e., S1 stores it and serves requests). Eventu-
ally, a second membership M2 = {S2} replaces S1 with S2.
S2, being part of M2, proceeds with serving clients’ requests
and updates the content of the cache. At the same time, S1 is
unaware of M2 and continues serving clients’ requests as well.
As a result, a client that is also unaware of M2 and reads from
S1 will get stale data. This example demonstrates a violation
of consistency. It shows that total order of memberships does
not provide any real-time guarantees by itself.

Membership services provide real-timeness by making out-
dated memberships nonoperational. A commonly used mech-
anism to achieve this property is the use of a distributed
invalidation protocol. Another solution is to rely on leases.
With leases, processes are forced to periodically check the
active membership, execute operations in this membership,

102    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/LPD-EPFL/ukharon


and abort operations that span over multiple memberships.
uKharon provides real-timeness via leases.

2.2 RDMA
Remote Direct Memory Access (RDMA) [49] is a networking
technology that allows processes to access the memory of a re-
mote machine without involving the CPU of the latter. By im-
plementing several layers of the networking stack in hardware
and relying on kernel bypass, RDMA achieves microsecond
inter-machine communication. It allows applications within
the data center to communicate in as little as 0.9µs [25]. This
technology is supported by different fabrics such as Infini-
band [49] and commodity Ethernet via RoCE [4].

Applications communicate over RDMA by relying on prim-
itives called verbs. There exist one-sided verbs that include
READ, WRITE and Compare and Swap (CAS) verbs and
two-sided verbs, such as SEND and RECV verbs. One-sided
verbs let a process read, write and apply atomic transforma-
tions to a remote machine’s memory without involving its
CPU. Two-sided verbs are similar to message passing and
involve both communicating sides. They let processes send
and receive memory buffers. Communication in RDMA can
notably occur over established Reliable Connections (RCs) or
over Unreliable Datagrams (UDs). While the former provide
FIFO semantics, the latter trade reliability for better perfor-
mance and support for message multicast [49].

2.3 Communication Model
uKharon is designed for data centers. It is safe under asyn-
chrony and live under partial synchrony [13]. That is, to
make progress, uKharon assumes a Global Stabilization Time
(GST), unknown to the processes, such that from GST on-
wards there is a bound ∆ on communication and processing
delays. This is is a realistic assumption, as data center fabrics
are not asynchronous in practice [3, 35, 54]. Additionally, our
system relies on bounded clock drift for safety, i.e., durations
are approximately the same across all processes. uKharon
also assumes crash-stop failures: processes may fail by crash-
ing, after which they stop executing. Finally, we assume
that network partitions, which affect uKharon’s liveness, are
eventually resolved by the data center administrators.

3 Design Overview

3.1 Architecture
Figure 1 gives an overview of uKharon. Our system, as a
membership service, runs on application nodes as well as a
set of dedicated nodes called coordinators.

Central to uKharon is uKharon Core, a single-threaded li-
brary that hosts monitoring functionalities of the membership
service. This includes detecting failures of member nodes

Application node Coordinator

RDMA-exposed 
memberships (views)

E
na

bl
e

 d
ea

db
ea

t

M1 ...M2

Join
Leave

Lease
active
view

(from broadcasts)

uKharon Core
uKharon Core

while is leader:
 upon join/leave/failure 
  propose membership
  broadcast membership

Process cleanup
broadcast failure

Application logic

Figure 1: Overview of uKharon

(including coordinators), listening for failures and new mem-
berships, as well as renewing leases. The application receives
these events via thread-safe accessors: a stream of failures,
a stream of memberships and a method Active(M)→ bool
which checks whether a given membership M is active.

The generation and storage of memberships is delegated
to coordinators. Coordinators achieve fault tolerance through
consensus. One of them is the leader, which processes
join/leave requests from both application nodes and coor-
dinators, proposes new memberships and broadcasts decided
memberships which are picked up by the uKharon Core in-
stance running on every node. The rest of coordinators help
the leader decide and replicate the sequence of memberships.
Finally, coordinators assign each member a unique identifier.

Running uKharon Core on both application nodes and co-
ordinators helps bootstrap the membership service. uKharon
Core learns about the new memberships from coordinators,
but coordinators require the membership service to learn
about each other. Similarly, coordinators rely on uKharon
Core to detect failures of application nodes or themselves.

Part of uKharon’s failure detection logic resides in the ker-
nel, outside of uKharon Core. It consists of a kernel module
hooked to Linux’s process cleanup routine. This module can
be enabled by the application logic and broadcasts a failure
notification (called deadbeat) when the application crashes.

New memberships are merely broadcast by coordinators,
putting the burden of detecting the active membership to
the application nodes. uKharon Core is responsible for
bringing real-timeness to applications. It reads the RDMA-
exposed memberships at a majority of coordinators to deter-
mine whether a membership has been superseded by a new
one or whether it is still active. The active membership is
leased for a limited amount of time, in our case ∼20µs.

3.2 Communication
uKharon relies extensively on the performance of today’s
RDMA-enabled fabrics to achieve its microsecond latency
target. It leverages one-sided RDMA verbs, two-sided ones
(i.e., HERD-style RPC [24]), as well as RDMA Multicast. Co-
ordinators run consensus using RDMA Reliable Connections

USENIX Association 2022 USENIX Annual Technical Conference    103



(RCs). In particular, coordinators establish all-to-all con-
nections among themselves and communicate using RDMA
READ, WRITE and CAS. Additionally, coordinators use
RDMA Multicast, which is backed by RDMA Unreliable
Datagrams (UDs), to notify all nodes about new member-
ships. uKharon also uses RDMA Multicast to emit failure
notifications. uKharon Core relies on RDMA READs over
RCs to retrieve the active membership from coordinators and
to detect the failure of remote nodes. Finally, processes send
join and leave requests to the coordinator leader using RPC.

3.3 Challenges
Our system is designed for applications that operate and
failover at the microsecond scale. To do so, uKharon meets
two important design goals. First, it itself operates at the mi-
crosecond scale, meaning that it is able of changing the active
membership within as few as 50µs. Second, we ensure that
uKharon Core has minimal performance overhead on the end
application it is bundled with. To meet these goals, uKharon
is structured around three major components:

Failure detection. Efficient failure detection is the first step
towards fast failover. Conventional wisdom suggests that
there is a trade-off between the speed and accuracy of a fail-
ure detector. We work around this limitation by building a
hierarchy of RDMA-tailored failure detectors suited for the
microsecond scale. Our hierarchy detects failures within a
few tens of microseconds, as we explain in Section 4.

Consensus engine. The second step of failover is agreeing
on the new membership. Existing leader-based consensus
engines, although optimized for the microsecond scale, strug-
gle to change their leader at this time scale. In Section 5,
we explain how our microsecond consensus engine changes
leader in microseconds. This gives our design the unique
property that a coordinator failure—especially failure of the
coordinator leader—has negligible effect on the failover time.

Leases. As far as the membership service is concerned, the
last step towards failover is updating the active membership.
However, the new membership cannot become active before
leases on previous memberships have expired. Thus, the
longer the leases, the higher the failover time. On the other
hand, short leases can result in application overhead, as they
have to be checked in the application’s critical path and re-
newed in time before expiring. In section 6, we explain how
uKharon manages to have∼20µs leases with virtually no cost
for the end application and how leases can scale to hundreds
of machines for an extra ∼20µs.

4 Microsecond Failure Detection

uKharon relies on microsecond failure detection to notify
nodes about member failures and to trigger the generation of

new memberships. In this section, we describe uKharon’s
failure detection scheme.

4.1 Multi-level Failure Detection
A practical failure detector aims at being as complete and as
accurate as possible. A complete and accurate failure detector
is able to detect all failures and not have false positives, re-
spectively. Completeness without accuracy causes problems
in practice, as false positives trigger new memberships which
require distributed applications to take further action (e.g.,
rebalancing data among nodes).

Commonly, failure detectors rely on timeouts for their oper-
ation. However, timeouts are hard to set correctly: if they are
too low, the failure detector may experience instability (e.g.,
oscillating behaviors). That explains why most systems set
the timeouts to a safe high-enough value. In the microsecond
scale this problem is magnified, as small execution delays
(e.g., kernel jitter) can take several microseconds.

Our failure detector follows a pragmatic approach: it avoids
timeouts when possible. To achieve this, we are inspired by
Falcon [35], and identify four levels of failures: (1) userspace
failures (e.g., segmentation faults, out of memory errors, un-
caught exceptions) that cause the application to abort, (2)
kernel failures (e.g., cores hanging in the kernel, kernel oops
caused by driver crashes) that impede the application’s exe-
cution, (3) catastrophic failures (e.g., power failures, RDMA
NIC failures) that prevent communication with the applica-
tion’s host, and (4) byzantine failures (e.g., stack overflows,
mercurial cores [19]) that affect the application state. Each of
the first three levels is handled by uKharon via a specialized
failure detector. We do not address Byzantine failures.

4.2 uKharon’s Failure Detectors
We now explain how uKharon’s specialized failure detectors
work, depending on the type of failure.

Userspace failures. They are handled by the Linux kernel.
The application registers to the kernel to enable a deadbeat,
which is a failure notification broadcast by the kernel upon
the death of the process. This registration happens by means
of the prctl system call that the application calls early in
its execution. The system call includes the node’s identifier
and modifies the process descriptor (Linux’s task_struct)
with a flag that the kernel checks during the cleaning routine
of the process. In Linux, when a process crashes, control is
transferred to the kernel which starts executing the process
cleaning routine. If the flag is set, the kernel broadcasts a
failure notification that includes the specified identifier. To
achieve this functionality, we extend the prctl system call
and modify the process cleaning routine that is part of the
kernel’s exit system call. The task of broadcasting the crash
notification is delegated to a kernel module. This module uses
the kernelspace RDMA driver to broadcast crash notifications

104    2022 USENIX Annual Technical Conference USENIX Association



which are polled by all instances of uKharon Core. As this
failure detector does not use timeouts, it has no false positives.

Kernel failures. To detect application failures caused by the
kernel, we rely on the way RDMA is handled in userspace. An
application registers memory to an RDMA device by issuing
ioctl system calls on a file descriptor. By design, the Linux
kernel destroys that file descriptor and thus disables remote
access to this memory at the end of the process’ cleaning
routine. If this cleaning routine runs, the failure is caught
by the previous failure detector. Otherwise, the memory
will remain remotely accessible while the execution of the
application is suspended (and the kernel is dying).

For the operation of this failure detector, processes are
arranged in a logical ring where every process monitors its
successor. Our system uses a local heartbeat counter in a sim-
ilar fashion to Mu’s detector [2]. uKharon Core increments
this counter to indicate that the process is alive. This counter
is read by the predecessor process. If a process RDMA-reads
the same value twice, it reports its successor as having failed.

A process would be wrongly detected if it were unable to in-
crement its counter between two consecutive reads. Thus, we
take special care to ensure that processes always increment
their counters faster than the time delay between two con-
secutive reads. Importantly, we deploy (the single-threaded)
uKharon Core in its own dedicated physical core. We resort
to a custom kernel compiled with the NO_HZ_FULL option,
which disables regular timer interrupts [37] on the dedicated
core and and thus reduces the kernel jitter towards uKharon
Core. Additionally, we boot this kernel with the isolcpus
parameter, which prevents other userspace processes from
sharing the dedicated core with uKharon Core. In exper-
iments, the interval we observed between two counter in-
crements under heavy load was 5µs most of the time and
never more than 15µs. To account for unexpected jitter (e.g.,
thermal throttling), we make processes wait 30µs after the
completion of an RDMA READ before issuing the next one.
As RDMA READs are issued sequentially, network delays
do not negatively impact the accuracy of this failure detector.

Catastrophic failures. uKharon relies on a timeout-based
scheme to detect failures that prevent machines from commu-
nicating. We set the timeout to 1ms, which is 2−3 orders of
magnitude higher than the common case latency of modern
data center fabrics. As reported by Li et al. [36], 1ms is safe
even in case of network congestion.

The detector works by having processes periodically broad-
cast a heartbeat and poll for heartbeats from others. Processes
keeps track of the set of processes they recently received a
heartbeat from. They compare this set with the current mem-
bership and report which processes they consider failed to the
coordinator leader. Then, the leader constructs a connectiv-
ity graph based on the reported link states and changes the
membership to approximately match the maximum clique
in which it is included. Thus, our membership service en-

forces all-to-all connectivity among the members and does
not expose any information regarding network partitions. A
systematic treatment of network partitions is out of our scope.

The first two detectors broadcast failure notifications over
RDMA-multicast, which offers better scalability than broad-
casting using Reliable Connections. Nevertheless, RDMA-
multicast is backed by Unreliable Datagrams, thus failure
notifications can be lost under high network load. Dropping
these notifications is safe, as uKharon-Core rebroadcasts a
failure notification until a new membership excludes the failed
node.

5 Microsecond Consensus

In this section, we present a state-of-the-art consensus engine
that is tailored for the needs of uKharon and powers its co-
ordinators. Our engine is efficient regardless of failures: in
the absence of failures, it decides in one RDMA delay (by
issuing an operation to a majority of processes in parallel),
while it decides in one additional RMDA delay in the event of
a failure. It uses a slightly modified version of Paxos based on
the observation that the original algorithm contains RPCs that
can be emulated with RDMA CAS operations. In the rest of
the section, we intuitively describe our consensus algorithm
and discuss implementation details. Appendix A provides its
pseudocode and a proof of its correctness.

5.1 Consensus and Paxos

Consensus is a fundamental problem in distributed computing.
Informally, each process proposes a value and eventually all
processes irrevocably agree on one of the proposed values.
Processes agree on a sequence of values and totally order
them by running multiple instances of consensus.

Several algorithms solve consensus in the partially syn-
chronous model. Many are variants of Paxos [32]. In Paxos,
processes are divided in two groups: proposers and acceptors.
Proposers propose a value for decision and acceptors accept
some proposed values. Once a value has been accepted by a
majority of acceptors, it is decided by its proposer.

Intuitively, Paxos is split in two phases: the Prepare phase
and the Accept phase. During these phases, messages from
the proposer are identified by a unique proposal number. The
Prepare phase serves two purposes. First, the proposer gets a
promise from a majority of acceptors that another proposer
with a lower proposal number will fail to decide. Second, the
proposer updates its proposed value using the accepted values
stored in the acceptors. This way, if a value has been decided,
the proposer will adopt it. The prepare phase can also abort if
any acceptor in the majority previously made a promise to a
higher proposal number. If the proposer manages to complete
the Prepare phase without aborting, it proceeds to the Accept
phase. In this phase, the proposer tries to store its value in a

USENIX Association 2022 USENIX Annual Technical Conference    105



1 # Paxos’s RPCs pattern
2 def rpc(x):
3 if compare(x, state):
4 state = f(state, x)
5 return proj(state)

1 def cas-rpc(x):
2 expected = fetch_state()
3 if not compare(x, expected):
4 return proj(expected)
5 move_to = f(expected, x)
6 old = state.cas(expected,

↪→ move_to)
7 if old == expected:
8 return proj(move_to)
9 abort

Algorithm 1: Paxos’s RPCs turned into CAS-based RPCs.

majority of acceptors. If it succeeds (i.e., a majority accepted
the value), it decides on that value.

5.2 One-sided Paxos
Paxos uses RPC in a very specific form. The accep-
tors’ state consists of only three variables: min_proposal,
accepted_proposal and accepted_value. In both
phases, acceptors atomically update these values based on the
proposer’s input and return some of them.

Algorithm 1 proposes an obstruction-free transformation
to turn Paxos’s RPCs into purely one-sided conditional writes
using RDMA CAS. Paxos’s RPCs follow the pattern seen in
rpc. The acceptor executing the RPC compares the received
value x to its state (stored in state). If the comparison is
successful, the acceptor updates its state (shown with function
f) using the provided value x. Finally, the acceptor uncondi-
tionally returns part of its state (shown with function proj).

The pattern presented in cas-rpc allows RDMA to emu-
late rpc while solely relying on one-sided verbs. Opposite to
rpc, which is executed on the acceptor’s side, cas-rpc is ex-
ecuted on the proposer’s side. To execute the one-sided RPC,
the proposer first needs to know the state that is stored in
the memory of the acceptor. This value can either be guessed
(e.g., using a previous value of state) or fetched (e.g., using
RDMA READ, as shown in line 2). Then, the proposer exe-
cutes the comparison locally (line 3) and decides whether to
continue or terminate. If the comparison succeeds, the pro-
poser proceeds with updating the state of the acceptor. It is
this update that utilizes CAS 2. In line 7, if the CAS succeeds,
the acceptor’s state has been updated successfully with the
value of move_to. Otherwise, state remains unchanged.

When the RDMA CAS succeeds, i.e., in the absence of con-
tention, both rpc and cas-rpc are equivalent (see Appendix
A.2). However, if the RDMA CAS fails, cas-rpc will abort
while rpc would not. In this case, rpc and cas-rpc are
not equivalent, but this does not violate the correctness of
Paxos. The reason is that Paxos tolerates an arbitrary number
of proposer failures and that aborting the RPC and starting
over is indistinguishable from such a failure.

2As a reminder, variable.cas(expected, new) atomically checks
if variable equals expected and sets variable to new if this is the case.
The operation always returns the initial value of variable.

(1, 0, C
1
)

C
1
: M

1

(1, 0, ⊥)

C
1
: M

1

(1, 0, ⊥)

C
1
: ⊥

RDMA-exposed memory at C
1

Membership proposals

...

Consensus slots

(1, 1, C
1
) (1, 0, ⊥) (0, 0, ⊥) … Prepare

Slot CAS
(0, 0, ⊥)

C
1
: ⊥

Memb.
WRITE

Accept 
Slot CAS

min_proposal
accepted_proposal

 C1 ⊥ ⊥ …

 C
3

⊥ ⊥ ⊥ …

accepted_value

M
1

Figure 2: uKharon’s Consensus Engine with its RDMA-
exposed memory for multiple instances of consensus (left)
and a state machine for a single instance of consensus (right).

5.3 uKharon’s Consensus Engine
We now explain how to make the variant of Paxos described
in Section 5.2 practical and compare it with Mu [2], a state-
of-the-art consensus engine.

5.3.1 Practical Considerations

Leader election. To avoid the contention rising from multiple
concurrent proposers, our consensus engine adopts the same
leader election scheme as Mu. The process with the lowest
identifier among the coordinators considered alive is elected
as the leader. In the event of a partial network partition, this
scheme can elect multiple leaders. For example, if coordinator
C2 is the only one unable to reach C1, it will think of itself
as the leader, while other coordinators will consider C1 as
their leader. Having multiple leaders cannot lead to multiple
values being decided, i.e. safety is always preserved. Leader
contention can, however, prevent the engine from being live.
Thus, a leaders that fails to decide uses a randomized backoff
before proposing until the partition is resolved.

Pre-preparation. Coordinators decide on a sequence of val-
ues by running consensus on a sequence of slots, as shown
in Figure 2. It requires two RDMA delays for each slot: one
for the Prepare and another for the Accept phase (shown with
horizontal arrows in the figure). A stable leader can prepare
slots in advance and only run the Accept phase to decide. In
this case, the leader decides in a single RDMA delay. The
leader uses the time spent waiting for the Accept phase to
complete on a slot to run the Prepare phase for the next one.
Thus, it always maintains one pre-prepared slot (depicted in
the second consensus slot of Figure 2), with no latency over-
head. Switching to the new leader requires re-preparing the
next slot. As an optimization, the new leader predicts that
the last slot had been prepared by the previous leader and
uses this prediction as the expected value of the RDMA CAS.
With this approach, the new leader manages to re-prepare the
next slot in a single RDMA delay instead of two.

CAS size limitation. Algorithm 1 assumes that the consensus
state fits within a single CAS. Current RDMA NICs only

106    2022 USENIX Annual Technical Conference USENIX Association



support CAS up to 8 bytes. We set both min_proposal and
accepted_proposal to be 2 bytes each3. The remaining 6
bytes are dedicated to the accepted_value.

Our consensus engine uses indirection to overcome the
limited size of the accepted_value and store uKharon’s
memberships. Instead of deciding on the membership itself,
coordinators decide on its location in memory. First, the pro-
poser RDMA-writes the membership to a part of acceptors’
memory dedicated to membership proposals (see Figure 2)
to which it has exclusive write access. Then, the proposer
runs the Accept phase where it proposes its own identifier
(C1 in the figure). If the Accept phase succeeds at a majority
of acceptors, then the proposer decides. Thanks to the FIFO
semantics of RDMA RCs, if the last RDMA operation (i.e.,
the Accept phase CAS) succeeds, the previous RDMA oper-
ation (i.e., storing the membership with an RDMA WRITE)
also succeeded. The two RDMA operations combined do not
execute atomically, yet a coordinator cannot have accepted an
identifier without knowing its associated membership.

5.3.2 Comparison with the State-of-the-art

Many systems, such as Mu [2], DARE [41] and APUS [51]
study consensus over RDMA. They primarily focus on im-
proving the throughput and latency of common case execu-
tions, thus achieving consensus in a few microseconds. How-
ever, these systems have failovers ranging from 0.5ms (in Mu)
to 10s or 100s of ms (in DARE and APUS, respectively).

Mu has the best performance in failure-free executions
among competition as it solves consensus in ∼1.4µs. It relies
extensively on RDMA permissions. During its Prepare phase,
a proposer asks acceptors for the exclusive write permission
to their memory and waits for a majority of replies. This step
guarantees that only one proposer can write to an acceptor at
a time. In the Accept phase, the proposer decides by merely
writing to a majority of acceptors. As acceptors give write
permissions to a single proposer at a time, no two concurrent
proposers can successfully write to a majority of acceptors
and decide on different values. Since WRITE is the most
efficient RDMA verb and the Prepare phase runs only once
per leader change, Mu is optimal in failure-free executions.

The Accept phase of our algorithm relies on a WRITE
followed by a CAS. Importantly, these one-sided operations
have lower tail latency compared with the two-sided verbs
present in DARE and APUS. The CAS increases the decision
time from 1.4µs to 2.9µs compared with Mu. When it comes
to a leader change, Mu’s permission change mechanism re-
quires approximately 250µs, since it constitutes a control path
operation that involves a system call and a reconfiguration of
the NIC. In our consensus engine, the additional CAS lets co-
ordinators change leader in under 10µs. Thus, our algorithm
is designed for short tail latency and makes the failure of the

3Appendix A.6 discusses how to prevent overflows after 216 failed at-
tempts to decide on a slot by switching from CAS-based to two-sided RPCs.

coordinators’ leader no more important (latency-wise) than
the failure of any other node.

6 Microsecond Real-timeness

In addition to reacting to failures and deciding on views,
uKharon lets applications track the active membership via
the Active method. While this information is essential for
consistency, it must not burden the end application. In this sec-
tion, we describe the challenge of making Active’s overhead
negligible while preserving microsecond view changes.

6.1 The Active Method

uKharon exposes real-timeness to end applications via the
Active(Membership)→bool method. If Active(M) re-
turns true, we say that M is active at some point between
the call and return of the method. Active satisfies three im-
portant properties. First, there are no two overlapping active
memberships. Second, after a membership M is active, no
memberships older than M become active. Third, the active
membership converges to the latest decided membership.

Intuitively, processes use the Active method to determine
the membership they should be executing operations in. When
coordinators decide on a new membership M′, a process p
may stay in an older membership M due to a delay in receiving
M′. Calling Active(M) will eventually return false at p,
thus letting it realize that it misses the latest membership M′.
To ensure consistency, an application typically calls Active
once before starting an operation and a second time before
committing it, only committing if both calls return true.

6.2 Leases

uKharon uses leases for efficiency. We proceed incrementally,
first describing an implementation of Active without leases,
before moving to a more efficient lease-powered scheme.

The basic implementation of Active requires communi-
cation in every invocation. Let M be the k-th membership
decided by the coordinators and assume a process p invokes
Active(M). In essence, Active declares that M is active
if it can conclude that no newer membership M′ has been
decided. To this end, the process RDMA-reads the k+1-th
consensus slots at coordinators and waits for a majority of
replies. If all replies are empty, then the k+1-th membership
has not been decided, meaning that M is (still) active at some
point between the invocation and return of the method. If, on
the other hand, at least one of the replies is non-empty it is
inconclusive whether M has been superseded by M′. In case
M′ has been decided before p issues the READs, then at least
one of the replies must be non-empty, but the opposite is not
always true. For safety, Active returns false if at least one
of the READs on the next consensus slot is non-empty.

USENIX Association 2022 USENIX Annual Technical Conference    107



1 leased_membership = ⊥; tstart = 0; tend = 0

3 def Active(M) → bool: # M is always a decided membership
4 t = hw_timestamp()
5 if leased_membership != M: # First-time lease on M
6 if majority_active(M):
7 leased_membership = M; tstart = t + δ; tend = tstart
8 else: # Check/extend lease on M
9 if t in [tstart, tend): return True

10 if majority_active(M):
11 tend = t + δ

12 return t > tstart
13 return False

Algorithm 2: Leased active membership.

A lease refers to a membership and has a start and an expi-
ration date. A lease guarantees its holder that its associated
membership will remain active until it expires. In our system,
leases are created by uKharon Core and last δ≈ 20µs.

Algorithm 2 provides an efficient alternative implementa-
tion of Active that relies on leases to reduce communication.
It starts by taking a hardware timestamp t (line 4) and then
checks if a lease on M already exists (line 5). If no lease
exists (lines 6-7), the method checks for a newly decided
membership by contacting a majority of coordinators. If no
membership newer than M could have been decided (i.e., all
replies are empty), it creates a lease on M (line 7) that starts
at t + δ and has no duration. This prevents overlapping ac-
tive memberships since any lease that processes could hold
on a previous membership M′ < M will have expired before
M becomes active. In case a lease on M already exists, the
method tries to use it in order to avoid reaching the coordi-
nators (line 9). If it cannot use it, it tries to extend the lease
(line 11) by checking the coordinators. It returns True only if
leases on previous memberships have expired (line 12), which
takes—in the worst case—δ to happen. As a result, leases
affect the speed at which memberships can change, justifying
the desire for a small lease duration. Section 7 demonstrates
that leases of δ≈ 20µs are feasible in practice.

This efficient implementation of Active renews its lease
on demand. As long as its lease is valid, the method merely
takes a hardware timestamp—which takes a few tens of
nanoseconds—and returns immediately without reaching the
coordinators. The latency overhead of Active to the applica-
tion that invokes it is thus very low. Communication with the
coordinators is only necessary when leases expire and have
to be renewed, which results in a spike in Active’s latency.
In practice, uKharon Core renews leases in the background
to ensure that—when the membership remains unchanged—
Active is not delayed by the calls to majority_active.

uKharon does not rely on operational leases for either live-
ness or safety. Timely renewal of leases is only a way to
reduce the latency of Active as Algorithm 2 would work
even with zero-duration leases. uKharon relies on bounded
clock drifts for safety, as opposed to clock synchronization.
This ensures that durations are approximately the same across

all processes, thus preventing overlapping memberships. Ap-
pendix C includes a microbenchmark evaluating the clock
drift of actual hardware and gives an overestimated drift that
is no more than 0.001% of the lease duration. Thus, clock
drift is accounted for by making leases last a few nanoseconds
less than their nominal value. As drift is reset on each lease re-
newal, it does not accumulate over time. Therefore, no matter
how long a system is up for, its operation remains unaffected
by the clock drift. A proof of correctness of uKharon’s leases
is given in Appendix B.

6.3 Extensions

Adaptive leases. So far, we have assumed a fixed lease dura-
tion δ. Network delays greater than δ render leases useless
as, every time the lease is extended (line 11), tend is always
in the past. In this case, Active always contacts the coordi-
nators. In order to work under partial synchrony and avoid
this scenario, we extend the leasing mechanism as follows:
Coordinators store the lease duration for a given membership
along with the membership itself. An application node that
wants to increase the lease duration contacts the coordinator
leader. This results in a new compatible membership that
is identical to the previous one apart from the lease dura-
tion. Compatible memberships receive special handling by
uKharon Core in order to ensure that—when going from one
compatible membership to another—Active does not wait
for leases on the previous membership to expire. Also, if
the latest membership M is not compatible with the previous
one, invocations to Active(M) return false until all possibly
ongoing leases on previous memberships have expired.

Lease caches. Active reaches a majority of coordinators to
renew its lease, which scales badly as the number of appli-
cation nodes increases. uKharon solves this issue with an
intermediate lease renewal layer, the lease caches. These
caches use the Active method to lease memberships for ∆

(by reading from a majority of coordinators). In turn, applica-
tion nodes use leases that last for δ and a modified version of
Active. This version differs from the one presented in Al-
gorithm 2 in the majority_check calls, which are replaced
with RPCs to a single lease cache. As a result, application
nodes reduce the communication cost required to renew their
lease by a factor of—at least—3 (the typical number of coor-
dinators). However, lease caches increase the failover time
of applications by at least ∆. The reason is that when the
coordinators change the membership, the Active method of
caches waits ∆ before making the new membership active.
At the same time, the Active method of application nodes
that is directed to some lease cache, waits δ before making
the new membership active. Thus, the overall time from the
moment a new membership is decided until application nodes
start using it jumps from (at least) δ to (at least) ∆+δ.

108    2022 USENIX Annual Technical Conference USENIX Association



7 Evaluation

We evaluate the various performance traits of uKharon and
verify its suitability as a membership service for microsecond
applications. We aim to answer the following:

• How much does uKharon increase the latency of end
applications and what is its impact on their throughput?

• How fast does uKharon respond to failures?

• How can uKharon be leveraged to build replication pro-
tocols and what performance can they achieve?

CPU 2x Intel Xeon Gold 6244 CPU @ 3.60GHz
(8 cores/16 threads per socket)

NIC Mellanox ConnectX-6 MT28908
Switch Mellanox MSB7700 EDR 100 Gbps

OS/Kernel Ubuntu 20.04.2 / 5.4.0-74-custom
RDMA Driver Mellanox OFED 5.3-1.0.0.1

Table 1: Hardware details of machines.

We evaluate uKharon in a 8-node cluster, the details of
which are given in Table 1. The custom kernel sets the
NO_HZ_FULL option and uses the isocpus boot parameter,
as explained in Section 4.2. Our dual-socket machines are
NUMA and their RDMA NIC lies on the first socket. For
this reason, we ensure that all threads during our experiments
execute on cores of the first socket. We also make all threads
exclusively use the memory bank closest to this socket.

Our implementation measures time durations using the
clock_gettime function with the CLOCK_MONOTONIC pa-
rameter. The function uses the TSC clocksource of the Linux
kernel, which offers efficient and accurate timestamping [43].
Appendix C discusses details regarding the drift and syn-
chrony of TSC in symmetric multiprocessing (SMP) systems.

Finally, in all experiments we deploy 3 coordinators.

Applications. We integrate uKharon with HERD [24]. HERD
is a non-replicated microsecond-scale RDMA-based KV-
cache. Clients send requests to a HERD server by RDMA-
writing to a dedicated buffer that the server has allocated for
them. Requests contain an 8-byte key and are either PUTs or
GETs. PUTs additionally contain the value to be stored for the
specified key. The server discovers new client requests by
polling its local memory, executes the requests locally and
then replies to the clients using RDMA UDs. We also lever-
age uKharon to build uKharon-KV, an extended version of
HERD which supports replication. We compare our solution
with HERD replicated by Mu (HERD+Mu) [2] which—as far
as we know—offers the lowest replication latency to date.

Implementation effort. We implemented uKharon on top of
our own RDMA framework. uKharon Core and the consensus
engine span 4448 and 1324 lines of C++, respectively. The

19 21 23 25 27 29
90

100

Net. Load = 30%

19 21 23 25 27 29

80

100

Net. Load = 60%

19 21 23 25 27 29

80

100

Net. Load = 80%

19 21 23 25 27 29
0

10
Net. Load = 100%

0.0 0.2 0.4 0.6 0.8 1.0Lease duration (µs)

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

el
y 

le
as

e 
re

ne
w

al
 (%

)

Mem. Load = 50% 65% 85% 100%

Figure 3: Percentage of timely lease renewal depending on
the lease duration, network load and memory load.

kernel module of the deadbeat failure detector is 404 lines of
C. uKharon-KV extends HERD by 1498 lines of C++. The
only unimplemented features are clique-based memberships
(Section 4.2) and adaptive leases (Section 6.3).

7.1 Overhead Induced by uKharon

Latency Overhead. Applications bundled with uKharon
Core rely heavily on its Active method. As long as (the
background running) uKharon Core renews the lease on the
active membership in time, the Active method adds negligi-
ble latency overhead to the application. We experimentally de-
termine that the 99th percentile latency for invoking Active
is 38ns when the lease is renewed in time, which is the time
it takes to fetch the hardware timestamp and compare it with
the expiration date of the lease. Fluctuations in the network’s
latency or execution delays when uKharon Core renews the
lease (e.g., due to cache misses) induces additional latency to
the application, as explained in Section 6.2.

Figure 3 shows how the duration of leases affects their
timely renewal. We run 1-minute experiments under a steady
membership with 32 lease renewers contacting coordinators
directly and lease durations ranging from 18 to 30µs. Each
machine has a maximum memory bandwidth of 480Gbps and
a maximum network bandwidth of 100Gbps. We apply vari-
able network and memory load by running stress-ng [27]
and perftest [42] on the first socket of our machines.

When the network load is maximum (bottom right figure),
less than 12% of the calls to Active return immediately, irre-
spective of the memory load. For network loads of 30−80%
(other figures), the memory load progressively affects lease
renewal. Maximum memory load causes expired leases when
lease duration is shorter than 27µs. For most other configu-
rations, a duration greater than 23µs suffices. For example,
with 80% network and 50% memory load, lease renewal fails
0.0011% of the time, which corresponds to Active induc-
ing latency every 300 out of 1.5 billion invocations. In other

USENIX Association 2022 USENIX Annual Technical Conference    109



1 2 3 4 5 6
Number of cores

2.5

5.0

7.5

10.0

12.5

Th
ro

ug
hp

ut
 p

er
 co

re
 (M

O
PS

)

-1
0.0

9%

-1
0.8

5%

-1
0.2

2%

-1
0.2

2%

-1
0.3

8%

-1
0.3

8%-1
0.8

9%

-8
.47

%

-7
.17

%

-8
.47

%

-7
.22

%

-6
.51

%

-8
.03

%

-6
.39

%

-6
.68

%

-6
.48

%

-5
.59

%

-7
.12

%-3
.65

%

-1
.80

%

-1
.36

%

-0
.28

%

-0
.99

%

-1
.13

%

uKharon overhead |batch| = 1
|batch| = 2

|batch| = 4
|batch| = 6

uKharon overhead |batch| = 1
|batch| = 2

|batch| = 4
|batch| = 6

Figure 4: Impact of uKharon on HERD’s throughput for
different batch sizes and numbers of cores. Full bar shows the
throughput w/o uKharon; labels show uKharon’s overhead.

words, the 99.999th percentile of Active’s latency is 2µs.
We get similar (omitted) results when an application renews

its leases through lease caches. In fact, RPC-based renewal
requires at most 2µs longer leases (compared with reading
from coordinators) to achieve the same percentages of timely
lease renewal. We attribute this difference to RPC, which
involves the CPU of both the application and the lease cache.

From this experiment we select the lease duration that we
use for the rest of our evaluation. We pick the lease duration
when renewing from coordinators (δ) to be 23µs, and the lease
duration when renewing from lease caches (∆) to be 25µs.

Throughput Reduction. We use uKharon to make HERD
dynamic. The original HERD assumes a static set of servers,
each of which serves a shard of the key space. Clients are
aware of this sharding and use the key of a request to deter-
mine the appropriate server. The lack of dynamicity affects
HERD’s flexibility in two ways. First, if a server fails, its
shard becomes unavailable forever. Second, the system is
unable to re-balance the load among the servers. Importantly,
the use of a static set of servers ensures consistency of clients’
requests: GETs return the value of the most recent PUT.

In our implementation, each server dedicates up to 6 cores
to the KV-cache and each core is responsible for a part of the
key space. Every core processes clients’ requests and invokes
the Active method before replying to avoid inconsistencies.
If Active returns true, the core executes the request (if the
key belongs to its shard) and replies to the client. Otherwise,
the core rejects the request. Given that every core invokes
Active in the critical path of serving requests, the latency of
requests increases (by ∼38ns) and the throughput decreases.

Figure 4 shows the per-core throughput of a static deploy-
ment of HERD, along with the drop in performance caused by
the integration of the Active method. The workload is 80%
GETs and 20% PUTs with 32 byte-long values. We vary the
number of cores from 1 up to 6 as well as the batch size (i.e.,
the number of clients’ requests processed at once). Typically,

static HERD issues a reply every 350ns. Without batching,
having Active in the critical path raises the reply time to
388ns, an increase of 11%. Batching has a positive impact
on Active’s overhead as a single call to the method is used
to serve all the requests in a batch. Thus, for batches of 6
replies, Active effectively takes 38/6 = 6.3ns per reply, an
increase of just 1.8%. Finally, the overhead of Active does
not increase with the number of cores, even though they in-
voke the method concurrently. This indicates good multicore
scalability, which implies that a single uKharon Core instance
per server is sufficient to serve all applications running on it.

Bandwidth overhead. uKharon Core reduces the bandwidth
available to applications. Lease renewal requires 240 bytes
when contacting 3 coordinators and 132 bytes when contact-
ing a lease cache, which translates to (assuming renewal every
10µs) 192Mbps and 105Mbps, respectively. This bandwidth
requirement accounts for 0.1−0.2% of a 100Gbps link, thus
the bandwidth of application nodes is marginally impacted.
Failure detection has similar bandwidth requirement.

7.2 Failover Time
We study uKharon’s failover time considering userspace and
kernel failures. We do not further evaluate catastrophic fail-
ures, as 95% of the failover is for their 1ms-long detection,
making microsecond-scale agreement and leases insignificant.

Table 2 summarizes the median failover (over 100 measure-
ments) for various failure scenarios. We consider the failure
of a single application node optionally combined with the fail-
ure of the coordinator leader or/and a lease cache. We emulate
simultaneous failures by relying on RDMA Multicast. An
auxiliary program executes alongside the program which we
emulate the failure of. When the auxiliary program receives
the multicast message, it uses SIGKILL to kill the targeted
program. We assume the worst scenario, i.e., the failure of
the application node results in global unavailability that is
resolved only by a new (active) membership that excludes it.

In every entry of Table 2, we present the failover time
when detecting the failure using the deadbeat mechanism
(left) and the RDMA-based heartbeat mechanism (right). We
now discuss the failover time when using the deadbeat, first
considering the case when the lease caches are absent. For
a single application failure, uKharon is able to failover in
50µs using the deadbeat. If the coordinator leader crashes at
the same time as the application, the failover time increases
by around 15µs. We attribute this increase to (1) the leader
switch mechanism of the consensus engine (∼10µs) and (2)
the imperfect synchronization of SIGKILL among the failed
nodes (∼5µs). When lease caches are part of uKharon, the
failover times for the same failure scenarios increase (as ex-
pected) by 20− 25µs, which is about the lease duration of
the cache. Failure of a cache has no impact on the failover
time (bottom entries of the first and third columns). This is
because (1) the application node receives the broadcast failure

110    2022 USENIX Annual Technical Conference USENIX Association



L exists? A A + C A + L A + L + C
No 50\96 64\114 - -
Yes 74\108 96\138 75\113 101\139

Table 2: Failover time (in µs) for failures in App, Coordinator
leader and Lease caches; using the deadbeat\heartbeat.

notification and switches lease cache before the membership
changes and (2) the new membership is compatible with the
previous one. The simultaneous failure of all three types of
nodes has a downtime of 101µs, instead of 96µs. Again, the
failure of the cache does not affect the failover time, but with
three nodes the imperfect synchronization of failures adds
up. Finally, the same failures when using the RDMA-based
heartbeat mechanism range from 96 to 139µs. This mecha-
nism adds ∼ 45µs of failover compared to the deadbeat. The
reason is that reading the same value twice upon failure takes
1.5 delays on expectation and READs are issued every 30µs.

7.3 uKharon-KV
Both uKharon-KV and HERD+Mu follow a primary-backup
replication scheme. All requests are served by the primary,
which replicates them to backups. Backups are only used for
fault tolerance. All replicas (primary and backups) execute
requests in the same order, but only the primary replies to
clients. In the event of a failure of the primary, one of the back-
ups becomes the new primary and continues serving clients’
requests. All replicas execute all requests in the same total
order, thus replicas are an exact copy of the failed primary.
This means that when a replica becomes the new primary, it
can respond to clients without breaking consistency.

One problem these systems have to deal with is multi-
ple nodes trying to replicate clients’ requests simultaneously.
This happens when the primary fails and multiple nodes, be-
lieving they are the new primary, try to handle clients’ re-
quests. Mu avoids this problem by relying on RDMA per-
missions (see §5.3.2). On the other hand, uKharon-KV relies
exclusively on the membership service to address it. Each
membership determines a single primary. When the primary
fails, a new membership is emitted that determines the new
primary. Since only one membership is active at a time, no
two replicas can believe to be the primary simultaneously.

The replication protocol of uKharon-KV works as follows:
The primary P replicates all clients’ requests to a single
backup B by RMDA-writing them to a dedicated buffer on
the latter. In parallel, P speculatively executes the requests.
Upon completion of the RDMA WRITE, the primary checks
that the membership in which P is the primary is still active.
If that is the case, P replies to the client. Otherwise, P drops
the request. Upon membership change, B waits for the new
membership—in which it is the primary—to become active.
Then, B scans the local buffer that was dedicated to P and
applies all unprocessed requests in it. Only then B starts pro-

2

3

4

5

La
te

nc
y 

(µ
s)

3.1
6

3.1
7

4.6
5

3.1
7

GET

2

3

4

5

2.5
7

2.6
2

4.2
0

3.9
2

PUT

0

200

400

600 53
1

80 53

Failover

HERD
Dynamic HERD

HERD+Mu
uKharon-KV

w/ cache
w/o cache

Figure 5: Latency comparison (left) of vanilla HERD, Dy-
namic HERD, HERD+Mu, uKharon-KV. Failover time com-
parison (right) of HERD+Mu and uKharon-KV. HERD+Mu
uses 3-way replication; uKharon-KV uses its deadbeat. Bar
height shows 95th %-ile latency; numerical label shows the
95th %-ile; error bars show the median and 99th %-ile.

cessing clients’ requests. The client’s failover time is the time
interval between the client’s last successful request to P and
its first successful request to B (as the new primary).

If P’s speculative execution turns out to be incorrect,
its state may diverge from the one of the new primary B.
uKharon-KV, however, does not follow the common practice
of rolling back unsuccessful speculations, because our proto-
type adopts a simple design: when a node is removed from
the membership, it is not allowed to re-enter the system. Thus,
the state of the old primary P is no longer used when B takes
over, hence skipping the rollback.

Replication latency. We compare the latency of HERD,
HERD+Mu and uKharon-KV. For HERD, we deploy a single
node. For HERD+Mu, we deploy three nodes, a primary and
two backups, all of which execute an instance of HERD and
Mu. For uKharon-KV, we deploy a primary and a backup,
both running uKharon-KV, as well as three coordinators. For
these experiments, a HERD client connects to the primary and
issues PUT and GET requests. We measure the time it takes
for a client to complete a request and compute the median,
the 95th and the 99th percentiles over 10 million requests.

Figure 5 shows the end-to-end latency of vanilla HERD
and of both replication approaches. In vanilla HERD, PUTs
are more efficient than GETs by 23%, due to the way HERD
handles the two types of requests. Briefly, PUTs rely mostly
on RDMA WRITEs, which is the most efficient RDMA
verb [25], while GETs rely mostly on RDMA SENDs. For ref-
erence, we also show the latency of Dynamic HERD, which
uses uKharon’s Active method in the critical path of execut-
ing clients’ requests, as explained in section 7.1. We verify,
once again, the efficiency of the Active method. At the 95th
percentile, Dynamic HERD’s requests are delayed by 10ns
(for GETs) and 50ns (for PUTs), compared with vanilla HERD.

The two replicated solutions exhibit different costs.

USENIX Association 2022 USENIX Annual Technical Conference    111



HERD+Mu replicates all requests, regardless of whether they
are PUTs or GETs, while uKharon-KV replicates only PUTs.
HERD+Mu does not distinguish between PUTs and GETs, be-
cause in Mu the primary uses the result of replication (whether
it is successful or not) to determine if it is still the primary or
not. If Mu were to skip the replication of GETs, inconsistency
would occur (see §2.1). On the other hand, uKharon-KV
executes GETs locally, without replicating them, since the
primary relies on the Active method to determine if its data
is stale or not. Also, observe that uKharon-KV replicates
PUTs approximately 300ns faster than Mu. This improvement
is merely attributed to the speculative approach adopted by
uKharon-KV. In HERD+Mu, the primary executes the request
after it has been replicated to a majority. On the other hand,
the primary in uKharon-KV executes the request in parallel
to the replication to the backup. Thus, our solution hides the
cost of executing the request, which is approximately 300ns,
as shown by the difference of the two rightmost bars in the
middle plot of Fig. 5. Regardless, uKharon-KV provides the
same fault tolerance as Mu, even with one less replica: if a
single replica crashes in either HERD+Mu or uKharon-KV,
the system remains operational but cannot tolerate another
failure. Fundamentally, both HERD+Mu and uKharon-KV
assume a majority of correct nodes, the former among the
replicas and the latter among the coordinators.

Failover. We compare the failover latency of uKharon-KV
with HERD+Mu in the event of userspace failures. We run
uKharon-KV in two configurations. In the first one, clients di-
rectly RDMA-read from coordinators to renew their lease. In
the second one, clients go to lease caches. The third graph of
Figure 5 shows that HERD+Mu has a 95th-percentile failover
time of 531µs. This number is almost half of what Mu’s au-
thors report since we fine-tuned their failure detector for our
own setup. At the same time, uKharon-KV without cache
(resp. with) achieves a 10× improvement (resp. 6.5×) at
53µs (resp. 80µs) of end-to-end failover time.

8 Related Work

Membership services in general. They are widely used
in the data center. Distributed data processing apps (e.g.,
Kafka [30], MapReduce [10]), storage systems (e.g., Cas-
sandra [31], HDFS [46]) and orchestration tools (e.g.,
Mesos [18]) rely on Zookeeper [20] for leader election, mem-
bership management, locks, watches, etc. uKharon focuses
on membership management, yet it can be extended to sup-
port Zookeeper’s features. Indeed, uKharon-KV (excluding
the lack of durability) offers similar guarantees to the strongly
consistent KV-store of Zookeeper, which comprises its basic
building block. ZooKeeper’s strongly consistent KV-store
that forms its basis. For instance, locks can be implemented
on top of uKharon-KV by extending its interface with Com-
pareAndSwap. Watches, being an unreplicated pub/sub sys-

tem, only require modifying uKharon-KV’s primary. The
important difference is that Zookeeper is not suitable for the
microsecond scale and does not exploit RDMA.

Failure detection in the data center. A common approach
to detect failures is to use end-to-end timeouts, which are hard
to set. Falcon [35] proposes to use inside information in order
to build faster and more accurate failure detectors by relying
on hierarchies of specialized detectors. It maximizes accuracy
by killing suspected processes. Albatross [34] is slightly more
forgiving and isolates suspected processes so that they cannot
affect the state of the system. Pigeon [33] provides fine-
grained reports that end applications use to act accordingly.
We embrace Falcon’s philosophy and use RDMA-tailored
failure detectors to operate at the microsecond scale.

Time-bound leases. Time-bound leases are widely used to
implement consistent distributed applications at the price of
some synchrony assumptions. They are often provided by a
distributed coordination framework such as ZooKeeper [20]
or etcd [14]. Leases are used for leader election [48], as
well as for guarding memberships (e.g., in FaRM [12] and
Hermes [26]). uKharon guards memberships with purely
client-side leases. As a result, uKharon brings leases down to
a few tens of microseconds and only assumes bounded clock
drift instead of loosely synchronized clocks as in Hermes.

9 Conclusion

Continuous breakthroughs in data center fabrics have paved
the way for microsecond applications. A key challenge for
building tail-tolerant software at scale is for applications to
react fast to events such as reconfigurations and failures. Yet,
existing microsecond applications lack an equally fast mem-
bership service to provide microsecond dynamicity. This
lack is counter-intuitive, as the vast ecosystem built around
ZooKeeper showcases the usefulness of membership services.
uKharon fills this gap by being the first membership service
tailored to microsecond scale applications. To achieve this
demanding target, uKharon relies on (1) a multi-level fail-
ure detector, (2) a consensus engine that takes advantage of
RDMA CAS, as well as (3) leases, all of which have been
carefully designed to operate in the microsecond envelope.
We used uKharon to implement uKharon-KV, a replicated
KV-cache which outperforms the state of the art in latency
while improving its failover time by up to 10×.

Acknowledgments

We thank our NSDI ’22 and ATC ’22 anonymous reviewers
as well as our shepherd, Abhinav Duggal, for their valuable
comments. We would also like to thank our anonymous arti-
fact evaluators for reviewing our implementation. This work
was partly funded by Huawei Technologies.

112    2022 USENIX Annual Technical Conference USENIX Association



References

[1] Marcos K. Aguilera, Naama Ben-David, Irina Calciu,
Rachid Guerraoui, Erez Petrank, and Sam Toueg. Pass-
ing messages while sharing memory. In ACM Sympo-
sium on Principles of Distributed Computing (PODC),
pages 51–60, July 2018.

[2] Marcos K Aguilera, Naama Ben-David, Rachid Guer-
raoui, Virendra J Marathe, Athanasios Xygkis, and Igor
Zablotchi. Microsecond consensus for microsecond
applications. USENIX Symposium on Operating System
Design and Implementation (OSDI), pages 599–616,
2020.

[3] Marcos K. Aguilera and Michael Walfish. No time for
asynchrony. In Proceedings of the 12th Conference on
Hot Topics in Operating Systems, HotOS’09, page 3,
USA, 2009. USENIX Association.

[4] Motti Beck and Michael Kagan. Performance evalu-
ation of the RDMA over ethernet (RoCE) standard in
enterprise data centers infrastructure. In Proceedings
of the 3rd Workshop on Data Center-Converged and
Virtual Ethernet Switching, pages 9–15, 2011.

[5] Christian Cachin, Rachid Guerraoui, and Luís Ro-
drigues. Introduction to reliable and secure distributed
programming. Springer Science & Business Media,
2011.

[6] Adrian M Caulfield, Eric S Chung, Andrew Putnam,
Hari Angepat, Jeremy Fowers, Michael Haselman,
Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young
Kim, et al. A cloud-scale acceleration architecture.
In 2016 49th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), pages 1–13. IEEE,
2016.

[7] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam
Toueg. The weakest failure detector for solving consen-
sus. Journal of the ACM (JACM), 43(4):685–722, July
1996.

[8] Intel Corporation. Volume 3B: System Programming
Guide, Part 2. In Intel 64 and IA-32 Architectures
Software Developer’s Manual. Intel Corporation, 2016.

[9] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Commun. ACM, 56(2):74–80, feb 2013.

[10] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: sim-
plified data processing on large clusters. Communica-
tions of the ACM, 51(1):107–113, 2008.

[11] Travis Downs. A benchmark for low-level CPU
micro-architectural features. https://github.com/
travisdowns/uarch-bench. Accessed 2022-05-25.

[12] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast remote mem-
ory. In USENIX Symposium on Networked Systems
Design and Implementation (NSDI), pages 401–414,
April 2014.

[13] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer.
Consensus in the presence of partial synchrony. Journal
of the ACM (JACM), 35(2):288–323, 1988.

[14] Etcd. https://etcd.io. Accessed 2022-05-25.

[15] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. Azure accelerated networking: Smart-
nics in the public cloud. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
18), pages 51–66, 2018.

[16] Michael J Fischer, Nancy A Lynch, and Michael S Pa-
terson. Impossibility of distributed consensus with one
faulty process. Journal of the ACM (JACM), 32(2):374–
382, 1985.

[17] Michael J Fischer, Nancy A Lynch, and Michael S Pa-
terson. Impossibility of distributed consensus with one
faulty process. Journal of the ACM (JACM), April 1985.

[18] Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D Joseph, Randy H Katz, Scott
Shenker, and Ion Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In NSDI,
volume 11, pages 22–22, 2011.

[19] Peter H Hochschild, Paul Turner, Jeffrey C Mogul,
Rama Govindaraju, Parthasarathy Ranganathan,
David E Culler, and Amin Vahdat. Cores that don’t
count. In Proceedings of the Workshop on Hot Topics
in Operating Systems, pages 9–16, 2021.

[20] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira,
and Benjamin Reed. Zookeeper: Wait-free coordination
for internet-scale systems. In USENIX Annual Technical
Conference (ATC), June 2010.

[21] Zsolt István, David Sidler, and Gustavo Alonso. Cari-
bou: Intelligent distributed storage. Proceedings of the
VLDB Endowment, 10(11):1202–1213, 2017.

[22] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and
Ion Stoica. Netchain: Scale-free sub-RTT coordination.
In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 35–49, April 2018.

[23] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be general and fast. In USENIX

USENIX Association 2022 USENIX Annual Technical Conference    113

https://github.com/travisdowns/uarch-bench
https://github.com/travisdowns/uarch-bench
https://etcd.io


Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 1–16, February 2019.

[24] Anuj Kalia, Michael Kaminsky, and David G Ander-
sen. Using RDMA efficiently for key-value services.
In ACM Conference on SIGCOMM, pages 295–306,
August 2014.

[25] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Design guidelines for high performance RDMA systems.
In USENIX Annual Technical Conference (ATC), pages
437–450, June 2016.

[26] Antonios Katsarakis, Vasilis Avrielatos, M R Siavash
Katebzadeh, Arpit Joshi, Aleksandar Dragojević, Boris
Grot, and Vijay Nagarajan. Hermes: A fast, fault-
tolerant and linearizable replication protocol. In In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), pages 201–217, March 2020.

[27] Colin King. stress-ng: A tool to load and
stress a computer system. https://github.com/
ColinIanKing/stress-ng. Accessed 2022-05-25.

[28] Patrick Knebel, Dan Berkram, Al Davis, Darel Emmot,
Paolo Faraboschi, and Gary Gostin. Gen-z chipsetfor ex-
ascale fabrics. In 2019 IEEE Hot Chips 31 Symposium
(HCS), pages 1–22. IEEE Computer Society, 2019.

[29] Marios Kogias and Edouard Bugnion. Hover-
cRaft: Achieving scalability and fault-tolerance for
microsecond-scale datacenter services. In European
Conference on Computer Systems (EuroSys), April
2020.

[30] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A
distributed messaging system for log processing. In
Proceedings of the NetDB, volume 11, pages 1–7, 2011.

[31] Avinash Lakshman and Prashant Malik. Cassandra—a
decentralized structured storage system. In Interna-
tional Workshop on Large Scale Distributed Systems
and Middleware (LADIS), October 2009.

[32] Leslie Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, may 1998.

[33] Joshua B. Leners, Trinabh Gupta, Marcos K. Aguil-
era, and Michael Walfish. Improving availability in
distributed systems with failure informers. In USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), April 2013.

[34] Joshua B. Leners, Trinabh Gupta, Marcos K. Aguilera,
and Michael Walfish. Taming uncertainty in distributed
systems with help from the network. In European Con-
ference on Computer Systems (EuroSys), April 2015.

[35] Joshua B. Leners, Hao Wu, Wei-Lun Hung, Marcos K.
Aguilera, and Michael Walfish. Detecting failures
in distributed systems with the FALCON spy network.
In ACM Symposium on Operating Systems Principles
(SOSP), October 2011.

[36] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Min-
lan Yu. Hpcc: High precision congestion control. In
Proceedings of the ACM Special Interest Group on Data
Communication, SIGCOMM ’19, page 44–58, New
York, NY, USA, 2019. Association for Computing Ma-
chinery.

[37] Linux Kernel Developers. NO_HZ: Reducing
Scheduling-Clock Ticks. https://www.kernel.
org/doc/Documentation/timers/NO_HZ.txt.
Accessed 2022-05-25.

[38] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Us-
ing one-sided RDMA reads to build a fast, CPU-efficient
key-value store. In 2013 USENIX Annual Technical
Conference (USENIX ATC 13), pages 103–114, 2013.

[39] René Peinl, Florian Holzschuher, and Florian Pfitzer.
Docker cluster management for the cloud-survey re-
sults and own solution. Journal of Grid Computing,
14(2):265–282, 2016.

[40] Gregory F Pfister. An introduction to the InfiniBand ar-
chitecture. High performance mass storage and parallel
I/O, 42(617-632):10, 2001.

[41] Marius Poke and Torsten Hoefler. DARE: High-
performance state machine replication on RDMA net-
works. In Symposium on High-Performance Parallel
and Distributed Computing (HPDC), pages 107–118.
ACM, June 2015.

[42] Linux RDMA. perftest: Infiniband verbs perfor-
mance tests. https://github.com/linux-rdma/
perftest. Accessed 2022-05-25.

[43] Red Hat, Inc. RHEL for Real Time Times-
tamping. https://access.redhat.com/
documentation/en-us/red_hat_enterprise_

linux_for_real_time/7/html/reference_

guide/chap-timestamping. Accessed 2022-05-25.

[44] Fred B Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Computing Surveys (CSUR), 22(4):299–319, 1990.

[45] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The hadoop distributed file system.
In 2010 IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST), pages 1–10. Ieee, 2010.

114    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/ColinIanKing/stress-ng
https://github.com/ColinIanKing/stress-ng
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/html/reference_guide/chap-timestamping
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/html/reference_guide/chap-timestamping
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/html/reference_guide/chap-timestamping
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_for_real_time/7/html/reference_guide/chap-timestamping


[46] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The hadoop distributed file system.
In 2010 IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST), pages 1–10. Ieee, 2010.

[47] Swaminathan Sivasubramanian. Amazon dynamodb: a
seamlessly scalable non-relational database service. In
Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 729–730,
2012.

[48] Anish Sukumaran and Vincent Gerard Nicotra. Lease
based leader election system, May 29 2018. US Patent
9984140.

[49] Mellanox Technologies. RDMA aware networks
programming user manual. rev 1.7. https://docs.
nvidia.com/networking/spaces/viewspace.
action?key=RDMAAwareProgrammingv17. Ac-
cessed 2022-05-25.

[50] Stephen Van Doren. HOTI 2019: Compute Express
Link. In 2019 IEEE Symposium on High-Performance
Interconnects (HOTI), pages 18–18. IEEE, 2019.

[51] Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi,
and Heming Cui. APUS: Fast and scalable paxos on
RDMA. In Symposium on Cloud Computing (SoCC),
pages 94–107, September 2017.

[52] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo
Chen. Deconstructing rdma-enabled distributed transac-
tions: Hybrid is better! In 13th USENIX Symposium on
Operating Systems Design and Implementation OSDI
18), pages 233–251, 2018.

[53] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing
using RDMA and HTM. In ACM Symposium on Operat-
ing Systems Principles (SOSP), pages 87–104, October
2015.

[54] Tian Yang, Robert Gifford, Andreas Haeberlen, and
Linh Thi Xuan Phan. The synchronous data center. In
Proceedings of the Workshop on Hot Topics in Operating
Systems, pages 142–148, 2019.

[55] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim
Kraska. The end of a myth: Distributed transactions can
scale. Proc. VLDB Endow., 10(6):685–696, February
2017.

A One-sided Paxos

A.1 Assumptions
In the next subsections, we consider the M&M model [1]. It
allows processes to both pass messages and share memory.

We assume that communication channels are lossless and have
FIFO semantics, which is ensured by InfiniBand’s Reliable
Connections. The system has n processes Π = {p1, . . . , pn}
that can attain the roles of proposer or acceptor. There are p
proposers and n acceptors. Up to p−1 proposers and

⌊ n−1
2

⌋
acceptors may fail by crashing. As long as a process is alive,
its memory is remotely accessible. When a process crashes,
subsequent operations to its memory hang forever. We assume
partial synchrony for consensus’s liveness [17].

A.2 One-sided RPC
In this section, we prove that the one-sided RPCs of Algo-
rithm 1 are equivalent to two-sided RPCs when not obstructed.
Moreover, we prove that when equivalence is violated (due
to obstruction), one-sided RPCs have no side effects. We
assume that both compare and f are deterministic.

Lemma A.1. If cas-rpc does not abort, rpc and cas-rpc
are equivalent.

Proof. An execution of rpc solely depends on the value of
state and the input value x. We denote such execution of
rpc as 〈state,x〉rpc. If an execution of cas-rpc does not
abort, it solely depends on the value of expected fetched at
line 2 and the input value x. We denote such execution of
cas-rpc as 〈expected,x〉cas−rpc.

We show that any execution 〈s,x〉rpc is equivalent to the ex-
ecution 〈s,x〉cas−rpc in the sense that both rpc and cas-rpc
will have the same state value and return the same projec-
tion at the end of their execution.

If an execution 〈s1,x〉rpc makes the comparison at line 3
fail, then state is not modified and proj(s1) is returned.
In the execution 〈s1,x〉cas−rpc, the comparison at line 3 will
also fail and proj(s1) is also returned without modifying
the remote state. In this case, both executions are equivalent.

If an execution 〈s2,x〉rpc makes the comparison at line
3 succeed, then state is modified to f(s2, x) and
proj(f(s2, x)) is returned. In the execution 〈s2,x〉cas−rpc,
the comparison at line 3 will also succeed. As the execu-
tion is assumed not to abort, the CAS will succeed. Thus
the remote state will atomically be updated from s2 to f(s2,
x) and proj(f(s2, x)) is also returned. In this case, both
executions are also equivalent.

Lemma A.2. If cas-rpc aborts, it has no side effects.

Proof. If cas-rpc aborts, the comparison at line 7 has failed.
This implies that the CAS failed and thus that state is unaf-
fected by the execution.

From lemmas A.1 and A.2, cas-rpc exhibits all-or-
nothing atomicity. We now prove that such a transformation
is obstruction-free.

Lemma A.3. If cas-rpc runs alone, it does not abort.

USENIX Association 2022 USENIX Annual Technical Conference    115

https://docs.nvidia.com/networking/spaces/viewspace.action?key=RDMAAwareProgrammingv17
https://docs.nvidia.com/networking/spaces/viewspace.action?key=RDMAAwareProgrammingv17
https://docs.nvidia.com/networking/spaces/viewspace.action?key=RDMAAwareProgrammingv17


Proof. Let’s assume by contradiction that cas-rpc runs
alone and aborts. For cas-rpc to abort, the comparison
at line 7 must have failed. This implies that the CAS at line 6
failed due to state not matching expected. state must
thus have been updated between lines 2 and 6. This implies a
concurrent execution, hence a contradiction.

A.3 Consensus and Abortable Consensus
In the consensus problem, processes propose individual val-
ues and eventually irrevocably decide on one of them. For-
mally, consensus has the following properties:

Termination Every correct process eventually decides once.

Uniform agreement If v and v′ are decided on, then v = v′.

Validity If v is decided on, v is the input of some process.

We implement consensus by composing two abstractions:

• Abortable consensus [5], an abstraction weaker than
consensus that is solvable in the asynchronous model,

• Eventually perfect leader election [7], the weakest failure
detector required to solve consensus.

Abortable consensus is identical to consensus except for:

Termination Every correct process eventually decides once
or aborts.

Decision If a single process proposes infinitely many times,
it eventually decides.

A.4 One-sided Abortable Consensus
Algorithm 3 appears in [5] and implements abortable con-

sensus Algorithm 4 transforms algorithm 3 by replacing its
RPCs with CAS-based RPCs. This transformation causes it
to abort strictly more than the original algorithm. To see why,
consider the following execution: Let proposers P1 and P2
concurrently initiate the Prepare phase with respective pro-
posals 1 and 2. Both fetch the remote state and get 〈0,0,⊥〉.
Then, P1 succeeds in writing its proposal to acceptor A1. Later
on, the CAS of P2 fails at A1 as the value is now 〈1,0,⊥〉 in-
stead of the expected 〈0,0,⊥〉. Thus, P2 aborts even if it had
a larger proposal number than P1. The more relaxed compar-
ison in the original algorithm would not have caused P2 to
abort.

Lemma A.4. Algorithm 4 preserves Decision.

Proof. If a single process proposes infinitely many times,
it will eventually run the one-sided RPCs obstruction-free.
By Lemma A.3, this guarantees that the one-sided RPCs
will eventually terminate without aborting. In such case,
Lemma A.1 guarantees the execution to be equivalent to one
of the original algorithm. Thus, the transformation preserves
the decision property of Algorithm 3.

Algorithm 3: Paxos’s Abortable Core
1 Proposers execute:
2 decided = False
3 proposal = id
4 proposed_value = ⊥

6 def propose(value):
7 proposed_value = value
8 prepare()
9 accept()

11 def prepare():
12 proposal = proposal + |Π|
13 broadcast 〈Prepare | proposal〉
14 wait for a majority of 〈Prepared | ack, ap, av〉
15 adopt av with highest ap as proposed_value
16 if any not ack: abort

18 def accept():
19 broadcast 〈Accept | proposal, proposed_value〉
20 wait for a majority of 〈Accepted | mp〉
21 if any mp > proposal: abort
22 trigger once 〈Decide | proposed_value〉

24 Acceptors execute:
25 min_proposal = 0
26 accepted_proposal = 0
27 accepted_value = ⊥

29 upon 〈Prepare | proposal〉:
30 if proposal > min_proposal: min_proposal = n
31 reply 〈Prepared | min_proposal == n, accepted_proposal,

↪→ accepted_value〉

33 upon 〈Accept | proposal, value〉:
34 if proposal ≥ min_proposal:
35 accepted_proposal = min_proposal = n
36 accepted_value = value
37 reply 〈Accepted | min_proposal〉

Lemma A.5. Algorithm 4 preserves Termination.

Proof. Assuming a majority of correct acceptors, CASes
will eventually complete at a majority. Due to the absence
of loops or blocking operations inside prepare, accept,
cas_prepare and cas_accept in algorithm 4 (apart from
waiting for the completion of CASes at a majority), a proposer
that invokes propose will either abort or decide.

Algorithms 3 and 4 differ only in some executions where
the transformed algorithm aborts whereas the original does
not. Nevertheless, aborting does not violate safety, as we
show next.

Lemma A.6. Algorithm 4 preserves the safety properties.

Proof. Assume, by contradiction, that adding superfluous
abortions in Algorithm 3 violates safety. Consider an ex-
ecution E1, where processes {P1, ..., Pn} deviate from the
algorithm and abort at times {t1, ..., tn} after which the global
state is {S1, ..., Sn} and safety is violated. Also, consider
another execution E2, where processes {P1, ..., Pn} crash at
times {t1, ..., tn} after which the global state is {S1, ..., Sn}. In
execution E1, safety is violated. On the other hand, execution
E2 preserves safety, since Algorithm 3 tolerates arbitrarily
many proposer crashing. The two executions, however, are

116    2022 USENIX Annual Technical Conference USENIX Association



Algorithm 4: One-sided Abortable Consensus
1 Acceptors execute:
2 state = { min_proposal: 0, accepted_proposal: 0,

↪→ accepted_value: ⊥}

4 Proposers execute:
5 proposal = id
6 proposed_value = ⊥

8 def propose(value):
9 proposed_value = value

10 prepare()
11 accept()

13 def prepare():
14 proposal = proposal + |Π|
15 async cas_prepare(p) for p in Acceptors
16 wait for a majority to return 〈ack, ap, av〉
17 if any not ack: abort
18 adopt av with highest ap as proposed_value

20 def accept():
21 async cas_accept(p) for p in Acceptors
22 wait for a majority to return mp
23 if any mp > proposal: abort
24 trigger once 〈Decide | proposed_value〉

26 def cas_prepare(p):
27 expected = fetch_state(p)
28 if not proposal > expected.min_proposal:
29 return 〈False, expected.accepted_proposal, expected.

↪→ accepted_value〉
30 move_to = expected
31 move_to.min_proposal = proposal
32 read = statep.cas(expected, move_to)
33 if read == expected:
34 return 〈True, expected.accepted_proposal, expected.

↪→ accepted_value〉
35 abort

37 def cas_accept(p):
38 expected = fetch_state(p)
39 if not proposal ≥ expected.min_proposal:
40 return expected.min_proposal
41 move_to = expected
42 move_to.min_proposal = proposal
43 move_to.accepted_proposal = proposal
44 move_to.accepted_value = proposed_value
45 read = statep.cas(expected, move_to)
46 if read == expected:
47 return expected.min_proposal
48 abort

indistinguishable, hence a contradiction. Thus, Algorithm 4
preserves safety regardless of how often it aborts.

Theorem A.7. Algorithm 4 implements abortable consensus.

Proof. The result follows directly by composing lemmas A.4,
A.5 and A.6.

A.5 Streamlined One-sided Algorithm
In this section, we make Algorithm 4 efficient in order to
increase its practicality.

First, it is not required to fetch the remote state at the start
of each RPC. As it is safe to have stale expected states, it is
safe to use states deduced from previous CASes. Predicted
states can thus be initialized to 〈0,0,⊥〉 and updated each
time a CAS completes (either succeeding or not). Moreover,

wrongly predicting states can only result in superfluous aborts
which have been proven to be safe by Lemma A.6. Thus, it is
safe to optimistically assume that onflight CASes will succeed.
Second, in the Prepare phase, the proposal variable can be
increased upfront to value higher than any predicted remote
min_proposal to reduce predictable abortions.

Algorithm 5: Streamlined One-sided Abortable Consensus
1 Acceptors execute:
2 state = { min_proposal: 0, accepted_proposal: 0,

↪→ accepted_value: ⊥}

4 Proposers execute:
5 predicted[] = { 0, 0, ⊥}
6 proposal = id
7 proposed_value = ⊥

9 def propose(value):
10 proposed_value = value
11 prepare()
12 accept()

14 def prepare():
15 while any predicted[.].min_proposal ≥ proposal:
16 proposal = proposal + |Π|
17 for p in Acceptors:
18 move_to[p] = {min_proposal: proposal, ..predicted[p]}
19 reads[p] = async statep.cas(predicted[p], move_to[p])
20 wait until majority of states are read
21 for p in Acceptors:
22 if reads[p] ∈ {predicted[p], ⊥}:
23 predicted[p] = move_to[p]
24 else:
25 predicted[p] = reads[p]
26 if any CAS failed: abort
27 adopt proposed_value from predicted accepted_values with

↪→ highest accepted_proposal if any

29 def accept():
30 reads = ⊥|Acceptors|

31 move_to = (proposal, proposal, proposed_value)
32 for p in Acceptors:
33 reads[p] = async statep.cas(predicted[p], move_to)
34 wait until majority of states are read
35 if any CAS failed:
36 for p in Acceptors:
37 if reads[p] ∈ {predicted[p], ⊥}:
38 predicted[p] = move_to
39 else:
40 predicted[p] = reads[p]
41 abort
42 trigger once 〈Decide | proposed_value〉

With the aforementioned optimisations, Algorithm 4 is
transformed into Algorithm 5. Notably, the liveness of the
resulting algorithm is preserved: Let’s assume that a single
proposer runs infinitely many times. Eventually, it will run
obstruction-free. In the worst case, each time it will abort at
line 26 or 41 because of a single wrong guess and update its
prediction. The optimistic update of expected states at lines
23 and 38 and the FIFO semantics of communication links
provide that, once a remote state is correctly guessed, any
later CAS will succeed. Thus, after at most n runs, all CASes
will succeed and the proposer will decide.

USENIX Association 2022 USENIX Annual Technical Conference    117



A.6 Overcoming Limited CAS Size
As explained in Section 5.3.1, the RDMA hardware limits
the size of CASes. Thus, proposal fields will overflow after
216 attempts. In such an unlikely scenario, our consensus en-
gine falls back to traditional RPC: Once the RDMA-exposed
min_proposal of an acceptor reaches 216−|Π|, proposers
switch to RPC to communicate with this specific acceptor. Ac-
ceptors check state and, if it is above the threshold, initiate
the standard RPC version of Paxos with the min_proposal,
accepted_proposal and accepted_value variables ini-
tialized to match state.

B Active Method Correctness

In this section, we provide a formal definition and a proof of
correctness of the Active method described in Section 6.

B.1 Formal Definition
Active(Membership)→bool has the following properties:

Monotonicity If Active(M’) returns true at any process,
future calls Active(M) with M < M′ will return false.

Convergence If M is the last membership to be decided (if
any), invoking Active(M) will eventually return true
at all correct processes.

Definition 1. If Active(M) returns true, then M is consid-
ered active at the linearization point of the call.

Definition 2. If M is active at times t and t ′, then it is consid-
ered active in the interval [t, t ′].

From these simple properties and definitions, it follows
that no two active memberships can overlap.

Theorem B.1. Only one membership can be active at a time.

Proof. Assume by contradiction that M and M′ (M < M′)
are simultaneously active. By definition, Active(M) must
have returned true after Active(M’) returned true. This
breaks Monotonicity, hence a contradiction.

B.2 Non-leased Active Membership
We prove the correctness of uKharon’s implementation of
Active. We assume no gaps in the sequence of decided
memberships. This is enforced by coordinators by not propos-
ing the (k+1)-th membership until the k-th is decided.

Lemma B.2. Algorithm 6 ensures Monotonicity.

Proof. Active can only be called on decided memberships.
Let M and M′ be two decided memberships with M < M′. If
Active(M’) returned true, by the no-gap assumption, all

Algorithm 6: Active built on top of the consensus engine
1 def Active(M) → bool:
2 reads = ⊥|Acceptors|

3 for p in Acceptors:
4 reads[p] = async paxos[M.id + 1].slotp.read()
5 wait until majority of slots are read
6 if all slots are not accepted:
7 return true
8 propose_membership(M.id + 1, first accepted value)
9 return false

memberships between M and M′ have been decided. Because
M’s successor has been decided, a majority of acceptors’ slots
M.id + 1 have been written. Thus, Active(M) will read at
least one non-empty slot and return false.

Lemma B.3. Algorithm 6 ensures Convergence.

Proof. Assume by contradiction that M is the last decided
membership and Active(M) never returns true at some cor-
rect process. Thus, this process executes line 8, which means
that it proposes a new membership. Given that the process is
correct, some membership with id M.id + 1 will eventually
be decided. Therefore, M is not the last membership, hence a
contradiction.

Theorem B.4. Algorithm 6 implements Active.

Proof. Follows directly from Lemmas B.2 and B.3.

B.3 Leased Active Membership
Algorithm 2 reduces communication by leasing the output of
Algorithm 6. We prove that it preserves Active’s properties.

Lemma B.5. Algorithm 2 preserves Monotonicity.

Proof. Let e be an execution of Active(M) that returned
true. e either returned at line 9 or at line 12 with t >
tstart . We denote the former case leased(M) and the latter
checked(M). Assume by contradiction that Active(M’) re-
turned true in an execution e1 and then Active(M) returned
true in an execution e2 with M < M′. Either:

• leased(M): In e2, majority_active(M) returned
true at most δ before Active(M) returned true.
In e1, lines 5−7 ensure that M′ was decided at
least δ before Active(M’) returned true. Thus,
majority_active(M) returned true after M′ was de-
cided. However, because M′ has been decided, a major-
ity of acceptors’ slots M’.id = M.id + 1 must have been
written. Thus, majority_active(M) should have
read at least one non-empty slot and returned false.
Hence, a contradiction.

• checked(M): majority_active(M) returned true
after majority_active(M’) returned true. This
breaks majority_active’s Monotonicity, hence a
contradiction.

118    2022 USENIX Annual Technical Conference USENIX Association



Lemma B.6. Algorithm 2 preserves Convergence.

Proof. Assume that M is the last membership to be decided.
Thus, majority_active(M) will eventually always return
true. At most δ after Active(M) returns for the first time,
tstart will be in the past and leased_membership set to M.
Thus, eventually, the else branch at line 8 will always be
visited and either return true via line 9 or 12.

Theorem B.7. Algorithm 2 implements Active.

Proof. Follows directly from Lemmas B.5 and B.6.

C Clocks

uKharon relies on hardware timestamps to check if a member-
ship is Active. When using modern Intel processors, Linux
has three available clocksources: tsc, hpet and acpi_pm.
The tsc clocksource is the most efficient and requires 20-
25ns to take a timestamp [11].

Architectural considerations. The tsc clocksource uses In-
tel’s TSC hardware to measure time accurately. TSC stores
the number of cycles executed by the CPU after the latest reset.
Traditionally, TSC is considered an unreliable way to take
timestamps. The reason is that Intel processors have variable
clock speed, thus the number of cycles does not correspond
to wallclock time. However, modern Intel processors have
three features [8]: Constant TSC, Nonstop TSC and Invariant
TSC which solve this problem. The combination of these
features results in a TSC that is incremented at a constant rate
regardless of the power state of the processor. As a result, it
is safe to use this counter for efficient timestamping.

TSC synchrony. In Intel processors, every core has its own
TSC. All processors in the same socket start the TSC hard-
ware using the same RESET signal, thus the absolute values
of the TSC across cores of the same socket match. This
means that one can compare safely the values of TSC across
different cores, assuming that all TSCs run at the same fre-
quency. Because this assumption does not always hold, Linux
determines the base frequency of every core during boot and
uses this frequency to convert clock cycles to wallclock time.
To accomplish it, Linux uses the more accurate (and more
expensive) hpet.

uKharon takes further care to deal with TSC synchrony.
More precisely, it checks for the synchronization of TSC
between cores using a ping-pong test. In this test, core A
takes a timestamp t1 and signals core B to do the same. Core
A signals core B by writing to a lock-free Single-Producer
Single-Consumer (SPSC) queue that is polled by B. When
B receives the signal it also takes a timestamp t2 and sends
it back to A (using another SPSC queue). Upon reception of
the timestamp from B, core A takes the last timestamp t3. In

our test we confirm that always t1 < t2 < t3. Additionally, in
our hardware, the minimum difference between t1 and t2 is
ε = min(t2− t1) is 64ns. uKharon takes ε into consideration
by incorporating into the leases as follows: Suppose a lease is
valid for a duration of δ starting at time t. uKharon considers
that the lease starts at time t + ε and has a duration of t +d−
2ε.

Inter-machine clock drift. In order to ensure that active
memberships do not overlap, uKharon assumes that clock
drift is bounded, i.e., that time passes approximately at the
same speed on different machines. This assumption is nec-
essary to enable client-side leases. It guarantees that after a
lease duration period, leases across all clients will have to
be renewed. Our system is built to tolerate clock drift, as
long as this drift is bounded. We experimentally determine
an upper bound for the clock drift with a simple test. In this
test, machine A takes a timestamp t1 and pings machine B
to wait for 1 minute before replying back to it. Upon recep-
tion of B’s response, A takes another timestamp t2. It then
computes t2− t1 and compares it to the expected 1 minute
measured by B (after removing the communication delay).
We repeat this test several times and determine that the clock
drift between machines differs by at most 0.001%. uKharon
incorporates inter-machine clock drift by waiting 1.01× δ

upon membership discovery, ensuring that when leases be-
come active on a new membership, everyone’s leases on the
previous membership will have expired.

D Artifact

Abstract

The evaluated artifact is provided as a git repository and con-
tains the source code of uKharon, build instructions and de-
ployment scripts to run the experiments presented in this
paper.

Scope

The artifact contains code and steps to reproduce results ob-
tained in Figure 3, Figure 4, Figure 5 and Table 2.

Contents

The artifact contains the source code of uKharon, including
the custom kernel modules. It also contains the patches to
create the custom Linux kernel, as well as the patches required
for HERD [24] and Mu [2]. The artifact describes how to
build everything presented in the paper, including the custom
Linux kernel and the solutions we compare against. It also
describes how to deploy the built binaries.

USENIX Association 2022 USENIX Annual Technical Conference    119



Hosting
The artifact source code for uKharon is available at https:
//github.com/LPD-EPFL/ukharon. All the necessary in-
structions are provided in the README.md file.

Requirements
Building uKharon requires an x86-64 system set-up with
Ubuntu 20.04 LTS. Executing uKharon requires 8 machines
equipped with Ubuntu 20.04 LTS, RDMA over InfiniBand,
ability to install a custom kernel and custom kernel modules,
as well as ability to configure and use InfiniBand multicast
groups.

120    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/LPD-EPFL/ukharon
https://github.com/LPD-EPFL/ukharon


KRCORE: A Microsecond-scale RDMA Control Plane for Elastic Computing

Xingda Wei1,2, Fangming Lu1, Rong Chen∗1,2, and Haibo Chen1

1Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University
2Shanghai AI Laboratory

Abstract
We present KRCORE, an RDMA library with a microsecond-
scale control plane on commodity RDMA hardware for elastic
computing. KRCORE can establish a full-fledged RDMA con-
nection within 10µs (hundreds or thousands of times faster
than verbs), while only maintaining a (small) fixed-sized con-
nection metadata at each node, regardless of the cluster scale.
The key ideas include virtualizing pre-initialized kernel-space
RDMA connections instead of creating one from scratch, and
retrofitting advanced RDMA dynamic connected transport
with static transport for both low connection overhead and
high networking speed. Under load spikes, KRCORE can
shorten the worker bootstrap time of an existing disaggre-
gated key-value store (namely RACE Hashing) by 83%. In
serverless computing (namely Fn), KRCORE can also reduce
the latency for transferring data through RDMA by 99%.

1 Introduction
The desire for high resource utilization has led to the devel-
opment of elastic applications such as disaggregated storage
systems [52, 16, 67]. Elasticity provides a quick increase or
decrease of computing resources (e.g., processors or contain-
ers) based on application demands. Since the resources are
dynamically launched and destroyed, minimizing the control
path overheads—including process startup and creating net-
work connections—is vital to applications, especially those
with ephemeral execution time. Elastic applications typically
have networking requirements. For instance, computing nodes
in a disaggregated storage system access the data stored at
the storage nodes across the network.

RDMA is a fast networking feature widely adopted in data-
centers [53, 19, 13]. Unfortunately, RDMA has a slow control
path: the latency of creating an RDMA connection (15.7ms) is
15,700X higher than its data path operation (see Figure 1(b)).
As the latency of typical RDMA-enabled applications that
require elasticity has reached to microsecond-scale (see Fig-
ure 1(a)), this high connection time may significantly decrease
the application efficiency, e.g., increasing latency when ex-
panding resources to handle load spikes. The cost is chal-
lenging to reduce because it not only includes software data
structure initialization costs but also involves extensive hard-
ware resource configurations, as RDMA offloads network
processing to the network card (§2.3.1).
∗Rong Chen is the corresponding author (rongchen@sjtu.edu.cn)

Fig. 1. (a) The execution time (Data) of typical elastic RDMA-
enabled applications, and (b) the breakdown of control path costs.
RACE [67] is a disaggregated key-value store. FaRM-v2 [46] is
a database that can accelerate serverless transactions [63]. YCSB-
C [11] and TPC-C [50] are representative benchmarks for each
system. The serverless platform evaluated is Fn [43].

A common approach to avoiding the control path cost is
to cache connections and share them with different appli-
cations. However, user-space RDMA connections can not
be directly shared by different applications, because each
app has its own exclusive driver data structure and dedi-
cated hardware resources. Nevertheless, sharing a kernel-
space RDMA connection is possible since applications share
the same kernel (LITE [53]). However, LITE has perfor-
mance and resource inefficiency issues (§2.3.2) in elastic
computing, because it doesn’t target this scenario. First, it
still pays the initialization cost under cache misses. Second,
caching all RDMA connections to all nodes is resource ineffi-
cient (e.g., taking several GBs of memory), especially when
a production RDMA-capable cluster has reached a scale of
more than 10,000 nodes [34]. Finally, sharing RDMA con-
nections complicates the preservation of the low-level verbs
interfaces, which is important to apply RDMA-aware opti-
mizations [67, 55, 14, 57, 24, 25]. LITE only provides a
high-level API.

We continue the line of reusing connections to boost
the RDMA control path, and further overcome the issues
mentioned above. We present KRCORE, a networking li-
brary with an ultra-fast control plane. KRCORE can estab-
lish a full-fledged RDMA-capable connection within 10 µs,
only 0.05% and 0.22% of the verbs and LITE under cache
misses, respectively. More importantly, KRCORE only needs
a small amount of fixed-sized memory for the connection
pool (e.g., 64MB), irrelevant to the cluster scale. Finally, KR-
CORE supports low-level RDMA interfaces compatible with
existing RDMA-aware optimizations.

USENIX Association 2022 USENIX Annual Technical Conference    121

rongchen@sjtu.edu.cn


Supporting such a fast control plane seems to contradict our
promise of a small fixed-sized connection pool. To achieve
this, KRCORE makes a key innovation: we retrofit a less-
studied yet widely supported advanced RDMA hardware
feature—dynamic connected transport (DCT) [1]—to the
kernel. DCT allows a single RDMA connection to commu-
nicate with different hosts. Its connection and re-connection
are offloaded to the hardware and thus, are extremely fast
(less than 1µs). Our observation is that when virtualizing an
established kernel-space DCT connection to different applica-
tions, they no longer pay the control path cost and memory
consumption of ordinary RDMA connections.

In designing KRCORE, we found virtualizing DCT with a
low-level API brings several new challenges, and we propose
several techniques to address them (§3.1). First, DCT requires
querying a piece of metadata to establish a new connection.
Using RPC can not achieve a stable and low latency. Fur-
ther, RPC needs extra CPU resources to handle DCT-related
queries. Observing the small memory footprint of DCT meta-
data, we propose an architecture that deploys RDMA-based
key-value stores to offload the metadata queries to one-sided
RDMA READ (§4.2). Second, DCT has a lower data path
performance than normal RDMA transport (RC) due to its dy-
namic connecting feature. The performance is mostly affected
when a node keeps a long-term communication with another.
Therefore, we introduce a hybrid connection pool that retains
a few RC connections connected to frequently communicated
nodes to improve the overall performance. KRCORE further
adopts a transfer protocol that can transparently switch a
virtualized connection from DCT to RC (§4.6). Finally, we
propose algorithms to safely virtualize a shared physical QP
to multiple applications with a low-level API (§4.4).

We implement KRCORE as a loadable Linux kernel mod-
ule in Rust. We also extended an existing kernel-space RDMA
driver (mlnx-ofed-4.9) to bring DCT to the kernel. To the
best of our knowledge, KRCORE is the first to achieve a
microsecond-scale RDMA control plane. Although KRCORE
is a general-purpose RDMA library, it really shines with elas-
tic computing applications. Our experiments demonstrated
that KRCORE can reduce the computing node startup time of
a state-of-the-art production RDMA-enabled disaggregated
key-value store (RACE [67]) by 83%, from 1.4s to 244ms
(§5.3.1). For serverless computing—another popular elastic
application, KRCORE can shorten the data transfer time over
RDMA by 99%, from 33.3ms to 0.12µs (§5.3.2).

Our source code and experiments are available at https:
//github.com/SJTU-IPADS/krcore-artifacts.

2 Background and Motivation
2.1 The case for fast control path in elastic computing

KRCORE targets systems that require elasticity: the ability to
automatically scale according to application demands. One
such case is disaggregated storage systems where the com-
puting nodes and storage nodes are separated and connected

by the network [52, 16, 67]. Under high loads, the system
can dynamically add computing nodes for better performance:
and they need to establish connections to the storage nodes on-
the-fly. Another important case is serverless computing [22]
where the platforms instantaneously launch short-lived tasks
with containers1. The launch time typically includes network
connections [51].

Unlike long-running tasks (e.g., web servers), the control
path (e.g., network creation) is typically on the critical path of
elastic applications. For example, before executing the appli-
cation code, a serverless function that issues database trans-
actions must first establish network connections to remote
storage nodes [63, 21]. With RDMA, the transaction latency
has reached 10-100µs [14, 57]. Reducing the control path
costs—including launching a container and creating network
connections—is therefore vital to the end-to-end execution
time or tail latency of elastic applications (see Figure 1).

Much research has focused on reducing other control path
costs, e.g., the container launch time to about 10ms [40] and
even sub-millisecond [15]. However, only a few considered
accelerating network connection creation [51], especially for
RDMA. The control path of RDMA is indeed several orders
of magnitude slower than its data path (e.g., 22ms vs. 2µs in
§2.3). It is also orders of magnitude slower than the execution
time of common elastic RDMA-enabled applications, or other
control path costs (see Figure 1).

2.2 RDMA and queue pair (QP)

RDMA is a high bandwidth and low latency networking fea-
ture widely adopted in modern datacenters [53, 19]. It has
two well-known primitives: two-sided provides a message
passing primitive while one-sided provides a remote memory
abstraction—the RDMA-capable network card (RNIC) can
directly read/write server memory in a CPU-bypassing way.

Although RDMA is commonly used in the user-space, the
kernel adopts the same verbs API (verbs), which exposes
network connections as queue pairs (QPs). Each QP has a
send queue (sq), a completion queue (comp_queue), and a
receive queue (recv_queue). Both primitives follow a similar
execution flow. To send a request (or a batch of requests),
the CPU uses post_send to post it (or them) to the send
queue. If the request is marked as signaled, the completion
can be polled from the completion queue via poll_cq. For
two-sided primitive, the CPU can further receive messages
with poll_cq over the receive queue. Before receiving, one
should use post_recv to post message buffers to the QP.
Note that the CPU needs to register memory through reg_mr
to give RNIC memory access permissions.

QP has several kinds of transport each with different capa-
bilities. We focus on improving the control path performance
of reliable connected QP (RCQP), as it is the most commonly
used one that supports both RDMA primitives and is reliable.

1Serverless platforms may use virtual machine (VM)s to run tasks, which is
not the focus of our paper. §6 discusses how KRCORE can apply to VMs.

122    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/SJTU-IPADS/krcore-artifacts
https://github.com/SJTU-IPADS/krcore-artifacts


CL

S0

S1

Data path

open_device,
reg_mr, etc

change_rtr

create_qp change_rts

RDMA requests

Control path

Init Create + Configure

Fig. 2. The execution flow of a client (CL) communicating with two
nodes (S0 and S1) using user-space verbs. change_rtr changes
the QP to ready to receive status while change_rts changes the
QP to ready to send status.

Fig. 3. (a) Huge performance gap btw. RDMA’s control path and
data path (issuing 8B READ) when connecting and communicating
with one node. (b) A breakdown of RDMA control path time.

2.3 Analysis of RDMA control path costs

2.3.1 User-space control path costs

Consider the example in Figure 2 where a client sends RDMA
requests to two nodes. The control path includes first initial-
izing the driver context (Init)2, creating the QPs (Create),
exchanging the QP information to the remote peer with a
handshake protocol and configuring the QPs to ready states
(Configure). Figure 3(a) reports its latency, which is 7,850X
higher than the data path (Verbs control vs. Verbs data).

Issue: High hardware setup cost. To quantify the costs
in detail, Figure 3 breakdowns the control path time. We
carefully optimize the connection handshake with RDMA’s
connectionless datagram [26], which is orders of magnitude
faster than using TCP/UDP. Contradicting the common wis-
dom, exchanging the connection information through the net-
work (Handshake) is not the dominant factor: Handshake
only contributes 2.4% of the total time. The cost is dominated
by communicating with the RNIC hardware for the connec-
tion setups. Consider the create_qp in Create: we found
87% of the create_qp time (361µs vs. 413µs) is waiting
for the RNIC to create the hardware queues.

2.3.2 Existing kernel-space solution is insufficient

LITE [53] is the only kernel-space RDMA solution and is
the closest to our work. It provides high-level remote memory
read, write and RPC interfaces over the low-level verbs API
(§2.2). LITE maintains an in-kernel connection pool that
2Including creating the protection domain and registering the memory.

CL

S0

S1

Data path Control path Data path

RDMA requests

create_qp change_rtr

create_qp change_rts

RDMA requests

RCQP Pool 
S0 ✔
S1
S2

✘
✘...

Fig. 4. The execution flow of a client (CL) communicating with
two nodes (S0 and S1) with the kernel-space RDMA assuming that
CL has cached a QP to S0 in its connection pool.

caches RCQPs connected to all nodes, which avoids the user-
space Init (Figure 2) costs because applications share the
same kernel-space driver data structures. However, it still has
the following issues for elastic applications:

Issue#1: High cost connecting to a new node. If the RCQP
of the target node is not cached, LITE must follow the same
Create and Configure as user-space RDMA, e.g., S1 in Fig-
ure 4, which are non-trivial (2ms for each connection). Note
that we have carefully optimized LITE’s control path: LITE
originally adopts a centralized cluster manager to create con-
nections, which can only establish tens of QPs per second.
We optimize it with a decentralized connection scheme using
RDMA’s connectionless datagram. The optimization achieves
a 2ms per-connection latency and 712 QPs/second per node
throughput (Figure 3), bottlenecked by the RNIC (see §2.3.1).

Issue#2: Huge memory consumption. Caching RCQPs
connected to all other nodes can mitigate Issue#1. However,
this strategy has huge per-machine memory consumption
since the number of RCQPs needed scales linearly with the
cluster size. In LITE, each QP consumes at least 159KB
memory3, excluding the message buffers and receive queues
(may share between different QPs via shared receive queue).
Therefore, LITE would consume at least 1.52 GB memory
per node for fast connection on a modern RDMA-capable
cluster with more than 10,000 nodes[17].

Issue#3: Inflexible interface. LITE exposes a high-level
RDMA API (e.g., a synchronous remote memory read), which
simplifies sharing the same QP to different applications. How-
ever, it is inflexible to apply RDMA-aware optimizations
widely adopted in the literature [67, 55, 14, 57, 24, 25],
e.g., sending different read/write requests within a batch asyn-
chronously. To utilize these optimizations, applications need
verbs low-level API (§2.2). Unfortunately, directly execut-
ing the low-level API on a shared QP can easily corrupt the
QP states (see §3.1), and interrupt application running. We
carefully design the QP virtualization algorithms to correctly
virtualize a shared QP with verbs’s low-level API (§4.4).

3It configures the QP with 292 sq and 257 comp_queue entries, a common
setup in RDMA-based systems. Each sq entry takes 448B while cq takes
64B. The driver would further round queues to fit the hardware granularity.

USENIX Association 2022 USENIX Annual Technical Conference    123



3 Approach and Overview
Opportunity: advanced RDMA transport (DCT). Dynam-
ically Connected Transport (DCT) [1] is an advanced RDMA
feature widely supported in commodity RNICs (e.g., from
Mellanox Connect-IB [37] to ConnectX-7 [35]). DCT pre-
serves the functionalities of RC and further supports dynamic
connecting: a DCT QP (DCQP) can communicate to different
nodes without user-initiated connections: RNIC can create
DCT connections on-the-fly by piggybacking control plane
messages with data plane ones. Since the connections are only
processed in the hardware, DCT re-connection is extremely
fast: our measured overhead is less than 1µs. When using DC-
QPs, the host only needs to specify the target node’s RDMA
address and its DCT metadata (i.e., DCT number and DCT
key) in each request.

Basic approach: virtualized kernel-space DCQP. The goal
is to achieve an ultra-fast control plane for the applications.
Our basic approach is to virtualize kernel-space DCQPs
(as VQPs) to user-space applications. The observation is
that DCT naturally addresses the costly creation overhead
(Issue#1) and the huge memory consumption (Issue#2) of
RCQPs (§2.3.2). A kernel-space solution further mitigates
the user-space driver loading costs (§2.3.1).

VQP also supports low-level RDMA interfaces
(e.g., ibv_post_send) with the necessary extended
API suitable for elastic computing (§4.1). Therefore,
users can flexibly apply existing RDMA-aware optimiza-
tions [24, 25, 57] (Issue #3 in §2.3.2). Note that different
VQPs can share the same physical QP in the kernel.
Nevertheless, KRCORE provides an exclusively owned QP
abstraction to the applications.

3.1 Challenges and solutions

C#1. Efficient DCT metadata query. DCQP needs to
query the DCT metadata before sending requests. Specifi-
cally, to allow communicating with DCT, the server must first
create a DCT target identified by a key and number (DCT
metadata). Afterward, the clients can piggyback the metadata
in their requests to communicate with the created target.

A viable solution is to send an RPC to the target node to
query the metadata using RDMA’s connectionless datagram
(UD)4, which prevents control plane costs as UD is connec-
tionless. However, it is inefficient in performance and CPU
usage. First, the latency of RPC may vibrate to tens of mil-
liseconds due to the scheduling and queuing overhead of the
CPU. Second, KRCORE must deploy extra kernel threads to
handle the queries.

Solution: RDMA-based meta server. We replicate the DCT
metadata at a few global meta servers backed by RDMA-
enabled key-value stores (KVS) [67, 58, 55, 13], meaning
each node can query it with one-sided RDMA bypassing the
CPU. To support one-sided RDMA while preventing QP over-

4It only supports two-sided RDMA.

S1 ✔

CL

S0

S1

Data path Control path (Background)

MS
query pool

RDMA requests

1 2 3

3

create_qp

change_rtsHybrid 
Pool

DCT ✔

change_rtr

S0 ✔

Hybrid 
Pool

DCT ✔

RCQP

S0 ✔

Fig. 5. The execution flow of a client (CL) communicating with
two nodes (S0 and S1) with KRCORE. MS: meta server. Note that
KRCORE always put the hardware control path (i.e., creating RC-
QPs) in the background.

provisions, KRCORE only maintains a few RCQPs connected
to nearby meta servers. Replicating the DCT metadata is
practical because it is small: 12B is sufficient for one node to
handle all requests from others.

C#2. Performance issues of DCT. DCT is slower than RC
in peak throughput and may incur high tail latency due to re-
connection (§5.2). The performance is mostly affected when
a node frequently sends requests to the same node.

Solution: virtualized hybrid QP. KRCORE manages a hy-
brid QP pool that stores both RC and DC QPs. A VQP can
transparently switch between DC and RCQP (§4.6), allow-
ing us to create RCQPs in the background on-the-fly without
exposing the creations overhead to the applications.

C#3. QP state protection. If we directly forward the VQP
request (from ibv_post_send) from different applica-
tions to the (same) shared physical QP, QP’s physical states
can easily be corrupted due to malformed requests or queue
overflow, because verbs API assumes an exclusively owned
QP. Bringing the QP back to a normal state is costly because
it requires reconfiguration (the Configure in Figure 3 (b)).

Solution: pre-check. KRCORE carefully checks the physical
queue capacity and request integrity before forwarding the
requests to the physical QP. The overhead of these checks is
negligible as they only involve simple calculations. Thus, we
can avoid QP corruption while preserving the RDMA-aware
optimizations (§4.4) of using low-level interfaces.

3.2 Execution flow and architecture

Execution flow. Applications can use KRCORE to create
RDMA-capable connections in a few microseconds. Figure 5
presents its execution flow when communicating to two nodes.
First, we find available RCQPs in the hybrid pool (¶). If ex-
ists (S0), we directly virtualize it. Otherwise (S1), we choose
a DCQP and fetch the target node’s DCT metadata (·) ac-
cordingly. Finally, we virtualize the selected QP so that the
client can send RDMA requests with them (¸).

To increase the likelihood of hitting RCQPs, KRCORE
analyzes the host’s networking patterns and creates RCQPs
in the background (e.g., to S1).

Architecture. Figure 6 presents the KRCORE library ar-
chitecture. On each node, KRCORE is a loadable Linux

124    2022 USENIX Annual Technical Conference USENIX Association



RDMA Network

...

Linux

APP APP...

Hybrid QP Pool

Application

Valid
MR

…

VQPs

KRCORE

Server Addr DCT Meta
0d:9a03:... 73|4096

MS

MRStoreDCCache

RNIC

App

......

...

DCQPsRCQPs

SnS1

...

S0

Meta Server KRCORE kernel module

Fig. 6. An overview of KRCORE architecture.

int qconnect(ibv_qp *qp, ibv_gid gid, int port); ## like POSIX connect 

int qbind(ibv_qp *qp, ibv_gid gid, int port); ## like POSIX bind 

KRCore’s extended verb’s control path API 

int qpop_msgs(ibv_qp *qp, int num_entries,   ## like POSIX(accept) + 
              ibv_qp **src_qp, ibv_wc *wc);    ## verbs(ibv_poll_cq)

KRCore’s extended verb’s data path API 

Example code: Client
1 ibv_qp_init_attr attr;
2 attr.qp_type = KRCORE_VQP; 

3 qp = ibv_create_qp(..., &attr); 

4 qconnect(qp, gid, port); 

5 ibv_send_wr wr;
6 ibv_send_wr *bad_wr_ptr; 
  ## send a message
7 ibv_post_send(qp, &wr, &bad_wr);

Example code: Server
1 ibv_qp_init_attr attr;
2 attr.qp_type = KRCORE_VQP; 

3 qp = ibv_create_qp(..., &attr); 

4 qbind(qp, gid, port); 

5 ibv_qp *new_conn = NULL;
6 ibv_wc wc; 
  ## receive a message
7 qpop_msg(qp, 1, &new_conn, &wc);

Fig. 7. The KRCORE extended API atop of verbs and a simplified
use case. Lines in � and � are extended code for the client and server,
respectively. Applications can also use the verb’s data path call
(e.g., ibv_post_send) to issue RDMA requests with KRCORE.

kernel module hosting per-application (e.g., VQP) and per-
node (e.g., Hybrid QP Pool) data structures (§4.2). KRCORE
also deploys meta servers (MS) on a few nodes to facilitate
DCT metadata lookup. These servers are backed by DrTM-
KV [58]—a state-of-the-art RDMA-enabled KVS—to accel-
erate the metadata lookup. The metadata is broadcasted by
each machine during its boot time.

4 Detailed Design

4.1 Programming interface of KRCORE

To simplify application development and porting, it is impor-
tant to keep backward compatibility between KRCORE and
verbs, the de facto standard for using RDMA. In principle,
KRCORE can provide the same interface with verbs similar
to existing work (i.e., Freeflow [30]). However, verbs is not
designed for elastic computing and may bring inflexibility
or under-utilization of KRCORE. Therefore, we propose an
extended API based on verbs inspired by Demikernel [64], as
shown in Figure 7. Specifically, KRCORE introduces a new
type of QP (VQP) with the following new primitives:

qconnect and qbind. The verbs API has no method for
‘connect’ commonly found in networking libraries. Therefore,
developers have to implement and optimize RDMA connec-
tion setups themselves. We provide a qconnect API to
abstract the fast connection provided by KRCORE. Specif-
ically, after calling qconnect on a VQP to a remote host
(identified by the RDMA address (gid) and a port), the VQP
can issue one-sided and two-sided requests to it. Note that
remote end must bind to the address using qbind before-
hand so that the sender can issue two-sided requests, similar
to POSIX bind.

qpop_msgs. RCQPs are one-to-one connected—meaning
the server must know how many clients may connect. This
is unhandy for elastic applications because clients can dy-
namically connect to a server. Therefore, KRCORE VQP
is many-to-one: after binding to an address, a VQP can dy-
namically accept new connections when receiving messages:
qpop_msgs will return a list of (src_qp,message) pairs,
where the src_qp is a VQP connected to the corresponding
sender of the message.

Besides the extended API, KRCORE also supports com-
mon verbs data path API, e.g., ibv_post_send, ibv_-
post_recv and ibv_poll_cq (see §2.2). Figure 7 show-
cases a simplified code example of sending a message from
a client to a server with VQP. At the client, it can use
KRCORE_VQP as a marker to create a VQP. After success-
fully connecting the VQP with qconnect, the client can
call ibv_post_send to send the message.

Note that the VQP has the semantic as RCQP—meaning
that they have reliability guarantees and support all RDMA
operations (with various low-level optimizations).

4.2 Data structures

Hybrid QP pool. Each VQP (§4.1) is backed by a kernel-
space virtual QP that has an identifier, a reference to a physical
QP and virtualized counterparts of RDMA queues (see §2.2).
The physical QP is selected from a hybrid QP pool with both
DCQPs and RCQPs. The DCQPs are statically initialized
upon boot time and RCQPs are created on-the-fly.

In principle, the pool only needs one DCQP to handle all
the RDMA requests of the host. However, only using one
DCQP introduces extra latency when sending concurrent re-
quests to different servers. Specifically, if two requests target-
ing different hosts go over the same DCQP, the second must
wait for an additional reconnection before RNIC can process
it. This can be mitigated by increasing the DCQP pool size
since reconnections can run concurrently. Yet, the best choice
of the pool size depends on the hardware setting (§5.2). On
our platform, we choose 8 DCQPs in the pool.

To further prevent lock contention [26], we divide the pool
on a per-CPU basis: Each VQP only virtualizes QPs from
its local CPU’s pool. This strategy is optimized for cases
when each QP is exclusively used by one thread, a common
pattern in RDMA applications [47, 55, 26, 17, 33]. In case

USENIX Association 2022 USENIX Annual Technical Conference    125



of thread migrations, KRCORE also re-virtualizes QPs in the
background with a transparent QP transfer protocol (§4.6).

Meta Server. For steady and low-latency DCT metadata
query, we replicate all the nodes’ metadata at a few global
meta servers backed by DrTM-KV [58], a state-of-the-art
RDMA-enabled KVS. Note that replicating all the DCT meta
at one server is practical because they are extremely small
(e.g., 17KB for a 1,000-server cluster).

The meta server stores a mapping between the RDMA
address (key) and its corresponding DCT number and key
(value). These key-value pairs can be queried via DrTM-KV
with a few one-sided RDMA READs. Since sending one-
sided requests also requires RDMA connections, each node
pre-connects to nearby meta servers (e.g., one in the same
rack) with RCQPs during boot time and thus, it can find the
DCT metadata of a given server in several microseconds even
under high load.

Optimization: DCCache. Observing that the DCT meta-
data is extremely small (12B), each node further caches them
locally to save network round-trips querying the meta server.
The metadata is suitable for caching because they are only
invalidated when the corresponding host is down.

ValidMR and MRStore. To safely virtualize a physical QP
to multiple VQPs, KRCORE additionally checks the validity
of remote memory accesses to prevent QP state corruption
(§4.4). These checks were originally done by the RNIC using
the information stored in the NIC cache. Thus, we should
also record them in KRCORE. We additionally bookkeep
the registered memory regions (MR)s in ValidMR, which is
also implemented with DrTM-KV. After the bookkeeping,
KRCORE can query the local/remote ValidMRs to check the
local/remote memory regions’ validity.

Like DCCache, we also cache the checked remote MR
locally (in MRStore) to avoid extra round-trips. However,
caching remote MRs may introduce consistency problems:
unlike long-lived DCT metadata, MRs are managed by the ap-
plications and can be de-registered on-the-fly. To this end, KR-
CORE adopts a lease-based lightweight invalidation scheme:
the cached MRs are periodically (e.g., 1 second) flushed.
Upon de-registration, KRCORE waits for this period before
freeing the MR.

4.3 Control path operations

KRCORE reuses initialized QPs upon VQP connection and
creation, whose simplified pseudocode executed in the KR-
CORE kernel is shown in Algorithm1.
vqp_create initializes the basic data structures of

VQP—mainly allocating the software send and completion
queues in the kernel. The physical QP assignment is delayed
to the VQP connection (line 5) because we are unaware of
the remote target during creation.
vqp_connect connects a VQP to a remote end by as-

signing a pre-initialized kernel-space QP (either RCQP or

Algorithm 1: VQP creation and connection
1: Function vqp_create(Q):
2: Q.id← allocate a free identifier
3: Q.comp_queue← allocate a software queue
4: Q.recv_queue← allocate a software queue
5: Q.qp← NULL / Updated by qconnect

6: Function vqp_connect(Q, addr):
7: if Q.qp == NULL then
8: if addr in HybridQPPool.RC then
9: Q.qp← select in HybridQPPool.RC[addr]

10: else
11: Q.qp← select in HybridQPPool.DC
12: if addr not in DCCache then
13: meta← query nearby connected MetaServer
14: add meta to DCCache
15: Q.dct_meta← meta

DCQP) to it. Given the remote addr, it first checks whether
an RCQP is available in the HybridQPPool (line 8). If so, we
choose an available QP and assign it to Q.qp (line 9). Oth-
erwise, we select a DCQP (line 11). Note that all DCQPs in
the pool are available because KRCORE can virtualize one
physical QP to multiple VQPs (§4.4).

When assigning a DCQP to VQP, we need to fetch the
remote end’s DCT metadata (line 12−15) if the metadata
is not cached in the DCCache. We issue one-sided RDMA
READs to the MetaServer to query it (line 13).

Background RCQP creations. To increase the likelihood
of hitting an RCQP in the pool, KRCORE maintains back-
ground routines to sample frequently communicated nodes,
create RCQPs for frequently communicated ones in the
HybridQPPool and reclaim rarely used RCQPs. Currently,
we choose a simple LRU strategy for the reclamation.

Other control path operations. Besides VQP creation and
connection, other control path operations (e.g., memory reg-
istration, MR) have a straightforward implementation: we
forward them to the corresponding verbs API and record the
results in KRCORE. If necessary, we will also return the vir-
tual handler of the recorded results to the user. Due to space
limitations, we omit a detailed description.

4.4 Data path operations

As we have mentioned in §3.1, a key challenge in virtualizing
a physical QP to multiple VQPs is preventing shared QP state
corruption. Specifically, we must consider:

1. Detecting malformed request. An incorrect operation
code or an invalid memory reference would transit a QP
into error states. Since an error states QP cannot handle any
RDMA requests, we must filter out malformed requests
before posting them to the physical QP.

2. Preventing NIC queue overflow. The physical QP has a
limited queue capacity. If the user overflows a QP, the QP
will also enter an error state. Preventing queue overflow is
challenging under sharing because it can overflow even if
all the shared users correctly avoid the queue overflows.

126    2022 USENIX Annual Technical Conference USENIX Association



Algorithm 2: kernel handler of post_send and poll_cq
1: Function post_send_virtualized(Q, wr_list):

/ wr_list: the RDMA requests list

/ Assumption: the size of wr_list is smaller

than Q.qp.sq.max_depth and Q.qp.cq.max_depth

2: while Q.qp.sq.max_depth - Q.qp.uncomp_cnt <
wr_list.length do

3: poll_inner(Q)

4: unsignaled_cnt← 0
5: for req in wr_list do
6: if req has invalid MR or invalid Op then
7: return Error

8: if req is signaled then
9: Q.comp_queue.add(NotReady, req.wr_id)

10: req.wr_id← encode the pointer of Q and
(unsignaled_cnt+ 1)

11: unsignaled_cnt← 0

12: else
13: unsignaled_cnt += 1
14: Q.qp.uncomp_cnt += 1

15: if last_req in wr_list is not signaled then
16: mark last_req as signaled
17: last_req.wr_id← encode NULL and

(unsignaled_cnt+ 1)

18: return post_send(Q.qp, wr_list)

19: Function poll_inner(Q):
20: wc← poll_cq(Q.qp.cq)
21: if wc is ready then
22: V Q, comp_cnt← decode wc.wr_id
23: Q.qp.uncomp_cnt −= comp_cnt
24: if V Q is not NULL then
25: V Q.comp_queue.head()[0] = Ready

26: Function poll_cq_virtualized(Q):
27: poll_inner(Q)
28: if Q.comp_queue.has_head() and

Q.comp_queue.head()[0] is ready then
29: user_wr_id← Q.comp_queue.pop()[1]
30: return READY, user_wr_id
31: return NULL, 0

The queue can be cleared via explicit signaling and polling.
Nevertheless, we should poll as little as possible because
they have overheads [24].

3. Dispatching completion events. The polled results of a
physical QP can be from different VQPs. Therefore, we
must correctly dispatch them to the targets, i.e., software
queues of VQPs.

To this end, KRCORE will (1) check the request integrity
before posting it to a shared QP; (2) inject necessary polls
to the physical QP and (3) encode the VQP information
in the request’s wr_id—that will be returned upon request
completion—to help the dispatch. Specifically, KRCORE
executes post_send_virtualized and poll_cq_-
virtualized after the user calls ibv_post_send and
ibv_poll_cq, respectively. Algorithm 2 shows their sim-
plified pseudocode. For simplicity, we assume the request list
(wr_list) depth is smaller than the QP capacity, which can
be achieved by segmenting the request list before posting it.

post_send_virtualized. It first clears the physi-
cal QP’s send and completion queues to prevent overflows

(line 2−3) via polling the physical completion queue (line 20).
Polling is tricky when considering unsignaled requests—the
requests that don’t generate completion events. Their entries
are freed until a later signaled request is polled. Thus, we
must track how many requests a signaled one is responsible
to clear (line 4 and line 13), and encode the number in wr_id
(line 10). Therefore, after polling a completion we can deter-
mine the left spaces of queues (line 23). Further, if the last
request is unsignaled, we signal it (line 15−17).

For each request, we also check whether it is malformed
(line 6) and record the dispatch information for the signaled
ones (line 9−10). Finally, we can safely post these requests
to the physical QP (line 18).

For two-sided primitive, KRCORE must additionally notify
the receiver the sender information. Otherwise, the receiver
cannot create proper connections in qpop_msgs. Hence,
we piggyback the sender’s address in the message header
(omitted in the algorithm).

poll_cq_virtualized. It first calls poll_inner
to poll the physical QP events and dispatch the events to
the proper VQPs according to the information recorded in
the wr_id (lines 22−25). After the dispatch, it can check
whether the virtualized QP has a completion event. KRCORE
examines the head of the virtualized comp_queue and returns
the head’s wr_id to the application if the head exists.

Due to space reasons, we briefly describe other operations:

ibv_post_recv. This function registers the buffers to
the VQP by recording them in the virtualized recv_queue.

qpop_msgs. It polls the physical QP’s recv_queue and
dispatches the received messages, similar to poll_inner.
To hold in-coming messages, we pre-post message buffers
to physical QP before virtualizing it to the applications. The
challenge of pre-post is that the KRCORE doesn’t know the
exact payloads of the incoming messages. For now, we as-
sume the pre-posted buffers can always hold the incoming
message. §4.5 will describe how we cope with out-of-bound
messages in detail. After receiving a message, we will check
its destination VQP and copy it the user-registered buffer
(from ibv_post_recv).

Besides receiving messages, qpop_msgs also creates a
VQP connected to the sender (§4.1). The creation and connec-
tion follow the control path operations discussed in §4.3. To
prevent the DCT metadata query, we further piggyback the
metadata in the message header. Thus, qpop_msgs doesn’t
involve additional networking requests.

4.5 Zero-copy protocol for two-sided operations

The basic qpop_msgs (§4.4) has two issues. First, it incurs
extra memory copies. Though the copy overhead is negligible
for small messages (e.g., less than 1KB), it is non-trivial for
the large ones (e.g., see results in Figure 9 (b)). Second, it
cannot receive messages with payloads larger than the pre-
posted buffers.

USENIX Association 2022 USENIX Annual Technical Conference    127



To this end, we adopt a zero-copy protocol to overcome the
above issues. Intuitively, for large or out-of-bound messages,
the receiver will use one-sided RDMA READ to read them
to the user-registered buffers, inspired by existing RDMA-
enabled RPC frameworks [48, 17]. Specifically, if the payload
is larger than the kernel’s registered buffer, the sender will
first send a small message containing the destination VQP ID,
the source message address and its size. The receiver can then
use one-sided RDMA READ to read the message directly
to the user-registered buffer in a zero-copy way. The cost of
sending an additional message is trivial for large messages
because the network transfer will dominate the time.

4.6 Physical QP transfer protocol

KRCORE supports seamlessly changing the physical QP vir-
tualized by a VQP to another. The challenge of doing so is
how to preserve the RCQP’s FIFO property [7] of the VQP
during transfer, i.e., after a request completes, all its previous
requests are finished.

To ensure FIFO, upon the transfer starts, we first post a
fake signaled RDMA request to the source QP and wait for
its completion before the change. Meanwhile, we also notify
the remote peers to transfer their physical QP. Otherwise, the
VQP can no longer receive the remote end’s message. For
correctness, we must wait for the remote acknowledgments
before changing the physical QP at the sender.

5 Evaluation
We aim to answer the following questions during evaluations:
1. How fast is the KRCORE control plane (§5.1)?
2. What are the costs to the data plane (§5.2)?
3. How RDMA-aware applications that require elasticity can

benefit from KRCORE (§5.3)?

Implementation. We implement KRCORE from scratch as
a loadable Linux kernel (4.15) module, which has more than
10,000 LoC Rust code. It exports system calls via ioctl with-
out modifying the kernel. To simplify user-kernel interactions,
we further implement a 100 LoC C shim library atop ioctl
to provide the interfaces described in §4.1. Finally, we port
DCT to the kernel-space RDMA driver by adding around 250
LoC C code to the mlnx-ofed-4.9 driver: DCT is currently
only implemented in the user-space RDMA drivers.

Testbed setup. We conduct experiments on a local rack-
scale RDMA-capable cluster with ten nodes. Each node
has two 12-core Intel Xeon E5-2650 v4 processors, 128GB
DRAM and one ConnectX-4 MCX455A 100Gbps Infini-
Band RNIC. All nodes are connected to a Mellanox SB7890
100Gbps InfiniBand Switch. Without explicit mention, we
deploy one meta server for KRCORE.

Comparing targets. We compare KRCORE with user-
space verbs (verbs) and LITE5. Original LITE has an unop-
timized control plane: it uses a centralized cluster manager to
5https://github.com/WukLab/LITE

Fig. 8. The qconnect performance of KRCORE when using
DCQP with DCT metadata uncached. (a) Connecting to a single
server, and (b) establishing connections in a full-mesh fashion.

establish connections between servers and can only connect
tens of RCQPs per second. Therefore, we further optimize
it by enabling a decentralized QP connection scheme via
RDMA’s unreliable datagram (UD). Our optimized version
can achieve an optimal kernel-space RDMA control plane
performance—it is now only bottlenecked by the hardware
limits. §5.1 will describe this in more detail. Note that our
optimization leaves the LITE data plane unchanged.

5.1 Control path performance

The evaluations for the control path focus on creating and
connecting RDMA connections. The costs of the other oper-
ations in KRCORE (and verbs) are typically much smaller.
For example, registering 4MB memory only takes 1.4µs in
KRCORE. Therefore, we omit their results.

We use two synthetic workloads (single and full-mesh con-
nection establishment) to evaluate the control path perfor-
mance. The connection pool and DCCache of KRCORE are
cleared before the evaluations. Otherwise, KRCORE only has
system call overheads and is extremely small (0.9µs).
Single-connection establishment performance. We first
evaluated the latency and throughput of establishing a single
RDMA-capable connection to one server w.r.t. the number
of clients. Figure 8 (a) reports the throughput-latency graph
when increasing the number of clients from 1 to 240. From
the figure we can see that KRCORE can have several orders
of magnitude better performance than verbs and LITE. At
one client, KRCORE can establish a connection in 5.4µs,
while verbs and LITE take 15.7ms and 2ms, respectively.
The performance gain of KRCORE comes from replacing
the costly RDMA control path operations (analyzed in §2.3.1
and §2.3.2 in detail) with fast RDMA data path operations,
i.e., two one-sided RDMA READs to the meta server. For
LITE, it saves the driver loading cost but still needs to create
and configure QP on its control path. At 240 clients, KRCORE
can handle 22 million (M) connections per second, while
verbs and LITE can only establish 712 RCQPs per second.
They are both bottlenecked by the server creating hardware
resources, while KRCORE always reuses existing ones to
prevent these overheads.

Full-mesh connection establishment performance. Be-
sides establishing a single connection, creating full-mesh
connections at a set of workers is common in elastic applica-

128    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/WukLab/LITE


Fig. 9. (a) Performance comparisons of different DCT meta query
methods, and (b) the effects of zero-copy protocol (KRCORE+opt)
of KRCORE two-sided operations.

tions, e.g., burst-parallel serverless workloads [51]. Specifi-
cally, each worker should connect to the others and vice versa.
Figure 8 (b) presents the full-mesh performance by vary-
ing the number of involved workers. In general, KRCORE
can reduce 99% of the full-mesh creation time regardless of
the worker number, thanks to the orders of magnitude faster
single-connection establishment performance (see Figure 8
(a)). For example, KRCORE connected 240 workers in 81
µs, while verbs and LITE used 2.7 secs and 2.3 secs, re-
spectively. These results suggest that KRCORE can handle
complex control path operations well.

Benefit of the meta server. A key design choice of KR-
CORE is to use an RDMA-based meta server to store DCT
meta. Figure 9 (a) illustrates the benefit of this design using
the single-connection establishment workload of Figure 8
(a). The baseline (RPC) uses a kernel-space FaSST [26] RPC
for the querying. FaSST is the state-of-the-art RDMA-based
RPC that builds on RDMA’s unreliable datagram. It also
has no control plane overhead in the kernel because UD is
connectionless. To save CPU resources, we only deploy one
kernel thread to handle the queries. We can see that a meta
server design achieves an 11.8X better throughput and up to
13X query latency compared with RPC. The RPC design is
bottlenecked by the server CPU for handling DCT queries,
while the RDMA-based meta server bypasses the CPU with
one-sided RDMA.

5.2 Data path performance

KRCORE trades data path performance for a faster control
plane. We first use a set of microbenchmarks to evaluate
these overheads using two communication patterns: sync and
async. In the sync mode, each client issues RDMA requests
to one server in a run-to-completion way, aiming to achieve
low latency [17, 47]. For async, each client posts requests in
batches to achieve the peak throughput [57, 24, 25]. Without
explicit mention, the workloads are inbound, i.e., multiple
clients sending RDMA requests to one server. We reported
the aggregated throughput of clients and their average latency.

One-sided operations. Figure 10 presents the one-sided
data path performance of KRCORE when it virtualizes from
DCQP (KRCORE(DC)) and RCQP (KRCORE(RC)), and
compare them to verbs6. During the experiment, each client

6LITE’s data path API is different so we compare to it separately.

Fig. 10. The one-sided RDMA performance.

Fig. 11. The two-sided RDMA performance of KRCORE.

issued 8B random requests to the server, and we varied the
number of clients from 1 to 240.
(1) Sync. For one-sided RDMA READ in Figure 10 (a), the
latency of KRCORE (DC) and (RC) is 27%–46% and is 25%–
41% higher than verbs. The additional latency of KRCORE
under sync mode is dominated by the system call cost. On our
hardware, we measure a ∼1µs overhead communicating with
the kernel. For reference, when using one client, the latency
of KRCORE (RC) is 3.15µs, and the verbs is 2.15µs. Another
observation is that adopting DCQP has little latency overhead
in the sync mode as DC reconnection is extremely fast. For
example, the latency of KRCORE (DC) under one client is
3.24µs. The results of one-sided RDMA WRITE in Figure 10
(c) are similar to the READ.
(2) Async. For one-sided RDMA READ in Figure 10 (b), KR-
CORE (RC) can achieve a similar peak throughput as verbs
(138M reqs/sec) when using 240 clients. With the same con-
figuration, KRCORE (DC) is 14% slower (118 M reqs/sec).
KRCORE (RC) and verbs are both bottlenecked by the server
RNIC, while KRCORE (DC) is slower due to extra DCT
processing at the RNIC. For one-sided RDMA WRITE in Fig-
ure 10 (d), the results are similar: KRCORE (RC) and verbs
achieve a peak throughput of 145M reqs/sec while KRCORE
(DC) is 8.9% lower (132M reqs/sec).

Two-sided operations. Figure 11 presents the two-sided
throughput and latency of KRCORE w.r.t. to the number of
clients (1 to 240). Each client sends an 8B request to the
server in an echo fashion: after receiving a request, the server

USENIX Association 2022 USENIX Annual Technical Conference    129



Fig. 12. (a) A factor analysis of the data path cost introduced by
KRCORE using one-sided RDMA READ. (b) The performance of
KRCORE in data transfer benchmark of serverless computing.

will send the request back, and the client will issue another
request after getting the acknowledgment. The server utilizes
all cores (24 threads) to handle these requests.
(1) Sync. In this mode, the performance comparisons are simi-
lar to one-sided RDMA: compared with verbs, KRCORE (RC)
and (DC) have 4–21% and 14–31% higher latency, respec-
tively. The KRCORE overheads added to two-sided RDMA
are also dominated by the user-kernel interactions. For ex-
ample, at one client, one KRCORE (RC) echo takes 9.6µs
while verbs takes 7.9µs. Compared to one-sided RDMA, the
absolute latency gap is larger. KRCORE two-sided has an
additional system call overhead: the server needs to enter the
kernel to receive a message.
(2) Async. Unlike one-sided RDMA, KRCORE cannot
achieve the same peak inbound throughput (when using 240
clients) as verbs for two-sided RDMA: it is 20% slower than
verbs: which can only achieve 33.7M reqs/sec regardless of
RC or DC. In comparison, verbs can achieve 42.3M reqs/sec.
The extra bottleneck comes from CPU processing costs at the
server due to user-kernel interactions. As a result, KRCORE
cannot saturate the RNIC’s high performance. This also ex-
plains why KRCORE has a similar performance when using
RC and DC.

Effects of zero-copy optimization. We next examine the
costs of memory copy—that KRCORE uses to dispatch mes-
sages between virtual QPs—to the two-sided operations. We
further demonstrate how we mitigate it with a zero-copy pro-
tocol (§4.5). Figure 9 (b) shows the two-sided echo latency
when using one client to communicate with the server w.r.t.
the payload size. We can see that the memory copy cost is
negligible for small transfers (<=16KB) but is significant
for large messages. Specifically, when transferring > 16KB
messages, the latency of KRCORE is 1.45–3.1X higher than
verbs. To this end, the zero-copy optimization (KRCORE+opt)
reduces the overheads to 0.08-0.23X when transferring >=
16KB messages.

Factor analysis. Figure 12(a) conducts a factor analysis
to show the detailed data path costs of KRCORE in a sync
one-sided RDMA READ request. The main observations are:
(1) The biggest cost to data path operations is additional
RDMA requests to check the MR validity when the remote
MR information is not cached locally (+MR miss, takes

Fig. 13. The slowdown of KRCORE compared to verbs on one-
sided RDMA READ (a) and WRITE (b), respectively.

Fig. 14. (a) The impacts of DCQP pool size. (b) The CDF of
latency of sending RDMA requests to different servers.

4.5µs). Note the checks are rare because KRCORE always
caches the checked MR after a miss.
(2) For normal requests without MR checks, system call dom-
inates the overheads (+System call), resulting in 1µs latency
increase (3.15µs vs. 2.14µs). Other costs—including using
DCQP (+DCQP) and KRCORE check to prevent QP state
corruptions (+Checks, see §4.4) are trivial (less than 0.5 µs).

Impacts of payload size to one-sided RDMA. The over-
head of KRCORE becomes smaller for one-sided RDMA
with a larger payload, since transferring data through the net-
work dominates the time. Figure 13 reports the slowdown
compared to verbs on different request payloads. We mea-
sure the latency of sync one-sided RDMA with one client.
For one-sided RDMA READ, the overhead is negligible for
larger than 256KB reads (<7%). For WRITE, the overhead is
negligible for larger than 8KB payloads.

Impacts of DCQP pool size. A larger DCQP pool is typi-
cally better for concurrently sending requests to different ma-
chines (§4.2). Figure 14 (a) reports the latency when sending
a batch of 64 one-sided RDMA READs to different targets at
one client with different pool sizes. The targets are randomly
selected in 10 machines. We can see that when the pool only
has one DCQP, KRCORE (DC) has a 1.32X higher latency
(99 vs. 75 µs) than KRCORE (RC), since requests to the same
QP are processed sequentially with reconnections. Increasing
the pool size can significantly improve the latency. Interest-
ingly, when the pool size is larger than 2, DC outperforms RC
by 28–78%. RC needs 64 different connections to send these
requests, and it has to do 63 additional polls than DC.

Tail latency. Figure 14 (b) reports the tail latency when
using 50 clients sending sync one-sided RDMA READ to 5
servers. Under such a fan-out scenario, KRCORE (DC) has
a higher tail latency than the others due to extra round-trips
caused by DC reconnections. The 99.9% latency of verbs,

130    2022 USENIX Annual Technical Conference USENIX Association



Fig. 15. (a) A comparison of memory usage on connections: KR-
CORE caches all DCT metadata, while LITE caches all RCQPs. (b)
A comparison of data path performance when KRCORE uses DCQP.

KRCORE (RC) and KRCORE (DC) are 2.8µs, 3.8µs and 6µs,
respectively.

Comparison to LITE. Finally, we show that KRCORE
can achieve a similar (or better) data path performance than
LITE with smaller memory usage.
(1) Memory. Figure 15 (a) shows the memory used for caching
RDMA connections. In general, KRCORE consumes orders
of magnitude smaller memory when supporting the same
number of connections. For example, to maintain 5,000 con-
nections, LITE consumes 780MB of memory, even without
counting the memory of message queues (1.5GB if coun-
tered). In comparison, KRCORE only consumes 6.3MB of
memory because it just maintains a (small) constant number
of DCQP (48), and each DCT metadata only consumes 12B.
(2) Performance. Figure 15 (b) further compares the through-
put when issuing 64B random one-sided RDMA READ from
one node to others. We configure both systems to deploy
a pool of 32 connections, preventing LITE from encoun-
tering RCQP scalability issues [26]. KRCORE uses DCQP
for its connections. For sync, we can see that KRCORE is
up to 20% slower than LITE due to performance issues of
DCQP. On the other hand, KRCORE achieves a 3X higher
peak async throughput (15.6M/sec vs. 5.2M/sec) in the async
mode. LITE has a limited peak performance because it fails
to run with more than 6 threads. LITE doesn’t prevent QP
queue overflows (see issue #3 in §2.3.2), so it will trigger QP
errors for more than 6 threads. KRCORE handles overflows
well (§4.4) and can thus, scale to more threads.

5.3 Application performance

5.3.1 Scaling RACE Hashing

Overview and setup. RACE hashing [67] is a production
RDMA-enabled disaggregated key-value store. We chose it
as our case study because it requires elastically—a demand
not commonly found in existing RDMA-based key-value
stores. At a high level, RACE separates the storage nodes
and computing nodes by RDMA, where the computing nodes
execute key-value store requests by issuing one-sided RDMA
requests to the storage nodes. RACE further allocates com-
puting nodes on-demand to cope with various workloads in a
resource-efficient way, where the newly started nodes need dy-
namically establish RDMA connections to memory nodes. To
improve performance, it embraces a set of low-level RDMA-

Fig. 16. Under load spikes, KRCORE can quickly bootstrap com-
puting nodes for RACE Hashing [67].

aware optimizations—e.g., doorbell batching [25] that are
tailed to RDMA’s low-level verbs interface.

Since RACE is not open-sourced, we implement a simpli-
fied version atop of verbs, LITE and KRCORE, respectively.
We have calibrated that the performance is close to their re-
ported ones. For example, RACE reports a peak 24M req/sec
Get throughput on ConnectX-5 under YCSB-C [11]. Our
(verbs) version can achieve 27M req/sec with more machines
(8 vs. 5) on a similar RNIC (ConnectX-4).

Performance under load spikes. Our evaluating workload
contains a load spike commonly found in real-world appli-
cations [8, 28, 2]. Under spikes, RACE allocates more com-
puting processes to increase performance. During process
startups, KRCORE can reduce its bootstrap time thanks to its
fast control plane.

Figure 16 shows the timelines of RACE atop of verbs, LITE
and KRCORE under load spikes, respectively. The spikes
happen at time 0, and RACE forks 180 new processors to
handle it. When using KRCORE, RACE can finish the startup
in 244ms, 83% and 76% faster than verbs (1.4 seconds) and
LITE (1 second), respectively. KRCORE is bottlenecked by
OS creating worker processors. On the other hand, LITE and
verbs are bottlenecked by RDMA’s slow control path (§2.3).
A fast boot further reduces the tail latency: during time 0-3,
KRCORE has a 4.9X lower 99% latency than verbs.

Benefit of virtualizing a low-level RDMA API. KRCORE
virtualizes a low-level RDMA (e.g., ibv_post_send), and
thus, it can transparently apply existing RDMA-aware opti-
mizations (see Issue #3 in §2.3.2). This leads to better perfor-
mance of KRCORE on RACE compared to LITE: as shown
in Figure 16, KRCORE has a 1.73X higher peak throughput
(26M reqs/sec vs. 15M reqs/sec) than LITE after time 3.

Benefit of virtualizing hybrid QPs. As shown in Figure 16,
using RCQP (e.g., after time 3) brought 1.4X (26M vs. 18M
req/sec) throughput improvements to KRCORE, achieving
a similar performance as verbs (26M reqs/sec). This is be-
cause RACE issues RDMA requests asynchronously, and
KRCORE’s RC async peak throughput is similar to verbs (see
Figure 10 (b)). Further, we can see the overhead of switching
from DCQP to RCQP is negligible (at time 2.2). However,
there is a lag for detecting the switch because KRCORE needs
time to collect the necessary information to decide which RC-

USENIX Association 2022 USENIX Annual Technical Conference    131



QPs to create.

5.3.2 Accelerating data transfer in serverless computing

Finally, we show that KRCORE can improve the communi-
cation performance between functions in serverless comput-
ing. We use an RDMA-version of data transfer testcase in
ServerlessBench [62] (TestCase5), a state-of-the-art Server-
less benchmark suite. This testcase measures the data transfer
time between two serverless functions. The experiment runs
on Fn [43], a popular open-source serverless platform.

Figure 12 (b) reports the time to pass a message w.r.t. the
payload size when using verbs and KRCORE, respectively.
The receiver function runs in a separate machine using a
Docker container after the sender finishes execution. We use
warm start to techniques [40] to reduce the control plane
costs of starting containers. From the figure we can see KR-
CORE reduces the data transfer latency of verbs by 99% when
transferring 1KB to 9KB bytes. The performance improve-
ments are mainly due to the reduced RDMA control path of
KRCORE, which we have extensively analyzed in §5.1.

6 Discussion
Trade-offs of a kernel-space solution. KRCORE chooses
kernel-space RDMA for a microsecond-scale control plane
(5,900X faster than verbs). Though it retains most benefits of
RDMA (e.g., zero-copy), we sacrifice kernel-bypassing bene-
fit and thus, result in a slower data path (up to 75% slowdown).
We argue that such cost is acceptable to many elastic applica-
tions. First, the application usually issues a few networking
requests. For example, the functions in ServerlessBench [62]
and SeBS [12] only issue one request to read/write remote
data on average. Second, the control path overhead (ms-scale)
is commonly orders of magnitude higher than the cumulative
data path overhead (µs-scale), see Figure 3. Finally, existing
work (i.e., LITE [53]) also showed that kernel-space RDMA
is efficient for many datacenter applications.

Other RNICs. Our analysis focuses on Mellanox
ConnectX-4 Infiniband RNIC. Nevertheless, we argue the
cost is unlikely to reduce due to hardware upgrades or differ-
ent RDMA implementations (e.g., RoCE) since the cost is
dominated by configuring the NIC resources. For example,
we also evaluate the control path performance on ConnectX-
6, where the user-space driver still takes 17ms for creating
and connecting QP, similar to the ConnectX-4 we evaluated
(15.7ms, see Figure 3).

KRCORE in virtualized environments. We currently fo-
cus on accelerating RDMA control plane with host network-
ing mode. Using RDMA in virtual machines or virtualized
RDMA network [30, 20] is also popular in the cloud. We be-
lieve the principles and methodologies of KRCORE are also
applicable in these environments. For example, Freeflow [30]
is an RDMA virtualization framework designed for container-
ized clouds. It leverages par-virtualization that intercepts vir-
tualized RDMA requests to a software router. We can inte-

grate our hybrid connection pool to the router to support a
fast control plane atop of it. We plan to investigate applying
KRCORE in virtualized environments in the future.

7 Related Work
RDMA libraries. Many user-space RDMA libraries ex-
ist [32, 4, 3, 36, 64], e.g., MPI, UCX [4], rsocket [3]. They
can hardly provide a fast control plane because they are all
based on verbs. LITE [53] is the only kernel-space RDMA
library and is the closest to our work. We have extensively an-
alyzed the issues when deploying LITE in elastic computing
(§2.3.2) and how KRCORE addresses them (§3—§4).

DCT-aware and hybrid-transport systems. Several works
used DCT to improve the performance and scalability of
RDMA-enabled systems [49, 41]. Subramoni et al. [49]
showed that DCT could provide comparable performance
to RC while reducing memory consumption for MPI ap-
plications. Meanwhile, several works leveraged a hybrid-
transport design to overcome the shortcoming of a single
transport [31, 23]. For instance, Jose et al. [23] utilized UD
to reduce the memory consumption of RC in Memcached.

RDMA-enabled applications. KRCORE continues the line
of research on accelerating systems with RDMA, from key-
value stores [38, 55, 67, 24, 13, 39], far-memory data struc-
tures [45, 6, 44], RPC frameworks [48, 26, 9, 27], replication
systems [5, 42, 54, 29], distributed transactions [58, 46, 14,
10, 57, 65, 56], graphs [47, 59, 61, 18] and distributed file
systems [66, 33, 60], just to name a few. Most of these sys-
tems do not target elastic computing, but we believe there
are opportunities for applying them in such a setting. In such
scenarios, they can benefit from KRCORE.

8 Conclusion
This paper presents KRCORE, a µs-scale RDMA control
plane for RDMA-enabled applications that require elastic-
ity. By retrofitting RDMA dynamic connected transport with
kernel-space QP virtualization, we show that it is possible
to eliminate most RDMA control path costs on commod-
ity RNICs. Meanwhile, the data path costs introduced by
KRCORE are acceptable for many elastic applications. Our
experimental results confirm the efficacy of KRCORE.

9 Acknowledgment
We sincerely thank the anonymous shepherd and review-
ers for their insightful suggestions. We also thank Dingji
Li for discussing how to apply KRCORE to virtual ma-
chines, Xiating Xie for improving the figures and Sijie Shen,
Zhiyuan Dong, Rongxin Chen and Yuhan Yang for their valu-
able feedback. This work was supported in part by the Na-
tional Key Research & Development Program of China (No.
2020YFB2104100), the National Natural Science Founda-
tion of China (No. 61732010, 61925206) and Shanghai AI
Laboratory.

132    2022 USENIX Annual Technical Conference USENIX Association



References
[1] Dynamically connected transport. https://www.

openfabrics.org/images/eventpresos/
workshops2014/DevWorkshop/presos/Monday/
pdf/05_DC_Verbs.pdf, 2014.

[2] Daily Deals and Flash Sales: All the Stats You Need to Know.
http://socialmarketingfella.com/daily-
deals-flash-sales-stats-need-know/, 2016.

[3] rsocket(7) - Linux man page. https://linux.die.net/
man/7/rsocket, 2021.

[4] Unified communication x. https://openucx.org, 2021.

[5] AGUILERA, M. K., BEN-DAVID, N., GUERRAOUI, R.,
MARATHE, V. J., XYGKIS, A., AND ZABLOTCHI, I. Mi-
crosecond consensus for microsecond applications. In 14th
USENIX Symposium on Operating Systems Design and Im-
plementation, OSDI 2020, Virtual Event, November 4-6, 2020
(2020), USENIX Association, pp. 599–616.

[6] AGUILERA, M. K., KEETON, K., NOVAKOVIC, S., AND

SINGHAL, S. Designing far memory data structures: Think
outside the box. In Proceedings of the Workshop on Hot Topics
in Operating Systems, HotOS 2019, Bertinoro, Italy, May 13-
15, 2019 (2019), ACM, pp. 120–126.

[7] ASSOCIATION., I. T. Infiniband architecture specifica-
tion. https://cw.infinibandta.org/document/
dl/7859, 2015.

[8] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S.,
AND PALECZNY, M. Workload analysis of a large-scale key-
value store. In ACM SIGMETRICS/PERFORMANCE Joint
International Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’12, London, United King-
dom, June 11-15, 2012 (2012), P. G. Harrison, M. F. Arlitt, and
G. Casale, Eds., ACM, pp. 53–64.

[9] CHEN, Y., LU, Y., AND SHU, J. Scalable RDMA RPC on
reliable connection with efficient resource sharing. In Pro-
ceedings of the Fourteenth EuroSys Conference 2019, Dresden,
Germany, March 25-28, 2019 (2019), G. Candea, R. van Re-
nesse, and C. Fetzer, Eds., ACM, pp. 19:1–19:14.

[10] CHEN, Y., WEI, X., SHI, J., CHEN, R., AND CHEN, H. Fast
and general distributed transactions using RDMA and HTM.
In Proceedings of the Eleventh European Conference on Com-
puter Systems, EuroSys 2016, London, United Kingdom, April
18-21, 2016 (2016), C. Cadar, P. R. Pietzuch, K. Keeton, and
R. Rodrigues, Eds., ACM, pp. 26:1–26:17.

[11] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISH-
NAN, R., AND SEARS, R. Benchmarking cloud serving sys-
tems with YCSB. In Proceedings of the 1st ACM Symposium
on Cloud Computing, SoCC 2010, Indianapolis, Indiana, USA,
June 10-11, 2010 (2010), J. M. Hellerstein, S. Chaudhuri, and
M. Rosenblum, Eds., ACM, pp. 143–154.

[12] COPIK, M., KWASNIEWSKI, G., BESTA, M., PODSTAWSKI,
M., AND HOEFLER, T. Sebs: a serverless benchmark suite for
function-as-a-service computing. In Middleware ’21: 22nd In-
ternational Middleware Conference, Québec City, Canada, De-
cember 6 - 10, 2021 (2021), K. Zhang, A. Gherbi, N. Venkata-
subramanian, and L. Veiga, Eds., ACM, pp. 64–78.

[13] DRAGOJEVIC, A., NARAYANAN, D., CASTRO, M., AND

HODSON, O. Farm: Fast remote memory. In Proceedings
of the 11th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2014, Seattle, WA, USA, April
2-4, 2014 (2014), R. Mahajan and I. Stoica, Eds., USENIX
Association, pp. 401–414.

[14] DRAGOJEVIĆ, A., NARAYANAN, D., NIGHTINGALE, E. B.,
RENZELMANN, M., SHAMIS, A., BADAM, A., AND CASTRO,
M. No compromises: Distributed transactions with consistency,
availability, and performance. In Proceedings of the 25th
Symposium on Operating Systems Principles (New York, NY,
USA, 2015), SOSP’15, ACM, pp. 54–70.

[15] DU, D., YU, T., XIA, Y., ZANG, B., YAN, G., QIN, C., WU,
Q., AND CHEN, H. Catalyzer: Sub-millisecond startup for
serverless computing with initialization-less booting. In ASP-
LOS ’20: Architectural Support for Programming Languages
and Operating Systems, Lausanne, Switzerland, March 16-20,
2020 (2020), J. R. Larus, L. Ceze, and K. Strauss, Eds., ACM,
pp. 467–481.

[16] FACEBOOK. Introducing Bryce Canyon: Our next-generation
storage platform. https://engineering.fb.com/
2017/03/08/data-center-engineering/
introducing-bryce-canyon-our-next-
generation-storage-platform/, 2017.

[17] GAO, Y., LI, Q., TANG, L., XI, Y., ZHANG, P., PENG, W.,
LI, B., WU, Y., LIU, S., YAN, L., FENG, F., ZHUANG, Y.,
LIU, F., LIU, P., LIU, X., WU, Z., WU, J., CAO, Z., TIAN,
C., WU, J., ZHU, J., WANG, H., CAI, D., AND WU, J. When
cloud storage meets RDMA. In 18th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2021,
April 12-14, 2021 (2021), J. Mickens and R. Teixeira, Eds.,
USENIX Association, pp. 519–533.

[18] GUO, C., CHEN, H., ZHANG, F., AND LI, C. Distributed join
algorithms on multi-cpu clusters with gpudirect RDMA. In
Proceedings of the 48th International Conference on Parallel
Processing, ICPP 2019, Kyoto, Japan, August 05-08, 2019
(2019), ACM, pp. 65:1–65:10.

[19] GUO, C., WU, H., DENG, Z., SONI, G., YE, J., PADHYE,
J., AND LIPSHTEYN, M. RDMA over commodity ethernet at
scale. In Proceedings of the ACM SIGCOMM 2016 Confer-
ence, Florianopolis, Brazil, August 22-26, 2016 (2016), M. P.
Barcellos, J. Crowcroft, A. Vahdat, and S. Katti, Eds., ACM,
pp. 202–215.

[20] HE, Z., WANG, D., FU, B., TAN, K., HUA, B., ZHANG, Z.,
AND ZHENG, K. Masq: RDMA for virtual private cloud. In
SIGCOMM ’20: Proceedings of the 2020 Annual conference
of the ACM Special Interest Group on Data Communication
on the applications, technologies, architectures, and protocols
for computer communication, Virtual Event, USA, August 10-
14, 2020 (2020), H. Schulzrinne and V. Misra, Eds., ACM,
pp. 1–14.

[21] JIA, Z., AND WITCHEL, E. Boki: Stateful serverless com-
puting with shared logs. In SOSP ’21: ACM SIGOPS 28th
Symposium on Operating Systems Principles, Virtual Event /
Koblenz, Germany, October 26-29, 2021 (2021), R. van Re-
nesse and N. Zeldovich, Eds., ACM, pp. 691–707.

USENIX Association 2022 USENIX Annual Technical Conference    133

https://www.openfabrics.org/images/eventpresos/workshops2014/DevWorkshop/presos/Monday/pdf/05_DC_Verbs.pdf
https://www.openfabrics.org/images/eventpresos/workshops2014/DevWorkshop/presos/Monday/pdf/05_DC_Verbs.pdf
https://www.openfabrics.org/images/eventpresos/workshops2014/DevWorkshop/presos/Monday/pdf/05_DC_Verbs.pdf
https://www.openfabrics.org/images/eventpresos/workshops2014/DevWorkshop/presos/Monday/pdf/05_DC_Verbs.pdf
http://socialmarketingfella.com/daily-deals-flash-sales-stats-need-know/
http://socialmarketingfella.com/daily-deals-flash-sales-stats-need-know/
https://linux.die.net/man/7/rsocket
https://linux.die.net/man/7/rsocket
https://openucx.org
https://cw.infinibandta.org/document/dl/7859
https://cw.infinibandta.org/document/dl/7859
https://engineering.fb.com/2017/03/08/data-center-engineering/introducing-bryce-canyon-our-next-generation-storage-platform/
https://engineering.fb.com/2017/03/08/data-center-engineering/introducing-bryce-canyon-our-next-generation-storage-platform/
https://engineering.fb.com/2017/03/08/data-center-engineering/introducing-bryce-canyon-our-next-generation-storage-platform/
https://engineering.fb.com/2017/03/08/data-center-engineering/introducing-bryce-canyon-our-next-generation-storage-platform/


[22] JONAS, E., SCHLEIER-SMITH, J., SREEKANTI, V., TSAI, C.,
KHANDELWAL, A., PU, Q., SHANKAR, V., CARREIRA, J.,
KRAUTH, K., YADWADKAR, N. J., GONZALEZ, J. E., POPA,
R. A., STOICA, I., AND PATTERSON, D. A. Cloud program-
ming simplified: A berkeley view on serverless computing.
CoRR abs/1902.03383 (2019).

[23] JOSE, J., SUBRAMONI, H., KANDALLA, K. C., WASI-UR-
RAHMAN, M., WANG, H., NARRAVULA, S., AND PANDA,
D. K. Scalable memcached design for infiniband clusters using
hybrid transports. In 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, CCGrid 2012, Ottawa,
Canada, May 13-16, 2012 (2012), IEEE Computer Society,
pp. 236–243.

[24] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Using
RDMA efficiently for key-value services. In ACM SIGCOMM
2014 Conference, SIGCOMM’14, Chicago, IL, USA, August
17-22, 2014 (2014), F. E. Bustamante, Y. C. Hu, A. Krishna-
murthy, and S. Ratnasamy, Eds., ACM, pp. 295–306.

[25] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Design
guidelines for high performance RDMA systems. In 2016
USENIX Annual Technical Conference, USENIX ATC 2016,
Denver, CO, USA, June 22-24, 2016 (2016), A. Gulati and
H. Weatherspoon, Eds., USENIX Association, pp. 437–450.

[26] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Fasst:
Fast, scalable and simple distributed transactions with two-
sided (RDMA) datagram rpcs. In 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016,
Savannah, GA, USA, November 2-4, 2016 (2016), K. Keeton
and T. Roscoe, Eds., USENIX Association, pp. 185–201.

[27] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Data-
center rpcs can be general and fast. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation, NSDI
2019, Boston, MA, February 26-28, 2019 (2019), J. R. Lorch
and M. Yu, Eds., USENIX Association, pp. 1–16.

[28] KHANDELWAL, A., AGARWAL, R., AND STOICA, I. Blow-
fish: Dynamic storage-performance tradeoff in data stores. In
13th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2016, Santa Clara, CA, USA, March 16-
18, 2016 (2016), K. J. Argyraki and R. Isaacs, Eds., USENIX
Association, pp. 485–500.

[29] KIM, D., MEMARIPOUR, A. S., BADAM, A., ZHU, Y., LIU,
H. H., PADHYE, J., RAINDEL, S., SWANSON, S., SEKAR, V.,
AND SESHAN, S. Hyperloop: group-based nic-offloading to ac-
celerate replicated transactions in multi-tenant storage systems.
In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM 2018, Bu-
dapest, Hungary, August 20-25, 2018 (2018), S. Gorinsky and
J. Tapolcai, Eds., ACM, pp. 297–312.

[30] KIM, D., YU, T., LIU, H. H., ZHU, Y., PADHYE, J., RAIN-
DEL, S., GUO, C., SEKAR, V., AND SESHAN, S. Freeflow:
Software-based virtual RDMA networking for containerized
clouds. In 16th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2019, Boston, MA, Febru-
ary 26-28, 2019 (2019), J. R. Lorch and M. Yu, Eds., USENIX
Association, pp. 113–126.

[31] KOOP, M. J., JONES, T., AND PANDA, D. K. Mvapich-
aptus: Scalable high-performance multi-transport MPI over

infiniband. In 22nd IEEE International Symposium on Parallel
and Distributed Processing, IPDPS 2008, Miami, Florida USA,
April 14-18, 2008 (2008), IEEE, pp. 1–12.

[32] LI, B., CUI, T., WANG, Z., BAI, W., AND ZHANG, L. Socks-
direct: datacenter sockets can be fast and compatible. In Pro-
ceedings of the ACM Special Interest Group on Data Com-
munication, SIGCOMM 2019, Beijing, China, August 19-23,
2019 (2019), J. Wu and W. Hall, Eds., ACM, pp. 90–103.

[33] LU, Y., SHU, J., CHEN, Y., AND LI, T. Octopus: an rdma-
enabled distributed persistent memory file system. In 2017
USENIX Annual Technical Conference, USENIX ATC 2017,
Santa Clara, CA, USA, July 12-14, 2017 (2017), D. D. Silva
and B. Ford, Eds., USENIX Association, pp. 773–785.

[34] MA, T., MA, T., SONG, Z., LI, J., CHANG, H., CHEN, K.,
JIANG, H., AND WU, Y. X-RDMA: effective RDMA middle-
ware in large-scale production environments. In 2019 IEEE
International Conference on Cluster Computing, CLUSTER
2019, Albuquerque, NM, USA, September 23-26, 2019 (2019),
IEEE, pp. 1–12.

[35] MELLANOX. https://www.mellanox.com/sites/
default/files/doc-2020/pb-connectx-6-en-
ic.pdf, 2021.

[36] MELLANOX. https://github.com/Mellanox/
libvma, 2021.

[37] MELLANOX. Connect-IB product brief. https:
//www.mellanox.com/related-docs/prod_
adapter_cards/PB_Connect-IB.pdf, 2021.

[38] MITCHELL, C., GENG, Y., AND LI, J. Using one-sided
RDMA reads to build a fast, cpu-efficient key-value store. In
2013 USENIX Annual Technical Conference, San Jose, CA,
USA, June 26-28, 2013 (2013), A. Birrell and E. G. Sirer, Eds.,
USENIX Association, pp. 103–114.

[39] MITCHELL, C., MONTGOMERY, K., NELSON, L., SEN, S.,
AND LI, J. Balancing CPU and network in the cell distributed
b-tree store. In 2016 USENIX Annual Technical Conference,
USENIX ATC 2016, Denver, CO, USA, June 22-24, 2016
(2016), A. Gulati and H. Weatherspoon, Eds., USENIX Asso-
ciation, pp. 451–464.

[40] OAKES, E., YANG, L., ZHOU, D., HOUCK, K., HARTER, T.,
ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H.
SOCK: rapid task provisioning with serverless-optimized
containers. In 2018 USENIX Annual Technical Conference,
USENIX ATC 2018, Boston, MA, USA, July 11-13, 2018 (2018),
H. S. Gunawi and B. Reed, Eds., USENIX Association, pp. 57–
70.

[41] PARK, J., AND YEOM, H. Y. Design and implementation of
software-based dynamically connected transport. In 2018 IEEE
3rd International Workshops on Foundations and Applications
of Self* Systems (FAS*W), Trento, Italy, September 3-7, 2018
(2018), IEEE, pp. 58–64.

[42] POKE, M., AND HOEFLER, T. DARE: high-performance state
machine replication on RDMA networks. In Proceedings of the
24th International Symposium on High-Performance Parallel
and Distributed Computing, HPDC 2015, Portland, OR, USA,
June 15-19, 2015 (2015), T. Kielmann, D. Hildebrand, and
M. Taufer, Eds., ACM, pp. 107–118.

134    2022 USENIX Annual Technical Conference USENIX Association

https://www.mellanox.com/sites/default/files/doc-2020/pb-connectx-6-en-ic.pdf
https://www.mellanox.com/sites/default/files/doc-2020/pb-connectx-6-en-ic.pdf
https://www.mellanox.com/sites/default/files/doc-2020/pb-connectx-6-en-ic.pdf
https://github.com/Mellanox/libvma
https://github.com/Mellanox/libvma
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_Connect-IB.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_Connect-IB.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_Connect-IB.pdf


[43] PROJECT, F. https://fnproject.io, 2021.

[44] REDA, W., CANINI, M., KOSTIC, D., AND PETER, S. RDMA
is turing complete, we just did not know it yet! CoRR
abs/2103.13351 (2021).

[45] RUAN, Z., SCHWARZKOPF, M., AGUILERA, M. K., AND

BELAY, A. AIFM: high-performance, application-integrated
far memory. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2020, Virtual Event,
November 4-6, 2020 (2020), USENIX Association, pp. 315–
332.

[46] SHAMIS, A., RENZELMANN, M., NOVAKOVIC, S., CHAT-
ZOPOULOS, G., DRAGOJEVIC, A., NARAYANAN, D., AND

CASTRO, M. Fast general distributed transactions with opac-
ity. In Proceedings of the 2019 International Conference on
Management of Data, SIGMOD Conference 2019, Amsterdam,
The Netherlands, June 30 - July 5, 2019 (2019), P. A. Boncz,
S. Manegold, A. Ailamaki, A. Deshpande, and T. Kraska, Eds.,
ACM, pp. 433–448.

[47] SHI, J., YAO, Y., CHEN, R., CHEN, H., AND LI, F. Fast and
concurrent RDF queries with rdma-based distributed graph ex-
ploration. In 12th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016 (2016), K. Keeton and T. Roscoe, Eds.,
USENIX Association, pp. 317–332.

[48] SU, M., ZHANG, M., CHEN, K., GUO, Z., AND WU, Y.
RFP: when RPC is faster than server-bypass with RDMA. In
Proceedings of the Twelfth European Conference on Computer
Systems, EuroSys 2017, Belgrade, Serbia, April 23-26, 2017
(2017), G. Alonso, R. Bianchini, and M. Vukolic, Eds., ACM,
pp. 1–15.

[49] SUBRAMONI, H., HAMIDOUCHE, K., VENKATESH, A.,
CHAKRABORTY, S., AND PANDA, D. K. Designing MPI
library with dynamic connected transport (DCT) of infini-
band: Early experiences. In Supercomputing - 29th Interna-
tional Conference, ISC 2014, Leipzig, Germany, June 22-26,
2014. Proceedings (2014), J. M. Kunkel, T. Ludwig, and H. W.
Meuer, Eds., vol. 8488 of Lecture Notes in Computer Science,
Springer, pp. 278–295.

[50] THE TRANSACTION PROCESSING COUNCIL. TPC-C Bench-
mark V5.11. http://www.tpc.org/tpcc/.

[51] THOMAS, S., AO, L., VOELKER, G. M., AND PORTER, G.
Particle: ephemeral endpoints for serverless networking. In
SoCC ’20: ACM Symposium on Cloud Computing, Virtual
Event, USA, October 19-21, 2020 (2020), R. Fonseca, C. De-
limitrou, and B. C. Ooi, Eds., ACM, pp. 16–29.

[52] TSAI, S., SHAN, Y., AND ZHANG, Y. Disaggregating persis-
tent memory and controlling them remotely: An exploration
of passive disaggregated key-value stores. In 2020 USENIX
Annual Technical Conference, USENIX ATC 2020, July 15-17,
2020 (2020), A. Gavrilovska and E. Zadok, Eds., USENIX
Association, pp. 33–48.

[53] TSAI, S.-Y., AND ZHANG, Y. Lite kernel rdma support for
datacenter applications. In Proceedings of the 26th Symposium
on Operating Systems Principles (New York, NY, USA, 2017),
SOSP ’17, ACM, pp. 306–324.

[54] WANG, C., JIANG, J., CHEN, X., YI, N., AND CUI, H.
APUS: fast and scalable paxos on RDMA. In Proceedings
of the 2017 Symposium on Cloud Computing, SoCC 2017,
Santa Clara, CA, USA, September 24-27, 2017 (2017), ACM,
pp. 94–107.

[55] WEI, X., CHEN, R., AND CHEN, H. Fast rdma-based ordered
key-value store using remote learned cache. In 14th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 20) (Nov. 2020), USENIX Association, pp. 117–135.

[56] WEI, X., CHEN, R., CHEN, H., WANG, Z., GONG, Z., AND

ZANG, B. Unifying timestamp with transaction ordering for
MVCC with decentralized scalar timestamp. In 18th USENIX
Symposium on Networked Systems Design and Implementa-
tion, NSDI 2021, April 12-14, 2021 (2021), J. Mickens and
R. Teixeira, Eds., USENIX Association, pp. 357–372.

[57] WEI, X., DONG, Z., CHEN, R., AND CHEN, H. Deconstruct-
ing rdma-enabled distributed transactions: Hybrid is better!
In 13th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2018, Carlsbad, CA, USA, October
8-10, 2018 (2018), A. C. Arpaci-Dusseau and G. Voelker, Eds.,
USENIX Association, pp. 233–251.

[58] WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN, H. Fast
in-memory transaction processing using RDMA and HTM.
In Proceedings of the 25th Symposium on Operating Systems
Principles, SOSP 2015, Monterey, CA, USA, October 4-7, 2015
(2015), E. L. Miller and S. Hand, Eds., ACM, pp. 87–104.

[59] XIE, X., WEI, X., CHEN, R., AND CHEN, H. Pragh: Locality-
preserving graph traversal with split live migration. In 2019
USENIX Annual Technical Conference, USENIX ATC 2019,
Renton, WA, USA, July 10-12, 2019 (2019), D. Malkhi and
D. Tsafrir, Eds., USENIX Association, pp. 723–738.

[60] YANG, J., IZRAELEVITZ, J., AND SWANSON, S. Orion: A
distributed file system for non-volatile main memory and rdma-
capable networks. In 17th USENIX Conference on File and
Storage Technologies, FAST 2019, Boston, MA, February 25-
28, 2019 (2019), A. Merchant and H. Weatherspoon, Eds.,
USENIX Association, pp. 221–234.

[61] YAO, Z., CHEN, R., ZANG, B., AND CHEN, H. Wukong+g:
Fast and concurrent RDF query processing using rdma-assisted
GPU graph exploration. IEEE Trans. Parallel Distributed Syst.
33, 7 (2022), 1619–1635.

[62] YU, T., LIU, Q., DU, D., XIA, Y., ZANG, B., LU, Z., YANG,
P., QIN, C., AND CHEN, H. Characterizing serverless plat-
forms with serverlessbench. In Proceedings of the 11th ACM
Symposium on Cloud Computing (New York, NY, USA, 2020),
SoCC ’20, Association for Computing Machinery, p. 30–44.

[63] ZHANG, H., CARDOZA, A., CHEN, P. B., ANGEL, S., AND

LIU, V. Fault-tolerant and transactional stateful serverless
workflows. In 14th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2020, Virtual Event, Novem-
ber 4-6, 2020 (2020), USENIX Association, pp. 1187–1204.

[64] ZHANG, I., RAYBUCK, A., PATEL, P., OLYNYK, K., NEL-
SON, J., LEIJA, O. S. N., MARTINEZ, A., LIU, J., SIMP-
SON, A. K., JAYAKAR, S., PENNA, P. H., DEMOULIN, M.,
CHOUDHURY, P., AND BADAM, A. The demikernel datapath
OS architecture for microsecond-scale datacenter systems. In

USENIX Association 2022 USENIX Annual Technical Conference    135

https://fnproject.io
http://www.tpc.org/tpcc/


SOSP ’21: ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles, Virtual Event / Koblenz, Germany, October
26-29, 2021 (2021), R. van Renesse and N. Zeldovich, Eds.,
ACM, pp. 195–211.

[65] ZHANG, M., HUA, Y., ZUO, P., AND LIU, L. FORD: Fast one-
sided RDMA-based distributed transactions for disaggregated
persistent memory. In 20th USENIX Conference on File and
Storage Technologies (FAST 22) (Santa Clara, CA, Feb. 2022),
USENIX Association, pp. 51–68.

[66] ZHU, B., CHEN, Y., WANG, Q., LU, Y., AND SHU, J.
Octopus+: An rdma-enabled distributed persistent memory
file system. ACM Trans. Storage 17, 3 (2021), 19:1–19:25.

[67] ZUO, P., SUN, J., YANG, L., ZHANG, S., AND HUA, Y.
One-sided rdma-conscious extendible hashing for disaggre-
gated memory. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21) (July 2021), USENIX Association, pp. 15–
29.

A Artifact Appendix
Abstract. The artifact provides the source code and scripts to
reproduce the experimental results from the USENIX ATC 2022
paper—–"KRCORE: A Microsecond-scale RDMA Control Plane for
Elastic Computing". KRCORE is a kernel-space RDMA solution that
provides fast RDMA connection setups to user-space applications.

Scope. The artifact can be used to reproduce the evaluations in §5.
It can also benefit the development of kernel-space RDMA-enabled
applications.

Contents. The artifact contains the source code, the instructions
for building and installation, and instructions for running the experi-
ments in §5. All the above instructions can be found according to
the steps in the README.md at the root directory of the artifact.

Hosting. The artifact is hosted on https://github.com/SJTU-
IPADS/krcore-artifacts under the main branch with commit version
7ba3bf6.

136    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/SJTU-IPADS/krcore-artifacts
https://github.com/SJTU-IPADS/krcore-artifacts
https://github.com/SJTU-IPADS/krcore-artifacts/tree/7ba3bf620e9ef602d1a8869b3a1c05c05cc4622f


Zero-Change Object Transmission for Distributed Big Data Analytics

Mingyu Wu1,2, Shuaiwei Wang1, Haibo Chen1,3, and Binyu Zang1,3

1Institute of Parallel and Distributed Systems, SEIEE, Shanghai Jiao Tong University
2Shanghai AI Laboratory

3Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

Abstract
Distributed big-data analytics heavily rely on high-level lan-

guages like Java and Scala for their reliability and versatility.
However, those high-level languages also create obstacles for
data exchange. To transfer data across managed runtimes like
Java Virtual Machines (JVMs), objects should be transformed
into byte arrays by the sender (serialization) and transformed
back into objects by the receiver (deserialization). The object
serialization and deserialization (OSD) phase introduces con-
siderable performance overhead. Prior efforts mainly focus on
optimizing some phases in OSD, so object transformation is
still inevitable. Furthermore, they require extra programming
efforts to integrate with existing applications, and their trans-
formation also leads to duplicated object transmission. This
work proposes Zero-Change Object Transmission (ZCOT),
where objects are directly copied among JVMs without any
transformations. ZCOT can be used in existing applications
with minimal effort, and its object-based transmission can
be used for deduplication. The evaluation on state-of-the-art
data analytics frameworks indicates that ZCOT can greatly
boost the performance of data exchange and thus improve the
application performance by up to 23.6%.

1 Introduction

High-level languages like Java and Scala are welcomed in
areas like big-data analytics thanks to their reliable and ver-
satile managed runtime environment. However, the abstrac-
tion provided by the managed runtime also introduces per-
formance overhead, especially for data exchange. Since man-
aged runtimes like Java Virtual Machines (JVMs) store data
in an opaque object-based format, they have to transform
objects into interpretable binary streams before exchanging.
The transformation contains two phases: a serialization phase
transforming objects into a byte array, and a deserialization
phase transforming the byte array back into objects. The
object serialization/deserialization (OSD) mechanism intro-
duces considerable transformation overhead and has become a

significant performance bottleneck in distributed object trans-
mission, especially for applications demanding large-scale
data exchange through network [3, 6, 13, 15, 44].

Prior work has recognized the performance problem in
OSD and proposed different approaches, both in software [26,
38, 39] and hardware [16, 32, 40, 46], to mitigate its effect.
However, those approaches mainly focus on optimizing spe-
cific phases in OSD, and the data transformation is still in-
evitable. Furthermore, although they can boost the perfor-
mance of OSD, many of them require extra programming
efforts to annotate serialization points or change the original
inter-JVM communication model. Last but not least, they treat
the transferred data as a monolithic byte array instead of indi-
vidual objects, which makes it difficult to identify duplicated
transmission and misses optimization opportunities.

Instead of optimizing OSD, this work aims at directly elimi-
nating the whole OSD process. To this end, this work proposes
Zero-Change Object Transmission (ZCOT), which provides
an ideal data exchange mechanism where objects are trans-
ferred among JVMs through direct object copying. When a
JVM receives objects from others, it can directly process them
without any modifications (Zero-Change). ZCOT removes the
demands for object transformation and thus improves the
performance of data exchange.

However, it is non-trivial to achieve zero-change communi-
cation given each JVM manages objects in a process-specific
and opaque format. To this end, ZCOT first introduces a glob-
ally shared abstraction named exchange space, a part of the
Java heap space accessible for multiple JVMs in a distributed
environment. ZCOT further adopts its distributed class-data
sharing (DCDS) mechanism, which provides a unified object
format to make objects in the exchange space interpretable
for all JVMs. To remain compatible with traditional OSD-
based applications, ZCOT proposes a two-level transmission
mechanism to bridge the gap between object-based copying
and traditional byte-based transmission.

As ZCOT introduces a globally shared exchange space,
it is responsible to manage objects shared among multiple
JVMs. By introducing a metadata server, ZCOT memorizes

USENIX Association 2022 USENIX Annual Technical Conference    137



the stored location for objects and helps build data transmis-
sion channels between JVMs. Since objects in big-data analyt-
ics are usually exchanged as a whole dataset, ZCOT embraces
group-based object management, which organizes objects in
groups and greatly reduces the traffic between the metadata
server and JVMs. Furthermore, ZCOT also integrates with
the garbage collections (GC) triggered in individual JVMs
and reduces the GC pause time.

ZCOT sends objects instead of byte arrays during transmis-
sion, which makes it object-conscious and easier to identify
duplicated objects. This work thus proposes a data dedupli-
cation mechanism to further optimize the data transmission.
The deduplication module in ZCOT leverages the exchange
space abstraction to memorize which objects have been sent
and avoids unnecessary object transmission in the future. Nev-
ertheless, deduplication may introduce references (or depen-
dencies) among different datasets. To this end, ZCOT extends
its distributed memory management module to consider inter-
group dependencies.

This work implements ZCOT in the HotSpot JVM of Open-
JDK 11, the long-time-support version for OpenJDK. ZCOT
is well-integrated with existing features in OpenJDK (like
APPCDS [30]) to remain friendly to Java developers. We
evaluate ZCOT against state-of-the-art OSD libraries and
optimizations with both the micro-benchmark and macro-
benchmark. The micro-benchmark contains both basic and
complicated data structures for data transmission, while the
macro-benchmark contains two big-data analytics frame-
works (Spark and Flink). The result for micro-benchmark
shows that ZCOT outperforms other OSD libraries, espe-
cially for complicated data structures, and reaches up to 4.35×
speedup compared with Naos [39], a state-of-the-art optimiza-
tion on OSD. As for macrobenchmark, ZCOT outperforms the
default OSD libraries in both Spark and Flink and thus boosts
the application time by up to 23.6% and 22.2%, respectively.

To summarize, the contribution of ZCOT includes:

• A distributed shared abstraction named exchange space
to enable zero-change object transmission among JVMs
while remaining compatible with traditional OSD-based
applications.

• A memory management mechanism on the globally
shared space integrated with GC in individual JVMs.

• A data deduplication module to identify and eliminate
unnecessary object transmission for further performance
improvement.

• Experiments on communication-intensive workload to
show the performance improvement of ZCOT over ex-
isting OSD libraries.

JVM 1

001100101…

serialization

JVM 2

001100101…

deserialization

Figure 1: The workflow of OSD

2 OSD Background

2.1 OSD

Language runtimes provide a high-level abstraction for
platform-independent code execution. As for user objects,
runtimes store them with an opaque format, which maintains
object data together with corresponding metadata (type infor-
mation, synchronization, memory management, etc.). Taking
Java as an example, JVMs maintain a header for each object
to store its metadata.

However, when data exchange among JVMs is required,
objects must go beyond the runtime scope. For example, ob-
jects might be persisted into disks and reused by other JVMs
later; they can also be sent and received through network.
To support those scenarios, objects have to be interpretable
even when leaving JVMs. Therefore, JVMs embrace the ob-
ject serialization/deserialization (OSD) mechanism, which
transforms Java objects into a generalized data format (seri-
alization) and transforms back when reusing in JVMs (de-
serialization). The Java system library (JSL) already provides
a built-in OSD library for applications. Figure 1 shows the
workflow of JSL’s OSD. As for the serialization part, objects
are transformed into a byte array that follows a data format
agreed among JVMs. The byte array will be written into disks
or sent through network. When another JVM receives the byte
array, it transforms the byte array back into objects through
deserialization.

The OSD mechanism has two major advantages. First, the
library provides a general-purpose data format so that Java ob-
jects can be transformed among JVMs with different versions
and configurations. Second, the serialized data is compressed
and induces smaller footprints in both disks and network.

2.2 Limitations and opportunities

The major disadvantage for OSD is its performance penalty.
The performance problem of OSD in big-data analytics is
three-fold.

Transformation overhead. OSD introduces extra phases
for object persistence and transmission. To serialize an object,
OSD should traverse all its reachable objects and store their
type information. As for deserialization, OSD should scan
serialized data and reconstruct objects.

Memory footprint. OSD generates a considerable number
of temporary objects during data transformation. As shown

138    2022 USENIX Annual Technical Conference USENIX Association



Round 1

a -> b

c -> e

d -> f

…

Round 2

a -> 1.0

b -> 0.4

c -> 0.2

…

Round 3

a -> 0.8

b -> 0.9

c -> 0.1

…

……

010010…

011110…

100100…

111010…

011001…

111100…

010110…

010000…

011100…

serialized bytescontents

Figure 2: Duplicated data transmission in the page-rank ap-
plication

in Figure 1, byte arrays are generated during serialization and
become useless after sending out. Those temporary objects
can increase the memory pressure and cause more frequent
GCs.

Duplicated transmission. Big-data analytics leverage
OSDs in many rounds of communication and duplicated ob-
jects may be repetitively transformed and exchanged in each
round. Figure 2 shows a concrete example in Spark [44],
which calculates the popularity for each URL (simplified as
letters) with the page-rank algorithm [31]. Since the algorithm
executes for multiple iterations, the data transmission is also
conducted in many rounds. In the first round, the URL-based
network topology is sent through network, which consists of
many string pairs to indicate the point-to relationships among
URLs. In the later rounds, the rank value for each URL is
iteratively propagated, which is organized as key-value pairs.
Note that the strings in the key-value pairs are URLs that have
been sent in the first round. Unfortunately, since all objects
have been transformed and merged into byte arrays, JVMs
cannot tell that some objects have been received before. They
have to receive all objects as a monolithic byte array, which
leads to unnecessary network transmission and OSD phases.
In the Spark page-rank application, over 60% of transferred
objects are duplicated.

Furthermore, the advantages of OSD also fade with ad-
vances in hardware technologies. For example, the band-
width of off-the-shelf network devices can reach 100Gb/s
or larger, which makes network transmission time less im-
portant, so OSD may become a more significant bottleneck.
On the other hand, the general data format is not always re-
quired. Therefore, many optimizations have been proposed
to reduce the performance overhead of OSD, both in soft-
ware [26,38,39] and hardware [16,32,40,46]. Since hardware-
based approaches require building customized hardware ac-
celerators to improve OSD, this work mainly focuses on
software-based approaches with off-the-shelf hardware.

2.3 State-of-the-art optimizations

The basic idea behind OSD is to achieve an agreement on ob-
ject representation among JVMs. Therefore, optimizations on
OSD should consider how to create the agreement so that ob-
jects can cross JVMs’ boundaries. Besides, they also need to
consider issues like compatibility with existing applications.

Kryo. Kryo [38] is a fast OSD library for Java. Compared
to JSL’s OSD, Kryo refines the binary data format to achieve
a smaller serialized data size and better performance. Applica-
tions like Spark have leveraged Kryo as its default serializer.
Nevertheless, Kryo does not eliminate any phases in OSD;
objects still need to be transformed back and forth.

Skyway. Skyway [26] proposes to directly send object
graphs instead of serialized bytes. With Skyway, the seri-
alization phase is nearly removed as objects are no longer
transformed to a binary format. Although Skyway has simpli-
fied phases in OSD, modifications on objects are still required.
First, it needs to transform the type information in the head-
ers to a globally-agreed ID so that it can be identified by all
JVMs. Second, it needs to fix references after copying, as
objects have been moved to different addresses. Moreover,
Skyway also requires programmers to mark the point where
the serialization phase starts manually.

Naos. Naos [39] is a network-specific data transmission
mechanism. Similar to Skyway, Naos also employs a global
service to reach agreements for types, but it relies on RDMA
technology to achieve rapid zero-copy object transmission.
However, Naos still requires modifications on both object
headers and references. Besides, it only supports network-
based transmission, and existing applications need significant
modifications to leverage Naos.

2.4 Summary

Prior optimizations have proposed different solutions to re-
duce the overhead of OSD. However, they cannot eliminate
the whole OSD process. Table 1 compares the built-in OSD in
JSL with other optimizations. Although recent work like Naos
eliminates the serialization phase, a deserialization phase is
still required to fix the type information and the references.
Besides, none of them has considered the duplicated data
transmission problem.

This work proposes ZCOT (short for Zero-Change Object
Transmission), which aims to eliminate the whole OSD pro-
cess during data exchange. In ZCOT, object transmission is
conducted in the most straightforward way: the sender JVM
copies objects and the receiver can directly use them with-
out any modifications. ZCOT also considers the duplicated
transmission problem and provides a deduplication module.
Finally, ZCOT is not bound to specific network technologies
(like RDMA) and provides easy-to-integrate interfaces for
existing applications.

USENIX Association 2022 USENIX Annual Technical Conference    139



Data transmission mechanisms Serialization Deserialization Ease of Integration Data deduplication
JSL Slow Slow Yes No
Kryo Medium Medium Yes No
Skyway Fast (removed) Medium Medium No
Naos Fast (removed) Medium No No
ZCOT (this work) Fast (removed) Fast (removed) Yes Yes

Table 1: Comparisons on existing OSD optimizations against our work ZCOT

3 Design of ZCOT

3.1 Overview
The core idea of ZCOT is to build a distributed-shared-
memory (DSM)-like abstraction for JVMs running on dif-
ferent machines. Figure 3 illustrates the architecture of ZCOT.
In a ZCOT-enabled system, the heap for each JVM consists of
two parts: its private space (the original Java heap) and a glob-
ally shared exchange space. Objects are originally managed
in the private space. When they require to be sent through
network or persisted into disks, they will be copied to the ex-
change space. The exchange space is an abstraction available
for all JVMs; each JVM can directly access objects therein.
Therefore, object transmission can be achieved with direct
copying to the exchange space, and the whole OSD process
can be eliminated.

JVM 1 JVM 2 JVM 3

private space

direct write direct read

exchange space

…

Figure 3: The architecture of ZCOT

The idea for building a DSM-like abstraction is well-known
and has been studied for decades [2, 7, 9, 14, 20, 21, 25, 33–
35, 41, 42, 45]. Although our exchange space shares similar
wisdom with DSM, it is only used for data exchange and does
not need to tackle complicated issues like coherence. It also
assumes objects in the exchange space are immutable, which
usually holds for big-data analytics like Spark and Flink. If
a write operation occurs on objects in the exchange space,
ZCOT creates a copy for it on the JVM’s private heap. Never-
theless, combining the DSM concept with data transmission
in high-level languages is still not trivial. To enable efficient
and easy-to-use object transmission, ZCOT has to resolve the
following challenges.

• How to build a shared exchange space so that all JVMs
can access it freely? (Section 3.2)

• How to leverage the exchange space abstraction to sup-
port OSD-based applications? (Section 3.3)

• How to manage objects in the exchange space in the
presence of garbage collections in individual JVMs?

(Section 4)

• How to resolve the duplicated transmission problem?
(Section 5)

3.2 Distributed class-data sharing
ZCOT relies on its distributed class-data sharing (DCDS)
mechanism to build a globally accessible shared space. DCDS
guarantees that class-related metadata will be mapped into
the same virtual memory address for all JVMs. This helps
JVMs to achieve an agreement on the class metadata, so no
type-related modifications (e.g., identifiers) are required.

user jar

JDK tool

class archives

exchange space

class A 

class X 

class D 

…

class space

Header

Data

JVM1

JVM2

JVM3

object space

1

2

3

Figure 4: The workflow of distributed class-data sharing

Figure 4 elaborates the workflow of DCDS. First, the clus-
ter manager should prepare a shared class archive for all JVMs.
The class archive should contain all classes whose correspond-
ing object instances would be shared during inter-JVM com-
munication. ZCOT relies on the tools provided by OpenJDK
to generate such class archives [30]. Afterward, the archive
will be used during JVM startup, and classes in the archive
will be mapped to a given virtual address. The virtual ad-
dress range is also memorized and marked as a part of the
exchange space (class space in Figure 4). This step assures
that JVMs share the same view on the classes. As shown in
Figure 4, an object in the exchange space stores a reference
to its class-related metadata. Since the reference points to the
class space, the object’s class information is interpretable for
all JVMs. Although DCDS requires the data types of appli-
cations should be known in advance, mainstream big-data
analytics frameworks usually guarantee this by sending a fat
jar file for execution.

Figure 5 shows how ZCOT transfers objects through net-
work with its DCDS support. First, the sender JVM applies for
an available memory chunk in the exchange space for object
copying. This is achieved by communicating with an external

140    2022 USENIX Annual Technical Conference USENIX Association



private space exchange space view

private space exchange space view

meta-server
1 2

copy3

fault1

(a) Sender: deep copy to a given address

private space exchange space view

private space exchange space view

meta-server

fault

forward

1

2

3
copy4

(b) Receiver: trigger a page fault and fetch data from the
sender

Figure 5: The workflow of ZCOT

metadata server (details in Section 4). Second, the sender
JVM copies objects to the chunk’s memory address. This step
is similar to a deep copy in a normal Java application. To
detect cycles and avoid repeated copying on the same object,
we add a marker word in each object header to store its new
address if it has been copied.

The copied objects are kept on the sender machine and
lazily retrieved by receivers. When a receiver JVM tries to
access this part of data (Figure 5b), it encounters a page fault
since the data is unavailable on its machine. We have regis-
tered the page fault handler in ZCOT-enabled JVMs so that
they can request the metadata server for faulted pages. The
metadata server has tracked the ownership of memory ad-
dresses in the exchange space, so it forwards the request to
the data owner. Afterward, the sender builds a connection
with the receiver and puts the requested objects to the desired
address. Now the receiver can directly access those objects
for further processing, with neither metadata updating nor
reference fixing (namely zero-change).

3.3 Supporting OSD-based scenarios
Thanks to the exchange space abstraction, a JVM can directly
access received objects without any modifications. However,
this mechanism is not compatible with traditional OSD-based
applications, which usually adopt byte arrays for commu-
nication. To this end, ZCOT should provide user-friendly
interfaces to integrate easily with applications.

Programming interfaces. JSL provides stream-based
classes for OSD implementation. The ObjectOutputStream
class provides the writeObject method to serialize an
object into a stream (usually files or network). Similarly,
the ObjectInputStream class provides the readObject
method to deserialize data into objects. Therefore, prior
OSD optimizations like Skyway implement new seri-
alizers/deserializers by inheriting those two classes for

ease of integration. ZCOT adopts a similar strategy and
Figure 6 shows its basic classes: ZCObjectOutputStream
and ZCObjectInputStream, which are subclasses of
ObjectOutputStream and ObjectInputStream, re-
spectively. Compared with ObjectOutputStream,
ZCObjectOutputStream slightly modifies the interface for
writeObject to support different OSD-based scenarios
(discussed later). To use ZCOT-based communications,
applications only need to replace the original stream classes
with ours. In contrast, prior work requires developers to
modify the original communication model or annotate the
serialization points [26, 39].

OSD-compatibility. To remain compatible with OSD in-
terfaces (writeObject and readObject), ZCOT should also
transfer data with byte arrays. To this end, ZCOT adopts a
two-level transmission mechanism. As illustrated in Figure 7,
ZCOT transfers data via both frontend and backend. The
frontend transmission is compatible with OSD interfaces, but
it only sends metadata, including the object’s start address
and the data length. When ZCObjectInputStream receives
the metadata through readObject, it directly accesses the
corresponding address and fetches objects through backend
transmission if a page fault is triggered (as mentioned in Fig-
ure 5b). ZCOT will launch dedicated VM threads in both
sender and receiver JVMs to transfer the requested objects.
This two-level design fills the gap between the byte-based
OSD interfaces and the object-based transmission in ZCOT.

Supporting different OSD scenarios. In OSD libraries,
objects are serialized and written into a stream (e.g., the
out variable defined on Line 3 in Figure 6) when invoking
writeObject, which are usually redirected into files or net-
work. To support both scenarios, ZCOT adds a parameter
volatile in the constructor of ZCObjectOutputStream (Line
6). When volatile is set to false, the copied objects will be writ-
ten into a file, and the memory pages can be soon reclaimed

USENIX Association 2022 USENIX Annual Technical Conference    141



1 // Output class
2 class ZCObjectOutputStream extends ObjectOutputStream {
3 private OutputStream out; // Private output stream
4
5 // Constructor
6 public ZCObjectOutputStream(OutputStream out,

boolean volatile /* Mode */)
7 throws IOException {...}
8
9 // Compatible with the serialization interface

10 public void writeObject(Object obj)
11 throws IOException {...}
12 ...
13 }
14
15 // Input class
16 class ZCObjectInputStream extends ObjectInputStream {
17 private InputStream in; // Private input stream
18
19 // Constructor
20 public ZCObjectInputStream(InputStream in)
21 throws IOException {...}
22
23 // Compatible with the deserialization interface
24 public Object readObject()
25 throws IOException{...}
26 ...
27 }

Figure 6: Basic classes in ZCOT

through GC (details in Section 4). Nevertheless, those objects
still reserve a corresponding virtual address in the exchange
space. When the object data is read by other JVMs, the meta-
data server asks the sender to pass the file so the receiver
can map it to the corresponding memory address. The case
is simpler when volatile is true, which indicates a network-
based transmission. In this scenario, objects are only kept in
memory and can be reclaimed only if they have been read by
others.

a

0x3000

aa b b

b

0x3000

Send buffer

OutputStream

(byte array)

InputStream

(byte array)

readObject()writeObject(a)

start address = 0x3000 

a b

start address = 0x3000 

Sender Receiver

Receive buffer

Java threads

VM threads

Frontend

Backend

Figure 7: The two-level data transmission mechanism in
ZCOT

Assumptions. Note that ZCOT is mainly designed to im-
prove the data exchange phase for big data analytics, so it
makes several assumptions about the transferred data. First, all
classes related to communication should be known in advance
so that they can be packed into the class archive. Second, the
transferred objects are read-mostly, otherwise copy-on-write

operations would be triggered for modification operations.
Lastly, objects are managed in large groups and share similar
life cycles, so they can be efficiently managed in the exchange
space. Since representative big-data analytics systems like
Spark conform to the above assumptions, ZCOT works well
for them.

4 Memory Management

Since the global exchange space is built atop a DSM-like ab-
straction, ZCOT should manage objects distributed to differ-
ent machines. Furthermore, the managed runtimes complicate
the scenario as they introduce their own memory manage-
ment strategy: garbage collections (GC). This section will
introduce how ZCOT manages the distributed exchange space
while remaining harmonized with GC in JVMs.

4.1 Group-based management

Unlike traditional DSM-based systems, ZCOT introduces
group, a semantic-aware notion for distributed memory man-
agement. As analyzed in Section 2, big-data analytics frame-
works treat serialized objects as a whole dataset (monolithic
byte array) and retrieve them together. Therefore, ZCOT puts
all objects copied in the same writeObject invocation to a
group so that they are managed together. When a receiver
encounters a page fault, ZCOT will send all related data pages
belonging to the same group to the receiver and avoid fu-
ture faults. This mechanism, namely group-based prefetching,
leverages the semantics in the OSD scenario to mitigate the
page-based management overhead in traditional DSM.

4.2 Metadata server

The metadata server is the core module for ZCOT’s memory
management. JVMs communicate with the metadata server
through remote procedure calls (RPCs) to acquire or release
memory resources in the exchange space. Figure 8 illustrates
the core data structures in the metadata server. The metadata
server is agnostic to groups; groups are only managed by
individual JVMs. It partitions the shared exchange space into
equal-sized memory chunks (256MB by default) for memory
allocation and deallocation. It also maintains an allocation
bitmap to mark if a chunk has been allocated. Each chunk is
assigned with an integer ID, which is calculated by its relative
offset compared with the exchange space’s start address. To
track the stored locations of chunks, the metadata server main-
tains a copy set for each chunk, which is stored in a chunk
mapping table. The copy set contains JVMs storing a copy of
the corresponding chunk (in memory or disk), which are also
represented with integer IDs. The mapping between a JVM’s
ID and information (e.g., IP address) is stored in a separated
member table.

142    2022 USENIX Annual Technical Conference USENIX Association



Since each JVM needs to communicate with the metadata
server, its reliability becomes considerable. To tolerate fail-
ures on the metadata server, we can introduce replicas for
it, and the overhead would be acceptable given the low fre-
quency of communications between the metadata server and
worker JVMs (several times in a data-processing stage lasting
for seconds).

exchange space …

0 1 0 0 1 0 0 … 0 0 0allocation bitmap

free chunk

chunk copy-set

1 {1}

4 {0}

…

JVMID ip:port

0 ip0:7270

1 ip1:2233

chunk mapping table

allocated chunk

member table

Figure 8: Important data structures in the metadata server.

4.3 RPC interfaces
The metadata server provides four important RPC interfaces
listed below.

int register(std::string ip, int port);

Chunk* acquire();

Chunk* get_remote(Address addr);

int release(Chunk* chunk);

register. register is only invoked when a JVM is
launched. ZCOT has provided a JVM option -XX:+UseZCOT,
and a JVM enabling this option automatically spawns an RPC
thread and sends a register RPC to the metadata server with
its IP address and listening port. After receiving the RPC, the
metadata server saves the IP and port number to the member
table, generates an integer as the JVM’s ID, and returns with
the ID. For subsequent RPCs, JVMs should always attach the
returned ID to help the metadata server maintain the stored
locations of objects (omitted in the interfaces above).

acquire. When a JVM runs out of allocated memory from
the exchange space, it should send acquire RPCs for more
memory resources. After receiving an acquire request, the
metadata server scans its bitmap to allocate an available chunk.
Afterward, the metadata server memorizes the relationship
between the allocated chunk and the JVM’s ID and returns
the chunk. To reduce the overhead of bitmap scanning, ZCOT
memorizes the address of the last successfully allocated chunk
and starts scanning there. If the scanned address reaches the
end of the exchange space, ZCOT will continue scanning from
the beginning. To handle simultaneous acquire requests,
ZCOT introduces a bitmap lock to ensure the bitmap is exclu-
sively accessed.

get_remote. The get_remote interface is used by JVMs
encountering a page fault when accessing a virtual address.
Since a page fault indicates the requested objects are not
stored locally, the JVM sends get_remote to fetch the corre-
sponding chunk. After receiving get_remote, the metadata
server gets the corresponding chunk containing the address
and finds which JVMs store the chunk by scanning the chunk
mapping table. As illustrated in Section 3.2, the metadata
server forwards the request to the corresponding JVM for
actual data transmission. Since the size of a chunk is rel-
atively large, sending chunks may introduce considerable
performance overhead. To reduce the transferred data size,
the sender JVM only sends used pages in the chunk, which
are represented as the length of data in the frontend trans-
mission (Figure 7). Due to ZCOT’s group-based prefetching
mechanism, the sender may directly send multiple chunks in
the same group to the receiver. In this case, the receiver is
responsible for sending an auxiliary RPC to update the copy
set in the metadata server.

release. The release interface is relatively simple. When
a JVM finds that objects in a chunk are no longer used, it sends
release to give up this chunk. After receiving release, the
metadata server removes the JVM’s ID from the correspond-
ing copy set in the chunk mapping table. If no JVM stores
this chunk, the metadata server will reclaim it by marking the
corresponding bit as free in the bitmap.

4.4 Garbage collection
JVMs have already implemented their garbage collection
(GC) algorithms to automatically reclaim unused memory.
When GC is triggered, JVMs track all live objects and re-
claim memory consumed by dead ones. Since objects in the
exchange space are reachable from individual JVMs, they
will also be affected by GC. To this end, ZCOT has integrated
its memory management strategy with G1, the default GC al-
gorithm in OpenJDK, to ensure the correctness of distributed
memory management and reduce GC overhead.

G1 basics. G1GC (short for Garbage-first Garbage Col-
lection [8] is the default garbage collector after OpenJDK
9 [29]. G1 divides the Java heap into equal-sized regions for
ease of management. It also maintains per-region metadata
named remember sets to memorize all references pointing to
objects in the same region. The remember set is updated by
instrumenting all write operations in Java code (also known
as write barriers). The G1 algorithm is mostly stop-the-world,
which means that application threads should be paused until
GC ends. During GC1, each selected region is processed si-
multaneously: a dedicated GC thread scans the remember set
of a region, finds all reachable objects, and copies them to an
empty region (named survivor region).

Integrated with G1. ZCOT extends the region-based de-
sign of G1 to support the exchange space. It proposes ZCRe-

1For simplicity, we only discuss the young GC and mixed GC in G1

USENIX Association 2022 USENIX Annual Technical Conference    143



gion, a new kind of region allocated from the metadata server.
Compared with regions in G1, the size of ZCRegion is not
fixed. Each ZCRegion corresponds to a group in the exchange
space, and all objects therein are expected to have the same
life cycle. Since objects in ZCRegions have different behav-
iors compared with those in other regions, G1 should treat
them specially. First, we modify the behavior of write barriers
to consider ZCRegions. When a reference points to objects in
a ZCRegion, we do not memorize this reference but only mark
the ZCRegion as used. This is because objects in a ZCRegion
are only collected when no references point to any of them.
Similarly, GC threads do not need to scan ZCRegions during
GC because all objects are treated as alive if there exists any
reference pointing to the region. When GC ends, the JVM will
scan all ZCRegions and find those containing no incoming ref-
erences. For those ZCRegions, the JVM invokes the release
RPC to reclaim corresponding chunks. If objects in a group
are written into disks, the corresponding ZCRegion can also
be reclaimed by GC, but the JVM does not invoke release
since the virtual address is still reserved by the group.

In summary, our design successfully integrates the memory
management of the exchange space with G1GC. When GC
ends, the memory resource in the exchange space is automati-
cally reclaimed by following the reachability-based algorithm.
Furthermore, by specially handling regions in the exchange
space, we avoid unnecessary metadata tracking and object
scanning. In some cases, this design can even reduce GC
pause time (as shown in Section 6.3).

5 Transmission Deduplication

Since ZCOT sends objects instead of byte arrays during trans-
mission, it would be much easier to track transmitted objects
and conduct deduplication. This section introduces the data
deduplication module in ZCOT based on its object-centric
transmission mechanism.

5.1 Overview
Figure 9 shows the effect of ZCOT’s data deduplication mod-
ule in the aforementioned page-rank example (compared
against Figure 2). When sending the URL-based network
topology in the first round, the sender has copied all URL
string pairs (together with two string objects) into their corre-
sponding addresses. In the next few rounds, the application
sends key-value pairs to update rank values for each URL.
Since all key-value pairs are sent as objects, it is much simpler
for ZCOT to find that all URL objects have been sent. There-
fore, the sender can directly update the references in those
key-value pairs with the addresses in the exchange space and
thus remove duplicated transmission on URL objects.

ZCOT runtime should be further extended to achieve data
deduplication. First, ZCOT should track copied objects to
rapidly find duplicated transmission. Second, ZCOT should

manage dependencies among object groups for safe memory
reclamation.

5.2 Duplication detection
A straw-man design for duplication detection would be scan-
ning all objects in the exchange space. However, this design
would induce considerable overhead given the large number
of objects. ZCOT instead follows a simple detection criterion:
if an object is in the exchange space, an attempt to copy it is
a duplicated one.

We still use page-rank as an example to explain ZCOT’s
duplication detection. Suppose a JVM receives the network
topology in round 1 (consider Figure 9); it reads URL objects
from the exchange space and uses them in the following
rounds. Therefore, when it propagates updated rank values to
other JVMs, it still uses the URL objects received from others.
When copying the URL-rank pairs in the next few rounds,
ZCOT checks each object’s address and thus avoids copying
those URL objects already in the exchange space.

5.3 Dependency management
Although data deduplication in ZCOT can reduce the net-
work overhead by avoiding repeated copying on the same
object, it also complicates memory management by intro-
ducing inter-group references. As mentioned in Section 4.1,
each invocation to writeObject creates a new group for
object management, and each group is separately used by call-
ing readObject. After deduplicating objects from different
groups, objects in a group can hold references to those in
another group, which should be correctly handled especially
when a group is being garbage collected. To this end, ZCOT
has managed those references as dependencies among groups.

Due to the large number of inter-group references, ZCOT
does not maintain reference-level dependencies. When a
group holds a reference to any objects in other groups, ZCOT
marks the group as dependent on others. The dependency
tracking is still achieved by extending the write barriers. To
memorize all dependencies, ZCOT extends the chunk map-
ping table in the metadata server to contain a dependency
set for each chunk, which stores all other chunks it relies on.
When a JVM finds that its group relies on another group af-
ter deduplication, it sends a new RPC add_dependency to
the metadata server. Since the metadata server is not aware
of groups, the RPC should specify all chunk IDs owned by
the group it relies on. Those chunk IDs will be added to the
corresponding dependency set by the metadata server.

Figure 10 uses an example to illustrate how ZCOT lever-
ages dependencies during object copying. After encounter-
ing a page fault on chunk 4, the receiver JVM sends a
get_remote RPC to the metadata server. By fetching the
dependency set in the chunk mapping table, the metadata
server finds all chunks that chunk 4 depends on. Afterward,

144    2022 USENIX Annual Technical Conference USENIX Association



Round 1

a -> b

c -> e

d -> f

…

Round 2

a -> 1.0

b -> 0.4

c -> 0.2

…

Round 3

a -> 0.8

b -> 0.9

c -> 0.1

…

…

H ref ref
H

H ref ref

H ref ref

H ref ref H 1.0

H ref ref H 0.4

H ref ref H 0.2

‘a’

H ‘b’

H ‘c’

H

H
H ref ref H 0.8

H ref ref H 0.9

H ref ref H 0.1

……

Objects sent in round 1 Objects sent in later rounds

Figure 9: ZCOT avoids duplicated object transmission in page-rank

chunk copy-set

1 {0, 1}

2 {0,1}

Metadata server

{0}3

{0}4

{}

{1,2,3}

{}

{}

dep-set

JVM 0 JVM 1

Chunk 1 Chunk 2Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 4

get_remote(chunk=4)forward(chunk=4, dep={3})

Transfer

Chunk 3 Chunk 4

Figure 10: ZCOT avoids sending duplicated data with depen-
dency tracking

ZCOT checks the copy set for each chunk to find if the re-
ceiver JVM already has a copy. If the receiver does not have
a copy, ZCOT adds the corresponding chunk ID in a message,
which will be forwarded to the sender JVM later for real data
transmission. In our example, since the receiver JVM already
has copied chunk 0 and 1, it only needs to receive chunk 4
(requested) and chunk 3 (dependent). This example indicates
that ZCOT can avoid duplicated data submission with slight
modifications on the metadata server.

5.4 Garbage collection

Adding dependencies also complicates GC for individual
JVMs. Since a group (represented as ZCRegions) can be ref-
erenced by others stored in remote JVMs, local GC cannot
determine if a group can be safely reclaimed. For example,
suppose JVM 0 stores a group (chunk 0) that contains a refer-
ence to another group (chunk 1) stored on JVM 1. Although
JVM 1 no longer contains references to chunk 1, the chunk
should not be collected because JVM 0 may access it through
references in chunk 0. To this end, we extend G1GC to con-
sider remote inter-group references.

In our refined GC algorithm, once a JVM detects a ZCRe-
gion has incoming references from other ZCRegions (through
write barriers), it marks the region as pinned and thus cannot
be reclaimed. It also sends the dependency relationship to
the metadata server through RPCs. When GC ends, the JVM

skips all pinned ZCRegions and only collects those with no
incoming references. A pinned ZCRegion can be reclaimed
when the metadata server finds that all chunks relying on
it have been released. In this case, the metadata server will
send a canRelease message to all JVMs in the correspond-
ing copy set, and those JVMs will mark the ZCRegion as
unpinned to safely reclaim it in later GC cycles.

5.5 Internalization

Big-data analytics usually generate a large number of objects
with simple types, such as Integer, String, Double, etc. Open-
JDK has provided an internalization mechanism to merge
those objects with the same content together. For example,
Integer objects whose values are between -128 and 127 would
be merged into one if their values are equal. ZCOT also em-
braces this mechanism for deduplication, but in its distributed
exchange space. It extends DCDS so that all JVMs allocate
a small region at the same virtual address during start-up to
contain globally-shared Integer objects. Thanks to this opti-
mization, the number of transferred Integers can be greatly
reduced.

6 Evaluation

6.1 Experimental setup

ZCOT is implemented atop the HotSpot JVM in OpenJDK
11.0.8-GA, with 8,327 lines of C code and 654 lines of Java
code. We leverage the following workloads to evaluate ZCOT.

Microbenchmark. The microbenchmark contains four dif-
ferent data types used in prior work [26, 39]: 2-dimension
points, key-value pairs, hashmaps, and media objects. To sim-
ulate big-data scenarios, we transfer them in large arrays
whose length is 65536. Since some baselines crashed for
large arrays of media objects, we reduced the length to 16384
for this data structure.

Spark. Spark (v3.0.0) is a data analytics engine that re-
quires massive data transmission among JVMs.

USENIX Association 2022 USENIX Annual Technical Conference    145



Flink. Apache Flink [6] (v1.14) is a distributed data pro-
cessing engine for both batch and streaming workloads.

As for baselines, we compare ZCOT with two commonly-
used OSD libraries (JSL and Kryo) and two state-of-the-art
OSD optimizations (Naos and Skyway2).

Our test environment includes a cluster with four nodes
connected by 100 Gbit/s Mellanox ConnectX-5 NICs. Each
node contains dual Xeon E5-2650 CPUs and 128GB DRAM.

6.2 Microbenchmark
To directly compare ZCOT with state-of-the-art OSD opti-
mizations, we leverage the microperf tester in the Naos’ open-
source repository for evaluation. The tester involves a sender
and a receiver deployed on two separate machines and reports
the communication time with different type of data objects.
The heap size for all workloads is 16GB.

Figure 11 shows the results for ZCOT and other baselines,
which are the average of 1000 times of repetitive execution.
ZCOT achieves the best performance of all except for 2-
dimensional points. The average speedup is 2.28×, 1.94×,
2.19×, 3.95× compared with Naos, Skyway, Kryo, and JSL,
respectively. The result also suggests that ZCOT performs
better for complicated data structures. The media class from
the Java serialization benchmark set (JSBS) [37] is the most
complicated one, so the improvement is the largest especially
against Naos (4.35×). This is because the computation over-
head increases when the data structure becomes more com-
plex. For simple data structures like points, ZCOT’s reduction
on data transformation is offset by larger network overhead,
so it performs slightly worse than Naos and Skyway.

0

50

100

150

200

250

Map Media Pair Point

E
x
e
c
u

ti
o

n
 t

im
e
 (

m
s
)

JSL Kryo Naos Skyway ZCOT

Figure 11: The evaluation results for microbenchmark

6.3 Spark
Ease of integration. To adopt ZCOT in Spark, we need to
implement a new data serializer ZCSerializer to replace
the default KryoSerializer. Although the name seems to

2Both implemented by Naos’ authors

WC TC

PR KM

LR

Figure 12: The performance of Spark applications

involve OSD phases, it is only for compatibility consider-
ations and still remains zero-change during transmission.
ZCSerializer contains 70 lines of code, and most of them
are inherited from the JSL serializer. Furthermore, we re-
place the original stream classes from JSL with ours. If a
Spark user wants to enable ZCOT, she only needs to (1) con-
figure the spark.serializer to ZCSerializer and (2) add -
XX:+UseZCOT to the launch option of all JVMs, which is
quite simple.

Evaluation results. We leverage five applications in the
example directory of Spark for evaluation. Their descriptions
and evaluated datasets are shown in Table 2. We configure
one node as the metadata server and Spark master while the
other three servers as Spark workers. The Java heap size for
each node is set to 80GB.

Figure 12 shows the results for all applications. The results
indicate that ZCOT can improve the performance by 13.9%
and 24.1% on average compared with Kryo and JSL, respec-
tively. Although Kryo has optimized the OSD performance
over JSL, our evaluation shows that the data transmission can
be further improved.

Application Dataset
PageRank (PR) LiveJournal [4]
Word Count (WC) LiveJournal
KMeans (KM) USCensus1990 [10]
Transitive Closure (TC) Blogs [1, 17]
Logistic Regression (LR) SUSY [5]

Table 2: Evaluated applications and datasets for Spark

We have further broken the results into four different
phases: write (serialization), read (deserialization), compu-

146    2022 USENIX Annual Technical Conference USENIX Association



tation, and garbage collection (GC). Since the four phases
are not overlapped in Spark (the GC phase only contains
stop-the-world time), the accumulated time is equal to the
overall execution time. Figure 12 indicates that the perfor-
mance mainly comes from the improvement in OSD-related
parts. Since OSD occupies a considerable portion in page-
rank execution, ZCOT can reach its best improvement (23.6%
and 38.1% w.r.t. Kryo and JSL). Averaged across all applica-
tions, ZCOT can reach 4.19× speedup in the write part and
2.95× in the read part over the default Kryo serializer (4.52×
and 3.81× speedup for write and read part in JSL). As for
GC, ZCOT shows comparable pause time with others. In PR,
LR, and TC, the GC time is even shorter than JSL and Kryo.
Although ZCOT needs to manage the copied groups (ZCRe-
gions), its coarse-grained collection strategy avoids scanning
objects inside ZCRegions. Moreover, ZCOT avoids generat-
ing monolithic byte arrays by eliminating the serialization
phase, which can mitigate the memory pressure and introduce
less frequent GC.

Note that the computation time in ZCOT is somewhat larger
than that in JSL and Kryo. This can be explained by two rea-
sons. First, since ZCOT does not compress the object contents
during transmission to achieve zero-change, the transferred
data size is larger than JSL and Kryo, which leads to larger
network overhead (included in the computation part). Second,
the data deduplication module makes objects in the same
dataset scattered into different virtual address ranges, which
may lead to more random memory accesses and cache misses.
Nevertheless, the overall performance improvement is satis-
fying.

Results for deduplication. We have also studied the ef-
fect of our data deduplication module. As shown in Table 3,
ZCOT can reduce the transferred data size for all four applica-
tions, ranging from 8.1% to 53.8%. Even for the non-iterative
application (WC), ZCOT is also helpful thanks to its inter-
nalization optimization technique. Meanwhile, LR and KM
receive smaller savings because they generate many different
Double objects in each iteration, which cannot be reused and
deduplicated. The result indicates that duplicated transmis-
sion is common in data analytics and ZCOT’s optimizations
are helpful. Note that the number of transferred bytes after
deduplication is still much larger than that in Kryo and JSL,
since both of them coverts objects in a compact format before
transmission. Therefore, it is still preferred to use ZCOT with
larger network bandwidth.

PR WC TC KM LR
dedup 15.25 4.13 5.03 5.37 5.55
no-dedup 31.64 5.50 10.88 5.86 6.04

Table 3: Average transferred bytes (GB) for Spark executors

Various settings and overhead analysis. We evaluate the
performance of ZCOT with various settings on the heap size
and the chunk size by using PR as an example. The results in

Figure 13 show that ZCOT is not sensitive to different settings
and reaches similar performance. We have also studied the
overhead of write barriers by running Spark applications atop
ZCOT’s JVMs (with Kryo serializers) and comparing the per-
formance against vanilla JVMs. The average overhead among
all applications is 2.73%, which is much smaller compared
with the improvement brought by ZCOT. We also find the
average communication overhead with the metadata server is
only several milliseconds for each data-processing iteration,
which usually lasts for seconds.

0

50

100

150

200

20 40 60 80

Heap Size (GB)

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
)

(a) Maximum heap size

0

50

100

150

200

64 128 256 512

Chunk Size (MB)

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
)

(b) Chunk size

Figure 13: Results for PR under various settings

6.4 Flink

Ease of integration. We have also integrated ZCOT to Flink,
another big-data analytics framework. Although Flink adopts
its built-in serializer and deserializer for OSD, the integration
is not complicated since we only need to replace them with
ZCOT’s OSD-compatible interfaces and streams.

Evaluation results. We leverage four representative SQL
queries in the TPC-H benchmark for evaluation (Q1, Q3, Q6,
and Q10) and rely on its built-in generator to create input
data (10GB). The configuration is similar to Spark: we launch
three workers on different machines for evaluation, but the
Java heap for each node is 20GB. Since the read and write
phases are overlapped in Flink, we do not break the execution
time into parts. The results in Figure 14 show that ZCOT
outperforms the built-in serializer in Flink for three out of
four queries and leads to 2.3%-22.2% improvement in query
execution time. ZCOT does not improve Q6 since it does
not involve a reduce operator and the amount of transferred
data is limited. It performs the best for Q10 (22.2%) since it
reaches 4.40× improvement for the write part and 1.44× for
the read part. The speedup is smaller compared with Spark
since Flink’s built-in serializers are manually optimized for
specific data structures (like tuples). Nevertheless, ZCOT still
shows better performance than the vanilla version of Flink,
which suggests the importance of zero-change transmission
mechanism.

USENIX Association 2022 USENIX Annual Technical Conference    147



0

20

40

60

Q1 Q3 Q6 Q10

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
)

Vanilla ZCOT

Figure 14: The performance of Flink applications

7 Related work

7.1 OSD optimizations
OSD has become a considerable performance bottleneck es-
pecially for large-scale communication-intensive applications.
To optimize the time-consuming phases in OSD, prior work
such as Kryo [38], Skyway [26], and Naos [39] has refined
the transmission data format or leveraged the advances in
network hardware technologies. ZCOT instead aims at elim-
inating the whole OSD process. Apart from software-based
techniques, another line of work adopts hardware-based ap-
proaches to reduce OSD overhead. Optimus Prime [32] builds
a data transformation accelerator (DTA) to improve the OSD
throughput for microservices. Cereal [16] co-designs the data
transmission format with hardware accelerators to improve
the performance and energy efficiency of Spark applications.
Morpheus [40] moves the deserialization phase into smart
SSDs, while Hgum [46] leverages FPGAs to handle OSD
tasks. ZCOT is based on off-the-shelf hardware and thus or-
thogonal to those hardware-based optimizations.

7.2 Distributed language runtimes
The idea for building a distributed language runtime (e.g., dis-
tributed JVMs) has been explored for decades. Java/DSM [43]
builds a distributed JVM atop DSM for heterogeneous com-
puting. JESSICA [21, 47] provides a single global thread
space and transparently migrates Java threads for load bal-
ance. Comet [14] builds a DSM-abstraction for JVMs running
on both mobile devices and the cloud and relies on its mem-
ory model to achieve effective code offloading. Semeru [41]
proposes a universal Java heap abstraction so that a Java appli-
cation can freely access all memory resources in a memory-
disaggregated architecture. Those systems leverage a shared
heap to synchronize data among different endpoints, but they
do not consider the performance overhead of inter-JVM com-
munication for large applications. XMem [42] enables effi-
cient type-safe object sharing among multiple JVMs on the
same physical machine, but it does not consider distributed en-
vironments. ZCOT also proposes a distributed runtime design,

but it mainly focuses on boosting data transmission among
multiple JVMs.

7.3 Runtime optimizations for Java

High-level languages like Java are intensively used in large-
scale, distributed applications, which stimulates research inter-
ests in runtime optimizations for performance improvement.
ITask [11] makes data processing tasks interruptible when
facing large memory pressure, which leads to better perfor-
mance and fewer out-of-memory errors. Yak [27] divides the
application execution into epochs and triggers GC when an
epoch ends. Broom [12] embraces a region-based design and
puts objects with the same lifecycle into the same region for
fast reclamation. ScissorGC [18,19] proposes shadow regions
to improve the scalability of full GC phase. Taurus [22, 23]
coordinates GC from different JVMs to reach better perfor-
mance or smaller tail latency. Facade [28] and Deca [36]
store massive data objects in off-heap memory to reduce GC
pressure, while Gerenuk [24] enables speculative execution
on serialized data to reduce both memory footprint and GC
overhead. ZCOT focuses on eliminating the OSD process and
duplicated object transmission, and it also collects objects by
coordinating with the metadata server.

8 Conclusion

This work introduces ZCOT, which aims to eliminate the
object serialization/deserialization phase in data exchange
among language runtimes (like JVMs). ZCOT provides an
exchange space where objects are interpretable for all JVMs,
which removes the need for any data transformation during
object transmission. It also uncovers the duplicated object
transmission problem and provides a corresponding dedu-
plication mechanism. The evaluation shows that ZCOT can
significantly improve the performance of object transmission.

9 Acknowledgement

We sincerely thank our anonymous shepherd and reviewers
for their insightful suggestions. This work is supported in
part by the National Natural Science Foundation of China
(No. 62172272, 61925206, 62132014). Binyu Zang (byzang@
sjtu.edu.cn) is the corresponding author.

A Artifact Appendix

Abstract

ZCOT, or Zero-Change Object Transmission, is proposed to
optimize data exchange among multiple Java virtual machines
(JVMs) in a distributed environment. Instead of sending and

148    2022 USENIX Annual Technical Conference USENIX Association

byzang@sjtu.edu.cn
byzang@sjtu.edu.cn


receiving data with the costly object serialization/deserial-
ization (OSD) phase, ZCOT allows JVMs to directly com-
municate with Java objects, which significantly improves the
data exchange time, especially for applications like big data
analytics.

Scope

This artifact (including binaries, source code, documents, and
scripts) is used to conduct the main experiments in ZCOT,
which consists of the following two parts:

• Micro-benchmark performance. The result should
show that ZCOT outperforms recent OSD optimizations
(Skyway [26] and Naos [39]) and state-of-the-art OSD
libraries (Kryo [38] and JSL) for most data structures
used in Naos’ microbenchmark.

• Spark performance. The result should show that ZCOT
outperforms Kryo and JSL-based Spark applications in
both data exchange and task execution.

Note that we only report numbers evaluated on our ma-
chines, so the results might be different with various hardware
configurations.

Contents

We pack all related files into a zipped one, which contains the
following contents.

• README. A file containing instructions for artifact
evaluation.

• ZCOT-jdk. The source code of a modified OpenJDK to
support ZCOT.

• Meta-server. The source code of the metadata server
used in ZCOT.

• Micro. Scripts and jars used for the micro-benchmark.

• Spark. Since the code size of Spark is quite large, we
provide an executable binary for Spark, which is slightly
modified to evaluate ZCOT.

• Naos-jdk. A slightly modified version of Naos’ Open-
JDK to compare with ZCOT.

Hosting

Currently our code is not ready for open-source. Nevertheless,
you can contact us via mingyuwu@sjtu.edu.cn to obtain the
artifact.

Requirements
Hardware requirements. We evaluate ZCOT on four nodes
connected by 100 Gbit/s Mellanox ConnectX-5 NICs. The
NIC bandwidth has a significant impact on ZCOT’s perfor-
mance.

Software requirements. The operating system used in our
machines is Ubuntu 16.04.2, but higher versions are also
acceptable. Note that huge pages should be enabled to run
ZCOT. Dependencies for installing OpenJDK have been listed
in the README file.

References
[1] Lada A Adamic and Natalie Glance. The Political Blogosphere and

the 2004 US Election: Divided they Blog. In Proceedings of the 3rd
International Workshop on Link Discovery, pages 36–43. ACM, 2005.

[2] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy
Ousterhout, Marcos K Aguilera, Aurojit Panda, Sylvia Ratnasamy, and
Scott Shenker. Can far memory improve job throughput? In Proceed-
ings of the Fifteenth European Conference on Computer Systems, pages
1–16, 2020.

[3] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin,
Ali Ghodsi, et al. Spark sql: Relational data processing in spark. In
Proceedings of the 2015 ACM SIGMOD international conference on
management of data, pages 1383–1394, 2015.

[4] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan.
Group formation in large social networks: membership, growth, and
evolution. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 44–54,
2006.

[5] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for
exotic particles in high-energy physics with deep learning. Nature
communications, 5(1):1–9, 2014.

[6] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,
Seif Haridi, and Kostas Tzoumas. Apache flink: Stream and batch
processing in a single engine. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering, 36(4), 2015.

[7] John B Carter, John K Bennett, and Willy Zwaenepoel. Implementation
and performance of munin. In Proceedings of the thirteenth ACM
symposium on Operating systems principles, pages 152–164, 1991.

[8] David Detlefs, Christine H. Flood, Steve Heller, and Tony Printezis.
Garbage-first garbage collection. In Proceedings of the 4th Interna-
tional Symposium on Memory Management, ISMM 2004, Vancouver,
BC, Canada, October 24-25, 2004, pages 37–48. ACM, 2004.

[9] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. Farm: Fast remote memory. In 11th {USENIX} Sympo-
sium on Networked Systems Design and Implementation ({NSDI} 14),
pages 401–414, 2014.

[10] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[11] Lu Fang, Khanh Nguyen, Guoqing Xu, Brian Demsky, and Shan Lu.
Interruptible tasks: Treating memory pressure as interrupts for highly
scalable data-parallel programs. In Proceedings of the 25th Symposium
on Operating Systems Principles, pages 394–409, 2015.

[12] Ionel Gog, Jana Giceva, Malte Schwarzkopf, Kapil Vaswani, Dimitrios
Vytiniotis, Ganesan Ramalingam, Manuel Costa, Derek G Murray,
Steven Hand, and Michael Isard. Broom: Sweeping out garbage col-
lection from big data systems. In 15th Workshop on Hot Topics in
Operating Systems (HotOS {XV}), 2015.

USENIX Association 2022 USENIX Annual Technical Conference    149

mingyuwu@sjtu.edu.cn


[13] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw,
Michael J Franklin, and Ion Stoica. Graphx: Graph processing in a
distributed dataflow framework. In 11th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 14), pages
599–613, 2014.

[14] Mark S Gordon, D Anoushe Jamshidi, Scott Mahlke, Z Morley Mao,
and Xu Chen. {COMET}: Code offload by migrating execution trans-
parently. In 10th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 12), pages 93–106, 2012.

[15] Apache Hadoop. Hadoop, 2009.

[16] Jaeyoung Jang, Sung Jun Jung, Sunmin Jeong, Jun Heo, Hoon Shin,
Tae Jun Ham, and Jae W Lee. A specialized architecture for ob-
ject serialization with applications to big data analytics. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Ar-
chitecture (ISCA), pages 322–334. IEEE, 2020.

[17] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W.
Mahoney. Statistical properties of community structure in large social
and information networks. In Proc. Int. World Wide Web Conf., pages
695–704, 2008.

[18] Haoyu Li, Mingyu Wu, and Haibo Chen. Analysis and optimizations
of java full garbage collection. In Proceedings of the 9th Asia-Pacific
Workshop on Systems, pages 1–7, 2018.

[19] Haoyu Li, Mingyu Wu, Binyu Zang, and Haibo Chen. Scissorgc: scal-
able and efficient compaction for java full garbage collection. In Pro-
ceedings of the 15th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, pages 108–121, 2019.

[20] Kai Li and Paul Hudak. Memory coherence in shared virtual memory
systems. ACM Transactions on Computer Systems (TOCS), 7(4):321–
359, 1989.

[21] Matchy JM Ma, Cho-Li Wang, and Francis CM Lau. Jessica: Java-
enabled single-system-image computing architecture. Journal of Par-
allel and Distributed Computing, 60(10):1194–1222, 2000.

[22] Martin Maas, Krste Asanović, Tim Harris, and John Kubiatowicz. Tau-
rus: A holistic language runtime system for coordinating distributed
managed-language applications. Acm SIGPLAN Notices, 51(4):457–
471, 2016.

[23] Martin Maas, Tim Harris, Krste Asanović, and John Kubiatowicz. Trash
day: Coordinating garbage collection in distributed systems. In 15th
Workshop on Hot Topics in Operating Systems (HotOS {XV}), 2015.

[24] Christian Navasca, Cheng Cai, Khanh Nguyen, Brian Demsky, Shan
Lu, Miryung Kim, and Guoqing Harry Xu. Gerenuk: thin computation
over big native data using speculative program transformation. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles,
pages 538–553, 2019.

[25] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis
Ceze, Simon Kahan, and Mark Oskin. Latency-tolerant software dis-
tributed shared memory. In 2015 {USENIX} Annual Technical Confer-
ence ({USENIX}{ATC} 15), pages 291–305, 2015.

[26] Khanh Nguyen, Lu Fang, Christian Navasca, Guoqing Xu, Brian Dem-
sky, and Shan Lu. Skyway: Connecting managed heaps in distributed
big data systems. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2018, Williamsburg, VA, USA, March 24-
28, 2018, pages 56–69. ACM, 2018.

[27] Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu,
Sanazsadat Alamian, and Onur Mutlu. Yak: A high-performance big-
data-friendly garbage collector. In 12th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 16), pages
349–365, 2016.

[28] Khanh Nguyen, Kai Wang, Yingyi Bu, Lu Fang, Jianfei Hu, and Guo-
qing Xu. Facade: A compiler and runtime for (almost) object-bounded
big data applications. ACM SIGARCH Computer Architecture News,
43(1):675–690, 2015.

[29] OpenJDK. Jep 248: Make g1 the default garbage collector, 2017.

[30] OpenJDK. Jep 310: Application class-data sharing, 2018.

[31] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
The pagerank citation ranking: Bringing order to the web. Technical
report, Stanford InfoLab, 1999.

[32] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark Sutherland,
Zilu Tian, Mario Paulo Drumond, Babak Falsafi, and Christoph Koch.
Optimus prime: Accelerating data transformation in servers. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
1203–1216, 2020.

[33] Daniel J Scales and Monica S Lam. The design and evaluation of a
shared object system for distributed memory machines. In Proceed-
ings of the 1st USENIX conference on Operating Systems Design and
Implementation, pages 9–es, 1994.

[34] Ioannis Schoinas, Babak Falsafi, Alvin R Lebeck, Steven K Reinhardt,
James R Larus, and David A Wood. Fine-grain access control for
distributed shared memory. In Proceedings of the sixth international
conference on Architectural support for programming languages and
operating systems, pages 297–306, 1994.

[35] Yizhou Shan, Shin-Yeh Tsai, and Yiying Zhang. Distributed shared
persistent memory. In Proceedings of the 2017 Symposium on Cloud
Computing, pages 323–337, 2017.

[36] Xuanhua Shi, Zhixiang Ke, Yongluan Zhou, Hai Jin, Lu Lu, Xiong
Zhang, Ligang He, Zhenyu Hu, and Fei Wang. Deca: a garbage collec-
tion optimizer for in-memory data processing. ACM Transactions on
Computer Systems (TOCS), 36(1):1–47, 2019.

[37] Eishay Smith. Jvm-serializers, 2020.

[38] Esoteric Software. Kryo, 2021.

[39] Konstantin Taranov, Rodrigo Bruno, Gustavo Alonso, and Torsten Hoe-
fler. Naos: Serialization-free RDMA networking in java. In 2021
USENIX Annual Technical Conference (USENIX ATC 21), pages 1–14.
USENIX Association, July 2021.

[40] Hung-Wei Tseng, Qianchen Zhao, Yuxiao Zhou, Mark Gahagan, and
Steven Swanson. Morpheus: Creating application objects efficiently
for heterogeneous computing. ACM SIGARCH Computer Architecture
News, 44(3):53–65, 2016.

[41] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh
Nguyen, Michael D Bond, Ravi Netravali, Miryung Kim, and Guo-
qing Harry Xu. Semeru: A memory-disaggregated managed runtime.
In 14th {USENIX} Symposium on Operating Systems Design and Im-
plementation ({OSDI} 20), pages 261–280, 2020.

[42] Michal Wegiel and Chandra Krintz. Xmem: type-safe, transparent,
shared memory for cross-runtime communication and coordination. In
Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 327–338, 2008.

[43] Weimin Yu and Alan Cox. Java/dsm: A platform for heterogeneous
computing. Concurrency: Practice and Experience, 9(11):1213–1224,
1997.

[44] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. Spark: Cluster computing with working
sets. In 2nd USENIX Workshop on Hot Topics in Cloud Computing,
HotCloud’10, Boston, MA, USA, June 22, 2010, page 95. USENIX
Association, 2010.

[45] Matthew J Zekauskas, Wayne A Sawdon, and Brian N Bershad. Soft-
ware write detection for a distributed shared memory. In Proceedings
of the 1st USENIX conference on Operating Systems Design and Im-
plementation, pages 8–es, 1994.

[46] Sizhuo Zhang, Hari Angepat, and Derek Chiou. Hgum: Messaging
framework for hardware accelerators. In 2017 International Conference
on ReConFigurable Computing and FPGAs (ReConFig), pages 1–8.
IEEE, 2017.

[47] Wenzhang Zhu, Cho-Li Wang, and Francis CM Lau. Jessica2: A dis-
tributed java virtual machine with transparent thread migration support.
In Proceedings. IEEE International Conference on Cluster Computing,
pages 381–388. IEEE, 2002.

150    2022 USENIX Annual Technical Conference USENIX Association



Sift: Using Refinement-guided Automation to Verify Complex Distributed Systems

Haojun Ma Hammad Ahmad Aman Goel Eli Goldweber
Jean-Baptiste Jeannin Manos Kapritsos Baris Kasikci

University of Michigan
{mahaojun, hammada, amangoel, edgoldwe, jeannin, manosk, barisk}@umich.edu

Abstract
Distributed systems are hard to design and implement cor-

rectly. Recent work has tried to use formal verification tech-
niques to provide rigorous correctness guarantees. These
works present a hard choice, though. One must either opt
for the power of refinement-based approaches like IronFleet
and Verdi, at the cost of large amounts of manual effort; or
choose the more automated approach of I4, IC3PO, SWISS
and DistAI which give up the ability to prove refinement and
the power and scalability that come with it.

We propose an alternative approach, Sift, that combines
the power of refinement with the ability to automate proofs.
Sift is a two-tier methodology that uses a new technique,
refinement-guided automation, to leverage automation in a
refinement proof and a divide-and-conquer technique to split
a system into more refinement layers when necessary. This
combination advances the frontier of what systems can be
proven correct using a high degree of automation. Contrary
to what was possible before, our evaluation shows that our
novel approach allows us to prove the correctness of a num-
ber of systems with little manual effort, and to extend our
proofs to include not just the protocols, but also an executable
distributed implementation of these systems.

1 Introduction

Recently, formal verification has emerged as a potential alter-
native to the traditional approach of testing. The promise of
formal verification—to eliminate all bugs by construction—
is particularly attractive for distributed systems, which are
notoriously hard to design and implement correctly.

Despite recent efforts, however, formal verification of dis-
tributed systems is still not ready for real-world applications.
The most powerful techniques, such as IronFleet [34] and
Verdi [63], rely on refinement proofs [1, 25, 42] to reason
about complex systems and verify real implementations. Alas,
the power of those techniques comes at a high cost: perform-
ing these refinement proofs manually requires large amounts
of manual effort.

In an attempt to reduce the manual verification effort, the
Ivy tool [56] proposes to express distributed protocols using
decidable—and thus simpler to verify—reasoning [57]. The
Ivy tool achieves remarkable automation, but still requires
significant human effort to complete the proof. More recent
approaches, like I4 [50, 51], IC3PO [27], SWISS [33] and
DistAI [66], leverage model checking and SMT solvers to
automate the most challenging part of proving the correctness
of distributed protocols: finding an inductive invariant. Alas,
this automation comes at the expense of expressiveness and
applicability, because tools like I4 and DistAI were designed
to prove properties of monolithic protocols which consist of a
single layer. As such, they cannot prove refinement.

Refinement [1, 25, 42], however, is an essential concept in
proving the correctness of real, complex systems. It allows
us to prove the correctness of a system by showing that it is
equivalent to a simpler, more abstract version of that system.
The power of refinement comes in many forms:
Concise specification As Lamport has argued [45] and as
IronFleet demonstrated, specifications should be written as
simple, abstract state machines. Consider the specification
of a Paxos-based State Machine Replication in IronFleet,
where the goal is to prove that the entire service is lineariz-
able. Expressing linearizability as a set of properties on the
requests and responses is daunting and will likely yield a
complex specification. Using refinement, the task is simple:
just show that the entire service is equivalent to a single ma-
chine executing requests one at a time. Similarly, the sharded
key-value store in IronFleet was simply proven equivalent to
an abstract, logically centralized key-value store; i.e., a map.

Scaling to complex systems As IronFleet and Verdi demon-
strated, the key to dealing with the complexity of a real
system is to take a modular approach: split the proof into
multiple layers and show that each layer refines the one
above it. This is especially true when verifying actual im-
plementations, as these tend to be much more complex than
abstract protocols. In the absence of refinement, we are left
with the task of reasoning about a single, monolithic system,
whose complexity now becomes a limiting factor for both

USENIX Association 2022 USENIX Annual Technical Conference    151



manual and automated approaches.
Dealing with undecidability Even when one only cares

about proving the correctness of the protocol, and not of the
implementation, being unable to split a monolithic system
into multiple layers can be a showstopper for automation.
As Padon et al. demonstrated [55], some protocols may be
undecidable by construction and thus not amenable to the
automation of I4 and IC3PO. In these cases, one can use re-
finement to split the protocol into two layers, each of which
is separately decidable [62].
We aim to get the best of what are currently two distinct

worlds: the power of refinement (i.e. IronFleet-style proofs)
but with only a fraction of the manual effort (i.e. using the
automation of monolithic provers like I4, IC3PO, SWISS and
DistAI). This combination allows us to not only achieve sim-
ple, concise specifications, but also to scale our proofs to more
complicated distributed protocols, and even to distributed im-
plementations.

To achieve this goal, we introduce Sift, a two-tier methodol-
ogy that combines automated verification with a small amount
of manual effort to push the boundary on the kinds of systems
that can benefit from proof automation. Just like IronFleet
before it, Sift is a methodology, not a tool. Its contribution is a
way of structuring refinement proofs in order to leverage the
automation of existing tools. Similar to how IronFleet guided
developers to manually construct proofs based on the existing
tools (TLA+ and Dafny), so does Sift show developers how to
construct proofs that leverage the automation of more recent
tools, like IC3PO and Ivy.

The first tier of Sift introduces a new technique, called
refinement-guided automation, which leverages the automa-
tion of monolithic provers in the context of a refinement proof.
At the high level, this technique enables the automation of
refinement proofs between two layers by encapsulating the
state of the upper, more abstract, layer into the state of the
lower, more concrete layer. This encapsulation allows us to
transform a two-layer refinement proof into a single-layer,
monolithic proof that provers like I4, IC3PO, SWISS and
DistAI can perform.

Leveraging automation to prove refinement is not always
enough, though. Monolithic provers have their limits and thus
some refinement proofs are just too complex to prove auto-
matically. When that happens, we provide developers with
an escape hatch. The second tier of the Sift methodology
describes a divide-and-conquer technique for introducing in-
termediate layers, thus splitting a complex proof into chunks
that are small enough for the prover to handle.

The Sift methodology applies refinement-guided automa-
tion within each refinement step and uses our divide-and-
conquer technique to split a refinement step into smaller, more
manageable steps. As a result, Sift allows us to apply, for the
first time, automation to refinement-based proofs and scale
to much harder problems than was previously possible. We
use Sift to automate the verification of four distributed imple-

mentations, whose proof required minimal manual effort (less
than five minutes, in most cases).

We further use our divide-and-conquer technique to prove
the correctness of an implementation of Raft [54] and an im-
plementation of MultiPaxos [43, 44] — a feat that was only
possible before by providing a fully manual proof of correct-
ness. Using Sift, we were able to automate most of the proof
for both Raft and MultiPaxos. The manual effort required to
complete the proof with Sift is not only significantly less than
that of previous approaches, it is also much less reliant on
having expertise in formal verification.

Overall, this paper makes the following contributions:
• We introduce refinement-guided automation, a technique

that leverages the automation of monolithic-oriented
tools to perform more complex, refinement-based proofs.

• We present a divide-and-conquer technique for splitting
a complex refinement proof into smaller pieces, such that
each piece is amenable to automated verification.

• We introduce Sift, a methodology that incorporates
refinement-guided automation and our divide-and-
conquer technique. We evaluate Sift on six distributed
implementations and find that it allows us to prove their
correctness in a mostly automated manner which dras-
tically reduces the manual effort required compared to
previous refinement-based approaches.

The rest of the paper is structured as follows. Section 2 dis-
cusses the tradeoff between automation and refinement. Sec-
tion 3 recaps some background material, while Section 4 gives
an overview of Sift. Section 5 introduces refinement-guided
automation and Section 6 shows how to introduce intermedi-
ate refinement layers when needed. Section 7 evaluates the
effectiveness of using Sift to automate the verification of a
number of distributed implementations. Section 8 presents
the limitations of Sift and discusses future work. Section 9
discusses related work and Section 10 concludes.

2 The Price of Automation

As discussed earlier, there are currently two approaches for
verifying the correctness of distributed systems. The first is
the powerful but manual approach of IronFleet and Verdi [34,
35, 63], where the developer uses refinement to show that a
complex implementation is equivalent—through a series of
layers or transformations—to an abstract specification.

The second approach is that of I4 [50], IC3PO [27],
SWISS [33] and DistAI [66] which leverage the power of
model-checking and SMT solving [5] to automatically prove
the correctness of abstract system descriptions at the proto-
col level. These approaches aim to prove that a given safety
property holds for the protocol at hand, by automatically iden-
tifying an inductive invariant that implies this safety property.

While such automation is undoubtedly a desirable property,
it comes at a heavy price. In particular, I4, IC3PO, SWISS and
DistAI can only perform monolithic proofs: they can prove

152    2022 USENIX Annual Technical Conference USENIX Association



that a protocol—defined as a single layer—satisfies a given
safety property. As we described in Section 1, this not only
limits the type of specifications we can use, but also severely
limits the scalability of the approach.

Most importantly, the scalability limitation is not an artifact
of the implementation of monolithic provers—like I4, IC3PO,
SWISS and DistAI—but rather inherent in their design. By
asking the underlying solver to find an inductive invariant that
supports the desired safety property, they essentially adopt an
all-or-nothing approach: either the solver is powerful enough
to find an inductive invariant or it is not. If we consider more
and more complex systems, we soon reach a point where the
solver is simply not powerful enough to find an inductive
invariant.

In fact, a similar dichotomy presents itself when the proto-
col description has elements outside the decidable fragment
of logic [47,55]. In several of these cases, the solver struggles
considerably, even when it is trivial for a human to split the
problem into decidable sub-problems. Without the ability to
split this monolithic proof into multiple pieces, there is no
middle ground. For example, I4 simply fails when the prob-
lem lies outside the decidable fragment, even though it is still
possible to use refinement to split the protocol into two layers,
each of which is separately decidable [62].

In this paper, we show that there exists a middle ground
between the fully manual approaches that support refinement,
like IronFleet and Verdi; and the automated-but-monolithic
approaches, like I4, IC3PO, SWISS and DistAI. This middle
ground, enabled by our novel Sift methodology, allows for
refinement-based reasoning—and thus allows us to prove the
correctness of complex distributed implementations—while
making heavy use of automation to drastically reduce the
amount of manual effort required compared to IronFleet and
Verdi.

3 Background

3.1 Multi-Layer Refinement
Sift is heavily based on the notion of refinement. We will
therefore first recap the notion of refinement and how it can
be used to prove the correctness of complex systems.

A system P refines another system Q if the observable
outputs produced by any execution of Q can also be produced
by some execution of P. In the case of distributed systems,
the only outputs that are visible to external observers are the
messages produced by these systems.

In the simplest application of refinement, the developer
writes two layers: a specification and an implementation. The
specification is written as a simple, logically centralized state
machine. In the case of a sharded key-value store, for example,
the specification is a simple map, where the only possible
actions are to put something to the map, or to get something
from the map [34, 35]. The developer then shows that the

implementation refines the specification, thus proving the
correctness of the implementation.

In more complex systems, directly proving refinement from
the implementation to the specification can be difficult [34,
35, 63]. In that case, the developer must insert one or more
increasingly complex layers between the implementation and
specification, thus creating a multi-layer structure, where each
layer must be proven to refine the one above it. We explain
how to design and insert intermediate layers in Section 6.

3.2 Automated Reasoning and Monolithic
Provers

Traditional verification languages [4, 46] rely on the devel-
oper to write a full proof, including a large number of manual
annotations. As a result, approaches like IronFleet [34, 35]
and Verdi [63] incur a high proof-to-code ratio. To reduce
this manual effort, Ivy [56] uses decidable logic to guarantee
completeness. With Ivy, the developer only needs to find an
inductive invariant—an invariant which is closed (inductive)
under the system transitions—and the prover can automat-
ically identify if this inductive invariant is correct. Ivy sig-
nificantly simplifies the effort of proving the correctness of
distributed systems, but finding such inductive invariants is
still a non-trivial task that relies on human intuition and an
intimate understanding of the system at hand.

To push the automation a step further, I4 [50] leverages
the regularity of distributed protocols, so that the inductive
invariant can be automatically inferred from a small, finite
instance. Unfortunately, such a strategy only applies to mono-
lithic protocols, not refinement proofs. Thus, I4 doesn’t scale
well when the system has a large state space and complex
transitions. More recent tools [27, 33, 66] have followed the
direction of using finite instances to guide the verification
of distributed protocols. All these tools, however, apply only
to monolithic proofs and cannot support refinement. We call
such tools monolithic provers.

3.3 IC3PO: Our Monolithic Prover of Choice
The design of Sift does not rely on the internals of the mono-
lithic prover that it uses. The refinement-guided automation
technique of Sift can leverage any tool designed for automat-
ing monolithic, single-layer proofs. In fact, we previously
tried I4 as the monolithic prover in Sift, but later found that
IC3PO performs better. Our experience so far shows that
IC3PO also outperforms SWISS and DistAI. As new and
more powerful monolithic provers become available, Sift can
adopt them to perform even larger refinement steps to fur-
ther reduce manual effort. The next paragraph gives a short
overview of IC3PO.

IC3PO [27,28] is a recently-developed prover that uses the
synergistic relationship between symmetry and quantification
to prove the safety of distributed protocols fully automatically,

USENIX Association 2022 USENIX Annual Technical Conference    153



( )

④ Use a monolithic 
prover to find an 

inductive invariant
SuccessNo

Fails, and there 
are preconditions 
to convert

⑤ Add a new 
refinement layer

Yes

② Convert preconditions 
to an if-statement

③ Convert preconditions 
to invariants

Fails, and there are no more preconditions to convert

Refinement-Guided Automation

Target system

implementation

intermediate 
layers

specification
① Are there any 

unchecked 
preconditions?

Figure 1: Summary of the Sift methodology. White boxes are fully automated, gray boxes indicate a trivial syntax change, and
black boxes denote manual effort.

by inferring compact inductive invariants with both universal
and existential quantifiers. At its core, IC3PO exploits the
inherent regularity present in distributed protocols to signifi-
cantly scale up IC3/PDR-style verification [10, 23] over finite
instances of the protocol. Starting with an initial instance size,
IC3PO systematically computes quantified inductive invari-
ants over protocol instances of increasing sizes, until protocol
behaviors saturate, concluding with an inductive proof that
works for all instances of the protocol.

4 Overview of Sift

This paper introduces Sift, a methodology that allows reason-
ing about complex systems while still using a large degree of
automation in proofs. Sift accomplishes this by employing a
small amount of manual effort, when needed, to split the sys-
tem into a number of layers, where each layer can be shown
to refine the layer above it.

Figure 1 shows an overview of the Sift methodology. Ini-
tially, the developer starts with an implementation of the sys-
tem, along with a specification, both written in the Ivy lan-
guage [56]. If one were to use the Ivy prover, they would
have to provide a manual proof of refinement between the
specification and implementation. Sift, instead, introduces our
encapsulation technique to merge the two layers into a single
proof that our monolithic prover can attempt to solve.

Indeed, the first step of the Sift methodology is to attempt
to prove refinement directly between the implementation and
specification layers. If this proof is too much for the prover to
handle, the developer adds an additional layer of refinement
and tries again. Each additional layer of refinement splits the
proof into smaller pieces that are more amenable to automa-
tion; but, of course, this comes at the cost of some manual
effort, as the developer must manually introduce the new layer.

In the next two sections, we describe the Sift methodol-
ogy in more detail. Section 5 describes how we can use the

Algorithm 1 Specification of the Sharded Hash Table (SHT)
1 function requests(R : request) : bool
2 function replies(R : reply) : bool
3 function map(K : key) : value
4 initialization {
5 ∀R. requests(R)← f alse
6 ∀R. replies(R)← f alse
7 ∀K. map(K)← 0
8 }
9 action commit(req : request, rep : reply) = {

10 require rep.type = req.type
11 require rep.src = req.src
12 require rep.key = req.key
13 require req.type = read⇒ rep.data = map(req.key)
14 if ¬requests(req) { ▷ require ¬requests(req)
15 if req.type = write {
16 map(req.key)← req.data
17 };
18 requests(req)← true;
19 replies(rep)← true;
20 }
21 }

automation of a monolithic prover to perform a refinement
proof between two layers (steps 1 - 4 in Figure 1). Section 6
presents the methodology for adding intermediate layers to
the refinement structure (step 5 ).

Case Study: Sharded Hash Table Throughout this paper,
we use the example of a Sharded Hash Table application
(SHT) [34] to illustrate the Sift methodology. SHT imple-
ments a distributed key-value store, and consists of two layers,
a specification layer and an implementation layer. As shown
in Algorithm 1, the specification layer describes a key-value
store as a simple map from keys to values. It maintains two
local sets (modeled as boolean-valued functions, lines 1 and 2)
to keep track of which messages (requests and replies) have

154    2022 USENIX Annual Technical Conference USENIX Association



1

A

Upper layer

Lower layer

B C

2 3 4

step

A B B C

refines

Figure 2: Encapsulation: to enable automatic refinement
proofs, the state of the upper layer (A, B, C) is encapsulated
inside the state of the lower layer (1, 2, 3, 4) refining it.

been sent. Initially, all keys are mapped to 0, and no messages
have been sent. Requests can either be read requests or write
requests. The only transition allowed by this specification is
to commit a request req and its reply rep: i.e., perform the
update (if this is a write request) and mark the corresponding
messages as sent by setting requests(req) and replies(rep) to
true. The specification layer consists of 32 lines of Ivy code.

In the implementation layer, every node contains a local
hash table containing some subset of the total keys in the
system and a delegation map. The node uses the delegation
map to maintain its knowledge of where keys are stored on
remote nodes. Each node can service a request using get
and set actions for the keys that are locally stored, or use
the delegation map to look up and forward requests to the
appropriate node in the system if the requested key is not
local. Nodes at the implementation layer can dynamically
exchange sets of keys they are responsible for, by exchanging
delegate messages (each carrying a key-value pair) among
themselves. The implementation layer consists of 127 lines
of Ivy code.

We aim to show that the implementation layer refines the
specification, i.e., that any observable output produced by any
execution of the implementation layer can also be produced
by some execution of the specification. A key property is
that for every key owned by a node at the implementation
layer, the data matches the value stored in the specification.
Additionally, every key is either owned by exactly one node
in the system, or part of an in-flight delegate message.

5 Refinement-Guided Automation

We first explain the key high-level idea behind automating
refinement proofs (step 4 in Fig. 1, Section 5.1). We then
present what modifications Sift makes to the layers of a tar-
get system description to ensure that the correspondences
between the layers are correctly represented before a proof is
attempted (steps 1 - 3 in Fig. 1, Section 5.2).

Algorithm 2 Example of encapsulation in SHT
1 action set(req : request) = {
2 require req.type = write
3 owner← delegation.get_owner(req.key)
4 if owner = me {
5 hash(req.k)← req.v
6 rep← create_reply(req)
7 call spec.commit(req, rep)
8 call network.send_reply(rep)
9 } else {

10 call network.forward_request(req, owner)
11 }
12 }

5.1 From Monolithic Proofs to Refinement

A key feature of Sift is that it uses the automation of mono-
lithic provers to perform more complex, refinement-based
proofs. As we explained in Section 2, monolithic (i.e. single-
layer) proofs do not scale to complex systems, either due to
complexity or undecidability. Yet, monolithic proofs are the
only type of proof supported by these provers. The first inno-
vation of Sift is that it converts a refinement proof between
two layers into a monolithic proof which can be given as input
to any monolithic prover.

We perform this transformation using our encapsulation
technique, depicted in Figure 2. The idea of encapsulation
is simple: if we want to show that a lower layer L refines
an upper layer U , then we augment the state of L with the
state of U . Additionally, whenever the state machine L makes
a transition, the encapsulated U state also makes an upper-
layer transition. In practice, this is expressed as a function
call in Ivy, where the lower layer invokes a transition on
its encapsulated state. For example, in the SHT application,
the lower layer includes an encapsulated spec object (see
Algorithm 1) and a lower-layer transition calls spec.commit()
if it refines the commit transition of the upper layer.

Encapsulating the upper-layer state into the lower layer
effectively creates a single, augmented lower layer that can
be used to reason about the relation between the upper and
lower layer. Most importantly, we can now leverage traditional
single-layer provers to show whether a certain property—the
refinement property—holds for this augmented lower layer.

Case study: refinement proof for the SHT Algorithm 2
shows a simple example of encapsulation at the implemen-
tation layer of SHT. To perform this encapsulation, the im-
plementation layer imports (in Ivy) the specification layer. In
this example of handling a set request, the program checks if
this node (me) is the owner of the key in the request (line 4).
If it is the owner, the implementation layer internally makes
a call (line 7) to spec.commit (shown in Algorithm 1). This
transition corresponds to the transition from state 1 to state 2
in Figure 2: the implementation layer transitions from state 1

USENIX Association 2022 USENIX Annual Technical Conference    155



to state 2, while each of these states encapsulates the corre-
sponding upper layer state, indicating a transition from state
A to state B at the upper layer.

If this node is not the owner, it simply redirects the request
to the owner. Such an implementation layer transition does
not entail a specification layer transition and so the code does
not call spec.commit or any specification-level function. This
is usually called a “stutterring” step of the specification layer—
essentially a no-op—and corresponds to the transition from
state 2 to state 3 in Figure 2.

To prove that the implementation refines the specification,
we ask our monolithic prover to prove a simple property:

∀R : reply,N : node. net.replied(R,N) =⇒ spec.replies(R)

This property says that any reply R sent to any node N at
the network (implementation level) can only be present if the
same reply R is present at the specification level. Since replies
are the only observable outputs of the system, it ensures that
every output of the implementation is also an output of the
specification, thus ensuring that the implementation is indeed
a refinement of the specification. Note that the reply message
at the implementation layer is part of the network and thus
modeled as net.replied(M,N).

5.2 Enforcing pre- and postconditions across
layers

When calling functions from a lower layer to an upper layer,
an upper-layer transition’s precondition must be met. The
preconditions of the callee (in the upper layer) become post-
conditions (assertions) for the caller (in the lower layer) to
check. For example, on line 13 of SHT’s specification (Al-
gorithm 1), before committing a request, the precondition
concerning the request, req, and the corresponding reply, rep,
must be met:

req.type = read =⇒ rep.data = map(req.key)

This precondition ensures that every time a read request
is committed, the data contained in the response must corre-
spond to the data in the abstract map. Since it is the caller’s
responsibility to guarantee that this precondition is met be-
fore committing the request, this precondition is effectively
an assertion that needs to be checked by the monolithic prover.
Unfortunately, the current state-of-the-art monolithic provers
do not support checking these kinds of assertions, and can
only find an inductive invariant for a safety property.

If we attempt to ignore this assertion check and let the
monolithic prover prove the refinement property as is, the
result could be unsound—i.e., the proof may go through even
if the implementation is buggy. For example, let us consider
again the refinement property for SHT:

∀R : reply,D : node. net.replied(R,D) =⇒ spec.replies(R)

Without precondition checks, a buggy implementation can
send a bogus reply message and call commit at the encap-
sulated specification layer. This would make the refinement
property trivially inductive—since the commit call adds the
message to the replies—without guaranteeing that contents
of that message are correct.

To avoid this problem, Sift needs to consider the asser-
tions in function calls to maintain soundness in automated
refinement proofs. In the rest of this section, we explain how
we transform the assertions to either conditionals (if/else) or
invariants that the monolithic prover can reason about.

5.2.1 Converting Assertions to Conditionals

A straightforward approach to model assertions in function
calls is to convert the callee to an always-enabled action
using a conditional if/else block [35]. The developer can
manually rewrite an assertion P as follows: if P holds, take
the transition; otherwise, do nothing. In this context, the entire
if/else block is always-enabled, in that it has no preconditions
and can always be taken.

For example, the original SHT specification had a precondi-
tion ¬requests(req) in the specification of the commit action,
which we convert to an if-statement (Algorithm 1, line 14).
This precondition ensures that the specification can never
execute the same request twice.

The benefit of this approach is that it does not rely on any
understanding of the system, which makes it very easy to
implement. It has, however, two downsides. First, adding an
if/else block in place of a precondition makes the proof a
little harder for monolithic provers, since it is harder to find
an inductive invariant for a weaker problem. Second, if the
if-statement refers to ghost state—i.e., proof-related state that
is not compiled to an executable—such as the sets correspond-
ing to network messages, these if-statements are not compiled
directly to executable code.Therefore, if there are any asser-
tions that refer to ghost states at the implementation layer, we
cannot rely on the approach of converting assertions to condi-
tionals. In these cases, we need to convert them to invariants,
as we describe below.

5.2.2 Converting Assertions to Invariants

A second, more involved approach to the problem is to convert
these assertions into invariants. Doing so requires human
intuition but reduces the difficulty for the monolithic prover.
For every assertion that needs to be checked, there must be
an invariant to support its proof. The key idea is simple: a
programmer can trace backward through a function call from
the upper layer (the callee) to the lower layer (the caller) to
find the enabling precondition. For the SHT precondition
example above, we observe that only the node who owns the
key can commit the reply. Leveraging this observation, we
can construct an invariant that if node N thinks it is the owner

156    2022 USENIX Annual Technical Conference USENIX Association



of key K, the local value for key K at node N, which forms
the reply, must match the value in the spec:

∀N : node,K : key. server(N).delmap(K,N) =⇒
server(N).hash(K) = spec.map(K)

where server(N).delmap(K,N) indicates that from the per-
spective of server N, the owner of key K is N (delmap stands
for the delegation map). By maintaining this invariant, Sift
can ensure the associated assertion will never be violated dur-
ing the execution of the system. Note that the invariant is not
necessarily inductive, but Sift leverages the automation of the
monolithic prover to complete the proof.

Case study: converting assertions for the SHT The man-
ual effort involved in the SHT proof requires converting seven
assertions into two if-statements and five invariants. The as-
sertion ¬requests(r1) is converted from an assertion to an
if-statement, as described in Section 5.2.1. On the other hand,
the first three assertions (lines 10 to 12 in Algorithm 1) are
already enforced by the implementation layer and do not need
to be converted. We could further use the methodology de-
scribed above in Section 5.2.2 to convert the fourth assertion
(line 13) to an invariant, but it turns out that monolithic provers
are powerful enough to complete the proof even if we simply
convert it to a if-statement.

6 Introducing Intermediate Layers

We have discussed how to use automation to prove refinement
between two layers. However, sometimes, the automation
provided by the monolithic prover is not powerful enough to
prove the desired refinement. This can happen either due to
the complexity of the proof, or the presence of undecidable
reasoning. When faced with such complex proofs, monolithic
provers will either time out or run out of memory.

To perform such complex proofs, the solution is to intro-
duce an intermediate layer (step 5 in Figure 1), thereby split-
ting the proof into two simpler refinement proofs: one refine-
ment proof from the original lower layer to the intermediate
layer, and another refinement proof from the intermediate
layer to the original upper layer. By repeatedly using this
proof-splitting technique until every refinement proof is auto-
mated, we effectively execute a divide-and-conquer strategy
that allows us to tackle complicated refinements.

This idea is similar to IronFleet’s methodology of intro-
ducing an intermediate protocol layer to simplify the proof.
In IronFleet, however, the developer needed to both write an
intermediate layer and manually prove it correct. By contrast,
Sift uses the automation of monolithic provers to dispense
with most of the latter manual effort of writing the proof, and
only requires the user to write intermediate layers—a much
smaller effort than coming up with manual proofs.

Thankfully for developers, introducing an additional layer
is done incrementally. The new layer is essentially a variation
of the layer above or below it: either a more detailed version of
the layer above it or a more abstract version of the layer below
it. This helps keep the manual effort needed to introduce such
layers small.

In the rest of this section, we discuss the strategies that we
have developed and used to introduce intermediate layers, and
walk through the process on a MultiPaxos example.

6.1 Intermediate Layers for Complexity
In most cases, the biggest challenge for a monolithic prover
to automatically prove a refinement is its complexity. If the
system is too complex, the prover either times out or runs out
of memory. When this happens, we can split the refinement
proof into two simpler refinement proofs by introducing an
intermediate layer. We list here a number of ways in which
such a split can simplify the proof burden. This list is extracted
from our experience adding intermediate layers to facilitate
refinement, and is not meant to be a complete enumeration of
all possible layer-splitting strategies.

Abstract Away Messages Not Needed for Safety. Some of
the messages used in the implementation may only be needed
for liveness or performance, but not for safety. When trying
to prove safety, those messages can be abstracted away in an
intermediate layer: they are removed from the intermediate
layer but kept in the implementation layer—itself proven to
be a refinement of the intermediate layer.

For example, in MultiPaxos the current leader needs to
periodically broadcast a heartbeat message to indicate that
it is still alive. This message is not needed for safety and
can therefore be removed in an intermediate layer—though
it is preserved in the implementation layer. The resulting
intermediate layer is now simpler and thus easier to prove
equivalent to the specification.

Merge Multiple Transitions into One Abstract Transition.
Sometimes, the intermediate layer can take an abstract transi-
tion which is broken into multiple transitions in the low-level
implementation.

For example, in MultiPaxos the learner can only receive
one vote (two_b message) from an acceptor at a time. But
what the learner really needs is a quorum of messages to learn
a value. In this case we can merge multiple transitions of
receiving each message separately into one abstract transition
of receiving a quorum, and remove local variables for tem-
porary results. This significantly simplifies the intermediate
layer, with fewer state variables and simpler transitions.

Simplify Local State and Requirements for Transitions.
Implementation layers have to take into account implementa-
tion constraints: for example, a node can only read its local

USENIX Association 2022 USENIX Annual Technical Conference    157



state when taking a transition; and it cannot access messages
sitting in the network. But intermediate layers are essentially
proof constructs and thus do not need to respect such imple-
mentation constraints.

For example, in MultiPaxos, a node needs to maintain an
explicit local history of previous two_b votes to construct
its one_b promise to a new leader, since a promise message
depends on previous votes. In an intermediate layer however,
a node can directly access all sent messages in the network,
thus eliminating the need for this local history. Moreover,
in an implementation a node can only read its local history,
thus requiring a proof that the local history is consistent with
sent messages. In the intermediate layer, since the node has
access to all sent messages, it can directly check that the one_b
promise is consistent with the vote messages, thus eliminating
the need for this proof.

6.2 Intermediate Layers for Decidability

When the verifier returns an explicit decidability error, it
means our refinement is not in the EPR decidable logic [47]
and may take forever to check. Such an issue is typically re-
solved by introducing an intermediate layer and a ghost state
(also known as a derived relation [55]) to hide the existential
quantifier creating the undecidability [55, 62]. We apply a
similar technique in Sift.

For example, in MultiPaxos an acceptor needs to send its
last votes for different slots in a one_b message to a new leader
to decide what value to propose. When a proposer becomes a
leader, it needs to have a quorum of one_b messages, resulting
in the following ∀Round∃Votes alternation:

∀N : Node,R : Round. quorum_o f (R).contains(N)

=⇒ ∃V : votes. one_b(N,R,V )

The alternation of the ∀ and ∃ quantifiers, along with the
inductive invariant, means that this proposition is outside
the decidable logic of EPR. We leverage results from a fol-
lowup work on Ivy [62], and introduce an intermediate layer
to abstract away the payload (previous votes), thereby break-
ing the quantifier alternation. In this case, we only need
an intermediate-layer state joined_round(N,R) to represent
∃V. one_b(N,R,V ).

7 Evaluation

We evaluate Sift by using it to formally verify the correct-
ness of six implementations of distributed systems: a leader
election protocol (Section 7.1), a distributed lock protocol
(Section 7.2), a two-phase commit protocol (Section 7.3), a
sharded hash table (SHT, Section 7.4), and two consensus pro-
tocols: Raft (Section 7.5) and MultiPaxos (Section 7.6). We
use Ivy to implement these systems, and extract the executable

code to C++ using Ivy’s built-in translator. For the more com-
plex systems (SHT, Raft and MultiPaxos), we also perform
a performance evaluation (Section 7.7) to demonstrate our
automated approach does not impact the performance of im-
plementations.

For all systems in our evaluation, we consider crash failures
and an asynchronous network, which can arbitrarily delay,
drop, or duplicate messages. Both of these can be easily im-
plemented in Ivy. Note that since Sift (like all its predecessors
that also target automation) does not support liveness proofs,
it does not need to explicitly reason about crash failures—a
crash results in a machine no longer taking any steps and thus
has no effect on safety properties.

We find that we are able to prove these complex systems
with little manual effort within a reasonable memory and
time budget, using IC3PO [27] as our monolithic prover. Our
verification results are in Table 1. The complexity of different
systems is illustrated by the number of different types that
are needed to express state transitions for a given system.
For example, for the leader election protocol, there are just
two types: node and id. In contrast, MultiPaxos contains 14
different types, e.g., round, inst, value, time, node, etc.

We now give details about the proofs of the aforementioned
systems, followed with a performance evaluation (Section-
7.7) of three of the more complex resulting implementations
(i.e., SHT, Raft and Paxos). We ran our performance exper-
iments on a cluster where nodes have a 16-core Intel Xeon
E5-2667 v4 @3.20 GHz processor and are connected with
a 10 GB Ethernet connection running Ubuntu 16.04. All our
implementation and artifact can be found in GitHub [49]

7.1 Leader Election
The leader election protocol aims to elect a unique leader
from a ring with an unbounded number of nodes with unique
integer IDs [13, 50, 56]. The specification layer dictates a
single action the system can take: elect a node as the leader,
under the condition that no other node is already the leader.
This layer contains 13 lines of Ivy code.

In the implementation layer, the nodes are totally ordered
in a ring so that every node has a next node. A node n has
two valid actions: (a) periodically send its ID idn(n) to the
next node in the ring; or (b) forward an ID i received from its
predecessor if i > idn(n). Once n receives its idn(n), it knows
that no other node in the system has a larger ID, and can now
safely become the leader. The implementation layer consists
of 28 lines of Ivy code.

To prove refinement between the implementation and the
specification layers, we ensure that when a message stating
that a leader is elected is sent in the implementation, the
destination of the message should correspond to the leader
node in the specification.

We perform a manual, albeit trivial, syntactic change to
the specification layer to convert one precondition into an

158    2022 USENIX Annual Technical Conference USENIX Association



System Proof
Effort Refinement # of types Solution to

Preconditions
# of Clauses
in Invariant

Time
(sec)

Memory
(MB)

Leader Election < 5 min spec to impl 2 1 if-statement 6 196 1744
Distributed Lock < 5 min spec to impl 2 1 if-statement 8 111 425

Two-Phase Commit < 5 min spec to impl 4 3 if-statements 12 613 815

SHT < 30 min spec to impl 7
5 invariants,

2 if-statements 13 1021 856

Raft 1 person-
month

spec to layer 0 6 manual
layer 0 to layer 1 6 15 invariants 22 787 4178

layer 1 to impl 10
15 invariants,
1 if-statement 17 1239 2981

MultiPaxos

Previously
proved spec to layer 0 9 manual

3 person-
weeks

layer 0 to layer 1 9
7 invariants,

2 if-statements 12 49 249

layer 1 to layer 2 11
8 invariants,

8 if-statements 21 258 719

layer 2 to layer 3 11 19 invariants 28 841 1935
layer 3 to impl 14 19 invariants 25 196 398

Table 1: Summary of our six distributed systems; “spec” stands for specification, “impl” stands for implementation, and “layer
i” represents intermediate layers. The number of different types that are needed to express the state transition illustrates the
complexity of different system.

if-statement, which takes less than 5 minutes. We then simply
use Sift’s encapsulation technique to convert the refinement
between the implementation and specification layers into a
monolithic proof that is proven automatically by IC3PO.

7.2 Distributed Lock

The distributed lock protocol [34, 50, 56] models an un-
bounded number of nodes that transfer the ownership of a
single lock. In this system, the ownership of a lock is associ-
ated with an ever-increasing epoch: only one node can own
the lock at each epoch. This makes for a concise specification
layer—12 lines of Ivy code—that only contains a lock history
to indicate which node holds the lock at every epoch.

In the implementation layer, there are two possible transi-
tions for a node: (a) transfer the lock if it holds the lock; or
(b) accept the lock and jump to a higher epoch by sending a
locked message to indicate ownership. This implementation
has 35 lines of Ivy code.

The refinement property in this system is that all locked
messages should have a corresponding node in the specifica-
tion layer’s lock history.

The only manual effort involved in this proof is converting
one precondition to an if-statement in the specification layer,
which takes less than 5 minutes. After this transformation,
we can use the encapsulation technique from Sift to convert
the refinement between the implementation and specification
layers into a monolithic proof, and prove the locked message
is equivalent to the lock history.

7.3 Two-Phase Commit

The two-phase commit protocol [31] is used by a group of
nodes, known as resource managers (RMs), to coordinate the
decision on whether to abort or commit a transaction. The
RMs vote to either commit or abort the proposed transac-
tion and a transaction manager (TM) node is in charge of
coordinating the decision-making procedure.

The specification layer of this system uses the Transaction
Commit protocol by Lamport [30, Sec. 2] translated from
TLA+ [45] to Ivy. The safety property does not allow a node
to commit if another node aborts. The specification contains
54 lines of Ivy code.

The implementation of this system is an Ivy translation in-
spired by the TLA+ specification of Two-Phase Commit [30,
Sec. 3]. This layer introduces a special TM node, which coor-
dinates all RMs. An RM can send a Prepared message to the
TM when transiting into the prepared state, or unilaterally de-
cide to abort. Upon receiving a Prepared message from every
RM, the TM can decide to commit, broadcasting a Commit
message to every RM node. The receipt of a Commit message
from the TM allows an RM to decide to commit the transac-
tion. This implementation of two-phase commit has 110 lines
of code.

The refinement property between the implementation and
specification ensures that all RMs commit or abort at the same
time between the implementation and the specification.

After a trivial syntactic change converting preconditions to
three if-statements in the specification layer, this refinement
property is proven automatically.

USENIX Association 2022 USENIX Annual Technical Conference    159



7.4 Sharded Hash Table (SHT)

The Sharded Hash Table protocol was previously introduced
as a running example in Section 4. Its specification is a simple
key-value map processing read and write requests. We can au-
tomatically prove the refinement from the implementation to
the specification, after converting preconditions to five invari-
ants and two if-statements to guide IC3PO, as detailed in Sec-
tion 5.2. Compared to IronKV (IronFleet’s implementation of
SHT), we simplify the delegate messages by transferring one
key at a time. Transferring intervals of keys would require a
loop iterating over keys and a loop invariant [59, 65], which
cannot be found automatically by IC3PO.

The network interface for SHT is more complex than that of
other systems. In particular, SHT’s network interface requires
that messages are not delivered twice, so that requests can
only be committed once and only one node at a time can own
a key. As this is not part of refinement, we leverage an existing
proof [53] for these requirements.

7.5 Raft

Raft [54] implements a shared log among nodes, which can
be used to implement a fault-tolerant distributed service. The
log is maintained as a set of (index, value) pairs.

Raft is a term-based protocol. In each term, a node can be
elected as the leader, append values to the log, and replicate
its log to other nodes by sending an append message. For
safety, each node maintains its own log and only votes for
a leader whose log is not earlier than its own. When the
leader receives reply messages for its append message from
a majority of nodes , the leader can consider all previous log
entries committed. This strategy ensures that all future leaders
contain the committed log.

At the specification layer, Raft can commit a prefix to an
index in the leader’s log and ensure that only one value is
committed at each index. The refinement property from the
implementation to the specification ensures that they have the
same log.

7.5.1 Intermediate Layers and Proof Effort

Our Raft implementation is similar to the previous Ivy im-
plementation of Raft [62] with 212 lines of code. Due to
undecidability, we could not refine the implementation to the
specification directly. Instead, we build a first intermediate
layer—layer 0—to separate the quantifier alternation (as out-
lined in Section 6.2). We tried to prove the refinement from
specification to layer 0 automatically, but the inductive invari-
ant contains complex quantifier alternations, which IC3PO
was unable to handle. As a result, we manually prove the
refinement from specification to layer 0. The refinement from
spec to layer 0 took two person-weeks (including understand-
ing the protocol). Layer 0 contains 143 lines of code.

From layer 0, the implementation is still too complex to re-
fine directly using IC3PO. We introduce another intermediate
layer, layer 1, to help IC3PO automatically prove the refine-
ment. To write layer 1, we follow the strategies presented in
Section 6, specifically by merging actions into one abstract
action. In the abstract action a node can receive a quorum of
messages at once, rather than receiving each of them individ-
ually in separate transitions. Layer 1 changes 57 lines from
layer 0. We spent another two person-weeks to identify this
intermediate layer and debug our implementation.

Overall, we were able to complete the proof of Raft in
one person month, which compares favorably to the three
person months needed by the original proof [62] written in
Ivy. This reduction was the result of using a much higher
degree of automation, by splitting the proof into layers and
leveraging the power of IC3PO to prove each refinement
between consecutive layers.

7.6 MultiPaxos
MultiPaxos [43, 44] is a common consensus protocol that is
widely used in industry (e.g., Chubby [11], Megastore [2], and
Spanner [19]). However, MultiPaxos is notoriously complex
and difficult to verify.

At the specification level, MultiPaxos maintains an array
of values; some that have been decided (i.e., agreed upon
and finalized) and some that are empty. The only possible
transition in the specification is to add a new decided value
to this array. Similar to Raft, our refinement ensures that the
implementation maintains the same values as the array in the
specification.

The implementation of MultiPaxos is very similar to that
of Raft but uses different strategies to ensure safety. In Raft,
the leader can only be a node with the most up-to-date logs,
while MultiPaxos relies on the messages from other nodes to
generate an up-to-date log for the new leader.

7.6.1 Intermediate Layers and Proof Effort

Our design of the MultiPaxos protocol is inspired by previ-
ous work on expressing Paxos and MultiPaxos in the EPR
decidable logic [55, 62]. Our evaluation uses the MultiPaxos
implementation from [62], removing certain re-transmissions
that are unnecessary for safety to simplify the refinement.

Since proving refinement directly between the implemen-
tation layer and the specification layer would introduce un-
decidability (see Section 6.2), we initially introduce a single
intermediate layer, layer 0, to circumvent this undecidability.
Moreover, as the refinement from the specification to layer 0
contains complex quantifier alternations that are too hard for
IC3PO to prove automatically, we borrow the existing manual
proof from Ivy. Layer 0 contains 88 lines of Ivy code.

After addressing undecidability concerns through layer 0,
we found that a direct refinement from the implementation to

160    2022 USENIX Annual Technical Conference USENIX Association



Figure 3: SHT performance

layer 0 remains infeasible for IC3PO. Using our divide-and-
conquer technique, we added three additional intermediate
layers to simplify this refinement. Following the strategies
outlined in Section 6.1, we first added a layer 1 that abstracts
away liveness messages and merges transitions to receive a
quorum of messages. We augmented this by introducing a
layer 2 that uses a local variable to track the current round,
receives one two_b message, and keeps track of when a valid
quorum can be formed. We then introduced a final intermedi-
ate layer that more closely resembles the implementation by
using an array to track previous voted values for acceptors,
and restricting a node to only receive one message during a
transition.

With the addition of the four intermediate layers, Sift splits
the complex refinement proof into manageable pieces, where
each refinement between layers is amenable to automated
verification. Producing the three intermediate layers (layers
1, 2, and 3) and converting the necessary preconditions to
invariants is still a non-trivial task which takes about two
person-weeks. About one third of the time is spent waiting
for IC3PO to run out of time or memory, which indicates
that another layer is needed (step 5 in Figure 1). While
non-negligible, this manual effort is significantly less than
the original attempt in Ivy, which was two person-months to
refine layer 0 to the implementation [62].

7.7 Performance Evaluation
7.7.1 SHT Performance

We compare the throughput and latency of our verified Sift
implementation of SHT with IronKV [34], as shown in Fig-
ure 3. IronKV is the closest verified implementation of a
SHT that we could compare against. The SHT cluster was
preloaded with 1,000 keys delegated evenly across the three
nodes and serviced requests from an increasing number of
clients in a closed loop. In one experiment, client processes
send an even 50/50 mix of randomized GET and SET requests.
We further increase the percentage of GET requests to 90%.
IronKV scales about 25% better than our version of SHT. The
disparity in performance between these two systems can be
attributed to both unoptimized generated C++ from Ivy and
design choices made in IronKV, which added extra manual
proof complexity for the sake of performance purposes, such

Figure 4: Raft and MultiPaxos performance

as an efficient delegation map data structure that each node
maintains and consists of 833 lines of Dafny code.

7.7.2 Raft and MultiPaxos Performance

We evaluated the performance of the verified Sift implementa-
tions of Raft and MultiPaxos by varying the load of each sys-
tem with an increasing number of clients submitting requests
in a closed loop, as shown in Figure 4. For both systems, the
experimental setup consists of three replicas on separate ma-
chines, with a fourth machine containing the client processes.

We tried to compare the performance of these systems with
IronRSL, IronFleet’s verified Paxos-based replicated state ma-
chine library, but the performance results of IronRSL were
not reproducible for a direct comparison. By re-running the
original implementation from the IronFleet paper [34], we
found the performance for IronRSL to be lower than origi-
nally reported [34, Sec. 7]1. The performance of our imple-
mentation of MultiPaxos, which does not support batching, is
comparable to the results reported for IronRSL in non-batch
mode [34, Fig. 13].

We do compare both Raft and MultiPaxos with the Ivy-
based manually-verified implementations [62]. The perfor-
mance of Raft is almost identical to the version of Raft, but
we find that our MultiPaxos system exceeds the performance
of MultiPaxos from that work. These results show that the
automation and reduced proof effort gained by using Sift does
not impact the performance of either system.

8 Limitations and Future Directions

Our experience with Sift suggests that it advances what is
possible in the realm of automated verification of complex
systems. For all of its successes, however, there are still more
steps to be taken in this direction.

• Automating simple transformations. While Sift greatly
increases the automation of complex refinement proofs, parts
of the methodology still require manual effort that could po-
tentially be automated, such as converting assertions to if-

1Even after close discussions with two of the IronFleet authors, this
discrepancy was not resolved. They attributed this to possible code changes
between what was originally evaluated and the currently available code.

USENIX Association 2022 USENIX Annual Technical Conference    161



statements and transforming to invariants through automatic
computation of weakest preconditions [22].
• Loop invariants. Certain complex systems, such as SHT,

may require loop invariants to prove optimizations that are
added to enhance the performance of executable code. Loop
invariants are similar to regular inductive invariants, in that
both are inductive under some transitions. As described in
Sections 7.4 and 7.6.1, any loop invariant in Sift must cur-
rently be written manually. In the future, we hope to add
support for automatic deriviation of loop invariants in Sift, by
building further on the existing literature [59, 65].
• Leveraging multiple monolithic provers. As shown in

recent works [27, 33, 66], different monolithic provers show
complementary strengths in different scenarios. Since the de-
sign of Sift is independent of the choice of monolithic prover,
we plan to employ a portfolio of monolithic provers in parallel
to derive refinement proofs with even higher scalability.

9 Related Work

We now provide a summary on previous efforts relevant to
applying formal methods to verify distributed systems.
Automated Verification. With the advancements in auto-
mated reasoning [6, 20, 36] and abstraction techniques [3, 16,
29], automatically verifying correctness through model check-
ing [17, 58] has significantly improved in different domains,
both for hardware [9,10,23,26,61] and software [3,7,8,37,41].
However, model checking still does not scale well to large
complex systems, due to state-space explosion [18, 21].

More recently, several approaches [24,27,33,38,40,50,66]
have extended induction-based model checking [10, 23] to
automatically infer inductive invariants for infinite-state dis-
tributed protocols. I4 [50] leverages the regularity of dis-
tributed protocols, combining finite model checking with un-
bounded reasoning in distributed protocols. IC3PO [27], de-
scribed in detail in Section 3.3, incorporates invariant general-
ization with model checking for better scalability. SWISS [33]
derives an inductive invariant by performing an exhaustive
search over candidate invariants in an optimized invariant
search space. DistAI [66] uses a data-driven approach and is
guaranteed to find a universally-quantified inductive invariant
in finite time.

All the aforementioned techniques [24,27,33,38,40,50,66],
however, target monolithic, single-layer verification, primar-
ily at the protocol level, and cannot scale to detailed system
implementations. In contrast, our approach combines these
monolithic provers with the well-founded concepts of refine-
ment [1, 25, 42] to scale verification all the way to complex
executable implementations.
Systems Verification. Much effort has gone to verifying real
systems, including OS kernels [15,32,39,52], file, and storage
systems [12, 14, 67]. These works provide strong guarantees
of correctness, but at the cost of extensive manual effort; Sift,

by contrast, requires little manual proof effort while verifying
systems of considerable complexity, such as MultiPaxos.

Within the realm of distributed systems, there have been
attempts at manually verifying implementations of proto-
cols [60, 64]. Ivy [56] requires the developer to iteratively
refine an invariant until an inductive invariant is identified.
IronFleet [34] and Verdi [63] have been used to verify practi-
cal implementations of distributed systems. In stark contrast to
our work, all three approaches rely on considerable amounts
of manual effort (in the order of person months) to complete
a proof of correctness. Additionally, while IronFleet always
uses three layers of refinement (i.e., specification, protocol,
and implementation), most of the distributed systems we ver-
ify are refined directly from an implementation to a specifi-
cation, with intermediate layers only added when needed to
reduce the proof complexity for our monolithic provers.

More recently, Lorch et al. [48] presented Armada, a tool
designed to verify concurrent programs. While Armada has
some superficial similarities to Sift—namely the use of re-
finement and automation—it is in fact drastically different.
It operates in an environment almost diametrically opposed
to that of Sift: single-machine, multi-threaded code where
communication happens via shared memory, as opposed to
Sift’s sequential execution on a distributed system where
communication happens via message passing. Additionally,
while Armada makes heavy use of automation to generate
proofs, it still requires its users to write significant parts of
the proof—hundreds of lines of code—manually.

10 Conclusion

This paper introduces Sift, a novel two-tier methodology that
combines the power of refinement with the ability to automate
proofs. Sift decomposes the proofs of complex distributed
implementations into a number of refinement steps, each of
which is amenable to automation. We use Sift to prove the
correctness of six distributed implementations—including
the notorious MultiPaxos—none of which had an automated
proof before. Our evaluation shows that this combination of
refinement and automation lets us verify complex distributed
implementations with little manual effort.

Acknowledgements

We thank the anonymous reviewers for their useful feedback
in improving this paper. This work was supported by the
National Science Foundation under grant No 2018915, and
by an Amazon Research Award.

References

[1] M. Abadi and L. Lamport. The existence of refinement
mappings. Theoretical Computer Science, 82(2):253–

162    2022 USENIX Annual Technical Conference USENIX Association



284, 1991.

[2] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh.
Megastore: Providing scalable, highly available storage
for interactive services. In Proceedings of the Confer-
ence on Innovative Data system Research (CIDR), pages
223–234, 2011.

[3] T. Ball, B. Cook, V. Levin, and S. K. Rajamani. Slam
and static driver verifier: Technology transfer of formal
methods inside microsoft. In International Conference
on Integrated Formal Methods, pages 1–20. Springer,
2004.

[4] B. Barras, S. Boutin, C. Cornes, J. Courant, J.-C. Fil-
liatre, E. Gimenez, H. Herbelin, G. Huet, C. Munoz,
C. Murthy, et al. The Coq proof assistant reference
manual: Version 6.1. PhD thesis, Inria, 1997.

[5] C. Barrett, P. Fontaine, and C. Tinelli. The
Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org, 2016.

[6] C. Barrett and C. Tinelli. Satisfiability modulo theo-
ries. In Handbook of Model Checking, pages 305–343.
Springer, 2018.

[7] D. Beyer. Software verification: 10th comparative eval-
uation (sv-comp 2021). Tools and Algorithms for the
Construction and Analysis of Systems, 12652:401, 2021.

[8] D. Beyer and M. E. Keremoglu. Cpachecker: A tool
for configurable software verification. In International
Conference on Computer Aided Verification, pages 184–
190. Springer, 2011.

[9] A. Biere, N. Froleyks, and M. Preiner. Hardware model
checking competition (HWMCC) 2020. http://fmv.
jku.at/hwmcc20.

[10] A. R. Bradley. Sat-based model checking without
unrolling. In International Workshop on Verification,
Model Checking, and Abstract Interpretation, pages 70–
87. Springer, 2011.

[11] M. Burrows. The chubby lock service for loosely-
coupled distributed systems. In Proceedings of the 7th
symposium on Operating systems design and implemen-
tation, pages 335–350, 2006.

[12] T. Chajed, J. Tassarotti, M. F. Kaashoek, and N. Zel-
dovich. Argosy: Verifying layered storage systems with
recovery refinement. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI 2019, page 1054–1068,
New York, NY, USA, 2019. Association for Computing
Machinery.

[13] E. Chang and R. Roberts. An improved algorithm for
decentralized extrema-finding in circular configurations
of processes. Communications of the ACM, 22(5):281–
283, 1979.

[14] H. Chen, T. Chajed, A. Konradi, S. Wang, A. İleri,
A. Chlipala, M. F. Kaashoek, and N. Zeldovich. Veri-
fying a high-performance crash-safe file system using
a tree specification. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, SOSP ’17, page
270–286, New York, NY, USA, 2017. Association for
Computing Machinery.

[15] H. Chen, X. N. Wu, Z. Shao, J. Lockerman, and R. Gu.
Toward compositional verification of interruptible os
kernels and device drivers. In Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’16, page 431–447,
New York, NY, USA, 2016. Association for Computing
Machinery.

[16] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In In-
ternational Conference on Computer Aided Verification,
pages 154–169. Springer, 2000.

[17] E. M. Clarke and E. A. Emerson. Design and synthesis
of synchronization skeletons using branching time tem-
poral logic. In Workshop on Logic of Programs, pages
52–71. Springer, 1981.

[18] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani.
Model Checking and the State Explosion Problem, pages
1–30. Springer Berlin Heidelberg, Berlin, Heidelberg,
2012.

[19] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quin-
lan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Tay-
lor, R. Wang, and D. Woodford. Spanner: Google’s
globally-distributed database. In 10th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 12), pages 261–264, Hollywood, CA, Oct. 2012.
USENIX Association.

[20] L. De Moura and N. Bjørner. Z3: An efficient SMT
solver. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidel-
berg, 2008. Springer.

[21] S. Demri, F. Laroussinie, and P. Schnoebelen. A para-
metric analysis of the state-explosion problem in model
checking. Journal of Computer and System Sciences,
72(4):547–575, 2006.

USENIX Association 2022 USENIX Annual Technical Conference    163

http://fmv.jku.at/hwmcc20
http://fmv.jku.at/hwmcc20


[22] E. W. Dijkstra. Guarded commands, nondeterminacy
and formal derivation of programs. Communications of
the ACM, 18(8):453–457, 1975.

[23] N. Een, A. Mishchenko, and R. Brayton. Efficient imple-
mentation of property directed reachability. In Proceed-
ings of the International Conference on Formal Methods
in Computer-Aided Design, pages 125–134. FMCAD
Inc, 2011.

[24] Y. M. Y. Feldman, J. R. Wilcox, S. Shoham, and M. Sa-
giv. Inferring inductive invariants from phase structures.
In Computer Aided Verification, pages 405–425, Cham,
2019. Springer International Publishing.

[25] S. J. Garland and N. A. Lynch. Using i/o automata
for developing distributed systems. Foundations of
component-based systems, 13(285-312):5–2, 2000.

[26] A. Goel and K. Sakallah. Model checking of verilog
rtl using ic3 with syntax-guided abstraction. In NASA
Formal Methods Symposium. Springer, 2019.

[27] A. Goel and K. Sakallah. On symmetry and quantifi-
cation: A new approach to verify distributed protocols.
In NASA Formal Methods Symposium, pages 131–150.
Springer, 2021.

[28] A. Goel and K. A. Sakallah. IC3PO: IC3 for
Proving Protocol Properties. https://github.com/
aman-goel/ic3po.

[29] S. Graf and H. Saïdi. Construction of abstract state
graphs with pvs. In International Conference on Com-
puter Aided Verification, pages 72–83. Springer, 1997.

[30] J. Gray and L. Lamport. Consensus on transaction com-
mit. ACM Transactions on Database Systems (TODS),
31(1):133–160, 2006.

[31] J. N. Gray. Notes on data base operating systems. In
Operating Systems, pages 393–481. Springer, 1978.

[32] R. Gu, Z. Shao, H. Chen, X. Wu, J. Kim, V. Sjöberg, and
D. Costanzo. Certikos: An extensible architecture for
building certified concurrent os kernels. In Proceedings
of the 12th USENIX Conference on Operating Systems
Design and Implementation, OSDI’16, page 653–669,
USA, 2016. USENIX Association.

[33] T. Hance, M. Heule, R. Martins, and B. Parno. Finding
invariants of distributed systems: It’s a small (enough)
world after all. In 18th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 21),
pages 115–131. USENIX Association, Apr. 2021.

[34] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch,
B. Parno, M. L. Roberts, S. Setty, and B. Zill. Ironfleet:

proving practical distributed systems correct. In Pro-
ceedings of the 25th Symposium on Operating Systems
Principles, pages 1–17. ACM, 2015.

[35] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch,
B. Parno, M. L. Roberts, S. Setty, and B. Zill. Iron-
fleet: Proving safety and liveness of practical distributed
systems. Commun. ACM, 60(7):83–92, June 2017.

[36] M. Heule, M. Järvisalo, M. Suda, T. Balyo, C. Sinz, and
A. Biere. The international SAT Competitions web page.
http://www.satcompetition.org/.

[37] R. Jhala and R. Majumdar. Software model checking.
ACM Computing Surveys (CSUR), 41(4):1–54, 2009.

[38] A. Karbyshev, N. Bjørner, S. Itzhaky, N. Rinetzky, and
S. Shoham. Property-directed inference of universal
invariants or proving their absence. Journal of the ACM
(JACM), 64(1):7, 2017.

[39] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Win-
wood. Sel4: Formal verification of an os kernel. In
Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, SOSP ’09, page 207–220,
New York, NY, USA, 2009. Association for Computing
Machinery.

[40] J. R. Koenig, O. Padon, N. Immerman, and A. Aiken.
First-order quantified separators. In Proceedings of
the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2020, page
703–717, New York, NY, USA, 2020. Association for
Computing Machinery.

[41] D. Kroening and M. Tautschnig. Cbmc–c bounded
model checker. In International Conference on Tools
and Algorithms for the Construction and Analysis of
Systems, pages 389–391. Springer, 2014.

[42] L. Lamport. The temporal logic of actions. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 16(3):872–923, 1994.

[43] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

[44] L. Lamport. Paxos made simple. ACM SIGACT News
(Distributed Computing Column) 32, 4 (Whole Number
121, December 2001), pages 51–58, December 2001.

[45] L. Lamport. Specifying systems: the TLA+ language and
tools for hardware and software engineers. Addison-
Wesley Longman Publishing Co., Inc., 2002.

164    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/aman-goel/ic3po
https://github.com/aman-goel/ic3po
http://www.satcompetition.org/


[46] K. R. M. Leino. Dafny: An automatic program verifier
for functional correctness. In Proceedings of the 16th
International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning, LPAR’10, pages
348–370, Berlin, Heidelberg, 2010. Springer-Verlag.

[47] H. R. Lewis. Complexity results for classes of quan-
tificational formulas. Journal of Computer and System
Sciences, 21(3):317–353, 1980.

[48] J. R. Lorch, Y. Chen, M. Kapritsos, B. Parno, S. Qadeer,
U. Sharma, J. R. Wilcox, and X. Zhao. Armada: Low-
effort verification of high-performance concurrent pro-
grams. In Proceedings of the 41st ACM SIGPLAN Con-
ference on Programming Language Design and Imple-
mentation, PLDI 2020, page 197–210, New York, NY,
USA, 2020. Association for Computing Machinery.

[49] H. Ma, H. Ahmad, A. Goel, E. Goldweber, J.-B. Jeannin,
M. Kapritsos, and B. Kasikci. Sift Artifact. https:
//github.com/GLaDOS-Michigan/Sift.

[50] H. Ma, A. Goel, J.-B. Jeannin, M. Kapritsos, B. Kasikci,
and K. A. Sakallah. I4: incremental inference of induc-
tive invariants for verification of distributed protocols. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 370–384, 2019.

[51] H. Ma, A. Goel, J.-B. Jeannin, M. Kapritsos, B. Kasikci,
and K. A. Sakallah. Towards automatic inference of
inductive invariants. In Proceedings of the Workshop on
Hot Topics in Operating Systems, pages 30–36, 2019.

[52] H. Mai, E. Pek, H. Xue, S. T. King, and P. Madhusu-
dan. Verifying security invariants in expressos. In
Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’13, page 293–304,
New York, NY, USA, 2013. Association for Computing
Machinery.

[53] K. L. McMillan. non-duplicating ordered transport ser-
vice. https://github.com/microsoft/ivy/blob/
master/doc/examples/sht/trans.md.

[54] D. Ongaro and J. Ousterhout. In search of an under-
standable consensus algorithm. In 2014 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 14),
pages 305–319, 2014.

[55] O. Padon, G. Losa, M. Sagiv, and S. Shoham. Paxos
made EPR: decidable reasoning about distributed pro-
tocols. Proceedings of the ACM on Programming Lan-
guages, 1(OOPSLA):1–31, 2017.

[56] O. Padon, K. L. McMillan, A. Panda, M. Sagiv, and
S. Shoham. Ivy: safety verification by interactive gen-
eralization. ACM SIGPLAN Notices, 51(6):614–630,
2016.

[57] R. Piskac, L. de Moura, and N. Bjørner. Deciding ef-
fectively propositional logic using dpll and substitution
sets. Journal of Automated Reasoning, 44(4):401–424,
Apr 2010.

[58] J.-P. Queille and J. Sifakis. Specification and verifica-
tion of concurrent systems in cesar. In International
Symposium on programming, pages 337–351. Springer,
1982.

[59] G. Ryan, J. Wong, J. Yao, R. Gu, and S. Jana. Cln2inv:
Learning loop invariants with continuous logic networks.
In International Conference on Learning Representa-
tions, 2020.

[60] N. Schiper, V. Rahli, R. Van Renesse, M. Bickford,
and R. L. Constable. Developing correctly replicated
databases using formal tools. In 2014 44th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 395–406. IEEE,
2014.

[61] B. L. Synthesis and V. Group. ABC: A system for se-
quential synthesis and verification. http://www.eecs.
berkeley.edu/~alanmi/abc/, 2017.

[62] M. Taube, G. Losa, K. L. McMillan, O. Padon, M. Sa-
giv, S. Shoham, J. R. Wilcox, and D. Woos. Modularity
for decidability of deductive verification with applica-
tions to distributed systems. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 662–677, 2018.

[63] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock,
X. Wang, M. D. Ernst, and T. Anderson. Verdi: a
framework for implementing and formally verifying dis-
tributed systems. ACM SIGPLAN Notices, 50(6):357–
368, 2015.

[64] D. Woos, J. R. Wilcox, S. Anton, Z. Tatlock, M. D. Ernst,
and T. Anderson. Planning for change in a formal veri-
fication of the raft consensus protocol. In Proceedings
of the 5th ACM SIGPLAN Conference on Certified Pro-
grams and Proofs, CPP 2016, page 154–165, New York,
NY, USA, 2016. Association for Computing Machinery.

[65] J. Yao, G. Ryan, J. Wong, S. Jana, and R. Gu. Learning
nonlinear loop invariants with gated continuous logic
networks. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI 2020, page 106–120, New York,
NY, USA, 2020. Association for Computing Machinery.

[66] J. Yao, R. Tao, R. Gu, J. Nieh, S. Jana, and G. Ryan.
DistAI: Data-driven automated invariant learning for
distributed protocols. In 15th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
21), pages 405–421. USENIX Association, July 2021.

USENIX Association 2022 USENIX Annual Technical Conference    165

https://github.com/GLaDOS-Michigan/Sift
https://github.com/GLaDOS-Michigan/Sift
https://github.com/microsoft/ivy/blob/master/doc/examples/sht/trans.md
https://github.com/microsoft/ivy/blob/master/doc/examples/sht/trans.md
http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/


[67] M. Zou, H. Ding, D. Du, M. Fu, R. Gu, and H. Chen. Us-
ing concurrent relational logic with helpers for verifying
the atomfs file system. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19,
page 259–274, New York, NY, USA, 2019. Association
for Computing Machinery.

166    2022 USENIX Annual Technical Conference USENIX Association



Faith: An Efficient Framework for Transformer Verification on GPUs

Boyuan Feng, Tianqi Tang, Yuke Wang, Zhaodong Chen, Zheng Wang, Shu Yang,
Yuan Xie, and Yufei Ding

University of California, Santa Barbara
{boyuan,tianqi_tang,yuke_wang, chenzd15thu, zheng_wang, shuyang1995,

yuanxie, yufeiding}@ucsb.edu

Abstract
Transformer verification draws increasing attention in ma-
chine learning research and industry. It formally verifies the
robustness of transformers against adversarial attacks such as
exchanging words in a sentence with synonyms. However, the
performance of transformer verification is still not satisfac-
tory due to bound-centric computation which is significantly
different from standard neural networks. In this paper, we
propose Faith1, an efficient framework for transformer verifi-
cation on GPUs. We first propose a semantic-aware compu-
tation graph transformation to identify semantic information
such as bound computation in transformer verification. We
exploit such semantic information to enable efficient kernel
fusion at the computation graph level. Second, we propose a
verification-specialized kernel crafter to efficiently map trans-
former verification to modern GPUs. This crafter exploits
a set of GPU hardware supports to accelerate verification-
specialized operations which are usually memory-intensive.
Third, we propose an expert-guided autotuning to incorpo-
rate expert knowledge on GPU backends to facilitate large
search space exploration. Extensive evaluations show that
Faith achieves 2.1× to 3.4× (2.6× on average) speedup over
state-of-the-art frameworks.

1 Introduction
Transformers [8, 21, 25, 32, 33, 38, 45] is an important cate-
gory of neural networks (NNs) in machine learning research
and industry. Transformers are first designed for natural lan-
guage processing (NLP) and have achieved state-of-the-art
accuracy across many NLP tasks such as neural machine trans-
lation [1, 26, 31] and sentiment analysis [7, 37, 48]. Due to its
success, transformers have been widely used in many indus-
trial products such as Facebook for hate speech detection [10]
and Alexa for question answering [14]. Recently, transformers
also show extraordinary accuracy for many computer vision
tasks [9, 19, 44, 47, 55] and become the new trending model.

1The project is open-sourced at https://github.com/BoyuanFeng/Faith

Ice is Cold

Original Input

Ice is Cold

Ice is         Cold

Frigid

Frosty
Transformer
Verification

0.4 ≤  P(“Pos”) ≤ 0.8
 0.1 ≤ P(“Neg”) ≤ 0.39

Prediction Bounds

Figure 1: Illustration of transformer verification. Here, all
perturbed inputs share the same prediction “positive” since
the lower bound probability for “positive” (0.4) is higher than
the upper bound probability for “negative” (0.39).

However, similar to prior NNs, transformers are also vulnera-
ble to adversarial attacks that add imperceptible perturbations
to input data for maliciously changing transformer predictions
[2, 3, 16, 17, 22]. One specific example of adversarial attack
is to exchange words (e.g., cold) in a sentence with carefully
selected synonyms (e.g., frigid). This vulnerability may result
in security concerns for real-world applications. For example,
an intentionally crafted hate speech may spread widely on
social network.

Transformer verification has been proposed to formally
verify the robustness of a transformer against adversarial
attacks [4, 18, 35, 42]. Given an input data x and a trans-
former F(x), transformer verification identifies a maximal
bound ε, such that all inputs x′ that are “close” to the input
data (i.e., |x′− x| ≤ ε) cannot “mislead” the transformer (i.e.,
F(x) = F(x′)). A larger ε indicates better robustness. Early
verification approaches [18] enumerate all possible inputs x′

that satisfy |x′−x| ≤ ε and conduct inference on each input to
check predictions. These approaches show prohibitive latency
due to the large number of inputs x′. Recent transformer verifi-
cation [35, 42] avoids such enumeration by providing a single
pair of lower and upper bounds for transformer predictions
over all these inputs, as illustrated in Fig. 1. We can verify the
robustness of a transformer if the lower bound of the correct
prediction is higher than the upper bound of other predictions.
The key computing pattern is a bound-centric computation,
which computes a pair of inequality bounds for individual
neurons. It first represents the input perturbations with in-
equality bounds over input neurons (e.g., x− ε ≤ x′ ≤ x+ ε)
and then propagates these bounds across layers to generate

USENIX Association 2022 USENIX Annual Technical Conference    167



Faith Compiler

Faith
Pytorch-based 

Frontend

Semantic-aware 
Computation Graph 
Transformation (§3)

Semantic-aware 
Kernel Fusion

Bound-aware 
Cross-layer Fusion

Pragma-guided  
Transformation

Verification-specialized
Kernel Crafter (§4)

Parallel-aware 
Thread Mapping

Dependency-aware 
Partial Reduction

Symmetry based 
Data Reuse

Semantic-equivalent 
transformation

Expert-guided 
Autotuning (§5)

 Rule-based Expert 
Knowledge Metafile

Expert-guided Cost 
Model

Efficient Schedule 
Exploration

Parameterized Kernel 
Configuration

GPU Hardware 
Specification

Semantic-aware 
Computation Graph 
Transformation (§3)

s

S
Semantic-aware 

Kernel Fusion

Bound-aware 
Cross-layer Fusion

Verification-specialized Kernel Crafter (§4)

s Expert-guided 
Autotuning (§5)

Verification 
Compute Pattern 

Categorization

Sharing-oriented 
Workload 
Scheduling

Broadcast-aware
Super Threading

Workload-adaptive 
Reduction

Rule-based Expert 
Knowledge 

Metafile

Expert-guided
Cost Model

Parameterized Kernel 
Configuration GPU Hardware 

Specification

Faith Framework

Figure 2: Overview of Faith Framework

the bounds for transformer predictions.
While transformer verification can formally verify the

robustness of transformers, it also introduces high latency
and limits its applications. In particular, transformer verifica-
tion usually leads to second-level latency [35] in contrast to
millisecond-level latency of standard transformers. We iden-
tify three challenges behind efficient transformer verification.

Lack of performance optimization over transformer
verification computing patterns. Existing transformer verifi-
cations usually utilize the existing deep learning (DL) frame-
works, such as PyTorch [30], which are designed for standard
NNs. However, transformer verification shows significantly
different computing patterns from standard NNs due to the
nature of bound-centric computation. For example, when com-
puting the upper bound of an output neuron, transformer ver-
ification needs to use the upper bound of the input neuron
if the weight is positive; and the lower bound of the input
neuron if negative. Straightforwardly deploying transformer
verification to the existing DL frameworks usually leads to
poor performance.

Lack of framework support for verifying diverse NN
layers. Transformer verification shows large diversity in the
bound computation for different types of NN layers such
as projection layer with only perturbed features and self-
attention layer with both perturbed weights and features. Even
for the same type of NN layers, diverse upper bounds and
lower bounds may be designed which requires different im-
plementations. For example, Crown [52] utilizes two ReLU
bound designs for generating more precise bounds for verifica-
tion, where these bounds are selected dynamically according
to the range of input neurons. This diversity makes it challeng-
ing to hand optimize GPU kernels in transformer verification.

Lack of verification-specialized adaptability towards
modern GPUs. Transformer verification involves abundant
memory-intensive operations such as reduction and broadcast.
These memory-intensive operations can usually be signifi-
cantly accelerated with rich architecture supports (e.g., warp-
level synchronized reduction) in modern GPUs. However,
existing DL frameworks usually only focus on computation-
intensive operations (e.g., convolution) and ignore abundant
optimization opportunities for memory-intensive operations.
This leads to significant overhead in transformer verification
with a large number of memory-intensive operations.

In this paper, we build Faith, the first framework for effi-
cient transformer verification on GPUs. We show an overview

of the Faith framework in Fig. 2. First, we propose semantic-
aware computation graph transformation to fully exploit
fusion opportunities in transformer verification at the compu-
tation graph level. Our key insight is that transformer verifi-
cation shows significantly different computing patterns (e.g.,
two kernels for computing lower and upper bounds involve
similar input data) from standard NNs. These computing pat-
terns usually exhibit abundant data reuse opportunities. By
exploiting such semantic information, Faith can fully harvest
performance potential in transformer verification and achieve
significant speedup over existing DL frameworks.

Second, we propose a verification-specialized kernel
crafter to optimize transformer verification towards modern
GPUs. Transformer verification contains abundant memory-
intensive operations, such as elementwise computation, re-
duction, and broadcast. These operations may have complex
dependencies and lead to performance bottlenecks. To this
end, Faith automatically exploits a set of GPU architecture
supports to improve the parallelism of such operations. More-
over, Faith introduces a set of optimizations to effectively
mitigate memory access and improve performance by exploit-
ing GPU memory hierarchies.

Third, we propose expert-guided autotuning to efficiently
search optimized implementations in the large search space.
Existing DL frameworks [6, 54] usually conduct autotuning
in a hardware-agnostic approach where an ML-based cost
model is deployed to implicitly learn hardware impact over
performance from scratch. Instead, we propose a rule-based
expert knowledge metafile to explicitly provide a small set of
hardware characterizations and an expert-guided cost model
to incorporate the expert knowledge. Faith exploits these two
components to achieve efficient schedule exploration in the
large design space of transformer verification.

In summary, this paper makes the following contributions:

• We build Faith, the first efficient framework to optimize
the performance of transformer verification on GPUs.

• We propose a set of verification tailored system optimiza-
tions. In particular, we design a semantic-aware com-
putation graph transformation to identify and exploit
novel fusion opportunities for transformer verification,
a verifier-specialized kernel crafter to effectively map
transformer verification kernels to GPU backends, and
an expert-guided autotuning to incorporate a set of ex-
pert knowledge on modern GPU architecture to guide
large design space exploration.

• Extensive experiments show that Faith achieves up to
3.4× speedup (2.6× on average) over state-of-the-art
frameworks.

2 Related Work and Motivation
In this section, we first introduce the background of trans-
former verification (§2.1). Then, we discuss related work
on DL frameworks (§2.2). Finally, we present opportunities

168    2022 USENIX Annual Technical Conference USENIX Association



Input x

Output y

l u

Input x

Output y

l u

Input x

Output y

l u

(b) (c) (d)(a) yi

yj

NN Pred

Bound
yi > y + cj

Input x

Output y

l u

Input x

Output y

l u

Input x

Output y

l u

(d) (e) (f)(a) yi

yj

NN Pred

Bound
yi > y + cj

y = 0

Xs    lb

Xs    ub

Mat. 
Mul.

Mat. 
Mul.

Elem. 
Add.

yss    lb

Ts    3

Ts    4

Wss    pos

W

Elem. Comp.
 (>0)

Elem. Comp.
 (<0)

Wss    neg

Mat. 
Mul.

Mat. 
Mul.

Elem. 
Add.

yss    lb

Ts    1

Ts    2

Xs    lb

Xs    ub

Mat. 
Mul.

Mat. 
Mul.

Elem. 
Add.

yss    ub

Ts    3

Ts    4

Wss    pos

W

Elem. Comp.
 (>0)

Elem. Comp.
 (<0)

Wss    neg

Mat. 
Mul.

Mat. 
Mul.

Elem. 
Add.

yss    lb

Ts    1

Ts    2

(c)

xs1

xs2

ys1

ys2

zs1

zs2

x  ϵ [-1,2] 1

x  ϵ [0,1] 2

2

-1

y  >= 2x  + x
y  <= 2x  + x
y  ϵ [-2,5] 

1 1 2

1 1 2

1

y  >= 2x  - x
y  <= 2x  - x
y  ϵ [-1,2] 

2 1 2

2 1 2

2

ReLU(0,y )

ReLU(0,y )
1

2

z   >= 0
z   <=    (y  + 2)
z  ϵ [0,5] 

1

1 1

1

5
7
_

z   >= 0
z   <=    (y  + 1)
z   ϵ  [0,2] 

2

2 2

2

2
3
_

(b)

Input x

Output y

l

Input x

Output y(d) (e)

(a) y i

y j

Pred

Bound
y i > y + cj

y = 0

Xs    lb

Xs    ub

Mat. 
Mul.

Mat. 
Mul.

Elem. 
Add.

yss    lb

Ts    1

Ts    2

Wss    pos

W

Elementwise 
Comp. (>0)

Elementwise 
Comp. (>0)

Wss    neg

Mat. 
Mul.

Mat. 
Mul.

Elem. 
Add.

yss    ub

Ts    3

Ts    4

(c)

xs1

xs2

ys1

ys2

zs1

zs2

x  ϵ [-1,2] 1

x  ϵ [0,1] 2

2

-1

y  >= 2x  + x
y  <= 2x  + x
y  ϵ [-2,5] 

1 1 2

1 1 2

1

y  >= 2x  - x
y  <= 2x  - x
y  ϵ [-1,2] 

2 1 2

2 1 2

2

ReLU(0,y )

ReLU(0,y )

1

2

z   >= 0
z   <=    (y  + 2)
z  ϵ [0,5] 

1

1 1

1

5
7
_

z   >= 0
z   <=    (y  + 1)
z   ϵ  [0,2] 

2

2 2

2

2
3
_

(b)

x ux lx ux

Input x

Output y(f)

lx ux

y = k   x + b1*1

Input x

Output y(g)

lx ux

y = k   x + b*1 1

(a)

Input x

Output y

l

Input x

Output y

y i

y j

Pred

Bound
y i > y + cj

y = 0

Xs    lb

Xs    ub

Mat. 
Mul.

Mat. 
Mul.

Elem. 
Add.

yss    lb

Ts    1

Ts    2

Wss    pos

W

Elementwise 
Comp. (>0)

Elementwise 
Comp. (<0)

Wss    neg

Mat. 
Mul.

Mat. 
Mul.

Elem. 
Add.

yss    ub

Ts    3

Ts    4

xs1

xs2

ys1

ys2

zs1

zs2

x  ϵ [-1,2] 1

x  ϵ [0,1] 2

2

-1

y  >= 2x  + x
y  <= 2x  + x
y  ϵ [-2,5] 

1 1 2

1 1 2

1

y  >= 2x  - x
y  <= 2x  - x
y  ϵ [-1,2] 

2 1 2

2 1 2

2

ReLU(0,y )

ReLU(0,y )

1

2

z   >= 0
z   <=    (y  + 2)
z  ϵ [0,5] 

1

1 1

1

5
7
_

z   >= 0
z   <=    (y  + 1)
z   ϵ  [0,2] 

2

2 2

2

2
3
_

x ux lx ux

Input x

Output y

lx ux

y = k   x + b1*1

Input x

Output y

lx ux

y = k   x + b*1 1

(b) (c)

(d) (e) (f) (g)

Figure 3: Illustration of transformer verification. (a) model prediction and verification bound; (b) an example of verifying a
model with a fully connected layer and a ReLU layer; (c) computation graph of projection layer in transformer verification;
(d)-(e) two types of bounds for ReLU layer; (f)-(g) two types of bounds for the Tanh layer.

and challenges for efficient transformer verification on GPUs
(§2.3).

2.1 Transformer Verification
Standard Transformers. Transformer [8, 25, 38, 45] takes

a sentence as input and predicts a label for this sentence (e.g.,
hate speech or benign speech). Given a sentence with Length
tokens, we usually first map each token to a pretrained embed-
ding [28] of dimension Dim_in and represent the feature of a
sentence as a tensor of shape Length×Dim_in. For a batch
of sentences, we have input feature X as a tensor of shape
Batch_size×Length×Dim_in, where Batch_size is the num-
ber of sentences in a batch. Since the number of tokens varies
across sentences, Length is set to the maximal number of
tokens over all sentences in a batch.

A transformer has three types of operators. The first
type is the elementwise operator that applies computation
on individual feature scalars. For example, on each scalar
x in the input feature, we have ReLU(x) = max(0,x) and
Tanh(x) = e2x−1

e2x+1 . The second type is the matrix multiplica-
tion operator that takes an input tensor X , a weight matrix
W , and generates an output tensor Y = XW . We note that
these two types are similar to operators in prior neural net-
works. The third type is the dot product operator, which is
the key idea behind the transformer model. Informally speak-
ing, it takes two input tensors Q and K of the same shape
Batch_size×Length×Dim_in. Then, it computes an output
tensor Y = QT K of shape Batch_size×Length×Length to
measure the pairwise similarity between individual words
in a sentence. This similarity can significantly improve the
learning capacity of the model and the prediction accuracy.

Adversarial Attack on Transformers. Adversarial attack
[2, 3, 15, 16, 17, 22] identifies small perturbations to input
data X that can change the transformer prediction. Formally,
consider a transformer f (·), an input sentence X , and a toler-
able input perturbation bound ε, where the transformer cor-

rectly classifies X as a label i (e.g., hate speech). In other
words, the sentence has label i and yi > y j for any j ̸= i where
yi is the predicted probability. Adversarial attack identifies a
slightly perturbed sentence X ′ = X +η such that η ∈ B(0,ε)
and there exists a label j (e.g., benign speech) such that yi < y j.
This perturbed sentence X ′ is an adversarial example.

Transformer Verification. Transformer verification [4, 18,
35, 42] computes a maximum bound ε and mathematically
proves that there does not exist an adversarial example X ′

within the ε-ball of X (i.e., (X ′ − X) ∈ B(0,ε)). Verifying
transformers is challenging since transformers are essentially
non-convex functions. The key idea of transformer verifica-
tion is to utilize linear bounds as an approximation to NN
predictions. We illustrate transformer verification at the model
prediction layer in Fig. 3(a). Given these linear bounds, trans-
former verification can simply check if the predictions in-
sides the bounds satisfy certain linear requirements, such as
yi > y j + c, where c is a positive number. As illustrated in
Fig. 3(a), this bound-based approach is sound since the linear
bound covers the non-convex area of NN predictions.

We show an example of bound-centric computation of trans-
former verification in Fig. 3(b). Consider a fully connected
layer Y [ j] = ∑

n
i=1 W [ j, i] ·X [i] where Y [ j], W [ j, i], and X [i] are

scalars. Here, we skip the index for batch size and length for
notation simplicity. A formal summary of notations can be
found in Table 1. For each neuron X [i], there is a lower and a
upper bound

X [i]≥ Xlb[i]+Xlw[i]∗ ε⃗, X [i]≤ Xub[i]+Xuw[i]∗ ε⃗

where Xlb[i] and Xub[i] are scalars, Xlw[i], Xuw[i], and ε⃗ are
vectors. For the input neurons, we have Xlb[i] = Xub[i] = X [i],
Xlw[i] and Xuw[i] are one-hot vectors with 1 at the index i and
0 at other indices. Given this linear bound, we can compute
concretized bounds for each neuron as

Xl [i] = Xlb[i]− ε∗ ||Xlw[i]||, Xu[i] = Xub[i]+ ε∗ ||Xuw[i]|| (1)

where || · || computes the norm with reduction operations.

USENIX Association 2022 USENIX Annual Technical Conference    169



Table 1: Notations in transformer verification.

W Transformer weights. Shape: Dim_in×Dim_out
X Input feature tensor. Shape: Batch_size×Length×Dim_in

Xlb, Xub
The tensor of lower and upper bound bias of input features.
Shape: Batch_size×Length×Dim_in

Xlw, Xuw
The tensor of lower and upper bound weights of input
features. Shape: Batch_size×Length×Dim_in×Dim_out

Xl , Xu
The tensor of concretized lower and upper bounds of input
features. Shape: Batch_size×Length×Dim_in

When computing the bounds for output neuron Y [ j], we
note that bound computation depends on the sign of weights
W [ j, i]. In particular, we have upper bounds Yub[ j] as

Y [ j]≤Yub[ j]+Yuw[ j]∗ ε⃗

=( ∑
W [ j,i]≥0

W [ j, i] ·Xub[i]+ ∑
W [ j,i]<0

W [ j, i] ·Xlb[i])

+( ∑
W [ j,i]≥0

W [ j, i] ·Xuw[i]+ ∑
W [ j,i]<0

W [ j, i] ·Xlw[i]))∗ ε⃗

(2)

The lower bounds can be computed in a similar way. This
bound computation (Eq. 2) is significantly different from stan-
dard NN computation since it explicitly considers the sign of
weights. Previous transformer verification directly exploits
the standard DL frameworks to build a computation graph
(Fig. 3(c)) for computing bounds, which leads to inefficient
memory access and computation overhead. We will discuss
the opportunities and challenges of efficient transformer veri-
fication in §2.3.

For the same NN layer, diverse bound computation designs
may still be developed to provide tighter bounds on NN predic-
tions. We illustrate two types of bounds for the ReLU layer in
§2(d)-(e) and two types of bounds for the Tanh layer in §2(f)-
(g). A tighter bound (i.e., less space between linear bounds and
ReLU function) is preferred to provide a better linear bound
approximation to NN prediction. For example, consider the
concretized lower bound Xl [i] and upper bound Xu[i] for an
input neuron X [i], when we have abs(Xl [i])> abs(Xu[i]), lin-
ear bound in Fig. 3(d) is preferred over the linear bound in
Fig. 3(e) since the former one provides a tighter approxima-
tion. This diversity in bound design adds more complexity to
developing frameworks for transformer verification.

2.2 Deep Learning Frameworks on GPUs
GPUs have been widely exploited to accelerate deep learning
workload [13, 39, 40, 46, 49]. Efficiently mapping deep learn-
ing workloads to the GPU computing and memory hierarchy
is usually the key to improve performance [11, 23, 41, 50, 51].
GPU computing hierarchy contains threads, warps, and blocks
[29]. Each block has multiple warps and each warp has exactly
32 threads that compute with single-instruction-multiple-data
(SIMD). GPU memory can be generally treated as a hierarchy
of registers, shared memory, and global memory. Accessing
registers is much faster than accessing shared memory, which
is faster than accessing global memory. Each thread can only

0% 20% 40% 60% 80% 100%

20

8

Latency Breakdown

Dot Product Tanh ReLU Dense Softmax Other

Figure 4: Latency breakdown of transformer verification on
sentences with length 8 and 20. Here, we show the latency of
verifying individual operators such as dot product and Tanh.

access its own registers and threads in a block cannot access
shared memory from other blocks.

Many DL frameworks [6, 30, 54] have been developed
recently to efficiently support NN workload on GPUs. Early
works such as PyTorch [30] take user-specified computation
graphs for neural networks and maps towards hand-tuned
kernels on backend platforms (e.g., GPUs). However, this
approach usually builds upon kernels developed for standard
NNs and cannot efficiently support transformer verification
computation. Recent works, such as TVM [6] and Ansor [54],
can automatically generate such backend kernels based on
a set of heuristic rules on fusion and operator optimizations.
However, these heuristic rules are developed specifically for
standard NNs. Naively incorporating these rules into trans-
former verification may lead to unsatisfactory performance
due to the significant difference in computation patterns. For
example, Fig. 3(c) shows the computation graph for utiliz-
ing the kernels of standard NNs on transformer verification.
This approach leads to heavy sparsity and redundant memory
access. In particular, only half of the elements in Wpos and
Wneg are non-zero values, leading to 50% sparsity. To this end,
we build Faith, the first framework for efficient transformer
verification on GPUs.

2.3 Opportunities and Challenges
In this section, we introduce optimization opportunities and
challenges in enabling efficient transformer verification.

We show the latency of verifying individual transformer
operators in Fig. 4. We profile this latency breakdown based
on the state-of-the-art transformer verification implemented
with PyTorch [30]. We have three major observations. First,
dot product accounts for around 45% latency. Dot product
takes two input tensors Q and K where both inputs may be
perturbed during adversarial attack, which is significantly dif-
ferent from matrix multiplication that only one input (i.e.,
feature X) may be perturbed. This adds complexity to the
verification of dot product operators [35] and longer latency.
Second, elementwise operators such as Tanh and ReLU ac-
count for a large portion of latency in transformer verification.
This is significantly different from standard NNs where el-
ementwise operators can usually be fused with remaining
operators and show low latency. Third, we observe that ma-

170    2022 USENIX Annual Technical Conference USENIX Association



W

Xs    lb

Xs    ub

Ws

Xs    lb

Xs    ub

neg

Wspos

Ts

Ts    3

Ts    4

2

Ts1
Ys    lb

Ys    ub

Global Global Global GlobalElem.
Comp.

Mat.
Mul.

Elem.
Add.

W

Xs    lb

Xs    ub

Ys    lb

Ys    ub

Global Global

W

Xs    lb

Xs    ub

Shmem

Ws

Xs    lb

Xs    ub

neg

Wspos

Register

(a)

(b) Data
Load

Elem.
Comp.

Add
& Mul

W

Xs    lb

Xs    ub

Ws

Xs    lb

Xs    ub

neg

Wspos

Ts

Ts    3

Ts    4

2

Ts1
Ys    lb

Ys    ub

Global Global Global GlobalElem.
Comp.

Mat.
Mul.

Elem.
Add.

W

Xs    lb

Xs    ub

Ys    lb

Ys    ub

Global Global

W

Xs    lb

Xs    ub

Shmem

Ws

Xs    lb

Xs    ub

neg

Wspos

Register

(a)

(b) Data
Load

Elem.
Comp.

Add
& Mul

W

Xs    lb

Xs    ub

Ws

Xs    lb

Xs    ub

neg

Wspos

Ts

Ts    3

Ts    4

2

Ts1
Ys    lb

Ys    ub

Global Global Global GlobalElem.
Comp.

Mat.
Mul.

Elem.
Add.

W

Xs    lb

Xs    ub

Ys    lb

Ys    ub

Global Global

W

Xs    lb

Xs    ub

Shmem

Ws

Xs    lb

Xs    ub

neg

Wspos

Register

(a)

(b) Data
Load

Elem.
Comp.

Add
& Mul

Figure 5: Illustration of Semantic-aware Kernel Fusion. We
show the memory access pattern before and after applying
semantic-aware kernel fusion in (a) and (b), respectively.

trix multiplication and softmax accounts for certain latency.
Opportunities: There are two major opportunities to ac-

celerate transformer verification. The first opportunity is to
exploit the semantics of transformer verification to minimize
redundant memory access and computation. Our investigation
shows that transformer verification has rich semantic infor-
mation (e.g., 50% sparsity in Wpos and Wneg), which can be
exploited to accelerate transformer verification. The second
opportunity is to exploit the modern GPU architectures to
efficiently support diverse computing patterns in transformer
verification. One example is to accelerate abundant reduction
computation in Eq. 1.

Challenges: Although these ideas sound promising, the
efforts to realize the benefits are non-trivial due to several
challenges. First, transformer verification shows significantly
different computing patterns from standard NNs. Straight-
forwardly borrowing optimizations for standard NNs such
as kernel fusion can hardly bring similar benefits. Second,
while exploiting GPU architecture supports may bring bene-
fits, we still need specialized designs as a synergy between
architecture and specialized computing patterns. Moreover,
exploiting advanced GPU architecture supports will add more
complexity to the search space of optimized kernels which
motivates novel autotuning optimizations.

3 Semantic-aware Computation Graph Trans-
formation

In this section, we propose semantic-aware computation
graph transformation for efficient transformer verification.
We first propose semantic-aware kernel fusion to fuse ker-
nels within a transformer layer. It contains two novel types
of fusions – weight-paring based fusion and double bound
based fusion. Then, we propose bound-aware cross-layer
fusion to efficiently fuse kernels across transformer layers.

3.1 Semantic-aware Kernel Fusion

The semantic-aware kernel fusion fuses operators in a single
transformer layer to minimize memory access. Different from
standard transformers, a single layer in transformer verifica-
tion usually involves multiple kernels to compute the bounds
adaptively to the sign of weights, as discussed in §2.1. Exist-
ing transformer verification [35, 42] usually uses a set of GPU
kernels developed for standard transformers to serve the need
for transformer verification. We illustrate the memory access
pattern of this baseline approach in Fig. 5(a). These kernels
need to independently read data from the global memory of
GPUs and lead to heavy memory overhead. Moreover, these
kernels fail to exploit semantic information in transformer ver-
ification and show heavy redundancy during memory access.
For example, baseline approaches usually first split the weight
matrix W into two weight matrices Wpos and Wneg according
to weight signs and then use each matrix for computing lower
and upper bounds. Here, these two split matrices Wpos and
Wneg have the same shape of M×N as the weight matrix W .
However, reading these matrices independently requires load-
ing 2MN scalars, which leads to redundant memory access.

We propose semantic-aware kernel fusion to minimize such
memory overhead by exploiting transformer verification se-
mantics and GPU memory hierarchies (i.e., global memory,
shared memory, and registers). We illustrate our semantic-
aware kernel fusion in Fig. 5(b). Our key insight is to first
load data collaboratively from global memory and only dis-
tinguish data semantics (e.g., Wpos and Wneg) at the register
level to mitigate redundant memory access. In particular, we
identify weight-paring based fusion and double bound based
fusion as the two most important semantics in transformer
verification.

Weight-pairing based fusion. We first propose weight-
paring-based fusion to mitigate redundant memory access
when reading Wpos and Wneg. Our key observation is that
the zero values in Wpos are exactly the position of non-zero
values in Wneg. Formally, we have Wpos +Wneg =W . To this
end, instead of using an operator to split weight matrix W
into Wpos and Wneg, we first load the matrix W from global
memory to shared memory without distinguishing the sign of
individual scalars. Then, we split the weight matrix W into
Wpos and Wneg when loading data from shared memory to
registers, as illustrated in Fig. 5(b). In our design, we only
need to load MN scalars from global memory, which leads to
significantly reduced memory access compared with loading
2MN scalars in baseline approaches.

Double bound based fusion. Our second optimization
is a double-bound-based fusion. One important semantics
in transformer verification is to multiply the same weight
matrix with lower and upper input bounds (e.g., Xlb and Xub)
to compute the output bounds (e.g., Ylb and Yub in Fig. 5(b)).
Meanwhile, when computing the bound for output neurons,
we usually need to read both lower and upper bounds for

USENIX Association 2022 USENIX Annual Technical Conference    171



computation. For example, when computing the upper bound
of output neurons, we need to read upper bound when weight
is positive and read lower bound when weight is negative.
Suppose the input bounds Xlb and Xub have shape N ×K, we
need to load 4NK scalars during transformer verification.

Instead, we propose to fuse the computation of lower and
upper bounds such that the lower and upper bounds only need
to be loaded once to save memory access. In particular, we
first use threads across GPU blocks to collaboratively load
tiles of input matrices from global memory to shared mem-
ory, which can be accessed by different GPU threads. Here,
we use shared memory to enable data sharing across GPU
threads since different threads may multiply the same input
bound scalar with different weight scalars (e.g., multiplying
the first row in Xlb and Xub with various columns in W ). Then,
each thread loads independent data from shared memory to
registers and directly accumulates output bounds Ylb and Yub
in registers. We note that this design further improves perfor-
mance by eliminating the redundant global memory access
during generating Ylb and Yub.

3.2 Bound-aware Cross-layer Kernel Fusion

Bound-aware cross-layer kernel fusion fuses the verification
of kernels across multiple transformer layers to further mini-
mize memory access. Existing frameworks for accelerating
standard NNs usually rely on a set of rules to fuse kernels.
One popular example is to fuse convolution kernel with the
following elementwise kernels (e.g., ReLU kernel for ele-
mentwise comparison with 0). However, these rules usually
cannot be applied to fuse kernels for transformer verification.
For example, verifying the ReLU kernel requires first a con-
cretization operation with a global reduction to compute the
concretized bounds for a neuron and then applies different
computation according to the concretized bounds (see §2.1).

To this end, we propose a set of rules for cross-layer kernel
fusion in transformer verification. In particular, we recognize
three types of operators. The first type is input-reduction-
compute that conducts reduction or concretization operation
on the input data before computation. One example is veri-
fying nonlinear activation functions such as ReLU and Tanh
that requires concretized bounds to apply different computa-
tion. Another example is the softmax operator that computes
a global summation for normalization. The second type is
strict-elementwise that contains only elementwise computa-
tion and does not require concretization or global summation.
The third type is dense-computation such as matrix-matrix
multiplication kernels. In our cross-layer kernel fusion design,
we can always fuse a dense operator with its following strict-
elementwise operator. However, we cannot fuse dense opera-
tor with input-reduction-compute due to the concretization or
reduction operation. In addition, we can fuse input-reduction-
compute with its following strict-elementwise operator. Fi-
nally, we can fuse multiple strict-elementwise operators (e.g.,

elementwise addition and multiplication).

4 Verification-specialized Kernel Crafter

In this section, we propose a verification-specialized kernel
crafter to efficiently map transformer verification towards
modern GPUs. We exploit intrinsic properties (e.g., abundant
reduction operations) of transformer verification which are
significantly different from standard transformer operators.
One major challenge in building the kernel crafter is the large
diversity in verification designs across operators (see Fig. 3(d)-
(g)). To tackle this challenge, we first propose a verification
pattern categorization to abstract such diversity and provide
a small set of computing patterns over verification of diverse
operators. Then, we propose three optimizations to efficiently
support these computing patterns of transformer verification.

4.1 Verification Pattern Categorization
While there are diverse bound designs across different opera-
tors, we characterize transformer verification into four typical
computing patterns. Based on this characterization, Faith can
abstract the diversity in bound designs into a combination of
computing patterns and exploit optimizations towards individ-
ual computing patterns for improving performance. Similar to
standard NNs, one important computing pattern is generalized
matrix multiplication (GEMM) when verifying projection lay-
ers and fully connected layers. Matrix multiplication is the ma-
jor bottleneck in standard NNs and has been well-optimized
by existing DL frameworks. Besides GEMM, transformer ver-
ification introduces three other time-consuming computing
patterns, which are highlighted as follows:

The first computing pattern is generalized vector reduc-
tion. One typical source of generalized vector reduction is
concretization that computes the norm and generates the con-
cretized lower and upper bounds for individual neurons (see
Eq. 1). Formally, consider a matrix X = [⃗x1, x⃗2, · · · , x⃗m] ∈
Rm×n where x⃗i = [xi,1,xi,2, · · · ,xi,n] are vectors of length
n. The generalized vector reduction computes an output
Y = [y1,y2, · · · ,yn] ∈ Rn that satisfies

yi = reduction(⃗xi) =
n

∑
j=1

f (xi, j), i ∈ {1,2, · · · ,m} (3)

Here, f (x) is an elementwise function that takes a scalar input
and generates a scalar output. One example for f (x) is x2

when computing the L2 norm for input vectors.
The second computing pattern is generalized elementwise

multiplication which appears frequently when verifying ele-
mentwise operators such as ReLU and Tanh. Formally, con-
sider a concretized lower bound l ∈Rm×n and an upper bound
u ∈ Rm×n where li, j and ui, j are concretized lower and upper
bounds for the neuron at position (i, j). Let X ∈ Rm×n be
the input values. The generalized elementwise multiplication

172    2022 USENIX Annual Technical Conference USENIX Association



computes an output Y ∈ Rm×n that satisfies

yi, j = f (li, j,ui, j)∗ xi, j, i ∈ {1,2, · · ·m}, j ∈ {1,2, · · · ,n} (4)

Here, transformer verification introduces a function f (·, ·)
that takes the lower and upper bounds for an input neuron and
computes a scaling parameter which is multiplied with the
input value of this neuron. One example is the tangent line
between the concretized lower and upper bounds when veri-
fying Tanh layer, which accounts for more than 20% latency
as we profiled in Fig. 4. Another example is f (li, j,ui, j) = 1
when verifying ReLU layer and li, j is non-negative. While
f (·, ·) shows large diversity across operators, we stress that
the same computing pattern is shared across these operators
such that a uniform framework can be applied to improve
performance.

The third computing pattern is generalized scalar-vector
multiplication. This computing pattern exists widely when
verifying dot products in the self-attention layer of transform-
ers. This computing pattern accounts for more than 40%
latency in transformer verification, as discussed in Fig. 4.
Formally, consider a vector S = [s1,s2, · · · ,sm] ∈ Rm and a
matrix X = [⃗x1, x⃗2, · · · , x⃗m] ∈ Rm×n, where si are scalars and
x⃗i = [xi,1,xi,2, · · · ,xi,n] are vectors of length n. The general-
ized scalar-vector multiplication computes an output Y =
[⃗y1, y⃗2, · · · , y⃗n] ∈ Rn×n that satisfies

y⃗i = f (si)∗ x⃗i = [ f (si)∗ xi,1, f (si)∗ xi,2, · · · , f (si)∗ xi,n],

i ∈ {1,2, · · · ,m}
(5)

Here, f (·) is a function that takes a scalar input and generates
a scalar output.

Generability to diverse NN operators. Faith can effec-
tively support verifying diverse NN operators such as SiLU
and Leaky ReLU. Our key insight is that verifying diverse
NN operators usually share the same generalized comput-
ing pattern while the concrete computation formula might
be different. For example, SiLU(x) = x

1+e−x is an activation
function that has significantly different concrete computation
formula from ReLU(x) = max(0,x). However, both verifying
SiLU and ReLU can be treated as the generalized element-
wise multiplication (Eq. 4) and the same optimizations can
be applied to improve performance.

In the following sections, we first demonstrate a workload-
adaptive reduction to improve the performance of generalized
vector reduction (Eq. 3). We then propose a sharing-oriented
workload scheduling to improve the performance of general-
ized elementwise multiplication (Eq. 4). Finally, we demon-
strate broadcast-aware super threading to efficiently support
the generalized scalar-vector multiplication (Eq. 5).

4.2 Workload-adaptive Reduction
Transformer verification contains abundant reduction opera-
tions where a sequence of scalars are summed up into one
scalar. One common reduction operation is the concretiza-
tion operation that computes the concretized lower and upper

Xs0 Xs1 Xs15 Xs16 Xs Xs17 31 Xs0 Xs1 Xs15 Xs16 Xs Xs17 31

T0

T0

T0

0

0

0

3
0

 it
e

ra
ti

o
n

s

T00 T01 T015 T016 T017 T031

T00 T01 T015

T00

5
 ite

ratio
n

s

(a)
(b)

Xs0 Xs1 Xs Xs31 Xs0 Xs1 Xs15 Xs16 Xs Xs17 31

T0

T0

T0

0

0

0

3
2

 it
e

ra
ti

o
n

s

T00 T01 T015 T016 T017 T031

T00 T01 T015

T00

5
 ite

ratio
n

s

(a)
(b)

2

Figure 6: Illustration of Workload-adaptive Reduction. (a)
Sequential Mode; (b) Parallel Mode. Here, xi and Ti are the
i-th data and thread, respectively.

bounds for individual neurons, as discussed in §2. Another
common reduction operation is the softmax operation that is
applied in each self-attention layer for measuring the relation-
ship between individual words. These reduction operations
pose challenges between parallelism and data locality. One
baseline approach is to use a single thread to read and ac-
cumulate a sequence of scalars as illustrated in Fig. 6(a).
However, this approach usually leads to low parallelism and
fails to exploit abundant threads in GPUs. For example, we
need 32 iterations to accumulate 32 scalars. Another baseline
approach is to first split this sequence of scalars into multiple
chunks and allocate one thread to each chunk for accumula-
tion. Then, each thread writes the accumulated results for each
chunk to global memory and uses an additional thread to fi-
nally accumulate the sum of each chunk. While this approach
improves parallelism, it requires expensive global memory
access and high overhead.

Workload-adaptive Reduction with length n = 32. We
propose a workload-adaptive reduction to fully exploit GPU
memory hierarchies and the inter-register communication
functionalities. We illustrate our design in Fig. 6(b). Our
design achieves high parallelism by enabling multiple threads
for reduction simultaneously. Meanwhile, we avoid the expen-
sive data communication through global memory and exploit
only efficient registers. In particular, we use 32 threads (i.e., a
warp) to read these 32 scalars simultaneously from global
memory. Considering these 32 scalars are consecutive in
global memory, we can efficiently load them with 32 threads
through coalesced memory access. Then, we exploit the spe-
cialized instruction _shfl_down_sync to directly communi-
cate data in registers across individual threads. As illustrated
in the parallel mode of Fig. 6(b), our design involves only five
iterations of cross-thread data communication to generate the
final accumulated result, rather than the 32 iterations in the
sequential mode of Fig. 6(a).

Workload-adaptive Reduction with Arbitrary Length n.
For an arbitrary length n, one naive approach is to repeatedly
use 32 threads to reduce 32 scalars and then use 1 thread
to accumulate the final results. However, this approach may
lead to unnecessary communication across threads. Suppose
we are accumulating a vector of length n = 32k, we need 5
iterations for reducing every 32 scalars, leading to 5k itera-
tions in total for accumulating the vector. Instead, we propose

USENIX Association 2022 USENIX Annual Technical Conference    173



Xs0 Xs1 Xs15 Xs16 Xs Xs17 31

T00 T01 T015 T016 T017 T031

T00 T01 T015

T00

Xsslw0 Xss Xss Xss Xss Xsss
Global

Memory lw1 lw31 uw0 uw1 uw31

Xsslw0 Xss Xss Xss Xss Xsss
Shared

Memory lw1 lw31 uw0 uw1 uw31

Data Loading Phase1

T00 T01 T031

Xsl Xs
Shared

Memory u

Collaborative 
Reduction2 T00 T031

Independent 
Rescale3

Global
Memory Yslw0 Ysuw0 Yslw0 Ysuw0Ysuw0

Xsslw0 Xss Xss Xss Xss Xsss
Global

Memory lw1 lw31 uw0 uw1 uw31

Xsslw0 Xss Xss Xss Xss Xsss
Shared

Memory lw1 lw31 uw0 uw1 uw31

Data Loading Phase1

T00 T01 T031

Xsl Xs
Shared

Memory u

Collaborative 
Reduction2 T00 T031

Independent 
Rescale3

Global
Memory Yslw0 Ysuw0 Yslw0 Ysuw0Ysuw0

Xsslw0 Xss Xss Xss Xss Xsss
Global

Memory lw1 lw31 uw0 uw1 uw31

Xsslw0 Xss Xss Xss Xss Xsss
Shared

Memory lw1 lw31 uw0 uw1 uw31

Data Loading Phase1

T00 T01 T031

Xsl Xs
Shared

Memory u

Collaborative 
Reduction2

T00 T031 Independent 
Rescale3

Global
Memory Yslw0 Ysuw0 Yslw0 Ysuw0Ysuw0

Xsslw0 Xss Xss Xss Xss XsssGlobal
Memory lw1 lw31 uw0 uw1 uw31

Xsslw0 Xss Xss Xss Xss XsssShared
Memory lw1 lw31 uw0 uw1 uw31

Data Loading Phase1

T00 T01 T031

Xsl XsShared
Memory u

Collaborative 
Reduction2

T00 T031 Independent 
Rescale3

Global
Memory Yslw0 Ysuw0 Yslw0 Ysuw0Ysuw0

Figure 7: Illustration of sharing-oriented workload scheduling

a hybrid mode to minimize the number of iterations while
still achieving high parallelism. In particular, we first split
the input sequence into chunks where each chunk contains
32 scalars. Then, we use 32 threads to read one chunk simul-
taneously from global memory and accumulate individual
chunks iteratively. For example, the 1-st thread accumulates
the 1-st scalar in each chunk. Here, the accumulation is con-
ducted in registers and does not require communication across
threads. Finally, we apply a single 5-iteration reduction across
32 threads. In total, our design has only k+5 iterations which
are significantly less than 6k iterations in the naive approach.

4.3 Sharing-oriented Workload Scheduling
We propose sharing-oriented workload scheduling to effi-
ciently verify elementwise operators. Different from standard
transformers, verifying elementwise operators, especially non-
linear ones (e.g., ReLU and Tanh), accounts for a large portion
of latency in transformer verification as we discussed in Fig. 4.
Verifying these operators usually first requires computing a
concretized lower bound Xl and upper bound Xu for each input
neuron and then computes the bounds for the output neuron.
Different signs of concretized input bounds usually lead to
different computations for output bounds, which could eas-
ily lead to warp divergence and unsatisfactory performance.
Moreover, when computing the output bound weights (i.e.,
Ylw and Yuw) for a neuron, we need to repeatedly use the same
input bounds which leads to extra memory overhead.

To efficiently verify elementwise operators, we propose
sharing oriented workload scheduling to minimize memory
access and improve performance. Our key observation is that
the same set of input bound weights Xlw and Xuw are used to
compute the concretized input bounds Xl and Xu, while these
input weights are also used for computing the output bound
weights Ylw and Yuw. Instead of repeatedly loading Xlw and
Xuw, we can exploit the GPU memory hierarchies to cache Xlw
and Xuw and minimize the global memory access to improve
the overall performance.

As illustrated in Fig. 7, we use a set of T (=32) threads
to first (Step 1 ) load input bound weights Xlw and Xuw
from global memory to shared memory. Here, T is a hyper-

parameter to balance the parallelism and compute intensity,
which will be selected in §5. Then (Step 2 ), these T threads
load input bound weights from shared memory and collabora-
tively compute the concretized lower and upper bounds Xl and
Xu, following our design in §4.2. These concretized lower and
upper bounds are stored in shared memory which can be ac-
cessed by individual threads. Finally (Step 3 ), each thread in-
dependently loads individual Xlw and Xuw scalars from shared
memory and rescales according to the concretized bounds Xl
and Xu. Here, all threads in a warp are computing the output
bound weights for the same neuron and the concretized in-
put bounds are the same across threads in a warp. Thus, all
threads in a warp can apply the same rescaling computation
and avoid warp divergence. We also note that input bound
weights are only loaded once from global memory which
mitigates redundant global memory access.

4.4 Broadcast-aware Super Threading
We propose broadcast-aware super threading to efficiently
support generalized scalar-vector multiplication, as discussed
in Eq. 5. One naive approach is to use one thread to read a
scalar si and a vector x⃗i and computes the generalized scalar
vector multiplication f (si)⃗xi. However, this approach fails
to exploit the parallelism opportunities in generalized scalar
vector multiplication. Another approach is to split the vector
x⃗i into multiple chunks and use one thread for each chunk.
However, this approach requires threads to repeatedly read
the same scalar si from global memory and shows redundant
memory access.

Instead, we propose a broadcast-aware super threading to
achieve high parallelism while minimizing memory access.
We consider two types of super threading for generalized
scalar vector multiplication. The first type is a group of 32
threads (i.e., a warp for one vector). When using 32 threads
to compute the multiplication between a scalar si and a vector
x⃗i, these 32 threads can read the scalar si once, broadcast
across threads with modern GPU memory, and compute f (si)
simultaneously. Based on this broadcast, we can mitigate the
redundant memory access that each thread repeatedly read
the same scalar si. The second type is a group of 32t threads
(i.e., t warps for one vector). In this case, we use one warp
to read the scalar si and use shared memory to broadcast si
across warps.

5 Expert-guided Autotuning Optimization
Considering the large design space of optimization towards
GPUs, one natural question arises: Can we effectively incor-
porate hardware knowledge to find optimal operator imple-
mentation?

Existing works such as TVM [6] and Ansor [54] usually au-
totune operator implementations in a hardware-agnostic way.
In particular, these works extract implementation-specific pa-
rameters such as tiling size and use a cost model to implicitly

174    2022 USENIX Annual Technical Conference USENIX Association



learn the relationship between these parameters and perfor-
mance. However, there are two drawbacks in this hardware-
agnostic approach. First, there is a complex interaction be-
tween implementation and the hardware properties, which
could be hard to be implicitly learned by the cost model. For
example, existing works [12, 20, 24, 43] on hand-tuning large
matrix-matrix multiplication operators usually maximize the
number of registers in use to improve cache performance.
However, this optimization is also limited by the number of
registers for each GPU thread since exceeding such limitation
may lead to register spilling [27] and a significant perfor-
mance drop. A careful reasoning on the interaction between
the implementation-specific parameters (e.g., the number of
registers for caching data) and the hardware properties (e.g.,
the number of registers per thread) is usually necessary to max-
imize the performance. To tackle this challenge, we propose
an expert-guided autotuning optimization to automatically rea-
son both implementation-specific parameters and hardware
properties. In particular, we have the following designs.

Rule-based Expert Knowledge Metafile. We propose a
rule-based expert knowledge metafile to capture hardware
properties. This metafile only needs to be set once for each
type of GPUs and requires limited manual efforts. In partic-
ular, we consider two types of rules. The first type is hard
rules which represents hardware limitation such as the maxi-
mal shared memory size and the maximal number of registers
per thread. Violating these rules may lead to significant per-
formance drop such as register spilling. The second type is
soft rules which represents intrinsic trade-offs related to the
hardware properties such as the number of streaming multipro-
cessors (SM) and the number of threads per SM. One typical
design choice is the number of threads per block which will be
mapped to threads on the same SM. Allocating more threads
per block usually leads to better parallelism for the sub-task
assigned to a block. However, allocating more threads per
block may also hinder executing multiple blocks on the same
GPU SM hardware and lead to worse overall parallelism.

Expert-guided Cost Model. We propose an expert-guided
cost model to automatically tackle the complex interaction
between implementation-specific parameters and hardware
properties. Given a set of candidate operator implementations,
we have two phases to select the optimal implementation.
The first phase is to estimate the shared memory and register
usage for each candidate. We rule out candidates that consume
more shared memory and registers than hardware capacity, as
specified in the expert knowledge metafile.

The second phase is to train a cost model for the remaining
candidates and use the cost model to select the best candi-
date. We use XGBoost [5] as the cost model. It takes as input
the implementation-specific parameters (e.g., tiling size) for
candidates and the hardware properties (e.g., shared memory
size). We use the cost model to predict the latency of candi-
dates and select top-k candidates with low latency. Finally, we
profile the latency of these top-k candidates on GPUs and use

Dataset #Train #Val #Test Length
min mean max

SST 67,349 872 1,821 4 25 62
YELP 560,000 0 38,000 5 98 128

Table 2: Dataset statistics

the profiled latency to further fintune our cost model. We re-
peat this procedure for a pre-defined iterations (=5 by default)
and select the implementation with the lowest latency.

When training the cost model, we construct the training
dataset as follows. We randomly select a small number of
candidates and use their implementation-specific parameters
and the hardware properties as feature X . Then, we profile
the latency of each candidate implementation on GPUs as the
label Y . We collect these (X ,Y ) as the training dataset to train
the cost model.

6 Evaluation
In this section, we comprehensively evaluate Faith over vari-
ous datasets and GPU backends. We first present our exper-
iment setup in §6.1. Then, we show the overall speedup on
end-to-end transformer verification in §6.2. Finally, we pro-
vide more optimization analysis on individual transformer
layers in §6.3.

6.1 Experiment Setup
Baselines. We compare Faith with the state-of-the-art trans-
former verification [35] based on PyTorch. We further com-
pare with TVM [6] and Ansor [54], as stronger baselines.
TVM and Ansor are two state-of-the-art deep learning compil-
ers for standard neural networks. We feed the pytorch model
into TVM and Ansor through relay frontend [34] which will
automatically optimize transformer verification performance.
While TVM and Ansor take minutes to compile an operator
implementation, we do not incorporate this compilation la-
tency and record only inference latency for a fair comparison.

Datasets. We evaluate two popular datasets, Yelp [53] and
SST [36], following the setting in state-of-the-art transformer
verification [35]. These two datasets are widely used in the
natural language processing for analyzing sentiment in lan-
guages. We summarize the statistics of these two datasets
in Table 2. SST dataset contains 67,349 training sentences,
872 validation sentences, and 1,821 testing sentences. In SST
dataset, there are 4 to 62 tokens in each sentence and the
average number of tokens in a sentence is 25. YELP dataset
contains 560,000 sentences as training data and 38,000 sen-
tences as testing data. In YELP dataset, there are 5 to 128
tokens in each sentence and the average number of tokens in
a sentence is 98.

Transformer Networks. We evaluate Faith on transformer
networks with 1 to 6 layers to demonstrate the performance
on large models. Following popular transformer settings, each
transformer layer has 4 attention heads and an embedding size

USENIX Association 2022 USENIX Annual Technical Conference    175



(a) On A100 GPU. (b) On V100 GPU.

Figure 8: Overall speedup on SST dataset.

(a) On A100 GPU. (b) On V100 GPU.
Figure 9: Overall speedup on Yelp dataset.

of 128. Furthermore, we study the Faith performance under
diverse embedding sizes in §6.3.

Experiment Configuration. We evaluate with an NVIDIA
A100 GPU and an NVIDIA V100 GPU to show Faith perfor-
mance on various GPU backends. The host server with A100
GPUs is an AMD EPYC 7742 64-Core Processor and runs
Ubuntu 20.04 with CUDA 11.3. The host server with V100
GPUs has 32 cores of Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10GHz and runs Ubuntu 16.04 with CUDA 10.1.

6.2 Overall Performance
We show the overall speedup on SST dataset and Yelp dataset
in Fig. 8 and Fig. 9, respectively. We show the performance
improvement over transformers with diverse numbers of lay-
ers from 1 to 6, which covers popular settings in the natural
language processing domain. While the length of input sen-
tences may have an impact on the performance improvement,
we show the averaged speedup over all testing sentences in
this section and study the impact of sentence length in §6.3.
We compare Faith with the PyTorch baseline following ex-
isting transformer verification open-source implementations
[35]. We further compare Faith with two state-of-the-art deep
learning frameworks (i.e., TVM and Ansor) to provide a com-
prehensive comparison, as we discussed in §6.1.

We show the overall speedup on SST dataset and A100
GPU in Fig. 8(a). Compared with PyTorch, we observe 2.3×
to 3.2× speedup (2.5× on average). We contribute this per-
formance improvement to our semantic-aware computation
graph transformation (§3) and verification-specialized kernel
crafter (§4). We further observe 17.2× and 15.9× speedup
over TVM and Ansor, respectively. The main reason is that

TVM and Ansor focus on optimizing standard neural net-
works and fail to efficiently support verification-specific com-
puting patterns, as discussed in §2.2. While Faith and these
three baselines show different performance, we stress that
the same verification bounds are generated, and the only dif-
ference resides in system optimizations. Comparing across
different numbers of transformer layers from 1 to 6, the per-
formance improvement remains similar around 2.5×. This
result shows that Faith can efficiently support transformer
verification with diverse numbers of transformer layers. We
show the overall speedup on SST dataset and V100 GPU in
Fig. 8(b). We have similar observation about the results on
A100 GPU which shows that Faith can effectively adapt to
diverse GPU backends, thanks to expert-guided autotuning
optimization (§5).

We show overall speedup on Yelp dataset and A100 GPU
in Fig. 9(a). Sentences in YELP dataset has 5 to 128 tokens
(98 on average), which is longer than sentences in SST dataset
with 4 to 62 tokens (25 on average). This provides an opportu-
nity to show Faith performance on long sentences. Overall, we
observe 2.1× to 2.3× speedup (2.2× on average) when com-
paring with the PyTorch baseline. We also observe 26.7× and
28.3× speedup on average over TVM and Ansor, respectively.
This speedup is similar to the performance improvement on
SST dataset and shows the good generality of Faith over di-
verse input data. We also have similar observations on Yelp
dataset and V100 GPU in Fig. 9(b).

6.3 Optimization Analysis
In this section, we show speedup from individual Faith opti-
mizations. We first show speedup on verification of matrix

176    2022 USENIX Annual Technical Conference USENIX Association



Figure 10: Speedup on verification of matrix multiplication
over the diverse lengths. Embedding Size: 128.

Figure 11: Speedup on verification of matrix multiplication
over the diverse embedding sizes. Length: 16.

Figure 12: Speedup on verification of ReLU over the diverse
lengths. Embedding Size: 128.

Figure 13: Speedup on verification of Tanh and dot product
over the diverse lengths. Embedding Size: 128.

multiplication over the diverse lengths and diverse embedding
sizes. Verification of matrix multiplication plays an important
role in verifying projection layers and fully connected layers
in transformers. Then, we show the benefits on verification of
ReLU, verification of dot product, and verification of Tanh,
which in total accounts for around 70% latency in transformer
verification. Since we observe similar performance on A100
GPU and V100 GPU, we focus on A100 GPU and omit results
on V100 GPU in this section due to page limits.

Performance benefits on verification of matrix multi-
plication. We show speedup on verification of matrix mul-
tiplication over the diverse lengths in Fig. 10. We study the
speedup over diverse lengths from 2 to 128, following the
setting in the popular natural language processing datasets as
summarized in Table 2. Overall, we observe 5.1× speedup on
average over the PyTorch baseline. This result shows signifi-
cant performance benefits from utilizing Faith on accelerating
transformer verification. Comparing across lengths, we ob-
serve a higher speedup of 5.54× over the PyTorch baseline on
shorter sentences with 2 to 32 words. The reason is that our
autotuning optimization (§5) automatically adjusts the num-
ber of threads and memory layout to improve the parallelism.
We achieve a smaller speedup of 3.85× on longer sentences
with 64 and 128 words. For these longer sentences, we have
achieved high occupancy on GPUs and the speedup is limited
by the hardware capability.

Surprisingly, we observe that TVM and Ansor achieve
0.33× and 0.73× speedup, which is significantly slower than
PyTorch baselines on verification of matrix multiplication.
The main reason is that TVM and Ansor focus on accelerat-
ing standard NNs and cannot efficiently support computing

patterns in the verification of matrix multiplication (Fig. 3(c)).
Instead, Faith exploits a semantic-aware kernel fusion (§3.1)
to efficiently support such computing patterns in verification.

We show speedup on verification of matrix multiplication
over the diverse embedding sizes in Fig. 11. We study em-
bedding size from 64 to 640 following popular transformer
settings. We note that transformer in natural language pro-
cessing usually adopts a relatively small embedding size (e.g.,
64 to 256), which is different from convolutional neural net-
works in computer vision that adopts a large embedding size
(e.g., 1024). Overall, Faith achieves 4.2× speedup on average
over the PyTorch baseline. This result shows that Faith can
improve performance over diverse embedding sizes. We also
observe that Faith achieves larger speedup for smaller embed-
ding sizes, which is similar to the case when verifying matrix
multiplication over diverse lengths.

Performance benefits on verification of ReLU. We show
speedup on verification of ReLU over diverse lengths in
Fig. 12. As we discussed earlier in §4.1, verification of ReLU
represents an important computing pattern of verifying ele-
mentwise operators. Due to similar behaviors between diverse
lengths and embedding sizes, we focus on verification over
diverse lengths and keep embedding size as 128, which is a
popular setting in transformers. Overall, Faith achieves 141×
speedup over PyTorch baseline. This large speedup shows
it promising to accelerate verification of elementwise opera-
tors. Besides, Faith achieves 13.4× and 13.5× speedup over
TVM and Ansor. The reason is that our workload-adaptive
reduction (§4.2) can significantly improve parallelism during
reduction and sharing-oriented workload sharing can mini-
mize memory access with GPU memory hierarchy.

USENIX Association 2022 USENIX Annual Technical Conference    177



#Layers 1 2 3 4 5 6
PyTorch 9.1 18 25 28 31 37

Faith 4 7.2 7.8 10.9 12.6 15.4

Table 3: Latency on SST dataset and A100. Unit: Second.

Performance benefits on verifying Tanh and dot prod-
uct layers. We show the speedup from Faith over the PyTorch
baseline on verification of Tanh and verification of dot product
in Fig. 13. We skip the results of TVM and Ansor since these
two frameworks do not support computing patterns in verifi-
cation of Tanh and verification of dot product. Here, we show
results of verification of Tanh since it is a popular elementwise
operator in transformer verification. We also show results of
verification of dot product since it accounts for around 45%
latency in transformer verification. Overall, we observe that
Faith achieves 138× speedup on average for verification of
Tanh. This result is similar to the performance improvement
for verification of ReLU, since both Tanh and ReLU are el-
ementwise operators and share benefits from the same set
of optimizations. We also observe that Faith achieves 26.5×
speedup on average for verification of dot product. This result
shows the performance benefits from semantic-aware kernel
fusion (§3.1) and broadcast-aware super threading (§4.4) that
mitigate redundant memory access.

Raw latency on transformer verification. We show the
raw latency for transformer verification on the SST dataset
and NVIDIA A100 GPU in Table 3. Faith requires only a
few seconds to verify the NN prediction on a long sentence
(with on average 25 tokens). More specifically, when veri-
fying transformers with 1 to 6 layers, Faith only requires 4
to 15.4 seconds to verifying a sentence. This results brings
transformer verification to the level of being practical for use.

7 Discussion
Why Faith performs better than prior approaches. Ex-
isting frameworks, such as PyTorch, TVM, and Ansor, only
support limited computation patterns for standard NNs. They
cannot directly support bound-centric computation patterns in
transformer verification. While several frameworks like TVM
allow autotuning for diverse operators, there is no magic. They
still rely on hand-written GPU kernels (e.g., matrix multipli-
cation) as the parametric templates (e.g., with tiling size as a
parameter) and can only tune these tiling sizes. When apply-
ing to bound-centric computation patterns, they will break an
operator for transformer verification into several hand-written
GPU kernels for standard NNs. This leads to significantly
higher memory access when aggregating computation results
across GPU kernels into one transformer verification output.

Instead, Faith provides direct support for bound-centric
computation patterns. Instead of breaking into several GPU
kernels for standard NNs, we consider the bound-centric com-
putation patterns as a whole and design a set of optimizations
to reduce the memory and computation cost. For example,

we found the lower and upper bounds are usually multiplied
with the same weight matrix and can be loaded once to reduce
memory overhead.

Practicality of transformer verification with Faith. Faith
brings transformer verification to be practical by consuming
only around 10 seconds to verify a long sentence (e.g., 25
tokens). We remark that transformer verification is one of the
hottest topics in deep learning. Hundreds of related papers
have been published in top deep learning conferences. The
performance is essential to bring transformer verification into
practical applications. However, existing efforts mainly reside
in the algorithmic domain. In this paper, we build the first
framework for efficient transformer verification on GPUs. Our
work will open a new system research direction on developing
high-performance systems for deep learning verification.

8 Conclusion
Verifying the robustness of transformers draws increasing at-
tention from both the academic and industry fields over the re-
cent years. Unfortunately, an efficient system design for trans-
former verification is still yet to come. Existing transformer
verification still exploits standard neural network frameworks
which are unoptimized towards transformer verification work-
load. The main reason is that efficient systems for transformer
verification require both expertise from the machine learning
community on mathematical verification designs and the sys-
tem community on efficient memory and parallelism designs.

In this paper, we propose a Faith framework for efficient
transformer verification. Specifically, we first design a set of
semantic-aware computation graph transformations to fully
exploit fusion opportunities in transformer verification at
the computation graph level. Then, we propose a verifier-
specialized kernel crafter to efficiently map fused verifica-
tion kernels towards modern GPUs with minimized memory
overhead and improved parallelism. Finally, we propose an
expert-guided autotuning to dynamically optimize kernels
according to the transformer verification workload and GPU
backend characteristics. Comprehensive experimental evalua-
tion shows that Faith significantly improves the performance
of transformer verification over state-of-the-art frameworks.

Looking ahead, we believe our work in transformer verifi-
cation would highlight a new direction on developing high-
performance systems for deep learning verification. This will
encourage system experts with diverse backgrounds to build
the next-generation deep learning systems and facilitate the
wide application of secure deep learning.

References

[1] Nader Akoury, Kalpesh Krishna, and Mohit Iyyer. Syn-
tactically supervised transformers for faster neural ma-
chine translation. In ACL (1), pages 1269–1281. Asso-
ciation for Computational Linguistics, 2019.

178    2022 USENIX Annual Technical Conference USENIX Association



[2] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-
Jhang Ho, Mani B. Srivastava, and Kai-Wei Chang.
Generating natural language adversarial examples. In
EMNLP, pages 2890–2896. Association for Computa-
tional Linguistics, 2018.

[3] Melika Behjati, Seyed-Mohsen Moosavi-Dezfooli,
Mahdieh Soleymani Baghshah, and Pascal Frossard.
Universal adversarial attacks on text classifiers. In
ICASSP, pages 7345–7349. IEEE, 2019.

[4] Gregory Bonaert, Dimitar I. Dimitrov, Maximilian
Baader, and Martin T. Vechev. Fast and precise certifi-
cation of transformers. In PLDI, pages 466–481. ACM,
2021.

[5] Tianqi Chen and Carlos Guestrin. Xgboost: A scal-
able tree boosting system. In Balaji Krishnapuram,
Mohak Shah, Alexander J. Smola, Charu C. Aggarwal,
Dou Shen, and Rajeev Rastogi, editors, Proceedings of
the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco,
CA, USA, August 13-17, 2016, pages 785–794. ACM,
2016.

[6] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Q. Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. TVM: an automated end-
to-end optimizing compiler for deep learning. In OSDI,
pages 578–594. USENIX Association, 2018.

[7] Junyan Cheng, Iordanis Fostiropoulos, Barry W. Boehm,
and Mohammad Soleymani. Multimodal phased trans-
former for sentiment analysis. In EMNLP (1), pages
2447–2458. Association for Computational Linguistics,
2021.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep bidi-
rectional transformers for language understanding. In
NAACL-HLT (1), pages 4171–4186. Association for
Computational Linguistics, 2019.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In ICLR.
OpenReview.net, 2021.

[10] Facebook. How facebook uses super-efficient
ai models to detect hate speech. https://ai.
facebook.com/blog/how-facebook-uses-super\
/-efficient-ai-models-to-detect-hate-speech/.

[11] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou.
Turbotransformers: an efficient GPU serving system for
transformer models. In Jaejin Lee and Erez Petrank,
editors, PPoPP ’21: 26th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
Virtual Event, Republic of Korea, February 27- March
3, 2021, pages 389–402. ACM, 2021.

[12] Boyuan Feng, Yuke Wang, Guoyang Chen, Weifeng
Zhang, Yuan Xie, and Yufei Ding. EGEMM-TC: acceler-
ating scientific computing on tensor cores with extended
precision. In PPoPP, pages 278–291. ACM, 2021.

[13] Boyuan Feng, Yuke Wang, Tong Geng, Ang Li, and
Yufei Ding. APNN-TC: accelerating arbitrary precision
neural networks on ampere GPU tensor cores. In Bro-
nis R. de Supinski, Mary W. Hall, and Todd Gamblin,
editors, SC ’21: The International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, St. Louis, Missouri, USA, November 14 - 19, 2021,
pages 37:1–37:13. ACM, 2021.

[14] Siddhant Garg, Thuy Vu, and Alessandro Mos-
chitti. Tanda: Transfer and adapt pre-trained
transformer models for answer sentence selection.
https://www.amazon.science/publications/
tanda-transfer-and-adapt-pre-trained-\
/transformer-models-for-answer-\
/sentence-selection.

[15] Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. Explaining and harnessing adversarial exam-
ples. In ICLR (Poster), 2015.

[16] Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan, Wei Wei,
Wen-Lian Hsu, and Cho-Jui Hsieh. On the robustness
of self-attentive models. In ACL (1), pages 1520–1529.
Association for Computational Linguistics, 2019.

[17] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. Is BERT really robust? A strong baseline
for natural language attack on text classification and
entailment. In AAAI, pages 8018–8025. AAAI Press,
2020.

[18] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian,
and Mykel J. Kochenderfer. Reluplex: An efficient SMT
solver for verifying deep neural networks. In CAV (1),
volume 10426 of Lecture Notes in Computer Science,
pages 97–117. Springer, 2017.

[19] Bumsoo Kim, Junhyun Lee, Jaewoo Kang, Eun-Sol Kim,
and Hyunwoo J. Kim. HOTR: end-to-end human-object
interaction detection with transformers. In CVPR, pages
74–83. Computer Vision Foundation / IEEE, 2021.

USENIX Association 2022 USENIX Annual Technical Conference    179

https://ai.facebook.com/blog/how-facebook-uses-super\/-efficient-ai-models-to-detect-hate-speech/
https://ai.facebook.com/blog/how-facebook-uses-super\/-efficient-ai-models-to-detect-hate-speech/
https://ai.facebook.com/blog/how-facebook-uses-super\/-efficient-ai-models-to-detect-hate-speech/
https://www.amazon.science/publications/tanda-transfer-and-adapt-pre-trained-\/transformer-models-for-answer-\/sentence-selection
https://www.amazon.science/publications/tanda-transfer-and-adapt-pre-trained-\/transformer-models-for-answer-\/sentence-selection
https://www.amazon.science/publications/tanda-transfer-and-adapt-pre-trained-\/transformer-models-for-answer-\/sentence-selection
https://www.amazon.science/publications/tanda-transfer-and-adapt-pre-trained-\/transformer-models-for-answer-\/sentence-selection


[20] Junjie Lai and André Seznec. Performance upper bound
analysis and optimization of SGEMM on fermi and
kepler gpus. In CGO, pages 4:1–4:10. IEEE Computer
Society, 2013.

[21] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, De-
hao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. Gshard: Scaling gi-
ant models with conditional computation and automatic
sharding. In ICLR. OpenReview.net, 2021.

[22] Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. Textbugger: Generating adversarial text against
real-world applications. In NDSS. The Internet Society,
2019.

[23] Xin-Chun Li, De-Chuan Zhan, Jia-Qi Yang, and Yi Shi.
Deep multiple instance selection. Sci. China Inf. Sci.,
64(3), 2021.

[24] Xiuhong Li, Yun Liang, Shengen Yan, Liancheng Jia,
and Yinghan Li. A coordinated tiling and batching
framework for efficient GEMM on gpus. In PPoPP,
pages 229–241. ACM, 2019.

[25] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A ro-
bustly optimized BERT pretraining approach. CoRR,
abs/1907.11692, 2019.

[26] Yu Lu, Jiali Zeng, Jiajun Zhang, Shuangzhi Wu, and
Mu Li. Attention calibration for transformer in neural
machine translation. In ACL/IJCNLP (1), pages 1288–
1298. Association for Computational Linguistics, 2021.

[27] Paulius Micikevicius. Local memory and register
spilling. https://developer.download.nvidia.
com/CUDA/training/register_spilling.pdf.

[28] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. Efficient estimation of word representations in
vector space. In Yoshua Bengio and Yann LeCun, edi-
tors, 1st International Conference on Learning Repre-
sentations, ICLR 2013, Scottsdale, Arizona, USA, May
2-4, 2013, Workshop Track Proceedings, 2013.

[29] Nvidia. Cuda c++ programming guide. https://docs.
nvidia.com/cuda/cuda-c-programming-guide/
index.html.

[30] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Z. Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and

Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, pages
8024–8035, 2019.

[31] Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin
Qiu, Weinan Zhang, Yong Yu, and Lei Li. Glancing
transformer for non-autoregressive neural machine trans-
lation. In ACL/IJCNLP (1), pages 1993–2003. Associa-
tion for Computational Linguistics, 2021.

[32] Alec Radford and Karthik Narasimhan. Improving lan-
guage understanding by generative pre-training. 2018.

[33] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J. Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer. J. Mach.
Learn. Res., 21:140:1–140:67, 2020.

[34] Jared Roesch, Steven Lyubomirsky, Logan Weber, Josh
Pollock, Marisa Kirisame, Tianqi Chen, and Zachary Tat-
lock. Relay: a new IR for machine learning frameworks.
In MAPL@PLDI, pages 58–68. ACM, 2018.

[35] Zhouxing Shi, Huan Zhang, Kai-Wei Chang, Minlie
Huang, and Cho-Jui Hsieh. Robustness verification for
transformers. In ICLR. OpenReview.net, 2020.

[36] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Y. Ng, and Christo-
pher Potts. Recursive deep models for semantic compo-
sitionality over a sentiment treebank. In EMNLP, pages
1631–1642. ACL, 2013.

[37] Hao Tang, Donghong Ji, Chenliang Li, and Qiji Zhou.
Dependency graph enhanced dual-transformer structure
for aspect-based sentiment classification. In ACL, pages
6578–6588. Association for Computational Linguistics,
2020.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In NIPS,
pages 5998–6008, 2017.

[39] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang
Li, Shuaiwen Leon Song, Zenglin Xu, and Tim Kraska.
Superneurons: dynamic GPU memory management for
training deep neural networks. In Andreas Krall and
Thomas R. Gross, editors, Proceedings of the 23rd ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2018, Vienna, Austria,
February 24-28, 2018, pages 41–53. ACM, 2018.

[40] Yuke Wang, Boyuan Feng, and Yufei Ding. QGTC: ac-
celerating quantized graph neural networks via GPU ten-
sor core. In Jaejin Lee, Kunal Agrawal, and Michael F.

180    2022 USENIX Annual Technical Conference USENIX Association

https://developer.download.nvidia.com/CUDA/training/register_spilling.pdf
https://developer.download.nvidia.com/CUDA/training/register_spilling.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


Spear, editors, PPoPP ’22: 27th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Program-
ming, Seoul, Republic of Korea, April 2 - 6, 2022, pages
107–119. ACM, 2022.

[41] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li,
Lei Deng, Yuan Xie, and Yufei Ding. Gnnadvisor: An
adaptive and efficient runtime system for GNN accelera-
tion on gpus. In Angela Demke Brown and Jay R. Lorch,
editors, 15th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2021, July 14-16,
2021, pages 515–531. USENIX Association, 2021.

[42] Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-
Wei Chang, Minlie Huang, Bhavya Kailkhura, Xue Lin,
and Cho-Jui Hsieh. Automatic perturbation analysis for
scalable certified robustness and beyond. In NeurIPS,
2020.

[43] Da Yan, Wei Wang, and Xiaowen Chu. Optimizing
batched winograd convolution on gpus. In PPoPP, pages
32–44. ACM, 2020.

[44] Fuzhi Yang, Huan Yang, Jianlong Fu, Hongtao Lu, and
Baining Guo. Learning texture transformer network for
image super-resolution. In CVPR, pages 5790–5799.
Computer Vision Foundation / IEEE, 2020.

[45] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. Xlnet:
Generalized autoregressive pretraining for language un-
derstanding. In NeurIPS, pages 5754–5764, 2019.

[46] Han-Jia Ye, Yi Shi, and De-Chuan Zhan. Identifying
ambiguous similarity conditions via semantic matching.
In CVPR. Computer Vision Foundation / IEEE, 2022.

[47] Linwei Ye, Mrigank Rochan, Zhi Liu, and Yang Wang.
Cross-modal self-attention network for referring image
segmentation. In CVPR, pages 10502–10511, 2019.

[48] Da Yin, Tao Meng, and Kai-Wei Chang. Sentibert: A
transferable transformer-based architecture for compo-
sitional sentiment semantics. In ACL, pages 3695–3706.
Association for Computational Linguistics, 2020.

[49] Feng Zhang, Zaifeng Pan, Yanliang Zhou, Jidong Zhai,
Xipeng Shen, Onur Mutlu, and Xiaoyong Du. G-
TADOC: enabling efficient gpu-based text analytics
without decompression. In 37th IEEE International
Conference on Data Engineering, ICDE 2021, Cha-
nia, Greece, April 19-22, 2021, pages 1679–1690. IEEE,
2021.

[50] Feng Zhang, Jidong Zhai, Xipeng Shen, Onur Mutlu, and
Xiaoyong Du. Poclib: A high-performance framework
for enabling near orthogonal processing on compression.
IEEE Trans. Parallel Distributed Syst., 33(2):459–475,
2022.

[51] Feng Zhang, Jidong Zhai, Xipeng Shen, Dalin Wang,
Zheng Chen, Onur Mutlu, Wenguang Chen, and Xiaoy-
ong Du. TADOC: text analytics directly on compression.
VLDB J., 30(2):163–188, 2021.

[52] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui
Hsieh, and Luca Daniel. Efficient neural network ro-
bustness certification with general activation functions.
In NeurIPS, pages 4944–4953, 2018.

[53] Xiang Zhang, Junbo Jake Zhao, and Yann LeCun.
Character-level convolutional networks for text classifi-
cation. In NIPS, pages 649–657, 2015.

[54] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and
Ion Stoica. Ansor: Generating high-performance tensor
programs for deep learning. In OSDI, pages 863–879.
USENIX Association, 2020.

[55] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable DETR: deformable
transformers for end-to-end object detection. In ICLR.
OpenReview.net, 2021.

USENIX Association 2022 USENIX Annual Technical Conference    181





DVABatch: Diversity-aware Multi-Entry Multi-Exit Batching for Efficient
Processing of DNN Services on GPUs

Weihao Cui∗, Han Zhao∗, Quan Chen∗, Hao Wei∗, Zirui Li∗, Deze Zeng⋄, Chao Li∗, Minyi Guo∗
∗Shanghai Jiao Tong University, ⋄China University of Geosciences

Abstract
The DNN inferences are often batched for better utilizing the
hardware in existing DNN serving systems. However, DNN
serving exhibits diversity in many aspects, such as input, oper-
ator, and load. The unawareness of these diversities results in
inefficient processing. Our investigation shows that the ineffi-
ciency roots in the feature of the existing batching mechanism:
one entry and one exit. Therefore, we propose DVABatch, a
runtime batching system that enables the multi-entry multi-
exit batching scheme. We first abstract three meta operations,
new, stretch, and split, for adjusting the ongoing batch of
queries to achieve the multi-entry multi-exit scheme. The
meta operations could be used to form different scheduling
logics for different diversities. To deliver the meta operations
to an ongoing batch, we slice the DNN models into multi-
ple stages. Each stage corresponds to one executor, which
is managed by a state transition diagram. Compared with
state-of-the-art solutions, our experimental results show that
DVABatch reduces 46.4% average latency and achieves up to
2.12× throughput improvement.

1 Introduction

Deep neural networks (DNNs) [27, 37, 57] are widely used
in intelligent services [1, 5, 6, 12]. Since user queries have
stringent QoS in terms of end-to-end latency, dedicated accel-
erators like GPUs [10, 11] and NPUs [21] are used to speed
up the DNN inferences. However, a single DNN query often
cannot fully utilize these accelerators [17, 18, 43, 46, 65] (e.g.,
An Nvidia Titan RTX GPU has 72 SMs [10]). Therefore,
emerging DNN serving systems (e.g., Clipper, Triton, TF-
Serving) [9, 23–26, 51, 62, 63] batch queries for better taking
advantage of the accelerators’ parallelism. Queries that arrive
in a given batch time window are organized into a batch, and
an executor (process) is used by the DNN serving system to
process the entire batch at a time. Such a batching policy uses
the same batch size (bs) across a single inference process.

On GPUs, due to the single program multiple-data (SPMD)
design, all the queries in a batch return at the same time. This

(c) Load diversity

(a) Input diversity

(b) Operator diversity

Parallelism:
Padding:

low high

prefer bs

q1
q2
q3
q4

op1 op2 op3 op4

prefer bs/2

Figure 1: Serving diversities in real-world services.

batching pattern is referred to be the single-entry single-exit
batching pattern. It works great for best-effort applications,
and the services when the queries arrive in uniform inter-
vals [22]. However, DNN serving scenarios show various
diversities, and the single-entry single-exit batching pattern
results in the long response latency of inference queries on
GPUs. For instance, we find at least three types of diversities
when serving DNN models, as shown in Figure 1.

Input Diversity. The inputs of user queries show high
diversity (e.g., in natural language processing services). Short
queries are all padded to the size of the longest query for
batching. The benefit of batching may be negated by the
wasted computation of the padded part.

Operator Diversity. While all the operators of a DNN
model share the same batch size, they have different preferred
batch sizes. An operator’s preferred batch size is the smallest
batch size that fully utilizes the current GPU. The hardware is
not fully utilized if an operator’s preferred batch size is larger
than the used batch size. Otherwise, the processing time is
increased unnecessarily.

Load Diversity. The service queries do not arrive in a uni-
form interval. In this case, the number of queries collected in
a single batch time window varies. When the load bursts, a
previous non-full batch results in the long latency of subse-
quent queries. In other words, hardware resources are wasted
while the queries are waiting in the next batch time window.

The diversities result in inefficient processing of user
queries (discussed in more detail in Section 3). The ineffi-

USENIX Association 2022 USENIX Annual Technical Conference    183



Parallel Manner Serial Manner
To be inactive To be workingStage executors work independently

switch

ExecutorInactive: ExecutorActive:ExecutorWorking:

Executori+2Executori+1ExecutoriExecutori+2Executori+1Executori

Figure 2: The work manner switch of stage executors.

ciency stems from the batching pattern of single-entry single-
exit. To address the inefficiency, we, therefore, propose a
multi-entry multi-exit batching scheme for DNN serving on
GPUs. For instance, with the multi-entry multi-exit batching
scheme, a short query can exit early without waiting for the
entire batch to exit (input diversity), a batch can be split into
smaller batches to execute an operator with a preferred smaller
batch size (operator diversity), and the queries that arrive later
can join an ongoing but non-full batch (load diversity).

It is nontrivial to implement the multi-entry multi-exit
batching scheme for GPUs. It necessitates the ability of the
serving system to dynamically alter the batch size of an ongo-
ing query batch. Specifically, such a system should enable the
joining of incoming queries into the ongoing batch and the
splitting of an ongoing batch into smaller batches (The queries
in the smaller batches could exit independently). Moreover,
it introduces extra complexity for designing executors in the
DNN serving system. With the multi-entry multi-exit scheme,
the inference of batched queries is broken down into multiple
stages, and each stage’s execution requires one executor. Mul-
tiple executors have to coordinate with each other to ensure
the validity of the query inference.

To this end, we propose DVABatch to enable the multi-
entry multi-exit batching scheme effectively. DVABatch pro-
vides three meta operations, new, stretch, and split, to adjust
the ongoing batch (Section 5). The new operation creates
a new batch, just like the traditional batching strategy. The
stretch operation adds new queries to the ongoing batch. The
split operation breaks a running batch into multiple batches,
which could be scheduled separately. Query batching can be
done in a variety of ways using the three meta operations.

To deliver the meta operations to the stage executors, a
batch queue that stores the batch information is added be-
tween adjacent stage executors, and a global batch table is
utilized to record the to-be-performed meta operations at each
stage (Section 5). When an executor completes its compu-
tation for a batch of queries, it verifies the to-be-performed
meta operations for the next stage in the batch table. If a split
or stretch operation is required, the executor applies the cor-
responding meta operation on the current batch and pushes
new batches of queries into the batch queue of the next stage.

While multiple active executors run independently like
a software pipeline, DVABatch should manage them prop-
erly. Otherwise, the naive parallel execution of the executors
invalidates the execution due to data hazard and results in
unnecessary long latency. For instance, the executor should

run batches with different input sizes in parallel for the input
diversity, and run the sub batches after the split meta operation
sequentially for the operator diversity. DVABatch introduces
a state transition diagram based solution to support the ex-
ecutors’ complicated runtime scheduling (Section 6). Each
executor has four states: active, checking, working, and inac-
tive,. Through the state transition diagram, the work manners
depicted in Figure 2 are both supported.

The main contributions of this paper are as follows.
• We propose a multi-entry multi-exit batching scheme for

efficient DNN service processing on GPUs.
• We provide a general scheduling mechanism that leverages

meta operations, and state transition diagram to create poli-
cies for different serving diversities.

• We implement DVABatch with Triton, a state-of-the-art
DNN serving system. Our experimental results on Nvidia
Titan RTX show that DVABatch reduces 46.4% average
latency and achieves up to 2.12× throughput improvement
for the involved serving diversities.

2 Related Work

Many systems have been proposed for efficient DNN infer-
ence [9, 25, 35]. Clipper [23], TF-Serving [51], Triton [9]
adopted the traditional batch strategy that uses batch time win-
dow and the maximum allowed batch size. They treated the
DNN model as an indivisible whole. They left the scheduling
of inner operators to their supported backends. These works
do not perceive the serving diversity and utilize the DNN
operator scheduling for efficient processing.

There are some prior research on improving operator
scheduling. TensorFlow Fold [47], DyNet [49], and Batch-
Maker [31] focused on the runtime scheduling of operators for
RNN. They are model-specific solutions, removing padding
for RNNs. The RNN cells of the same type share the same
parameter weights and are executed recursively [38]. These
works relied on this property to remove the padding. The
design is restricted to resolving the input diversity for RNN.
It cannot be applied to other models with input diversity, e.g.,
attention-based models, and BatchMaker-like batch mecha-
nism can be achieved through DVABatch’s meta operations.
Besides, LazyBatch [22] cared about the load fluctuation and
proposed batching queries lazily. LazyBatch performed per-
operator scheduling that incurs high scheduling overhead. It
could not handle other diversities. In this work, we focus
on resolving the problems caused by serving diversities in a
holistic way.

There are also some prior works about ragged tensor for
the input diversity [4, 29]. They generated the customized
implementation of operators to remove the padding. However,
operators like GEMM and convolution cannot be optimized
through these works, which dominate the computation in
DNN. These works are orthogonal to DVABatch and can be
combined together to enable even lower latency.

184    2022 USENIX Annual Technical Conference USENIX Association



(a) Case-I: Long processing 
time due to padding

A B C D

A B C D

1 2 3 4

A B C D
A B C D
A B C D

A CB D
A CB D
A CB D

Timeline
B C D

(b) Case-Ⅱ: Fail to early exit  for 
operators with high parallelism

A 3/4T 3/4T 3/4T

A 3/4T 3/4T

A
A

3/4T

A
A

B
B C D

C D

A
A

B
B C D

C D

B C D

B C D

B C D

1 2 3 4

Timeline

AOperator: Idle: Batching window:Wasted:1Query:

Timeline

1

(c) Case-Ⅲ: Delayed by previous insufficient batch

A C DB
A B C D
A B C D
A B C D

D
D
D
D

C
C
C
C

B
B
B
B

A
A
A

A

2 3 4

4T

4T
1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

Figure 3: The long latency of user queries due to (Case-I) input diversity, (Case-II) operator diversity, and (Case-III) load diversity.

Figure 4: The sequence distribution of workloads in GLUE.

3 Background and Motivation

This section shows the long query latency problem due to the
single-entry single-exit batching, and motivates the design
of DVABatch. Figure 3 shows the three involved diversities.
For simplicity of illustration, we assume that each operator
completes in 1 time unit (T ), and the batch size is 4. In this
case, once 4 queries are received or the batch time window
ends, the received queries are batched and issued to run.

3.1 Input diversity

Input diversity widely exists in DNN services. E.g., natural
language processing services often process sentences of differ-
ent lengths. Figure 4 shows the sequence length distribution in
10 workloads of the General Language Understanding Evalu-
ation (GLUE) dataset [59]. As observed, most sentences have
5-20 words, but some have more than 100 words.

For these models, the input of short queries is padded to
the same size as the input of the longest query so that they can
be batched to run [28]. Case-I in Figure 3 shows the batching
with input diversity. As shown in the upper part of Case-I, the
hardware resources are wasted for the computation of extra
paddings (the queries in a batch return simultaneously).

The lower part of Case-I shows a better batching strategy:
the batch is divided into two smaller batches, one for short
queries ①, ②, and ③, and one for the long query ④. In this way,
queries ①, ②, and ③ return earlier, and the average latency
is reduced by 37.5% (from 4T to 2.5T ). Note that the two

where batching takes effect!!!

Figure 5: Latencies of two GEMM operators with different
batch sizes on Titan RTX.

batches may run in parallel before the short batch completes
if 4 operators are required to fully utilize the GPU.

3.2 Operator diversity
For a DNN service, the operators often require different batch
sizes to fully utilize the GPU. Figure 5 shows the latencies of
two General Matrix Multiplication (GEMM) operators con-
verted from two convolution operators of Resnet50 [37], with
the shapes of [bs∗3136,576]× [576,64] and [bs∗49,576]×
[576,512]. GEMM operators dominate DNNs (occupying
86% of the computation time) [44].

As shown, the preferred batch sizes of GEMM-A and
GEMM-B are 1 and 8, respectively. For GEMM-A, batching
only increases its latency without improving the processing
throughput. For GEMM-B, using a batch size smaller than 8
is not able to fully utilize a GPU (the processing time does
not increase until the batch size is larger than 8).

Case-II in Figure 3 shows the batching with operator diver-
sity. In Case-II, operator A prefers batch size 4, operator B, C,
and D prefer batch size 1. The lower part of Case-II shows
a better batching strategy: we can run operator A with batch
size 4, split the batch into four smaller batches with batch size
1 at operator B, and run the small batches sequentially. In this
way, query ①, ②, and ③ return earlier. The average latency
can be reduced by 28.1% (from 4T to 2.875T ).

Many DNN models suffer from operator diversity. Figure 6
shows the processing time of the operators in Unet [56], a
widely used image segmentation network with different batch

USENIX Association 2022 USENIX Annual Technical Conference    185



OPGA

OPGB

Figure 6: Operator duration of Unet on Titan RTX with vari-
able batch sizes.

sizes on an Nvidia Titan RTX GPU. In the figure, the x-
axis represents each operator’s id in the executive order. As
observed, most operators in the former part (OPGA) benefit
from large batch sizes (e.g., larger than 32), but the operators
in the latter part (OPGB) only benefit from small batch sizes
(smaller than 8). Using a batch size larger than 8 for Unet, the
operators in OPGB have longer latency without throughput
improvement. On the contrary, using a batch size smaller than
32, the operators in OPGA do not fully utilize the GPU.

3.3 Load diversity
User queries do not arrive in a uniform interval, as end users
may randomly submit their queries. The number of received
queries in a single batch time window varies [30,34,36,41,55].

Case-III in Figure 3 presents the batching with the load
diversity. The batch time window is 4T , the operators prefer
batch size 4. With the current batching policy (the upper part
of Case-III), query ① starts to run alone after it waits for 4T ,
and the GPU is not fully utilized. During the processing of
query ①, three queries ②, ③, and ④ arrive, but they have to
wait to be executed in the next batch.

The lower part of Case-III shows a better way to run the four
queries: the first batch (query ①) waits for the second batch
after the first operator A completes. Then, the two insufficient
batches are merged into a new batch that fully utilizes the
hardware. In this way, the average latency can be reduced by
34.4% (from 8T to 5.25T ).

3.4 Diversities among DNN services
The three types of diversities may exist in the same DNN
services. Current batching policies with simple modifications
cannot effectively handle them. In this case, designing a static
batching policy is not able to fulfill the ever-changing diver-
sities. A low-level batching mechanism that supports config-
uring the batching policy accordingly is required. Analyzing
the three better batching cases in Figure 3, they share three
requirements for the batching mechanism.

First of all, the mechanism should be able to interrupt an
ongoing batch so that we can adjust the inappropriate batching
decision. Second, the mechanism should be able to split a
large batch into small batches. In this way, the small batches
may run in a parallel manner (Case-I) or sequentially (Case-

B
at
ch
es

DVABatch
Batch Table

New Stretch Split

② Customization

DNN ModelModel Slicing Kernel Profile

Input Check 
Dynamic?

Slicing
Points

Policy

Stages

Serving
systems

TFServing

Triton

DVAScheduler

①

Stage0
Batch
Queue

Stagei Stagei+1
Executor ExecutorExecutor

③

Figure 7: Design of DVABatch.

II). Third, the mechanism should be able to merge multiple
insufficient batches. In this way, we can build a large batch to
better utilize the hardware resource (Case-III).

A multi-entry multi-exit batching scheme fulfills all three
requirements, and has the potential to achieve better batching,
together with appropriate batching policies.

4 Design of DVABatch

We therefore design and propose DVABatch to resolve the
long latency problem due to the serving diversities.

4.1 Overview

Figure 7 illustrates DVABatch’s methodology. DVABatch
enables the multi-entry multi-exit batching scheme for the
upper-level DNN serving systems (e.g., Triton, TF-Serving).

In general, in order to support the multi-entry and multi-exit
batching, DVABatch slices a DNN model into multiple fine-
grained stages, and each stage has multiple adjacent operators.
The queries are able to join a batch at the beginning of a
stage, and exit from a batch at the end of a stage. Based
on the stages, DVABatch designs and implements batching
policies that manage the batching operation of each stage,
based on the real-time diversities. DVABatch supports three
meta-operations new, stretch, split for adjusting the batching.
The new operation creates a new batch, stretch adds new
queries to the ongoing batch, and split breaks a running batch
into multiple smaller batches. Various batching policies can
be implemented based on the meta-operations.

As shown in Figure 7, DVABatch comprises a batch table,
stage executors, batch queues, and DVAScheduler.
• The batch table records the running status of the ongoing

batches. It supports three meta operations for adjusting the
batches at each stage.

• A stage executor is a process that is responsible for the
corresponding stage’s execution. DVABatch utilizes a state
transition diagram for executor management.

• There is a batch queue between the two adjacent stages, for
transmitting the batch information. A stage executor pulls

186    2022 USENIX Annual Technical Conference USENIX Association



executor3

Batch Table

stretch ①

BatchQueue2

0
id start num

2 2

BatchQueue3

0
id start num

0 4

executor2stretch ②
Execute to 
catch up

stretch ④
Push

split
②

new ①

Batch TableBatch Table
id bs time
0 2→4 t0

statusmap
map0

stageid end
2 2→4
3 0

stretch ③
Update

BatchQueue3

0
id start num

0 4

BatchQueue4

split ①
Execute 
and split

split ③
Push

0 4→2 t0
1 0→2 t0

id bs time
map0
map1

statusmap
stageid end
3 0→2
4 0

stageid end
3 2
4 0

0 2 t0 map0

id bs time statusmap

0
id start num

0 2
1 0 2

BatchQueue1

0
id start num

0 2

BatchQueue2

0
id start num

0 2

executor1new ②
Execute 

new ④
Push

new ③
Update

stageid end
1 0→2
2 0

(a) Meta Operation: new (b) Meta Operation: stretch (c) Meta Operation: split

Figure 8: Implementing the meta operations with batch table and batch queues between stages.

out batches from its previous batch queue for execution,
and pushes batches into the batch queue of the next stage.

• DVAScheduler provides diversity-aware scheduling using
various batching policies implemented with the three meta
operations. The policies can be customized according to
the serving diversity.

4.2 The Serving Workflow with DVABatch

Figure 7 also shows DVABatch’s serving workflow for the
involved diversities. The steps for using DVABatch to serve a
DNN service are as follows:

① DVABatch checks the input data pattern of the service,
and profiles it to obtain the diversity patterns. Based on the
profiling, the DNN model is sliced into stages automatically.
A diversity-aware policy is generated for the DNN model.

② Each stage executor loads the corresponding stage of the
model, and DVAScheduler uses the scheduling logic in the
policy to schedule the accepted queries.

③ If a specific condition defined in the DVAScheduler is sat-
isfied, the batch table is instructed to adjust the ongoing
batch by new, stretch, split operations accordingly.
For a new DNN service, DVABatch handles input diversity

before operator diversity. This is because handling input di-
versity directly reduces computation while handling operator
diversity better schedules computation.

5 Enabling Multi-entry Multi-exit Scheme

In this section, we propose the abstraction of meta operations
and how we achieve the multi-entry multi-exit scheme.

5.1 Defining the Meta Operations

As stated before, to achieve low latency query scheduling, the
batched queries should be able to join and exit the batching
system in several forms: Multi-entry. When a new batch of
queries arrives, it can interrupt an ongoing batch, catch up
with the progress of the interrupted one, then be merged into
a single larger batch. In addition, the new incoming batch
also can join the processing by co-running with the ongoing
batches in different stage executors without pausing the on-
going one. Multi-exit. If some queries inside a batch need to

exit early, we need to split the batch into several batches and
allow them to exit execution independently.

DVABatch abstracts three meta scheduling operations in-
side the DVAScheduler: new, stretch, and split, for supporting
the multi-entry multi-exit scheme. With new, the new incom-
ing queries are organized into a new batch. The batch created
by new operation could co-run with the previous batches;
With stretch, an ongoing batch is stretched with new incom-
ing queries. At a specific stage, these queries are merged into
the ongoing batch for processing; With split, a large ongo-
ing batch is split into several smaller batches to be processed
separately. The three meta operations can be used to form
complicated scheduling logic when necessary.

5.2 Implementing the Meta Operations

It is challenging to support the meta operations, as a batch runs
in multiple stages. The meta operations should be performed
based on the stages’ execution status. In general, DVABatch
tracks the stage status of the batches, and notifies the meta
operations to the corresponding stage executors.

5.2.1 Batch Table and Batch Queues

DVABatch uses a batch table to track the processing status of
all the batches on a GPU. The batch table is updated by the
DVAScheduler through the meta operations.

As shown in Figure 8, a row in the batch table records the
status of an ongoing batch. In a row, id is the batch’s identifier,
bs is its current batch size, time is the timestamp the batch
is created, statusmap is a map that records the number of
completed queries in each stage of the batch. For instance,
the first row of statusmap in Figure 8(a) means stage 1 has
completed 2 queries in its batch. We need statusmap because
the latter queries of a stretched batch should catch up with the
ongoing queries. With statusmap, the executors could get the
right number of queries to execute after stretch operation.

After the current stage executor completes its execution,
it notifies the subsequent stage executor to run. DVABatch
maintains batch queues between adjacent stage executors to
trigger such execution. In a row of a batch queue, id is the
batch’s identifier, start is the id of the to-be-processed query,
and num is the number of to-be-processed queries in the batch.

USENIX Association 2022 USENIX Annual Technical Conference    187



The stage executor pulls a batch from its batch queue, and
processes the queries accordingly. For instance, executor1 in
Figure 8(a) will run query 0 to query 1 (start = 0, num = 2)
in the current batch. Once the execution completes, the stage
executor updates the row of the processed batch in batch table,
and pushes an item into the next batch queue.

5.2.2 Handling Meta Operations

Based on batch table and batch queues, Figure 8 shows an
example that three meta operations are performed on the same
batch, batch0. In the example, we first new the batch batch0
with 2 queries (Figure 8(a)); Then, we stretch the batch batch0
with another 2 new queries while it is already processed by
executor2 (Figure 8(b)); Last, we split the batch batch0 into
2 smaller batches at the third stage (Figure 8(c)).

Handling new. Once batch0 is received, ① a new opera-
tion is instructed, and a new item is added to the batch table.
Meanwhile, an item is pushed to the first stage executor’s
batch queue (BatchQueue1). ② the executor of the first stage
(hereinafter, we refer to the executor of stagei as executori)
is notified to obtain the item and perform the execution. Once
executor1 completes, it ③ updates statusmap in the batch table,
and ④ pushes an item into BatchQueue2.

Handling stretch. ① As 2 new queries are added into
batch0 with the stretch operation at stage 2, bs of batch0
in the batch table is changed from 2 to 4. Because batch0 is
stretched to 4 queries while being processed by executor2, the
executor does not push an item into BatchQueue3, but only
updates statusmap. ② A new item (a batch with id = 0,start =
2,num = 2) is pushed into BatchQueue1, so that the newly
added queries can catch up with the progress of the current
batch. ③ Once the new queries catch up, executor2 updates
statusmap and ④ pushes a merged batch into BatchQueue3 (a
batch with start = 0 and num = 4). The stretch operation is
only performed on the latest batch stored in the batch table.

Handling split. When batch0 goes to stage 3, ① executor3
pulls batch0 from the batch queue and runs it with bs = 4. Af-
ter that, executor3 is instructed with a split operation. ② The
original batch is split into two batches in the batch table. ③
Lastly, the generated batches are all pushed into BatchQueue4
one by one. The split operation can happen when a new batch
of queries comes or during the execution of an ongoing batch.

The meta operations co-exist without conflict. Although
split happens at any stage, a potential split operation can be
known when generating the batch by new and stretch. We
disable further stretch for the batch that we perceive split
operation. The batches generated by split inherit this property.

6 Managing Stage Executors

In this section, we present the way the stage executors are
organized to process the batches.

Extra
 leg

itim
ate

buffe
r p

air
Legitimate

buffer pair

(b)(a)

1

3
2 executori

1

3
2

1

3
2

Proces
s w

ith
 leg

itim
ate 

buffe
r p

air

No legitimate buffer pair Working Inactive

Active

Legitimize buffer pair for
executori-1 when completing

bp1

In
pu

t b
uf

fe
rs

O
ut

pu
t b

uf
fe

rs

4

Invalid buffer:

Inreading buffer:

Inwriting buffer:

Available buffer:

Figure 9: (a) Stage executor processes batches with multiple
buffers; (b) Traditional state transition diagram of executori.

6.1 Processing with Multiple Buffers
With multiple stages, the executors of adjacent stages have
“producer-consumer” relationships. In this case, there are data
hazards on the buffers between stages.

Figure 9(a) shows the way the stages are connected. Multi-
ple buffers are used because multiple batches may be active
concurrently. An executor needs to obtain an input-output
buffer pair before it can process a batch. The output buffer of
executori is also the input buffer of executori+1. If executori
is using a buffer pair bp, there is a Write-After-Read hazard
on bp’s input buffer, as executori−1 may write to the very
buffer before executori reads the data. Similarly, there is a
Read-After-Write hazard on bp’s output buffer.

For ensuring the execution correctness, a buffer can be in
the available, invalid, inreading, or inwriting state. A buffer is
invalid when it cannot be used as an input buffer currently. It
is inreading/inwriting when it is used as an input/output buffer
for a batch’s execution. It is available when it is not used by
any executor. Figure 9(a) shows an example that executori
is using the first buffer pair bp1, and executori+1 is using the
output buffer of the second buffer pair bp2 as its input.
• The input buffer of bp1 is in inreading state and the output

buffer of bp1 is in inwriting state.
• The input buffer of bp2 is in invalid state because the output

buffer of bp2 is currently used by executori+1 for execution.
executori cannot use it to run a new batch.

• The third buffer pair are both in available states.
A stage executor can run a batch only when it suc-

cessfully obtains a legitimate buffer pair. A buffer pair is
legitimate, when both the input and output buffer are avail-
able, or the input buffer is available but the output buffer is
invalid. This is because an invalid buffer can be used as the
output buffer of an executor, but cannot be used as the input
buffer of the later stages.

6.2 State Transition of the Executors
Based on the buffer states, there are some traditional ways
to create a naive state transition rule for the stage executors
to run as a pipeline. For instance, a stage executor can be in
three states: active, working, inactive, and the states change

188    2022 USENIX Annual Technical Conference USENIX Association



executori

1

3
2

1

3
2

1 11 1Invalid buffer: Inreading buffer: Inwriting buffer: Available buffer:

executori+1

1

3
2

Active with bp2Working with bp3

executori-1

1 1

executori

1

Active with bp1

executori+1

1

Working with bp1

(b)(a)

Figure 10: (a) Inconsistency of buffer pairs; (b) Fail to run in
serial manner with single buffer pair.

according to the diagram in Figure 9(b).
However, these traditional state transition rules assume

all the stage executors use the buffer pairs in some fixed
order (e.g., ID order). While the traditional rules work
well for the single-entry single-exit pipeline, they will en-
counter the validity problem for the multi-entry multi-exit
pipeline.

Specifically, the requirement of meta operations stretch and
split invalids the above traditional transition rules. stretch
merges the outputs from different buffer pairs into a single
one, and split may split the output into multiple buffer pairs.
That means some stage executors may use more buffer pairs
than others, and the access order of these buffer pairs is scram-
bled. As shown in Figure 10(a), while executori is using bp3
for execution, executori is active with bp2. Such inconsistency
invalidates the traditional state transition rule.

On the other hand, stage executors need to run multiple
batches in parallel for load diversity and input diversity, and
run batches sequentially for operator diversity (Section 3).
The traditional transition rule supports parallel manner well
but fails to satisfy the requirement of serial manner. As shown
in Figure 10(b), the stage executors always run in parallel
even if only one buffer pair is used. Because executori legit-
imizes bp1 for executori−1 after it completes the execution,
executori−1 is active with bp1, when executori+1 is in work-
ing state with bp1. In this case, executori−1 is able to run in
parallel with executori+1.

We therefore design the transition diagram in Figure 11.
Suppose executori is in the active state with a legitimate
buffer pair currently. Once executori pulls out a batch with
buffer pair bp j, it checks the states of bp j instead of start-
ing execution directly. If bp j is legitimate, executori enters
working state and starts the execution. Meanwhile, the input
buffer and output buffer of bp j enter in-reading and in-writing
states respectively. If bp j is not legitimate, executori enters
checking state, waiting for bp j to become legitimate. When
executori completes a batch with bp j, the input buffer of bp j
enters invalid state, and the output buffer of bp j restores to its
previous state. If executori gets another legitimate buffer pair,
it enters active state. Otherwise, it enters inactive state. The
last stage executor always re-enters active state directly.

Note that, after executori re-enters active state with any
legitimate buffer pair, executori updates the j-th input
buffer of executori−1 to available state. It denotes that

Extra legitimate buffer pair

L
eg

iti
m

at
e

bu
ff

er
 p

ai
r

Process with legitimate bp j

No legitimate buffer pair 
Working Inactive

Active
bpj is not legitimate 

Checking

L
eg

iti
m

at
e

bp
j

Legitimize bpj for executori-1Guarantee using the right bp

Enable serial work manner

Figure 11: State transition diagram of executori in DVABatch.

executori−1 can use bp j now.
In short, we first add a checking state for the stage executor

to guarantee using the right buffer pair. We also move the
buffer pair legitimation for executori−1 after executori enters
active state. In this case, while DVABatch only configures one
available buffer pair, all stage executors stay in inactive state
until the current batch is executed by the last stage executor.
Therefore, the serial work manner is supported.

6.3 Implementing the Transition Diagram
We implement the transition diagram of stage executors
through CUDA synchronization APIs for the correctness guar-
antee. Each stage executor is bound to a CUDA stream for par-
allel execution, and each buffer pair is equipped with a CUDA
event to enforce its legitimation. Upon finishing launching
the CUDA functions with a buffer pair, the stage executor
performs a record operation with the buffer pair’s event on
its stream. After that, if the corresponding buffer pair is le-
gitimate, the other stage executor requires synchronization
with the event on its own stream before using the buffer pair
to avoid data hazards on GPUs. In order to deliver the best
performance, the stage executor calls cudaStreamWaitEvent
instead of explicit synchronizations on the host side.

7 Scheduling Policies of Serving Diversities

In this section, we present the way to deal with the serv-
ing diversities using DVABatch. First of all, we identify the
existing diversities in a DNN model and divide the model
into several stages. Then, at runtime, DVABatch is able to
schedule the batches of the model appropriately.

7.1 Identifying Diversities and Slicing Models
For a DNN service, We identify the existing diversities and
slice the model offline, by checking the input patterns and
profiling the model with several different batch sizes (e.g., 1,
2, 4, 8, 16, 32, 64) using the tools provided by Nvidia [7, 8].

All the models are considered to have load diversities, as the
load pattern is often determined by the end-users. The model
that accepts inputs with different shapes (dynamic dimension

USENIX Association 2022 USENIX Annual Technical Conference    189



1 //stage executors run within a while loop
2 void Run():
3 Batch& inBatch = BatchQueue.Get();
4 CheckBuffer(inBatch);//Check buffer pair
5 Execute(inBatch);
6 Schedule(inBatch , outBatches);
7 for (auto& batch : outBatches):
8 nextBatchQueue.Push(batch)
9 getBuffer(); //get legitimate buffer pair

10 updatePrExecutor();//update preceding executor
11 //call Schedule to perform meta operations
12 void Schedule(Batch& inBatch , vector <Batch >&

outBatches):
13 BatchTable.update(inBatch);
14 if userDefined1:
15 outBatches = BatchTable.New(inBatch);
16 else if userDefined2:
17 outBatches = BatchTable.Stretch(inBatch);
18 else if userDefined3:
19 outBatches = BatchTable.Split(inBatch);
20 else:
21 outBatches.Copy(inBatch);

Figure 12: Creating scheduling policies with meta operations.

except for batch size) has input diversity. During the profiling,
we obtain the preferred batch size of each operator, as shown
in Figure 5. When the operators have different preferred batch
sizes, the model has operator diversity.

Once the diversities are identified, DVABatch slices the
DNN models into stages. If a model is sliced into Nst stages,
the operators are time-evenly assigned to the stages in the
topological order for simplicity. It is non-trivial to theoreti-
cally identify the optimal Nst . If Nst is too small, the opportu-
nity for batch scheduling is limited. Otherwise, if Nst is too
large, the fine-grained stages incur heavy scheduling overhead.
Moreover, unlike Pipedream [48], the model slicing in DV-
ABatch can also be tight with diversities. E.g., DVABatch con-
siders the operators’ preferred batch size and slices a model
at specific operators for operator diversity. We currently de-
termine the optimal Nst through profiling. It can be done in
10 minutes (8 tries) for emerging benchmarks on each type of
GPU. It is worth noting that the model slicing does not con-
flict with the compilation techniques like kernel fusion [64].
We slice the model after it is already optimized by the DNN
compilers.

7.2 Defining Policies with Meta Operations

Figure 12 shows the interface provided by DVABatch to de-
fine batch scheduling policies with the meta operations. Each
stage executor runs in a while loop (Line 2-11) to execute
the batches (Line 3, 6, 8 stated in Section 5, Line 4, 5, 9, 11
stated in Section 6). The stage executor calls Schedule() to
schedule the batches at Line 5. Inside Schedule(), the stage ex-
ecutor updates the batch table, and performs meta operations
if user-defined conditions are satisfied accordingly.

Stage1
DNN serving

system
Stage2 Stagei+1

Tremain_64 ≥ 2xTremain_32 ?

bs=64 ≥
< not changed,bs=64

split,bs=32×2

Figure 13: Scheduling according to the preferred batch size.

The policy is implemented outside user models, and does
not require modification to the model. We then show the
policies defined to handle the three diversities.

Policy I for input diversity. The input diversity requires
running multiple small batches in parallel. While accept-
ing a batch of queries from the upper-level serving systems,
DVAScheduler clusters the queries according to their input
sizes. The queries with similar input sizes are batched and
padded to the same size for processing. DVABatch processes
these batches in parallel for better utilizing the hardware par-
allelism. As the batches run in parallel, the scheduler prefers a
smaller batch time window instead of generating the batches
as large as possible. Practically, we set the batch time window
to be the duration of the first stage with the largest allowed
batch size bsmax. The number of active queries in the software
pipeline does not exceed bsmax.

Policy II for operator diversity. Figure 13 shows the way
DVABatch schedules the next stage when a stage completes.
Assume the current batch size (denoted by bs) is 64 for stage1
in the figure. The DVAscheduler compares the processing
time of all the remaining stages with different batch sizes. Let
Tremain_i represent the time needed when batch size is i. In
Figure 13, if Tremain_64 ≥ 2×Tremain_32, the large batch is split
into two batches with bs = 32. The two smaller batches run
in the serial manner, as the hardware is already fully utilized
with bs = 32. The duration of each stage with the different
batch sizes is already profiled offline.

Policy III for load diversity. At load diversity, a latter batch
should be able to join a previous batch, if it does not result
in the QoS violation of the previous batch. In this case, DV-
ABatch uses stretch operation to enlarge the batch at runtime.
We set a time threshold Tcomp_wait to eliminate the possible
QoS violation. If a batch is already processed for Tcomp_wait ,
no stretch operation is allowed on this batch.

Load diversity is widespread. For input diversity, as the
new batches are allowed to enter the software pipeline inde-
pendently, it already resolves the load diversity. For operator
diversity, Policy III and Policy II work together due to the
co-existence of stretch and split, as stated in Section 5.2.2.

8 Evaluation of DVABatch

In this section, we evaluate the performance of DVABatch in
reducing the latencies of DNN services.

190    2022 USENIX Annual Technical Conference USENIX Association



100
80
60
40
20

0A
vg

 L
at

en
cy

(m
s)

High Med. Low High Med. Low High Med. Low High Med. Low High Med. Low High Med. Low

 ZeroBatch  DelayBatch  DVABatch

BertBase BertLarge LinkNet Unet VGG19 ResNet152

Figure 14: Average latencies of six DNN services at low, medium, high load with ZeroBatch, DelayBatch, and DVABatch.

Table 1: Evaluation specifications.

Hardware CPU: Intel Xeon E5-2620, GPU: Nvidia Titan RTX

OS & Driver Ubuntu: 18.04.6 (kernel 4.15.0); GPU Driver: 470.57

Software CUDA: 11.4; TensorRT: 8.03; Triton 21.10

Benchmarks
Unet [56]; LinkNet [16];BertBase;

BertLarge [27]; VGG19 [57]; ResNet152 [37]

Dataset GLUE [59]

8.1 Experiment Setup

We implement the prototype of DVABatch with 5k lines of
C++ codes as a runtime backend for Triton [9], a DNN serving
system from Nvidia. As the latency of a DNN model/operator
varies with DNN frameworks [14, 19, 20,39, 52] or compilers,
we use TensorRT [13] to provide SOTA operator performance.
DVABatch relies on Triton to batch the accepted queries.
However, Triton sends the batched queries to DVABatch in an
asynchronous fashion, and DVABatch enables the multi-entry
multi-exit scheme for it. We also modify the model loading
logic to load multiple stages (each stage is a sub-model) for a
single DNN service.

Table 1 lists the setups of the experiments. We perform all
the experiments on a machine that equips an Nvidia Turing
Titan RTX (Titan RTX) GPU. We use six representative im-
age processing and natural language processing DNN models
as the benchmarks. All models experience load diversity. Be-
sides, BertBase and BertLarge show input diversity, LinkNet
and Unet show operator diversity.

We compare DVABatch with two batching policies: the de-
fault scheduling policy with batch time window Twindow = 0
(ZeroBatch for short), and one with an optimized Twindow (De-
layBatch for short). The optimized Twindow of DelayBatch is
tuned for supporting the max peak throughput [2]. In all ex-
periments, the maximum allowed batch size bsmax is 64 and
the QoS target is 200ms to support a high load. Current pro-
duction DNN serving systems (e.g., Triton [9], Clipper [23],
TFServing [51]) all use the above batch time window and
batch-size-based batching mechanism [22].

The load used for evaluation is generated using the method
in MLperf [55], and the arrival time pattern satisfies the Pois-
son distribution [55]. We obtain the performance of the bench-
marks at low, medium, and high loads. For a benchmark, we
use 1/4, 3/5, 9/10 of its peak throughput as low load, medium

load, high load. The three load levels are obtained by feeding
each benchmark with a stepping load [3] in Section 8.3. For
BertBase and BertLarge, we use the workloads in GLUE [59]
to simulate the sequence length distributions of real-world
services. By default, the RTE workload of GLUE is used
for evaluating BertBase and BertLarge. Other workloads are
evaluated in Section 8.4.

8.2 Reducing Average Latency
Figure 14 shows the average latencies of all benchmarks with
ZeroBatch, DelayBatch, and DVABatch at low, medium, high
loads. DVABatch reduces the average latency of the bench-
marks by 16.1%/39.0%/57.7% compared with ZeroBatch,
35.4%/47.3%/48.5% compared with DelayBatch on average
at low, medium, and high loads, respectively. DVABatch re-
duces the average latency in all cases with the multi-entry
multi-exit batching scheme. Meanwhile, DelayBatch shows
lower average latency at high load compared with ZeroBatch,
and ZeroBatch achieves lower latencies at low load. It is be-
cause DelayBatch has an optimized batch time window for
peak throughput, and ZeroBatch does not introduce latency
due to the batch time window at low load.

BertBase and BertLarge show both input diversity and load
diversity. The latency reduction of DVABatch is compara-
tively high at all loads compared with the two baselines. This
is because DVABatch perceives the input diversity, and splits
the large batches into small batches to reduce the extra com-
putation due to padding in all cases. DVABatch processes the
small batches in the form of a software pipeline to accelerate
the computation, which further reduces the latency.

LinkNet and Unet show both operator diversity and load di-
versity. At low load, DVABatch and ZeroBatch reduce latency
due to the smaller batch window, compared with DelayBatch.
At high load, DVABatch performs much better than ZeroBatch
and DelayBatch. When the load is high, the batch received
from the upper-level serving system has more queries. There
is a higher opportunity that DVABatch can split a large batch
into batches with the preferred batch size. Operators do not
use a batch size larger than their preferred batch sizes. Some
queries can exit the batching early with shorter latency.

VGG19 and ResNet152 only show load diversity. At low
load, DVABatch achieves equivalent latency performance
compared with ZeroBatch, and reduces the average latency

USENIX Association 2022 USENIX Annual Technical Conference    191



DelayBatch

DVABatch

230req/s

210req/s

Figure 15: Latencies and peak throughput of DelayBatch and DVABatch fed with stepping load.

200
150
100
50
0

99
%

-il
e 

la
te

nc
y 

(m
s)200

150
100
50
0

99
%

-il
e 

la
te

nc
y 

(m
s)

 ZeroBatch  DelayBatch  DVABatch

BertBase BertLarge LinkNet Unet VGG19 ResNet152
H M L H M L H M L H M L H M L H M L

Figure 16: 99%-ile latencies of six DNN services at three
loads with ZeroBatch, DelayBatch, and DVABatch.

compared with DelayBatch. This is reasonable because DV-
ABatch and the baselines are all processing the queries with
bs = 1 in this case. At high load, DVABatch and DelayBatch
both perform better than ZeroBatch. The latency reduction
benefits from the reasonable batching parameters. With DV-
ABatch, early arrived queries are executed in advance, and
latter queries are also considered to be merged with the former
batch. Then, their response latencies are all reduced.

Comparison with Limited Solutions. While we do
not compare DVABatch with BatchMaker [31] and Lazy-
Batch [22] directly in this section, DVABatch outperforms
them for the evaluated benchmarks. BatchMaker cannot han-
dle input diversity for BertBase and BertLarge, as it is RNN-
specific for input diversity and Bert-like models are not based
on RNN cells. In this case, BatchMaker performs the same as
the two baselines presented in Figure 14. LazyBatch only han-
dles load diversity and performs per-operator scheduling. DV-
ABatch degenerates to LazyBatch while evaluating VGG19
and ResNet152, if we slice the model into the granularity of
operators and only enable stretch operation. However, experi-
ments in Section 8.7 indicates this incurs severe performance
degradation. Meanwhile, per-operator model slicing for Lazy-
Batch cannot be implemented with TensorRT, as it is against
the compilation techniques like kernel fusion. Compared with
them, DVABatch achieves better performance for all evalu-
ated benchmarks by promising a multi-entry multi-exit batch
scheme with minimal runtime scheduling overhead.

Comparison of Tail Latency. Other than the aver-
age latency, Figure 16 shows the 99% latencies of all
benchmarks. DVABatch reduces the 99%-ile latencies
by 16.9%/27.4%/53.7% compared with ZeroBatch, and
45.2%/45.1%/29.2% compared with DelayBatch. In terms
of tail latency, DelayBatch has better performance at high

load, ZeroBatch performs better than DelayBatch at low load.
The multi-entry multi-exit design allows DVABatch to main-
tain consistent low tail latency at varying loads.

8.3 Robustness at Stepping Load
In this experiment, we evaluate the robustness of DVABatch
in handling dynamic loads. Similar to prior work [3, 40],
we use stepping load to obtain the peak load supported by
DVABatch. We only compare DVABatch with DelayBatch
in the following section, as ZeroBatch always shows poor
performance at high load.

The stepping load is generated as follows. At first, the load
is low (66 queries per second), and we gradually increase
the load for every 2000 queries. After 30,000 queries, the
load is increased to 4000 queries per second (QPS). We use
the corresponding highest load under the constrain, that the
latency is shorter than the QoS target 200ms, as the peak
throughput.

Figure 15 shows the latencies of the benchmarks at stepping
loads. In each subfigure, the x-axis represents the query ID
in the issuing order. The left y-axis represents the latency of
each query, and the right y-axis represents the load.

As observed, all the benchmarks have lower latency with
DVABatch than with DelayBatch in all cases. For BertBase
and BertLarge, DVABatch improves the peak throughput, be-
cause it eliminates the computation wasted for the padded in-
puts. On average, DVABatch increases 46.81% peak through-
put for BertBase, 1.37× peak throughput for BertLarge. For
operator diversity and load diversity, DVABatch has not im-
pact on the computation. In that case, the peak throughput of
DVABatch is limited by the hardware capacity. DVABatch
maintains the same peak throughput as DelayBatch.

8.4 Impact of Input Distributions
The effectiveness of DVABatch for input diversities is affected
by how different the inputs are. In this experiment, we show
the performance of DVABatch when different workloads in
GLUE [59] are used as the inputs of Bert and BertLarge. We
use the same stepping load in Section 8.3.

Figure 17 shows the supported peak loads of BertBase and
BertLarge with different workloads in GLUE. As observed,

192    2022 USENIX Annual Technical Conference USENIX Association



Figure 17: Peak load supported by DVABatch for Bert-
Base/BertLarge with different workloads.

LinkNet Unet

80

60

40

20

0A
vg

 la
te

nc
y(

m
s)

High Med. Low High Med. Low

 DelayBatch  DVABatch-split  DVABatch

Figure 18: Comparison of split operation for LinkNet/Unet.

DVABatch improves the peak throughput by 46.8% for Bert-
Base, 1.37× for BertLarge compared with DelayBatch on av-
erage. DVABatch brings different throughput improvements
for different datasets. The more imbalanced the sequence
distribution is, the higher the workload’s input diversity is.

In general,DVABatch works better for workloads with
higher input diversity, as DVABatch can eliminate more un-
necessary padding. For instance, while the input diversity
of SST-2 is higher than that of MRPC, the performance gap
between DelayBatch and DVABatch for SST-2 workload is
much larger than that for MRPC. The more imbalanced the
sequence distribution is, the higher throughput improvement
DVABatch achieves.

8.5 Effectiveness of split operation

In this experiment, we evaluate the effectiveness of split
for load diversity. Figure 18 shows the average latencies of
LinkNet and Unet with DVABatch, DVABatch-split, and De-
layBatch. DVABatch-split is a variant of DVABatch that only
split is enabled in DVABatch.

As shown, DVABatch-split reduces the latencies most at
high load for LinkNet and Unet. Compared with DelayBatch,
DVABatch-split reduces average latency by 15.0% at high
load. This is because DVABatch-split rarely has the choice to
split a batch at low and medium loads.

We can also find that DVABatch-split brings different im-
provements for the two DNN services. The difference origi-
nates from the operator diversity and load diversity. We look
into the processing details and find that DVABatch-split gener-
ates larger batches for LinkNet than Unet. Half of the batches
generated for LinkNet are with bs > 50 and Unet are with
bs > 30. In this case, DVABatch-split has more chances to
identify the preferred batch size for LinkNet than Unet.

300

200

100

0A
vg

 la
te

nc
y(

m
s)

BertBase BertLarge LinkNet Unet VGG19 ResNet152

 buffer_pair = 2
 buffer_pair = 4
 buffer_pair = 6

Figure 19: The average latencies of DVABatch with different
number of buffer pairs under peak load.

Figure 20: The average latencies and peak throughput of the
benchmarks when sliced into different numbers of stages.

8.6 Impacts of the Number of Buffer Pairs
This experiment evaluates the impact of the number of buffer
pairs used in DVABatch. Figure 19 presents the average la-
tencies of DVABatch with different numbers of buffer pairs
at the peak load. As shown, the average latencies are always
the lowest with two buffer pairs for all benchmarks.

Therefore, two buffer pairs are already enough to preserve
the execution validity and enable the work manner switch.
More buffer pairs degrade the performance. Each buffer pair
uses a set of CUDA [50] synchronization data structures to
guarantee scheduling correctness. When two buffer pairs are
used, DVABatch only needs to switch between them. How-
ever, managing many buffer pairs requires extra FIFO queues
to transmit these data structures. Too many buffer pairs incur
a high scheduling overhead.

8.7 Impacts of the Stage Numbers
In this experiment, we investigate the number of stages on the
performance of DVABatch. We use BertBase, LinkNet, and
ResNet152 as the representative benchmarks with the three
types of diversities, respectively, due to the limited space.

Figure 20 shows the throughputs and average latencies of
the benchmarks with different stage numbers. In the figure,
the left y-axis represents the peak throughput and the right
y-axis represents the corresponding average latencies.

As observed, the best stage number is 2 for BertBase, 4 for
LinkNet and ResNet152 in terms of latency and throughput,
respectively. For BertBase, the accepted batch is split into
two batches in most cases. DVABatch avoids generating too
many small batches to reduce scheduling overhead. Therefore,
2 stages are enough for BertBase. LinkNet and ResNet152
require more stages to enable stretch and split. If the number
of stages is too large (e.g., 20), managing queues between
stages incur a high overhead for all benchmarks.

USENIX Association 2022 USENIX Annual Technical Conference    193



20
15
10

5
0O

ve
rh

ea
d 

(m
s)

BertBase BertLarge Unet LinkNet VGG19 ResNet152

 ZeroBatch  DVABatch

Figure 21: Close-loop latencies of ZeroBatch and DVABatch.

8.8 Scheduling Overhead
As mentioned in Section 7.1, the profiling for model slicing
needs to be done for a single time on each type of target
GPU, and completed in 10 minutes. To measure the runtime
overhead introduced by DVABatch, we run the six bench-
marks in a close loop, and compare the end-to-end latencies
of the queries with ZeroBatch. In this experiment, we set the
batch time window of DVABatch to 0. Figure 21 shows the
experimental results.

As observed, the average latency overhead is 0.29ms, and
DVABatch achieves almost the same latency compared with
ZeroBatch. DVABatch has a low overhead because it does
not interrupt the execution of stage executors at the extremely
low load, and the two executors overlap the overhead of CPU-
GPU synchronization for each stage. As depicted in Figure 12,
Line5 is usually an asynchronous operation on GPU and the
scheduling operation in Line4 is overlapped by the execution.
Moreover, the model slicing in DVABatch does not invalidate
the optimization of DNN compilers.

DVABatch needs extra global memory (buffer pairs) to
avoid read-write hazards while maintaining the software
pipeline, which takes 200 MB of space on average.

9 Discussion

9.1 Implication for Future DNN Inference
Omnipresent Diversity. Readers can find that all the men-
tioned diversities are caused by dynamic attributes (dynamic
input, operator, load). Existing DNNs may have a dynamic
architecture in depth, width, and routing [32,33,45,53,58,60].
As more dynamic attributes emerge, diversity spreads across
new DNNs.

Intra-model Scheduling. DVABatch performs fine-
grained scheduling within the DNN models. As DNNs grow
larger and show more diversity, the execution of DNNs cannot
be treated as a single function call. Large models [15,54] like
Bert are being deployed on multiple machines. MoE [42] mod-
els activate different paths for different inputs. Intra-model
scheduling is a trend for future DNN inference.

9.2 Flexibility
DVABatch is flexible to other diversities. For instance., in the
services with early-exiting and layer-skip[42,53,55] models,

the inference returns at early stages or skips some stages
when the intermediate results satisfy a predefined threshold.
Users can modify the user-defined condition in DVABatch
to check the intermediate results during batch inference. If
some queries meet the predefined threshold, users then utilize
the split operation for them to exit the ongoing batch without
executing the rest layers. Then, the layer skip mechanism is
implemented by the holistic design of multi-entry and multi-
exit in DVABatch.

9.3 Limitations

DVABatch targets on efficient batch processing of models
with diversities. It performs the same as the traditional batch
policy for the models without any diversity. The CV models
commonly crop the images to the same size before processing.
Then input diversity does not exist in these models. Because
the same blocks share the favored batch size, models with
repetitive blocks like ResNet-50 and Bert do not show opera-
tor diversity. Load diversity also vanishes when the queries
arrive with a uniform load. In these cases, DVABatch has no
opportunity to achieve a better batch scheme. But as stated
in Section 9.1, more and more model are showing diversities
due to dynamic attributes. As long as a more efficient batch
scheme is available for the diversities, DVABatch takes effect
through its holistic design, even on platforms like CPUs [61].

10 Conclusion

In this work, we utilize the multi-entry multi-exit scheme to
resolve the long latency problem due to serving diversity in ex-
isting DNN serving systems. We dig out the root inefficiency
of the existing batching policy when facing serving diversities.
Therefore, we propose DVABatch runtime batching system.
Firstly, DVABatch divides the DNN models into stages and
abstracts three meta operations to support the multi-entry
multi-exit scheme. Secondly, DVABatch introduces a state
transition diagram to manage the execution of stages. And
then, DVABatch conducts diversity-aware batch scheduling
with the meta operations for the incoming batch of queries.
Overall, DVABatch achieves 46.4% average latency reduc-
tion and up to 2.12× throughput improvement for involved
diversities, compared with state-of-art solutions.

Acknowledgment

This work is partially sponsored by the National Natural Sci-
ence Foundation of China (62022057, 61832006, 61872240,
62172375), Shanghai international science and technology
collaboration project (No.21510713600), and Open Research
Projects of Zhejiang Lab (No. 2021KE0AB02). Quan
Chen,and Deze Zeng are the corresponding authors.

194    2022 USENIX Annual Technical Conference USENIX Association



References

[1] https://aws.amazon.com/machine-learning/.

[2] Delayed batching in triton. https://github.com/t
riton-inference-server/server/blob/v2.14.0/
docs/model_configuration.md#delayed-batch
ing.

[3] Edit load patterns to model virtual user activities. https:
//docs.microsoft.com/en-us/visualstudio/tes
t/edit-load-patterns-to-model-virtual-use
r-activities?view=vs-2022.

[4] Effective transformer. https://github.com/byted
ance/effective_transformer.

[5] Google translate. https://translate.google.com.

[6] Microsoft xiaoice. http://www.msxiaobing.com/.

[7] Nvidia nsight compute. https://docs.nvidia.com/
nsight-compute/NsightCompute/index.html.

[8] Nvidia nsight system. https://developer.nvidia
.com/nsight-systems.

[9] Nvidia triton inference server. hhttps://github.com
/NVIDIA/triton-inference-server.

[10] Nvidia turing gpu architecture whitepaper. https://
www.nvidia.com/content/dam/en-zz/Solutions/
design-visualization/technologies/turing-a
rchitecture/NVIDIA-Turing-Architecture-Whi
tepaper.pdf.

[11] Nvidia v100 tensor core gpu. https://www.nvidia.c
om/en-us/data-center/v100/.

[12] Siri. https://www.apple.com/siri/.

[13] Tensorrt. https://developer.nvidia.com/tenso
rrt, 2021.

[14] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning.
In 12th USENIX symposium on operating systems de-
sign and implementation (OSDI 16), pages 265–283,
2016.

[15] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

[16] Abhishek Chaurasia and Eugenio Culurciello. Linknet:
Exploiting encoder representations for efficient semantic
segmentation. In 2017 IEEE Visual Communications
and Image Processing (VCIP), pages 1–4. IEEE, 2017.

[17] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa
Kannan, Jason Mars, and Lingjia Tang. Prophet: Pre-
cise qos prediction on non-preemptive accelerators to
improve utilization in warehouse-scale computers. In
Proceedings of the 22th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 17–32, 2017.

[18] Quan Chen, Hailong Yang, Jason Mars, and Lingjia
Tang. Baymax: Qos awareness and increased utiliza-
tion for non-preemptive accelerators in warehouse scale
computers. ACM SIGPLAN Notices, 51(4):681–696,
2016.

[19] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang,
and Zheng Zhang. Mxnet: A flexible and efficient ma-
chine learning library for heterogeneous distributed sys-
tems. arXiv preprint arXiv:1512.01274, 2015.

[20] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. TVM: An au-
tomated end-to-end optimizing compiler for deep learn-
ing. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 578–594,
2018.

[21] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang
He, Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu,
Ninghui Sun, et al. Dadiannao: A machine-learning
supercomputer. In 2014 47th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, pages 609–
622. IEEE, 2014.

[22] Yujeong Choi, Yunseong Kim, and Minsoo Rhu.
Lazybatching: An sla-aware batching system for
cloud machine learning inference. arXiv preprint
arXiv:2010.13103, 2020.

[23] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J
Franklin, Joseph E Gonzalez, and Ion Stoica. Clipper:
A low-latency online prediction serving system. In 14th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 613–627, 2017.

[24] Weihao Cui, Quan Chen, Han Zhao, Mengze Wei, Xi-
aoxin Tang, and Minyi Guo. E2bird: Enhanced elastic
batch for improving responsiveness and throughput of
deep learning services. IEEE Trans. Parallel Distributed
Syst., 32(6):1307–1321, 2021.

USENIX Association 2022 USENIX Annual Technical Conference    195

https://aws.amazon.com/machine-learning/
https://github.com/triton-inference-server/server/blob/v2.14.0/docs/model_configuration.md#delayed-batching
https://github.com/triton-inference-server/server/blob/v2.14.0/docs/model_configuration.md#delayed-batching
https://github.com/triton-inference-server/server/blob/v2.14.0/docs/model_configuration.md#delayed-batching
https://github.com/triton-inference-server/server/blob/v2.14.0/docs/model_configuration.md#delayed-batching
https://docs.microsoft.com/en-us/visualstudio/test/edit-load-patterns-to-model-virtual-user-activities?view=vs-2022 
https://docs.microsoft.com/en-us/visualstudio/test/edit-load-patterns-to-model-virtual-user-activities?view=vs-2022 
https://docs.microsoft.com/en-us/visualstudio/test/edit-load-patterns-to-model-virtual-user-activities?view=vs-2022 
https://docs.microsoft.com/en-us/visualstudio/test/edit-load-patterns-to-model-virtual-user-activities?view=vs-2022 
https://github.com/bytedance/effective_transformer
https://github.com/bytedance/effective_transformer
https://translate.google.com
http://www.msxiaobing.com/
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
hhttps://github.com/NVIDIA/triton-inference-server
hhttps://github.com/NVIDIA/triton-inference-server
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/en-us/data-center/v100/
https://www.nvidia.com/en-us/data-center/v100/
https://www.apple.com/siri/
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt


[25] Weihao Cui, Mengze Wei, Quan Chen, Xiaoxin Tang,
Jingwen Leng, Li Li, and Mingyi Guo. Ebird: Elastic
batch for improving responsiveness and throughput of
deep learning services. In 2019 IEEE 37th International
Conference on Computer Design (ICCD), pages 497–
505. IEEE, 2019.

[26] Weihao Cui, Han Zhao, Quan Chen, Ningxin Zheng,
Jingwen Leng, Jieru Zhao, Zhuo Song, Tao Ma, Yong
Yang, Chao Li, and Minyi Guo. Enable simultaneous
DNN services based on deterministic operator overlap
and precise latency prediction. In SC ’21: The Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, 2021, pages 15:1–
15:15. ACM, 2021.

[27] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[28] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou.
Turbotransformers: an efficient gpu serving system for
transformer models. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 389–402, 2021.

[29] Pratik Fegade, Tianqi Chen, Phillip B Gibbons, and
Todd C Mowry. The cora tensor compiler: Compila-
tion for ragged tensors with minimal padding. arXiv
preprint arXiv:2110.10221, 2021.

[30] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, et al. An open-source
benchmark suite for microservices and their hardware-
software implications for cloud & edge systems. In
Proceedings of the 24th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 3–18, 2019.

[31] Pin Gao, Lingfan Yu, Yongwei Wu, and Jinyang Li. Low
latency rnn inference with cellular batching. In Proceed-
ings of the Thirteenth EuroSys Conference, pages 1–15,
2018.

[32] Yue Guan, Zhengyi Li, Jingwen Leng, Zhouhan Lin, and
Minyi Guo. Transkimmer: Transformer learns to layer-
wise skim. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), ACL 2022, pages 7275–7286. Associa-
tion for Computational Linguistics, 2022.

[33] Cong Guo, Yuxian Qiu, Jingwen Leng, Xiaotian Gao,
Chen Zhang, Yunxin Liu, Fan Yang, Yuhao Zhu, and
Minyi Guo. SQuant: On-the-fly data-free quantization
via diagonal hessian approximation. In International
Conference on Learning Representations, 2022.

[34] Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong
Wang, Brandon Reagen, Gu-Yeon Wei, Hsien-Hsin S
Lee, David Brooks, and Carole-Jean Wu. Deeprecsys:
A system for optimizing end-to-end at-scale neural rec-
ommendation inference. In 2020 ACM/IEEE 47th An-
nual International Symposium on Computer Architec-
ture (ISCA), pages 982–995. IEEE, 2020.

[35] Johann Hauswald, Yiping Kang, Michael A Laurenzano,
Quan Chen, Cheng Li, Trevor Mudge, Ronald G Dreslin-
ski, Jason Mars, and Lingjia Tang. Djinn and tonic: Dnn
as a service and its implications for future warehouse
scale computers. In 2015 ACM/IEEE 42nd Annual Inter-
national Symposium on Computer Architecture (ISCA),
pages 27–40. IEEE, 2015.

[36] Johann Hauswald, Michael A Laurenzano, Yunqi Zhang,
Cheng Li, Austin Rovinski, Arjun Khurana, Ronald G
Dreslinski, Trevor Mudge, Vinicius Petrucci, Lingjia
Tang, et al. Sirius: An open end-to-end voice and vision
personal assistant and its implications for future ware-
house scale computers. In Proceedings of the Twentieth
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
223–238, 2015.

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[38] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural computation, 9(8):1735–1780,
1997.

[39] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell. Caffe: Convolutional archi-
tecture for fast feature embedding. In Proceedings of
the 22nd ACM international conference on Multimedia,
pages 675–678, 2014.

[40] Zhen Ming Jiang and Ahmed E Hassan. A survey on
load testing of large-scale software systems. IEEE Trans-
actions on Software Engineering, 41(11):1091–1118,
2015.

[41] Harshad Kasture and Daniel Sanchez. Tailbench:
a benchmark suite and evaluation methodology for
latency-critical applications. In 2016 IEEE International
Symposium on Workload Characterization (IISWC),
pages 1–10. IEEE, 2016.

[42] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, De-
hao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. Gshard: Scaling gi-
ant models with conditional computation and automatic
sharding. arXiv preprint arXiv:2006.16668, 2020.

196    2022 USENIX Annual Technical Conference USENIX Association



[43] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J
Smola. Efficient mini-batch training for stochastic op-
timization. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 661–670, 2014.

[44] Xiaqing Li, Guangyan Zhang, H Howie Huang, Zhufan
Wang, and Weimin Zheng. Performance analysis of
gpu-based convolutional neural networks. In 2016 45th
International Conference on Parallel Processing (ICPP),
pages 67–76. IEEE, 2016.

[45] Lanlan Liu and Jia Deng. Dynamic deep neural net-
works: Optimizing accuracy-efficiency trade-offs by se-
lective execution. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[46] Zihan Liu, Jingwen Leng, Zhihui Zhang, Quan Chen,
Chao Li, and Minyi Guo. VELTAIR: towards high-
performance multi-tenant deep learning services via
adaptive compilation and scheduling. In ASPLOS ’22:
27th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, 2022, pages 388–401. ACM, 2022.

[47] Moshe Looks, Marcello Herreshoff, DeLesley Hutchins,
and Peter Norvig. Deep learning with dynamic compu-
tation graphs. arXiv preprint arXiv:1702.02181, 2017.

[48] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger,
Phillip B. Gibbons, and Matei Zaharia. Pipedream: gen-
eralized pipeline parallelism for DNN training. In Pro-
ceedings of the 27th ACM Symposium on Operating Sys-
tems Principles, SOSP 2019, pages 1–15. ACM, 2019.

[49] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopoulos,
Miguel Ballesteros, David Chiang, Daniel Clothiaux,
Trevor Cohn, et al. Dynet: The dynamic neural network
toolkit. arXiv preprint arXiv:1701.03980, 2017.

[50] CUDA Nvidia. Nvidia cuda c programming guide.
Nvidia Corporation, 120(18):8, 2011.

[51] Christopher Olston, Noah Fiedel, Kiril Gorovoy,
Jeremiah Harmsen, Li Lao, Fangwei Li, Vinu
Rajashekhar, Sukriti Ramesh, and Jordan Soyke.
Tensorflow-serving: Flexible, high-performance ml
serving. arXiv preprint arXiv:1712.06139, 2017.

[52] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep
learning library. In Advances in neural information
processing systems, pages 8026–8037, 2019.

[53] Yuxian Qiu, Jingwen Leng, Cong Guo, Quan Chen,
Chao Li, Minyi Guo, and Yuhao Zhu. Adversarial de-
fense through network profiling based path extraction.
In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, pages 4777–4786. Computer
Vision Foundation / IEEE, 2019.

[54] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer. arXiv
preprint arXiv:1910.10683, 2019.

[55] Vijay Janapa Reddi, Christine Cheng, David Kanter, Pe-
ter Mattson, Guenther Schmuelling, Carole-Jean Wu,
Brian Anderson, Maximilien Breughe, Mark Charlebois,
William Chou, et al. Mlperf inference benchmark.
In 2020 ACM/IEEE 47th Annual International Sympo-
sium on Computer Architecture (ISCA), pages 446–459.
IEEE, 2020.

[56] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-net: Convolutional networks for biomedical image
segmentation. In International Conference on Medical
image computing and computer-assisted intervention,
pages 234–241. Springer, 2015.

[57] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[58] Surat Teerapittayanon, Bradley McDanel, and Hsiang-
Tsung Kung. Branchynet: Fast inference via early exit-
ing from deep neural networks. In 2016 23rd Interna-
tional Conference on Pattern Recognition (ICPR), pages
2464–2469. IEEE, 2016.

[59] Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. Glue: A multi-
task benchmark and analysis platform for natural lan-
guage understanding. arXiv preprint arXiv:1804.07461,
2018.

[60] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and
Joseph E Gonzalez. Skipnet: Learning dynamic routing
in convolutional networks. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pages
409–424, 2018.

[61] Minjia Zhang, Samyam Rajbhandari, Wenhan Wang,
and Yuxiong He. Deepcpu: Serving rnn-based deep
learning models 10x faster. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18), pages 951–
965, 2018.

[62] Wei Zhang, Quan Chen, Ningxin Zheng, Weihao Cui,
Kaihua Fu, and Minyi Guo. Toward qos-awareness and

USENIX Association 2022 USENIX Annual Technical Conference    197



improved utilization of spatial multitasking gpus. IEEE
Trans. Computers, 71(4):866–879, 2022.

[63] Wei Zhang, Weihao Cui, Kaihua Fu, Quan Chen,
Daniel Edward Mawhirter, Bo Wu, Chao Li, and Minyi
Guo. Laius: Towards latency awareness and improved
utilization of spatial multitasking accelerators in dat-
acenters. In Proceedings of the ACM International
Conference on Supercomputing, ICS 2019, pages 58–
68. ACM, 2019.

[64] Han Zhao, Weihao Cui, Quan Chen, Youtao Zhang,
Yanchao Lu, Chao Li, Jingwen Leng, and Minyi Guo.
Tacker: Tensor-cuda core kernel fusion for improving
the GPU utilization while ensuring qos. In IEEE Inter-
national Symposium on High-Performance Computer
Architecture, HPCA 2022, pages 800–813. IEEE, 2022.

[65] Han Zhao, Weihao Cui, Quan Chen, Jieru Zhao, Jingwen
Leng, and Minyi Guo. Exploiting intra-sm parallelism
in gpus via persistent and elastic blocks. In 39th IEEE
International Conference on Computer Design, ICCD
2021, pages 290–298. IEEE, 2021.

A Artifact Appendix

Abstract
This artifact provides a prototype of DVABatch implemented
as a runtime backend for Triton Inference Server

Scope
This artifact is licensed with Apache 2.0

Hosting
The code is available on Github https://github.com/sjtu-
epcc/DVABatch.git.

Requirements
Hardware Requirements.

1. CPU: Intel(R) Xeon(R) Silver 4210R CPU @ 2.40GHz
2. Memroy: 252G
3. NVIDIA TitanRTX

Software Requirements.
1. Ubuntu 18.04.6 (Kernel 4.15.0)
2. GPU Driver: 460.39
3. CUDA 11.3
4. CUDNN 8.2
5. TensorRT 8.0.3.4
6. RapidJSON
7. Cmake 3.17

198    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/sjtu-epcc/DVABatch.git
https://github.com/sjtu-epcc/DVABatch.git


Serving Heterogeneous Machine Learning Models on Multi-GPU Servers with
Spatio-Temporal Sharing

Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin Kwon and Jaehyuk Huh
School of Computing, KAIST

{sbchoi, myshlee417, yjkim, jspark}@casys.kaist.ac.kr, {yjkwon, jhhuh}@kaist.ac.kr

Abstract
As machine learning (ML) techniques are applied to a

widening range of applications, high throughput ML infer-
ence serving has become critical for online services. Such ML
inference servers with multiple GPUs pose new challenges
in the scheduler design. First, they must provide a bounded
latency for each request to support a consistent service-level
objective (SLO). Second, they must be able to serve multi-
ple heterogeneous ML models in a system, as cloud-based
consolidation improves system utilization. To address the
two requirements of ML inference servers, this paper pro-
poses a new inference scheduling framework for multi-model
ML inference servers. The paper shows that with SLO con-
straints, GPUs with growing parallelism are not fully utilized
for ML inference tasks. To maximize the resource efficiency
of GPUs, a key mechanism proposed in this paper is to exploit
hardware support for spatial partitioning of GPU resources.
With spatio-temporal sharing, a new abstraction layer of GPU
resources is created with configurable GPU resources. The
scheduler assigns requests to virtual GPUs, called gpulets,
with the most effective amount of resources. The scheduler
explores the three-dimensional search space with different
batch sizes, temporal sharing, and spatial sharing efficiently.
To minimize the cost for cloud-based inference servers, the
framework auto-scales the required number of GPUs for a
given workload. To consider the potential interference over-
heads when two ML tasks are running concurrently by spa-
tially sharing a GPU, the scheduling decision is made with
an interference prediction model. Our prototype implemen-
tation proves that the proposed spatio-temporal scheduling
enhances throughput by 61.7% on average compared to the
prior temporal scheduler, while satisfying SLOs.

1 Introduction

The wide adoption of machine learning (ML) techniques
poses a new challenge in server system designs. Traditional
server systems have been optimized for CPU-based computa-

tion for many decades. However, the regular and ample par-
allelism in widely-used deep learning algorithms can exploit
abundant parallel execution units in GPUs. Powerful GPUs
have been facilitating the training computation of deep learn-
ing models, and the inference computation is also moving to
the GPU-based servers due to the increasing computational
requirements of evolving deep learning models with deeper
layers [11, 38, 45].

However, the GPU-based inference servers must address
different challenges from the batch-oriented processing in
ML training servers. First, inference queries must be served
within a bounded time to satisfy service-level objectives
(SLOs). Therefore, not only the overall throughput is impor-
tant, but bounded response latencies for processing inference
queries are also critical to maintain consistent service qual-
ity [15, 38, 45]. Second, to improve the utilization of server
resources, many heterogeneous models are served by con-
solidated cloud-based systems. As even a single service can
include multiple heterogeneous ML models [38], multiple
models with different purposes coexist in a system. The het-
erogeneity of ML models raises scheduling challenges to
map concurrent requests of heterogeneous models to multiple
GPUs. Incoming queries for different ML models with their
own computational requirements, must be properly routed
to the GPUs to meet the SLO, while improving the overall
throughput. In addition, the number of required GPU nodes
must be dynamically adjusted to reduce the cost of serving
inferences for cloud-based systems.

While the demands for GPU-based ML inferences have
been growing, the computational capability of GPUs with
many parallel execution units has been improving precipi-
tously. Such ample parallel execution units combined with
increasing GPU memory capacity allow multiple ML models
to be served by a single GPU. In a prior study [38], more than
one model can be mapped to a GPU, as long as the GPU can
provide the execution throughput to satisfy the required SLO.
However, unlike CPUs which allow fine-grained time sharing
with efficient preemption, GPUs perform only coarse-grained
kernel-granularity context switches. Such coarse-grained time

USENIX Association 2022 USENIX Annual Technical Conference    199



sharing incurs inefficient utilization of enormous computa-
tional capability of GPUs, as a single batch of an ML inference
may not fill the entire GPU execution units.

However, the recent advancement of GPU architecture
opens a new opportunity to better utilize the abundant ex-
ecution resources of GPUs. Recent GPUs support an efficient
spatial partitioning of GPUs resources (called MPS mecha-
nism in NVIDIA GPUs [12]). The partitioning mechanism
supports the computational resources of a GPU to be divided
to run different contexts simultaneously. Such a unique spa-
tial partitioning mechanism can augment the limited coarse-
grained time sharing mechanism, as the GPU resource can be
spatially partitioned to serve multiple ML tasks concurrently.
This unique spatial and coarse-grained temporal resource al-
location in GPUs calls for a novel abstraction to represent
partitioned GPUs and a new scheduling framework targeting
high throughput ML servers under SLO constraints.

To address the emerging challenges of ML scheduling in
partitionable GPUs, this paper proposes a new abstraction
for GPUs called gpulet, which can create multiple virtual
GPUs out of a single physical GPU with spatial and temporal
partitioning. The new abstraction can avoid the inefficiency
of coarse-grained time sharing by creating and assigning the
most efficient GPU share for a given ML model. Such a
new abstraction of GPU resources allows latencies of ML
execution to be predictable even when multiple models are
concurrently running in a GPU, while achieving improved
GPU utilization.

Based on the gpulet concept, we propose an ML infer-
ence framework prototyped with the PyTorch interface. It
can serve concurrent heterogeneous ML models in multi-
GPU environments with auto-scaling support. Figure 1 illus-
trates the extended search space of our scheduling mecha-
nism. Our framework aims to find a global optimum by con-
sidering both temporal and spatial scheduling for enhanced
performance. The search space for scheduling becomes three-
dimensional with spatial and temporal shares of GPU re-
sources in addition to batch size adjustment, unlike the prior
work with two-dimensional searches [17, 38]. In the exper-
imental results for SLO-preserved throughput presented by
Figure 13, time scheduling and spatial scheduling yield on
average 1,023 and 1,076 requests-per-second (RPS), respec-
tively. The spatio-temporal scheduling significantly improves
the SLO-preserved throughput to 1,584 RPS.

For each ML model, its computational characteristics are
measured and registered to the framework. Based on the pro-
filed information of each ML model, the scheduler routes
requests to where the throughput would be maximized while
satisfying the SLO constraints. One necessary mechanism for
spatial and temporal partitioning of GPU shares is to iden-
tify the potential performance overheads when two models
are concurrently running on a GPU. Our scheduling frame-
work incorporates the interference estimation mechanism to
consider the effect of concurrent execution.

Local Optimum Global Optimum

Spatial Temporal

Batching

(a) Temporal scheduling
with batching

(b) Spatial scheduling
with batching

(c) Temporal and spatial
scheduling with batching

Figure 1: Multi-dimensional search space for providing glob-
ally optimal performance.

We evaluated the proposed ML inference framework on
server systems with four and eight GPUs. The evaluation with
four GPUs shows that the proposed scheduling technique with
gpulets can improve the throughput with SLO constraints for
seven ML inference scenarios by 61.7%, compared to the one
without partitioning GPU resources.

This study explores a new resource provisioning space of
GPUs for machine learning inference serving. The contribu-
tions of this paper are as follows:

• It proposes a new GPU abstraction named gpulet, to
support virtual GPUs with partitions of resources out of
physical GPUs. It allows heterogeneous ML models to
be mapped to multiple gpulets in the most cost-effective
way.

• It proposes a scheduling framework for gpulets, which
searches the most cost-effective schedule by multi-
dimensional search considering batch sizes, temporal
sharing, and spatial sharing. It adjusts the number of re-
quired GPUs for a given set of heterogeneous models,
supporting auto-scaling.

• For accurate performance prediction, the scheduling
framework considers the effect of interference among
gpulets for concurrent ML inference execution on parti-
tions of a single GPU.

The rest of the paper is organized as follows. Section 2
describes the background of ML computation on GPUs and
prior scheduling techniques. Section 3 presents the motiva-
tional analysis of heterogeneous ML tasks on multiple GPUs.
Section 4 proposes our design to efficiently utilize GPU re-
sources for heterogeneous ML tasks, and Section 5 presents
experimental results. Section 6 presents related work, and
Section 7 concludes the paper.

2 Background

2.1 Batch-Aware ML Inference Serving
As high throughput ML inference serving has become widely
required for online services, an increasing number of service
vendors are adopting GPUs [9, 13, 15, 24, 25, 32, 38, 41,
42, 45, 46] or even hardware accelerators such as TPUs [3,

200    2022 USENIX Annual Technical Conference USENIX Association



7, 18, 19]. While GPU-based systems offer low latency for
ML inference, obtaining high utilization is a challenging task,
unlike ML training. The key difference between training and
inference in terms of GPU utilization is the suitability for
batching. For training, since the input data is ready, the system
can batch a large number of input data, which allows GPUs to
effectively leverage the massive parallelism. On the contrary,
the ML inference server underutilizes GPUs as it is an on-
demand system where inference tasks can be assigned to the
compute engines once the requests arrive.

One scheduling option is to wait until the desired number
of inference requests to be accumulated and then to initiate
the execution for the large batch. However, the applications
cannot indefinitely wait to collect a batch, due to the service-
level objective (SLO) requirements. Prior work [15, 36, 38,
45] have adopted adaptive batching, where a batch size is
decided adaptively with estimated times to build and execute
a batch of the selected size. By using the profiled latencies
and observed incoming rates, the effective time for a batch is
estimated, and adaptive batching chooses the maximum batch
size that does not violate the SLO.

2.2 Temporal Scheduling for ML on GPUs

Temporal scheduling allows sharing of a GPU where each
inference takes up the entire GPU resource one at a time with
time sharing. With multiple models with different execution
characteristics and SLO requirements, guaranteeing SLO is
challenging for the temporal scheduling of the heterogeneous
models. The ML inference scheduling problem on GPU-based
multi-tenant serving systems resembles the traditional bin
packing problem. The capacity constraints of bins are the
available resource on the GPUs, and an item weight is the
necessary GPU resource to handle a given inference request.

An inspiring prior work, Nexus [38], has tackled this prob-
lem and proposed a novel variant of bin packing algorithm,
namely squishy bin packing (SBP). The term, squishy, is orig-
inated from the property that the required resource for pro-
cessing a task (i.e., item) and its latency vary as the batch size
changes. The SBP algorithm takes a set of models as input,
each of which comes with a given request rate. It assigns the
inferences tasks across GPUs with a selected batch size, and
may map multiple models to a single GPU with time sharing,
if one task does not fully utilize a GPU.

Figure 2 illustrates an example of how the SBP algorithm
is applied. In this scenario, the server handles two models,
A and B, by building and executing the per-model batches
simultaneously. The SLO violation occurs when the summa-
tion of batch building time and batch execution time exceeds
the SLOs. Therefore, the SBP algorithm heuristically finds
a maximum possible duration for batch building, called duty
cycle, and the corresponding batch sizes in such a way that
all the consolidated models would not violate the SLOs. The
SBP algorithm repeats the duty cycles in a pipelined fashion

Batch Building

Batch Execution

Model A Model B

Duty Cycle

Time

Figure 2: Round-based execution of SBP for two models
consolidated on a GPU. Duty cycle is the interval for a round.

Temporally Shared GPU Spatially Shared GPU

1 Find Required GPU Resource (Temporal / Spatial)

2 GPU Mapping with Temporal / Spatial Sharing

GPU 1 GPU 2 GPU 3 GPU 1 GPU 2 GPU 3

(a) Temporal scheduling
(squishy bin packing)

(b) Spatial scheduling
(greedy best-fit)

Model A Model B Model C

Figure 3: Temporal scheduling (SBP) vs. spatial scheduling
(greedy best-fit partitioning).

until there is a significant change in the request rates, which
would require rescheduling.
Baseline temporal scheduling algorithm: We use SBP as
our baseline temporal sharing algorithm. Figure 3 (a) presents
temporal sharing with batch adjustment by the SBP algorithm.
The algorithm finds individual duty cycles and batch sizes
for ML models with given request rates, and maps them to a
minimum number of GPUs with temporal sharing. To map
ML models to GPUs, it compares all eligible pairwise com-
binations. If a pair is eligible for temporal sharing, the pair
will share one GPU and the batch size is further adjusted to
ensure the SLO when both tasks are interleaved. The process
continues until no more pairs can be temporally shared.

2.3 Spatial Sharing on GPU
Spatial sharing is a resource partitioning technique that splits
a GPU resource into multiple pieces, as recent server-scale
GPUs offer hardware-supported spatial sharing features to
users. While temporal scheduling may potentially cause a
GPU underutilization problem when the batch size is not
sufficiently large to leverage all resources on a GPU, spatial
sharing improves GPU utilization allowing high throughput
without SLO violation.

With these resource partitioning features, the users can split
the given resource of a GPU into a set of GPU partitions, each
of which is assigned to a fraction of GPU resource1. Note

1In this paper, we only use the computation resource partitioning tech-
nique since we have at our disposal 2080 Ti GPUs, the microarchitecture of

USENIX Association 2022 USENIX Annual Technical Conference    201



that GPU partitioning is available on both NVIDIA MPS and
Multi-Instance GPU (MIG), which has been featured since
Ampere architecture GPUs. MIG provides physical partition-
ing with multi-GPU abstraction, while MPS provides logical
execution resource partitioning by percentage. With physical
partitioning, MIG allows partitions of memory capacity, mem-
ory bandwidth, and caches to be dedicated to each instance,
in addition to execution cores.

A prior work, GSLICE [17], leverages GPU partitioning
to increase throughput and utilization of GPUs. GSLICE em-
ploys a self-tuning algorithm for adjusting the amount of GPU
resources per partition based on performance feedback. After
adjusting the amount of resources, the batch size is heuris-
tically decided by the SLO for the given task. However, the
solution provided in GSLICE uses only spatial sharing and is
limited to a single GPU.
Baseline spatial scheduling algorithm: As a baseline spa-
tial sharing algorithm for our multi GPU framework, we
use the greedy best-fit algorithm. Greedy best-fit algorithm
chooses the minimum required partition size for each model
to handle a given request rate with SLO constraint. It allocates
the partitions of multiple ML models to GPUs through best-fit
searching. Figure 3 (b) presents the spatial scheduling used by
the greedy best-fit algorithm. Unlike the SBP or greedy-best
fit algorithm, our scheduling scheme aims to simultaneously
employ both temporal and spatial scheduling to maximize
utilization and minimize the number of required GPUs.

3 Motivation

3.1 Optimal Batch Size and Partition
To understand the performance implications of batching and
GPU partitioning, we perform an experimental study, using
four ML models: GoogLeNet, ResNet50, SSD-MobileNet-V1,
and VGG-16. The detailed descriptions for the ML models
and GPU server specifications are provided in Section 5.1.

Figure 4 shows the batch inference latency results as the
batch size increases from 1 to 32. For each batch size, we
sweep through the increasing fractions of GPU resources,
ranging from 20% to 100% to observe how the batch size
and computing resource utilization are correlated. When the
batch size is large, the latency significantly drops as more
resource is added. The large slope of the curves implies that
the inference execution for the particular batch size can use
the additional resource effectively to reduce the latency. On
the contrary, with a small batch, the latency is not largely
affected by the amount of GPU resources, which implies that
the GPU resource becomes underutilized when larger frac-
tions are assigned. Hence, both batch size and amount of GPU
resource must be considered as a joint factor when making
cost-effective scheduling decisions.

which is Turing, an older generation than Ampere that offers the memory
bandwidth isolation feature.

b1 b2 b4 b8 b16 b32

20 40 50 60 80 100
Resource (%)

0

15

30

45

60

La
te

nc
y 

(m
s)

(a) GoogLeNet

20 40 50 60 80 100
Resource (%)

0

50

100

150

La
te

nc
y 

(m
s)

(b) ResNet50

20 40 50 60 80 100
Resource (%)

0

40

80

120

160

La
te

nc
y 

(m
s)

(c) SSD-MobileNet

20 40 50 60 80 100
Resource (%)

0

60

120

180

La
te

nc
y 

(m
s)

(d) VGG-16

Figure 4: Batch inference latency as the fraction of computing
resource assigned to the model inference changes from 20%
to 100%, for the four ML models. Each curve represents a
different batch size, and bn is a batch size of n.

w/o GPU Partitioning w/ GPU Partitioning0K
5K

10K
15K
20K

# 
of

 S
ch

ed
ul

ab
le

Sc
en

ar
io

s

Figure 5: Number of schedulable scenarios when the SBP
algorithm performs the scheduling without (left) and with
(right) a fixed 1:1 GPU partitioning scheme.

3.2 Schedulability and GPU Partitioning

For a given set of SLO latencies for ML models, if incoming
request rates are beyond the level that an inference server can
cope with, the SLO will not be met as requests cannot be
served on time. We define schedulability as the capability of a
scheduling algorithm for serving the given request rates while
not violating the SLO. A scheduler can improve schedulability
by having better GPU utilization and in turn, having higher
throughput with SLO satisfaction. To investigate the potential
of GPU partitioning on the schedulability improvement, we
evaluate a large number of possible multi-model inference
serving scenarios. A schedulable scenario is the one in which
the scheduler can successfully make a decision for the given
rate while preserving SLO.

For the evaluation, we use nine models, and each corre-
sponding SLO latency is listed in Table 3. For each scenario,
models have one of the following request rates: 0, 100, and
200 requests per second (req/s). Since the zero req/s is in-

202    2022 USENIX Annual Technical Conference USENIX Association



pair1 pair2 pair3 pair40.0

0.5

1.0

1.5

No
rm

. T
hr

ou
gh

pu
t temporal (SBP) spatial (greedy best-fit) static ideal

Figure 6: Comparison of SLO preserved throughput for tem-
poral (SBP), spatial (greedy best-fit), and static ideal scheduling,
normalized to spatial scheduling.

cluded in the set of possible request rates, we assume that a
subset of the nine models may not be served at all. Excluding
the scenario where all the models have zero request rate, we
obtained total 19,682 (= 39−1) scenarios for the experiment.

Figure 5 reports the number of schedulable scenarios when
we use the two different scheduling algorithms: 1) the default
SBP algorithm without GPU partitioning support, and 2) the
SBP algorithm with GPU partitioning. In this motivational re-
sult, a GPU is split into two partitions with the same resource
in each partition, although our scheduler later will use a wider
range of partitioning of GPUs. With the fixed 1:1 GPU par-
titioning, schedulable scenarios increased significantly from
5,772 with SBP to 19,682 by SBP with two partitions. Even
though the GPU is partitioned with a fixed 1:1 ratio, the results
show that GPU partitioning is capable of putting wasted GPU
compute power to use, enabling higher resource utilization.

3.3 Performance of Effective Partitioning
To demonstrate how a cost-effective partitioning scheme af-
fects performance, we compare SLO preserved throughput
of three scheduling schemes: temporal (SBP), spatial (greedy
best-fit), and ideal scheduling. The SLO preserved throughput
is the maximum throughput sustainable by a system while
supporting SLOs for all models running in the system. Fig-
ure 6 presents the normalized SLO preserved throughput with
the three scheduling schemes. We use two GPUs for this ex-
periment, and a pair of ML models are scheduled. The models
are selected from Table 3. The pair used for the experiment
are (1) ssd/be, (2) res/vgg, (3) goo/mob, and (4) nas/den.

The first scheme, temporal scheduling, does not partition
GPUs, but schedules tasks in a time-sharing manner with the
SBP algorithm. The second schemes partitions GPUs by our
baseline spatial scheduling algorithm (greedy best-fit) intro-
duced in Section 2.3. The last scheme, static ideal exhaustively
searches all possible GPU partitioning ratios among (2:8),
(4:6), and (5:5) for two GPUs. For each pair of tasks, it uses
a GPU partitioning option which yields the highest perfor-
mance. For these selected sets of ML models, the spatial
scheduling (greedy best-fit) outperforms the temporal schedul-
ing (SBP) by 51% on average, proving the performance bene-
fits of spatial sharing. The static ideal scheduling shows 23%

0% 10% 20% 30% 40% 50% 60%
Latency Overhead over Solo-Running Latency

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Up to 90%, 
Latency Overhead < 17.66%

Figure 7: Cumulative distribution of latency overhead when
pairs of inference executions are consolidated on a GPU.

improvements on average, compared to greedy best-fit. This
experiment shows only limited example scenarios, but the
results imply that partitioning can potentially improve the
GPU utilization for certain scenarios, and better scheduling
can further improve spatial scheduling.

3.4 Interference in Consolidated Executions

Cost-effective GPU partitioning allows enhancing the schedu-
lability of SBP significantly. However, one important down-
side is the performance interference caused by multiple infer-
ence executions concurrently running on a GPU. One com-
mon cause of such performance interference is the bandwidth
sharing for the external memory, but other contentions on on-
chip resources may engender performance degradation too.
To identify the interference effects, we perform an additional
preliminary experimental study using a set of scenarios with
ML models running together on a GPU. The model pairs
were chosen among five models from Table 3: GoogLeNet,
LeNet, ResNet50, SSD-Mobilenet, and VGG-16 (i.e., C(5,2)
= 10). Each pair runs with five different batch sizes (i.e., 2, 4,
8, 16, 32) creating 250 unique pairs in total. We also partition
a GPU into two partitions using five different ratios: (2:8),
(4:6), (5:5), (6:4), and (8:2). Then, we map the ML model
pairs to the different partition pairs to observe the interference
effects in various settings.

Figure 7 presents the cumulative distribution function
(CDF) of latency overheads due to the consolidated inference
executions, in comparison with the case where the models
are run independently. As noted in the figure, for 90% of
the scenarios, the interference-induced overhead is modest
(lower than 18%). However, the CDF reports the long tail,
suggesting that the interference effect could be severe in cer-
tain circumstances. In such cases, the interference may cause
incorrect scheduling decisions, and the interfered task would
experience latencies that are largely off from the expected
range. Motivated by the insight, we devise an interference
model and leverage it to make the scheduling decisions more
robust, which reduces SLO violation rates.

USENIX Association 2022 USENIX Annual Technical Conference    203



Frontend Server

Gpulet
Scheduler

Request 
Queues

Request Monitor

Rate

Profile Info
(Latency, SLO)

Backend Servers

Partition
Manager

Executor

Real-time
Periodic

GPUs in
1Server

1Server

ReorganizeDispatch

Batched
Req

Partition
Ratio

Figure 8: Overview of the scheduling framework with gpulets.

4 Design

4.1 Overview

The goal of this study is to devise a scheduling framework
for multi-model ML inference serving, which aims to as-
sign incoming inference requests to the minimal number of
GPUs while maximizing their utilization. The scheduling of
ML inference workloads with SLO requirements must con-
sider three aspects: batching, temporal scheduling, and spatial
scheduling. Unlike the prior approaches which consider a
subset of the three dimensions [17, 38], we propose a sched-
uler that fully explores all three dimensions to find the most
effective point for scheduling.

In this study, using the spatial sharing capability of GPUs,
we introduce an abstraction of GPU partition, called gpulets.
Multiple gpulets can utilize a GPU by both temporal and
spatial sharing. For each trained ML model, a minimal per-
formance profile is collected offline. Based on the profiles
of models, the scheduler distributes tasks to gpulets across
multiple physical GPUs. Our scheduling framework mini-
mizes the number of required physical GPUs while satisfying
the current request rates with the SLO requirements. Also,
our framework auto-scales the number of GPU servers by
adapting to the changes in request rates.

Figure 8 presents the overall architecture of our proposed
scheduler. The scheduler is composed of a frontend server
responsible for making scheduling decisions, and multiple
backend servers for executing the decisions. The scheduler
on the frontend decides and sends batched requests to the
backend servers, and the executor in each backend server dis-
patches requests to GPUs The scheduling decision is made by
utilizing profiled information of each model (e.g., SLO and
inference latency for a pair of batch size and partition size)
and incoming request rates. The request monitor tracks the
number of newly arrived requests per second for each model.
Based on the tracked request rates, the gpulet scheduler de-
cides whether a new organization of partitions is required if
the change of request rates is significant enough to update
scheduling decisions. If a reorganization is necessary, the new
partition ratios are sent to the backend server responsible for

the GPU which needs reorganizing. The partition manager
in the backend server prepares the partitions on the GPUs
so that they can serve requests with the new partition ratios.
The scheduling period is empirically determined based on the
GPU partitioning latency to make the overhead of partitioning
hidden by the scheduling window.

4.2 Search Space Challenge
The challenge of the three-dimensional scheduling space
(batching, temporal, and spatial sharing) for gpulets is that the
scheduling decision is affected by several variables dependent
on each other. The best size of GPU partition depends on
the computational requirement of the model and batch size.
Also, the batch size is dependent on the amount of allocated
resource and how it is temporally shared with other models to
ensure SLO. Therefore, the most cost-effective configuration
would sit on the sweet spot in the search space built upon the
three dimensions, which creates a huge search space.

To represent the search space, let P be the number of possi-
ble GPU partitioning options on a GPU, N be the number of
GPUs to schedule, and M be the number of models to serve.
Therefore, there are total PN possible options to partition N
GPUs. The M models can be placed on a partition, possibly
having all the M models on a single partition. Since we need
to check if the consolidation of multiple models violates the
SLO, we must evaluate at most M2 model placements per par-
tition to assess schedulability. As we have NP partitions on
the system, the possible mappings of M models to the GPUs
is NPM2. The complexity of search space is as follows:

Total Search Space = O(PNNPM2)

As the search space is prohibitively large, it is impractical
to exhaustively search and pick a solution. To address the
problem, we take a greedy approach, which effectively re-
duces the search space by allocating partitions to gpulets on
GPU incrementally.

4.3 Elastic Partitioning Algorithm
This section discusses our scheduling algorithm called elastic
partitioning which finds an efficient set of gpulets for given
ML inference tasks.
Elastic partitioning: Algorithm 1 describes the overall pro-
cedure of scheduling ML models to gpulets. Table 1 lists the
variables used in the algorithm. The algorithm receives the fol-
lowing inputs for each model: (1) L (b,p): profiled execution
latency of batch size b on partition size p, (2) intf : interfer-
ence function, (3) SLO: per-model SLO in latency, and (4)
gpulet.size: size of partition allocated for gpulet. For every
scheduling period, the server checks the request rates of each
model. If rescheduling is required, the scheduler performs
elastic partitioning with provided inputs (line 1).

204    2022 USENIX Annual Technical Conference USENIX Association



Name Description
L(b,p) Latency function of batch size b and partition size p
int f Interference overhead function
SLOi SLO (in latency) of model i

gpulet.size Actual partition size of gpulet

Table 1: Definitions of variables for Algorithm 1.

Algorithm 1: Gpulet Scheduling Algorithm
ELASTICPARTITIONING(L(b,p), int f , SLO):

1 for each period do // If rescheduling is required
2 Sort every model by ratem×SLOm in ascending order
3 for each model m do
4 while ISREMAINRATE() and ISREMAINGPULET()

do
5 rate← Remaining rate of model m
6 peff ← MAXEFFICIENTPARTITION()
7 preq ← MINREQUIREDPARTITION(rate)
8 pideal ← MIN(peff, preq)
9 gpulet ← FINDBESTFIT(pideal, SLOm, int f )

10 Apply gpulet to system
11 end
12 end
13 end

FINDBESTFIT(pideal, SLOm, int f ):
14 Sort every remaining gpulets by size in ascending order
15 for gpulet in GETREMAINGPULETS() do
16 if gpulet.size ≥ pideal then
17 if gpulet is unpartitioned then
18 Split and allocate gpulet to pideal size partition
19 end
20 b← argmaxk∈N(L(k,gpulet.size) + int f ≤ SLO)
21 if b exists then
22 TEMPORALSCHEDULING(gpulet)
23 return gpulet
24 end
25 end
26 end

Each model is sorted in ascending order by rate× SLO,
which corresponds to the amount of work needed for the
model (line 2). We allocate starting from the model with the
least amount of work to the model which requires the most
amount of work as a heuristic optimization for allocating
resources. For each model m, the scheduler allocates one or
more gpulets until the incoming rate can be satisfied or no
more gpulet is left in the system (line 3-4).

Determining the most effective gpulet size: Based on the
observation from Section 3.1, the scheduler maximizes the
system-wide throughput by allocating the most cost-effective
size for gpulet.

peff is the partition size that yields the highest performance
per resource, which is the knee point in Figure 4. It is deter-
mined during profiling. preq is the partition size satisfying
SLO with the batch size that can handle the input rate. When
request rates are low, preq can be smaller than peff.

Processable Req Rate

8020 40 6050

rate

peff reqp
30 20 40 6050

peffreqp
30 80

(a) peff>reqp (b) preq>effp

      : MAXEFFICIENT PARTITION        : MINREQUIRED PARTITIONpeff preq

7070
Partition

rate

Figure 9: Max efficient partition (peff) and min required parti-
tion (preq).

The scheduler chooses peff as the best partition size unless
preq is smaller than peff. If preq is smaller than peff, preq is
chosen for the partition size, not to overprovision the GPU
resource. Note that for a given model, a matching batch size is
fixed for the peff of the model. Figure 9 presents two cases of
peff and preq. In the algorithm, MAXEFFICIENTPARTITION
calculates a sweet spot of profiled gpulet size and uses the
gpulet size at the knee as peff (line 6) . MINREQUIREDPAR-
TITION examines the minimum size of gpulet, preq, which is
necessary to support the SLO on under the given request rate
(line 7). The scheduler picks the minimum of peff and preq as
the ideal partition size pideal to ensure cost-effective gpulet
size (line 8) .
Incremental allocation with best-fit: After finding pideal,
FINDBESTFIT performs a best-fit search. First, the scheduler
sorts the remaining gpulets by partition size in ascending
order (line 14). The algorithm searches through remaining
gpulets until a gpulet.size is greater or equal to pideal (line 16).
Since the gpulets are sorted in ascending order, the sweeping
naturally guarantees the best-fit. If the partition of gpulet can
be split, which means the chosen gpulet has a size of 100%,
the gpulet is split into two gpulets, each with a size of pideal
and 100−pideal (line 17-19). The maximum batch size b is
decided and checked whether it can meet the SLO when there
is additional interference-induced overhead (line 20). If a
valid batch size exists, then the gpulet is chosen (line 21).
Temporal scheduling for gpulets: After a gpulet is chosen,
elastic partitioning attempts temporal scheduling between
the returned gpulet and previously allocated gpulets in the
system (line 22). Temporal scheduling for gpulets follows the
same rules which is introduced in Section 2.2: 1) adjust the
duty cycle and batch size accordingly, and 2) check whether
the SLO can be guaranteed for all models. We introduce
an additional rule to consider gpulet.size when calculating
the batch size and duty cycle. For every pair of gpulets, the
aforementioned rules are applied to see if temporal sharing
is available. If a pair of gpulets has a different size, the larger
size will be chosen to check if the SLO can be successfully
guaranteed or not. If successful, two gpulets are merged to
a single gpulet, thus reducing the total number of required
gpulets. The scheduler updates the remaining and allocated

USENIX Association 2022 USENIX Annual Technical Conference    205



0 10 20 30 40 50
Error (%)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F Up to 90%, Error rate < 12.35%

Up to 95%, Error rate < 13.65%

Figure 10: Cumulative distribution of relative error rate. Pro-
posed analytical model can predict up-to 95% of cases with
less than 13.98 % error rate.

gpulets with the result of FINDBESTFIT (line 10).
Reduced Search Space: Because the cost of iterating
through every possible strategy is not required, the search
space introduced in Section 4.2 is reduced as follows.

Reduced Search Space = O(NPM2)

Instead of searching every case of P possible partitioning,
for every N GPU in the system, each GPU is partitioned
incrementally and the cost of checking temporal scheduling
for M models still remains. Our search algorithm practically
approximates the ideal one and removes PN from the full
search complexity. As a cost of the approximation, it may
not always produce a theoretical optimal result. However, our
evaluation shows that the algorithm performs closely to the
ideal one as presented in Figure 16 (Section 5).

4.4 Modeling Interference
A key challenge in interference handling is to predict latency
increases when multiple inferences are executed in different
gpulets of the same GPU. As shown in Figure 7, the inter-
ference effects are modest for the majority of consolidated
executions, yet the overhead could be significant in a few
cases.

To confine the interference effect, we provide a simple yet
effective interference-prediction model based on two key run-
time behaviors of GPU executions. The interference effects
of spatial partitioning are commonly caused by the bandwidth
consumption in internal data paths including the L2 cache and
the external memory bandwidth. To find application behaviors
correlated to the interference effects, we profile the GPU with
concurrent ML tasks with an NVIDIA tool (Nsight-compute).
Among various execution statistics, L2 utilization and DRAM
bandwidth utilization are the most relevant factors correlated
to the interference.

Based on the observation, we build a linear regression
model with the two parameters (L2 utilization and DRAM
bandwidth utilization) as follows:

inter f erence_ f actor = c1× L2m1 + c2× L2m2 + c3×memm1 +

c4×memm2 + c5

L2m1 and L2m2 are L2 utilization of model m1 and m2, when
they are running alone with a given percentage of GPU re-

Algorithm 2: GPU Scaling Algorithm
SCALING(GPU_LIMIT ):

1 for each period do
2 N ← The number of used GPUs in previous period
3 result ← ELASTICPARTITIONING with N GPUs
4 while result is fail and N < GPU_LIMIT do
5 N ← N +1
6 result ← ELASTICPARTITIONING with N GPUs
7 end
8 if result is fail then
9 Report an unschedulable event

10 end
11 end

source. memm1 and memm2 are memory bandwidth consump-
tions of model m1 and m2. Parameters (c1, c2, c3, c4, and c5)
are identified by running the linear regression.

We have profiled total 1,250 pairs (total 2,500 data) of
inference interference and recorded how much interference
each inference task has received. Among 2,500 data, we have
randomly selected 1,750 data of execution as training data
and 750 data for validation. Figure 10 presents the cumula-
tive distribution of the prediction error with our interference
model. The proposed model can predict up to 90% of cases
within 10.26% error rate and up to 95% if 13.98 % of error is
allowed.

Linear regression is chosen for its relatively high accuracy
and low model construction complexity, so it satisfies our
purpose in scheduling. Several prior studies have also used
such linear models for predicting interference overheads [5,
43, 47].

4.5 Scaling GPUs for Request Rate Changes

During a scheduling period, the monitor tracks the request
rates of all ML tasks. If the rates change, it triggers the
rescheduling procedure. The rescheduling procedure checks
whether the changed rates can be sustained by the current
number of GPUs. If not, it tries to increase the number of
GPUs to support the SLOs for the new rates. Algorithm 2
presents the rescheduling procedure. It first attempts to use
the same number of GPUs of the previous scheduling period
(line 2-3). If the result fails due to the insufficient number of
GPUs, the elastic partitioning is repeated with one additional
GPU. However, when the number of required GPUs exceeds
the given limit, it reports that an unschedulable event occurs.

4.6 Implementation

SW prototype: The SW prototype of our scheduler was de-
veloped in C++ and the approximate lines of code is 20.7K.
We have chosen PyTorch for implementing ML inference due
to its wide adoption in ML communities, in addition to the
readiness to use C++ interfaces.

206    2022 USENIX Annual Technical Conference USENIX Association



Serving a:b Serving a:b

Preparing c:d Serving c:d

Event (Reorganize) Active Context
Shadow Context

Gpulets
Processing Flow

a b a b

c dc dNot Yet Created

Removed

Figure 11: Illustration of dynamic partition reorganization.

Dynamic partition reorganization: NVIDIA provides the
MPS control daemon, which allows users to control the pro-
portion of computing resource reserved for processes spawned
by the user. The amount of reserved resources is fixed when
a process is created. Therefore, To change the proportion of
reserved resource. a new process must be created with a new
designated amount. This limitation affects our rescheduling
procedure with a high cost of adjusting gpulets.

Our scheduling prototype controls gpulet partition size, by
spawning a new proxy process to allocate a different amount
of partition to gpulet. Preparing a new partition includes
spawning a new process, loading kernels used by PyTorch,
loading required models, and warming up. As illustrated in
Figure 11, to hide the overhead of preparing new partitions
when reorganizing is necessary, we overlap the procedure of
preparing new partitions with serving the current partitions.
The scheduling period for reorganization is 20 seconds which
is a conservative estimate of time required for preparing a
new partition.

5 Evaluation

5.1 Methodology

Inference serving system specifications: Table 2 provides a
detailed description of the evaluated inference system and the
used GPU specification. We use two identical multi-GPU in-
ference servers, each of which is equipped with two NVIDIA
RTX 2080 Ti GPUs supporting post-Volta MPS capabilities.
The table also provides the versions of the operating system,
CUDA, NVIDIA drivers, and machine learning framework.

Each GPU server operates as a backend server responsible
for executing inference queries on two GPUs. One server addi-
tionally generates inference requests while the other server as-
sumes the role of a frontend server to manage backend servers
and make scheduling decisions. Both servers are network-
connected, imitating inference serving system architecture,
with 10 Gbps bandwidth.
Baseline scheduling algorithms: For our baseline, we have
ported the Squishy bin-packing (SBP) algorithm (from
Nexus [38]) and greedy best-fit introduced in Section 2. We
evaluate two versions of our proposed algorithm, gpulet +int

System Overview
CPU 20-core, Xeon E5-2630 v4
GPU 2 × RTX 2080 Ti
Memory Capacity 192 GB DRAM
Operating System Ubuntu 18.04
CUDA 10.2
NVIDIA Driver 440.64
ML framework PyTorch 1.10

GPU Specification
CUDA cores 4,352
Memory Capacity 11 GB GDDR6
Memory Bandwidth 616 GB/sec

Table 2: The evaluated system specifications.

Model Input Data (Dimension) SLO (ms)
GoogLeNet (goo) ImageNet (3x224x224)) 66
LeNet (le) MNIST (1x28x28) 5
ResNet50 (res) ImageNet (3x224x224) 108
SSD-MobileNet (ssd) Camera Data (3x300x300) 202
VGG-16 (vgg) ImageNet (3x224x224) 142
MnasNet (nas) ImageNet (3x224x224) 62
Mobilenet_v2 (mob) ImageNet(3x224x224) 64
DenseNet (den) ImageNet(3x224x224) 202
Base Bert (be) Rand. Index Vector(1x14) 22

Table 3: List of ML models used in the evaluation.

considers interference overhead while gpulet does not.
We do not provide a direct comparison to Nexus [38] due to

the following reasons: 1) Nexus deploys optimizations that are
orthogonal to our work, and 2) several benchmarks that Nexus
used in evaluation were not interoperable with our prototype
server, as the models are not supported by PyTorch. However,
we deploy the same type of video processing models that
Nexus used to evaluate the system and show how spatially
partitioning GPUs can further enhance performance.
ML models: Figure 12 delineates the detailed dataflow graph
of the applications that contain ML models as well as the in-
put/output data. The game application analyzes the digits and
images from the streamed video games by using seven models
in parallel. The traffic application is a traffic surveillance anal-
ysis with two phases, which are object detection and image
recognition. The SLO latency is set as 108 ms and 202 ms for
game and traffic, respectively. Each SLO latency is calculated
by doubling the longest model inference latency.
Deeper look into particular request scenarios: We choose
five model-level scenarios to take a deeper look into the multi-
model inference serving. These five scenarios are character-
ized by the member of models and each respective memory
footprint. Table 4 shows the details of each scenario.
Request arrival rate: We sample inter-arrival time for each
model from a Poisson random distribution, based on previ-
ous literature [48] claiming real-world request arrival rates
resemble a Poisson distribution.
Evaluation of request scenarios and applications: For a
given scenario or application, we evaluate the scheduling
decisions by deploying scheduling results on our prototype

USENIX Association 2022 USENIX Annual Technical Conference    207



Output1

Image Digit
Input

ResNet50 LeNet1 LeNet6

Output2

Camera Image (Input)

SSD-MobileNetv1

Select + Resize

GoogLeNet VGG16

Output1 Output2

Detected Img

(a) Scenario game (b) Scenario traffic

Figure 12: Two multi-model applications: game and traffic.

Name Group Composition by Memory Footprint
<1GB 1GB - 2GB >2GB

scen1 mob,be nas,goo -
scen2 - den vgg
scen3 mob res vgg
scen4 ssd nas,den -
scen5 le ssd,nas vgg

Table 4: Five request scenarios, each of which represents a
particular composition of multiple models based on memory
footprint. The amount of requests per model in a group is
equal across the models in the group.

servers and measuring the throughput under SLOs and SLO
violation rates. To consider the unpredictable performance
variations, we iterate the experiment three times for each
scenario and application, and pick the median result.

5.2 Experimental Results

SLO preserved max throughput: We first evaluate the
throughput implications of our schedulers. The SLO preserved
max throughput is defined to be the maximum achievable
throughput while 99% of requests are processed within the
SLO latency. We measure the SLO preserved max throughput
of the schedulers by gradually increasing the request rate until
SLO violation rate exceeds 1% of total requests.

Figure 13 reports the SLO preserved max throughput for the
two multi-model applications and five scenarios for four differ-
ent scheduling algorithms. Our proposed gpulet +int scheduler
offers higher throughput than both algorithms SBP and greedy
best-fit by an average of 61.7% and 81.2%, respectively. Addi-
tionally, considering interference yields 7.5% better through-
put on average. Although the benefit may seem marginal, we
argue that such caution is necessary since a scheduler must
be able to guarantee SLO at all times.

The low performance of greedy best-fit is caused by the
lack of effective temporal sharing. In Figure 4, models show
diminishing returns (over increasing GPU partitions) beyond
a knee point. Note that different batch sizes can have different
knee points. The greedy best-fit chooses the maximal batch
size which satisfies SLOs and sets the partition for the batch
size. The spatio-temporal scheduling can select the batch size
and partition to better utilize GPU by considering smaller

game traffic scen1 scen2 scen3 scen4 scen50
500

1000
1500
2000
2500
3000

SL
O 

Pr
es

er
ve

d
Th

ro
ug

hp
ut

 (r
ps

) SBP greedy best-fit gpulet gpulet+int

Figure 13: SLO preserved max throughput of the two multi-
model applications (game and traffic) and five scenarios.

batches with temporal sharing across models. The limitation
of greedy best-fit is clearly shown in game. Its flow has many
small parallel tasks (LeNets), which cannot fill even a small
GPU partition efficiently. Note that batch sizes cannot be
increased arbitrarily as request rates and SLO limits it.

The reported throughput improvement is achievable merely
through the MPS features already available in the most server-
class GPUs and scheduling optimization in software, using
the same GPU machine. Thus, by utilizing otherwise wasted
GPU resources, the proposed scheduling scheme would be
able to virtually offer cost savings for the ML inference ser-
vice providers. For instance, gpulet +int achieves 1,650 req/s
throughput for game while SBP does 690 req/s, utilizing the
identical physical system, which can be translated into 58.2%
effective cost saving (= {1− 690

1650}×100).
The effect of interference model: This analysis shows how
the interference model can avoid SLO violations by correctly
incorporating the interference effect into the scheduling deci-
sion. In this result, we measured SLO violation rates by grad-
ually increasing request rates until both gpulet and gpulet +int
consider the current rate not schedulable. Figure 14 presents
the SLO violation rates when the system is receiving the max-
imum request rate before both of them reach the not schedula-
ble decision. In the figure, if the violation rate is higher than
1%, the case is highlighted with a red round. The scheduler
gpulet, which does not consider interference, shows violation
rates higher than 1% even for the rates that it considered to be
schedulable for scen2, scen3, and scen5. However, gpulet +int
successfully filters out such rate by either classifying as not
schedulable (N) as shown in scen2 and scen3 or successfully
scheduling tasks without violating the SLO such as scen5.
Evaluation of scalability: To evaluate whether our prototype
scheduler can successfully scale gpulets to accommodate fluc-
tuating rates, we measure the performance of our scheduler
while submitting inference requests with varying rates for all
models in scen3. We have chosen scen3 because of its evenly
distributed model size to reproduce a realistic workload.

To evaluate scalability beyond our testbed, we launched
multiple servers by running each server with docker container.
By running one container per GPU with four more identical
GPUs, we conducted our experiment on total eight servers.
Additionally, the request generator and frontend server were
specially tailored to send dimensional data, instead of actual

208    2022 USENIX Annual Technical Conference USENIX Association



game
1600rps

traffic
500rps

scen1
2800rps

scen2
1300rps

scen3
1950rps

scen4
1200rps

scen5
1600rps

0%
1%
2%
3%
4%
5%

SL
O 

Vi
ol

at
io

n

N N

* N: Not Schedulable

gpulet gpulet+int

Figure 14: SLO violation rates of two multi-model applica-
tions and five scenarios. Request rates are increased until both
gpulet and gpulet +int concluded the rate to be Not Schedulable.

0 400 800 1200 1600 2000 2400 2800 32000
500

1000
1500
2000
2500
3000

Th
pt

. (
re

q/
s)

MobileNet-V2 VGG16 ResNet50

0 400 800 1200 1600 2000 2400 2800 32000
2
4
6
8

Nu
m

 o
f G

PU
s

0 400 800 1200 1600 2000 2400 2800 32000%
200%
400%
600%
800%

Su
m

 o
f P

ar
tit

io
ns

0 400 800 1200 1600 2000 2400 2800 3200
Time (sec)

0%
1%
2%
3%

SL
O 

Vi
ol

at
io

n

Figure 15: (a) Throughput(req/s), (b) number of GPUs, (c)
sum of partition size (%) of gpulet, (d) SLO violation (%) of
each model for 3,200 seconds.

data for inference request, for overcoming network bottle-
neck between physical servers. The backend servers behave
identically other than generating random data with dimen-
sions provided from frontend server. Figure 15 reports how
our scheduling framework performed for a 3,200 second win-
dow. The top graph shows a stacked graph of the accumulated
throughput of each model. The second and third graph reports
how many GPUs were scheduled and the sum of partition
sizes of gpulets, respectively. The last graph depicts the per-
centage of SLO violation (including dropped requests) for
20 second period. Between 0 and 1,200 seconds, the rate
gradually increases and decreases to its initial rate. As the
rate rises, our proposed scheduler successfully allocates more
GPUs to preserve SLO. When the rate decreases, the sum of
utilized partitions also decreases by reorganizing partitions.
The following wave, starting from 1,400 seconds, rises to a

ideal gpulet+int10.0K

12.5K

15.0K

17.5K

20.0K

# 
of

 S
ch

ed
ul

ab
le

Sc
en

ar
io

s

18659 18139

Figure 16: Comparison of the numbers of schedulable scenar-
ios between the ideal scheduler and gpulet +int scheduler.

game traffic scen1 scen2 scen3 scen4 scen50.0
0.2
0.4
0.6
0.8
1.0

No
rm

. R
at

e

ideal gpulet+int

Figure 17: Comparison of the normalized maximum schedu-
lable rates with real-world multi-model benchmarks and five
scenarios.

higher peak than the previous wave of requests. Nonetheless,
our scheduler successfully adjusts gpulets and preserve SLO,
guaranteeing SLO violation rate lower than 1%.
Comparison to the ideal scheduler: We evaluate the
scheduling capability of elastic partitioning by comparing
the scheduling results produced from an ideal scheduler. To
produce various model-level inference request scenarios, we
use the same methodology described in Section 3.2, which
populates a set of 19,682 possible scenarios. The ideal sched-
uler makes scheduling decisions by exhaustively trying all 44

partition combinations, where 4 GPUs can be partitioned into
either (2:8), (4:6), (5:5), or (10:0). The search continues until
all cases are searched or a case produces a viable schedul-
ing result for a given request scenario. For a fair comparison,
the ideal scheduler uses the same set of partitions as gpulet
+int. Figure 16 compares the number of scenarios classified
as schedulable by each scheduler. gpulet +int can schedule
520 fewer cases compared to ideal, which is 2.6% of the total
19,682 cases.

Figure 17 reports the maximum schedulable rate of each
multi-model scenario. All rates are normalized to the maxi-
mum rate which ideal can provide. gpulet +int can achieve an
average 92.6% of the maximum rate which the ideal scheduler
can provide.

6 Related Work

6.1 Prior ML Systems Studies

Machine learning service platforms: A wide variety of
computer systems and researches have been proposed to im-
prove the quality of machine learning services [1, 2, 9, 13, 15,

USENIX Association 2022 USENIX Annual Technical Conference    209



Features Batch Multi GPU Temporal Spatial Interference
Tuning Model Scaling Schedule Schedule Prediction

Clipper [15] X X X X 7 7
MArk [45] X 7 X 7 7 7

INFaaS [36] X X X X 7 7
Nexus [38] X X X X 7 7

GSLICE [17] X X 7 7 X 7
Gpulet X X X X X X

Table 5: Comparison with prior work.

17, 21, 22, 24, 26, 32, 35, 36, 37, 38, 39, 40, 41, 45]. INFaaS
is a platform for serving inference that guarantees SLO and
minimizes the cost by choosing an adequate variation of a
model [36]. INFaaS adopts a reactive approach when dealing
with interference caused by co-locating model variants on the
same hardware resource. Clockwork focuses on providing an
accurately predictable system by leveraging the fact that the
latency of inference is relatively consistent [21]. Clockwork
preferred predictability over utilization gains from co-locating
models and thus does not consider spatial sharing.

Although this paper did not cover training, past research
inspired this study with schedulers for optimizing GPU re-
source [16, 24, 33, 42, 46]. Another related research di-
rection focus on how to ease the burden of deployment
and optimization for machine learning across various plat-
forms [6, 27, 28, 31, 32]. Prior studies related to cluster
scheduling have also influenced this paper [20, 30, 43].
Interference estimation: Precise estimation of interference
has been a key issue for high-performance computing. Bubble-
up [29] and bubble-flux [44] models an application’s sensitiv-
ity to cache and fits a sensitivity curve to predict performance.
Han et al. extend using sensitivity cure to distributed comput-
ing where interference can propagate among processes [23].
Prophet models concurrent task execution behavior for non-
preemptive accelerators [4].
Multi-tenancy in Accelerator: GPU vendors have included
HW/SW support for providing multi-tenancy to users such as
NVIDIA Multi Process Service (MPS) [12], Multi Instance
GPU (MIG) [14], and AMD MxGPU [10]. Academic re-
searches also proposed multi-tenancy support in accelera-
tors. Pratheek et al. devised page-walking stealing for multi-
tenancy support in GPU [34]. Choi et al. proposes fine-grain
batching scheme [8]. PREMA proposed time-multiplexing
solution with preemption [7]. Planaria supports multi-tenancy
by partitioning processing elements [19].

6.2 Comparison to Prior Work

Table 5 provides a summarized comparison of our work to
related ML inference frameworks. All the prior studies are
capable of dynamically tuning batch size by either leveraging
profiled latencies or incoming request rates during runtime.
As more ML workloads are consolidated in cloud-based GPU
servers, scheduling of multiple heterogeneous ML models in
a system and scaling GPU servers under fluctuating request
rates become more important. However, some prior studies

do not consider such multi-model supports or GPU scaling.
Regarding scheduling dimensions such as temporal and

spatial sharing, a majority of the prior work employ temporal
sharing by leveraging profiled information of latency. Only
GSLICE considered spatial sharing but it does not consider
multi-GPU scheduling and temporal sharing. On the other
hand, our study addresses all challenges, scheduling dimen-
sions, and predicting potential interference among partitions
in the same GPU.

7 Conclusion

This study investigated an SLO-aware ML inference server
design. It identified that common ML model executions can-
not fully utilize GPU compute resources when their batch
sizes are limited to meet the response time-bound set by their
SLOs. By leveraging spatial partitioning features, our frame-
work significantly improved throughput of multi-GPU con-
figurations while supporting SLOs. Based on the new spatio-
temporal scheduling technique, this study showed that a new
abstraction of GPU resources (gpulet) can improve ML in-
ference serving under SLOs. The source code is available at
https://github.com/casys-kaist/glet.

8 Acknowledgements

This work was supported by the National Research Founda-
tion of Korea (NRF-2022R1A2B5B01002133) and Institute
of Information & communications Technology Planning &
Evaluation (IITP) grants funded by the Ministry of Science
and ICT, Korea (IITP2017-0-00466, IITP2021-0-01817).

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner, Paul
Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A System
for Large-Scale Machine Learning. In Proceedings of
the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2016.

[2] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia
Smirni. Batch: machine learning inference serving on
serverless platforms with adaptive batching. In SC20:
International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE,
2020.

[3] E. Baek, D. Kwon, and J. Kim. A multi-neural network
acceleration architecture. In 2020 ACM/IEEE 47th

210    2022 USENIX Annual Technical Conference USENIX Association



Annual International Symposium on Computer
Architecture (ISCA), 2020.

[4] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa
Kannan, Jason Mars, and Lingjia Tang. Prophet:
Precise qos prediction on non-preemptive accelerators
to improve utilization in warehouse-scale computers. In
Proceedings of the 22nd International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2017.

[5] Quan Chen, Hailong Yang, Jason Mars, and Lingjia
Tang. Baymax: QoS Awareness and Increased
Utilization for Non-Preemptive Accelerators in
Warehouse Scale Computers. In Proceedings of the
21st International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), 2016.

[6] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. TVM: An Automated
End-to-End Optimizing Compiler for Deep Learning.
In Proceedings of the 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2018.

[7] Y. Choi and M. Rhu. Prema: A predictive multi-task
scheduling algorithm for preemptible neural processing
units. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2020.

[8] Yujeong Choi, Yunseong Kim, and Minsoo Rhu. Lazy
batching: An sla-aware batching system for cloud
machine learning inference. 2021 IEEE International
Symposium on High-Performance Computer
Architecture (HPCA), 2021.

[9] Amazon Corporation. Amazon SageMaker Developer
Guide, 2020. https://docs.aws.amazon.com/
sagemaker/latest/dg/sagemaker-dg.pdf.

[10] AMD Corporation. AMD MULTIUSER
GPU:HARDWARE-ENABLED GPU
VIRTUALIZATION FOR A TRUE WORKSTATION
EXPERIENCE, 2016.
https://www.amd.com/system/files/documents/
amd-mxgpu-white-paper.pdf.

[11] NVIDIA Corporation. Deep Learning Inference
Platform, 2013. https:
//www.nvidia.com/en-us/deep-learning-ai/
solutions/inference-platform/.

[12] NVIDIA Corporation. Multi-Process Service, 2019.
https://docs.nvidia.com/deploy/pdf/CUDA_
Multi_Process_Service_Overview.pdf.

[13] NVIDIA Corporation. TensorRT Developer’s Guide,
2020. https://docs.nvidia.com/deeplearning/
sdk/pdf/TensorRT-Developer-Guide.pdf.

[14] NVIDIA Corporation. NVIDIA Multi-Instance GPU
User Guide, 2021.
https://docs.nvidia.com/datacenter/tesla/
pdf/NVIDIA_MIG_User_Guide.pdf.

[15] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J
Franklin, Joseph E Gonzalez, and Ion Stoica. Clipper:
A Low-Latency Online Prediction Serving System. In
Proceedings of the 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
2017.

[16] Henggang Cui, Hao Zhang, Gregory R Ganger,
Phillip B Gibbons, and Eric P Xing. GeePS: Scalable
Deep Learning on Distributed GPUs with a
GPU-Specialized Parameter Server. In Proceedings of
the 11th European Conference on Computer Systems
(Eurosys), 2016.

[17] Aditya Dhakal, Sameer G Kulkarni, and K. K.
Ramakrishnan. Gslice: Controlled spatial sharing of
gpus for a scalable inference platform. In Proceedings
of the 11th ACM Symposium on Cloud Computing
(SoCC), 2020.

[18] Jouppi et al. In-datacenter performance analysis of a
tensor processing unit. In Proceedings of the 44th
Annual International Symposium on Computer
Architecture (ISCA), 2017.

[19] S. Ghodrati, Byung Hoon Ahn, J. K. Kim, Sean Kinzer,
Brahmendra Reddy Yatham, N. Alla, H. Sharma,
Mohammad Alian, E. Ebrahimi, Nam Sung Kim,
C. Young, and H. Esmaeilzadeh. Planaria: Dynamic
architecture fission for spatial multi-tenant acceleration
of deep neural networks. 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture
(MICRO), 2020.

[20] Robert Grandl, Ganesh Ananthanarayanan, Srikanth
Kandula, Sriram Rao, and Aditya Akella.
Multi-resource packing for cluster schedulers. In
Proceedings of the 2014 ACM conference on Special
Interest Group on Data Communication (SIGCOMM),
2014.

[21] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao,
Antoine Kaufmann, Ymir Vigfusson, and Jonathan
Mace. Serving dnns like clockwork: Performance
predictability from the bottom up. In Proceedings of
the 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2020.

[22] Jashwant Raj Gunasekaran, Cyan Subhra Mishra,
Prashanth Thinakaran, Bikash Sharma, Mahmut Taylan
Kandemir, and Chita R. Das. Cocktail: A
multidimensional optimization for model serving in
cloud. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), 2022.

[23] Jaeung Han, Seungheun Jeon, Young ri Choi, and
Jaehyuk Huh. Interference Management for Distributed

USENIX Association 2022 USENIX Annual Technical Conference    211

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-dg.pdf
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-dg.pdf
https://www.amd.com/system/files/documents/amd-mxgpu-white-paper.pdf
https://www.amd.com/system/files/documents/amd-mxgpu-white-paper.pdf
 https://www.nvidia.com/en-us/deep-learning-ai/solutions/inference-platform/ 
 https://www.nvidia.com/en-us/deep-learning-ai/solutions/inference-platform/ 
 https://www.nvidia.com/en-us/deep-learning-ai/solutions/inference-platform/ 
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deeplearning/sdk/pdf/TensorRT-Developer-Guide.pdf
https://docs.nvidia.com/deeplearning/sdk/pdf/TensorRT-Developer-Guide.pdf
https://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf
https://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf


Parallel Applications in Consolidated Clusters. In
Proceedings of the 21st International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2016.

[24] Johann Hauswald, Yiping Kang, Michael A
Laurenzano, Quan Chen, Cheng Li, Trevor Mudge,
Ronald G Dreslinski, Jason Mars, and Lingjia Tang.
DjiNN and Tonic: DNN as a Service and Its
Implications for Future Warehouse Scale Computers.
In Proceedings of the 42nd Annual International
Symposium on Computer Architecture (ISCA), 2015.

[25] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril,
D. Dzhulgakov, M. Fawzy, B. Jia, Y. Jia, A. Kalro,
J. Law, K. Lee, J. Lu, P. Noordhuis, M. Smelyanskiy,
L. Xiong, and X. Wang. Applied machine learning at
facebook: A datacenter infrastructure perspective. In
2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2018.

[26] Paras Jain, Xiangxi Mo, Ajay Jain, Harikaran Subbaraj,
Rehan Durrani, Alexey Tumanov, Joseph Gonzalez, and
Ion Stoica. Dynamic Space-Time Scheduling for GPU
Inference. In Proceedings of the Conference and
Workshop on Neural Information Processing Systems
(NeurIPS), 2018.

[27] Woosuk Kwon, Gyeong-In Yu, Eunji Jeong, and
Byung-Gon Chun. Nimble: Lightweight and parallel
GPU task scheduling for deep learning. In Proceedings
of the Conference and Workshop on Neural Information
Processing Systems (NeurIPS), 2020.

[28] Yunseong Lee, Alberto Scolari, Byung-Gon Chun,
Marco Domenico Santambrogio, Markus Weimer, and
Matteo Interlandi. PRETZEL: Opening the Black Box
of Machine Learning Prediction Serving Systems. In
Proceedings of the 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2018.

[29] Jason Mars, Lingjia Tang, Robert Hundt, Kevin
Skadron, and Mary Lou Soffa. Bubble-Up: Increasing
Utilization in Modern Warehouse Scale Computers via
Sensible Co-locations. In Proceedings of the 44th
annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2011.

[30] Shanka Subhra Mondal, Nikhil Sheoran, and Subrata
Mitra. Scheduling of time-varying workloads using
reinforcement learning. Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 2021.

[31] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih
Elibol, Zongheng Yang, William Paul, Michael I.
Jordan, and Ion Stoica. Ray: A Distributed Framework
for Emerging AI applications. In Proceedings of the
13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2018.

[32] Christopher Olston, Noah Fiedel, Kiril Gorovoy,
Jeremiah Harmsen, Li Lao, Fangwei Li, Vinu
Rajashekhar, Sukriti Ramesh, and Jordan Soyke.
Tensorflow-Serving: Flexible, High-Performance ML
Serving. In Proceedings of the Conference and
Workshop on Neural Information Processing Systems
(NeurIPS), 2017.

[33] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu,
and Chuanxiong Guo. Optimus: An Efficient Dynamic
Resource Scheduler for Deep Learning Clusters. In
Proceedings of the 13th European Conference on
Computer Systems (Eurosys), 2018.

[34] B Pratheek, Neha Jawalkar, and Arkaprava Basu.
Improving gpu multi-tenancy with page walk stealing.
In 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA),
2021.

[35] Kiran Ranganath, Joshua D Suetterlein, Joseph B
Manzano, Shuaiwen Leon Song, and Daniel Wong.
Mapa: Multi-accelerator pattern allocation policy for
multi-tenant gpu servers. In Proceedings of the
International Conference for High Performance
Computing, Networking, Storage and Analysis (SC),
2021.

[36] Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and
Christos Kozyrakis. Infaas: Automated model-less
inference serving. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21), July 2021.

[37] Wonik Seo, Sanghoon Cha, Yeonjae Kim, Jaehyuk Huh,
and Jongse Park. Slo-aware inference scheduler for
heterogeneous processors in edge platforms. ACM
Trans. Archit. Code Optim., 2021.

[38] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao,
Bingyu Kong, Matthai Philipose, Arvind
Krishnamurthy, and Ravi Sundaram. Nexus: A GPU
Cluster Engine for Accelerating DNN-Based Video
Analysis. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP), 2019.

[39] Chengcheng Wan, Muhammad Santriaji, Eri Rogers,
Henry Hoffmann, Michael Maire, and Shan Lu. Alert:
Accurate learning for energy and timeliness. In 2020
USENIX Annual Technical Conference (USENIX ATC
20), 2020.

[40] Luping Wang, Lingyun Yang, Yinghao Yu, Wei Wang,
Bo Li, Xianchao Sun, Jian He, and Liping Zhang.
Morphling: Fast, near-optimal auto-configuration for
cloud-native model serving. In Proceedings of the ACM
Symposium on Cloud Computing (SOCC), 2021.

[41] Wei Wang, Sheng Wang, Jinyang Gao, Meihui Zhang,
Gang Chen, Teck Ng, and Beng Ooi. Rafiki: Machine
Learning as an Analytics Service System. In
Proceedings of the 44th International Conference on

212    2022 USENIX Annual Technical Conference USENIX Association



Very Large Data Bases (VLDB), 2018.
[42] Wencong Xiao, Romil Bhardwaj, Ramachandran

Ramjee, Muthian Sivathanu, Nipun Kwatra, Zhenhua
Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu
Zhang, et al. Gandiva: Introspective Cluster Scheduling
for Deep Learning. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), 2018.

[43] Ran Xu, Subrata Mitra, Jason Rahman, Peter Bai,
Bowen Zhou, Greg Bronevetsky, and Saurabh Bagchi.
Pythia: Improving datacenter utilization via precise
contention prediction for multiple co-located
workloads. In Proceedings of the 19th International
Middleware Conference, 2018.

[44] Hailong Yang, Alex D. Breslow, Jason Mars, and
Lingjia Tang. Bubble-Flux: Precise Online QoS
Management for Increased Utilization in Warehouse
Scale Computers. In Proceedings of the 40th Annual
International Symposium on Computer Architecture
(ISCA), 2013.

[45] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng

Yan. MArk: Exploiting Cloud Services for
Cost-Effective, SLO-Aware Machine Learning
Inference Serving. In Proceedings of the USENIX
Annual Technical Conference (USENIX ATC), 2019.

[46] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong
Ho, Xiaodan Liang, Zhiting Hu, Jinliang Wei, Pengtao
Xie, and Eric P Xing. Poseidon: An Efficient
Communication Architecture for Distributed Deep
Learning on GPU Clusters. In Proceedings of the
USENIX Annual Technical Conference (USENIX ATC),
2017.

[47] Yunqi Zhang, Michael A. Laurenzano, Jason Mars, and
Lingjia Tang. Smite: Precise qos prediction on
real-system smt processors to improve utilization in
warehouse scale computers. In 2014 47th Annual
IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2014.

[48] Yunqi Zhang, David Meisner, Jason Mars, and Lingjia
Tang. Treadmill: Attributing the source of tail latency
through precise load testing and statistical inference. In
Proceedings of the 43rd Annual International
Symposium on Computer Architecture (ISCA), 2016.

USENIX Association 2022 USENIX Annual Technical Conference    213



A Artifact Appendix

A.1 Abstract

To maximize the resource efficiency of inference servers, we
proposed a key mechanism to exploit hardware support for
spatial partitioning of GPU resources. With the partitioning
mechanism, a new abstraction layer of GPU resources is
created with configurable GPU resources. The scheduler
assigns requests to virtual GPUs, called gpulets, with the
most effective amount of resources. The prototype
framework auto-scales the required number of GPUs for a
given workloads, minimizing the cost for cloud-based
inference servers. The prototype framework also deploys a
remedy for potential interference effects when two ML tasks
are running concurrently in a GPU.

A.2 Hosting

The artifact is hosted on the following platforms:
• Zenodo: We have published the artifact on Zenodo:

https://doi.org/10.5281/zenodo.6544909
• GitHub: Although the artifact provided in Zenodo

contains all necessary and functional code, it is still in
its early stage of development and needs improvement
in terms of UI and code readability. Further
improvement of code will be provided in the following
GitHub repository: https://github.com/casys-kaist/glet.

A.3 Scope

The artifact is capable of:
• Serving machine learning inference on multiple

multi-GPU servers.
• Adding new models defined and saved by TorchScript

(provided as .pt files).
• Scheduling multiple models and guarantee SLO.
• Providing stand-alone ML inference executor for

profiling performance and GPU resource usage.

The artifact does not provide the following:
• Utilize CPU for ML inference.
• Schedule heterogeneous GPUs.
• Guarantee availability (e.g. heartbeat, failure recovery).
• Add new models or deleting old models to serve while

the frontend server is running.

A.4 Contents

A.4.1 SW Components

• Frontend Server: Receives requests from M clients
and schedule requests to N backends.

• Backend Server: Receives batched requests from
frontend server and conveys request to 0 servers running
on the same machine.

• Proxy: Receives inputs from backend server and
executes ML inference on a gpulet

• Standalone Inference: Executes inference on a GPU.
Useful for debugging and profiling GPU resource
utilization.

• Standalone Scheduler: Provides scheduling decision
for given set of models and input rate of each model as
stand-alone SW. Useful for inspecting scheduling
decisions.

Please refer to binaries.md for further information of how to
run and setup each components.

A.4.2 Models

The artifact includes 0 CNN models of VGG16 and
ResNet50. Both models are stored as .pt file. All models are
also available on Torchvision.

A.4.3 Dataset

A subset of ImageNet data and camera surveillance footage
are each compressed as imagenet_data.tar and camera_data.tar
respectively.

A.4.4 Docker Images

The following prerequisites must be installed in order to use
the Docker images for this artifact:

• Docker Ver. >= 20
• Nivdia-docker (for utilizing GPUs)

Two Docker images are made public for experimenting with
the provided artifact. One is the server Docker image
available on sbchoi:glet-server and the other is the base Docker
image used for building the backend Docker image available
on sbchoi/glet-base.
We highly recommend using Docker images for
experimenting since it contains all required code and scripts.
For further instructions, please refer to the README file on
https://github.com/casys-kaist/glet.

A.5 Requirements

A.5.1 Hardware

The artifact was evaluated on multi-GPU servers. Each GPU
server had the following hardware specifications:

• GPU: NVIDIA RTX 2080ti (11GB global memory)
• CPU: Intel Xeon E5-2630 v4
• Network: Servers connected with 10 GHz Ethernet

214    2022 USENIX Annual Technical Conference USENIX Association

https://doi.org/10.5281/zenodo.6544909
https://github.com/casys-kaist/glet
https://github.com/casys-kaist/glet


A.5.2 OS and Kernel

The artifact was evaluated on Ubuntu 18.04 with a Linux
kernel version 4.15.

A.5.3 Software

The artifact was built with the following drivers and libraries:
• LibTorch(PyTorch library for C++) = 1.10
• CUDA >= 10.2
• cuDNN >= 7.6
• Boost library>= 1.6
• OpenCV >= 4.0
• CMake >= 3.19

A.6 Experiment Setup
Experiments can be run by using the scripts provided in the
artifact. We have also provided example files required for
configuring experiments. Below are a few steps to configure
multiple GPU servers using Docker images we have
provided:

1. Run MPS daemon
2. Create and run an overlay network for Dockers
3. Setup and execute backend servers
4. Setup and execute frontend server, connecting all

backend servers for serving inference.
5. Run clients
6. Analyze the content of glet/scripts/log.txt for how each

request has been handled.
Please refer to the README file and binaries.md in
https://github.com/casys-kaist/glet for detailed instructions of
how to configure

USENIX Association 2022 USENIX Annual Technical Conference    215

https://github.com/casys-kaist/glet




PilotFish: Harvesting Free Cycles of Cloud Gaming with Deep Learning Training

Wei Zhang∗

Shanghai Jiao Tong University
Binghao Chen

Shanghai Jiao Tong University
Zhenhua Han

Microsoft Research Asia

Quan Chen
Shanghai Jiao Tong University

Peng Cheng
Microsoft Research Asia

Fan Yang
Microsoft Research Asia

Ran Shu
Microsoft Research Asia

Yuqing Yang
Microsoft Research Asia

Minyi Guo
Shanghai Jiao Tong University

Abstract

Cloud gaming services have become important workloads
in cloud datacenter. However, our investigation shows that a
cloud gaming service cannot saturate the modern cloud GPUs.
One way to improve the GPU utilization is to co-locate mul-
tiple workloads within one GPU, which is challenging for
cloud gaming due to its highly fluctuated and unpredictable
GPU usage pattern. In this paper, we present PilotFish, a
high-performance system that harvests the free GPU cycles of
cloud gaming with deep learning (DL) training, while incur-
ring almost zero interference to cloud gaming. We co-locate
DL training jobs with cloud gaming, because they have stable
and predictable workloads and have no strict latency require-
ment. In more detail, PilotFish captures the idle periods of the
game’s GPU usage with its low-overhead instrumentation to
graphic libraries in sub-millisecond granularity. To avoid the
potential interference to cloud gaming, PilotFish schedules
training computation kernels only when they can finish before
the idle GPU periods, and preempts straggler kernels running
longer than expected. Our evaluation on popular cloud games
and DL models shows PilotFish can harvest up to 85.1% of
the idle GPU time from cloud gaming with no interference.

1 Introduction

Cloud gaming is gaining popularity in recent years. As shown
in Figure 1, players of cloud gaming only use a thin client that
interacts with games running on cloud servers and receives
the stream of rendered frames via Internet [38]. Cloud gam-
ing greatly reduces the hardware requirement of high-quality
video games. Mobile clients with no or weak GPU can still
enjoy the good visual effect of powerful GPUs. Cloud gaming
has become an important workload in major cloud service
providers, e.g., Microsoft’s Xbox Remote Play [11], Google’s
Stadia [7], Nvidia’s Geforce Now [15], Sony’s PlayStation
Now (running on Azure) [18], Amazon’s AppStream [1].

∗This work is done while Wei Zhang is an intern in Microsoft Research.

Figure 1: In cloud gaming games, players send control mes-
sages (keyboard and mouse) to cloud servers. Game scenes
are rendered as frames in cloud servers and streamed to edge
devices via internet.

Due to the limitations of the network, encoding and decod-
ing capability, and resolution of mobile devices, major cloud
gaming service only provides limited streaming quality that
is far lower than the increasing capability of modern GPUs.
For example, Microsoft’s Xbox Remote Play and PlayStation
Now only support up to 1080p at 60FPS. However, the lat-
est GPUs for gaming (e.g., Nvidia’s 3090Ti) can support 4K
(2160p) resolution at up to 144FPS. Running cloud gaming of
limited streaming quality on powerful GPUs would inevitably
waste the GPU cycles. Our evaluation of popular games shows
most of them have a utilization lower than 50% with cloud
gaming GPUs. It is important to improve the utilization to
reduce the operation cost of cloud gaming services.

To improve GPU utilization for cloud gaming, a nat-
ural solution is to co-locate multiple workloads in one
GPU (e.g., multiple games [29, 36] or other GPU work-
loads [23–25,50,51]). Such approaches face great challenges,
due to the high randomness of the gaming workload. A game’s
utilization of different resources (including GPU, CPU, PCI-e
and disk I/O) varies greatly across video frames. Such vari-
ation is difficult to predict due to the random interaction be-
tween players and changing game scenes. Moreover, different
games could exhibit very diverse resource usage patterns, fur-
ther increasing the degree of unpredictability. Co-locating
multiple games in a GPU would inevitably lead to interfer-

USENIX Association 2022 USENIX Annual Technical Conference    217



Figure 2: The procedures of cloud gaming. On receiving user input, the game logic decides the content of the scene to be
rendered, which is comprised of a list of draw calls using graphic libraries. The draw calls are pushed into a command queue for
the frame and submitted to the hardware for rendering the frame. The rendered frames are encoded by dedicated chips (e.g.,
NVENC [13] of Nvidia’s GPUs) and sent to the cloud gaming client.

ence when long rendering times from different games collide.
To safely harvest the GPU free cycles from cloud gaming, it is
necessary to choose a more predictable and stable workload
for co-location, where we find Deep Learning (DL) training,
a pervasive workload in cloud data centers, is a good fit.

In this paper, we present PilotFish, a high-performance
system that harvests the free GPU cycles of cloud gaming
with deep learning training, without impacting gaming expe-
riences. Instead of predicting the varying gaming workload,
PilotFish exploits idle GPU periods in a reactive manner. Pi-
lotFish exposes a real-time resource monitoring interface by
instrumenting graphic libraries (e.g., DirectX or Vulkan) for
quickly reporting (within 10 µs) the start and completion of
the rendering of a game frame. This way, PilotFish can pre-
cisely capture idle GPU periods of games. This design allows
PilotFish to support all games running on common graphic
libraries without modifying or re-compiling game code.

PilotFish further leverages the predictability of deep learn-
ing training in the scheduling. It is well-known that deep
learning training consists of iterative training steps. The com-
pute kernels in each training step have a highly predictable
execution time and can be obtained through offline profil-
ing [40,46]. With the known duration of a specific DL training
kernel (usually on the order of sub-millisecond), PilotFish is
able to safely schedule a deep learning training job to leverage
the idle time of gaming workload, without violating the QoS
of cloud gaming. The interference on other types of hardware
resources is also avoided via state-of-the-art techniques, e.g.,
Baymax [25] for PCI-e. Furthermore, to prevent from training
anomaly, where a DL training kernel does not complete in
the estimated time, PilotFish can proactively terminate the
training (<1ms) with limited loss of training progress.

We have implemented a prototype of PilotFish to sup-

port games on DirectX 12 [3] and DL training using Nvidia
CUDA 11 [14]. We evaluate PilotFish using popular games
for cloud gaming and widely-used DL models for training.
Evaluation result proves PilotFish can strictly guarantee the
QoS of cloud gaming when co-located with DL training. Pi-
lotFish can harvest up to 85.1% of the idle GPU time without
interference, compared to straw-man baselines that degrade
the 99%-ile FPS by over 30% to achieve the same harvest
ratio.

The key contributions of the paper are as follows:

• We identify the low GPU utilization problem of cloud
gaming and the challenges of co-location due to the
randomness of games.

• We characterize the cloud gaming workload and point
out that DL training is a right workload to be co-located
with cloud gaming to improve GPU utilization.

• We propose mechanisms for quickly capturing idle GPU
periods of gaming and fine-grained scheduling of co-
located DL training workload, which guarantee no inter-
ference.

2 Motivation

In this section, we study the common cloud gaming pipeline
shown in Figure 2. We investigate why there is low utilization
issue in cloud gaming services and the challenges of harvest-
ing free GPU cycles from games. Then we motivate why DL
training is a good fit for co-location.

218    2022 USENIX Annual Technical Conference USENIX Association



Table 1: The GPU and CPU utilization of cloud gaming.

Game Average
GPU Util.

Peak
GPU Util.

VRAM
(GB) CPU Util. FPS

Dota 2 38.2% 45% 1.61 21.9% 59.9
League of
Legends 26.9% 41% 1.16 22.0% 59.8

PUBG 40.6% 95% 4.05 28.9% 60.1
CS:GO 45.0% 57% 2.6 69.7% 201

Civilization 5 32.3% 42% 1.11 15% 59.8
The Division 2 89.5% 98% 3.12 46.11% 58.66

Assassin’s
Creed Odyssey 69.2% 78% 2.39 66.3% 59.68

Ashes of the
Singularity 89.8% 98% 3.42 79.23% 57.31

0

20

40

60

FP
S

HIT RDR2 AOS

+IT
only

RDR2
only

A2S
only

+IT+RDR2 +IT+A2S RDR2+A2S
0

50

100

G
PU

 u
til

iz
at

io
n(

%
)

Figure 3: The average FPS and GPU utilization of indepen-
dent execution of popular games and their co-located execu-
tion on Nvidia RTX 2060. (HIT: HITMAN3, RDR2: Red
Dead Redemption 2 and AOS: Ashes of the Singularity)

2.1 GPU Under-utilization of Cloud Gaming
Existing cloud gaming platforms allocate each player to a
dedicated server for running the requested game to ensure
players’ satisfactory experiences. For cloud gaming service
providers, major concerns are focused on network latency and
operational cost. The network latency is considerably reduced
today and becomes viable for cloud gaming. However, the
low resource utilization still leads to significant operation cost.
We use the Nvidia RTX 2060 GPU, of which the computing
ability is 6.4 teraflops, as the experimental platform, which
has comparable performance to the Xbox One X’s GPU (6.01
teraflops) used by Microsoft’s cloud gaming service. We in-
vestigate the performance of eight of the most popular games.
Table 1 summarizes the resource utilization of these games
on NVIDIA RTX 2060 with cloud gaming rendering qual-
ity, mostly 1080p and 60 Frames Per Second (FPS). Five of
the eight games have a GPU utilization of lower than 50%,
showing the potential opportunities for improvement.

Modern GPUs are becoming more and more powerful.
However, the QoS of cloud gaming is much lower than the ca-
pability of modern GPUs. According to Steam’s survey [19],
over 83.67% of PC gamers use resolution ≤ 1920x1080. Most
smartphones only have a screen ≤ 1080p resolution. Also,
the higher resolution requires better network quality and hard-
ware capability (for decoding). Currently, Xbox remote play

Figure 4: The fluctuation of frame time over time of three
popular games.

Figure 5: The fluctuation of CPU, storage and network uti-
lization over time of Hitman 3.

only supports streaming quality of at most 1080p and 60 FPS.
We anticipate the low GPU utilization issue will become

more severe on the latest generation of GPUs used by gaming
clouds. For example, Google Stadia uses an AMD GPU with
10.7 teraflops [7], Microsoft’s Xbox Series X chip has 12
teraflops [11], Nvidia’s RTX 3090 has 35.58 teraflops.

2.2 Challenges
A natural idea to improve the GPU utilization of cloud gaming
is to co-locate multiple games into the same GPU. However,
we observe co-locating multiple games could severely inter-
fere with each other, even when the GPU is still underutilized.

Figure 3 demonstrates the FPS of three popular cloud
games and their GPU utilization in two situations: indepen-
dently execution and co-located execution. When the games
run alone, they can achieve around 50% of GPU utilization on
60 FPS. However, when two games are co-located, the FPS
drops greatly (e.g., RDR2’s FPS drops to 20 from 60) but the
GPU utilization is only improved by up to 24%.

The main cause of the degraded co-location performance
comes from the randomness of games. As shown in Figure 4,
a game’s frametime (the time to render a frame) could vary
significantly over time due to the different complexity of the
scene. Different games would further exhibit a very diverse
pattern of GPU consumption. Moreover, in addition to GPUs,
the resource usage of other resource types (CPU, storage, etc.)
also fluctuates over time as illustrated in Figure 5. When con-
tention appears on these resources, the submission of draw
calls would be blocked, which also leads to lower GPU uti-
lization. This explains why the co-located games only have

USENIX Association 2022 USENIX Annual Technical Conference    219



limited improvement on GPU utilization in Figure 3.
The highly random gaming behaviours make it impossi-

ble to co-locate the other random and interactive workloads
like game without impacting the gaming experience. Previ-
ous works [36, 43] using static profiling to co-locate multiple
games in a best-effort manner could still suffer from the in-
terference due to random rendering content. We seek to find
a more stable and predictable workload as the candidate for
co-location, where we find DL training is a good fit.

2.3 Co-location with DL Training
DL training is a pervasive workload in cloud data centers.
The major cloud gaming service providers (e.g., Microsoft,
Google, Amazon) also have a huge demand for training DL
models with GPUs [33]. The key reason we consider DL
training for co-location with cloud gaming is its predictability
and fine-granularity. Figure 6 shows the execution time of sta-
tistical top 20 frequent kernels from six popular DL training
models. The figure shows that the duration of all training ker-
nels is relatively stable, it usually varies within a few percent.
Thus, by leveraging the predictability and iterative pattern of
DL kernels, the system can know their duration beforehand.
Also, the execution time of DL kernels is typically less than
1ms, thus it is very suitable to be scheduled to exploit the
GPU idle time.

Figure 6: The execution time of top 20 frequent kernels from
six popular models. (each bar is a kernel).

Despite the opportunity, the direct co-location of gaming
and DL training without leveraging the characteristics of DL
training could still incur a severe drop in FPS due to complex
interference behaviors. For example, if the DL training kernels
are submitted when a frame is still under rendering, both
workloads would contend for GPU time and postpone the
completion of game rendering.

Figure 7: FPS of games when co-located with DL training.

Figure 7 shows the normalized 99%-ile FPS when five pop-
ular games are co-located with DL training tasks on a Nvidia
2060 GPU. The DL training tasks includes Resnet50 [30],
VGG [44] and Mobilenet [31]. In the figure, the x-axis indi-
cates the combination of games and DL training tasks, and
the y-axis shows the 99%-ile FPS normalized to its FPS tar-
get. All games are affected by naively co-locating with DL
training models. During co-location, we observe that the FPS
of game is affected by the duration of frame rendering, the
DL training kernel scheduling and the contention on shared
resources. Therefore, it requires very careful management of
the co-located DL training jobs to avoid interfering the cloud
gaming, which is the main goal of PilotFish.

3 PilotFish Overview

We consider the scenario that DL training has a lower prior-
ity than the interactive cloud gaming service. Therefore, it is
required that DL training should not generate interference to
cloud gaming. PilotFish co-designs the cloud gaming services
and deep learning training frameworks so that they can col-
laboratively work together. Figure 8 demonstrates the overall
design of PilotFish.

Instead of predicting the random gaming behaviours, Pilot-
Fish monitors the frame-level execution and resource-usage
information in real time with very low overheads. Existing
frame monitoring tools [8,9,17] for gaming are usually based
on event-tracing technology [4], which is for general-purpose
application by design and infeasible for PilotFish’s require-
ment due to its high latency. To capture the idle GPU periods,
PilotFish instruments the graphic libraries to quickly and
precisely detect when the rendering of a frame finishes and
when the next frame will be submitted (according to the FPS
requirement).

Within the idle period of a game, PilotFish schedules the
computation kernels safely without interfering with the games.
The computation kernels for DL training should only be exe-
cuted between the end of the previous frame and the start of
the next frame. This relies on the kernel duration predictor
to provide the execution time of the computation kernels, by
leveraging their predictability as we discussed in Figure 6. A
computation kernel can be submitted only when it can finish

220    2022 USENIX Annual Technical Conference USENIX Association



Client1
User input

Compressed 
Image

Proxy

Game Loop Detector
Global 

memory

GPU

SMs

Predict duration

2D/3D 
APIs

Frame execution 
information

Kernel Duration
Predictor

GPU
commands Copy 

buffer

Kernel

Mem
cpy

Real execution information

Control Feedback

Real execution information

CUDA
Runtime

PCIe

Pilotfish Runtime System

DLT 
Framework

GPU Kernel
launch 

Other resource
management

Task executor

Workflow

Rendering 
Engine

DL kernel scheduler

ŏ
Ready DL kernel pool

2D/3D Library 
(DirectX)

…
ExecuteCommandList

Figure 8: The Overall design of PilotFish. The Game Loop Detector quickly obtains the idle GPU periods via instrumenting the
graphic libraries. The DL kernel scheduler dynamically and safely schedules the kernels with the predicted kernel duration. The
task executor guarantees the DL kernel execution will not interfere with cloud gaming on GPU and other types of resources.

before the rendering of the next frame starts so that it will not
contend with the game rendering on GPU. Since PilotFish
only schedules DL kernels without changing its computation,
it has no impact on the computation result of DL training.

During the execution of DL training’s computation kernels,
PilotFish keeps monitoring their progress in its task execu-
tor. Once potential interference could appear due to strag-
gler kernels, PilotFish should immediately preempt the job
to guarantee cloud gaming is not affected. To minimize the
loss of training progress due to preemption, we introduce a
low-overhead checkpointing mechanism to only kill the com-
putation kernels without losing the trained weight in memory.

We explain in § 4 how PilotFish instruments the graphic
libraries to obtain the idle GPU periods. In § 5, we elaborate
on how the computation kernels of DL training are scheduled.
Then, we demonstrate the task executor in § 6 that manages
the task execution on GPUs and other types of resources to
provide the strict guarantee of no interference to games.

4 Game Loop Instrumentation

To capture the random idle GPU cycles from games, we need
to monitor the frame execution information, i.e., the start and
end rendering time of each frame, in real time. Nowadays,
there are many popular frame monitoring software for ren-
dering workloads including PresentMon [17], IntelGPA [9],
GpuView [8], and FrameView [5]. They all use event-tracing
technology [4], which records events with high latency (usu-
ally >1 second). However, cloud gaming usually requires 60
frames per second, i.e., 16.67 ms per frame, which cannot
accept such a large tracing latency.

In PilotFish, we exploit the fact that most games are de-
veloped on common graphic libraries (e.g., DirectX [3],

Table 2: The Game Loop Detector Performance.

Avg. Overhead / 60 frame Avg. Err.
ACOdyssey 0.1058 ms 0.363%

Genshin Impact 0.070668 ms 0.526%

Vulkan [20]), which translate the graphical operations into
GPU commands. When the game finishes generating the draw
calls, the GPU commands will be submitted to the GPU via
a specific API (e.g., ExecuteCommandList in DirectX). Pi-
lotFish instruments the command submission API of graphic
libraries to detect the start time of frame rendering. The instru-
mentation latency is very low, usually within 1 microsecond
per frame. Moreover, to obtain when the rendering completion
time of the submitted frame, PilotFish inserts an additional
GPU command for notification of rendering completion at
the end of the submission queue. Since the QoS of cloud
gaming determines the maximum frame rate, e.g., an FPS
of 60 means there is at most one frame per 16.67ms. When
PilotFish is notified with the rendering completion, we can
calculate when the next frame would appear, thus the time
period before the next frame is guaranteed to be idle. Table 2
shows the average overhead and error for FPS perception
through the game loop detector. The overhead is negligible
where the average overhead per 60 frames is around 0.1ms.
We also validate FPS measured from PilotFish by comparing
with PresentMon [17] as the ground-truth. The average mea-
surement error of FPS is 0.526%. Instrumenting the graphic
libraries that most games built on allows PilotFish to gener-
ally support a wide range of existing games and future games
without specific modification for every game.

USENIX Association 2022 USENIX Annual Technical Conference    221



Algorithm 1: DL training scheduler

1 while true do
2 if isFrameRendering() then
3 WaitForFrameComplete();
4 f reeTimeslice = FrameTimeQoS -

LastFrameRenderingTime;
5 else
6 kernel = GetKernelFramePool();
7 kernelTime = PredictDuration(kernel);
8 if f reeTimeslice > kernelTime then
9 LaunchKernel(kernel);

10 f reeTimeslice =
f reeTimeslice− kernelTime;

5 DL Training Scheduler

With the captured GPU idle periods, PilotFish will schedule
the computation kernels from DL training to harvest the free
GPU cycles. As shown in Figure 9, PilotFish only allows the
DL kernels to execute within the idle GPU periods to avoid
GPU contention. Algorithm 1 describes the scheduling strat-
egy of PilotFish: (1) when the game is using GPU to perform
rendering, it will wait for the notification of the rendering
completion; (2) when the game finishes rendering a frame,
the scheduler sends the DL kernels that can finish before the
deadline when FPS QoS is affected (e.g., when the QoS is 60
frames per second, the start time between two frames should
be no more than 16.67 ms).

PilotFish’s DL training scheduler relies on the prediction of
computation kernels to decide whether the submitted kernel
can finish before the next frame starts (Line 7 in Algorithm 1).
PilotFish leverages the predictability and iterative pattern of
DL training. The kernels for the same model will be repeat-
edly submitted in every iteration with different input data. As
we have shown in Figure 6, the kernel duration has a very low
variance, which can be easily obtained via offline profiling. In
PilotFish, the DL training jobs to co-locate with games will
be profiled on idle GPUs for tens of iterations (usually a few
minutes), and record their kernel execution time.

Note that, the GPU context for DL training is first cre-
ated in the job initialization, thus its overhead does not affect
the scheduling of DL kernels. Also, the launching of com-
putation kernels has an overhead of 10 us, which is usually
less or equal to a kernel’s execution time. To hide the kernel
launching overhead, like most training frameworks, PilotFish
submits the computation kernels asynchronously (as shown
in Figure 9). Therefore, PilotFish only suffers from at most
one kernel launching overhead at the first DL kernel in each
frame, which is negligible.

Game LogicCPU

GPU R(N)

Frame N Frame N+1

Game Logic

Time16.67 ms

R(N+1)

Signal

DL

0 ms

R (N-1)

*R: Game Frame Rendering
*L: DL Kernel Launching
*DL: DL Kernel Execution

L

DL DL DL

L L L

DL

L

33.33 ms

Figure 9: Fine-grained scheduling of DL kernel.

6 Task Executor

After the DL kernel is scheduled, the task executor monitors
the kernel execution to avoid straggler kernels that run longer
than expected and do not finish before the next rendering
frame. In case the potential interference could appear, the
task executor will terminate the process quickly to reclaim
the GPU for game rendering while minimizing the loss of
training progress. In addition to GPUs, the task executor also
manages the other resource types including CPUs, PCIe bus
and Disk I/O to avoid non-GPU interference.

6.1 GPU Kernel Execution
During the execution of computation kernels, PilotFish’s task
executor keeps monitoring the running kernels on their exe-
cution time. Although, not often, some straggler kernels may
run longer than the predicted time, which may postpone the
rendering if they do not finish before the next frame appears.
Note that the straggler kernels will not lead to QoS violation
if the rendering time of the next frame is short and can still
be finished within the deadline. Also, a slight drop in FPS
(1 ∼ 2 FPS) may not affect the gaming experience for non-
sensitive players. Therefore, PilotFish provides two types of
guarantees:

1) Hard guarantee: once a straggler kernel appears that
it can not finish before the next frame rendering begins, the
task executor suspends the running DL kernel on the GPU
immediately.

2) Soft guarantee: PilotFish does not terminate the strag-
gler kernels unless FPS drop exceeds a certain threshold.

Using soft guarantee is more friendly to DL training models
that contain kernels of long execution time, e.g., the longest
kernel of LSTM runs for 2.4 ms. Our evaluation in § 7.4
shows using the soft guarantee can harvest over 30% more
GPU cycles than the hard guarantee when we co-locate LSTM
with RDR2.

6.2 Low-overhead Pause and Resume
Figure 10 shows the design of PilotFish’s DL training pause
and resume. In order to terminate the straggler kernel quickly,
PilotFish leverages the multi-priority streams of modern
GPUs to send asserting signal to DL training kernels at the
highest priority. The preemption can be done very fast within
0.7 ms. However, asserting the kernel would wipe out all the

222    2022 USENIX Annual Technical Conference USENIX Association



memory state that results in loss of the training progress. Al-
though DL training may periodically save checkpoints, it is
done in a less frequent manner (usually every a few epochs
that takes hours).

… Hook
FPS ×

load

DL Kernel queue

K1 K2 Kn

Resuming DL Training

Pause Signal Received;
Send high priority kernel

Running DL Kernel

Stopping Overhead

×

Rendering Graphics (Frame n)

Running DL Kernel Process Stopped

Shared memory

Shared memory (Update per iteration)

：Model weightsAsserting Kernel

Figure 10: PilotFish’s low-overhead pause and resume.

Note that, we only want to terminate the computation to
avoid the interference to games thus it is not necessary to
clear the memory. To maintain the model weight while DL
training job suspension, PilotFish builds a shared memory
pool in an isolated process, that stores a backup version of
the model weight. When resuming a DL training job from
suspension, the pointer of shared memory is directly shipped
to the memory manager of the training frame. If the GPU sup-
ports inter-process communication (IPC), the shared memory
pool is placed on GPU thus no memory copy is needed. Other-
wise, The shared memory pool is placed on the host memory
thus requires resume the model weights by copying them
from host to GPU. Our evaluation shows resuming the model
from the host memory for ResNet-34, VGG-16, MobileNet
and LSTM takes 64, 69, 63 and 30 ms respectively. But Py-
Torch’s requires over 7 seconds via its default checkpointing
mechanism.

6.3 Mitigating Other Resource Contention
In addition to contention on GPU, both cloud gaming and
the DL training involve other resource types thus also need
careful management for interference avoidance.

CPU contention. For the DL training tasks, the CPU is
used for data pre-processing, e.g., image decoding, re-shaping,
data augmentation. Games use CPU for processing game logic
and simulate physical effects. CPU contention may appear
when the CPU-heavy DL training and games are co-located,
resulting in a decrease in FPS and an increase of game load-
ing time. PilotFish solves the resource contention on CPU
by setting the priority of threads: game threads use a high
priority and DL training threads use a low priority. Figure 11
shows the FPS of RDR2 to be co-located with a job that only
pre-processes the data of DL training. By increasing the stress
of the co-located job, the FPS and loading time of the game
is affected severely if they have the same CPU thread priority.
The Windows OS’s scheduler can fully mitigate the interfer-
ence on CPU after we set the thread priority of the co-located
job to low.

PCIe contention. Using PCIe bus, games transfer vertex
data and primitive data from pageable memory to GPU dur-

(a) FPS (b) Loading time

Figure 11: The FPS and loading time of RDR2 when co-
located with CPU threads for DL training.

(a) PCIe bus (b) Disk I/O

Figure 12: The inference to RDR2 on PCIe bus and Disk I/O.

ing execution, and the rendered frames are passed back from
GPU [21]. The DL training uses PCIe to transfer data and
model parameters. We have tested two popular games’ per-
formance benchmarks (Shadow of the Tomb Raider and The
Division 2). The average memcpy time per frame is 0.1748ms
and the frames with copy time greater than 0.5ms account for
3.9% of all frames. When games use pageable memory and
transfer data through PCIe bus alone, the achieved data trans-
fer rate is 11,045MB/s. Because the theoretical peak band-
width of 16x PCIe 3.0 bus used in our platform is 15,800MB/s
and the effective bandwidth is 12,160MB/s, the bus can only
support at most ⌊ 12160

11045⌋ = 1 memcpy task to transfer data in
their full speeds in the same direction. Therefore, it is neces-
sary to guarantee no interference on PCIe to avoid the game’s
data transfer. In PilotFish, we rely on the bandwidth reserva-
tion technique proposed in Baymax [25] to reserve the enough
PCIe bandwidth for cloud gaming. The DL training can only
transfer data when the game is not using PCIe.

Figure 12a shows the FPS of game RDR2 when co-located
with a stress test progress of memory copy. This stress test
copies data from the host memory to the global memory of
GPU, and then back to the host memory every 60 ms. We
control the proportion of the memcpy time to the total time
by controlling the size of the copied data. With increased
memory copy stress, the FPS drops greatly without reserving
the PCIe bandwidth for the game. The reservation guarantees
the game is not affected by PCIe contention.

Disk I/O contention. From disk, games loads rendering

USENIX Association 2022 USENIX Annual Technical Conference    223



resources (e.g., texture) and DL training loads training data.
Contention on disk I/O may lead to longer loading time for
games. Figure 12b illustrates the FPS and loading time of
a game co-located with a disk stress benchmark perform-
ing sequential read/write and 4K read/write [2]. Without any
isolation, the FPS does not change but the loading time is
increased by 21%. Moreover, we observe some objects are
not rendered in the displayed frame, which is unacceptable to
players. We apply the widely used I/O isolation techniques,
including namespace [12] and I/O priority [10]. We find both
techniques can guarantee the game performance by isolating
the I/O operations.

GPU memory and caches. To avoid swapping data among
GPU memory and host memory, PilotFish only co-locates
a game and a DL training job when the sum of their peak
GPU memory demand can fit into the GPU memory. Since
DL kernels are only executed in the idle GPU cycles, their
data movement between GPU memory and GPU caches has
no overlap with gaming. GPU commands from game and DL
training are serialized without preemption thus there is no
context switching overhead. DL training may flush the GPU
cache of rendering data of the previous frame. But we do not
observe impact on rendering time to the next frame.

Network and video stream encoding. In PilotFish, we
assume the distributed training uses a separate network from
the cloud gaming service due to security and performance
concern, thus there is no interference in network. Also, as we
have explained in Figure 2, video stream encoding is done
in a separate hardware encoder, thus is not interfered by DL
training.

7 Evaluation of PilotFish

We have implemented a prototype of PilotFish on DirectX
12, CUDA 11.1, Windows 10, and PyTorch 1.8 with 2400
lines of code. As far as we know, PilotFish is the first system
that co-locate cloud gaming with DL training. Therefore, we
compare PilotFish with several straw-man solutions to evalu-
ate its effectiveness. Overall, PilotFish can harvest up to 85%
of idle GPU cycles from cloud gaming without generating
interference.

7.1 Experimental Setup
We evaluate PilotFish with Steam Remote Play & Steam Link
(cloud gaming platform) using the Nvidia RTX 2060 GPU.
Table 3 summarizes the software and hardware experimental
configurations. Note that PilotFish does not rely on any spe-
cial hardware features of RTX 2060, and is easy to be set up
on other GPUs. As listed in Table 4, we use five popular Di-
rectX 12 games and four DL training applications to perform
the experiment.

Throughout our experiments, the FPS target of games is
60 FPS (16.67 ms/frame). The QoS of the game is defined

Table 3: Hardware and software specifications.

Specification

Hardware Intel(R) i7-7700 @ 3.60GHz
Nvidia GeForce RTX 2060

Software Windows10 19043.1110 CUDA Driver 11.1.96
CUDA SDK 11.1 DirectX 12.1 PyTorch 1.8.1

Table 4: Benchmarks used in the experiment.

Benchmarks Workloads

Ashes of the Singularity (AOS) Crazy quality on2560*1440; FPS: 60
GPU focused benchmark

Red Dead Redemption 2 (RDR2) Favor performance quality
on 2560*1440; FPS: 60

Shadow of the Tomb Raider (SOTTR) High quality on 2560*1440; FPS: 60
F1 2021 (F1) Medium quality on 1920*1080; FPS: 60

HITMAN3 (HIT3) Ultra quality on 2560*1440; FPS: 60

DL Training
ResNet-34 (RS) [30]; VGG-16 [44] ;
MobileNet (MN) [31]; LSTM [45];
Dataset: ImageNet-1k, Wikitext-2

as the 99%-ile latency normalized to 60 FPS. We calculate
the GPU utilization as the portion of time when the GPU is
busy, which is the same as the definition of nvidia-smi [16].
We define the metric, harvest ratio, as the portion of GPU idle
time that is harvested for DL training, which is calculated as

Harvest Ratio =
GPUUtilco −GPUUtilGame

100%−GPUUtilGame
, (1)

where GPUUtilGame is the GPU utilization of running game
independently, and GPUUtilco is the GPU utilization when
game and DL training are co-located. For PilotFish, the time
of model checkpointing is not considered as harvested.

Comparison Baselines. To compare the performance of
PilotFish, we propose three straw-man solutions:

1. GameMode [6] is a feature introduced by Windows to
prioritize CPU threads of games. It does not control GPU
execution.

2. Constant-Speed controls the DL kernel submission
speed with a constant rate.

3. Adaptive-Speed controls the DL kernel submission
speed dynamically according to the FPS profiled from
the event-tracing tool PresentMon [17]. If FPS < 60, the
DL kernel submission speed is halved, otherwise, it is
multiplied by 1.2.

7.2 GPU Utilization Improvement and FPS
Guarantee

We first demonstrate the effectiveness of PilotFish by compar-
ing PilotFish with the three baselines on all combinations of
cloud games and DL models listed in Table 4. By default, the
Constant-Speed baseline is set to 50% of the ideal speed (i.e.,
training the model on the same GPU without co-location).

224    2022 USENIX Annual Technical Conference USENIX Association



(a) The 99%-ile FPS normalized to the FPS target (60 FPS). The red line shows the 99-tile FPS of running each game without co-location.

(b) The harvest ratio of idle GPU time of cloud games.

(c) The training wall time of co-located job normalized to training on dedicated GPU system

Figure 13: The 99%-ile FPS, harvest ratio and training wall time of different co-location combinations of games and DL models.

Figure 13 presents the 99%-ile FPS of the cloud games nor-
malized to the FPS target (60 FPS), and the harvest ratio of
idle GPU time. Note that, due to bursty complex frames, the
cloud game may not always maintain at 60 FPS either even
without co-location. Figure 13a shows that PilotFish achieves
almost the same 99%-ile FPS compared to that without co-
location. The three baselines all experienced severe FPS drops.
GameMode drops the most, by up to 78.6% (e.g. SOTTR+RS).
Constant-Speed(50%) and FPS-Based drop from 16.3% to
69.2% and from 20.7% to 66.3%, respectively. In the game
of SOTTR and HIT, all baselines suffer from severe interfer-
ence. Since SOTTR switches scenes multiple times during
the benchmark, its rendering time of frames fluctuates more
severely than the other four games. The three baselines cannot
quickly adapt to the fluctuation thus perform poorly.

Figure 13b shows the harvest ratio in the different combi-
nations. As shown in the figure, PilotFish w/ hard guarantee
harvests 78.56% of idle times on average in all five games
co-located with three DL training tasks (MobileNet, Resnet-
34 and VGG-16) without interfering with the cloud games.
When cloud games are co-located with LSTM, the harvest
ratio drops to 39.03%. Because LSTM contains some large
kernels that run for ∼ 2.4 ms, they may not be scheduled if the
idle GPU time is short with PilotFish’s hard guarantee. Since
the rendering time of game F1 is lower than other games, its
harvest ratio on LSTM is relatively higher than others, which
is 48.43%. With the huge penalty of FPS drop, GameMode

achieves the highest harvest ratio (83% on average) since it
does not control the speed of DL training. The harvest ratios
of the Constant-Speed (50%) and Adaptive-Speed range from
26% to 50% and 11% to 74%. These two baselines not only
harvest less idle GPU time than PilotFish but also degrades
the FPS significantly. They prove the necessity of PilotFish’s
mechanisms to fast and safely schedule DL kernels.

Figure 13c shows the training wall time of the co-located
DL models normalized to training them on dedicated GPU.
The training wall time is almost inversely proportional to
the harvest ratio. Because GameMode occupies more GPU
cycles from games in addition to the idle cycles, it has the
least slowdown at the price of severely affected game FPS.
Because of higher harvesting efficiency, PilotFish’s training
wall time is better than Constant-Speed and Adaptive-Speed
for most models without affecting the FPS of games.

7.3 Dissecting Execution

To demonstrate how cloud game runs when co-located with
DL training, in Figure 14, we show the instantaneous FPS (the
inverse of frame time) fluctuation of RDR2 over time when
co-located with ResNet-34. We select a game segment (50
seconds) during the stable running of the game. We find Pi-
lotFish can always be stable near the original FPS without co-
location. The baselines experience serious FPS fluctuations,
especially GameMode and Constant-Speed since they are not

USENIX Association 2022 USENIX Annual Technical Conference    225



Figure 14: The instantaneous FPS of RDR2 over time when
co-located with ResNet-34. The FPS is normalized to the
average FPS without co-location.

Figure 15: The rendering quality of PilotFish (left), No co-
location (middle), and GameMode (right). The rendering qual-
ity in GameMode is much worse than the others due to inter-
ference.

adaptive at all. The fluctuated and degraded FPS leads to very
poor experience for players. When FPS drops, some games
with adaptive rendering mechanism will actively reduce the
rendering quality to maintain a smooth playing experience.
Figure 15 compares the rendering quality of PilotFish, no co-
location, and GameMode. PilotFish has the same rendering
quality with running the game without co-location. But the
game co-located with DL training in GameMode reduces the
rendering quality under the bridge due to interference.

7.4 Sources of Improvement
Dynamic Scheduling. Figure 16 shows normalized 99%-
ile FPS and the harvest ratio of the pair (RDR2+RS) under
the different kernel submission speed in Constant-Speed pol-
icy. The kernel submission speed ranges from 3% to 100%
(normalized to the ideal speed without co-location). The right-
most column shows the results of PilotFish for comparison.
As expected, we find that the 99%-ile FPS decreases and the
harvest ratio increases as the submission speed grows from
3% to 100%. We specifically listed the 99%-ile FPS at the
kernel submission speed 3% and 4%. We find the FPS target
can be satisfied only when the kernel submission speed is very
low. When the submission speed is higher than 4%, 99%-ile
FPS begins to drop. Without degrading the 99%-ile FPS, Pi-
lotFish can achieve the same harvest ratio of Constant-Speed
at 80% submission speed.

Figure 17 shows the harvest ratio of HIT under different ren-
dering qualities when co-located with MobileNet and LSTM.

Figure 16: The impact of kernel submission speed in
Constant-Speed v.s. PilotFish.

Figure 17: (HIT+MN/LSTM) the 99%-ile FPS and harvest
ratio of PilotFish with different graphic quality.

Since MobileNet is mainly comprised of small kernels, it is
easier to fit into short idle GPU periods. But the LSTM model
contains some long kernels (∼ 2.4 ms), which requires longer
idle GPU periods. Therefore, reducing the rendering quality
allows LSTM to harvest more GPU cycles from the game
than MobileNet.

The two experiments in Figure 16 and Figure 17 imply the
dynamic scheduling of DL kernels is necessary to handle the
high randomness of game frames and diverse characteristic
of different combinations of game and DL model.

Effective training pause and resume. To verify the need
for the training pause mechanism introduced in Section 6.1,
we disable this mechanism to compare its impact with Pilot-
Fish’s policies of hard guarantee and soft guarantee. Figure 18
shows the 99%-ile FPS (normalized to 60 FPS) and the har-
vest ratio with different pause policies. When using the policy
of hard guarantee, PilotFish achieves the same FPS of that
without co-location. When the pause condition is relaxed
by 5% (3 FPS), the FPS using the policy of soft guarantee
is degraded within the threshold while the harvest ratio is
increased. When disabling the pause mechanism, the FPS
further decreases at the cost of no FPS guarantee. The impact
of the pause policies is different for models: ResNet-34 is
less impacted than LSTM since the computation kernels of
ResNet-34 is much shorter than LSTM. In the worst case, if a
DL training task submits a long-running kernel, the game ren-
dering could be infinitely postponed. Therefore, we suggest
using the policy of soft guarantee when the cluster opera-

226    2022 USENIX Annual Technical Conference USENIX Association



Figure 18: The 99%-ile FPS and harvest ratio of PilotFish
with different training pause polices.

Figure 19: (RDR2+RS) the lost progress of DL training.

tor wants to trade a limited interference with a higher GPU
utilization.

Figure 19 shows the lost progress of DL training due to
training pause with the hard guarantee. Compared with the
epoch-level checkpoint in PyTorch whose lost progress is
69.62% on average, PilotFish reduces the lost progress by
4.6 times to 15.04% with the weight backup in the shared
memory pool. LSTM loses more training progress than other
models since it triggers more training pause due to its longer
computation kernel.

8 Scale to Data Center

To evaluate the potential benefit of PilotFish to cloud gaming
service running in a large cluster of GPUs, we use a simple
heuristic cluster-level scheduler to decide which games and
DL training jobs are suitable for co-location on the same GPU,
as shown in Figure 20. The heuristic cluster scheduler collects
the average resource usage of DL jobs and games through
offline profiling. It greedily matches the DL training job with
the game with the DL training job so that the remaining re-
source is minimized. For the DL model using synchronous
data parallel training, the scheduler prefers to deploy each
of its workers to the servers with a similar utilization so that
each worker can run at a similar speed, which can reduce the
synchronization overhead.

We compare this heuristic policy with a random scheduling
policy that co-locates games and DL training models ran-
domly. We simulate a cloud gaming cluster composed of one
thousands Nvidia RTX2060 GPUs. We select ten popular
games as the workload of cloud gaming, including Dota 2,

Global Scheduler

Game1

GPUUtil 40%

CPUUtil 70%

GPUMem 5GB

…

Gaming

Scheduler

DL Job

DL Job-2

GPUUtil 50%

CPUUtil 20%

GPUMem 3GB

isDistributed Yes

BatchSize 128

Scheduling
decisions

GPU server 0

Game1 DL job-1

GPU server 1

Game2 DL job-2
Worker-1

GPU server n

Game3 DL job-2
Worker-2

…

Figure 20: Cluster-level Scheduler.

Figure 21: The variation of
active players on Steam.

Figure 22: The GPU utiliza-
tion in the simulated cluster.

League of Legends, PUBG, CS:GO, Civilization 5, Assas-
sin’s Creed Odyssey, The Division 2, Ashes of the Singularity,
RDR2, and Genshin Impact. The games are launched with
the same probability. The number of running games follows
the active player variation reported by Steam (shown in Fig-
ure 21), which has a strong diurnal pattern. We regard the
peak point in Figure 21 as the situation when all the 1000
GPUs are used by cloud games. For the DL Training work-
loads, we select 750 instances evenly from the five models:
ResNet-34, ResNet-50 [30], VGG-16 [44], MobileNet [31],
and DenseNet [32]. Each model has 100 non-distributed train-
ing instances and 50 distributed training instances.

Figure 22 shows the GPU utilization of no co-location,
random scheduler and the greedy heuristic scheduler. When
there is no co-location, the cloud gaming cluster only has a
GPU utilization of ∼ 40%. The random policy can improve
the utilization to 68.89% due to PilotFish’s efficient execution.
Since the greedy policy is aware of the resource usage pattern
of cloud games and DL training, it can further improve the
cluster utilization to 81.12%. It implies the games and DL
training jobs should be carefully scheduled at the cluster-level
to maximize the benefit of co-location, which is an interesting
future direction.

9 Related Work

General CPU co-location. There has been a large amount
of prior work focusing on improving application QoS and

USENIX Association 2022 USENIX Annual Technical Conference    227



hardware utilization for CPU co-location. They can be broadly
categorized as (1) profiling-based methods [26, 27, 41, 48, 52]
and (2) partitioning-based methods [39, 53]. The profiling-
based methods, such as Bubble-Up [41], Bubble-Flux [48],
SMiTe [52], uses offline profiling of user-facing services and
batch applications to predict their performance degradation
to avoid contention on shared cache and memory bandwidth.
They periodically adjust the allocation of shared resources
according to the QoS feedback of user-facing services.

However, these techniques would fail on cloud gaming
because they neglect the complex interaction of interference
on different shared resources on GPUs.

General GPU co-location. Several techniques were pro-
posed in the prior work to improve the utilization of GPUs
with co-location. TimeGraph [34] and GPUSync [28] use
priority-based scheduling to guarantee the performance of
real-time kernels. High-priority kernels are executed first
if multiple kernels are launched to the same GPU. GPU-
EvR [35] launches different applications to different stream-
ing multiprocessors (SMs) on one GPU. However, they are
not applicable to our problem because they all rely on the
simulator to synthesize the execution trace of co-located ap-
plications. Laius [50] and Baymax [25] predict the kernel
duration and reorder the kernel based on the QoS headroom
of user-facing queries. But it is difficult to predict the render-
ing frame time of game with a low overhead. AntMan [47]
only co-locates multiple DL training jobs, which cannot han-
dle the unpredictable game rendering. Nvidia Volta MPS
(Multi-Process Service) [42] enables multiple applications
to share a GPU concurrently with static partition, however,
cannot handle the dynamic load of cloud gaming. Moreover,
MPS-based solutions rely on the special hardware feature that
only supports CUDA applications but not games, and is not
applicable to non-Nvidia GPUs.

Co-location of cloud gaming. Specifically for cloud
gaming, several works have been proposed to improve re-
source utilization by co-locating multiple games [37, 43, 49].
vGASA [49] adaptively schedules rendering tasks from multi-
ple games to meet the SLA in a best-effort manner. However,
when a hard SLA guarantee is required, vGASA has to reserve
the resource for the worst cases so that all running games can
meet the SLA at the most complex scenes. As we have shown
in Section 2.2, cloud gaming has a high variance in GPU us-
age. Conservatively guaranteeing the worst case would waste
resources with a significant over-provisioning.

GAugur [36] and dJay [29] dynamically tune the game
settings for the co-located games during gameplay to adapt
to changes of game scenes for improving performance. How-
ever, as we have shown in Figure 4, the frame time and GPU
load in the gaming could fluctuate drastically even within a
short period of time. Frequently changing the game setting is
noticeable to players and could greatly degrade the gaming
experience. This is unacceptable to commercial cloud gaming
services. Instead, the computation of DL training is highly

predictable. PilotFish can accurately predict the execution of
DL kernels and schedule them only when it is safe. This is the
main reason why we claim DL training is the right workload
to be co-located with cloud gaming.

10 Conclusion

Cloud gaming service suffers from low GPU utilization issue
due to the limitation of network and edge devices. Since cloud
gaming utilizes GPUs in a very random manner, existing co-
location solutions for GPU cannot meet the QoS requirement
of cloud gaming. PilotFish addresses this issue by co-design
cloud gaming service and deep learning training framework.
PilotFish can harvest free GPU cycles using DL training with
no interference to cloud gaming. PilotFish achieves this hard
guarantee by (1) quickly capturing the idle GPU periods from
cloud gaming via low-overhead instrumentation to graphic li-
braries (e.g., DirectX); (2) leveraging the predictability of DL
computation to safely schedule DL kernels; and (3) providing
a low-overhead mechanism to pause DL computation when
they could potentially interfere with games. Our evaluation
shows that PilotFish can harvest a significant portion of idle
GPU time of cloud gaming up to 85.1% without affecting
the gaming experience. PilotFish reveals a principled design
to co-locate unpredictable workloads with predictable low-
priority workloads. In addition to co-locating cloud gaming
with DL training, it is interesting to generalize PilotFish’s
solution on other predictable workloads, e.g., scientific com-
puting [22, 50].

Acknowledgments

This work is partially sponsored by the National Natural Sci-
ence Foundation of China (62022057, 61832006, 61872240),
and Shanghai international science and technology collabora-
tion project (21510713600). We thank the anonymous review-
ers for their constructive feedback and suggestions. Zhenhua
Han, Quan Chen and Minyi Guo are the corresponding au-
thors.

References

[1] Amazon appstream. http://aws.amazon.com/
appstream.

[2] As ssd benchmark. https://www.alex-is.de/PHP/
fusion/news.php.

[3] Directx. https://docs.microsoft.com/en-us/
windows/win32/directx.

[4] Event tracing for windows. https://docs.
microsoft.com/en-us/windows/win32/etw/
about-event-tracing.

228    2022 USENIX Annual Technical Conference USENIX Association

http://aws.amazon.com/appstream.
http://aws.amazon.com/appstream.
https://www.alex-is.de/PHP/fusion/news.php
https://www.alex-is.de/PHP/fusion/news.php
https://docs.microsoft.com/en-us/windows/win32/directx
https://docs.microsoft.com/en-us/windows/win32/directx
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing
https://docs.microsoft.com/en-us/windows/win32/etw/about-event-tracing


[5] Frameview. https://www.nvidia.com/en-us/
geforce/technologies/frameview/.

[6] Gamemode. https://support.xbox.com/
en-US/help/games-apps/game-setup-and-play/
use-game-mode-gaming-on-pc.

[7] Google stadia. https://stadia.google.com.

[8] Gpuview. https://docs.microsoft.com/
en-us/windows-hardware/drivers/display/
using-gpuview.

[9] Intelgpa. https://software.intel.
com/content/www/cn/zh/develop/tools/
graphics-performance-analyzers.html.

[10] I/o prioritization in windows os.
https://clightning.medium.com/
i-o-prioritization-in-windows-os-6a0637874a52.

[11] Microsoft xbox remote play. https://www.xbox.com/
en-US/consoles/remote-play.

[12] Namespace. https://docs.microsoft.com/en-us/
windows/win32/adsi/namespaces.

[13] Nvenc. https://developer.nvidia.com/
nvidia-video-codec-sdk.

[14] Nvida cuda. https://developer.nvidia.com/
zh-cn/cuda-toolkit.

[15] Nvidia geforce now. https://www.nvidia.com/
en-us/geforce-now/.

[16] Nvidia system management inter-
face. https://developer.nvidia.com/
nvidia-system-management-interface.

[17] Presentmon. https://github.com/GameTechDev/
PresentMon.

[18] Sony playstation now streaming. http://us.
playstation.com/playstationnow.

[19] Steam survey. https://store.steampowered.com/
stats/Steam-Game-and-Player-Statistics.

[20] Vulkan. https://www.vulkan.org/.

[21] Wei Cai, Ryan Shea, Chun-Ying Huang, Kuan-Ta Chen,
Jiangchuan Liu, Victor CM Leung, and Cheng-Hsin Hsu.
A survey on cloud gaming: Future of computer games.
IEEE Access, 4:7605–7620, 2016.

[22] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan,
Jeremy W Sheaffer, Sang-Ha Lee, and Kevin Skadron.
Rodinia: A benchmark suite for heterogeneous comput-
ing. In 2009 IEEE international symposium on workload
characterization (IISWC), pages 44–54. Ieee, 2009.

[23] Quan Chen, Zhenning Wang, Jingwen Leng, Chao
Li, Wenli Zheng, and Minyi Guo. Avalon: towards
qos awareness and improved utilization through multi-
resource management in datacenters. In Proceedings of
the ACM International Conference on Supercomputing,
pages 272–283, 2019.

[24] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa
Kannan, Jason Mars, and Lingjia Tang. Prophet: Precise
qos prediction on non-preemptive accelerators to im-
prove utilization in warehouse-scale computers. In Pro-
ceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 17–32, 2017.

[25] Quan Chen, Hailong Yang, Jason Mars, and Lingjia
Tang. Baymax: Qos awareness and increased utiliza-
tion for non-preemptive accelerators in warehouse scale
computers. ACM SIGPLAN Notices, 51(4):681–696,
2016.

[26] Christina Delimitrou and Christos Kozyrakis. Paragon:
Qos-aware scheduling for heterogeneous datacenters. In
ACM SIGPLAN Notices, volume 48, pages 77–88. ACM,
2013.

[27] Christina Delimitrou and Christos Kozyrakis. Quasar:
resource-efficient and qos-aware cluster management.
ACM SIGPLAN Notices, 49(4):127–144, 2014.

[28] Glenn A Elliott, Bryan C Ward, and James H Ander-
son. Gpusync: A framework for real-time gpu manage-
ment. In 2013 IEEE 34th Real-Time Systems Sympo-
sium, pages 33–44. IEEE, 2013.

[29] Sergey Grizan, David Chu, Alec Wolman, and Roger
Wattenhofer. djay: Enabling high-density multi-tenancy
for cloud gaming servers with dynamic cost-benefit gpu
load balancing. In Proceedings of the sixth ACM sym-
posium on cloud computing, pages 58–70, 2015.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[31] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

[32] Forrest Iandola, Matt Moskewicz, Sergey Karayev, Ross
Girshick, Trevor Darrell, and Kurt Keutzer. Densenet:
Implementing efficient convnet descriptor pyramids.
arXiv preprint arXiv:1404.1869, 2014.

USENIX Association 2022 USENIX Annual Technical Conference    229

https://www.nvidia.com/en-us/geforce/technologies/frameview/
https://www.nvidia.com/en-us/geforce/technologies/frameview/
https://support.xbox.com/en-US/help/games-apps/game-setup-and-play/use-game-mode-gaming-on-pc
https://support.xbox.com/en-US/help/games-apps/game-setup-and-play/use-game-mode-gaming-on-pc
https://support.xbox.com/en-US/help/games-apps/game-setup-and-play/use-game-mode-gaming-on-pc
https://stadia.google.com
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/using-gpuview
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/using-gpuview
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/using-gpuview
https://software.intel.com/content/www/cn/zh/develop/tools/graphics-performance-analyzers.html
https://software.intel.com/content/www/cn/zh/develop/tools/graphics-performance-analyzers.html
https://software.intel.com/content/www/cn/zh/develop/tools/graphics-performance-analyzers.html
https://clightning.medium.com/i-o-prioritization-in-windows-os-6a0637874a52
https://clightning.medium.com/i-o-prioritization-in-windows-os-6a0637874a52
https://www.xbox.com/en-US/consoles/remote-play
https://www.xbox.com/en-US/consoles/remote-play
https://docs.microsoft.com/en-us/windows/win32/adsi/namespaces
https://docs.microsoft.com/en-us/windows/win32/adsi/namespaces
https://developer.nvidia.com/nvidia-video-codec-sdk
https://developer.nvidia.com/nvidia-video-codec-sdk
https://developer.nvidia.com/zh-cn/cuda-toolkit
https://developer.nvidia.com/zh-cn/cuda-toolkit
https://www.nvidia.com/en-us/geforce-now/
https://www.nvidia.com/en-us/geforce-now/
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://github.com/GameTechDev/PresentMon
https://github.com/GameTechDev/PresentMon
http://us.playstation.com/playstationnow
http://us.playstation.com/playstationnow
https://store.steampowered.com/stats/Steam-Game-and-Player-Statistics
https://store.steampowered.com/stats/Steam-Game-and-Player-Statistics
https://www.vulkan.org/


[33] Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-
ishayee, Junjie Qian, Wencong Xiao, and Fan Yang.
Analysis of large-scale multi-tenant {GPU} clusters
for {DNN} training workloads. In 2019 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 19),
pages 947–960, 2019.

[34] Shinpei Kato, Karthik Lakshmanan, Raj Rajkumar, and
Yutaka Ishikawa. Timegraph: Gpu scheduling for real-
time multi-tasking environments. In Proc. USENIX
ATC, pages 17–30, 2011.

[35] Haeseung Lee, Al Faruque, and Mohammad Abdullah.
Gpu-evr: Run-time event based real-time scheduling
framework on gpgpu platform. In Proceedings of the
conference on Design, Automation & Test in Europe,
page 220. European Design and Automation Associa-
tion, 2014.

[36] Yusen Li, Chuxu Shan, Ruobing Chen, Xueyan Tang,
Wentong Cai, Shanjiang Tang, Xiaoguang Liu, Gang
Wang, Xiaoli Gong, and Ying Zhang. Gaugur: Quan-
tifying performance interference of colocated games
for improving resource utilization in cloud gaming. In
Proceedings of the 28th international symposium on
high-performance parallel and distributed computing,
pages 231–242, 2019.

[37] Yusen Li, Changjian Zhao, Xueyan Tang, Wentong Cai,
Xiaoguang Liu, Gang Wang, and Xiaoli Gong. Towards
minimizing resource usage with qos guarantee in cloud
gaming. IEEE Transactions on Parallel and Distributed
Systems, 32(2):426–440, 2020.

[38] Tianyi Liu, Sen He, Sunzhou Huang, Danny Tsang,
Lingjia Tang, Jason Mars, and Wei Wang. A bench-
marking framework for interactive 3d applications in the
cloud. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 881–
894. IEEE, 2020.

[39] David Lo, Liqun Cheng, Rama Govindaraju,
Parthasarathy Ranganathan, and Christos Kozyrakis.
Heracles: Improving resource efficiency at scale.
In ACM SIGARCH Computer Architecture News,
volume 43, pages 450–462. ACM, 2015.

[40] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lintao
Zhang, and Lidong Zhou. Rammer: Enabling holistic
deep learning compiler optimizations with rtasks. In
14th {USENIX} Symposium on Operating Systems De-
sign and Implementation ({OSDI} 20), pages 881–897,
2020.

[41] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron,
and Mary Lou Soffa. Bubble-up: Increasing utilization

in modern warehouse scale computers via sensible co-
locations. In Proceedings of the 44th annual IEEE/ACM
International Symposium on Microarchitecture, pages
248–259. ACM, 2011.

[42] NVIDIA. Sharing a gpu between mpi processes: multi-
process service(mps). Oct. 2012.

[43] Zhengwei Qi, Jianguo Yao, Chao Zhang, Miao Yu,
Zhizhou Yang, and Haibing Guan. Vgris: Virtualized
gpu resource isolation and scheduling in cloud gaming.
ACM Transactions on Architecture and Code Optimiza-
tion (TACO), 11(2):1–25, 2014.

[44] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[45] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
Lstm neural networks for language modeling. In Thir-
teenth annual conference of the international speech
communication association, 2012.

[46] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
et al. Gandiva: Introspective cluster scheduling for deep
learning. In 13th {USENIX} Symposium on Operat-
ing Systems Design and Implementation ({OSDI} 18),
pages 595–610, 2018.

[47] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang,
Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and
Yangqing Jia. {AntMan}: Dynamic scaling on {GPU}
clusters for deep learning. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 20), pages 533–548, 2020.

[48] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia
Tang. Bubble-flux: Precise online qos management
for increased utilization in warehouse scale computers.
In ACM SIGARCH Computer Architecture News, vol-
ume 41, pages 607–618. ACM, 2013.

[49] Chao Zhang, Jianguo Yao, Zhengwei Qi, Miao Yu, and
Haibing Guan. vgasa: Adaptive scheduling algorithm of
virtualized gpu resource in cloud gaming. IEEE Transac-
tions on Parallel and Distributed Systems, 25(11):3036–
3045, 2013.

[50] Wei Zhang, Weihao Cui, Kaihua Fu, Quan Chen,
Daniel Edward Mawhirter, Bo Wu, Chao Li, and Minyi
Guo. Laius: Towards latency awareness and improved
utilization of spatial multitasking accelerators in data-
centers. In Proceedings of the ACM International Con-
ference on Supercomputing, pages 58–68, 2019.

230    2022 USENIX Annual Technical Conference USENIX Association



[51] Wei Zhang, Kaihua Fu, Ningxin Zheng, Quan Chen,
Chao Li, Wenli Zheng, and Minyi Guo. Charm: Collab-
orative host and accelerator resource management for
gpu datacenters. In 2021 IEEE 39th International Con-
ference on Computer Design (ICCD), pages 307–315.
IEEE, 2021.

[52] Yunqi Zhang, Michael A Laurenzano, Jason Mars, and
Lingjia Tang. Smite: Precise qos prediction on real-
system smt processors to improve utilization in ware-
house scale computers. In Microarchitecture (MICRO),
2014 47th Annual IEEE/ACM International Symposium
on, pages 406–418. IEEE, 2014.

[53] Haishan Zhu and Mattan Erez. Dirigent: Enforcing
qos for latency-critical tasks on shared multicore sys-
tems. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 33–47, 2016.

USENIX Association 2022 USENIX Annual Technical Conference    231





Privbox: Faster System Calls Through Sandboxed Privileged Execution

Dmitry Kuznetsov
Tel Aviv University

Adam Morrison
Tel Aviv University

Abstract
System calls are the main method for applications to re-

quest services from the operating system, but their invocation
incurs considerable overhead, which has been aggravated by
mitigation mechanisms for transient execution attacks. Pro-
posed approaches for reducing system call overhead all break
the semantic equivalence between system calls and regular
function calls (e.g., by making system calls asynchronous),
and so their adoption requires rearchitecting applications.

This paper proposes Privbox, a new approach for
lightweight system calls that maintains the familiar syn-
chronous, function-like system call model. Privbox allows an
application to execute system call-intensive code in a semi-
privileged, sandboxed execution mode, called a “privbox”.
Semi-privileged execution is architecturally similar to the ker-
nel’s privileged execution, which enables faster invocation
of system calls, but the code is sandboxed to ensure that it
cannot use its elevated privileges to compromise the system.
We further propose semi-privileged access prevention (SPAP),
a simple hardware architectural feature that alleviates much
of Privbox’s instrumentation overhead.

We implement Privbox based on Linux and LLVM. Our
evaluation on x86 (Intel Skylake) hardware shows that
Privbox (1) speeds up system call invocation by 2.2×; (2)
can increase throughput of I/O-threaded applications by up
to 1.7×; and (3) can increase the throughput of real-world
workloads such as Redis by up to 7.6% and 11%, without and
with SPAP, respectively.

1 Introduction
System calls are the de-facto method for processes to request
services from the operating system (OS), but they are orders
of magnitude slower than a regular function call. Much of
the overhead stems from switching the processor’s execution
mode between unprivileged user-mode and privileged kernel
execution on system call entry and exit [1]. User-to-kernel
mode switches are further slowed down by the protection
mechanisms [2, 3] recently added to mitigate transient execu-
tion vulnerabilities such as Meltdown [4] and Spectre [5].

Reducing system call overhead has attracted significant
research attention over the years (e.g., [6, 1, 7, 8, 9, 10]), and
the increased overhead imposed by the mitigations of transient
execution vulnerabilities [10] underscores the importance of
addressing the problem. Current approaches, however, break

the semantic equivalence between system calls and regular
function calls. For instance, FlexSC [1] and io_uring [8]
make system calls asynchronous; the io_uring model and
similar models [6, 11, 12] also limit how system calls can be
composed. Consequently, benefitting from these system call
designs requires rearchitecting applications to use the new
system call models.

In this work, we propose Privbox: a new approach for
lightweight system calls that maintains the familiar user-space
programming model of synchronous, function-like system
calls. In our design, an application can demarcate system
call-intensive code and have it execute in a privbox, in which
system call invocation is cheap—e.g., 2.2× faster than a reg-
ular system call on an Intel Skylake CPU. An application
can thus enjoy low-overhead system calls with an unchanged
synchronous system call model and only minor source code
modifications to demarcate privboxed code regions.

Privboxed code runs in a “semi-privileged” mode. Semi-
privileged execution consists of the processor running in priv-
ileged mode with the kernel address space mapped, which
reduces user/kernel system call transition time, similarly
to kernel-mode Linux (KML) [7]. But unlike KML, semi-
privileged privboxed code runs sandboxed, so that it has the
same access as the regular, unprivileged code of its process—
thus it cannot violate OS security.

Our sandbox design is inspired by the software fault iso-
lation approach of NaCl [13, 14], which uses compile-time
instrumentation to generate verifiably safe code. We adapt
NaCl’s instrumentation approach to the circumstances and
environment of semi-privileged privboxed execution. In our
design, source code demarcated for privboxed execution is
instrumented at compile-time to prevent it from reading/writ-
ing arbitrary kernel memory or jumping to arbitrary kernel
code. The kernel verifies the correctness of the instrumenta-
tion before allowing the code to begin its privboxed execution.
The privboxed code then runs natively, without any runtime
environment, but under a custom page table configuration that
blocks it from executing uninstrumented user-mode code.

Unfortunately, the sandbox’s instrumentation slows down
execution of the privboxed code, which reduces the bene-
fit from faster system calls. We identify instrumentation of
memory operations (load and store instructions) as the main
culprit. Motivated by this finding, we propose SPAP (semi-
privileged access prevention), a simple hardware architectural
modification that enables omitting load/store instrumentation

USENIX Association 2022 USENIX Annual Technical Conference    233



from privboxed code. With SPAP, privileged mode hardware
execution blocks an instruction from reading/writing a kernel
address if that instruction resides in a user-mode address (as
privboxed instructions do). SPAP’s check can be implemented
analogously to how x86-64 implements its supervisor mode
access prevention (SMAP) [15] feature, which blocks privi-
leged mode execution from accessing user-mode addresses.

We implement Privbox for x86-64 by adding support for
semi-privileged execution to Linux and the musl standard C
library [16], as well as extending LLVM to support generation
of instrumented (sandboxed) code. We evaluate Privbox in
two contexts:

1. Applications that use patterns such as I/O threads and
reactors[17]. These patterns are system call intensive with
little user-space logic, and are therefore less impacted by
instrumentation overhead. We find that such applications
can gain over 1.7× speedup, even without SPAP.

2. Applications that combine I/O and user-space logic.
Specifically, we modify Redis [18], memcached [19], and
SQLite [20] to use Privbox. For simplicity, we compile the
entire application with instrumentation, which gives us a
lower bound on Privbox’s benefit. Using Privbox in these
applications requires little effort (20–30 lines of code) and
yields an improvement of up to 7.6% on today’s hard-
ware without SPAP and up to 11% in a configuration that
approximates performance under SPAP.

Contributions We make the following contributions:

• Privbox design (§ 3). We design Privbox, a new systems
programming mechanism for lightweight system. Privbox
maintains the familiar user-space system call model and its
adoption requires no application source code changes.

• Implementation (§ 4). We implement support for Privbox
for x86-64 in Linux, the musl C library, and LLVM.

• SPAP (§ 5). We propose semi-privileged access preven-
tion, a simple hardware modification that enables omitting
load/store instrumentation from privboxed code.

• Evaluation (§ 7). We show that Privbox improves (1) sys-
tem call overhead by 2.2×; (2) I/O thread execution time
by over 1.7×; and (3) real-world workload throughput by
as much as 7.6% without SPAP and 11% with SPAP.

• Availability. The Privbox implementation and benchmarks
are available at https://github.com/privbox.

2 Background & motivation
Monolithic kernels like Linux rely on hardware privilege
modes to enforce process isolation and to mediate I/O ac-
cess to peripheral devices. The kernel offers a set of system
calls for processes to request services requiring OS mediation,
such as input/output (I/O) to devices, inter-process communi-
cation, and virtual address space modification. System calls

are semantically equivalent to function calls, but are orders
of magnitude slower. This problem has spurred research on
reducing their overhead. These proposals, however, break the
semantic equivalence between system and function calls, so
adopting them requires rearchitecting applications to use a
new system call model. Our goal is thus to address the prob-
lem without changing the system call programming model.

Privilege modes The basic hardware mechanism used to
implement the OS isolation model is the distinction between
unprivileged and privileged processor execution modes. The
kernel runs in privileged mode, which allows full access to
the entire instruction set, including privileged instructions for,
e.g., installing a page table or enabling/disabling interrupts.
Applications run in unprivileged mode, which only allows
execution of non-privileged instructions that cannot circum-
vent OS isolation. Implementation of the execution privilege
modes differs between hardware architectures. In this paper,
we focus on the x86-64 architecture. It defines four hardware
privilege levels, also called rings, numbered 0 to 3 in decreas-
ing order of privilege. Most OSes execute user applications in
ring 3 and the kernel in ring 0. The CPU has a code segment
(CS) register that (indirectly) defines the CPU’s current ring,
also called current privilege level (CPL).

System calls A system call is a mechanism for a controlled
and safe transfer of execution from untrusted unprivileged
code to privileged kernel code. On x86-64, system calls are
implemented by the syscall instruction. This instruction
elevates the CPU’s privilege mode and transfers control to
a pre-determined kernel memory address, called the system
call entry point. The entry point code determines the kernel
function to service the desired call by inspecting certain CPU
registers (determined by a software, OS-specific convention),
executes it, and finally executes a “return to user” instruction
which lowers the CPU’s privilege mode and transfers control
back to the unprivileged code.

System call overhead A system call is semantically equiva-
lent to a function call from an application’s perspective. But
it is orders of magnitude slower, as its invocation/return is a
multi-step procedure in both hardware and software, in which
hardware elevates/lowers its privilege level and saves/restores
certain CPU state, and kernel code saves/restores remaining
CPU state and determines and executes the system call code.

System call overhead is exacerbated by mitigations of hard-
ware microarchitecture vulnerabilities, such as Meltdown [4]
and Spectre [5]. These vulnerabilities involve malicious user
code abusing microarchitectural state shared by the CPU’s
privilege modes to read memory that is not architecturally
accessible to the attacking user code. Mitigation accordingly
involves modifying the relevant CPU state on system call
entry, which adds overhead. For instance, on affected hard-
ware, Linux’s system call entry code flushes the CPU indirect
branch predictor’s state [3] to block Spectre v2 attacks. In
addition, Linux’s page table isolation (PTI) [2] Meltdown mit-

234    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/privbox


igation switches page tables during system call entry, which
is a costly operation that also implies a TLB flush on x86-
64. Indeed, our evaluation (§ 7.1) finds that while a standard
system call invocation entry/exit time is 28× slower than a
function call/return, PTI makes it 52× slower. And while
Linux’s software mitigations are not used on recent proces-
sors that mitigate the vulnerabilities in hardware, the hardware
mitigation itself slows down the system call instruction [10].

Reducing system call overhead There are several proposals
to reduce the overhead of system call entry/exit. They gen-
erally achieve this by compromising on the semantic equiva-
lence between system and function calls.

Flexible system calls (FlexSC) [1] makes system calls asyn-
chronous instead of synchronous. It offloads system call exe-
cution to a kernel “syscall thread” associated with the process,
with which the process communicates over a shared-memory
interface, thereby eliminating CPU cycles spent on system
call entry/exit. However, FlexSC requires rearchitecting ap-
plications to use an asynchronous programming style.1 It also
increases CPU usage due to the added threads and polling of
the shared-memory communication structures.

System call overhead can be reduced by batching. The
multi-call approach invokes several system calls with one
kernel entry/exit. Linux includes several multi-calls, such as
preadv, which performs a sequence of seek-followed-by-read
operations. Cassyopia [6] explores compiler optimizations
to batch several system calls together. But since a multi-call
specifies the participating calls up front, it does not support
arbitrary composition of system calls and user-space logic
offered by the standard system call model.

Recent Linux versions offer an io_uring [8] mechanism.
io_uring allows submitting I/O requests through a memory
interface, like FlexSC, but it does not support arbitrary system
calls. Like multi-calls, multiple requests can be submitted
to a submission queue, but the submitted operations can be
of different kinds and interact with different file descriptors.
Overall, io_uring can be viewed as a combination of FlexSC
and batching specialized for I/O, and thus suffers from the
same limitations as those approaches.

Kernel bypasses avoid system call overhead by doing away
with system calls for device access. For instance, DPDK [9]
and SPDK [21] allow applications to interact directly with
networking and storage devices, respectively. But since the
kernel no longer mediates device access, its standard inter-
faces such as sockets or files cannot be used, and user-space
has to implement all the abstractions it requires.

Ward [10] targets overhead related to Spectre and Melt-
down mitigations. It constructs process page tables which do
contain mappings of kernel memory, but only memory that is
safe to expose to that process. At best, Ward reduces system

1FlexSC offers a threading library that makes its asynchronous system
calls transparent to applications, but this library is relevant only for applica-
tions with many user-mode threads.

call overhead to that of the pre-Spectre/Meltdown baseline,
which is still significantly slower than a function call.

BPF for Storage [22] is a recent approach for reducing I/O
path overhead by leveraging Linux’s eBPF subsystem [23],
which is an in-kernel virtual machine that can execute user-
loaded bytecode programs. The idea in BPF for Storage is to
use eBPF programs to bypass kernel layers and avoid system
calls, e.g., by searching an on-disk B+tree inside the kernel
instead of via multiple system calls. However, eBPF is a
severely limiting programming model, as the bytecode must
pass static verification [24] before it can be executed in the
kernel, and verification considerations limit eBPF programs to
be small and to have provably bounded memory and execution
time.

3 Design

Privbox is a new execution model for system call intensive
code. Privbox provides standard synchronous, function-like
system calls but with significantly lower invocation cost. Us-
ing Privbox thus requires no rearchitecting of application
source code, as opposed to, e.g., the asynchronous system
calls provided by FlexSC or io_uring (see § 2). We describe
Privbox in the context of Linux on x86-64 hardware, but its
design can be extended to other monolithic operating systems
and/or hardware architectures.

Privbox provides an interface for executing code sec-
tions (e.g., ELF objects) in a semi-privileged execution
mode (§ 3.1); we refer to such code as being privboxed. In
semi-privileged execution, the processor is in privileged mode
and kernel memory is mapped, which enables fast system call
execution (§ 3.2), but for security, the code runs sandboxed, so
that it has the same access as the process that loads it (§ 3.3).
This sandbox is enforced by compile-time instrumentation
(verified by the kernel) and by virtual memory restrictions.

Privbox and eBPF (§ 2) share some similarity in that both
offer safe execution of user-supplied code in privileged pro-
cessor mode, but the designs have a fundamental difference.
eBPF runs code in kernel context, invoked to handle certain
events, and so eBPF programs must be verified to terminate
and be provided with interfaces for kernel operations. In con-
trast, privboxed code is conceptually process code, just with
faster system calls. It can access the process’ address space,
be scheduled and context switched, and can only interact
with the kernel via the system call interface—in particular,
it invokes the kernel and not vice versa. Privbox is thus a
general-purpose design, whereas eBPF requires customiza-
tion for each new use case (e.g., [22]).

While we focus on the general use case, in which privboxed
code must be isolated from other processes in the system,
some scenarios can use Privbox without sandboxing. One
such example is a workload running by itself on a dedicated
virtual machine. This use case can employ Privbox without
sandboxing, as the privboxed code cannot compromise any-

USENIX Association 2022 USENIX Annual Technical Conference    235



main:
fd = open("priv.so")
call priv_code_load(fd)
call priv_code_invoke("privfunc1")

privfunc1:
loop:
fast_syscall ...

call priv_code_return()

Listing 1: Example usage of privcall mechanism.

thing other than itself.

3.1 Execution & usage model
Privbox introduces an operating system interface with the
following system calls:
• Load privboxed code. This method can accept a pointer to

a buffer with machine instructions or a file descriptor of an
ELF object file. Internally, it verifies the code’s safety (§ 3.3)
and relocates it to a dedicated, immutable memory region
from which it will be executed.

• Invoke privboxed code. This method accepts a pointer or
symbol from the loaded ELF file, and begins executing it
in semi-privileged mode. I.e., from the calling application’s
perspective, this method returns only when the privboxed
code returns, as explained next.

• Return from privboxed code. This method can only be called
by privboxed code. It exits semi-privileged execution and
transfers control to the code that invoked it, while making a
return value available.
Listing 1 shows an example program utilizing the above

interface to invoke a function from the ELF object priv.so.

Usage model While an entire application can be privboxed,
Privbox’s sandboxing instrumentation imposes overhead, so
only code sections with a large fraction of cycles spent on
system call entry/exit will benefit from privboxing. Privbox
adoption thus consists of (1) the developer identifying system
call intensive code sections for privboxing; (2) isolating such
code sections into separate build units, which are built with
the required instrumentation (e.g. into ELF objects); and (3)
modifying application source code to load and invoke these
objects as privboxed code at run time. Crucially, a privboxed
code section itself requires no modification: it is simply an-
other object file linked or loaded into the application.

We envision steps (2)–(3) being performed by tools, after
developers demarcate privboxed code sections in the source
code. In this paper, however, we perform them manually. For
manual Privbox adoption, the “low hanging fruits” consist of
applications whose software architecture already separates
system call intensive code from computation code into dis-
tinct modules that communicate via some mechanism (e.g.,
SEDA [25]). Figure 1 depicts such an architecture. Because
these architectures already isolate I/O (or other system call-
heavy) code from other parts of the code, it is straightforward
to surgically apply instrumentation only to that code. This
approach minimizes Privbox’s instrumentation overhead, as
compute heavy parts remain unaffected, while the I/O parts
waste less cycles on system call entry/exit.

IO threads Compute threads
Memory
queues

System calls

Figure 1: Software architecture that separates threads performing
I/O (or system calls) from threads that perform other kinds of logic.

3.2 Semi-privileged execution
Privboxed code runs with the processor in privileged mode
and kernel memory mapped, which enables it to perform a
system call with a function call, without the syscall instruc-
tion, as detailed below. Except for having the ability for fast
system calls, the OS treats privboxed code as user-space (pro-
cess) code and its access is similarly restricted, hence the term
semi-privileged execution. When privboxed code is invoked,
the kernel transfers control to it with a new (ring 0) code
segment (CS). Other than having a different CS value, the
privboxed code runs similarly to unprivileged code—with
interrupts enabled and the same priority, capabilities, and per-
missions. The kernel can preempt its execution at any moment
and re-schedule it, as it would any other process.

Privboxed code runs with a custom page table, which mod-
ifies the standard virtual address space layout in several ways.
Figure 2 shows the baseline layout of user and kernel memory
in Linux. Privbox adds a special privboxed code region to the
user part of the address space. This region is located in the
lower part of the process address space and is unwritable by
the process. After the kernel successfully verifies privboxed
code, it relocates the code to the privboxed code region, from
which it is later executed.

Normally, kernel mode execution has both kernel and user
addresses mapped and accessible, and user mode execution
only has user addresses accessible.2 Privbox’s custom page ta-
ble maps the same memory regions as the process’ page table,
but using different access modes: user memory (excluding the
privboxed code region) is marked not executable (see § 3.3)
and kernel memory is marked accessible and executable, un-
like user mode execution. (Despite kernel memory being

64-bit address space

47-bit address space

User addresses:
0x00000000… 0x00007fff…

Kernel addresses:
0xffff8000… 0xffffffff…

Non-canonical
addresses

47-bit address space

Figure 2: Example of memory map on x86-64 with 48-bit virtual
address space. Lower address spaces are reserved for user program
memory, higher address space are reserved for kernel memory. Ac-
cess to memory at non-canonical addresses generates a trap.

2Without PTI, kernel addresses are still mapped, but their page table
entries have a “supervisor” bit set, which allows access to the pages only
when CPL < 3 (i.e., privileged mode). With PTI, kernel addresses are not
mapped at all.

236    2022 USENIX Annual Technical Conference USENIX Association



mapped accessible, privboxed code cannot directly access
it due to the sandboxing instrumentation (§ 3.3).) Privbox’s
custom page table is implemented by switching the top-level
page table node to one in which the page entries (PTEs) map-
ping the user-space and kernel address ranges have the appro-
priate permissions, i.e., Privbox does not create nor maintain
a copy of the process’ entire page table.

The execution environment of privboxed code enables a
fast implementation of system calls. Privboxed code does not
invoke a system call using the syscall instruction; it invokes
a system call using a standard function call. Privbox provides
a new kernel function that serves as a gate for system call
invocation. This function has similar semantics to system call
entry code: it sets up kernel execution environment (switching
to kernel stack, storing registers) and routes requests to system
call functions based on the system call number provided by
calling code. Crucially, calls to this special function are not
blocked by the sandbox instrumentation, so privboxed code
can branch to it to perform a system call.

Modern x86-64 processors support supervisor mode ac-
cess/execution prevention (SMAP [15]/SMEP), which dis-
allow privileged execution from accessing/executing pages
that are marked as user-space pages in the page table. Be-
cause privboxed code runs in “supervisor mode” but needs to
execute and access user memory, SMAP/SMEP is disabled
during privboxed execution. When privboxed code enters the
kernel (e.g., a system call or interrupt), SMAP is re-enabled
(this costs ≈ 26 cycles) but SMEP remains disabled (because
toggling it costs thousands of cycles). § 6 discusses the secu-
rity implications of this limitation.

A process that starts semi-privileged execution stays in that
mode until it either invokes the “return from privboxed code”
system call or an OS event that would result in non-sandboxed
code execution occurs, such as invocation of an exec system
call to load a new binary into the process address space. In
such cases, the OS terminates the process’ semi-privileged
execution, moving it to standard user-mode execution.

3.3 Sandboxing semi-privileged execution
Privbox must guarantee that a semi-privileged execution (of
privboxed code) cannot perform any operation or memory
access that the regular unprivileged execution of its process
cannot perform. Importantly, this guarantee must also hold
for transient execution of privboxed code (e.g., due to indirect
branch misprediction) [4, 5]. This section describes our design
for enforcing this safety property, which combines run-time
virtual memory restrictions and compile-time instrumentation
whose safety is verified by the kernel. § 6 analyzes the security
of our design.

3.3.1 Sandboxing techniques

Three types of machine instructions can violate our desired
safety property: (1) memory loads and stores, which have

Execution mode:⇒
Accessed memory ⇓

User mode
(CPL=3)

Privbox mode
(CPL=0)

Kernel mode
(CPL=0)

Kernel memory N†/N† N‡/N‡ Y/Y
Privbox code Y/Y Y/Y Y ∗/Y ∗

User memory Y/Y N†/Y Y ∗/Y ∗

† Restricted through page table access controls.
‡ Restricted through instrumentation.
∗ Subject to SMAP/SMEP.

Table 1: Access to memory regions under different execution modes.
Left symbol: instruction fetching, right symbol: data load/store.

potential to access kernel memory; (2) control flow instruc-
tions, which can be used to branch into non-instrumented
code; and (3) privileged instructions, usually reserved to oper-
ating system code. In the following, we describe how Privbox
mitigates each of these risks.

Memory access and control-flow Privbox uses a combi-
nation of compile-time instrumentation and virtual memory
(page table) protection to protect memory accesses. Table 1
summarizes which types of memory (rows) each type of exe-
cution mode (column) is allowed to access (for code execu-
tion/data), and how these restrictions are enforced.

We prevent privboxed code from executing user-space code
outside of the (verified) privboxed code region, taking advan-
tage of the “NX bit” feature of x86-64. On x86-64, each page
table entry (PTE) has a No-Execute (NX) bit. When the NX
bit is set, fetching instructions (code execution) is not permit-
ted from the page(s) mapped by the PTE. Thus, the custom
page table installed for Privbox’s semi-privileged execution
maps user-space addresses outside the privboxed code region
as non-executable.

We use compile-time instrumentation to ensure all other
types of memory accesses are safe. Indirect load/store in-
structions (where the operand is known only at run time) are
instrumented by introducing instructions that “sanitize” the
memory operand, ensuring it does not point to kernel memory.
For Linux on x86-64, we use the fact that clearing the most
significant bit of a virtual address is guaranteed to create ei-
ther a user address or an illegal non-canonical address, whose
access will generate an exception (Figure 2).

Indirect control-flow instructions, such as calls, jumps, and
returns are similarly instrumented, to ensure that privboxed
code does not branch to arbitrary kernel addresses, because the
kernel’s address space is mapped as executable. Our control-
flow instrumentation also ensures that control-flow instruc-
tions can only branch to addresses which are verified when
the code is loaded. Therefore, at run time, privboxed code can
execute only instructions that were checked by the verifier.

Overall, our instrumentation approach guarantees that in-
struction memory operands are never kernel addresses, even
for transient instructions, and thus blocks both non-transient
and transient execution attacks (see § 6).

Privileged instructions We rely on Privbox’s verifier to
check that loaded code does not contain privileged instruc-

USENIX Association 2022 USENIX Annual Technical Conference    237



tions. Rejecting code with privileged instructions does not
limit Privbox’s applicability, as compilers do not emit such
instructions unless specifically instructed.

3.3.2 Verification

The kernel verifies that privboxed code is correctly instru-
mented before allowing it to execute. Verification faces a
challenge due to x86-64’s variable-length instructions, which
mean that decoding the same code at different offsets can
yield completely different instruction sequences. It is there-
fore possible that a seemingly benign instruction sequence
would include malicious code at certain offsets [13].

To address this problem, our design relies on code being
packed into chunks, which enables sound disassembly and
verification of any possible execution of the loaded code. We
define a code chunk as an aligned and fixed-length byte se-
quence containing machine instructions that always executes
from its first to last instruction (i.e., a small fixed-size basic
block). For example, 32-byte code chunks are expected to be
32-byte aligned in memory and be exactly 32 bytes long. The
compiler breaks long basic blocks into chunks, using no-op
instructions to pad the created chunks to their desired fixed
length. The compiler adds “sanitizing” instructions which
align targets of control-flow instructions (including returns)
to guarantee that they branch to the beginning of a chunk, i.e.,
to a chunk-aligned address. (See § 4.2.2 for details.)

The verifier deems the loaded code safe by verifying each
code chunk individually. For each chunk, the verifier verifies
that if the chunk contains a control-flow instruction, it is the
last one, and that it is sanitized as described above. This en-
sures verified code can only branch to verified code, keeping
execution inside the sandbox. In addition, the verifier checks
that memory operations are preceded, within the same chunk,
by the instructions sanitizing their address operands and that
the chunk does not contain privileged instructions.

3.3.3 Discussion: Privbox vs. NaCl

Our sandbox design is inspired by Native Client (NaCl) [13,
14]. NaCl enables safe execution of native code downloaded
from a web site inside a web browser at near native speed. The
browser verifies loaded programs and makes sure the loaded
code does not write to, or jump, outside of a sandboxed re-
gion. The sandboxed code is loaded into a memory region
that is gapped by unmapped memory regions on both ends. To
ensure sandboxed code does not write or execute memory out-
side of the sandbox, NaCl relies on “offset-from-known-base”
operations. A base pointer register (immutable by sandboxed
code) points at this memory region. A memory access is al-
lowed only with an offset from base pointer register, which
results in accesses always being either: (1) inside the allowed
memory region; or (2) in the unmapped memory areas.

Privbox’s instrumentation shares some similarities with

NaCl: (1) execution is limited to code running inside the
sandbox; (2) memory stores have to be instrumented (because
kernel memory is accessible); and (3) instructions have to
be aligned in specific manner. In contrast to NaCl, however,
Privbox (1) has no need for a base pointer register—we use
absolute addresses, appropriately sanitized; (2) instruments
memory loads as well, because kernel memory is readable;
and (3) must avoid privileged instructions.

4 Implementation
This section describes our prototype implementation of the
Privbox design in Linux. § 4.1 describes OS and library mod-
ifications and § 4.2 describes the sandboxing compiler. We
do not implement the verifier part of the design (§ 3.3.2), as
it is not required for evaluating performance under Privbox.

4.1 OS & library support
The following describe various parts of our implementation
and their size in lines of code (LOC).

Semi-privileged execution (750 LOC) To implement semi-
privileged execution, we apply the techniques of kernel-mode
Linux (KML [7]) to Linux v5.8 on x86-64. KML is an existing
kernel patch to support execution of an entire application in
kernel mode. It is based on Linux v4.0 (circa 2015), and does
not isolate its in-kernel processes from each other or the kernel
from them.

Linux v5.8 on x86-64 uses “legacy stack switching,” where
the stack is switched by the hardware only on a CPL change
(i.e., an interrupt while user code is executing). However,
Privbox’s semi-privileged execution has CPL = 0 but with
a user stack. This means that an interrupt received during
semi-privileged execution would cause the interrupt handler
to run with the user’s stack, which is problematic because: (1)
the user stack is accessible to user code, which might hijack
execution by modifying the stack frame (from another thread);
(2) writing to the stack might fault (e.g., if the stack pointer
points to an unmapped page), but the page fault would not
change the stack either, crashing the system; and (3) the user’s
stack includes a red zone [26] that must not be written to. We
therefore adjust our Linux version to use x86-64’s interrupt
stack table (IST) for all interrupts and exceptions. With IST,
each exception/interrupt/trap can be configured to switch to a
specific stack.

Call gate (80 LOC) Privbox exposes a system call
gate (§ 3.2), which is a kernel function that serves as the
system call entry point for privboxed code. The gate follows
Linux’s syscall conventions for passing the system call
number and parameters. It is similar to the standard system
call entry code but avoids performing unnecessary steps, such
as modification of page tables and toggling of interrupts. In
particular, Linux’s entry code (with PTI) assumes it is called
from user-space and thus unconditionally switches the page

238    2022 USENIX Annual Technical Conference USENIX Association



table from the user-space to the kernel page table. This is
unnecessary for privboxed code, which already has kernel
memory mapped in its custom page table.

Limitations For implementation simplicity, we inhibit re-
ceipt of signals during semi-privileged execution. This is not a
design limitation, and there are several designs for supporting
signals: (1) ensuring that the signal handler code points to ver-
ified and safe code; or (2) aborting privileged execution (i.e.,
having it return to the code that launched it with an EINTR in-
dication). Importantly, privboxed code can still receive signals
in our prototype using the signalfd [27] mechanism.

Library support (260 LOC) Applications usually invoke
system calls through a C library function, which then invokes
the syscall instruction. We thus create a modified standard
C library, based on the musl C library [16], in which the
library’s system call wrappers use syscall or Privbox’s sys-
tem call gate based on the execution’s CPL. The entire library
is compiled with Privbox’s instrumentation, so that privboxed
code objects can be linked with it.

In this paper, we modify an application to use Privbox
by changing its build environment to link privboxed code
with the above C library. The reason is that current compilers
and linkers do not support linking an entire application with
both the system’s C library and our modified, instrumented C
library, as both export the same symbols and the tools cannot
resolve which library version the application code refers to.
This problem can be solved by adding compiler annotations
for demarcating privboxed code; we leave this to future work.

4.2 Code instrumentation
We implement Privbox’s sandboxing instrumentation by in-
troducing a machine function pass and several other changes
to the x86-64 backend of the LLVM toolchain [28], which
consist of 1200 LOC. Our modified LLVM emits machine
code in which unsafe instructions are replaced with equivalent
but safe instruction sequences (§ 3.3).

Instrumented code is partitioned into fixed-size
chunks (§ 3.3.2). Our implementation uses 32-byte
chunks. The reason is that an x86-64 instruction can be up to
15 bytes long, so a 32-byte chunk can fit at least an instruction
of the privboxed code plus the added instrumentation
instructions that make it safe. (This is the worst case; most
chunks contain more than one instruction.)

When instrumenting an instruction, it is placed in its own
chunk, preceded with the instrumentation instructions, which
is achieved by emitting an alignment directive in the code
(.align). This ensures any instrumentation sequence starts
at beginning of a new chunk.

4.2.1 Load/store instrumentation

Loads/stores are non-branching instructions that access mem-
ory. Their address operand is either static, verifiable at load

time, or dynamic, derived from values of registers. Dynamic
values cannot be verified at load time, so instrumentation is
required to ensure kernel memory is not accessed. Our in-
strumentation “sanitizes” operands by clearing their most sig-
nificant bit (MSB), which ensures it does not point to kernel
memory (§ 3.3).

On x86-64, memory operands are based on four elements:
scale, index, base and displacement. Scale and displace-
ment are scalars while index and base are registers. The
effective address of a memory operand is calculated by:
Displacement +Base+Scale∗ Index. Either the base or in-
dex registers can be omitted and are calculated as zero in such
case. Scale can be 1, 2, 4 or 8. Displacement can be either 1,
2, 4 or 8 bytes long.

The memory operand of an instruction I is sanitized by
the prefixing I with the following instruction sequence: (1)
computing I’s effective address with a load-effective-address
instruction (lea); (2) clearing its MSB with a bit-test-and-
reset instruction (btr); and (3) replacing I’s original memory
operand with one dereferencing the sanitized value. Listing 2
shows this sequence. The btr instruction has a side-effect
of updating the x86-64 EFLAGS register. Our compiler code
therefore checks if the EFLAGS register has meaningful state
at the point of instrumentation, and if so, emits SAVE_EFLAGS
and RESTORE_EFLAGS around the instrumentation sequence.
These are abstract operations implemented by LLVM and
translated to instructions such as sahf/lahf (save/load flags).

A shorter instrumentation sequence is used for memory
operands that specify (1) only one of base or index registers;
and (2) 1/2/4-byte displacement. In this case, the effective
address is sanitized with a single btr instruction (and EFLAGS
save/restore, if needed). Appendix A.1 provides the details.

Similarly to NaCl, we avoid instrumentation of stack load-
s/stores by maintaining and verifying invariants on manipula-
tions of the stack pointer, which guarantee that stack accesses
always target user memory. Appendix A.2 elaborates on han-
dling of stack accesses. This approach greatly reduces the
emitted instrumentation, as stack accesses are very common.

4.2.2 Control-flow instrumentation

Control-flow instructions are instructions that can modify the
instruction pointer (beyond advancing it to next instruction).
As with load/store instructions, we are concerned only with
instructions whose operand is unknown at load time. Control-
flow instructions can compromise safety of semi-privileged
execution by branching to (1) arbitrary kernel code or (2)
privboxed code at the middle of a chunk. The latter is dan-
gerous because the verifier verifies code starting at chunk
boundaries.

Similarly to load/store instrumentation, kernel addresses
are avoided by clearing the MSB of branch targets. Chunk-
unaligned addresses are avoided by clearing the low 5 bits of
the target. While this allows branching to any chunk-aligned

USENIX Association 2022 USENIX Annual Technical Conference    239



.align CHUNK_SIZE
SAVE_EFLAGS
%Reg1 = lea disp(%Idx,scale,%Base)
%Reg2 = btr $63, %Reg1
RESTORE_EFLAGS
OP operand1, (%Reg2)

Listing 2: Instrumentation of
load/store instruction with mem-
ory operand.

.align CHUNK_SIZE
%Reg1 = lea *disp(%Idx,scale,%Base)
%Reg2 = btr $63, %Reg1
%Reg3 = mov *%Reg2
%Reg4 = btr $63, %Reg3
%Reg5 = and $~(CHUNK_SIZE - 1), %Reg4
call *%Reg5
.align CHUNK_SIZE

Listing 3: Instrumentation of
memory-operand call.

.align CHUNK_SIZE
pop %rcx
add $(CHUNK_SIZE - 1), %rcx
and $~(CHUNKS_SIZE - 1), %rcx
btr $63, %rcx
jmp *%rcx

Listing 4: Instrumentation of re-
turn instruction.

.align CHUNK_SIZE
%Reg1 = btr $63, %Reg
%Reg2 = and $~(CHUNK_SIZE - 1), %Reg1
call *%Reg2
.align CHUNK_SIZE

Listing 5: Instrumentation of
register-operand call.

address in user memory, only the privileged code section is
mapped executable in the privboxed code’s page table (§ 3.3).

Return instrumentation A return is equivalent to popping
an address from stack and jumping to it. To ensure a valid des-
tination, we replace each return instruction with an equivalent
but safe sequence that pops the address into a register, clears
its MSB, aligns it to the next 32 bytes, and jumps to the ob-
tained value. Listing 4 details this instrumentation sequence.
Linux’s calling convention specifies that the RCX register is
not preserved on calls, so we explicitly use it to store the
return address. The add (addition) and and (logical AND)
instructions are used to align-up the value in RCX to 32 bytes
(start of next code chunk). The btr (bit-test-and-reset) clears
the MSB.

This instrumentation ensures branching is possible only to
code chunk aligned, non-kernel addresses. While in theory
it is possible to hijack execution by overwriting the return
address (e.g., by buffer overflow), the effects of such hijacking
are very limited. Any address popped from the stack is guaran-
teed to be sanitized before use, so an attacker can only redirect
execution to valid and verified code inside the Privbox code
region or to non-executable memory (either user addresses
or non-canonical). The former one does not pose a threat as
privboxed code is verified as safe, and the latter causes a fault,
effectively stopping the execution.

Call/jump instrumentation Call/jump instructions with an
indirect destination (i.e., non embedded as an instruction-
relative offset) can have their destination stored in one of two
ways: (1) in a register operand and (2) in a memory operand.

Register operands are sanitized similarly to a return (sans
stack pop), as shown in Listing 5. Since a return aligns ad-
dresses before branching, an alignment directive is required
right after a call to push the next instruction to a chunk bound-
ary. The EFLAGS register has to be preserved only in case of
jumps, as the calling convention states that it is not preserved
across calls.

A call/jump with a memory operand is equivalent to a
memory-to-register load followed by a register operand call.
Sanitization is this performed analogously: (1) the memory
operand is sanitized with load/store instrumentation; (2) a
mov instruction is used to load the address into a register; and
(3) the loaded address is sanitized as a register operand call.
Listing 3 shows the generated instruction sequence.

Jumps are similar to calls, except that they have to preserve
the EFLAGS register and aligning the succeeding instruction is
unnecessary, as jumps do not return. Appendix A.3 provides
the details.

4.2.3 Code alignment

The instrumentation described in the previous sections deals
with unsafe instructions, co-locating instrumentation se-
quences within same code chunks, and aligning return sites
of calls. The compiler also makes sure that all branch des-
tinations (functions, basic blocks) are aligned to the chunk
boundary, because indirect branches target addressed with 5
lowest bits cleared. It additionally inserts no-op instructions
before any instruction that would otherwise cross code chunk
boundary, so that it moves to a chunk-aligned address. Com-
bined, these rules partition the emitted code instructions into
fixed-size chunks.

5 SPAP: Hardware support for reducing in-
strumentation overhead

Our analysis of Privbox’s performance (§ 7.3) shows that
load/store instrumentation is responsible for a considerable
part of instrumentation overhead. To address this problem,
we propose semi- privileged access prevention (SPAP), a sim-
ple hardware architectural modification that enables omitting
load/store instrumentation from privboxed code.

SPAP SPAP is a hardware feature that guarantees semi-
privileged (privboxed) code cannot (1) read/write kernel mem-
ory nor (2) indirect branch to kernel memory. Of course, the
CPU has no notion of “kernel memory” or “semi-privileged
execution”—we define kernel memory as any virtual address
mapped by a PTE with the ‘supervisor’ bit set, and semi-
privileged execution as instructions executing in privileged
mode (CPL = 0) but that are located in non-kernel memory
(i.e., a clear ‘supervisor’ bit in the code page’s PTEs).

Assuming SPAP, it is possible to
forgo all load/store instrumentation and

.align 16
%Reg1 = mov *disp(%Idx,scale,%Base)
%Reg2 = and $0xf, %Reg1
call *%Reg2
.align 16

Listing 6: Control-flow only
instrumentation of memory-
operand call.

limit control-flow instrumen-
tation (§ 4.2) only to mask-
ing of jump targets to guaran-
tee their chunk alignment. List-
ing 6 shows the simplified in-
strumentation call instruction
enabled by SPAP (compared to
Listing 3). The code chunk size

240    2022 USENIX Annual Technical Conference USENIX Association



is reduced to 16 bytes, which is enough to fit both the instru-
mented instructions and the required prefixes.

SPAP implementation We argue that SPAP can be imple-
mented analogously to how current x86-64 processors imple-
ment SMAP/SMEP, which block privileged mode execution
from accessing user addresses.3 Restricting privboxed code
data accesses and branching can happen at the same pipeline
stages that enforce SMAP and SMEP, respectively. Listing 7
describes how the hardware can restrict privboxed code’s data
access: other than the CPL and PTE of the accessed page,
which are already required by SMAP, SPAP only depends on
the current instruction’s PTE, which is available in the instruc-
tion TLB. Similarly, Listing 8 shows how SPAP hardware
restricts privboxed branching. The information required is
same as what is needed for the SMEP mechanism, plus the
information of whether the current instruction is an indirect
branch.

Expected overhead We claim that SPAP’s additional access
checks should have little to no effect on the latency of memory
instructions. We base this claim on the overhead observed
from enabling SMAP/SMEP, shown below, and the similarity
of SPAP to them.

We evaluate SMAP overhead (on the platform described
in § 7). We measure average load latency when accessing
differently sized working sets from kernel space, with and
without SMAP. Our test traverses each cache line in the work-
ing set buffer in random order (to prevent prefetching), with
each load depending on the result of the previous one (to pre-
vent the CPU’s out-of-order execution from overlapping load
execution). Preemption is disabled during the test, to ensure
it has exclusive use of the CPU. We measure average cycles
per load (i.e., total number of cycles divided by number of
loads performed). Each test is run 31 times and we report the
average of the last 30 runs.

Figure 3 shows results for working set sizes targeting the
capacity of the CPU’s TLB and L1/L2/L3 caches. We find
that SMAP does not impact performance in a significant way,
as (1) some tests still execute faster with SMAP enabled; and
(2) the variance is greater than the difference between the
configurations.

if (
CPL < 3 and
AccessedPage.S_bit is Set and
CurrInstPage.S_bit is Cleared

):
trap()

Listing 7: Hardware enforce-
ment that semi-privileged execu-
tion loads/stores do not access
kernel memory.

if (
CurrInst is Indirect Branch and
CPL < 3 and
FetchPage.S_bit is Set and
CurrInstPage.S_bit is Cleared

):
trap()

Listing 8: Hardware enforce-
ment that semi-privileged exe-
cution does not indirect branch
to kernel code.

3The idea is to prevent exploits of kernel memory safety bugs that
attempt to, e.g., jump to user-space code [15].

32KiB 256KiB 1MiB 6 MiB 19.25MiB 32MiB
Working set size

95%

97%

100%

102%

105%

Si
ng

le
 tr

av
er

sa
l t

im
e

Baseline SMAP

Figure 3: SMAP overhead on load instructions. Results are normal-
ized to execution with SMAP disabled.

6 Security
We analyze Privbox’s security against architectural and mi-
croarchitectural (transient execution) attacks. Recall that
in privboxed code, every chunk (a 32-byte range at a 32-
byte aligned address) contains a correctly instrumented, non-
privileged instruction sequence of exactly 32 bytes, perhaps
ending with no-ops (see § 3.3.2). This is verified by the kernel.

Semi-privileged execution has the following invariants:

Inv1 The target of any load/store instruction is not a kernel
address. (Enforced by the instrumentation; § 4.2.1.)

Inv2 The target of any control-flow instruction (including
returns) is a 32-byte aligned non-kernel address. (En-
forced by the instrumentation; § 4.2.2.)

Inv3 The privboxed code section is read-only and user-space
addresses outside of it are non-executable during semi-
privileged execution. (Enforced by the virtual memory
permissions; §§ 3.2–3.3.)

For normal (non-transient) instruction execution, Inv2 and
Inv3 imply that semi-privileged execution can run only (instru-
mented) code located in the privboxed region. By Inv1, such
code cannot access kernel memory, and the verifier guarantees
it does not contain privileged instructions. Therefore, if regu-
lar unprivileged execution cannot perform some operation or
memory access, neither can semi-privileged execution.

It remains to analyze transient execution attacks. Generally,
such an attack uses architecturally-incorrect flows (whose
instructions execute but do not subsequently commit) to leak
memory contents via a microarchitectural side-channel [29].
Privbox’s goal is thus to protect kernel memory.

The core observation is that transient execution of a com-
plete instrumented chunk is safe, because it still sanitizes the
operands of any memory operation in the chunk. We there-
fore only need to consider if transient execution can branch
mid-chunk or outside of the privboxed region, either of which
can happen due to indirect branch or return target mispre-
diction. Crucially, we consider any “supervisor mode” tran-
sient execution—both semi-privileged and standard kernel
execution—to cover attacks of privboxed code on the ker-
nel. To this end, we analyze how the branch predictor can be
“trained,” i.e., which targets it observes and may mispredict
execution to later:

We assume any training by user-space execution cannot af-
fect “supervisor mode” execution, due to existing mitigations

USENIX Association 2022 USENIX Annual Technical Conference    241



such as Intel’s enhanced indirect branch restricted speculation
(eIBRS) [30] or Arm’s CSV2 [31]. If this assumption does
not hold, then the kernel is vulnerable regardless of Privbox.

We assume kernel execution can only train valid kernel
branch/return targets (and therefore the kernel cannot tran-
siently branch to privboxed code), because if an attacker can
cause the kernel to train arbitrary addresses, they can attack
the kernel regardless of Privbox. This still means that semi-
privileged execution may (transiently) branch to a valid kernel
function, possibly creating a speculative type confusion vul-
nerability [32]. Privbox’s instrumentation can mitigate this
problem (with run-time overhead) using retpolines [33] for
indirect branches.

Finally, by Inv2, semi-privileged execution can only train
non-kernel, chunk-aligned addresses. It might thus train user-
mode addresses outside of the privboxed region. We assume
that instructions from non-executable memory are not ex-
ecuted in transient execution,4 so by Inv3, semi-privileged
execution cannot be exploited by such training. However,
training by semi-privileged can cause subsequent kernel exe-
cution to (transiently) branch to user-space instructions and
execute them, as Privbox disabled SMEP. On current hard-
ware, training by semi-privileged execution can be prevented
from affecting the kernel’s execution using a mechanism such
as Intel’s indirect branch predictor barrier (IBPB) [36] in
the Privbox system call gate, but this will slow down sys-
tem calls in privboxed code. (Our Privbox prototype does
not implement this mitigation.) Future hardware could sup-
port SPAP-like extensions to eIBRS to make predictions of
branches executed from supervisor pages uncontrollable by
branches executed from user-level pages.

We assume SPAP can be implemented so that its re-
strictions apply to both normal and transient execution, as
SMAP/SMEP have this guarantee [34, 35].

Limitation: Disabled SMEP Privbox’s security drawbacks
stem from disabling SMEP for semi-privileged execution
without re-enabling it for kernel execution, as Privbox does
for SMAP. As a result, semi-privileged execution can (1)
exploit pre-existing kernel vulnerabilities that were mitigated
by SMEP and (2) mount transient execution attacks against
the kernel, as explained above. The SMEP limitation can be
addressed by hardware reducing the cost of toggling SMEP.
This should be possible, given that hardware has optimized
SMAP toggling, an action the kernel frequently performs.

7 Evaluation
We evaluate the impact of Privbox on system call latency
(§ 7.1), on system call-intensive I/O threads (§ 7.2), and the
impact of privboxing complete real-world applications (§ 7.3).

4This holds on x86-64, where documentation states that SMEP and
virtual memory execute restrictions apply to transient execution [34, 35].

0 200 400 600 800
Cycles

Syscall (no PTI)
Syscall (PTI)

Call (Privbox)
Call

Kernel entry overhead

Figure 4: Cycles taken to execute a roundtrip to kernel using different
entry methods. Regular call added for reference.

Platform We use a Dell PowerEdge R740 server with a 28-
core Intel Xeon Gold 6132 (Skylake) CPU and 192 GiB of
DRAM. Hyper-Threading is disabled. Due to current cloud
computing trends, virtualized platforms represent the environ-
ments where evaluated workloads usually run. We therefore
use a Linux v5.8 guest in a KVM virtual machine hosted on a
Ubuntu 18.04 host. Reported measurements are averages of
10 executions after a single warmup run; error bars indicate
standard deviation.

7.1 System call latency
We measure the end-to-end latency of invoking a non-existing
system call, which covers user-to-kernel transition, entry code
execution, and kernel-to-user return (with a “bad call” error).
Our benchmark invokes the system call 100 M times and
reports average invocation latency, measured with the CPU’s
cycle counter.

We compare the latency of a regular system call invocation
with and without PTI to the latency of invoking the system
call from within privboxed code. Figure 4 shows that a system
call invocation alone takes about 950 and 510 cycles with and
without PTI, respectively. Invocation from privboxed code
takes on average 425 cycles, 2.2× and 1.2× faster, respec-
tively, than the baseline with and without PTI.

The reason that a privboxed system call invocation is slower
than a regular function call is that while Privbox eliminates
hardware user/kernel transition costs, it must still manage
software-related user/kernel transition steps. For instance,
Privbox’s system call gate (§ 3.2) switches the stack and
saves/restores register state.

7.2 I/O-thread workloads
Here, we characterize the impact of Privbox on an I/O thread-
based application architecture (see § 3.1 and Figure 1). We
benchmark a generic server program that receives requests,
processes them, and returns response. The server is composed
of I/O and compute threads, which are responsible, respec-
tively, for socket operations and the “business logic” of com-
puting responses to incoming requests.

Our benchmark has two tunable parameters: (1) Com-
pute time, the time compute thread spends on each request,
which allows controlling how compute-heavy the workload
is; and (2) I/O size, the number of bytes each for each socket
I/O operation. We use fixed-sized messages, so the I/O size
determines the number of system calls per message, i.e., how
system call-intensive the workload is.

242    2022 USENIX Annual Technical Conference USENIX Association



4b 16b 64b 256b
1024b

0
150K
300K
450K
600K

Co
m

pu
te

 ti
m

e:
1 

us
ec

Re
qu

es
ts

/s
ec

Syscall Syscall w/o PTI Privbox Syscalls/second

4b 16b 64b 256b
1024b

0.8x
1.1x
1.4x
1.8x
2.1x

Sp
ee

du
p 

%
4b 16b 64b 256b

1024b
0

50K
100K
150K
200K

Co
m

pu
te

 ti
m

e:
5 

us
ec

Re
qu

es
ts

/s
ec

4b 16b 64b 256b
1024b

0.8x
1.1x
1.4x
1.8x
2.1x

Sp
ee

du
p 

%

4b 16b 64b 256b
1024b

IO size per syscall

0
25K
50K
75K

100K

Co
m

pu
te

 ti
m

e:
10

 u
se

c

Re
qu

es
ts

/s
ec

4b 16b 64b 256b
1024b

IO size per syscall

0.8x
1.1x
1.4x
1.7x
2.1x

Sp
ee

du
p 

%

0

2M

Sy
sc

al
ls/

se
c

0

2M

Sy
sc

al
ls/

se
c

0

2M

Sy
sc

al
ls/

se
c

Figure 5: Privbox impact on an I/O-thread based server. Left: abso-
lute throughput (requests/second), right: throughput normalized to
default Linux (with PTI). Rows describe different compute times.

We compare between Privbox and standard execution with
PTI (default Linux configuration) and without it. When using
Privbox, only the I/O thread code is privboxed (and therefore
compiled with instrumentation). Figure 5 shows the server’s
throughput (requests/second) as we vary the compute time
(across rows) and I/O size (X axis in each row). For large I/O
sizes (above 256 bytes) and compute time (above 5 µs), system
call invocation frequency decreases and so all kernel entry
methods yield similar throughput, as most CPU time is spent
on compute or inside system calls (waiting for I/O). However,
for fast compute and/or high rate of system calls (small I/O
size), Privbox results in up to 1.72× speedup compared to
regular execution with system calls.

7.3 Real-world workloads
This section analyzes the impact of Privbox on several pop-
ular real-world applications: Redis [18], memcached [19],
and SQLite [20]. We modify each application to use Privbox,
which requires changing/adding about 20–30 lines of code
to make the application’s main loop execute privboxed. All
binaries are compiled with -O2 optimizations and linked with
our instrumented musl-1.2.0 C library. Importantly, we com-
pile the entire application with Privbox’s instrumentation,
not only the part that runs privboxed. The reason is that our
Privbox prototype does not support compiling an application
with both instrumented and uninstrumented versions of the
C library (see § 4.1). The upshot is that our results here are
lower bounds of Privbox’s benefit, as we instrument code that
a full Privbox implementation would not.

To analyze instrumentation overhead, we measure each ap-
plication with three instrumentation levels: (1) No instrumen-
tation (noinstr), which shows the benefit from fast system call
invocation; (2) full instrumentation (fullinstr, § 4.2), which
shows Privbox’s benefit (faster system calls, but with instru-

PING_INLIN
E
PING_BUL

K GET SET INCR
0

63K
126K
189K
252K

Re
qu

es
ts
/s
ec

fullinstr-nopriv
fullinstr-priv

brinstr-nopriv
brinstr-priv

noinstr-nopriv
noinstr-priv

PING_INLIN
E
PING_BUL

K GET SET INCR

90%
100%
110%
120%

Sp
ee

du
p/
slo

wd
ow

n

Figure 6: Redis server under load of redis-benchmark running 2
threads, 50 connections, 1 M requests. Top: throughput (requests/sec-
onds). Bottom: throughput relative to ‘noinstr-nopriv’.

mentation overhead) on current hardware; and (3) control-
flow only instrumentation (brinstr, § 5), which omits load/s-
tore instrumentation, thereby emulating Privbox’s benefit on
hardware with SPAP support.

To analyze the benefit from Privbox’s fast system calls, we
measure each instrumentation level with and without execut-
ing the privboxed code sections in privileged mode (tagged
priv and nopriv, respectively). The speedup of priv over no-
priv quantifies how Privbox’s fast system calls offset instru-
mentation overhead.

Redis Redis [18] is a popular key-value store, often used as
cache, document store, or for publish/subscribe messaging.
We use Redis’ recommended default setup of a single instance
running a single thread, without persistency. We modify Redis’
main loop to execute privboxed. The privboxed loop returns
to user-space once per 10 K iterations to service signals (due
to limitations of our prototype, see § 4.1).

We evaluate Redis using two benchmarks: (1) redis-
benchmark, with which we simulate running various Redis
commands by 50 concurrent clients that send 1 M requests,
and (2) memtier_benchmark [37], a stress tester for NoSQL
databases, which we run with a 10:1 read/write ratio of 32-
byte objects.

Figure 6 shows redis-benchmark throughput of various
Redis commands. Reducing system call overhead offers sig-
nificant benefit: ‘priv’ executions have on average 13% higher
throughput than their ‘nopriv’ variants. While Privbox’s in-
strumentation overhead offsets some of this benefit, over-
all, a Privboxed Redis (‘fullinstr-priv’) obtains up to 7.6%
higher throughput than its baseline (‘noinstr-nopriv’). Had the
CPU supported SPAP (enabling less instrumentation: ‘brinstr-
priv’), the throughput would improve to up 10% higher than
the baseline. Results from memtier_benchmark (Figure 7)
show similar trends, with ‘fullinstr-priv’ and ‘brinstr-priv’
obtaining 6% and 10% higher throughput than the ‘noinstr-
nopriv’ baseline.

USENIX Association 2022 USENIX Annual Technical Conference    243



10read1write
0

63K
126K
189K
252K

Re
qu

es
ts
/s
ec

fullinstr-nopriv
fullinstr-priv

brinstr-nopriv
brinstr-priv

noinstr-nopriv
noinstr-priv

10read1write
90%

100%

110%

120%

Sp
ee

du
p/
slo

wd
ow

n

Figure 7: Redis server under load of memtier_benchmark, running 4
threads, 50 clients/thread, 10 K requests/client, no pipelining, 32 byte
objects, 10:1 read/write ratio. Left: throughput (requests/seconds).
Right: throughput relative to ‘noinstr-nopriv’.

10read1write
0

63K
126K
189K
252K

Re
qu

es
ts
/s
ec

fullinstr-nopriv
fullinstr-priv

brinstr-nopriv
brinstr-priv

noinstr-nopriv
noinstr-priv

10read1write

95%
100%
105%
110%
115%

Sp
ee

du
p/
slo

wd
ow

n

Figure 8: Memcached under load of memtier_benchmark, running 4
threads, 50 clients/thread, 10 K requests/client, no pipelining, 32 byte
objects, 10:1 read/write ratio. Left: throughput (requests/seconds).
Right: throughput relative to ‘noinstr-nopriv’.

Memcached memcached [19] is a distributed object caching
system offering a key-value store interface. Similarly to Redis,
we modify the main loop to execute privboxed, and break out
to user-space once per 10 K iterations.

We evaluate memcached by measuring the throughput ob-
tained by memtier_benchmark, again with a 10:1 read/write
ratio and keys/values of 16/32 bytes, respectively. Figure 8
shows the results, which mirror those of Redis. Specifically,
‘priv’ executions have on average 19% higher throughput than
their ‘nopriv’ variants, which is sufficiently high for Privbox
to outperform the baseline: ‘fullinstr-priv’ and ‘brinstr-priv’
obtain 4.5% and 6.9% higher throughput than the baseline.

SQLite SQLite [20] is a relational database engine. We eval-
uate it using sqlite-bench [38], a tool that measures throughput
of various access patterns: writing/reading of sequential/ran-
dom values in asynchronous/synchronous/batched modes. We
use a RAM filesystem (tmpfs) to store the database files.

Figure 9 shows throughput obtained for each access se-
quence. Many sequences stand to benefit from Privbox’s fast
system calls (evidenced by an average 8% speed up of ‘priv’
over ‘nopriv’ variants), but these benefits are negated by instru-
mentation overhead. However, some patterns (“readrandom”
and “fillseqsync”) do not benefit from fast system calls.

Figure 10 explains the above results. It shows the ratio
between number of system calls invoked to time spent in
user code (i.e., CPU time minus system call execution time).
We find a strong correlation between speedup from fast sys-
tem calls and the system call/user time ratio. For example,
“readrandom” suffers greatly from instrumentation because
SQLite performs read queries using loads/stores (which are
instrumented) without invoking system calls. The “fillseq-

fillseqfillseqs
ync
fillseqb

atchfillrand
om
fillrand

batch
overwr

itebatc
h

readra
ndom
readra

nd100K
0

500K
1M

1.5M
2M

Re
qu

es
ts
/s
ec

fullinstr-nopriv
fullinstr-priv

brinstr-nopriv
brinstr-priv

noinstr-nopriv
noinstr-priv

fillseqfillseqs
ync
fillseqb

atchfillrand
om
fillrand

batch
overwr

itebatc
h

readra
ndom
readra

nd100K
40%
60%
80%

100%
120%

Sp
ee

du
p/
slo

wd
ow

n

Figure 9: SQLite throughput. Top: throughput (operations/second).
Bottom: throughput relative to ‘noinstr-nopriv’.

fillseqfillseq
sync
fillseq

batchfillran
dom
fillran

dbatc
h

overw
riteba

tch
readr

ando
m

readr
and1

00K
0

650K
1.3M

1.95M
2.6M

Sy
sc
al
ls/
Us

er
Se

c

fullinstr-nopriv
fullinstr-priv

brinstr-nopriv
brinstr-priv

noinstr-nopriv
noinstr-priv

Figure 10: SQLite ratio of system calls to time spent in user-space
code (log scale). Correlation can be seen with the bottom half of
Figure 9: tests with a high system call to user time ratio show better
speedup from ‘priv’ execution.

batch” sequence, which behaves the same with and without
fast system calls (‘priv’), batches I/O operations and thus per-
forms fewer system calls. Finally, the “fillseqsync” sequence,
which behaves the same for all instrumentation levels and ex-
ecution modes, uses slow synchronous writes and so spends
most of its time waiting, as opposed to running user code or
entering/exiting the kernel.

8 Conclusion & future work

We propose Privbox, a design for speeding up system calls
by sandboxed semi-privileged execution, without changing
the underlying system call programming model. We believe
Privbox can also be useful to improve isolation and fault toler-
ance within the kernel, e.g., by privboxing modules and device
drivers to limit the memory and kernel APIs they access.

Our Privbox prototype uses simple compile-time instru-
mentation which incurs non-negligible overhead, offsetting
some of the benefit from Privbox’s fast system call invocation.
There are several directions for reducing instrumentation over-
head, which we leave to future work: Hardware features such
as Intel’s control-flow enforcement technology (CET [39])
can be useful for reducing control-flow instrumentation. Fi-
nally, a more sophisticated verifier can avoid redundant instru-
mentation (e.g., sanitizing a previously-sanitized register).

244    2022 USENIX Annual Technical Conference USENIX Association



Acknowledgments
We thank the paper’s anonymous reviewers and shepherd for
their feedback and suggestions, which helped strengthen the
paper. We also thank the artifact reviewers for their careful
work, which helped improve the artifact.

References
[1] Livio Soares and Michael Stumm. “FlexSC: Flexible

System Call Scheduling with Exception-Less System
Calls.” In: OSDI. 2010.

[2] Lars Müller. “KPTI a mitigation method against melt-
down”. In: Advanced Microkernel Operating Systems
(2018), p. 41.

[3] Fighting Spectre with cache flushes. https://lwn.
net/Articles/768418/.

[4] Moritz Lipp et al. “Meltdown: Reading kernel memory
from user space”. In: USENIX Security. 2018.

[5] Paul Kocher et al. “Spectre attacks: Exploiting specu-
lative execution”. In: IEEE SP. 2019.

[6] Mohan Rajagopalan et al. “Cassyopia: Compiler As-
sisted System Optimization”. In: HotOS. 2003.

[7] Toshiyuki Maeda. “Kernel Mode Linux”. In: Linux J.
2003.109 ().

[8] Efficient io with io_uring. https://kernel.dk/io_
uring.pdf.

[9] DPDK: Data Plane Development Kit. https://www.
dpdk.org/.

[10] Jonathan Behrens et al. “Efficiently mitigating tran-
sient execution attacks using the unmapped speculation
contract”. In: OSDI. 2020.

[11] Paul Barham et al. “Xen and the Art of Virtualization”.
In: SIGOPS Oper. Syst. Rev. 37.5 ().

[12] VMWare: Paravirtualization API Version 2.5. https:
//www.vmware.com/pdf/vmi_specs.pdf.

[13] Bennet Yee et al. “Native client: A sandbox for
portable, untrusted x86 native code”. In: IEEE SP.
2009.

[14] David Sehr et al. “Adapting Software Fault Isolation
to Contemporary CPU Architectures”. In: USENIX
Security. 2010.

[15] Supervisor mode access prevention. https://lwn.
net/Articles/517475/.

[16] musl C library. https://www.musl-libc.org/.

[17] Edited Jim Coplien and Douglas C Schmidt. “Reactor-
an object behavioral pattern for demultiplexing and dis-
patching handles for synchronous events”. In: (1995).

[18] Redis. https://redis.io/.

[19] memcached. https://memcached.org/.

[20] SQLite. https://www.sqlite.org/index.html.

[21] SPDK: Storage Performance Development Kit. https:
//spdk.io/.

[22] Yuhong Zhong et al. “BPF for Storage: An Exokernel-
Inspired Approach”. In: HotOS. 2021.

[23] eBPF. https://ebpf.io/.

[24] A Starovoitov, J Schulist, and D Borkmann. “Linux
Socket Filtering aka Berkeley Packet Filter (BPF)”. In:
Documentation/networking/filter.txt (2016).

[25] Matt Welsh, David Culler, and Eric Brewer. “SEDA:
An Architecture for Well-Conditioned, Scalable Inter-
net Services”. In: SOSP. 2001.

[26] Michael Matz et al. “System V Application Binary
Interface”. In: AMD64 Architecture Processor Supple-
ment, Draft v0 99 (2013), p. 57.

[27] Signalfd manual page. https://man7.org/linux/
man-pages/man2/signalfd.2.html.

[28] LLVM project. https://llvm.org/.

[29] Claudio Canella et al. “A Systematic Evaluation
of Transient Execution Attacks and Defenses”. In:
USENIX Security. 2019.

[30] Intel. Indirect Branch Restricted Speculation. https:
/ / www . intel . com / content / www / us / en /
developer / articles / technical / software -
security-guidance/technical-documentation/
indirect - branch - restricted - speculation .
html.

[31] Arm. Vulnerability of Speculative Processors. https:
/ / developer . arm . com / support / arm -
security - updates / speculative - processor -
vulnerability.

[32] Ofek Kirzner and Adam Morrison. “An Analysis of
Speculative Type Confusion Vulnerabilities in the
Wild”. In: USENIX Security. 2021.

[33] Retpoline: a software construct for preventing branch-
target-injection. https://support.google.com/
faqs/answer/7625886.

[34] AMD. Software Techniques For Managing Specula-
tion On AMD Processors. https : / / www . amd .
com / system / files / documents / software -
techniques-for-managing-speculation.pdf.

[35] Intel. Speculative Execution Side Channel Mitiga-
tions. https : / / www . intel . com / content /
www/us/en/developer/articles/technical/
software - security - guidance / technical -
documentation/speculative-execution-side-
channel-mitigations.html.

USENIX Association 2022 USENIX Annual Technical Conference    245

https://lwn.net/Articles/768418/
https://lwn.net/Articles/768418/
https://kernel.dk/io_uring.pdf
https://kernel.dk/io_uring.pdf
https://www.dpdk.org/
https://www.dpdk.org/
https://www.vmware.com/pdf/vmi_specs.pdf
https://www.vmware.com/pdf/vmi_specs.pdf
https://lwn.net/Articles/517475/
https://lwn.net/Articles/517475/
https://www.musl-libc.org/
https://redis.io/
https://memcached.org/
https://www.sqlite.org/index.html
https://spdk.io/
https://spdk.io/
https://ebpf.io/
https://man7.org/linux/man-pages/man2/signalfd.2.html
https://man7.org/linux/man-pages/man2/signalfd.2.html
https://llvm.org/
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://www.amd.com/system/files/documents/software-techniques-for-managing-speculation.pdf
https://www.amd.com/system/files/documents/software-techniques-for-managing-speculation.pdf
https://www.amd.com/system/files/documents/software-techniques-for-managing-speculation.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html


[36] Indirect Branch Predictor Barrier. https : / / www .
intel . com / content / www / us / en / developer /
articles / technical / software - security -
guidance/technical-documentation/indirect-
branch-predictor-barrier.html.

[37] memtier-benchmark. https : / / github . com /
RedisLabs/memtier_benchmark.

[38] sqlite-bench. https://github.com/ukontainer/
sqlite-bench.

[39] Intel CET. https : / / newsroom . intel . com /
editorials/intel-cet-answers-call-protect-
common-malware-threats/.

[40] privbox/devenv: ATC’22. https://doi.org/10.
5281 / zenodo . 6618853. DOI: 10 . 5281 / zenodo .
6618853.

[41] privbox/linux: ATC’22. https://doi.org/10.5281/
zenodo.6618867. DOI: 10.5281/zenodo.6618867.

[42] privbox/musl: ATC’22. https://doi.org/10.5281/
zenodo.6618859. DOI: 10.5281/zenodo.6618859.

[43] privbox/llvm-project: ATC’22. https://doi.org/
10.5281/zenodo.6618847. DOI: 10.5281/zenodo.
6618847.

[44] privbox/redis: ATC’22. https://doi.org/10.5281/
zenodo.6618855. DOI: 10.5281/zenodo.6618855.

[45] privbox/memcached: ATC’22. https://doi.org/
10.5281/zenodo.6618874. DOI: 10.5281/zenodo.
6618874.

[46] privbox/sqlite-bench: ATC’22. https://doi.org/
10.5281/zenodo.6618869. DOI: 10.5281/zenodo.
6618869.

[47] privbox/piotbench: ATC’22. https://doi.org/10.
5281 / zenodo . 6618857. DOI: 10 . 5281 / zenodo .
6618857.

[48] privbox/libevent: ATC’22. https://doi.org/10.
5281 / zenodo . 6618872. DOI: 10 . 5281 / zenodo .
6618872.

A Instrumentation details

A.1 Special case load/store instrumentation
Listings 9 and 10 detail instrumentation for non stack-relative
operations which have only one of the index/base registers
specified, and displacement is either 1, 2 or 4 bytes long. In
these scenarios, we can ensure any provided address value will
become either a user or a non-canonical address by clearing
bit 60 of the specified (base or index) register. This is sufficient
because neither multiplication (in case of index register) nor
addition of a 4-byte long displacement value will result in a
canonical kernel address with 1s in all 16 most significant
bits.

.align CHUNK_SIZE
SAVE_EFLAGS
%Reg1 = btr $60, %Base
RESTORE_EFLAGS
OP operand1, disp(,,%Reg1)

Listing 9: Instrumentation of
operand containing base regis-
ter

.align CHUNK_SIZE
SAVE_EFLAGS
%Reg1 = btr $60, %Idx
RESTORE_EFLAGS
OP operand1, disp(%Reg1,scale,)

Listing 10: Instrumentation of
operand containing index reg-
ister

.align CHUNK_SIZE
SAVE_EFLAGS
%Reg1 = btr $63, %Reg
%Reg2 = and $~(CHUNK_SIZE - 1),

%Reg1
RESTORE_EFLAGS
jmp *%Reg2

Listing 11: Instrumentation of
register operand jump

.align CHUNK_SIZE
SAVE_EFLAGS
%Reg1 = lea *disp(%Idx,scale,%Base)
%Reg2 = btr $63, %Reg1
%Reg3 = mov *%Reg2
%Reg4 = btr $63, %Reg3
%Reg5 = and $~(CHUNK_SIZE - 1),

%Reg4
RESTORE_EFLAGS
jmp *%Reg5

Listing 12: Instrumentation of
memory-operand jump

A.2 Stack accesses
Stack-based operations can be considered safe as long as we
ensure that at any point in time, the stack pointer points to
valid user memory. The safety of stack-relative operations is
ensured by maintaining the following invariant:

• When entering semi-privileged execution, the stack
pointer must be set to a known valid value.

• When the stack pointer is set to a specific value, i.e.
copied from another register, the copied value must be
sanitized in a similar manner to an operand of a load/s-
tore instruction (i.e., clear its MSB).

• Each operation modifying/incrementing/decrementing
the stack pointer must change the value by no more than
a page, and must access the memory pointed by the new
stack pointer value unconditionally afterwards (e.g., in
same basic block). This permits operations like push
and pop, as well as operations such as add and sub, as
long as the memory is accessed through the stack pointer
shortly after.

Incrementing/decrementing stack pointer without deref-
erencing can expose the code to an attack where the same
sequence of instructions is used to modify stack pointer
in small increments to an arbitrary value, until it points
to kernel memory. Enforcing a stack access after the
stack pointer changes makes sure that the stack pointer
does not travel over inaccessible memory, such as the
gap between kernel and user memory and the zero page
in user memory, thereby preventing the stack pointer
from overflowing/underflowing into kernel memory.

The above restrictions ensure that stack pointer always
points to user memory, so loads/stores relative to the stack
pointer register can be considered safe, as long as verifier
successfully verifies that the above invariants hold.

246    2022 USENIX Annual Technical Conference USENIX Association

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
https://github.com/ukontainer/sqlite-bench
https://github.com/ukontainer/sqlite-bench
https://newsroom.intel.com/editorials/intel-cet-answers-call-protect-common-malware-threats/
https://newsroom.intel.com/editorials/intel-cet-answers-call-protect-common-malware-threats/
https://newsroom.intel.com/editorials/intel-cet-answers-call-protect-common-malware-threats/
https://doi.org/10.5281/zenodo.6618853
https://doi.org/10.5281/zenodo.6618853
https://doi.org/10.5281/zenodo.6618853
https://doi.org/10.5281/zenodo.6618853
https://doi.org/10.5281/zenodo.6618867
https://doi.org/10.5281/zenodo.6618867
https://doi.org/10.5281/zenodo.6618867
https://doi.org/10.5281/zenodo.6618859
https://doi.org/10.5281/zenodo.6618859
https://doi.org/10.5281/zenodo.6618859
https://doi.org/10.5281/zenodo.6618847
https://doi.org/10.5281/zenodo.6618847
https://doi.org/10.5281/zenodo.6618847
https://doi.org/10.5281/zenodo.6618847
https://doi.org/10.5281/zenodo.6618855
https://doi.org/10.5281/zenodo.6618855
https://doi.org/10.5281/zenodo.6618855
https://doi.org/10.5281/zenodo.6618874
https://doi.org/10.5281/zenodo.6618874
https://doi.org/10.5281/zenodo.6618874
https://doi.org/10.5281/zenodo.6618874
https://doi.org/10.5281/zenodo.6618869
https://doi.org/10.5281/zenodo.6618869
https://doi.org/10.5281/zenodo.6618869
https://doi.org/10.5281/zenodo.6618869
https://doi.org/10.5281/zenodo.6618857
https://doi.org/10.5281/zenodo.6618857
https://doi.org/10.5281/zenodo.6618857
https://doi.org/10.5281/zenodo.6618857
https://doi.org/10.5281/zenodo.6618872
https://doi.org/10.5281/zenodo.6618872
https://doi.org/10.5281/zenodo.6618872
https://doi.org/10.5281/zenodo.6618872


A.3 Jump instructions
Listings 11 and 12 describe instrumentation of register and
memory operand jumps, as mentioned in § 4.2.2.

B Artifact Description

Abstract
Our artifacts include all of the Privbox prototype code, as
well as the scripts and benchmarks used to produce the results
presented in this paper.

Scope
The artifacts can be used to:

• Set up a development and runtime environment for our
prototype (§ 4).

• Run the experiments described in § 7, specifically, to
reproduce results we present in Figures 3–9.

Refer to the artifact’s README (https://github.
com/privbox/devenv/blob/privbox/README.md) for
complete instructions.

Contents
• devenv [40] - a repository containing a README and

scripts to set up a development and evaluation environ-
ment for the Privbox prototype.

• The Privbox prototype, which consists of:

– Linux [41] and musl C library [42] - Operating
system and C library with Privbox support.

– LLVM [43] - LLVM toolchain capable of creating
binaries instrumented for Privbox.

• Benchmarks [44, 45, 46, 47] - programs we used to
evaluate Privbox.

Hosting
Our artifacts are available on Github (https://github.com/
privbox/), as well as archived on Zenodo [40, 48, 41, 43, 45,
42, 47, 44, 46].

Requirements
Evaluation of our artifact requires an Intel x86-64 machine
running Linux (we have used Ubuntu 18.04). Additionally,
we rely on Docker and QEMU/KVM.

• CPU type: Our evaluation uses an Intel Skylake CPU.
While any modern Intel-architecture CPU is suitable,
evaluation results might differ due to microarchitectural
changes.

• Virtualization: Our prototype runs as a KVM-based
virtual machine. In our evaluation, we use a bare-metal
server as a platform. It is possible to use a virtual ma-
chine, as long as it supports nested virtualization. How-
ever, nested virtualization incurs additional overhead that
might affect evaluation results.

USENIX Association 2022 USENIX Annual Technical Conference    247

https://github.com/privbox/devenv/blob/privbox/README.md
https://github.com/privbox/devenv/blob/privbox/README.md
https://github.com/privbox/
https://github.com/privbox/




BBQ: A Block-based Bounded Queue for Exchanging Data and Profiling

Jiawei Wang1,2,3, Diogo Behrens1,2, Ming Fu1,2,∗, Lilith Oberhauser1,2, Jonas Oberhauser1,2,
Jitang Lei1,2, Geng Chen2, Hermann Härtig3, and Haibo Chen2,4

1Huawei Dresden Research Center 2Huawei OS Kernel Lab
3Technische Universität Dresden 4Shanghai Jiao Tong University

Abstract
Concurrent bounded queues have been widely used for ex-
changing data and profiling in operating systems, databases,
and multithreaded applications. The performance of state-of-
the-art queues is limited by the interference between mul-
tiple enqueues (enq-enq), multiple dequeues (deq-deq), or
enqueues and dequeues (enq-deq), negatively affecting their
latency and scalability. Although some existing designs em-
ploy optimizations to reduce deq-deq and enq-enq interfer-
ence, they often neglect the enq-deq case. In fact, such partial
optimizations may inadvertently increase interference else-
where and result in performance degradation.

We present Block-based Bounded Queue (BBQ), a novel
ringbuffer design that splits the entire buffer into multiple
blocks. This eliminates enq-deq interference on concurrency
control variables when producers and consumers operate
on different blocks. Furthermore, the block-based design is
amenable to existing optimizations, e.g., using the more scal-
able fetch-and-add instruction. Our evaluation shows that
BBQ outperforms several industrial ringbuffers. For example,
in single-producer/single-consumer micro-benchmarks, BBQ
yields 11.3x to 42.4x higher throughput than the ringbuffers
from Linux kernel, DPDK, Boost, and Folly libraries. In real-
world scenarios, BBQ achieves up to 1.5x, 50.5x, and 11.1x
performance improvements in benchmarks of DPDK, Linux
io_uring, and Disruptor, respectively. We verified and opti-
mized BBQ on weak memory models with a model-checking-
based framework.

1 Introduction

Concurrent bounded queues are pervasive in operating sys-
tems, databases, and multithreaded applications. They trans-
port data, distribute work, and are used to profile and decouple
components. Their performance is crucial for achieving highly
scalable and low-latency operation of numerous systems.

The main factor determining performance of a queue is
the interference between concurrent operations, i.e., between

*Ming Fu (ming.fu@huawei.com) is the corresponding author.

enqueues, between dequeues, or between enqueues and de-
queues. We refer to these as enq-enq, deq-deq, and enq-deq in-
terference, respectively. Interferences manifest in the form of
1) cache-line bouncing when control variables are frequently
updated by one thread and read by another, e.g., to check if the
queue has data, and 2) serialization of contended updates to
control variables, e.g., when multiple threads try to create or
read the same entry. Existing queue designs often employ op-
timizations to reduce enq-enq and deq-deq interference, e.g.,
updating control variables with “always-successful” atomic
instructions such as fetch-and-add (FAA) [14, 40, 41, 47] be-
cause, in principle, they can be serialized in hardware and
thus perform better under high contention than software so-
lutions with compare-and-swap (CAS) [38, 43]. However, ex-
isting designs tend to neglect the enq-deq interference even
though it substantially impacts performance, in particular in
the common single producer or single consumer scenarios,
e.g., ringbuffers for asynchronous I/O in Linux io_uring [13].

In fact, some queue optimizations from the literature [38,
40] inadvertently increase the enq-deq interference or intro-
duce undesirable side-effects that degrade performance in
uncontended cases. For example, dequeue operations using
FAA must either block in a pessimistic way [14], or risk over-
taking slow concurrent enqueue operations; to avoid data
corruption, such enqueue operations must be invalidated and
repeated later [40]. Besides harming performance, such strate-
gies cannot be applied for online profiling where enqueues
writing a log should not be delayed by dequeues that read the
log. Similarly, some techniques that avoid concurrent enqueue
operations from waiting for each other also require dequeue
operations to invalidate parts of the queue [38]. Strategies
to improve performance of these techniques by reducing the
number of invalidations, e.g., busy-looping before invalidat-
ing [38, 40], drastically increase the latency of dequeue calls
on empty queues, making them unsuitable for certain work-
loads, e.g., multiplexing across multiple message queues.

We present Block-based Bounded Queue (BBQ), a novel
ringbuffer design that dramatically reduces the enq-deq in-
terference by splitting the entire buffer into multiple blocks
and splitting the control variables into the block-level and
queue-level variables. In the common case, enqueue and de-

USENIX Association 2022 USENIX Annual Technical Conference    249

mailto:ming.fu@huawei.com


queue only access block-level control variables of their current
blocks. When enqueue and dequeue work on different blocks,
the disjoint control variables avoid any interference between
these operations. That is particularly important in reducing
the cache-line bouncing of head and tail pointers when deter-
mining whether the queue is full or empty. Furthermore, we
use hardware-serialized FAA operations to update block-level
control variables for allocating entries inside blocks, while
queue-level control variables on the other hand are updated
with slower, software-serialized CAS operations; since this is
only necessary in the rare event that operations need to move
to the next block, the performance impact of these operations
is negligible. Our block-based approach allows us to perform
these optimizations without incurring undesirable side-effects.
Finally, to ensure that BBQ correctly works on weak memory
models (WMMs) — including those from Arm [2] and RISC-
V [28] architectures — we have verified and optimized the
barriers and fences of BBQ with the VSYNC framework [42].

In contrast to previous work, our block-based approach is
applicable to a large spectrum of scenarios. BBQ supports
single or multiple producers/consumers, fixed- or variable-
sized entries, and retry-new and drop-old modes. Retry-new
is the typical producer-consumer mode for message passing
and work distribution scenarios; drop-old is a lossy/overwrite
mode for profiling/tracing [5, 24] and debugging [44] scenar-
ios, in which producers may overwrite unconsumed data if
the buffer is full.

In our experimental evaluation, BBQ outperforms several
industrial queues and ringbuffers. In single-producer/single-
consumer micro-benchmarks, BBQ yields 11.3x to 42.4x
higher throughput than Linux circular buffer [22], DPDK
ring buffer [9], Boost lock-free queue [4], and Meta’s Folly
queue [14]. In real-world scenarios, BBQ achieves up to 1.5x,
50.5x, and 11.1x performance improvements in benchmarks
of DPDK, Linux io_uring [13], and LMAX Disruptor [23], re-
spectively. In our profiling benchmarks, BBQ enabled with the
lossy/overwrite mode achieves up to 4.7x higher throughput
than Google’s Guava EvictingQueue [15] and Apache Com-
mons CircularFifoQueue [1], and can sustain up to 143.2x
lower enqueue latency than the other two queues.

The remainder of this work is organized as follows. In
Sec. 2, we gradually introduce the challenges of reducing the
interference between enqueue and dequeue operations, dis-
cussing how existing queues tackle these challenges, and the
limitations of their solutions. In Sec. 3, we present our block-
based approach and the high-level design of BBQ. In Sec. 4,
we describe BBQ implementation including the support for
retry-new and drop-old modes and variable-sized entries. In
Sec. 5, we report our results in verifying BBQ on WMMs and
relaxing its memory barriers. In Sec. 6, we experimentally
compare the performance of BBQ and several industry-grade
concurrent queues. In Sec. 7, we conclude our work.

P.headC.tail P.tailC.head

1 enqueue(data){
2 again:
3 ph = LOAD(P.head);
4 pn = ph + 1;
5 if (pn > LOAD(C.tail) + SZ)
6 return FULL;
7 if (!CAS(P.head, ph, pn))
8 goto again;
9 entry[pn % SZ] = data;

10 while(LOAD(P.tail) != ph);
11 STORE(P.tail, pn);
12 return OK;
13 }

14 dequeue(){
15 again:
16 ch = LOAD(C.head);
17 cn = ch + 1;
18 if (cn > LOAD(P.tail))
19 return EMPTY;
20 if (!CAS(C.head, ch, cn))
21 goto again;
22 data = entry[cn % SZ];
23 while(LOAD(C.tail) != ch);
24 STORE(C.tail, cn);
25 return data;
26 }

Figure 1: A simple MPMC bounded queue. CAS, LOAD, and
STORE are atomic operations with sequentially consistent se-
mantics on WMMs. C.head and C.tail refer to consumers;
P.head and P.tail refer to producers.

2 Background and Related Work

We now introduce scalability challenges of bounded queue
designs and discuss related work and their limitations. Fig-
ure 1 illustrates the discussion in this section depicting a sim-
ple lockless bounded queue with multiple-producer multiple-
consumer (MPMC) support, which is the algorithm behind the
widely-used DPDK ringbuffer [9].

Producers first check whether the queue is full (Line 5) and
then try to allocate the next entry via CAS (Line 7). Upon suc-
cess, the producer copies the data into the entry and commits
it (Line 11). Similarly, consumers first try to reserve an entry
(Line 20). Upon success, the consumer copies the data back
and confirms that the data has been consumed (Line 24).

(P1) Consumer contention on C.head. A straightforward
form of deq-deq interference is caused by multiple consumers
concurrently calling dequeue and contending on updates to
C.head. Several works (on bounded and unbounded queues)
tackle this contention using FAA to update the head [38,40,43]
because FAA is more scalable than CAS on common architec-
tures. However, since FAA cannot conditionally update the
memory location, it may break, for example, the invariant of
C.head never exceeding P.tail. To address that, Meta’s Folly
queue [14] implements the partial, not total dequeue method,
which spins until dequeue succeeds [33]. With such interface,
dequeue calls return only if there is an entry to consume,
otherwise blocking the thread indefinitely.

Another solution is to “fix the state” when C.head ex-
ceeds P.head by invaliding entries between them, as done
by LCRQ [38]. Unfortunately, that causes consumers to ham-
per the progress of producers. SCQ [40] solves the producer
starvation by limiting the number of consecutive invalida-
tions with a threshold, as we describe below. Nevertheless,
the remaining invalidations still degrade the enqueue perfor-
mance, and the SCQ implementation [39] employs a trick

250    2022 USENIX Annual Technical Conference USENIX Association



to reduce the probability of invalidating entries: Consumers
check several times in a loop whether the entry has been
committed before actually invalidating it. Unfortunately, this
delayed invalidation trick increases the latency of dequeue
when the queue is empty by several orders of magnitude —
we experimentally demonstrate this empty-deq in Sec. 6.2.3.
(P2) Producer contention on P.head. A straightforward
form of enq-enq interference is caused by multiple producers
concurrently calling enqueue and contending on updates to
P.head. Here, Folly queue again resorts to FAA and turns en-
queue into a partial method, which waits until free entries are
available, potentially blocking the thread forever.

Nikolaev proposes a novel idea to implement a total queue
while using FAA [40]: SCQD combines two SCQ index queues
(fq and aq) with a data array. Upon enqueue on SCQD, the
thread gets an index from fq, copies the data in the correspond-
ing entry of the data array, and then puts the index into aq.
Dequeueing works the other way around. The index queues
are total on dequeue but partial on enqueue, i.e., dequeue re-
turns EMPTY if the queue is empty, whereas enqueue loops until
it succeeds. Nevertheless, the combined SCQD is still total
since index queues are never full, i.e., the number of indexes
is fixed and matches the maximum size of the index queues.
Besides the constant overhead introduced by index queues,
the high latency caused by the empty-deq issue in each SCQ
index queue translates into high latency in SCQD for both
empty-deq and full-enq cases (see Sec. 6.2).
(P3) Delayed P.tail and C.tail updates. Another typical enq-
enq or deq-deq interference arises from the in-order policy
to commit (resp. consume) entries — the default policy in
DPDK ringbuffer. The head/tail mechanism, which resem-
bles a ticket lock, brings issues analogous to Lock-Holder- and
Lock-Waiter-Preemption [45]. For example, the preemption
of a thread that is about to update P.tail (resp. C.tail) causes
other enqueue calls (resp. dequeue calls) to uselessly spin
(Lines 10 and 23) for arbitrary time periods.

Several queues implement, instead, out-of-order policies,
allowing producers (resp. consumers) to commit (resp. con-
sume) entries independently. In LCRQ, once consumers incre-
ment C.head such that it reaches P.tail, they start invalidating
entries until C.head reaches P.head. That prevents producers
from committing entries at indexes preceding C.tail, ensuring
linearizability [34]. This approach starves producers and even
livelocks the queue. For example, a consumer in an ongoing
dequeue invalidates an entry when C.head = P.tail < P.head;
the producer in the ongoing enqueue increments P.head to
retry; the consumer realizes C.head still did not reach P.head
and retries consuming, potentially invalidating the new entry
if not yet committed; and so on.

SCQ uses a threshold T to restrict the number of consec-
utive entries invalidated, and, thus, avoid livelocks. When a
consumer invalidates an entry, it atomically decrements T .
A successful enqueue resets T to its initial constant 3n− 1,
where n is twice the queue capacity. This constant is care-

fully derived to guarantee linearizability is never violated [40].
However, it introduces additional contention among produc-
ers and consumers updating the threshold variable, which has
to be again mitigated by delayed invalidation.

DPDK [9] ringbuffer implements a more practical out-of-
order policy called RTS mode [27], which trades lineariz-
ability to avoid invalidations. Consumers never move C.tail
forward if C.tail would reach P.tail, returning EMPTY despite of
any committed entry between P.tail and P.head; thus, violating
linearizability. Producers employ the reciprocal strategy.

To enable out-of-order commits, RTS records whether all
entries between P.tail and P.head are committed. The prohib-
ited window between P.tail and P.head has dynamic length
because P.tail is moved forward only once the last producer
writing between P.tail and P.head commits. If producers would
keep allocating entries, they would keep incrementing P.head
and extending the prohibited window up to the total capacity
of the queue. To prevent consumers from starving, RTS sets
up a threshold to limit the maximum distance between P.tail
and P.head. If that distance is reached, enqueue blocks until
all producers between P.tail and P.head have committed. RTS
enables out-of-order consumes with the recipocral approach.

(P4) Causes of enq-deq interference. There are two sources
of interference between enqueues and dequeues: algorithmic
and cache-related. While focusing on enq-enq or deq-deq
cases, previous techniques introduce algorithmic interferences
between enqueue and dequeue, e.g., requiring producers and
consumers to retry operations, increasing latency, potentially
causing thread starvation, or even livelock.

Let us again consider the simple algorithm of Fig. 1. Even
though cache misses caused by writing or reading the data
cannot be eliminated, cache misses on the control variables
are relevant. Every time a producer calls enqueue, it allocates
an entry and increments P.tail. Every time a consumer calls
dequeue, it potentially suffers a cache miss by reading P.tail.
If the producer is far ahead the consumer, the cache misses
at P.tail seem unjustifiable. Similarly, the producer suffers
cache misses on C.tail even when there is plenty space in
the queue between producers and consumers. In contrast to
enq-enq and deq-deq, enq-deq interference is relevant even to
the single-consumer/single-producer scenario, an important
scenario for the industry. In Sec. 6, we experimentally show a
correlation between a strong decrease of L1 cache misses and
the performance improvements of BBQ (Sec. 3 and 4).

3 Design of BBQ

3.1 The Block-based Approach
BBQ splits the ringbuffer into blocks, as shown in Fig. 2.
Each block contains one or more entries, usually multiple,
depending on the configuration. The queue control variables
are also split into queue-level and block-level variables. Con-
trol variables C.head and P.head now point to blocks instead

USENIX Association 2022 USENIX Annual Technical Conference    251



re
se

rv
ed

co
ns
um

ed

co
m
m
itt
ed

P.head

re
se
rv
ed

co
ns
um

ed
co

m
m
itt
ed

al
lo
ca

te
d

al
lo
ca

te
d

co
m
m
itt
ed

re
se
rv
ed

al
lo
ca

te
dres
erv

ed
co
ns
um

ed

co
m
m
itt
ed

al
lo
ca

te
dco
ns
um

ed

P.tailC.headC.tail

co
m
m
itt
ed

al
lo
ca

te
d

co
ns
um

ed
re
se
rv
ed

Figure 2: Block-based bounded queue (BBQ).

of entries; P.tail and C.tail are unnecessary for the algorithm.
The block-level control variables include four cursors called
allocated, committed, reserved, and consumed, which
track the corresponding actions within each block.

The block-based approach greatly reduces the enq-deq in-
terference. After a block is fully committed, its producer cur-
sors (allocated/committed) remain unmodified until the
block is fully consumed, causing no additional cache misses
for consumers. Moreover, producers can always determine
whether a block is fully allocated without accessing consumer
cursors (reserved/consumed).

Multiple producers in the same block still contend on
allocated and committed. Fortunately, the block-based ap-
proach enables the enqueue operation to use FAA, avoids
costly invalidations, and still allows for a total method. Produc-
ers start using a block only once it has been fully consumed.
Therefore, inside the block, FAA never allocates an entry that
is not consumed yet, allowing enqueue to be total. FAA may
make allocated out of the bound of the block, but state
fixing is not required. Since each block has its own control
variables, an out-of-bound cursor in one block does not affect
the following block.

Although our dequeue operation employs CAS to avoid con-
sumers from invalidating entries currently used by producers,
BBQ still achieves similar or better performance than other
designs with FAA-based dequeues. To further improve perfor-
mance for machines with Armv8.1 [2] processors supporting
Large System Extensions [3] (LSE), BBQ uses the atomic
maximum instruction MAX instead of CAS in dequeue.

Finally, the block-based approach enables a practical out-
of-order policy similar to RTS mode of DPDK. In this case,
instead of updating control variables with double-width CAS,
BBQ employs more scalable FAA and MAX instructions.

3.2 BBQ from a Bird’s-eye View

In this section, we describe the high-level algorithm of BBQ,
as shown in Fig. 3.

Producers. To enqueue data, a producer first retrieves the
current value of P.head and the corresponding block identi-
fier (Line 4). Next, it tries allocating an entry in the block
(Line 5). If successful, the producer writes the data into entry
ety and commits it (Line 7). The allocation fails if the block
has already been fully allocated (Line 9). In this case, the

1 status := OK(T) | FULL | EMPTY | BUSY
2 status BBQ<T>::enqueue(T data){
3 loop:
4 (ph, blk) = get_phead_and_block();
5 switch (allocate_entry(blk)){
6 case allocated(ety):
7 commit_entry(ety, data);
8 return OK();
9 case BLOCK_DONE:
10 switch (advance_phead(ph)){
11 case NO_ENTRY: return FULL;
12 case NOT_AVAILABLE: return BUSY;
13 case SUCCESS: goto loop;
14 }
15 }
16 }
17 status BBQ<T>::dequeue(){
18 loop:
19 (ch, blk) = get_chead_and_block();
20 switch (reserve_entry(blk)){
21 case reserved(ety):
22 data = consume_entry(ety);
23 if (data != NULL) return OK(data);
24 else goto loop;
25 case NO_ENTRY: return EMPTY;
26 case NOT_AVAILABLE: return BUSY;
27 case BLOCK_DONE(vsn):
28 if (advance_chead(ch, vsn)) goto loop;
29 else return EMPTY;
30 }
31 }

Figure 3: High-level design of BBQ.

producer tries to advance P.head to the next block (Line 10).
If successful, the producer jumps back to the loop label and
retries the allocation (Line 13). In retry-new mode, advancing
P.head fails if the next block is not yet fully consumed, i.e.,
the whole queue is considered full. BBQ distinguishes the
failure reason: BUSY when some dequeue operation is ongoing
and FULL otherwise. Returning BUSY allows for custom back-
off implementations at the caller side, e.g., parking threads
after a number of retries. In drop-old mode, advancing P.head
does not fail except for a seldom case discussed in Sec. 4.3,
for which BUSY is returned.

Consumers. The dequeue operation is somewhat analogous
to enqueue. The consumer starts by retrieving the current
value of C.head and the corresponding block identifier. Next,
it attempts to reserve an entry to consume (Line 20), advanc-
ing reserved. If the reservation succeeds, the consumer reads
the data (Line 22) and advances consumed. In drop-old mode,
the consumer may have to retry consuming if the producers
have overwritten the block (Line 24). Reserving an entry can
fail in several ways. When the next entry in blk is allocated
but not yet committed, dequeue returns BUSY (Line 26). When
blk is not fully allocated and all committed entries were al-
ready consumed, dequeue returns EMPTY (Line 25). Finally,
when blk is fully committed and fully consumed, the con-
sumer tries advancing C.head (Line 28). Upon success, it
retries reserving an entry, jumping to loop. Otherwise, de-
queue returns EMPTY.

252    2022 USENIX Annual Technical Conference USENIX Association



Progress guarantees. Similarly to DPDK ringbuffer, BBQ is
a deadlock-free queue, its progress depend on a fair scheduler.
In contrast to DPDK, BBQ is less affected by CPU oversub-
scription (see Figure 9g, Section 6). To see why this is the
case, consider the situation where DPDK producers form a
waiting chain: the last to allocate an entry can only commit
once the previous has committed its entry, and so on. This
waiting chain hampers the performance because the scheduler
is unlikely to unpark the preempted producers in the chain’s
order. In BBQ, there is no such waiting chain, i.e., producers
commit independently. Consumers may wait for producers
only in seldom cases. For example, a consumer waits for a
preempted producer on the same block if the producer has
allocated but not yet committed an entry. Nevertheless, any or-
der in which the fair scheduler unparks preempted producers
allows the consumer to make progress.

3.3 Two-Level Control Variables

Essentially, BBQ splits the control variables into two lev-
els, namely the queue-level and block-level variables (see
Fig. 2). Queue-level control variables point to blocks (C.head
and P.head), whereas block-level control variables to entries
(allocated, committed, reserved, and consumed).

Versions. As in other queues such as DPDK ringbuffer, con-
trol variables have to be versioned to identify multiple reuses
of the same memory locations and, in this way, avoid ABA
problems1. Therefore, queue-level control variables have two
fields, an index pointing to a block and a version identifying
how many rounds the whole queue has been reused. Similarly,
block-level control variables have an offset field pointing to
an entry within the block and a version field identifying how
many times the block has been reused.

Phantom heads. Before producers can allocate entries in a
block B, one producer has to reset B’s allocated cursor as
well as advance P.head to point to B. Without making both up-
dates atomic, whichever update executes first may trigger an
ABA problem as well. To allow both being updated atomically,
we introduce the concept of phantom head, which is based
on the following observation. The index and version values
of P.head can be inferred from the versions of all allocated
cursors in the queue (as described in Sec. 4.2.2). Similarly,
the phantom C.head can be inferred from the versions of all
reserved cursors. Since the phantom P.head (resp. phantom
C.head) is implicitely updated whenever any allocated cur-
sor (resp. reserved cursor) is updated, we use them instead
of queue-level head variables.

1Often algorithms try to guarantee operation atomicity by reading from a
control variable before and after the operation. If the same value A is read
both times, the programmer assumes absence of concurrent updates and
hence that the operation was atomic. This assumption breaks if other threads
can temporarily change the value to B 6= A and then back to A; algorithms in
which this situation can occur are said to suffer from the ABA problem [32].

Cached heads. In principle, phantom heads allow us to elim-
inate the C.head and P.head variables altogether. Unfortu-
nately, phantom heads are costly: To infer them, one needs
to compare the cursors of every block. Instead of eliminating
C.head and P.head, we consider them to be cached heads, i.e.,
potentially stale values of the phantom heads. Cached heads
only exist for performance reasons; their staleness does not
affect correctness.

4 Implementation of BBQ

Figure 4 shows the low-level detail of BBQ, including data-
fields, enqueue and dequeue operations for retry-new mode
and drop-old mode. The drop-old mode will be introduced in
Sec. 4.3.

4.1 Structure

Heads and cursors. BBQ has two queue-level Head variables
and four block-level Cursor variables in each block. Head
and Cursor types are 64-bit integers, which can be atomically
updated. We reserve two bit-segments in Head to represent
the version and index and two bit-segments in Cursor to
represent the version and offset. Given a total number of
blocks (BLOCK_NUM) and the capacity of a block (BLOCK_SIZE),
the segments have the following bit-lengths:

|Index| = log2(BLOCK_NUM) bits
|Offset| > log2(BLOCK_SIZE) bits
|Version| = 64−max(|Index|, |Offset|) bits

The bit-length of Offset is larger than log2(BLOCK_SIZE) to
allow for FAA-overflow detection. The Index and Offset are
the least significant bits of Head and Cursor, respectively;
Version bits immediately follow them; and reminder bits,
if existent, are set to 0 and ignored. That allows us to easily
manipulate these fields with FAA and MAX instructions.

For convenience, we access the bit-segments from Head
and Cursor variables as if they were regular fields named
idx, off, and vsn, e.g., allocated.idx. Moreover, we con-
struct variables (e.g., Head) with the short-hand notation
Head{.vsn=version, .idx=index}, initializing unspeci-
fied fields with 0. We may omit the type when clear from
the context.

Initially, idx and off in the first block are zero and for
remaining blocks off is set to BLOCK_SIZE. The initial value
of vsn will be introduced in Sec. 4.2.2.

Other types. Block has shared cursors, annotated with
shared<>, and an array of entries of type T (Line 38).
EntryDesc is an entry descriptor; it points to a block and con-
tains offset to location the actual entry and a version data-
consistency checks used in drop-old mode (Line 41). Finally,
BBQ contains the shared heads and an array of Block<T>.

USENIX Association 2022 USENIX Annual Technical Conference    253



1 <Head, Block> BBQ<T>::get_phead_and_block(){
2 ph = LOAD(phead);
3 return (ph, blocks[ph.idx]);
4 }
5 state BBQ<T>::allocate_entry(Block blk){
6 if (LOAD(blk.allocated).off >= BLOCK_SIZE)
7 return BLOCK_DONE;
8 old = FAA(blk.allocated, 1).off;
9 if (old >= BLOCK_SIZE)
10 return BLOCK_DONE;
11 return ALLOCATED(EntryDesc{.block=blk, .offset=old});
12 }
13 void BBQ<T>::commit_entry(EntryDesc e, T data){
14 e.block.entries[e.offset] = data;
15 ADD(e.block.committed, 1);
16 }
17 state BBQ<T>::advance_phead(Head ph) {
18 nblk = blocks[(ph.idx + 1) % BLOCK_NUM];

19 cons = LOAD(nblk.consumed);
20 if (cons.vsn < ph.vsn ||
21 (cons.vsn == ph.vsn && cons.off != BLOCK_SIZE)) {
22 reserved = LOAD(nblk.reserved);
23 if (reserved.off == cons.off) return NO_ENTRY;
24 else return NOT_AVAILABLE;
25 }

26 cmtd = LOAD(nblk.committed);
27 if (cmtd.vsn == ph.vsn && cmtd.off != BLOCK_SIZE)
28 return NOT_AVAILABLE;

29 MAX(nblk.committed, Cursor{.vsn=ph.vsn + 1});
30 MAX(nblk.allocated, Cursor{.vsn=ph.vsn + 1});
31 MAX(phead, ph + 1);
32 return SUCCESS;
33 }
34 class BBQ<T> {
35 shared<Head> phead, chead;
36 Block<T>[] blocks;
37 }
38 class Block<T> {
39 shared<Cursor> allocated, committed;
40 shared<Cursor> reserved, consumed;
41 T[] entries;
42 }
43 class EntryDesc {
44 Block block; Offset offset; Version version; }

45 <Head, Block> BBQ<T>::get_chead_and_block(){
46 ch = LOAD(chead);
47 return (ch, blocks[ch.idx]);
48 }
49 state BBQ<T>::reserve_entry(Block blk){
50 again:
51 reserved = LOAD(blk.reserved);
52 if (reserved.off < BLOCK_SIZE) {
53 committed = LOAD(blk.committed);
54 if (reserved.off == committed.off)
55 return NO_ENTRY;
56 if (committed.off != BLOCK_SIZE){
57 allocated = LOAD(blk.allocated);
58 if (allocated.off != committed.off)
59 return NOT_AVAILABLE;
60 }
61 if (MAX(blk.reserved, reserved + 1) == reserved)
62 return RESERVED((EntryDesc){.block=blk,
63 .offset=reserved.off, .version=reserved.vsn});
64 else goto again;
65 }
66 return BLOCK_DONE(reserved.vsn);
67 }
68 T BBQ<T>::consume_entry(EntryDesc e){
69 data = e.block.entries[e.offset];

70 ADD(e.block.consumed, 1);

71 allocated = LOAD(e.block.allocated);
72 if (allocated.vsn != e.version) return NULL;

73 return data;
74 }
75 bool BBQ<T>::advance_chead(Head ch, Version vsn){
76 nblk = blocks[(ch.idx + 1) % BLOCK_NUM];
77 committed = LOAD(nblk.committed);

78 if (committed.vsn != ch.vsn + 1)
79 return false;
80 MAX(nblk.consumed, Cursor{.vsn=ch.vsn + 1});
81 MAX(nblk.reserved, Cursor{.vsn=ch.vsn + 1});

82 if (committed.vsn < vsn + (ch.idx == 0))
83 return false;
84 MAX(nblk.reserved, Cursor{.vsn=committed.vsn});

85 MAX(chead, ch + 1);
86 return true;
87 }

retry-new mode drop-old mode

Figure 4: Low-level details of BBQ.

4.2 Operations
Enqueue and dequeue operations are divided into different
cases: First, when the allocation in the enqueue or the reser-
vation in the dequeue do not fail. Second, when enqueue or
dequeue have to advance respective heads to the next block.

4.2.1 Successful allocation/reservation

The producer uses FAA to allocate an entry (Line 8) and returns
its location as EntryDesc if there is enough space in the
current block (Line 11). A pre-check (Line 6) avoids endless
increasing of allocated when the queue is full, which could
cause FAA overflows and impact performance negatively. For
the consumer, the entry is reserved through MAX2 (Line 61),

2Unlike FAA, MAX provides conditional update semantics. Moreover, for
some cases, MAX has similar semantics to CAS but better performance observed

which atomically sets a variable if the given value is greater
than the variable’s value and returns the old value. Consumers
never pass producers (Line 54) and can read when out-of-
order commit are not ongoing in the same block, which means
all allocated entries are committed (Line 58).

4.2.2 Advancing to the next block

Monotonic version updates. Head and cursor versions are
initially zero. Both enqueue and dequeue calls start by reading
the current cached head (phead and chead, respectively) into
a local variable (ph and ch in Fig. 3). After failing to allocate
or reserve an entry, these calls try to advance the respective
phantom heads by calling advance_phead or advance_chead.

from experimental results. We use CAS and while loop to achieve the same
functionality for architectures that do not support MAX such as x86 [16].

254    2022 USENIX Annual Technical Conference USENIX Association



These functions try to reset the cursors of the next block with
the previously read version of the cached head plus one (Lines
29, 30, 80, and 81 in Fig. 4). Subsequently, the functions try
update the cached head itself (Lines 31 and 85).

The reset of cursors and the update of cached head may
not always succeed. Consider the following example. Two
producers try to allocate entries at block B0 and fail. Both
have read phead with value {.vsn=0,.idx=0}. Now both
call advance_phead concurrently and are at Line 30. Producer
P1 stalls while producer P2 succeeds updating the allocated
cursor of block B1. P2 also allocates one or more entries such
that now B1’s allocated has the value {.vsn=1,.off=16}.
If now P1 would be able to succeed resetting allocated,
then the allocations of P2 would be lost. Nevertheless, to
avoid such ABA situations, the reset of cursors and update of
cached head do not have to be performed with an expensive
CAS. The recent MAX atomic instruction from Armv8.1-LSE
can provide the required monotonicity.

Invariants. Producers have to ensure they advance phead
only if the next block that has no unconsumed data. Con-
sumers have to ensure they advance chead only if the next
block has committed data.

We guarantee these invariants by ensuring that the ver-
sion difference between phantom phead and phantom chead
never exceeds 1. When producers advance phead and re-
set the allocated and committed cursors of the next block
with version ph.vsn+1 (Line 30), the consumed cursor must
have version ph.vsn (Line 21). Similarly, when consumers
advance chead and reset the reserved and consumed cur-
sors of the next block with version ch.vsn+1 (Line 80), the
committed cursor must have version ch.vsn+1 (Line 79).

Order matters. Often the order in which shared variables
are accessed is crucial for correctness. For example, reading
reserved, committed, and allocated variables (Lines 51,
53, and 57) in a different order can cause the consumer to
read garbage. Moreover, updating cached heads (Lines 31 and
85) must happen after updating block-level variables (Lines
29, 30, 80, and 81), otherwise blocks may be fully skipped.

To guarantee shared variables are accessed in the program
order of Fig. 4 on architectures with weak memory models,
C/C++ implementations of BBQ can employ atomic LOAD,
STORE, MAX, FAA, and CAS instructions with sequentially con-
sistent memory barriers (see C11/C++11 atomics [6]). In
Sec. 5, we report a correct relaxation of these barriers.

4.3 Drop-old Mode

Unlike the retry-new mode, where producers cannot insert
data when the queue is full, in drop-old mode, producers
continue to write even if the data is not yet consumed. Con-
sequently, producers no longer depend on the consumers to
make progress. The FIFO property still holds, except that
some data might be lost. In other words, entries are consumed

in the order in which they were allocated, but some committed
entries may not be consumed.
Speculative reads. Drop-old mode is widely used in profil-
ing scenarios, where enqueue calls writing a log should not
be delayed by dequeue calls that read the log. To reduce the
chances of dequeue calls interfering with enqueue calls, con-
sumers read data in a speculative fashion. The consumer first
reads the data and then checks whether it has been overwritten.
If so, it discards the data and tries reserving another entry.
From retry-new to drop-old mode. A few differences exist
between retry-new and drop-old mode. First, producers avoid
advancing to blocks that are still not fully committed in the
previous round, returning BUSY (Lines 27 and 28).

Second, consumers guarantee FIFO order by checking if
the version of the next block is greater than or equal to the
current one (Line 82). If that is the case, reserved is reset
with the version of committed (Line 84), indicating the block
is ready to be read. The first block is a special case because,
in contrast to other blocks, its version is always off-by-one.
Therefore, we add 1 to the comparison if ch.idx == 0.

Third, the data-consistency check is based on the fact that a
block is not overwritten as long as allocated and reserved
versions are equal. Therefore, before reading data, we record
the reserved version (Line 63), and after copying the data
from the entry, we check if corresponding allocated version
still matches the reserved (Line 72).

4.4 Variable-sized Entries
BBQ can support variable-sized entries with minor algorith-
mic changes. Each entry has an additional metadata size to
support different entry sizes in one queue. Block-local cursors
and BLOCK_SIZE indicate the space of entries instead of their
number. MAX at Line 61 is no longer sufficient; CAS must be
used instead.
Dummy entry. Unlike the fixed-size version of BBQ, where
entries can exactly fill up a block, here, the remaining space
of a block might not be enough to contain the new entry. In
such cases, we mark the space with a dummy entry and return
BLOCK_DONE to trigger a retry in the next block. Since enqueue
uses FAA, the producers that cause allocated go over the
boundary marks the dummy entry by setting its size to zero
and commits it. Consumers that read an entry with size zero
ignore the dummy entry and retry in the next block. Upon
reading the dummy entry, the consumer also sets consumed
to be equal to BLOCK_SIZE.

4.5 Other Implementation Details
We have implemented BBQ in C and Java. We have also im-
plemented a wrapper with the Java Native Interface (JNI) [20]
to call the C version from Java.

Finally, we have optimized BBQ for SPSC scenarios as fol-
lows: (1) phead and chead are no longer shared variables and

USENIX Association 2022 USENIX Annual Technical Conference    255



can be accessed with non-atomic loads/stores. (2) allocated
and committed (resp. reserved and consumers) are merged
into one variable and updated with STORE.

5 Verification and Optimization of BBQ

Concurrent data structures are complicated beasts and are easy
to get wrong [30]. To increase confidence in our C implemen-
tation and find intricate bugs, we generate a series of small
hand-crafted tests that can trigger corner cases in the algo-
rithm and then use VSYNC [42], an extension to the GenMC
model checker [36]. The tool generates all executions of the
algorithm on those tests, including executions that can only
happen on WMMs, exercising the following critical corner
cases: (1) queue full or empty, (2) FIFO, (3) wrap-around, and
(4) termination of bounded loops with bounded effect [37,42].

Bugs. We found three concurrency bugs in an earlier version
of the drop-old mode of BBQ.

1. A test revealed a bug in which enqueue operations
incorrectly returned BUSY. The block was detected as
NOT_AVAILABLE because, in that version, the condition
at Line 27 was committed.off == BLOCK_SIZE &&
committed.vsn == ph.vsn. Therefore, even if other
producers reset the next block and have the space to allo-
cate, the block would still be NOT_AVAILABLE. That violated
linearizability.

2. We have found a termination bug in which the checking
in Line 82 was written as blk.committed.vsn >= nblk
.committed.vsn, missing the special case of the version
number in the first block, which may let consumers ad-
vancing the block forever if the queue is empty and all
blocks happen to have the same version number.

3. The wrap-around test revealed a bug due to a missing
fence, where readers could return incorrect data when a
fast writer overwrote the entry they were currently reading.

We found these bugs through the verification with model
checking. They were not found during stress testing, nor by
running the small test cases directly on hardware. However,
we could retrospectively construct test cases that reproduce
these bugs on real hardware. Concurrent algorithms, espe-
cially those using complicated synchronization such as drop-
old mode, are hard to get right using traditional methods.

Barrier optimization. We used VSYNC to run the mem-
ory barrier optimization for WMMs. The results consistent
with the order analyze of reading/updating shared variables
in Sec. 4.2.2. For the fixed entry size version, 14 atomic in-
structions with full memory barriers are optimized to 3 release
barriers, 3 acquire barriers, and 8 relaxed barriers, respectively.

6 Evaluation

6.1 Environment Setup

Hardware. All of our experiments are performed on three
x86 machines with 88, 96, and 12 hyperthreads, respectively
(denoted as x86-88T, x86-96T, and x86-12T), and an ARM
machine with 96 cores (arm-96T). x86-88T and x86-96T are
connected through two 10Gbps links.

Software. On these servers, we installed Ubuntu 20.04.3 LTS,
with Linux kernel 5.4.0. We use Linux perf [26] to get results
of L1 cache misses, the version of it is the same with the
Linux kernel. Java-based experiments use JDK v11 [19].

6.2 Microbenchmarks

Workloads. We have the following 3 workloads for mi-
crobenchmarks implemented in C/C++ and Java:
• simple: Each producer or consumer has its own thread,

where they keep executing enqueue or dequeue operations
in a loop. Data is validated after each dequeue.

• complex: Based on the simple workload. Producers and
consumers allocate space for data, preform enqueue and
dequeue then manually free (C/C++ version) or let JVM
garbage collection it [46] (Java version). Additionally, each
operation also performs a deterministic random busy-loop
of at most one hundred nop instructions.

• profiling: Based on the simple workload. The throughput
of producers and consumers is fixed at 10kop/s and 1kop/s,
respectively.

Thread affinity. For MPSC or SPMC scenarios, we assign
a single producer or consumer at the first core/hyperthread
and then distribute the other threads sequentially to cores/hy-
perthreads. For MPMC, we assign producers and consumers
interleaved one by one; if their number differs, the surplus is
assigned at the end.

Experiments. We perform the following experiments, each
measuring a different metric:
• throughput: Total number of consumed entries per second.
• data-latency: Average time each data stays in the queue.
• op-latency: Average latency of each enqueue or dequeue

operation.
• cache-miss: Average number of L1 cache misses per con-

sumed entry, measured with Linux perf.
• fairness: Throughput of each producer and consumer (only

for MPSC and SPMC).
• full/empty: Latency of enqueue when the queue becomes

full and latency of dequeue when the queue becomes empty
(only used with simple workload).

• oversubscription: Throughput with more producers and con-
sumers than than cores/hyperthreads.

Each experiment runs 3 times. If not specified otherwise,
solid lines represent average results; shaded area represents

256    2022 USENIX Annual Technical Conference USENIX Association



4P1C throughput

1 5 10 15 20 25#total entries (log)
1

5

10

15

#b
lo

ck
s (

lo
g)

0.25

0.50

0.75

1.00

Th
ro

ug
hp

ut
 (o

p/
s)

1e7
4P1C latency

1 5 10 15 20 25#total entries (log)
1

5

10

15

#b
lo

ck
s (

lo
g)

10^4

10^5

10^6

La
te

nc
y 

(n
s/

op
)

Figure 5: BBQ throughput and latency varying number of
blocks and entries (x86-88T).

0 23 47 71 95
#producers

1
2
3

Th
ro

ug
hp

ut
 (o

p/
s) 1e7

cas
faa-lxsx
faa-lse

CAS or FAA

0 23 47 71 95
#producers

1

2

Th
ro

ug
hp

ut
 (o

p/
s) 1e7

fixed
varied

Varied entry size

0 23 47 71 95
#producers

1

2

Th
ro

ug
hp

ut
 (o

p/
s) 1e7

nr-prod
sr-cons
sr-prod

Drop-old

Figure 6: BBQ throughput with CAS and FAA; with support for
variable-sized entries; and with drop-old mode (arm-96T).

standard deviation; and vertical dashed lines indicate when
threads cross NUMA nodes, are assigned to hyperthreads in
the same core, or are oversubscribed.

Configuration. The data size is always 8 bytes, a size all
queues can support. For the data-latency experiment, the num-
ber of entries is around 128. For the other experiments, the
buffer size is 32k bytes unless specified otherwise.

6.2.1 BBQ Parameters and Design Choices

We start by evaluating parameters and design choices of BBQ.

Configuring the number of blocks. Figure 5 shows through-
put and data-latency experiments for BBQ with four pro-
ducers and one consumer. The color scale shows the ex-
isting trade-off between number of entries and number
of blocks; users have to be aware of that when choos-
ing the buffer size and number of blocks. We use the
following heuristic function to determine the number of
blocks in all rest experiments: number of blocks (log) =
max(1,bnumber of entries (log)/4c).
Performance impact of FAA. Figure 6 shows the results of
an MPSC throughput experiment on our Arm machine. BBQ
is configured to use FAA instruction from Armv8.1 LSE, stan-
dard FAA and CAS implemented with load-exclusive and store-
exclusive instructions. Except for the 1 thread case, LSE-
based FAA shows the best scalability, outperforming the other
two by at least 5 times.

Support for variable-sized entries. Figure 6 also shows the
throughput of the BBQ with fixed- and variable-sized entries.
The size of each data is the same, yet the varied entry version
has to store additional size information for every entry. Never-
theless, the throughput difference between both is negligible.

Consumer-producer interference in drop-old mode. Fi-
nally, Figure 6 shows the throughput of BBQ with drop-old
mode in two configurations: MPSC and MPNC (multiple-
producer/no-consumer). The throughput of the producers (nr-
prod) with no consumers is less than 8% higher than with
consumer (sr-prod). Moreover, the consumers manage to con-
sume at least 99.97% of the entries except for the 1 thread
case (sr-cons). These results illustrate that consumers with
the speculative-read method incur a rather minor interference
on producers — please refer to Sec. 6.2.3 for a baseline with
existing implementations.

6.2.2 State-of-the-art Comparison: Retry-new Mode

We now compare BBQ against 5 state-of-the-art bounded
queues: dpdkrb, DPDK ringbuffer v21.08 [9]; scqd, a lock-
free bounded queue [40]; linuxrb, the ringbuffer in the Linux
kernel v5.16 [22]; boostq, the bounded queue in C++ Boost
libraries v1.71 [4]; and follyq, the bounded queue (with total
method) [25] in Meta’s open-source Folly library v2021.11.8.
For dpdkrb and follyq, we use their SPSC versions to run
corresponding SPSC experiments.
Effectiveness of the Block-based Approach. To isolate the
effect of the blocks, we first focus on SPSC experiments be-
cause BBQ do not profit from FAA in such scenarios. Figure 7
shows that BBQ greatly outperforms all other bounded queues
in all experiments. For the simple workload, BBQ yields 11.3x
to 42.4x higher throughput than other libraries. The through-
put of BBQ is 1.41 ·108 op/s, while the second-best one follyq
is 1.24 · 107 op/s. For the complex workload, which has a
random busy-loop to limit the maximum throughput, BBQ
still outperforms follyq by 2x. BBQ’s better performance is
mainly due to the massive decrease in L1 cache misses with
the block-based approach (notice the y-axis log scale).
Throughput in MPSC and SPMC scenarios. Figures 9a and
9b show BBQ performing on par or better than other queues in
the simple and complex workloads. For MPSC scenarios, BBQ
performs up to 10.13x and 3.65x faster than the second-best
queue, respectively. For SPMC scenarios, BBQ performs up
to 1.88x and 2.39x faster than the second-best queue, respec-
tively.

The throughput difference between MPSC and SPMC re-
sults can be attributed in part to the different L1 cache misses
measurements (see Fig. 9c). BBQ consumers employ CAS op-
erations in every dequeue, and these can fail and have to be
retried, each time suffering another cache miss.
Data latency. We measure the average time data stays in
the queue in the complex workload, as shown in Fig. 9d.
For MPSC case, BBQ performs consistently better than other
bounded queues; up to 17.22x lower latency than the second-
best queue. For the SPMC case, scqd performs best, up to
7.45x lower latency than BBQ. That is an artifact of the de-
layed invalidation trick (see Sec. 2): Once the queue is empty
(C.head = P.tail), consumers invalidate the entries pointed by
C.head after a delay. Since consumers first increment C.head
and then wait, multiple consumers will be pending on differ-

USENIX Association 2022 USENIX Annual Technical Conference    257



bbq
dpdkrb

linuxrb
boostqfollyq

scq
d0

1

Th
ro

ug
hp

ut
 (o

p/
s) 1e8

(a) simple

bbq
dpdkrb

linuxrb
boostqfollyq

scq
d0

1

Th
ro

ug
hp

ut
 (o

p/
s) 1e7

(b) complex

bbq
dpdkrb

linuxrb
boostqfollyq

scq
d

100

101

L1
 c

ac
he

 m
iss

(c) cache-miss

bbq
dpdkrb

linuxrb
boostqfollyq

scq
d

104

105

La
te

nc
y 

(n
s/

op
)

(d) data-latency

Figure 7: SPSC comparison of BBQ against state-of-the-art on x86-88T.

bbq
dpdkrb
linuxrb

boostq
follyq
scqd

Figure 8: Legend of Fig. 9

M
P

S
C

2 21 43 65 87
#producers

0.0

0.5

1.0

1.5

Th
ro

ug
hp

ut
 (o

p/
s)

1e7

2 21 43 65 87
#producers

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (o

p/
s)

1e7

2 21 43 65 87
#producers

101

102
L1

 c
ac

he
 m

iss

2 21 43 65 87
#producers

105

107

La
te

nc
y 

(n
s/

op
)

2 21 43 65 87
#producers

100

102

104

La
te

nc
y 

(n
s/

op
)

2 21 43 65 87
#producers

100

101

Th
pt

 (m
ax

 / 
m

in
)

2 11 23 35 47 59
#producers

100

103

106

Th
ro

ug
hp

ut
 (o

p/
s)

S
P

M
C

2 21 43 65 87
#consumers

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (o

p/
s)

1e7

(a) simple

2 21 43 65 87
#consumers

0.0

2.5

5.0

7.5

Th
ro

ug
hp

ut
 (o

p/
s)

1e6

(b) complex

2 21 43 65 87
#consumers

101

102

L1
 c

ac
he

 m
iss

(c) cache-miss

2 21 43 65 87
#consumers

104

106

La
te

nc
y 

(n
s/

op
)

(d) data-latency

2 21 43 65 87
#consumers

100

102

104

La
te

nc
y 

(n
s/

op
)

(e) full/empty

2 21 43 65 87
#consumers

100

101

Th
pt

 (m
ax

 / 
m

in
)

(f) fairness

2 11 23 35 47 59
#consumers

100

103

106

Th
ro

ug
hp

ut
 (o

p/
s)

(g) oversubscription

Figure 9: MPSC and SPMC comparison of BBQ against state-of-the-art on x86-88T (and x86-12T for oversubscription).

ent entries. As soon as the producer commits a new entry, one
consumer aborts its delay and immediately returns the data.

Full and empty queues. Figure 9e shows the latency for
failed enqueue on a full queue (top figure), and failed dequeue
on an empty queue (bottom figure). In such scenarios, the
delay invalidation of scqd incurs a high cost: the latency
of failed operations in scqd is around 1000x higher than in
most other queues. For linuxrb, the latency increases with
the number of producers/consumers due to its coarse-grained
locking.

Fairness between producers or consumers. Figure 9f
shows the relation between maximum and minimum through-
put of producers (top figure) and consumers (bottom figure).
linuxrb provides exceptional fairness because it relies on a fair
spinlock3. Other queues show unfair throughput after crossing
the first NUMA node (at 22 producers/consumers) except for
scqd, which becomes unfair when hyperthreads of the same
cores start being used (at 44 producers/consumers).

Oversubscription effects. Figure 9g shows the results of our
oversubscription experiment on x86-12T with up to 5x more
threads than hyperthreads. Both dpdkrb and linuxrb are highly
affected by oversubscription; the former due to their in-order
policy (see Sec. 2), the latter due to its coarse-grained locking.
Under oversubscription (i.e., with more than 12 threads), BBQ
outperforms the second-best queue by a small margin: 2.22x
in MPSC and 1.23x in SPMC scenarios.

3In our userspace port of linuxrb, we employ a ticket lock.

6.2.3 State-of-the-art Comparison: Drop-old Mode

We now compare BBQ with other two bounded queues that
support overwriting old values, namely EvictingQueue from
Google Core Libraries Guava [15], and CircularFifoQueue
from Apache Commons [1]. The experiments are conducted
on the arm-96T machine.

Producer performance. Figure 10a shows the enqueue
throughput with no consumers for the complex workload. On
the one hand, BBQ-JNI yields 3.2x higher enqueue through-
put than EvictingQueue and CircularFifoQueue. On the other
hand, BBQ yields an enqueue throughput rather similar to
them. Intuitively, BBQ-JNI has a better performance since
employs real FAA instructions, whereas, in the Java version of
BBQ, the JVM translates FAA into CAS [35].

Figure 10c shows the enqueue latency, again with no con-
sumers, for the profiling workload. Remember that producers
issue 10k enqueue calls per second in the profile workload.
With BBQ and BBQ-JNI, the enqueue latency slowly increases:
147.9ns and 176.4ns with 1 thread, respectively, to 965.6ns
and 914.3ns with 94 threads, respectively. Up to 44 produc-
ers, EvictingQueue and CircularFifoQueue perform similar to
BBQ variants. With more than 44 producers, however, their en-
queue latency quickly increases up to 70 µs (72x higher than
BBQ). From Fig. 10a, we know that their maximum enqueue
throughput is about 450kop/s. Hence, these queues already
reached throughput limit with 44 producers, and any addi-
tional producers can only increase the latency. We believe the
spike at 95 threads (BBQ with 5.1µs and BBQ-JNI with 2.0µs)

258    2022 USENIX Annual Technical Conference USENIX Association



2 24 48 72 96
#Producers

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (o

p/
s) 1e7

(a) MPNC complex

2 23 47 71 95
#Producers

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (o

p/
s) 1e7

(b) MPSC complex

2 24 48 72 96
#Producers

102

104

La
te

nc
y 

(n
s)

(c) MPNC profiling

2 23 47 71 95
#Producers

102

104

La
te

nc
y 

(n
s)

(d) MPSC profiling

EvictingQueue
CircularFifoQueue
BBQ
BBQ-JNI

Figure 10: Cross comparison results for drop old mode on arm-96T.

may caused by garbage collection, but further investigation is
necessary.

Enq-deq interference. We now introduce a single consumer
to understand the interference of dequeue on the enqueue
operations. Ideally, the enqueue operations should incur a
small overhead (latency) to the profiled program; and this
overhead should be minimally affected by concurrent dequeue
calls. Moreover, if enqueue calls interfere with dequeue calls
too frequently, more data may be dropped, i.e., overwritten
before being consumed.

Figure 10b shows the enqueue and dequeue throughput
(marked with • and×, respectively) for the complex workload.
Comparing Figs. 10a and 10b, we observe that the enqueue
throughput of BBQ is similar in both figures and of BBQ-JNI
is similar up to 47 threads, but after that it drops to about
1.89 · 106 op/s. The enqueue throughput of EvictingQueue
and CircularFifoQueue is initially lower when a consumer
is concurrently calling dequeue. The reason for this lower
enqueue throughput can explained by observing the difference
between enqueue and dequeue in Fig. 10b.

First, note that with more than a few producers, the enqueue
and dequeue throughput of each queue do not match, i.e., the
consumer is not fast enough to read out all the data before
the producers start overwriting the oldest entries. Also note
that the more the enqueue throughput of EvictingQueue and
CircularFifoQueue recovers (by increasing producers), the
lower is the dequeue throughput. Once their throughput is
back to the level of Fig. 10a with 15 threads, their dequeue
throughput is no more than 4.92 ·105 op/s. In contrast, BBQ
and BBQ-JNI sustain a much higher dequeue throughput up to
46 threads (2.89 ·106 op/s and 5.07 ·106 op/s, respectively).

Figure 10d shows the enqueue latency for the profiling work-
load. BBQ and BBQ-JNI provide enqueue latencies varying
from 730.6ns and 519.9ns with 2 producers, respectively, up
to 1082ns and 9503ns with 95 producers — we ignore the
noisy region with 81 producers. Comparing the results of
Figure 10c and Figure 10d reveal that the enqueue latency
of EvictingQueue and CircularFifoQueue, for example with
8 producers increase by 124.97 times when adding a single
consumer with a relatively low dequeue frequency.

The latency increases as well as the throughput decreases
of BBQ-JNI after 47 producers could be related to the JNI
overhead of calling C code from Java.

128 256 512 1024 2048 4096 8192
Buffer size

0

2

4

Th
ro

ug
hp

ut
 (M

p/
s)

bbq
dpdkrb

Figure 11: Throughput comparison between BBQ or DPDK
ring buffer.

6.3 Macrobenchmarks

We now explore three benchmarks that represent the real-
world usage queues.

6.3.1 DPDK’s End-to-end Benchmark

We replace the ring buffer in DPDK’s event library [12] and
network driver [11] with BBQ, and run the multiprocess bench-
mark [8] from the DPDK Test Suite [10] (DTS). The bench-
marks consists of one server process receiving and distributing
packets, and two client processes performing level-2 packet
forwarding [7]. These processes run on the device under test
(DUT), our x86-88T machine. The tester and traffic generator
TRex [29] run on our x86-96T machine. The packet size is
64 bytes (along with the UDP header) as well as the entry
size of the queue. The versions of DPDK, DTS, and TRex are
21.08, 21.02, and 2.92, respectively. We report the end-to-end
throughput (in million packets per second) measured by the
traffic generator.

Figure 11 shows our experimental results. BBQ provides
1.5x higher throughput with different buffer sizes in the driver.
We observed no further improvements with larger buffer sizes,
indicating that the ring buffer may not be a bottleneck any
more. We also replaced the so-called software queue in the
multiprocess benchmark, and observed no improvement.

6.3.2 Linux io_uring

Linux io_uring [13] is a new asynchronous I/O [31] API
for kernel-user space communication. It consists of two ring
buffers, one for request submissions (SQ) and another for com-
pletion confirmations (CQ). It supports batched submission
and batched confirmations with configurable batch sizes [18].

USENIX Association 2022 USENIX Annual Technical Conference    259



32 64 128 256 512 1024
SQ size

102

La
te

nc
y 

(n
s/

re
q)

bbq
io_uring

(a) Batchsize = 1

32 64 128 256 512 1024
SQ size

102

103 bbq
io_uring

(b) Batchsize ∈ [1, 32]

Figure 12: Latency per request comparison of BBQ and Linux
io_uring on x86-88T.

We port io_uring from Linux kernel (v5.14-rc6) [17] to
userspace, omitting I/O related functionality and replacing its
ring buffers with BBQ. To avoid unstable results, we disable
the option of overflowing entries into an additional linked list.
We set the CQ size to twice the SQ size as recommended [21].
Our benchmark runs three threads: The first submits request
batches (via SQ); the second (representing the kernel) con-
sumes them and immediately produces confirmations (via
CQ); and the third consumes the confirmation batches. We
configure submission and confirmation batches with size 1 or
with a random value from 1 to 32. Each experiment runs 10
times, measuring the time to submit 1M requests.

Figure 12 shows a significant improvement of the latency
per request when using BBQ. For example, with batch size
of 1 and SQ size of 32 and 1024, BBQ yields 6.7x and 6.9x
lower latency than the original ring buffer, respectively. For
random batch size and the same SQ sizes, BBQ yields even
lower latencies: 20.9x and 50.5x, respectively.

6.3.3 LMAX Disruptor Benchmarks

Disruptor [23] is concurrency mechanism used for high-
performance financial exchange. Its core component is a ring
buffer. We compare its throughput with the Java and JNI
versions of BBQ with three official Disruptor benchmarks:
OneToOneThroughputTest, ThreeToOneThroughputTest,
and OneToThreeThroughputTest. We modify these bench-
marks to support not just three, but more producers or con-
sumers. Apart from this modification, all other parameters
(e.g., number of iterations, sleep time between operations,
number of repetitions) are unchanged.

Disruptor can randomly change the batch size based on the
workload. To make the comparison as fair as possible, we first
run the benchmark with Disruptor to get the average batch
size used, and then run BBQ with that batch size. Figure 13
shows the throughput of Disruptor, BBQ, and the baseline
Java queue (java.util.concurrent.BlockingQueue) for
several scenarios. The number on each bar refers to the (aver-
age) batch size, and the label pPcC indicates the number of
producers (p) and consumers (c).

In the 1P1C scenario, Disruptor yields almost 3x higher
throughput than the Java queue (3 Mop/s versus 1.3 Mop/s).
BBQ and BBQ-JNI, however, yield an order of magnitude

1P1C 2P1C 4P1C 8P1C 16P1C 32P1C 1P2C 1P4C 1P8C 1P16C 1P32C
0.0

0.5

1.0

1.5

Th
ro

ug
hp

ut
 (b

at
ch

/s
) 1e7

1 1 1 1 1 1 1 1 1 1 17 1 2 4 29 28
4 2 1 1 1

7
1

2 4 29 28
4 2 1 1 1

7
1 2 4 29 28 4 2 1 1 1

Queue
Disruptor
BBQ
BBQ-JNI

Figure 13: Throughput comparison of BBQ and BBQ-JNI
against LMAX Disruptor on x86-88T.

higher throughput (14.1 Mop/s and 12.1 Mop/s, respectively).
The higher performance of BBQ over BBQ-JNI is due to the
JNI call overheads. With 8 producers, the difference between
Disruptor and BBQ is lower (2.2 Mop/s and 3.7 Mop/s, respec-
tively). BBQ-JNI yields 3x Disruptor’s throughput (6.7 Mop/s)
due to its use of FAA. With 32 producers, BBQ and BBQ-
JNI again outperform Disruptor by an order of magnitude
(3.0 Mop/s, 3.3 Mop/s, and 0.6 Mop/s, respectively).

With a single producer and multiple consumers, BBQ-JNI
has no opportunity to gain performance by using FAA. Due
to that, its performance pays the penalty of the JNI call
overheads. Nevertheless, BBQ still outperforms Disruptor in
most configurations. For example, BBQ yields 1.23x higher
throughput than Disruptor with 2 consumers (1P2C); and
1.68x higher throughput with 8 consumers. With 32 con-
sumers, Disruptor yields 1.42x higher throughput than BBQ.

7 Conclusion

We presented BBQ, a novel ringbuffer design that dramati-
cally reduces the enq-deq interference by splitting the entire
ringbuffer into multiple blocks. BBQ is applicable to a large
spectrum of scenarios, from exchanging data to profiling,
with single or multiple producers/consumers, sending fixed-
or variable-sized entries, among others. Our experimental re-
sults show that BBQ outperforms several industrial ringbuffers
(e.g., DPDK, LMAX Disruptor, Linux io_uring, Meta’s Folly
queue) in the great majority of workloads.

To support modern architectures such as Armv8.1, we veri-
fied and optimized BBQ with a model checker for weak mem-
ory models. Even though far from sound, verification with
model checkers has proven a valuable, low-cost method of
catching bugs.

Currently, our io_uring benchmark evaluates whether BBQ
is promising for such scenarios without involving kernel de-
tails. In the future, we plan to port BBQ to kernel space to
replace Linux io_uring.

Acknowledgments

We thank our shepherd and the anonymous reviewers for their
insightful comments. We specially thank Bohdan Trach for
the helpful discussions and for proofreading this manuscript.

260    2022 USENIX Annual Technical Conference USENIX Association



References

[1] Apache Commons. http://commons.apache.org/.

[2] Arm A64 Instruction Set Architecture. https:
//developer.arm.com/documentation/ddi0596/
2021-09.

[3] Arm architecture reference manual armv8, for a-
profile architecture. https://developer.arm.com/
documentation/ddi0553/latest.

[4] Boost C++ Libraries. https://www.boost.org/.

[5] BPF ring buffer. https://www.kernel.org/doc/
html/latest/bpf/ringbuf.html.

[6] C++ Atomic operations library. https://en.
cppreference.com/w/cpp/atomic/atomic.

[7] Cisco Layer Two Forwarding (Protocol) "L2F". https:
//datatracker.ietf.org/doc/html/rfc2341.

[8] Client-Server Multi-process Example. https:
//doc.dpdk.org/guides/sample_app_ug/multi_
process.html.

[9] Data Plane Development Kit. https://www.dpdk.
org/.

[10] Data Plane Development Kit Test Suite. https://doc.
dpdk.org/dts/gsg/.

[11] dpdk/drivers/net/ring. https://github.com/DPDK/
dpdk/tree/main/drivers/net/ring.

[12] dpdk/lib/eventdev. https://github.com/DPDK/
dpdk/tree/main/lib/eventdev.

[13] Efficient IO with io_uring. https://kernel.dk/io_
uring.pdf.

[14] Folly: Facebook Open-source Library. https://
github.com/facebook/folly.

[15] Guava: Google Core Libraries for Java. https://
github.com/google/guava.

[16] Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual. https://www.intel.com/content/
www/us/en/developer/articles/technical/
intel-sdm.html.

[17] io_uring source code. https://elixir.bootlin.
com/linux/v5.14-rc6/source/fs/io_uring.c.

[18] io_uring_enter - initiate and/or complete asynchronous
I/O. https://unixism.net/loti/ref-iouring/
io_uring_enter.html.

[19] Java Development Kit. https://jdk.java.net/.

[20] Java Native Interface Specification. https:
//docs.oracle.com/en/java/javase/11/docs/
specs/jni/intro.html.

[21] liburing. https://github.com/axboe/liburing.

[22] Linux Kernel Circular Buffers. https:
//www.kernel.org/doc/html/latest/core-api/
circular-buffers.html.

[23] LMAX Disruptor: A High Performance Inter-
Thread Messaging Library. https://github.com/
LMAX-Exchange/disruptor.

[24] Lockless Ring Buffer Design. https:
//www.kernel.org/doc/Documentation/trace/
ring-buffer-design.txt.

[25] MPMC Queue. https://github.com/facebook/
folly/blob/main/folly/MPMCQueue.h.

[26] perf: Linux profiling with performance counters. https:
//perf.wiki.kernel.org/index.php/Main_Page.

[27] Producer/consumer synchronization
modes. https://doc.dpdk.org/
guides/prog_guide/ring_lib.html#
producer-consumer-synchronization-modes.

[28] RISC-V. https://riscv.org/.

[29] TRex: Realistic Traffic Generator. https://trex-tgn.
cisco.com/.

[30] Unread entries potentially lost in buf_ring after ABA
condition. https://bugs.freebsd.org/bugzilla/
show_bug.cgi?id=246475.

[31] Suparna Bhattacharya, Steven Pratt, Badari Pulavarty,
and Janet Morgan. Asynchronous i/o support in linux
2.5. In Proceedings of the Linux Symposium, pages
371–386, 2003.

[32] Damian Dechev, Peter Pirkelbauer, and Bjarne Strous-
trup. Understanding and effectively preventing
the ABA problem in descriptor-based lock-free de-
signs. In 2010 13th IEEE International Symposium
on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing, pages 185–192. IEEE, 2010.

[33] Maurice Herlihy and Nir Shavit. The art of multiproces-
sor programming. Morgan Kaufmann, USA, 2011.

[34] Maurice P Herlihy and Jeannette M Wing. Linearizabil-
ity: A correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463–492, 1990.

USENIX Association 2022 USENIX Annual Technical Conference    261

http://commons.apache.org/
https://developer.arm.com/documentation/ddi0596/2021-09
https://developer.arm.com/documentation/ddi0596/2021-09
https://developer.arm.com/documentation/ddi0596/2021-09
https://developer.arm.com/documentation/ddi0553/latest
https://developer.arm.com/documentation/ddi0553/latest
https://www.boost.org/
https://www.kernel.org/doc/html/latest/bpf/ringbuf.html
https://www.kernel.org/doc/html/latest/bpf/ringbuf.html
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://datatracker.ietf.org/doc/html/rfc2341
https://datatracker.ietf.org/doc/html/rfc2341
https://doc.dpdk.org/guides/sample_app_ug/multi_process.html
https://doc.dpdk.org/guides/sample_app_ug/multi_process.html
https://doc.dpdk.org/guides/sample_app_ug/multi_process.html
https://www.dpdk.org/
https://www.dpdk.org/
https://doc.dpdk.org/dts/gsg/
https://doc.dpdk.org/dts/gsg/
https://github.com/DPDK/dpdk/tree/main/drivers/net/ring
https://github.com/DPDK/dpdk/tree/main/drivers/net/ring
https://github.com/DPDK/dpdk/tree/main/lib/eventdev
https://github.com/DPDK/dpdk/tree/main/lib/eventdev
https://kernel.dk/io_uring.pdf
https://kernel.dk/io_uring.pdf
https://github.com/facebook/folly
https://github.com/facebook/folly
https://github.com/google/guava
https://github.com/google/guava
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://elixir.bootlin.com/linux/v5.14-rc6/source/fs/io_uring.c
https://elixir.bootlin.com/linux/v5.14-rc6/source/fs/io_uring.c
https://unixism.net/loti/ref-iouring/io_uring_enter.html
https://unixism.net/loti/ref-iouring/io_uring_enter.html
https://jdk.java.net/
https://docs.oracle.com/en/java/javase/11/docs/specs/jni/intro.html
https://docs.oracle.com/en/java/javase/11/docs/specs/jni/intro.html
https://docs.oracle.com/en/java/javase/11/docs/specs/jni/intro.html
https://github.com/axboe/liburing
https://www.kernel.org/doc/html/latest/core-api/circular-buffers.html
https://www.kernel.org/doc/html/latest/core-api/circular-buffers.html
https://www.kernel.org/doc/html/latest/core-api/circular-buffers.html
https://github.com/LMAX-Exchange/disruptor
https://github.com/LMAX-Exchange/disruptor
https://www.kernel.org/doc/Documentation/trace/ring-buffer-design.txt
https://www.kernel.org/doc/Documentation/trace/ring-buffer-design.txt
https://www.kernel.org/doc/Documentation/trace/ring-buffer-design.txt
https://github.com/facebook/folly/blob/main/folly/MPMCQueue.h
https://github.com/facebook/folly/blob/main/folly/MPMCQueue.h
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://doc.dpdk.org/guides/prog_guide/ring_lib.html#producer-consumer-synchronization-modes
https://doc.dpdk.org/guides/prog_guide/ring_lib.html#producer-consumer-synchronization-modes
https://doc.dpdk.org/guides/prog_guide/ring_lib.html#producer-consumer-synchronization-modes
https://riscv.org/
https://trex-tgn.cisco.com/
https://trex-tgn.cisco.com/
https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=246475
https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=246475


[35] David Hovemeyer, William Pugh, and Jaime Spacco.
Atomic instructions in java. In European Confer-
ence on Object-Oriented Programming, pages 133–154.
Springer, 2002.

[36] Michalis Kokologiannakis, Azalea Raad, and Viktor
Vafeiadis. Model checking for weakly consistent li-
braries. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, PLDI 2019, pages 96–110, New York, NY,
USA, 2019. Association for Computing Machinery.

[37] Ori Lahav, Egor Namakonov, Jonas Oberhauser, Anton
Podkopaev, and Viktor Vafeiadis. Making weak memory
models fair. Proc. ACM Program. Lang., 5(OOPSLA),
oct 2021.

[38] Adam Morrison and Yehuda Afek. Fast concurrent
queues for x86 processors. In Proceedings of the 18th
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’13, pages 103–112,
New York, NY, USA, 2013. Association for Computing
Machinery.

[39] Ruslan Nikolaev. A Scalable, Portable, and Memory-
Efficient Lock-Free FIFO Queue . https://github.
com/rusnikola/lfqueue.

[40] Ruslan Nikolaev. A scalable, portable, and memory-
efficient lock-free fifo queue. In 33rd International Sym-
posium on Distributed Computing (DISC 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[41] Ruslan Nikolaev and Binoy Ravindran. Wcq: A fast
wait-free queue with bounded memory usage. In
Proceedings of the 27th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
PPoPP ’22, page 461–462, New York, NY, USA, 2022.
Association for Computing Machinery.

[42] Jonas Oberhauser, Rafael Lourenco de Lima Chehab,
Diogo Behrens, Ming Fu, Antonio Paolillo, Lilith Ober-
hauser, Koustubha Bhat, Yuzhong Wen, Haibo Chen,
Jaeho Kim, and Viktor Vafeiadis. Vsync: Push-button
verification and optimization for synchronization primi-
tives on weak memory models. In Proceedings of the
26th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS 2021, pages 530–545, New York, NY,
USA, 2021. Association for Computing Machinery.

[43] Or Ostrovsky and Adam Morrison. Scaling concurrent
queues by using htm to profit from failed atomic op-
erations. In Proceedings of the 25th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Pro-
gramming, pages 89–101, 2020.

[44] Nicholas A Solter and Scott J Kleper. Professional C++.
John Wiley & Sons, 2005.

[45] Boris Teabe, Vlad Nitu, Alain Tchana, and Daniel Hagi-
mont. The lock holder and the lock waiter pre-emption
problems: Nip them in the bud using informed spinlocks
(i-spinlock). In Proceedings of the Twelfth European
Conference on Computer Systems, pages 286–297, 2017.

[46] Bill Venners. The java virtual machine. Java and the
Java virtual machine: definition, verification, validation,
1998.

[47] Chaoran Yang and John Mellor-Crummey. A wait-free
queue as fast as fetch-and-add. In Proceedings of the
21st ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, pages 1–13, 2016.

262    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/rusnikola/lfqueue
https://github.com/rusnikola/lfqueue


Sibylla: To Retry or Not To Retry on Deep Learning Job Failure

Taeyoon Kim, Suyeon Jeong, Jongseop Lee, Soobee Lee, and Myeongjae Jeon
UNIST

Abstract
GPUs are highly contended resources in shared clusters

for deep learning (DL) training. However, our analysis with a
real-world trace reveals that a non-negligible number of jobs
running on the cluster undergo failures and are blindly retried
by the job scheduler. Unfortunately, these job failures often
repeat and waste GPU resources, limiting effective GPU uti-
lization across the cluster. In this paper, we introduce Sibylla
which informs whether an observed failure of DL training
will repeat or not upon retry on the failure. Sibylla employs a
machine learning model based on RNNs that trains on stdout
and stderr logs of failed jobs and can continuously update the
model on new log messages without hand-constructing labels
for the new training samples. With Sibylla, the job scheduler
is learning-enhanced, performing a retry for a failed job only
when it is highly likely to succeed with the retry. We evaluate
the effectiveness of Sibylla under a variety of scenarios using
trace-driven simulations. Sibylla improves cluster utilization
and reduces job completion time (JCT) by up to 15%.

1 Introduction

Deep learning (DL) has made tremendous advances in a wide
range of tasks, including object detection [18], translation [32],
and speech recognition [21]. To support the rapid development
of DL models, enterprises typically set up a large cluster of
hardware accelerators, preferably GPUs, and build a manage-
ment stack to facilitate the fine-grained sharing of large-scale
hardware resources. DL training often requires the use of mul-
tiple GPUs and that tasks on the allocated GPUs be scheduled
simultaneously [16]. This requirement of gang-scheduling
poses high communication and locality constraints on clus-
ter management, which are less contemplated in traditional
data analytics setups. In the last decade, a number of new
DL cluster designs have been proposed, aiming to optimize
job scheduling [5, 20, 24, 26, 34, 35], network communica-
tion [10, 16], and back-end storage systems [41], and have
substantially improved cluster utilization.

In comparison, little effort has been made to address waste-
ful re-execution, resulting from framework support for reliable
DL training. When users issue training jobs to the cluster, they
wish to have their training jobs completed successfully with
a high probability. The high success rate is primarily related
to how effectively DL frameworks can handle job failures
rooted in errors at runtime. These errors are known to occur
across the stack, including infrastructure, AI engine, and user
program [16, 38].

To continue training upon failure, the cluster manager can
take periodic checkpoints for model weights and retry ex-
ecution from the most recent checkpoint taken prior to the
failure [16]. If the failure is transient and non-deterministic
(e.g., MPI runtime failure), the job will continue training upon
resuming from the checkpoint, as transient issues are not sup-
posed to repeat [16]. However, this approach does not help
recover from deterministic failures (e.g., syntax or configu-
ration errors), as the same faulty condition will recur while
re-running the failed job. DL training that experiences these
two types of failures implies that retrying job executions on
deterministic failures would waste GPU cycles. Our charac-
terization study shows that the resource inefficiency caused
by the unnecessary retries is non-negligible (§ 2).

Our approach. We introduce a case for learning-enhanced
job scheduling that substantially reduces unnecessary job
retries. Our system, Sibylla, predicts whether a failed job
deserves a retry or not. Since failures can occur anywhere
across the stack, the prerequisite for failure prediction with
high accuracy is to collect a training dataset that faithfully
reflects failure-related information. We use standard error
streams of training jobs directed into log files (i.e., stdout and
stderr) – every software stack makes use of these error streams
to record execution path/status- and error-related information.
Sibylla employs a recurrent neural network (RNN)-based DL
model to train the log files and build a failure classifier. Sibylla
further automates the process by adopting auto-labeling that
allows new training samples to be incorporated without hand-
constructing their labels. With this technique, Sibylla can
automatically update the model upon aggregating new log

USENIX Association 2022 USENIX Annual Technical Conference    263



messages from recently completed jobs without access to
human experts for labeling data (§ 3).

One major contribution of Sibylla is that it avoids using
a static way for failure classification, which would be im-
practical in the long run. For example, as log formats are
unstructured and diverse, grepping log files for specific key-
words that are endemic to deterministic/non-deterministic
failures, as done in [16], requires someone to keep identifying
new error-related expressions, which is too manual and time-
consuming. We even tried a clustering model as a non-DL
approach to automatically group failures and classify their
types based on similar words, but the accuracy is much lower
than our DL-based approach (§ 4).

Results. We evaluate Sibylla through simulations [10] using
traces derived from a Microsoft production cluster [2]. We ac-
count for the effectiveness in both the best case and the worst
case, where avoiding retries on deterministic failures guided
by our predictor is associated with the longest-running jobs
and the shortest-running jobs, respectively. Sibylla reduces
the average job completion time (JCT) by 6.5–15.4% for the
best case and 3.6–10.5% for the worst case.

2 Job Failures in Deep Learning Cluster

DL platform overview. A shared cluster for deep learning
training typically consists of a number of multi-GPU ma-
chines that constitute a pool of hundreds to thousands of
GPUs. The GPU machines are connected to a high-speed
network (e.g., 100-Gbps InfiniBand) to speed up distributed
training that requires multiple GPUs. The cluster scheduler
has an objective to decide the jobs to run next (e.g., minimiz-
ing JCT) and a strategy for placing the jobs on available GPUs
(e.g., preferably onto the same machine). Docker container is
used to isolate CPU, GPU, and memory resources between
concurrent jobs. For distrusted training, we are based off data
parallelism that performs model synchronization via either
parameter servers or collective communication libraries (e.g.,
MPI [7], NCCL [25]). A back-end distributed storage system
is dedicated to storing stdout and stderr logs generated during
training across the entire cluster. Target DL applications are
run on popular engines like TensorFlow [3] and PyTorch [27].

Deterministic vs non-deterministic. Failures come from the
job scheduler, the storage system, and other components that
constitute the DL platform. We categorize failure occurrences
into either deterministic (DT) or non-deterministic (NDT) to
determine retry on failure. Table 1 shows how existing DL
job failures [16,38] can be classified into these two categories
according to failure reasons.

Deterministic failures (or DT failures) are caused by inher-
ent code syntax errors, API misuse, misconfigured settings,
etc. For example, a job may try to load non-existent data, data
in an inconsistent format, or data in corruption. Alternatively,
a job may use a library version that the platform does not

Type Category Failure Reason Examples

DT

Deep Learning Specific Framework API Misuse, Tensor Mismatch
Environment Error Path/Library Not Found, Permission Denied

Code Error Key/Attribute Not Found, Illegal Arguments
Data Error Corrupted Data, Unsupported Encoding

NDT

CPU OOM CPU Out of Memory
GPU OOM GPU Out of Memory

Runtime Error MPI Daemon Failure, Network Conn. Failure
Node Error Unexpected Worker Node Exited

Table 1: Failure classification and failure reason examples.

support or has dependency issues. Jobs experiencing these
failures will end up in unsuccessful training as the failures
repeat.

On the contrary, non-deterministic failures (or NDT fail-
ures) are accidental and usually related to temporal network
connection loss or transient issues of the job’s assigned node.
For example, workers of a distributed training job may not
communicate with each other due to network outages or MPI
daemon errors on the host machine. Or, a job may use host
memory more than allowed and want to be scheduled on a
larger machine. Retry from failure helps overcome this type
of failure.
Failure handling today. Due to the intricate process of fail-
ure classification, job schedulers today are utterly ignorant of
the type of failure that occurred and takes simple heuristics
for failure handling. Failed jobs in Microsoft Philly [16] are
retried a fixed number of times to overcome NDT failures
and successfully complete more jobs after retries. To facili-
tate this, in Philly each job is configured to create a model
checkpoint after finishing a certain number of epochs. On the
other hand, NoRetry1 in a large enterprise terminates every
job that experiences a failure to avoid worthless re-execution
of jobs in DT failure.

However, these approaches face significant challenges that
limit their merits: (1) Philly cannot prevent GPU cycles
wasted by DT failures; (2) NoRetry cannot achieve as good
training productivity as Philly because it terminates all NDT
failure jobs that deserve retries for successful training. In ad-
dition, the retry mechanism in NoRetry greatly obfuscates our
understanding of the reasons behind failures between DT and
NDT, affecting user experience.

A DT failure repeats regardless of how the scheduler places
the job on GPUs, whereas an NDT failure may not repeat after
a new scheduling attempt. Therefore, we also call them repet-
itive failure versus non-repetitive failure. Although some jobs
terminate quickly during DT failures, there are DT failures
that take a fairly long time for the failures to be manifested
(e.g., incorrect data inputs).
Opportunities. In this paper, we propose a failure classifier
using machine learning to separate deterministic and non-
deterministic failures at runtime. To reveal opportunities for
using it for predictive retry, we conduct workload character-

1Anonymized upon request by the company.

264    2022 USENIX Annual Technical Conference USENIX Association



1 2~4 5~8 >8 1 2~4 5~8 >8
Number of GPUs

0%
 

10%
 

20%
 

30%
 

40%
 

Job Retry Rate GPU Hours Spent for Retries

(a) Deterministic (DT) Failures

1 2~4 5~8 >8 1 2~4 5~8 >8
Number of GPUs

0%
 

10%
 

20%
 

30%
 

40%
 

Job Retry Rate GPU Hours Spent for Retries

(b) Non-deterministic (NDT) Failures

Figure 1: Job retry rates and the fraction of GPU hours spent during retries for DT and NDT over different job sizes.

ization using an openly available Philly trace [2]. The trace
contains information about each training job, including each
attempt of job scheduling, GPUs allocated for the attempt, the
start and end time of job execution during the attempt, and the
job’s final completion status. As a scheduling attempt occurs
in both the initial job issue and subsequent retries on failures,
using the trace we can estimate job retry rates (i.e., # jobs
experiencing retry÷ # all jobs) and the fraction of GPU hours
spent during retries out of all GPU hours. Figure 1 shows the
results for two failure types, DT and NDT, over different job
sizes based on the GPU request distribution.

First, in Figure 1(a), we observe that jobs are frequently
exposed to DT failures and thus waste a significant portion
of GPU hours due to useless retries. Specifically, jobs that
use more GPUs retry execution more often while GPU hours
consumped during retries account for 12.3–19.9% across job
sizes. This is the amount of GPU hours wasted by Philly, yet
can be saved by an optimal predictive retry. Moreover, as
previously stated, DT failures could exhibit high run times to
failure (RTF). In particular, for failed executions, the median
RTF is 614 and 2,458 seconds for DT and NDT, respectively,
with the 80th-percentile increasing to 6,037 seconds for DT
and 34,133 seconds for NDT.

NoRetry does not waste these GPU cycles at all since no
retry occurs. However, Figure 1(b) implies that the training
success rate in NoRetry will go down by around 4.5% since
all NDT failure jobs are doomed to be aborted. To circumvent
NDT failure, users will need to resubmit those jobs to the
cluster and restart training from the initial state. Such restart-
ing indicates that the GPU hours spent in the previous job
executions before the failures become wasteful.

Based on the observations, we believe cluster utilization
and reliability of DL platforms can be enhanced by perform-
ing job retry only when predicted as non-repetitive, guided by
a failure classifier. The idea of adapting job retry based on fail-
ure type is not new but instead has been presented merely as a
design implication [16, 28, 38]. To the best of our knowledge,
our work is the first to evaluate its feasibility.

3 Sibylla Design

Sibylla is an RNN-based prediction system that has the fol-
lowing design goals.

• High accuracy. Sibylla should achieve high prediction ac-
curacy for both types of failures. Otherwise, mispredictions
can lead to low cluster efficiency or low training success rates.

• Ease of use. It is cumbersome to build a new training
dataset every time new failure samples are generated. Once a
prediction model is built, Sibylla provides an option to label
new failure samples and re-train the model automatically.

• Ease of integration. Sibylla operates in a stand-alone agent
or runs on the application side (e.g., Application Master in
Apache YARN) to interact with the scheduler. The scheduler
only needs to send a prediction input to Sibylla and get noti-
fied with the output (DT or NDT). Sibylla does not interfere
with the scheduler’s main tasks, such as job placement.

Samples for training. We use stdout and stderr log messages
to train Sibylla. These logs record the execution information
of the software stack and have been widely used in anomaly
detection and distributed system or software troubleshooting
scenarios [13,19,29,36]. Similarly, every software stack in the
DL cluster records execution- and error-related information
in standard error streams. So, stdout and stderr logs are our
choice of training data in Sibylla. However, using messages
in the log poses a critical challenge: log messages are unstruc-
tured and contain many redundant and uninteresting lines of
text to exclude.

Training workflow. Figure 2 illustrates the workflow of
Sibylla. It first performs data preprocessing to extract useful
log sequences and convert them into semantic vectors. Then,
our RNN-based models are trained with these vectorized in-
puts. Sibylla includes an additional auto-labeling stage based
on a reliable ensemble method to learn new incoming data.
Step 1) Data preprocessing. Because the log file size is typi-
cally non-uniform, it is necessary to transform each original
log to be uniformly sized. A log often indicate failure symp-
toms at the line with relevant keywords (such as failure, error,
etc). With this insight, Sibylla takes up to 5 lines after the
line where such a keyword is present. Sibylla also includes
some lines preceding the keyword as they may indicate a log
sub-sequence that leads to failure. We empirically tested a
variety of line lengths and landed on 20 lines because this is
overall the minimum number of lines producing the highest
prediction accuracies. On not observing the failure keyword,

USENIX Association 2022 USENIX Annual Technical Conference    265



Figure 2: Overall architecture of Sibylla.

Sibylla takes the last 20 lines from the log file as an input for
further preprocessing.

Since the log is in an unstructured plain-text form, we
need parsing and vectorization stages to extract semantic in-
formation, as shown in Figure 3. At the parsing stage, each
log is categorized into a structured template that primarily re-
moves words unrelated to the semantics, such as non-character
words and stop words. The structured template is thus infor-
mative enough to represent the original text. Sibylla applies
the state-of-the-art parsing tool called Drain [12], which has
been widely exploited in prior log-based analysis studies for
its superior effectiveness [11, 22, 37, 39]. A structured text
template is transformed into a semantic vector and fed into
the training model. This vectorization process first digitizes
each word into a vector. It then accumulates all word vectors
of each line in the template into a single semantic vector entry
by weighing each word based on TF-IDF (term frequency-
inverse document frequency) score. Sibylla uses the FastText
algorithm [17] to extract a semantic information across the
log.
Step 2) Model training. The semantic vector sequences serve
as an input to model training. There are two representative
RNN models involved in training Sibylla: bi-directional long
short-term memory (LSTM) and attention-based gated recur-
rent unit (GRU).

Training a log-based detection model can be supervised, un-
supervised, or semi-supervised. Supervised learning ensures
that the model achieves high performance, but this approach
necessitates all data to be labeled ahead of time. However,
cluster job executions generate a significant amount of log
data, making it infeasible to have domain experts label all
DT and NDT failure samples for supervised learning. Instead,
unsupervised learning can proceed with fully unlabeled data
but usually scarifies model performance. Sibylla adopts semi-
supervised learning. It starts model training with partially
labeled data and keeps updating the model with unlabeled
data by auto-labeling them in an online fashion.

Automatic sample labeling. For auto-labeling to be effective,
the classifier is required to make a robust decision. In other
words, the classifier should make good decisions even for

Log Template #3

Loading * symbol is finished 
Loading rule model is finished
model : * is located
Model loading success

Log Template #2

Loading * symbol is finished 
Loading rule model is finished
model : * is located
Model loading success

Semantic  
Vector #3

[0.3,  0.2,  0.4..., 0.6]
[0.2,  0.6,  0.3..., 0.1]
[0.7,  0.0, -0.1..., 0.4]
[0.9, -0.1,  0.2..., 0.8]

Semantic  
Vector #2

[0.3,  0.2,  0.4..., 0.6]
[0.2,  0.6,  0.3..., 0.1]
[0.7,  0.0, -0.1..., 0.4]
[0.9, -0.1,  0.2..., 0.8]

Log Sequence #3

Loading Input symbol is finished
Loading output symbol is finished 
Loading rule model is finished
model : /home/... is located 
Model loading success 

Log Sequence #2

Loading Input symbol is finished
Loading output symbol is finished 
Loading rule model is finished
model : /home/... is located 
Model loading success 

Log Sequence #1

  Loading Input symbol is finished
  Loading output symbol is finished 
  Loading rule model is finished
  model : /home/... is located 
  Model loading success 

Semantic  
Vector #1

Vectorization 
TF-IDF ScoringLog Parsing

Log Sequences 
(Log Files) 

Log Templates 
(Parsed Logs) Semantic Vectors 

Log Template #1

  Loading * symbol is finished 
  Loading rule model is finished
  model : * is located
  Model loading success

[0.3,  0.2,  0.4..., 0.6]
[0.2,  0.6,  0.3..., 0.1]
[0.7,  0.0, -0.1..., 0.4]
[0.9, -0.1,  0.2..., 0.8]

Figure 3: Data preprocessing steps in Sibylla.

unseen data that may confuse the classifier. Sibylla automates
the labeling process by allowing the classifier to leverage the
prediction results of multiple RNN models with different ar-
chitectures. It takes advantage of an ensemble method that
performs voting on the prediction results to decide the fail-
ure type, mitigating the effect of a single wrong prediction.
Specifically, Sibylla trains K RNN models independently (K
= 2 in our default setup) and makes a classification decision
by aggregating information from individual models regarding
the predicted failure type. The final decision is made through
a majority voting mechanism, where each model has an equal
weight of reflecting its decision on DT versus NDT.

Integrating into cluster managers. There are two tasks to
be done by cluster managers to use Sibylla. First, when a
failure of a DL job occurs with a stdout/stderr log contain-
ing an error, the cluster manager transmits it to Sibylla and
receives the notification of the expected failure type. Second,
the cluster manager delivers a batch of log files with labels to
build an initial model or files without labels to improve the
model on observing new failures. Note that our main focus
in this paper is on presenting the design principle of predic-
tive retry. Nonetheless, we believe Sibylla can be imported
into commodity GPU cluster managers without significant
hurdles.

4 Evaluation

We present Sibylla’s accuracy (§ 4.1) and JCT improvements
using a GPU cluster simulator with Philly trace (§ 4.2).

Dataset. Since no dataset for failed DL jobs is publicly
released, we construct one that contains most of the known
failures. We obtained 97 failure log files from the company op-
erating NoRetry and collected additional 159 failure messages
through a manual search on Stack Overflow [1], including 20
out of 21 failure categories (w/o GPU ECC error) presented
in [16]. We then apply data augmentation to enlarge a training
dataset while retaining key properties of the data. For our sce-
nario, two popular text augmentation methods, WordNet [23]
and Word2Vec [9], are used to replace words in an original
log file with cognitive synonyms and create a new augmented

266    2022 USENIX Annual Technical Conference USENIX Association



R1 R2 R3 R4 R5 R6 R7 R8

Training Round (Incremental Learning)

80%
 

85%
 

90%
 

95%
 

100%
Pr

ec
is

io
n

Sibylla
GRU
LSTM
Clustering

R1 R2 R3 R4 R5 R6 R7 R8

Training Round (Incremental Learning)

80%
 

85%
 

90%
 

95%
 

100%

R
ec

al
l

Sibylla
GRU
LSTM
Clustering

Figure 4: Precision and recall for NDT over training rounds.

file. As a result, we have 4468 log files as a dataset.
Although NDT failures are fewer in number than DT fail-

ures in reality, our dataset is augmented such that samples
are balanced between DT and NDT and across failure cat-
egories [38]. This sample balancing is mainly to make the
decision boundary of the model not biased [4, 6, 30, 31, 33].
Further, DL applications appearing in the data are diverse, e.g.,
image classification, language model, and audio recognition,
and run on popular engines like TensorFlow and PyTorch.

Accuracy metrics. For DT/NDT, classifier accuracy is mea-
sured using precision (fraction of predictions that are truly
deterministic/non-deterministic failures) and recall (fraction
of true deterministic/non-deterministic failures predicted cor-
rectly by the classifier). Thus, for both precision and recall,
higher is better.

4.1 Classifier Performance

Accuracy Clustering RNN Model Sibylla OracleLSTM GRU

NDT Precision 89.72 94.78 96.92 97.36 98.66
Recall 85.71 97.32 98.21 98.66 98.66

DT Precision 86.67 97.32 98.24 98.68 98.70
Recall 90.43 94.78 96.96 97.39 98.70

Table 2: Final accuracy among competing classifier designs.

Experiment process. We assess the effectiveness of Sibylla
over training on multiple insertions of new log data. For
this evaluation, we split the dataset into ten partitions
{p1, p2, . . . , p10} and go through eight rounds of training
{R1,R2, . . . ,R8}. Each round has training, validation, and test
data, where training and validation data are used for model
training, while test data is used to report prediction accuracy
(i.e., precision and recall). As the round moves on, Sibylla
auto-labels the previous test data and uses it as new validation
data. To illustrate, in the first round (R1), we use p1, p2, and
p3 as training, validation, and test data, respectively. With
proceeding to R2, the next unused partition (p4) becomes new
test data, while training and validation data are reorganized
into p1 + p2 and p3, respectively. Here, p3 is auto-labeled by
Sibylla. Continuing this process will report accuracy incre-
mentally over eight rounds of training.

Results. We compare Sibylla using the proposed ensemble
classifier with other classifier designs based on a single NN
model (LSTM and GRU) and a non-NN model (Clustering).
Currently, our ensemble model is created by combining two
models, LSTM and GRU. Since these classifiers serve as
auto-labeling, as a baseline we include an oracle method in
which all data used for model training are labeled 100% cor-
rectly. Table 2 shows the prediction accuracy of all competing
classifiers observed in the final round of the incremental train-
ing (i.e., R8) for both DT and NDT. The results show that
as compared to the clustering method, NN-based classifiers
achieve overall higher accuracy for predicting both DT and
NDT. Among NN-based classifiers, Sibylla obtains the high-
est accuracy while approaching the closest to the oracle’s
performance.

In Figure 4, we show how the prediction accuracy for NDT
changes during the incremental training – DT has similar
trends. Our ensemble approach provides prediction with con-
sistently higher precision over training rounds, with Cluster-
ing significantly worse than others as expected. For recall,
there is no substantial difference among NN-based methods.
As higher precision and recall are always desirable, we prefer
an ensemble approach over approaches using a single model
for classification and auto-labeling.

4.2 Simulation Results

Setup. Next, we evaluate our predictive retry while re-
playing the Philly trace on the GPU cluster simulator de-
signed for prior work [10]. We use three job scheduling poli-
cies, smallest-job-first w.r.t. GPU requirement (SJF), 2D-LAS
(DLAS), and 2D-Gittins index (GITTINS) [10], to schedule
jobs in the trace. The cluster comprises 200 nodes, each hav-
ing 8 GPUs, 256 GB of host memory, and 64 CPU cores.

As the trace mainly contains information about each job’s
retry and final status without its log messages, we choose to
apply our classifier created from our dataset (with the pre-
diction accuracy in Table 2) considering the worst (Worst),
average (Average), and best case (Best). For Worst and Best,
we apply misprediction to the longest-running and shortest-
running jobs, respectively – so, the penalty of misprediction is
the highest versus the lowest. For Average, we select the jobs
experiencing misprediction randomly. We have two baselines

USENIX Association 2022 USENIX Annual Technical Conference    267



SJF DLAS GITTINS
Scheduler Policy

13k
 

14k
 

15k
 

16k
 

17k

Av
er

ag
e 

JC
T

(S
ec

on
ds

)

Oracle (100%)
Best
Average
Worst
Full Retry (0%)

Figure 5: JCT reductions for using different schedulers.

to compare with Sibylla: Oracle, which makes 100% cor-
rect predictions, and Full-Retry, which retries jobs without
prediction as done in Philly. For a fair comparison, we take
into account the average JCT (including the queuing time) of
successfully completed jobs only.

As Figure 5 shows, all adaptive retry strategies can reduce
the average JCT compared to the conventional method, Full-
Retry. Best improves the JCT by 15.4% for SJF, 6.5% for
DLAS, and 6.5% for GITTINS, and even Worst reduces the
JCT by 3.6–10.5%. Moreover, strategies based on Sibylla (i.e.,
Best, Average, and Worst) are, on average, only 1.3% worse
than Oracle, which delivers the most JCT reduction. With
high accuracies, Sibylla has a negligible impact on the job
success rate resulting from mispredicting NDT as DT. Our
recall for predicting NDT is 98.66%, lowering the job success
rate by only 0.06% from 75.04%.

5 Related Work

Machine learning-based anomaly detection. Prior work
studies using machine learning on textual log data obtained
from various systems such as HDFS (Hadoop Distributed File
System) and BGL (BlueGene/L) [14] to detect abnormal and
anomalous system behaviors. DeepLog [8] adopts an LSTM
model [15] for anomaly detection and diagnosis. It first trains
the model on normal log messages to learn their sequences
and uses the model to recognize abnormal sequences from
online log data for anomaly detection. LogAnomaly [22] con-
catenates log sequences as a template to extract more precise
log semantics and applies the anomaly detection method sim-
ilar to DeepLog. LogRobust [39] leverages existing learned
word collections such as Word2Vec [9] to analyze various un-
structured logs and measures abnormal logs using Attention-
based Bidirectional LSTM [40]. PLELog [37] proposes semi-
supervised learning based on probabilistic label estimation to
make the sample labeling process more practical.

These strategies aim to detect abnormalities in large-scale
system logs through deep learning. Despite similarities, our
work is differentiated in that it focuses on predicting repeti-
tive DL job failures and assessing how such capability helps
improve job completion times in shared GPU clusters.

DL job failure analysis. Our work is motivated by numer-

ous works that reveal the cluster inefficiency caused by DL
job failures [16, 38]. These works analyze logs for program
failures of industrial jobs from Microsoft Philly, whose public
scheduler log is used for our study. They investigate the cate-
gories and root causes of job failures, suggesting that current
practices of failure handling in DL platforms can be enhanced.
Although they are the first to stress the necessity of an adap-
tive retry mechanism driven by the failure type, no prior work
has faithfully evaluated its feasibility.

6 Concluding Remarks

To deal with DL job failures, it is critical to precisely pre-
dict whether the current failure will repeat or not upon re-
execution. Our RNN-based predictor, Sibylla, correctly in-
forms this repetition potential, enabling the cluster scheduler
to incorporate it to perform an adaptive retry on failure. With
Sibylla, today’s DL platforms not only reduce resource waste
by avoiding retries for repetitive failures but also retain job
productivity by continuing job executions for transient fail-
ures. We confirm this efficacy with trace-driven simulations.

Future works. Misprediction for deterministic failure may
repeat when a job produces similar messages over retries. To
avoid this repetitive misprediction, we could revise the classi-
fier to incorporate the feedback about predictive re-execution
from the cluster scheduler.

Another interesting future work is extending our method
for new failure types that have not occurred. An assumption
we made in the design of Sibylla is that a new type of failure
with unseen semantics does not appear. However, failure mes-
sage formats from online logs could be diverse as developers’
message logging practice is personalized and unstructured.
We have done a brief study on how destructive unknown fail-
ure types are by measuring accuracy when a new failure type
appears in the middle (7th round) of training from Figure 4.
It turns out that the classification accuracy of Sibylla for de-
terministic failure can drop to 40%, especially for precision.
Thus, we may need to incorporate human experts for labeling
new data in low prediction confidence rather than relying on
auto-labeling. Nonetheless, we think the chance of observing
new types of failures is somewhat low.

Acknowledgements

We thank our anonymous shepherd and reviewers for their
valuable comments and suggestions. We also thank Xinyue
Ma from UNIST for helpful feedback and comments. This
work was supported by Samsung Data & Information Technol-
ogy Center, Kakao Brain Corporation, Rebellions Inc., and the
U-K BRAND Research Fund (1.220028.01 and 1.220036.01)
of UNIST(Ulsan National Institute of Science & Technol-
ogy).

268    2022 USENIX Annual Technical Conference USENIX Association



References
[1] Stack Overflow, 2008. https://stackoverflow.com/.

[2] Msr-fiddle/philly-traces, 2019. https://github.com/msr-fiddle/
philly-traces.

[3] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. TensorFlow: A System for Large-Scale Machine
Learning. In OSDI, 2016.

[4] Mateusz Buda, Atsuto Maki, and Maciej A. Mazurowski. A System-
atic Study of the Class Imbalance Problem in Convolutional Neural
Networks. Neural Networks, 2018.

[5] Shubham Chaudhary, Ramachandran Ramjee, Muthian Sivathanu,
Nipun Kwatra, and Srinidhi Viswanatha. Balancing Efficiency and
Fairness in Heterogeneous GPU Clusters for Deep Learning. In Eu-
roSys, 2020.

[6] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip
Kegelmeyer. SMOTE: Synthetic Minority Over-sampling Technique.
Journal of artificial intelligence research, 2002.

[7] Leonardo Dagum and Ramesh Menon. OpenMP: an Industry Standard
API for Shared-Memory Programming. IEEE computational science
and engineering, 1998.

[8] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog:
Anomaly Detection and Diagnosis from System Logs Through Deep
Learning. In CCS, 2017.

[9] Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov
et al.’s negative-sampling word-embedding method. arXiv preprint
arXiv:1402.3722, 2014.

[10] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeong-
jae Jeon, Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. Tiresias:
A GPU Cluster Manager for Distributed Deep Learning. In NSDI,
2019.

[11] Pinjia He, Jieming Zhu, Shilin He, Jian Li, and Michael R Lyu. An
Evaluation Study on Log Parsing and Its Use in Log Mining. In DSN.
IEEE, 2016.

[12] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. Drain: An
Online Log Parsing Approach With Fixed Depth Tree. In ICWS. IEEE,
2017.

[13] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. Experience
Report: System Log Analysis for Anomaly Detection. In ISSRE. IEEE,
2016.

[14] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. Loghub: A
Large Collection of System Log Datasets Towards Automated Log
Analytics. arXiv preprint arXiv:2008.06448, 2020.

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-term Memory.
Neural computation, 1997.

[16] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie
Qian, Wencong Xiao, and Fan Yang. Analysis of Large-Scale Multi-
Tenant GPU Clusters for DNN Training Workloads. In ATC, 2019.

[17] Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze,
Hérve Jégou, and Tomas Mikolov. FastText.zip: Compressing Text
Classification Models. arXiv preprint arXiv:1612.03651, 2016.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. In NIPS,
2012.

[19] Jian-Guang Lou, Qiang Fu, Shengqi Yang, Ye Xu, and Jiang Li. Mining
Invariants from Console Logs for System Problem Detection. In ATC,
2010.

[20] Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram
Venkataraman, Aditya Akella, Amar Phanishayee, and Shuchi Chawla.
Themis: Fair and Efficient GPU Cluster Scheduling. In NSDI, 2020.

[21] Avner May, Alireza Bagheri Garakani, Zhiyun Lu, Dong Guo, Kuan
Liu, Aurélien Bellet, Linxi Fan, Michael Collins, Daniel Hsu, Brian
Kingsbury, et al. Kernel Approximation Methods for Speech Recogni-
tion. arXiv preprint arXiv:1701.03577, 2017.

[22] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei,
Yuqing Liu, Yihao Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, et al.
LogAnomaly: Unsupervised Detection of Sequential and Quantitative
Anomalies in Unstructured Logs. In IJCAI, 2019.

[23] George A Miller. WordNet: A Lexical Database for English. Commu-
nications of the ACM, 1995.

[24] Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar
Phanishayee, and Matei Zaharia. Heterogeneity-Aware Cluster Schedul-
ing Policies for Deep Learning Workloads. In OSDI, 2020.

[25] NVIDIA Collective Communications Library (NCCL), 2017. https:
//docs.nvidia.com/deeplearning/nccl/.

[26] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong
Guo. Optimus: An Efficient Dynamic Resource Scheduler for Deep
Learning Clusters. In EuroSys, 2018.

[27] PyTorch, 2018. https://pytorch.org/.

[28] Junjie Qian, Taeyoon Kim, and Myeongjae Jeon. Reliability of Large
Scale GPU Clusters for Deep Learning Workloads. In WWW, 2021.

[29] Barbara Russo, Giancarlo Succi, and Witold Pedrycz. Mining System
Logs to Learn Error Predictors: A Case Study of A Telemetry System.
Empirical Software Engineering, 2015.

[30] Connor Shorten and Taghi M Khoshgoftaar. A Survey on Image Data
Augmentation for Deep Learning. Journal of big data, 2019.

[31] Connor Shorten, Taghi M Khoshgoftaar, and Borko Furht. Text Data
Augmentation for Deep Learning. Journal of big Data, 2021.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
Is All You Need. In NIPS, 2017.

[33] Jason Wei and Kai Zou. Eda: Easy Data Augmentation Techniques
for Boosting Performance on Text Classification Tasks. arXiv preprint
arXiv:1901.11196, 2019.

[34] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian
Sivathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,
Hanyu Zhao, Quanlu Zhang, Fan Yang, Lidong Zhou. Gandiva: Intro-
spective Cluster Scheduling for Deep Learning. In OSDI, 2018.

[35] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi
Li, Yihui Feng, Wei Lin, and Yangqing Jia. AntMan: Dynamic scaling
on GPU clusters for deep learning. In OSDI, 2020.

[36] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I
Jordan. Detecting Large-scale System Problems by Mining Console
Logs. In SIGOPS, 2009.

[37] Lin Yang, Junjie Chen, Zan Wang, Weijing Wang, Jiajun Jiang, Xuyuan
Dong, and Wenbin Zhang. Semi-supervised Log-based Anomaly De-
tection via Probabilistic Label Estimation. In ICSE, 2021.

[38] Ru Zhang, Wencong Xiao, Hongyu Zhang, Yu Liu, Haoxiang Lin, and
Mao Yang. An Empirical Study on Program Failures of Deep Learning
Jobs. In ICSE. IEEE, 2020.

[39] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong
Dang, Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, et al. Robust
Log-based Anomaly Detection on Unstable Log Data. In Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software
Engineering, 2019.

[40] Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li, Hongwei Hao,
and Bo Xu. Attention-based Bidirectional Long Short-term Memory
Networks for Relation Classification. In Proceedings of the 54th annual
meeting of the association for computational linguistics (volume 2:
Short papers), 2016.

USENIX Association 2022 USENIX Annual Technical Conference    269

https://stackoverflow.com/
https://github.com/msr-fiddle/philly-traces
https://github.com/msr-fiddle/philly-traces
https://docs.nvidia.com/deeplearning/nccl/
https://docs.nvidia.com/deeplearning/nccl/
https://pytorch.org/


[41] Yue Zhu, Weikuan Yu, Bing Jiao, Kathryn Mohror, Adam Moody, and
Fahim Chowdhury. Efficient User-level Storage Disaggregation for
Deep Learning. In CLUSTER, 2019.

270    2022 USENIX Annual Technical Conference USENIX Association



Speculative Recovery: Cheap, Highly Available Fault Tolerance
with Disaggregated Storage

Nanqinqin Li, Anja Kalaba, Michael J. Freedman, Wyatt Lloyd, and Amit Levy
Princeton University

Abstract
The ubiquity of disaggregated storage in cloud computing
has led to a nascent technique for fault tolerance: instead of
utilizing application-level replication, newly-launched backup
instances recover application state from disaggregated storage
(REDS) after a primary’s failure. Attractively, REDS provides
fault tolerance at a much lower cost than traditional replication
schemes, wherein at least two instances are running. Failover
in REDS is slow, however, because it sequentially first detects
primary failure and only then starts recovery on a backup.

We propose speculative recovery to accelerate failover and
thus increase the availability of applications using REDS.
Instead of proceeding with failover sequentially, speculative
recovery safely and efficiently parallelizes detecting primary
failure and running recovery on a backup, by employing our
new super and collapse primitives for disaggregated stor-
age. Our implementation and evaluation of speculative recov-
ery demonstrate that it considerably reduces failover time.

1 Introduction

Replicated, network-attached storage devices have all but
replaced local disks in cloud settings. Such disaggregated
disks provide a host of useful features, including scalable
storage capacity and performance, convenient data backup,
and disk fault-resilience [16, 33, 49].

Their ubiquity has led developers to begin leveraging disk
fault-tolerance to achieve application fault-tolerance [12, 15,
50]. When an application running on one instance, the pri-
mary, uses a disaggregated disk, its state survives its failure.
This enables an emerging fault-tolerance technique we term
recovery from disaggregated storage (REDS) where a backup
instance recovers application state from the disaggregated
disk and continues serving the application. In general, single-
node applications can use REDS unmodified as long as they
are crash-consistent—i.e. they persist state updates to disk
before externalizing them to clients and are able to recover
state from disk after a crash [27, 39, 58]. This includes most
relational databases, local key-value stores, and file systems.

REDS is an alternative to the traditional application-level
replication, where the application running on the primary con-

tinuously replicates its state to at least one backup [20, 22, 24,
42, 44, 56, 62, 66]. Application-level replication provides high
availability since it ensures that a backup can service requests
immediately should the primary fail. However, application-
level replication is also expensive as each backup runs an
entire instance of the application, requiring as much CPU,
memory, storage, network resources, etc., as the primary.

In contrast, REDS only requires running a single instance
of the application at a time but sacrifices availability since
failover can be slow. In particular, REDS requires that the
disaggregated disk be detached from a potentially faulty in-
stance before initiating recovery on a new one. As a result,
REDS risks long recovery periods on the new instance when
the original may have come back online faster, e.g., when a
transient networking issue resolves itself, or waiting too long
to determine the original instance has indeed failed.

In this paper, we introduce speculative recovery, an appli-
cation fault-tolerance technique that leverages disaggregated
disks to achieve resource efficiency similar to REDS with
significantly higher availability. Speculative recovery begins
as soon as the primary appears unavailable, e.g., when it stops
responding to health checks. It immediately begins recovery
on a new backup instance by creating an independent clone
of the disk and attaching it to the backup, while the primary
instance is not interfered with to allow it an opportunity to
come back in parallel. Whichever instance, the primary or the
backup, becomes available first serves the application while
the other is deallocated. This reduces unavailability to the
minimum of either the primary becoming available again or
the backup’s speculative recovery completing.

There are two major challenges in realizing speculative
recovery on existing disaggregated storage systems. The first
is ensuring application correctness, i.e., linearizability [37],
when both the primary and the backup are using a clone of
the same application disk. This requires that updates to the
disk from one instance do not interfere with the other, and
that the external world only ever sees the effects of updates
from one instance. The second challenge is ensuring good
disk performance for the backup instance to recover the ap-
plication. Many existing disaggregated storage systems have
designs for disk clones that provide poor performance.

USENIX Association 2022 USENIX Annual Technical Conference    271



To address these challenges, speculative recovery intro-
duces new primitives, super and collapse, for disaggre-
gated disks. super allows a disk to be in a superposition
temporarily where two independent versions of the disk are
allowed to diverge until a collapse when one is observed,
and it appears as though the other never existed. In essence,
super provides disk clones with isolation and good perfor-
mance, and collapse guarantees correctness by ensuring
only one, primary or backup, of the clones can be observed.
super uses copy-on-write to achieve effective isolation,

and the ephemeral nature of superposition enables a new de-
sign we term collocated-clone that minimizes the negative
performance impact of copy-on-write. With collocated-clone,
a disk clone directly refers to its parent’s allocation table to
locate data blocks, eliminating the overhead of re-populating
the clone’s own allocation table, which is a major bottleneck
in some existing disaggregated storage systems. Collocated-
clone also adopts a minimal data path by keeping all data
blocks of a clone on the same storage shards as the corre-
sponding blocks of its parent. We believe that such colloca-
tion does not skew the data distribution of a storage cluster
given that only one clone continues after collapse.
collapse uses a dirty bit to ensure only one clone of

the disk is ever externally observable. The dirty bit reflects
whether there have been any updates to the disk from the
primary after super is invoked. If so, collapse determines
that the primary may have been observed and then aborts
speculative recovery by deallocating the disk clone and the
backup. Otherwise, collapse ensures no future writes from
the primary will be accepted and then informs the backup that
it can start externalizing state updates.

We implement super and collapse based on Ceph [68],
an open-source distributed storage system, and use them to
implement speculative recovery from disaggregated storage
(SpecREDS). Our evaluation compares SpecREDS to REDS
for three stateful applications: MySQL, PostgreSQL, and
MariaDB. We find that our collocated-clone design achieves
near-normal disk performance that supports application re-
covery up to an order of magnitude faster compared to Ceph’s
native clone design. Such improvement enables SpecREDS
to achieve significantly faster failover in some scenarios.

In summary, the main contributions of this paper include:

• Speculative recovery, which increases the availability of
applications that achieve cheap fault tolerance using REDS.

• The super and collapse primitives and their designs in-
cluding collocated-clone for disk cloning with near-normal
performance and the dirty bit for guaranteeing correctness.

2 Highly Available Applications

Stateful data center applications strive to provide high avail-
ability in the face of individual machine failures. This is often

exacerbated on the cloud because developers may have no
way to recover data from a virtual machine’s or a container’s
disk after a failure. Practitioners today adopt both traditional
fault-tolerance techniques at the application-level as well as
cloud-native techniques that rely on disaggregated storage.

2.1 Application-level Replication

A standard approach to highly available fault tolerance for
stateful applications is to replicate the application across mul-
tiple compute instances (physical machines, VMs, containers,
etc.). Commonly, applications use primary-backup replica-
tion where a primary instance handles all client requests and
forwards the execution logs to backup instances. If the pri-
mary fails, backups are ready to be promoted with minimal
overhead since their local state is already up-to-date.

However, application-level replication has two major draw-
backs. First, it can be costly. Because backups require re-
dundant compute resources—CPU, memory, etc.—adding a
backup costs as much as hosting the original application. Sec-
ond, support for application-level replication is often imple-
mented separately for each application [53, 56]. While many
stateful applications support replication, including MySQL,
PostgreSQL, and MongoDB, many do not, including SQLite,
LevelDB, and RocksDB.

2.2 Recovery From Disaggregated Storage

Two recent trends have enabled alternative fault-tolerance
strategies. First, cloud platforms have adopted disaggregated
storage [28, 41, 45, 52] to provide virtual block devices to
enable more efficient resource management and provide more
reliable services [16, 33, 49]. Data stored on these disaggre-
gated disks is striped and replicated across a storage area
network to provide highly available and highly durable block
devices that can outlast failures of the compute instances they
are attached to. Second, provisioning compute instances (VMs
or containers) has become fast—new compute instances can
be spawned in seconds rather than in minutes [2, 5, 13, 47].

As a result, practitioners have adopted an alternative fault-
tolerance mechanism, REDS, leveraging disaggregated disks
and fast provisioning [12, 15, 50]. In REDS (Figure 1), in-
stead of maintaining live backup replicas of the application, a
backup instance is only spawned after the primary instance is
presumed down. The disaggregated disk is then moved from
the failing primary to the new backup and the application is
restarted on the backup. Since the application data stored on
disk persist through machine failures, the backup can recover
the application to a consistent pre-failure point.

REDS provides fault tolerance to stateful applications at
virtually no additional cost, since only a single instance is
provisioned most of the time, with at most a short overlap
of a primary and backup instance during failures. Moreover,

272    2022 USENIX Annual Technical Conference USENIX Association



(1) Timeout 
unresponsiveness

(2) Move over
disk

(3) Restart on 
new instance

(2) Wait out 
unresponsiveness

(1) Create a 
clone

(2)' Restart on 
new instance

Proceed in parallel 
Whoever finishes first wins!

REDS

Speculative 
recovery 

Figure 1: REDS vs speculative recovery. REDS sequentially
times out the unresponsiveness and restarts the application on
a new instance by moving over the application disk, whereas
speculative recovery parallelizes the two instances.

unlike application-level replication, it does not require ex-
plicit support from the application and can thus support any
crash-consistent [27,39,58] application—i.e., any application
that persists state changes before externalizing them and can
recover to a consistent state from disk following a crash fail-
ure. This includes most relational databases, local key-value
stores, and file systems.

2.2.1 Lower Application Availability

Compared to application-level replication, REDS suffers from
lower availability due to the relatively long process of restart-
ing the application after failure has occurred.

As shown in Figure 1, the failover process in REDS
includes two steps: (1) determining whether the primary
instance has failed and (2) recovering the application on
a backup instance. Step 1, the timeout phase, is typically
achieved using a timeout of unresponsiveness for the primary
to avoid spurious downtime during Step 2. Step 2 recovers the
application by spawning a new instance as the backup, mov-
ing over the application disk, and restarting the application.

These steps must happen sequentially since both require ex-
clusive access to the disk. For the timeout phase, the primary
needs the disk attached in case it becomes responsive again.
For the recovery phase, the backup needs the disk to restart
the application. As a result, downtime following a failure is
dictated by the sum of the timeout and the recovery phase.

Clearly, short recovery and short timeouts would improve
availability. Much of recovery—spawning a new virtual ma-
chine or container and attaching a disaggregated disk to these
instances—is relatively fast and becoming faster in modern
data center infrastructure. For example, an AWS EC2 vir-
tual machine can be allocated and spawned in a few seconds
with optimized operating system distributions [57], while

containers as well as other cloud virtualization techniques
can allocate runtime environments an order of magnitude
faster [13, 47]. Similarly, disaggregated disks, such as a Ceph
block device, can be attached to a new virtual machine or
container in a few hundred milliseconds.

Application recovery time, on the other hand, is less
predictable—the same application might require a few sec-
onds or several minutes to recover depending on, e.g., the state
of the application’s write-ahead-log. As a result, very short
timeouts risk triggering such long recoveries unnecessarily
when the primary’s unresponsiveness is ephemeral (e.g. the
monitor is faulty, a packet is lost, etc.). For instance, if a tem-
porary network problem leads to 6 seconds of unavailability
for the primary, using a short 5 second timeout to trigger a
1 minute recovery leads to 65 seconds of unavailability. In
contrast, a longer timeout would have only 6 seconds of un-
availability in this scenario. In practice, “primary-is-failed”
timeouts are often quite long—for example, Kubernetes uses
a default 5 minute timeout to detect node failure [43].

3 Introducing Speculative Recovery

REDS can result in poor availability because the primary must
be marked irreversibly failed before recovery can be attempted
on a backup. Timeout lengths are chosen conservatively to
avoid long recoveries if the failure is temporary, and recovery
cannot begin until after this timeout is expired. In the worst
case, this results in downtime during a long timeout followed
by more downtime until a long recovery completes.

This is fundamental to REDS because there is no way to
predict the future. When downtime is detected, we do not
yet know if the primary has actually failed, if the failure can
self-heal quickly, or if a failed health-check was actually due
to temporary network issues or a faulty monitor, etc. We also
cannot know how long it would take for a backup to be ready
to process requests from clients—depending on the disk state
when the primary failed, it could be seconds or minutes.

But suppose an oracle did know, at the moment of apparent
failure, how long recovery would take on a backup as well
as how long the primary’s apparent failure would last. Such
an oracle could achieve considerably better availability by
avoiding timeouts completely while avoiding a slow recovery
when the primary’s failure is temporary. In particular, the
oracle’s optimal decision would be to choose the shorter of
waiting for the primary to self-heal or immediately beginning
recovery on a backup without waiting.

We propose a new failover design, speculative recovery,
that makes similarly optimal choices in practice, without
knowing the future. Speculative recovery pursues both paths
(Figure 1) in parallel and either aborts recovery if the primary
becomes available first, or irreversibly marks the primary
failed if recovery completes first.

To accomplish this, speculative recovery creates and at-
taches an independent clone of the primary’s disk to a new

USENIX Association 2022 USENIX Annual Technical Conference    273



backup instance immediately when primary downtime is de-
tected. The backup begins recovery from the cloned disk,
potentially in parallel with the primary’s continued operation
if it is not actually failed. This results in a “superposition”
where the parent and child disks are permitted to temporarily
diverge, as long as neither is observed externally. Once one
of them is observed (i.e., if the primary becomes available or
when clients are redirected to a fully recovered backup), the
superposition collapses and the unobserved disk is destroyed.
Specifically, this superposition state collapses in two cases:

• Observing the primary. If any writes to the parent disk
are observed, the primary is assumed to be available and
the superposition is collapsed by aborting recovery on
the backup and deallocating the child disk.

• Observing the backup. If recovery on the backup com-
pletes successfully and no writes have been issued to
the parent disk, the superposition is collapsed by deallo-
cating the parent disk, destroying the primary, and pro-
moting the backup to be the new primary by pointing all
clients to it.

Thus, speculative recovery on the backup can complete
though the primary may still be operational, while guarantee-
ing external correctness. As long as the application is crash-
consistent, observing clients cannot distinguish between spec-
ulative recovery and REDS, except that failover may appear
much faster. If a client receives an acknowledgement from
the primary for a request that modifies application state, crash
consistency mandates that the primary must have written to
the disk, which would halt failover to the backup, in turn
ensuring the backup is never observable.

Conversely, if a client is directed to communicate with the
backup, the primary cannot have acknowledged any state-
modifying operations or is no longer servicing client requests,
and thus the backup’s state is consistent with all previous
reads from the primary.

To realize these important properties, speculative recovery
introduces two new disaggregated storage primitives: super
and collapse. super produces a temporal, performant disk
clone using copy-on-write (COW) semantics, resulting in a
superposition in which the parent disk (attached to the pri-
mary) and the child disk (attached to the backup) diverge from
the same state. collapse destroys the parent disk if and only
if it has not changed since super, otherwise it destroys the,
yet unobserved, child disk.

It is critical that disk clones spawned by super are fast to
create and performant, so as not to slow down recovery on the
backup significantly. super uses a new form of COW disk,
collocated-clone, that improves COW writes over existing de-
signs by up to an order of magnitude and performs almost as
well as a regular, non-COW disk. Similarly, collapse must
operate atomically—it must determine whether any writes
have been made to the parent disk and block future writes if

not, atomically—but should also not unduly delay failover.
collapse uses a single, global dirty bit for the entire parent
disk to track whether writes have occurred in the superposi-
tion, allowing collapse to use a simple protocol with only a
single round trip to one storage shard. In both cases, these de-
signs are enabled by the temporal nature of the superposition.

4 Design

This section details our design for speculative recovery. It
describes the system components, the design of super, the
design of collapse, why and when speculative recovery is
correct, and finally discusses some performance concerns.

4.1 Components and Overview
A speculative recovery system consists of three components:
(1) an instance pool to host applications; (2) disaggregated
storage that provides highly durable and highly available vir-
tual disks to applications with the super and collapse prim-
itives; (3) a failure monitor that monitors the health of the
running application instances and coordinates speculative re-
covery for failed instances.

When the failure monitor presumes the primary instance
is unhealthy, e.g., if the monitor fails to connect to the appli-
cation, it initiates speculative recovery. It invokes super on
the primary’s disaggregated disk which creates a lightweight
clone using COW semantics (§4.2). In addition, super
causes the parent disk to begin tracking writes to support
the collapse protocol (§4.3). Next, the monitor spins up a
new backup instance from the same application boot image
as the primary, except with the cloned child disk attached in
place of the parent. When the backup finishes restarting the
application, the monitor calls collapse, which either atomi-
cally promotes the backup if there have been no writes to the
parent disk or deallocates it if there have been writes.

4.2 super: Creating a Disk Superposition
As the backup instance boots and starts up the application,
it may write to the child disk. For example, fsck might fix
corruption in the file system and the application may replay
and commit or rollback uncommitted transactions from its
write-ahead log (WAL). Meanwhile, the primary is still al-
lowed to function should it become available before recovery
on the backup is complete. As a result, the parent and child
disks are likely to diverge. However, this divergence retains
application correctness because the backup is not observable
to clients until after it is determined that the primary has not
acknowledged any state-modifying requests.

This design is relatively simple to realize using existing
primitives in disaggregated disks. In particular, many disag-
gregated disks provide copy-on-write clones that are quick
to create. In principle, this should allow speculative recovery

274    2022 USENIX Annual Technical Conference USENIX Association



1 2 4 8 16 32
# of concurrent writes

0

10

20

30

40

M
ea

n 
la

te
nc

y 
(m

s) clone
regular

Figure 2: Concurrent writes on EBS. Writes are issued si-
multaneously in batches of 1 write to 32 concurrent writes.

to explore both paths simultaneously—waiting out the unre-
sponsiveness on the primary and recovering the application
on the backup—and achieve the same outcome as an oracle.
In addition, COW clones provide the child disk with the same
level of durability guarantee as the parent since dirtied data
blocks are copied as new blocks and thus can be applied the
same replication schema (e.g., three-way replication).

Unfortunately, existing designs for COW disk clones per-
form very poorly for recovery workloads. We conducted
black-box experiments on EBS to measure the I/O perfor-
mance of EBS clones. EBS supports clones by first creating
a snapshot from a volume and then creating a new volume
from that snapshot. Figure 2 shows the write performance
of EBS clones with varying levels of parallelism. Normally,
concurrent writes on a regular EBS volume can exploit disk
parallelism well (the green line): the average latency when 32
writes are in-flight is only 2.6x the latency of a single write.
However, for a cloned EBS volume (the red line), this relation
becomes 7x, indicating significant performance bottlenecks
for a cloned volume under highly parallel writes.

To understand the underlying reasons, we instrumented the
open-source Ceph codebase where a similar behavior exists:
on a cloned disk, the average latency with 32 writes in-flight is
7.1x the latency of a single write (more results and details are
described in §6.2). We discovered two fundamental problems
with the Ceph clone implementation, and we speculate that
these may be general to many other clone designs.

First, because disaggregated disks typically treat a clone’s
dirtied blocks like any other new disk block, most COW de-
signs copy dirtied blocks to different storage shards than the
ones hosting the original blocks. This results in considerable
overhead compared to modifying blocks in place. Second,
each dirtied block requires allocating a new location in the
storage area network, which is typically a blocking operation.
As a result, concurrent writes that touch mostly newly dirtied
blocks are performed in sequence rather than in parallel.

In short, copying dirty blocks to new locations over the
network increases single write latency significantly, while
serialized allocation eliminates most of the parallelism ben-
efit for concurrent writes. These overheads are reasonable
for typical uses of COW-cloned disks, where COW writes,
and particularly concurrent writes, are infrequent [25]. How-

ever, a recovery workload is often write-intensive. As a result,
these overheads can dramatically increase the time to recover
applications—in some cases from seconds on a regular disag-
gregated disk to several minutes on a COW clone.

4.2.1 Collocated-Clone

super addresses both performance issues, copying overhead
and serialization of COW writes, using a mechanism we term
collocated-clone. Rather than treating copied dirty blocks the
same as newly allocated blocks, collocated-clone reuses the
parent’s allocation table to collocate child blocks with their
corresponding parent blocks. This accomplishes two things.
First, copying a dirtied block never traverses the network, as
child blocks are always on the same shard as the parent blocks.
Second, COW writes never require a blocking allocation oper-
ation as the parent’s allocation table already contains enough
information to derive the child block’s location—specifically,
it is always on the same shard as the parent’s and its name
can be derived from the parent block’s name.

As a result, COW writes in collocated-clone require only
marginally more work than normal writes. The dirtied block
must be copied, but only locally—incurring local disk over-
head, but not network overhead. Moreover, these writes never
require a new block allocation, so concurrent writes are al-
ways just as parallelizable as on a regular, non-COW disk.

Collocated-clone is not suitable for many uses of COW-
clones because it risks amplifying any skew in the original
disk’s allocation. However, in speculative recovery, clones are
temporary: after a short period of coexistence, it is either the
child being deallocated or the child succeeding the parent and
carrying on. Shards only need to have sufficient extra storage
to store dirtied blocks temporarily.

In addition, collocated-clone only provides limited isolation
between the parent and child. Because collocated-clone does
not require the parent to do COW, the parent can directly
update its data blocks in case it self-recovers. Thus, if the
parent updates a data block the child has not copied, the child
can see those updates, breaking the isolation. Again, this is
permissible in the special semantics of superposition since if
the parent is ever updated, the child will never be externalized.

4.3 collapse: Collapsing a Superposition

By allowing the parent and child disks to diverge in their
superposition, speculative recovery introduces potential ap-
plication inconsistency that must be hidden from clients. To
prevent such inconsistencies, collapse uses a single disk-
global dirty bit to indicate whether there have been writes
applied to the parent disk since the creation of the child. It
must also have a means of atomically promoting the backup
instance to be the new primary, even with in-flight operations
from the old primary.

USENIX Association 2022 USENIX Annual Technical Conference    275



Tracking primary writes. When super is invoked on a
disk, its disk-global dirty and allow-write bits are initially
set to false and true, respectively, on a fault-tolerant tracking
shard in the storage cluster (this may simply be one of the
data shards). When a shard of the parent disk receives a write
request, before servicing the write, it requests permission to
perform the write from the tracking shard. If the allow-write
bit is true, the tracking shard sets the dirty bit and allows the
shard to proceed with the write. Otherwise it responds that
the shard should reject the write.

Atomic promotion. collapse operations are performed
on the tracking shard. This shard atomically checks the dirty
bit and, if it is still false, sets the allow-write bit to false,
preventing any future write attempts to the parent disk. It
then returns an acknowledgment that the parent disk is dis-
abled and being deallocated. Otherwise, if the dirty bit is true,
it responds that the parent disk has been observed, that the
backup should be taken down, and begins asynchronously
deallocating the child disk, aborting failover.

Tracking disk modification using a disk-global dirty bit
allows collapse to complete quickly, as the only atomic
operation is limited to a single node in the disaggregated stor-
age cluster, avoiding expensive multi-node protocols such as
two-phase commit. Such a tracking mechanism may be un-
necessary and inappropriate for long-lived COW-clones that
may have subsequent children and grandchildren. However,
due to the ephemeral nature of the superposition, and because
it is at most one clone of a disk at any given time, this design
allows collapse to be supported efficiently.

After promotion of the backup is complete, the primary
might still be able to service client reads from its in-memory
cache, even though its disk has been deallocated by collapse.
This would externalize potentially stale values. To prevent
this, a stronger method is needed to sever the old primary
from the clients. The specific mechanisms to achieve this
may be cloud-platform dependent, but one option is to use
an “elastic IP” [18] to remap the old primary’s IP address to
the newly promoted primary, automatically rerouting clients.
Other mechanisms such as using a firewall to block the pri-
mary’s access to the network would also work.

4.4 Correctness and the Failure Model

Speculative recovery ensures correctness, i.e., linearizabil-
ity [37], by ensuring two properties. First, only one instance
of an application is accessible to clients at any point in time.
Second, if the backup is promoted and becomes accessible, its
state begins from the previous primary’s last acknowledged
changes and thus it looks like a continuation of the old pri-
mary. The first property is achieved trivially using atomic
promotion. The second property is achieved using super and
collapse in sequence for a crash-consistent application: a
backup is only promoted by collapse if there have been no

writes since super, and thus the disk it recovers from must
include the previous primary’s last acknowledged changes as
required by crash consistency.

Our design of collapse uses writes to the primary’s disk as
a signal of liveness to abort failover. This will correctly detect
crash failures where the primary stops completely. However,
it will not detect more nuanced kinds of failures such as partial
failures or fail-slow failures. For example, even if the primary
is disconnected from the clients, it may still write to disk for
internal operations such as log rotation and garbage collection.
This means that writes to the primary’s disk may not always
reflect client-visible application state changes, and collapse
would abort failover in these cases. In addition, fail-slow fail-
ures, where applications are slow but not inaccessible, can
occur [26, 34, 40, 60]. In these failure situations, speculative
recovery can be falsely and repeatedly aborted, causing an
increased failover latency. In all these cases, speculative re-
covery should fall back to REDS by using a timeout to force
failover when recovery is aborted repeatedly.

5 Implementation

We implemented a prototype speculative recovery system,
SpecREDS, and deployed it on AWS EC2. The instance pool
is implemented as a docker container pool on top of EC2
compute instances, where application images can be directly
pulled from the docker registry. The failure monitor is imple-
mented as a simple daemon process that pings the application
instances with read-only queries to determine connectivity
and health. As an independent component, the monitor also
needs to be fault-tolerant. Many orchestration architectures
provide fault-tolerant monitors such as those in EC2 Auto
Scaling groups, Kubernetes, etc.

Our implementation of the disaggregated storage layer is
based on Ceph [68], an open-source distributed storage sys-
tem. On top of its backend object store called RADOS, Ceph
provides highly durable and highly available block storage
called rbd (Rados Block Device) that can remotely attach a
rbd disk as a Linux block device through its kernel driver.
SpecREDS focuses on the block interface due to its prevalent
adoption on cloud and its simpler interface. We believe that
the concept of speculative recovery can be applied to other
cloud storage interfaces like network file systems [17] and
object stores [19]. The implementation is based on Ceph re-
lease v16.2.4. The artifact of SpecREDS is publicly available.
Please refer to the appendix for the artifact description.

Background on Ceph rbd. We give a short background
on rbd necessary to understand our implementation. rbd also
provides disk clone functionality: a disk snapshot is first taken,
then a disk clone can be created from that snapshot. While
clone creation is fast, rbd ’s native clone implementation has
the performance problems of copying over the network and
serialized concurrent COW writes, as discussed in §4.2.

276    2022 USENIX Annual Technical Conference USENIX Association



Disk P alloc. table 

Block 0: shard X

Block 1: shard Y

Block 2: shard Z

Block 3: shard Y

Data shard Y

Block 1 (P)

Block 1 (C)

Metadata shard
Disk P: dirty

Child (C)
Parent (P)

(1)
(2)

(3)

(4)
(1)(2)

(3)

Figure 3: Parent and child write path after super. The
parent and child disks are assigned ID P and C, respectively.
Only the first parent write to shard Y performs steps 3 and 4.

rbd implements the functionality of an “allocation table”
with two separate utilities. First, each rbd disk has an object
map, a bit map indicating the existence of the disk’s data ob-
jects. A COW write needs to update the child’s object map
by marking the corresponding bit “dirty”, which is a block-
ing operation due to locking, causing the effect of serialized
concurrent COW writes. Second, the location of a data object
is calculated deterministically by an algorithm based on the
object name and the cluster layout [69]. Since objects have
unique names, a child object will likely be placed on a differ-
ent shard than its parent. For clarity, this section assumes that
a rbd disk has an “allocation table” that combines the two
utilities, as shown in Figure 3.

In addition, a rbd clone disk depends on its parent snap-
shot, and such dependency prevents the parent from deletion
unless the cloned child is deleted first. As a result, for repeated
failovers, the latest child will carry a chain of parent depen-
dencies. These parents keep taking up space even though they
are not needed anymore, as well as the child keeps suffering
from COW penalties even after the failover is complete.

Collocation by reusing parent’s “allocation table.” To
accomplish this, super directly assigns the parent disk to
the child, including all data objects and the object map. This
achieves two things. First, a COW write never needs to up-
date the object map since by reusing parent’s object map, the
corresponding bit is already updated by the parent. Second,
the child uses the same object names as the parent to locate
objects, allowing for collocation of parent and child objects.

To differentiate, the parent and the child are assigned a
unique ID. When accessing the disk, they identify themselves
to the storage cluster using that ID. This means that creating
the child disk is fast because it only involves the assignment
of a unique ID. The names of the objects are tagged with the
unique ID to identify the object ownership (parent or child).

To determine how to serve a child I/O, the data shard first
checks the existence of the child object and the corresponding
parent object by directly querying the backend object store.
COW is performed for a child write if the child object does
not exist but the parent object does. Figure 3 demonstrates
this process (dashed red arrows). By reusing the allocation
table, child access will be directed to the same shard holding
the corresponding parent objects (steps 1 and 2) and thus
allowing for collocation (step 3).

Object size. Another factor affecting COW performance is
the object size since objects are the minimal unit of copying.
But if a COW write contains some whole objects, copying is
unnecessary for these objects. With large objects, data copying
imposes huge overhead; with small objects, writes are more
likely to contain whole objects to reduce copying overhead,
but the overhead of allocating more smaller objects could
overwhelm and thus degrade the overall performance. Our
benchmark shows that rbd ’s default 4 MB object size is
not ideal for many database applications whose default page
size is only 4 KB to 64 KB. The the sweet spot for these
applications is around 64 KB.

Dirty bit tracking and atomic promotion. collapse
elects the data shard that stores the parent disk’s metadata
(which is a single object) as the tracking shard. When super
is invoked on the parent disk, its unique ID is registered to the
tracking shard and then broadcasted to all data shards. The
data shards then add the ID to a tracking list. When receiving
a write with ID in the tracking list, the data shard must ask
the tracking shard for permission to proceed (blue solid arrow,
step 3 in figure 3). If permission is granted, the data shard can
then submit this write and remove the ID from the tracking
list; otherwise, this write must be rejected.

The tracking shard, by default, grants permission to any
data shard requesting (step 4 in figure 3), sets the dirty bit
associated with the ID, and notifies the other data shards to
remove the ID from their tracking lists. The tracking shard
also persists the dirty bit by writing it to the disk’s metadata,
allowing it to be replicated along with the metadata. In case
the current tracking shard fails, another shard holding a replica
of the metadata is elected the new tracking shard.

When initiating an atomic promotion, based on the dirty bit
status of the parent disk, the tracking shard performs either of
the two actions atomically: (1) if the dirty bit is set, the track-
ing shard returns an error to indicate that promotion is rejected
and the child disk should be deallocated; (2) otherwise, the
tracking shard starts rejecting all requests-for-permission to
the parent disk and acknowledges that promotion can proceed.

Dirty bit tracking adds one additional RTT to at most the
number of writes equivalent to the number of data shards
in the cluster. Our evaluation shows that this has negligible
performance impact (§6.2).

Deallocation with garbage collection. collapse deallo-
cates the child disk by asynchronously garbage-collecting
all objects associated with the child’s unique ID. Similarly,
the parent disk is deallocated by asynchronously garbage-
collecting parent objects that have a corresponding child ob-
ject and reassigning those who do not to the child’s ownership.
After this process is complete, the child no longer depends
on the parent and no longer needs to do COW. Asynchronous
garbage collection minimizes the performance impact to the
storage cluster’s normal operation.

USENIX Association 2022 USENIX Annual Technical Conference    277



6 Evaluation

This evaluation answers the following questions:

• How does the performance of collocated-clone disks com-
pare to that of normal disks and general-clone disks? (§6.2)

• What is the recovery latency for various applications and
failure scenarios when using a collocated-clone disk com-
pared to using a normal disk and a general-clone disk?
(§6.3)

• How does the failover latency of SpecREDS compare to
REDS? (§6.4)

• What are the overheads of SpecREDS over REDS in terms
of application performance after recovery, resource over-
head, and overhead due to false positives? (§6.5)

We find that our implementation of a collocated-clone disk
provides disk-level performance close to that of a normal
disk and is much faster than a general-clone disk (§6.2).
This performance translates to recovery latency when us-
ing a collocated-clone disk being close to using a normal
disk (§6.3). This similar recovery latency leads to specula-
tive recovery always providing failover latency comparable to
REDS and often providing much lower failover latency across
a wide variety of failover scenarios (§6.4).

6.1 Experimental Setup
We conducted our evaluation on EC2. The SpecREDS storage
layer has four storage shards by EC2 instance type i3en with
access to 7500 GB NVMe local SSDs and 25 Gbps network
bandwidth. As shown in Table 1, our storage layer delivers
performance comparable to popular cloud storage services.

For the primary and backup instances, we use the m5n
instance type with 16 vCPUs, 64 GB RAM, and 25 Gbps net-
work bandwidth, and for the application clients, we use an
instance with 32 vCPUs, 128 GB RAM, and 25 Gbps network
bandwidth. All instances are in the same availability zone
as each other and the storage layer. We also set up a simple
docker orchestrator environment on the primary and backup
instances where applications are running in docker contain-
ers. The client instance runs oltpbench [31] with 100 virtual
clients sending requests to the active instance. The primary is
initially the active instance, while the failover process with
our orchestrator makes the backup the active instance as it
completes. The failure monitor, which pings the instances
every second, runs as a separate daemon process on the client
machine. We believe that this setup mimics existing systems
like EC2 Auto Scaling groups and GCP Kubernetes Engine.

We pick three representative database applications: MySQL
with InnoDB, PostgreSQL, and MariaDB with RocksDB.
These applications meet the requirements of REDS and are
widely used. The oltpbench client loads these application by
running the TPC-C workload [65].

KIOPS Tput (MB/s) Latency (ms)
EBS gp3 16/16 1000/1000 0.5/0.7
GCP SSD PD 15/15 245/245 0.6/0.7
Our storage layer 75/26 1000/630 0.38/2.0

Table 1: Raw disk performance. Comparing the raw disk
performance of EBS General Purpose SSD (gp3), GCP SSD
Persistent Disk, and our storage layer. Numbers in each cell
are for read/write.

6.2 Disk-level Performance
To build up to an end-to-end availability comparison, we start
by showing a disk-level performance comparison between a
regular, non-COW rbd disk, a collocated-clone disk imple-
mented with super, and a general-clone disk implemented
with native rbd cloning (rbd-clone). We use an object size
of 64 KB for all disks. The experiments examine single write
performance, concurrent write performance, performance for
real recovery workloads, and the impact of the dirty bit on the
parent disk performance. Our results indicate that the main
source of improvement comes from the elimination of object
map update operations, which could increase the latency of a
single write by 6.1x under highly parallel I/Os.

Single COW write latency. As the first set of experiments,
we isolate the latency impact of the COW designs when there
is no concurrency with an experiment that issues single writes,
where only a single write is in flight at a time. Figure 4a
compares the mean latency (averaged over 20,000 writes) of
COW writes with super and rbd-clone to normal writes
with rbd for varying write sizes. A closed-loop client issues
writes to random offsets.

For writes smaller than the object size, write latency on
super is 14% higher than rbd while rbd-clone is 220%
higher. super provides this similar performance because it
avoids an object map update operation and does the copy
locally instead of having to transmit data over the network.
When the write size equals the object size (64 KB), no COW
is necessary. This isolates the latency effect of object map up-
date operations. For rbd-clone, this results in 2 ms of added
latency (the update operation is basically another write), while
super has identical performance to normal writes because it
does not need to update the object map.

Concurrent COW writes. Next, we evaluate the latency
of COW write under varying levels of concurrency. Figure 4b
shows the mean latency of 4 KB COW writes as we vary
concurrency from 1 write in flight at a time up to 32 writes
in flight. A closed-loop client simultaneously issues n writes
to random offsets, waits for all of their responses, and then
repeats this process.

The latency of rbd-clone increases sharply with concur-
rency: the mean latency with 32 writes in flight is 6.1x higher
than the mean latency with 1 write in flight. We found that
this high latency is due to parallel object map update opera-

278    2022 USENIX Annual Technical Conference USENIX Association



4 8 16 32 48 64
Write size (KB)

0

2

4

6

M
ea

n 
la

te
nc

y 
(m

s)

rbd

(a) Single writes

1 2 4 8 16 32
# of concurrent writes

0

10

20

30

40

50
super

(b) Concurrent writes

80 90 95 99 99.999.99

Percentile

0
20
40
60
80
100

rbd-clone

(c) Read CDF

80 90 95 99 99.999.99

Percentile

0
100
200
300
400
500

(d) Write CDF

Figure 4: COW performance comparison. (a) Latency for varying size COW writes with no concurrency; (b) Latency for 4 KB
COW writes under increasing levels of concurrency; (c)/(d) Read/write CDFs from replaying a trace of recovery operations.

tions being serialized by the client’s disk driver. In contrast,
super provides similar performance to rbd under concur-
rency because it avoids updates to the object map: both have
comparable mean latency that ranges from 2 ms with a con-
currency of 1 to 4 ms with a concurrency of 32.

Performance on real recovery workloads. To quantify
how these improvements of super translate to performance in
real application recovery workloads, Figures 4c and 4d show
read and write CDFs collected from replaying a recovery
workload trace with fio [32]. The trace captures the recovery
work for a Postgres database with 20 GB TPCC data and 1
GB of WAL at the time of an injected kernel panic failure.

For read, all three disks have similar read latency up to
p99.9. super and rbd-clone have higher read latency be-
yond p99.9 due to the overhead of COW that may occupy a
majority of disk throughput under high load and cause heavy
I/O contention. For write, the write latency of rbd-clone is
much higher than rbd. In contrast, the write latency of super
is comparable to rbd up to p99.9.

Dirty bit tracking overhead. As discussed in §5, the dirty
bit tracking mechanism of SpecREDS may impact the perfor-
mance of the parent disk because some parent writes require
an additional round trip to set the dirty bit. This could become
a problem if the primary instance self-heals and continues
serving the application. We performed an experiment that
invokes super every second while measuring raw IOPS on
the parent disk. Even under such an extreme condition, the
parent disk achieves the same IOPS numbers. Thus, the only
overhead of dirty bit tracking is increased latency for the few
writes that set the dirty bit when the primary is still alive.

Summary. We believe that these disk-level improvements
of super, as shown in Figure 4, can achieve recovery latency
very close to a regular rbd disk in real failure scenarios, en-
abling end-to-end application availability improvement for
SpecREDS, as presented in the next two subsections.

6.3 Application Recovery Latency
We ran a series of experiments to understand how disk-
level performance of the three disk types (rbd, super, and
rbd-clone) affects recovery latency as we vary failure type
and failure timing. SpecREDS operates on a disk clone
(super by default or rbd-clone) with COW penalties, which
increases application recovery latency compared to REDS us-
ing a regular rbd disk without COW. It is critical for such
latency increase to be relatively minor to show practical im-
provement in end-to-end application availability (§6.4)

For these experiments, the application initially runs in a
container on the primary instance, handling requests from the
clients. Then, a failure is injected to the primary. To isolate
recovery latency, the failure monitor detects loss of connec-
tivity with no timeout and immediately initiates failover, and
the application restarts on the backup instance. The recovery
latency is measured at the client side as the length of time
between when the TPC-C throughput drops to zero and when
it resumes. Failures are injected either by synchronously stop-
ping the docker container and unmounting the disk (clean
failures) or by causing a kernel panic (unclean failures).

We found the type of failure has a major effect on recovery
latency. Stopping the primary container tries to gracefully shut
down the application (this is the case for MariaDB but not
for MySQL and Postgres), and unmounting the disk flushes
file system cache such that the file system is not corrupted.
Therefore, the disk is in a cleaner state and can recover faster.
Kernel panic, on the other hand, immediately crashes the
instance without giving a chance to clean up, leaving the disk
in an unclean state that takes longer for the backup to recover.
In addition, we found the size of WAL at time of failure also
significantly impacts recovery latency.

Our full range of experiments have recovery latencies that
vary from 1–70 s when run on rbd. We capture block-level
traces of those recovery workloads with blktrace and then re-
play them with fio on rbd, super, and rbd-clone. Replaying
traces ensures the workload is identical for all three disks.

USENIX Association 2022 USENIX Annual Technical Conference    279



S/.2G S/1G P/1G S/.4G S/2G P/5G S/5G P/1G P/5G
0 0

40 40

80 80

120 120

160 160

R
ec

ov
er

y 
la

te
nc

y 
(s

) MySQL Postgres MariaDB

rbd super rbd-clone

Figure 5: Application recovery latency from various disk
states. Recovery latency is shown for our three applications
running on rbd, super, and rbd-clone. Failures are injected
using docker stop (S) or a kernel panic (P). Labels are failure
types followed by WAL size in GB.

To make results legible while demonstrating the effect of
varying WAL sizes and failure types, we select three scenarios
to show for each application. The recovery latency for each
disk with these scenarios is shown in Figure 5. In all cases, we
see that super improves performance over rbd-clone. This
is especially pronounced for Postgres whose recovery work-
load is generally more write-intensive, exacerbating the write
performance bottlenecks in rbd-clone shown in §6.2. Fur-
ther, recovery on super is only slightly slower than recovery
on rbd by 13% on average.

6.4 End-to-end Failover Latency

To quantify the effect of speculative recovery for complete
end-to-end failover scenarios, we simulated various failover
scenarios and compare the latency across REDS (using rbd),
SpecREDS (using super by default), SpecREDS (using
rbd-clone), and the oracle model (using rbd). The oracle
model shows the lower bound on failover latency: it runs re-
covery on a rbd disk immediately after a primary issues its
last write (or simply waits for primary to come back online,
whichever is shorter). Thus, the oracle shows failover latency
without either REDS’s timeout or SpecREDS’s slower disk
performance. On the other hand, REDS initiates recovery
after a full timeout, while SpecREDS initiates much sooner
after only one second of an unresponsive ping.

The simulations explored three variables: the primary-
is-failed timeout, the recovery latency for the backup, and
if/when the primary self-heals. Results are divided into broad
categories depending on the timeout length (short, medium,
or long), recovery length (short or long), and whether the pri-
mary self-heals after the timeout but before backup recovery
completes (true or false positive recovery for REDS). Results
with a long timeout (e.g., the Kubernetes default timeout of
five minutes) are similar to a medium timeout but have even
higher failover latency for REDS, so we only show results for
a medium timeout. Results with false positive recovery for

long short long long (FP) short
Recovery length

0 0

40 40

80 80

120 120

160 160

A
pp

lic
at

io
n 

un
av

ai
la

bi
lit

y 
(s

)

Timeout=1min Timeout=5s

(I) (II) (III) (IV) (V)

REDS
SpecREDS (rbd-clone)

SpecREDS
Oracle

Figure 6: End-to-end failover latency. Representative
failover scenarios, picked by varying the lengths of time-
out and recovery. Bar group IV shows a false positive (FP)
failover for REDS

REDS all similarly inflate only the latency of REDS, so we
only show one of these results. This leads to five categories.

Figure 6 shows a representative result from each of these
five categories. The medium timeout is one minute and the
short timeout is five seconds. The recovery latencies are
picked from the results in §6.3. The long recovery is from
Postgres with an unclean failure and a 5 GB WAL (around 70
seconds of recovery latency on rbd). The short recovery is
from Postgres with a clean failure and a 0.4 GB WAL (around
8 seconds on rbd).

The two leftmost bar groups show scenarios with medium
timeouts and demonstrate one major part of SpecREDS’s
availability improvement over REDS. Because SpecREDS
starts recovery early without waiting for a full timeout, it
completes failover much sooner and thus significantly reduces
application unavailability.

The three rightmost bars in Figure 6 demonstrate short
timeout failure scenarios. Bar groups III and V shows similar
performance for REDS and SpecREDS with a long (III) or
short (V) recovery. In these cases, SpecREDS start recovery
slightly sooner than REDS. But, its recovery takes slightly
longer because its super disk is slightly slower than the rbd
disk used by REDS. With a long recovery (III), this makes
REDS’s unavailability marginally shorter than SpecREDS.
With a short recovery (V), this makes SpecREDS’s unavail-
ability marginally shorter than REDS. Finally, bar group IV
shows a false positive failover where the primary is available
again (we used 15 seconds for illustration) shortly after the
timeout. SpecREDS decreases unavailability considerably in
this scenario by allowing the primary to continue instead of
committing to recovery on the backup with no turning back.

Overall, there are three takeaways. First, the failover latency
of SpecREDS (rbd-clone) is consistently the highest, indi-
cating that the improved performance of the super disk is the
key to achieving the availability improvement of SpecREDS.
Second, SpecREDS achieves significantly lower failover la-
tency when REDS uses a medium timeout (bar groups I and

280    2022 USENIX Annual Technical Conference USENIX Association



0 20 40
Time after recovery (s)

0

1

2

3

4
T

hr
ou

gh
pu

t (
K

re
q/

s)

REDS
SpecREDS
SpecREDS(rbd-clone)

Figure 7: Throughput after recovery. Time 0 is right after
recovery completes and clients resume.

II) because this timeout dominates REDS’s unavailability;
SpecREDS also achieves lower failover latency for false posi-
tives when REDS uses a short timeout (IV), while achieving
similar failover latency in other cases (III and V). Third, Spe-
cREDS is always close to the oracle lower bound, suggesting
it achieves most of the possible availability improvement for
a REDS-based fault tolerance scheme.

6.5 Other SpecREDS Overheads
To understand the other overheads of SpecREDS, we evalu-
ated application performance immediately after recovery is
complete, analyzed production health monitor logs to esti-
mate the resource overhead of SpecREDS, and discussed the
performance overhead on the storage layer’s normal operation
due to false positives.

Application performance after recovery. After the
backup instance completes recovery and gets promoted,
collapse asynchronously transfers parent objects to the
child. During this time, COW is still used for writes that
go to objects whose ownership has not yet been transferred.
Figure 7 compares application performance following recov-
ery (Postgres, unclean failure with 1 GB WAL) on REDS,
SpecREDS, and SpecREDS (rbd-clone). SpecREDS using
rbd-clone has low throughput due to the continued impact
of COW because the parent-child dependency still exists, as
discussed in §5. In contrast, we see that SpecREDS has a
throughput curve very similar to REDS. Thus, we conclude
that SpecREDS adds negligible overhead to application per-
formance after recovery.

Resource overhead of SpecREDS. Due to running two
instances concurrently during speculative recovery and the
possibility of aborted recovery, SpecREDS incurs additional
resource overhead compared to REDS. The key to under-
standing SpecREDS’s resource overhead is to see how often
it would be incurred. We analyzed a complete collection of
health monitor logs from more than 80 production caching
servers for the past five years. On average, a server is reported

inaccessible once every 2.8 days. Of these reported events,
90% are transient: the server becomes accessible again within
10 seconds. Even with such a high false positive rate, the
frequency of possible server inaccessible event is quite small.
The resource overhead of SpecREDS would be, on average, an
unnecessary backup instance allocation for up to 10 seconds
once every 3.1 days: a 0.004% overhead.

Performance overhead due to false positives. False pos-
itives that trigger speculative failover that is aborted im-
pose performance overhead on the storage layer due to
garbage collection (GC). This may be troublesome since
short-lived failures are common in today’s data center net-
works [21,48,54,60], which could introduce frequent GC that
could harm the storage layer’s normal operation. Our log anal-
ysis described above, however, found that a server is reported
inaccessible once every 2.8 days on average, meaning that
SpecREDS incurs GC overhead only once every few days.
Moreover, GC incurs minor performance overhead, since GC
is asynchronous and thus does not block regular disk I/O
operations, as shown in Figure 7.

7 Related Work

This section reviews related work on application-level repli-
cation, state machine replication, virtual machine replication,
slow recovery in databases, shared storage clustering, disk
snapshotting, and other related uses of speculation within sys-
tems. The most closely related work is the industry’s adoption
of REDS, which is introduced in §2.2 and discussed exten-
sively throughout the paper.

Application-level replication. This is a widely imple-
mented technique for providing high-availability fault tol-
erance. SQL databases, including MySQL, PostgreSQL, Mi-
crosoft SQL Server, as well as NoSQL databases such as Mon-
goDB, replicate client transactions synchronously and persis-
tently to backups before responding to clients [7–10]. This can
provide excellent performance with failover latency shorter
than SpecREDS. However, it requires an extensive implemen-
tation for each individual application since the replication
logic and implementation are application-specific. Many use-
ful persistence applications do not provide high-availability
at the application layer, including SQLite, LevelDB, and
RocksDB [1, 3, 4, 6, 11]. In contrast, Both REDS and Spe-
cREDS support these applications without any modification
or explicit support, since they work at the block-device layer.

Application-level replication requires multiple application
instances at all times to provide fault tolerance: at least the
primary instance and one backup. In contrast, REDS and
SpecREDS only run a single instance almost at all times,
which makes it far cheaper.

Application-level replication may also have lower perfor-
mance in normal operation since it runs expensive replication
protocols for client requests. We believe that this argument

USENIX Association 2022 USENIX Annual Technical Conference    281



needs meticulous measurements to validate because REDS
and SpecREDS do not eliminate the need for a replication
protocol but instead runs it at the storage level. In addition,
the replicas in application-level replication can provide read-
only throughput. Though disaggregated storage can also offer
better disk-level read throughput from data replicas, single
application instance often cannot fully utilize it due to bottle-
necks at CPU and network bandwidth [41]

State machine replication (SMR). This technique pro-
vides high availability for applications that use its interface,
which is typically a log of requests executed in order [62].
SMR is typically implemented either using a consensus algo-
rithm like Paxos [44] or a primary-backup approach [24].
SMR can often provide shorter recovery times than Spe-
cREDS. But, like application-level replication, it requires
multiple instances and thus is more costly than SpecREDS.

Virtual machine (VM) replication. This technique pro-
vides application-agnostic high-availability fault toler-
ance [23, 29, 53, 63]. This technique replicates an entire
VM and thus can make any application or a collection of
applications fault tolerant. However, VM replication is heavy-
weight because it replicates the entire virtual machine (e.g.,
all changes to memory must be replicated before they are ex-
ternalized to provide linearizability). Also, it requires at least
two instances at all times to provide fault tolerance. Specu-
lative recovery supports the smaller set of applications that
are crash consistent, but is much lighter weight and provides
high availability at a much lower cost

Database slow recovery. This is a technique that precedes
the cloud by decades where logs are periodically shipped to a
backup that stores, but does not apply, them until a failover is
needed. This similarly requires fewer backup resources in the
normal case but results in slower recovery. REDS and Spe-
cREDS build on this technique to provide a similar tradeoff
more generally for any crash-consistent application and in a
cloud-native way by using disaggregated storage to provide
the backup its own copy of the disk instead of requiring any
computation from a backup.

Shared storage clustering. This technique allows a storage
volume to be attached to and accessible from multiple appli-
cation instances at the same time, enabling faster failover in a
clustered application setup without dismounting and remount-
ing the volume to another instance [51]. The cloud-native
version of this technique is “multi-attach” [14]. These tech-
niques require a standby backup instance, which is not the
case for REDS and SpecREDS.

Snapshots and checkpoints. Other forms of storage copy
such as snapshots and checkpoints are widely used for data
backup and rollback-based disaster recovery [38, 46, 67].
Many cloud platforms also support automatically taking snap-
shots of application disks on a user-specified schedule. How-

ever, this method does not provide linearizability amid failures
because updates following the latest snapshot will be lost.

Speculation. This is a widely used technique to accelerate
the performance of systems. Here we discuss a few of these
systems that inspired us. Zyzzyva [42] is a Byzantine fault tol-
erance SMR protocol where the replicas speculatively execute
client requests without agreeing on a single total ordering,
and it is then the client’s responsibility to observe and help
resolve any inconsistencies. Speculative recovery adopts a
similar idea that inconsistency can be allowed temporarily
and resolved later.

Speculative Paxos [59] is a SMR protocol where replicas
speculatively execute client requests based on the message
delivery order provided by the underlying network layer. In
cases where this order is violated, a reconciliation protocol is
in place to rollback inconsistent operations. Such inconsisten-
cies are detected before externalizing. Speculative recovery
is similar in that inconsistencies cannot be externalized. This
is also inspired by a similar idea in “rethink the sync” [55]
where external clients are the real observer of the system.

Speculation is also widely adopted for tolerating tail latency
in data-parallel computing such as Hadoop and Spark [64,70].
When a computing job is taking an unexpectedly long time,
the same job will be sent to another worker, and the system
uses the results from whichever finishes first. Hedged requests
are a similar technique that is used for applications that access
many backend systems [30] as well as other domains such as
RAID storage arrays [35, 36]. Speculative recovery is similar
to these techniques in that there are two racing paths and
latency is determined by the first path to finish.

8 Conclusions

We presented speculative recovery, a cheap, highly available
fault-tolerance scheme based on disaggregated storage for
crash-consistent applications. At the core of speculative re-
covery are the two new primitives, super and collapse, for
disaggregated storage. super provides performant disk clones
with the novel collocated-clone design, and collapse en-
sures application correctness, i.e., linearizability, in a failover
process with a disk-global dirty bit. Speculative recovery
achieves the same level of resource efficiency as REDS with
significantly higher availability in most failover scenarios.

Acknowledgments

We thank our anonymous shepherd and reviewers for their
many constructive comments. We thank Khiem Ngo and
Jeffrey Helt for their helpful discussions. We thank Cloud-
Lab [61] for providing compute resources used in the de-
velopment of this project. This material is based upon work
supported by the National Science Foundation under Grants
No. 1763546, 2028869, and 2106530.

282    2022 USENIX Annual Technical Conference USENIX Association



References

[1] About SQLite. https://www.sqlite.org/about.
html.

[2] Docker. https://www.docker.com/.

[3] How we use RocksDB at Rockset. https://rockset.
com/blog/how-we-use-rocksdb-at-rockset/.

[4] LevelDB Store. https://activemq.apache.org/
leveldb-store.

[5] Linux Containers. https://linuxcontainers.org/.

[6] Litereplica: Replication Support for SQLite. http://
litereplica.io/sqlite-replication.html.

[7] Microsoft SQL Server Replication. https://
docs.microsoft.com/en-us/sql/relational-
databases/replication/sql-server-
replication?view=sql-server-ver15.

[8] MongoDB Replication. https://docs.mongodb.
com/manual/replication/.

[9] MySQL Replication. https://dev.mysql.com/doc/
refman/8.0/en/replication.html.

[10] PostgreSQL Replication. https://www.postgresql.
org/docs/9.2/runtime-config-replication.
html.

[11] rocksplicator, RocksDB Replication. https://github.
com/pinterest/rocksplicator.

[12] StatefulSets – Kubernetes. https://kubernetes.io/
docs/concepts/workloads/controllers/
statefulset/.

[13] Alexandru Agache, Marc Brooker, Alexandra Iordache,
Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and
Diana-Maria Popa. Firecracker: Lightweight virtual-
ization for serverless applications. In 17th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI ’20, pages 419–434, Santa Clara, CA,
February 2020. USENIX Association.

[14] Amazon. Attach a volume to multiple in-
stances with Amazon EBS Multi-Attach.
https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/ebs-volumes-multi.html.

[15] Amazon. EC2 Auto Scaling groups. https://
docs.aws.amazon.com/autoscaling/ec2/
userguide/AutoScalingGroup.html.

[16] Amazon. Elastic Block Storage. https://aws.
amazon.com/ebs.

[17] Amazon. Elastic File System. https://aws.amazon.
com/efs/.

[18] Amazon. Elastic IP addresses. https://
docs.aws.amazon.com/AWSEC2/latest/
UserGuide/elastic-ip-addresses-eip.html.

[19] Amazon. Simple Storage Service (S3). https://aws.
amazon.com/s3/.

[20] Michael Baentsch, Georg Molter, and Peter Sturm. Intro-
ducing Application-Level Replication and Naming into
Today’s Web. Computer Networks and ISDN Systems,
28(7–11):921–930, May 1996.

[21] Peter Bailis and Kyle Kingsbury. The network is reli-
able: An informal survey of real-world communications
failures. Queue, 12(7):20–32, 2014.

[22] Magdalena Balazinska, Hari Balakrishnan, Samuel Mad-
den, and Michael Stonebraker. Fault-Tolerance in the
Borealis Distributed Stream Processing System. In Pro-
ceedings of the 2005 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’05, page
13–24, New York, NY, USA, 2005. Association for Com-
puting Machinery.

[23] T. C. Bressoud and F. B. Schneider. Hypervisor-Based
Fault Tolerance. In Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles, SOSP ’95,
page 1–11, New York, NY, USA, 1995. Association for
Computing Machinery.

[24] Navin Budhiraja, Keith Marzullo, Fred B Schneider, and
Sam Toueg. Distributed systems. ch. The Primary-
Backup Approach, pages 199–216, 1993.

[25] Ceph. rbd Persistent Read-only Cache.
https://docs.ceph.com/en/latest/rbd/
rbd-persistent-read-only-cache/.

[26] Mike Y. Chen, Anthony Accardi, and Dave Patterson.
Path-Based Failure and Evolution Management. In First
Symposium on Networked Systems Design and Imple-
mentation, NSDI ’04, San Francisco, CA, March 2004.
USENIX Association.

[27] Vijay Chidambaram, Thanumalayan Sankaranarayana
Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Optimistic Crash Consistency. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, page 228–243, New York,
NY, USA, 2013. Association for Computing Machinery.

[28] Brian Cho and Ergin Seyfe. Taking Advantage of a
Disaggregated Storage and Compute Architecture. In
Spark+AI Summit 2019, SAIS ’19, April 2019.

USENIX Association 2022 USENIX Annual Technical Conference    283

https://www.sqlite.org/about.html
https://www.sqlite.org/about.html
https://www.docker.com/
https://rockset.com/blog/how-we-use-rocksdb-at-rockset/
https://rockset.com/blog/how-we-use-rocksdb-at-rockset/
https://activemq.apache.org/leveldb-store
https://activemq.apache.org/leveldb-store
https://linuxcontainers.org/
http://litereplica.io/sqlite-replication.html
http://litereplica.io/sqlite-replication.html
https://docs.microsoft.com/en-us/sql/relational-databases/replication/sql-server-replication?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/replication/sql-server-replication?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/replication/sql-server-replication?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/replication/sql-server-replication?view=sql-server-ver15
https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/replication/
https://dev.mysql.com/doc/refman/8.0/en/replication.html
https://dev.mysql.com/doc/refman/8.0/en/replication.html
https://www.postgresql.org/docs/9.2/runtime-config-replication.html
https://www.postgresql.org/docs/9.2/runtime-config-replication.html
https://www.postgresql.org/docs/9.2/runtime-config-replication.html
https://github.com/pinterest/rocksplicator
https://github.com/pinterest/rocksplicator
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volumes-multi.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volumes-multi.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://aws.amazon.com/ebs
https://aws.amazon.com/ebs
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://docs.ceph.com/en/latest/rbd/rbd-persistent-read-only-cache/
https://docs.ceph.com/en/latest/rbd/rbd-persistent-read-only-cache/


[29] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike
Feeley, Norm Hutchinson, and Andrew Warfield. Re-
mus: High Availability via Asynchronous Virtual Ma-
chine Replication. In 5th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI ’08,
San Francisco, CA, April 2008. USENIX Association.

[30] Jeffrey Dean and Luiz André Barroso. The Tail at Scale.
Communications of the ACM, 56(2):74–80, February
2013.

[31] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino,
and Philippe Cudré-Mauroux. OLTP-Bench: An Exten-
sible Testbed for Benchmarking Relational Databases.
Proceedings of the VLDB Endowment, 7(4):277–288,
2013.

[32] fio. Flexible I/O tester. https://fio.readthedocs.
io/en/latest/fio_doc.html.

[33] Google. GCP Persistent Disks. https://cloud.
google.com/persistent-disk.

[34] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears,
Casey Golliher, Swaminathan Sundararaman, Xing Lin,
Tim Emami, Weiguang Sheng, Nematollah Bidokhti,
Caitie McCaffrey, Gary Grider, Parks M. Fields, Kevin
Harms, Robert B. Ross, Andree Jacobson, Robert Ricci,
Kirk Webb, Peter Alvaro, H. Birali Runesha, Mingzhe
Hao, and Huaicheng Li. Fail-Slow at Scale: Evidence
of Hardware Performance Faults in Large Production
Systems. In 16th USENIX Conference on File and Stor-
age Technologies, FAST ’18, pages 1–14, Oakland, CA,
February 2018. USENIX Association.

[35] Mingzhe Hao, Huaicheng Li, Michael Hao Tong,
Chrisma Pakha, Riza O. Suminto, Cesar A. Stuardo,
Andrew A. Chien, and Haryadi S. Gunawi. MittOS:
Supporting Millisecond Tail Tolerance with Fast Reject-
ing SLO-Aware OS Interface. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
page 168–183, New York, NY, USA, 2017. Association
for Computing Machinery.

[36] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Ed-
berg Halim, Henry Hoffmann, and Haryadi S. Gunawi.
LinnOS: Predictability on Unpredictable Flash Storage
with a Light Neural Network. In 14th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion, OSDI ’20, pages 173–190. USENIX Association,
November 2020.

[37] Maurice Herlihy and Jeannette M. Wing. Linearizability:
A Correctness Condition for Concurrent Objects. ACM
Transactions on Programming Languages and Systems,
12(3):463–492, 1990.

[38] John H. Howard, Michael L. Kazar, Sherri G. Menees,
David A. Nichols, M. Satyanarayanan, Robert N. Side-
botham, and Michael J. West. Scale and Performance
in a Distributed File System. ACM Transactions on
Computer Systems, 6(1):51–81, feb 1988.

[39] Yige Hu, Zhiting Zhu, Ian Neal, Youngjin Kwon, Tianyu
Cheng, Vijay Chidambaram, and Emmett Witchel.
TxFS: Leveraging File-System Crash Consistency to
Provide ACID Transactions. In 2018 USENIX Annual
Technical Conference, USENIX ATC ’18, pages 879–
891, Boston, MA, July 2018. USENIX Association.

[40] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R.
Lorch, Yingnong Dang, Murali Chintalapati, and Ran-
dolph Yao. Gray Failure: The Achilles’ Heel of Cloud-
Scale Systems. In Proceedings of the 16th Workshop
on Hot Topics in Operating Systems, HotOS ’17, page
150–155, New York, NY, USA, 2017. Association for
Computing Machinery.

[41] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu
John, and Sanjeev Kumar. Flash Storage Disaggregation.
In Proceedings of the Eleventh European Conference on
Computer Systems, EuroSys ’16, New York, NY, USA,
2016. Association for Computing Machinery.

[42] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong. Zyzzyva: Speculative
Byzantine Fault Tolerance. In Proceedings of Twenty-
First ACM SIGOPS Symposium on Operating Systems
Principles, SOSP ’07, page 45–58, New York, NY, USA,
2007. Association for Computing Machinery.

[43] Kubernetes. kube-controller-manager. https://
kubernetes.io/docs/reference/command-line-
tools-reference/kube-controller-manager/.

[44] Leslie Lamport. Paxos Made Simple, Fast, and Byzan-
tine. In Procedings of the 6th International Confer-
ence on Principles of Distributed Systems, OPODIS ’02,
pages 7–9, 2002.

[45] Sergey Legtchenko, Hugh Williams, Kaveh Razavi,
Austin Donnelly, Richard Black, Andrew Douglas,
Nathanael Cheriere, Daniel Fryer, Kai Mast, An-
gela Demke Brown, Ana Klimovic, Andy Slowey, and
Antony Rowstron. Understanding Rack-Scale Disaggre-
gated Storage. In 9th USENIX Workshop on Hot Top-
ics in Storage and File Systems, HotStorage ’17, Santa
Clara, CA, July 2017. USENIX Association.

[46] LVM-HOWTO. Taking a Backup Using Snap-
shots. https://tldp.org/HOWTO/LVM-HOWTO/
snapshots_backup.html.

284    2022 USENIX Annual Technical Conference USENIX Association

https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html
https://cloud.google.com/persistent-disk
https://cloud.google.com/persistent-disk
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
https://tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html


[47] Filipe Manco, Costin Lupu, Florian Schmidt, Jose
Mendes, Simon Kuenzer, Sumit Sati, Kenichi Yasukata,
Costin Raiciu, and Felipe Huici. My VM is Lighter (and
Safer) than Your Container. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
page 218–233, New York, NY, USA, 2017. Association
for Computing Machinery.

[48] Shicong Meng, Arun K. Iyengar, Isabelle M. Rouvellou,
Ling Liu, Kisung Lee, Balaji Palanisamy, and Yuzhe
Tang. Reliable State Monitoring in Cloud Datacenters.
In Proceedings of the 2012 IEEE Fifth International
Conference on Cloud Computing, CLOUD ’12, pages
951–958, 2012.

[49] Microsoft. Azure blob storage. https://azure.
microsoft.com/en-us/services/storage/blobs.

[50] Microsoft. High availability in Azure Database
for PostgreSQL – Single Server. https://
docs.microsoft.com/en-us/azure/postgresql/
concepts-high-availability.

[51] Microsoft. Use Cluster Shared Volumes in a
failover cluster. https://docs.microsoft.com/
en-us/windows-server/failover-clustering/
failover-cluster-csvs.

[52] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu
Zhao, Andrew Wei, In Hwan Doh, and Arvind Krishna-
murthy. Gimbal: Enabling Multi-Tenant Storage Disag-
gregation on SmartNIC JBOFs. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference, SIGCOMM
’21, page 106–122, New York, NY, USA, 2021. Associ-
ation for Computing Machinery.

[53] Umar Farooq Minhas, Shriram Rajagopalan, Brendan
Cully, Ashraf Aboulnaga, Kenneth Salem, and Andrew
Warfield. RemusDB: Transparent High Availability for
Database Systems. Proceedings of the VLDB Endow-
ment, 4(11):738–748, August 2011.

[54] Srihari Nelakuditi, Sanghwan Lee, Yinzhe Yu, Zhi-Li
Zhang, and Chen-Nee Chuah. Fast Local Rerouting for
Handling Transient Link Failures. IEEE/ACM Transac-
tions on Networking, 15(2):359–372, April 2007.

[55] Edmund B. Nightingale, Kaushik Veeraraghavan, Pe-
ter M. Chen, and Jason Flinn. Rethink the Sync. In
Proceedings of the 7th Symposium on Operating Sys-
tems Design and Implementation, OSDI ’06, page 1–14,
USA, 2006. USENIX Association.

[56] Haochen Pan, Jesse Tuglu, Neo Zhou, Tianshu Wang,
Yicheng Shen, Xiong Zheng, Joseph Tassarotti, Lewis

Tseng, and Roberto Palmieri. Rabia: Simplifying State-
Machine Replication Through Randomization. In Pro-
ceedings of the ACM SIGOPS 28th Symposium on Op-
erating Systems Principles, SOSP ’21, page 472–487,
New York, NY, USA, 2021. Association for Computing
Machinery.

[57] Colin Percival. EC2 boot time benchmark-
ing. https://www.daemonology.net/blog/2021-
08-12-EC2-boot-time-benchmarking.html.

[58] Thanumalayan Sankaranarayana Pillai, Vijay Chi-
dambaram, Ramnatthan Alagappan, Samer Al-Kiswany,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. All File Systems Are Not Created Equal:
On the Complexity of Crafting Crash-Consistent Ap-
plications. In 11th USENIX Symposium on Operating
Systems Design and Implementation, OSDI ’14, pages
433–448, Broomfield, CO, October 2014. USENIX As-
sociation.

[59] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr.
Sharma, and Arvind Krishnamurthy. Designing Dis-
tributed Systems Using Approximate Synchrony in Data
Center Networks. In 12th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI ’15,
pages 43–57, Oakland, CA, May 2015. USENIX Asso-
ciation.

[60] Rahul Potharaju and Navendu Jain. When the Network
Crumbles: An Empirical Study of Cloud Network Fail-
ures and Their Impact on Services. In Proceedings of the
4th Annual Symposium on Cloud Computing, SoCC ’13,
New York, NY, USA, 2013. Association for Computing
Machinery.

[61] Robert Ricci, Eric Eide, and CloudLab Team. Introduc-
ing CloudLab: Scientific Infrastructure for Advancing
Cloud Architectures and Applications. login USENIX
Magazine, 39(6), 2014.

[62] Fred B. Schneider. Implementing Fault-Tolerant Ser-
vices Using the State Machine Approach: A Tutorial.
ACM Computing Surveys, 22(4):299–319, December
1990.

[63] Rahul Singh, David Irwin, Prashant Shenoy, and K.K.
Ramakrishnan. Yank: Enabling Green Data Centers
to Pull the Plug. In 10th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI ’13,
pages 143–155, Lombard, IL, April 2013. USENIX As-
sociation.

[64] Riza O. Suminto, Cesar A. Stuardo, Alexandra Clark,
Huan Ke, Tanakorn Leesatapornwongsa, Bo Fu, Da-
niar H. Kurniawan, Vincentius Martin, Maheswara

USENIX Association 2022 USENIX Annual Technical Conference    285

https://azure.microsoft.com/en-us/services/storage/blobs
https://azure.microsoft.com/en-us/services/storage/blobs
https://docs.microsoft.com/en-us/azure/postgresql/concepts-high-availability
https://docs.microsoft.com/en-us/azure/postgresql/concepts-high-availability
https://docs.microsoft.com/en-us/azure/postgresql/concepts-high-availability
https://docs.microsoft.com/en-us/windows-server/failover-clustering/failover-cluster-csvs
https://docs.microsoft.com/en-us/windows-server/failover-clustering/failover-cluster-csvs
https://docs.microsoft.com/en-us/windows-server/failover-clustering/failover-cluster-csvs
https://www.daemonology.net/blog/2021-08-12-EC2-boot-time-benchmarking.html
https://www.daemonology.net/blog/2021-08-12-EC2-boot-time-benchmarking.html


Rao G. Uma, and Haryadi S. Gunawi. PBSE: A Ro-
bust Path-Based Speculative Execution for Degraded-
Network Tail Tolerance in Data-Parallel Frameworks.
In Proceedings of the 2017 Symposium on Cloud Com-
puting, SoCC ’17, page 295–308, New York, NY, USA,
2017. Association for Computing Machinery.

[65] TPC-C. An On-Line Transaction Processing Bench-
mark. http://www.tpc.org/tpcc/.

[66] Peng Wang, Kaiyuan Zhang, Rong Chen, Haibo Chen,
and Haibing Guan. Replication-Based Fault-Tolerance
for Large-Scale Graph Processing. In 2014 44th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN ’14, pages 562–573, 2014.

[67] Andrew Warfield, Russ Ross, Keir Fraser, Christian
Limpach, and Steven Hand. Parallax: Managing storage
for a million machines. In Proceedings of the 10th Con-
ference on Hot Topics in Operating Systems, HotOS ’05,
page 4, USA, 2005. USENIX Association.

[68] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell
D. E. Long, and Carlos Maltzahn. Ceph: A Scalable,
High-Performance Distributed File System. In Proceed-
ings of the 7th Symposium on Operating Systems Design
and Implementation, OSDI ’06, page 307–320, USA,
2006. USENIX Association.

[69] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and
Carlos Maltzahn. CRUSH: Controlled, Scalable, Decen-
tralized Placement of Replicated Data. In Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing,
SC ’06, pages 31–31, 2006.

[70] Matei Zaharia, Andy Konwinski, Anthony D. Joseph,
Randy Katz, and Ion Stoica. Improving MapReduce
Performance in Heterogeneous Environments. In Pro-
ceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation, OSDI ’08, page
29–42, USA, 2008. USENIX Association.

A Artifact Appendix

Abstract
The artifact provides a framework for evaluating SpecREDS
as shown in the evaluation section of the paper. The artifact in-
cludes the source code of SpecREDS’s disaggregated storage
layer (based on Ceph), configuration files and pre-captured
application recovery traces, and handy scripts for instrument-
ing the experiments. Readers can easily use this artifact to
reproduce figures shown in the paper.

Scope
There are two main claims from the paper that the artifact
seeks to validate: (1) the disk-level I/O performance of super,
our novel design and implementation of light-weight, fast disk
clones, is close to that of a regular, non-COW disk, while sig-
nificantly outperforming Ceph’s existing clone implementa-
tion rbd-clone; (2) SpecREDS using super can bring prac-
tical end-to-end application availability improvement over
REDS in various failover scenarios.

Specifically, the paper uses Figures 4 and 5 to prove the
point of the first claim and Figures 6 and 7 to prove the second
claim. The artifact contains experiments to reproduce these
four figures, and readers should be able to compare them with
the original figures in the paper to validate the claims.

Contents
The artifact contains the following items

• The source code of SpecREDS’s disaggregated storage

• A simple tool for measuring disk-level performance

• Pre-configured configs, disk images, and traces

• Scripts for instrumenting all experiments

• Detailed readmes

Hosting
The artifact is hosted on our public GitHub repository
at https://github.com/princeton-sns/specreds. The
tag for the OSDI/ATC artifact evaluation is atc22ae. To get
started, please follow the detailed instructions in the repo.

Requirements
The artifact does not require special hardware or software,
but we highly recommend running the artifact on CloudLab
with a c220g2 or c220g5 machine where the artifact is tested
to be reproducible. If not available, we recommend using a
machine with at least 16 CPU cores, 64 GB memory, 400 GB
of free space on an SSD, and Ubuntu 20.04. We also provide
a qcow2 image for booting up a QEMU VM.

286    2022 USENIX Annual Technical Conference USENIX Association

http://www.tpc.org/tpcc/
https://github.com/princeton-sns/specreds


Direct Access, High-Performance Memory Disaggregation with DIRECTCXL

Donghyun Gouk, Sangwon Lee, Miryeong Kwon, Myoungsoo Jung
Computer Architecture and Memory Systems Laboratory,

Korea Advanced Institute of Science and Technology (KAIST)
http://camelab.org

Abstract
New cache coherent interconnects such as CXL have recently
attracted great attention thanks to their excellent hardware
heterogeneity management and resource disaggregation capa-
bilities. Even though there is yet no real product or platform
integrating CXL into memory disaggregation, it is expected
to make memory resources practically and efficiently disag-
gregated much better than ever before.

In this paper, we propose directly accessible memory dis-
aggregation, DIRECTCXL that straight connects a host pro-
cessor complex and remote memory resources over CXL’s
memory protocol (CXL.mem). To this end, we explore a practi-
cal design for CXL-based memory disaggregation and make
it real. As there is no operating system that supports CXL,
we also offer CXL software runtime that allows users to uti-
lize the underlying disaggregated memory resources via sheer
load/store instructions. Since DIRECTCXL does not require
any data copies between the host memory and remote memory,
it can expose the true performance of remote-side disaggre-
gated memory resources to the users.

1 Introduction

Memory disaggregation has attracted great attention thanks
to its high memory utilization, transparent elasticity, and re-
source management efficiency [1–3]. Many studies have ex-
plored various software and hardware approaches to realize
memory disaggregation and put significant efforts into making
it practical in large-scale systems [4–16].

We can broadly classify the existing memory disaggrega-
tion runtimes into two different approaches based on how they
manage data between a host and memory server(s): i) page-
based and ii) object-based. The page-based approach [4–10]
utilizes virtual memory techniques to use disaggregated mem-
ory without a code change. It swaps page cache data resid-
ing on the host’s local DRAMs from/to the remote mem-
ory systems over a network in cases of a page fault. On the
other hand, the object-based approach handles disaggregated
memory from a remote using their own database such as a
key-value store instead of leveraging the virtual memory sys-
tems [11–16]. This approach can address the challenges im-
posed by address translation (e.g., page faults, context switch-
ing, and write amplification), but it requires significant source-
level modifications and interface changes.

While there are many variants, all the existing approaches
need to move data from the remote memory to the host mem-
ory over remote direct memory access (RDMA) [4, 5, 11–13,
15, 16] (or similar fine-grain network interfaces [7, 9, 10, 17]).
In addition, they even require managing locally cached data
in either the host or memory nodes. Unfortunately, the data
movement and its accompanying operations (e.g., page cache
management) introduce redundant memory copies and soft-
ware fabric intervention, which makes the latency of disaggre-
gated memory longer than that of local DRAM accesses by
multiple orders of magnitude. In this work, we advocate com-
pute express link (CXL [18]), which is a new concept of open
industry standard interconnects offering high-performance
connectivity among multiple host processors, hardware accel-
erators, and I/O devices [19]. CXL is originally designed to
achieve the excellency of heterogeneity management across
different processor complexes, but both industry and academia
anticipate its cache coherence ability can help improve mem-
ory utilization and alleviate memory over-provisioning with
low latency [20–22]. Even though CXL exhibits a great po-
tential to realize memory disaggregation with low monetary
cost and high performance, it has not been yet made for pro-
duction, and there is no platform to integrate memory into a
memory pooling network.

We demonstrate DIRECTCXL, direct accessible disaggre-
gated memory that connects host processor complex and
remote memory resources over CXL’s memory protocol
(CXL.mem). To this end, we explore a practical design for
CXL-based memory disaggregation and make it real. Specifi-
cally, we first show how to disaggregate memory over CXL
and integrate the disaggregated memory into processor-side
system memory. This includes implementing CXL controller
that employs multiple DRAM modules on a remote side. We
then prototype a set of network infrastructure components
such as a CXL switch in order to make the disaggregated
memory connected to the host in a scalable manner. As there
is no operating system that support CXL, we also offer CXL
software runtime that allows users to utilize the underlying
disaggregated memory resources through sheer load/store in-
structions. DIRECTCXL does not require any data copies
between the host memory and remote memory, and therefore,
it can expose the true performance of remote-side disaggre-
gated memory resources to the users.

In this work, we prototype DIRECTCXL using many cus-

USENIX Association 2022 USENIX Annual Technical Conference    287



tomized memory add-in-cards, 16nm FPGA-based processor
nodes, a switch, and a PCIe backplane. On the other hand, DI-
RECTCXL software runtime is implemented based on Linux
5.13. To the best of our knowledge, this is the first work that
brings CXL 2.0 into a real system and analyzes the perfor-
mance characteristics of CXL-enabled disaggregated memory
design. The results of our real system evaluation show that
the disaggregated memory resources of DIRECTCXL can ex-
hibit DRAM-like performance when the workload can enjoy
the host processor’s cache. When the load/store instructions
go through the CXL network and are served from the disag-
gregated memory, DIRECTCXL’s latency is shorter than the
best latency of RDMA by 6.2×, on average. For real-world
applications, DIRECTCXL exhibits 3× better performance
than RDMA-based memory disaggregation, on average.

2 Memory Disaggregation and Related Work

2.1 Remote Direct Memory Access
The basic idea of memory disaggregation is to connect a host
with one or more memory nodes, such that it does not restrict
a given job execution because of limited local memory space.
For the backend network control, most disaggregation work
employ remote direct memory access (RDMA) [4, 5, 11–13,
15,16] or similar customized DMA protocols [7,9,10]. Figure
1 shows how RDMA-style data transfers (one-sided RDMA)
work. For both the host and memory node sides, RDMA needs
hardware support such as RDMA NIC (RNIC [23]), which
is designed toward removing the intervention of the network
software stack as much as possible. To move data between
them, processes on each side first require defining one or
more memory regions (MRs) and letting the MR(s) to the
underlying RNIC. During this time, the RNIC driver checks
all physical addresses associated with the MR’s pages and
registers them to RNIC’s memory translation table (MTT).
Since those two RNICs also exchange their MR’s virtual
address at the initialization, the host can simply send the
memory node’s destination virtual address with data for a
write. The remote node then translates the address by referring
to its MTT and copies the incoming data to the target location
of MR. Reads over RDMA can also be performed in a similar
manner. Note that, in addition to the memory copy operations
(for DMA), each side’s application needs to prepare or retrieve
the data into/from MRs for the data transfers, introducing
additional data copies within their local DRAM [24].

2.2 Swap: Page-based Memory Pool
Page-based memory disaggregation [4–10] achieves memory
elasticity by relying on virtual memory systems. Specifically,
this approach intercepts paging requests when there is a page
fault, and then it swaps the data to a remote memory node in-
stead of the underlying storage. To this end, a disaggregation
driver underneath the host’s kernel swap daemon (kswapd)
converts the incoming block address to the memory node’s

����

����

�����	

����

�����	 ��


���	�	�����
�������


��
����
������
�������

����

����

���	

��� ��������
	
���

��������

���
�������
�����

����

�����	��


���	�	�����
�������


��
����
������
��������

����

���	

Figure 1: Data movement over RDMA.

virtual address. It then copies the target page to RNIC’s MR
and issues the corresponding RDMA request to the mem-
ory node. Since all operations for memory disaggregation is
managed under kswapd, it is easy-to-adopt and transparent
to all user applications. However, page-based systems suffer
from performance degradation due to the overhead of page
fault handling, I/O amplifications, and context switching when
there are excessive requests for the remote memory [16].

Note that there are several studies that migrate locally
cached data in a finer granular manner [4–7] or reduce the
page fault overhead by offloading memory management (in-
cluding page cache coherence) to the network [8] or memory
nodes [9,10]. However, all these approaches use RDMA (or a
similar network protocol), which is essential to cache the data
and pay the cost of memory operations for network handling.

2.3 KVS: Object-based Memory Pool

In contrast, object-based memory disaggregation systems
[11–16] directly intervene in RDMA data transfers using their
own database such as key-value store (KVS). Object-based
systems create two MRs for both host and memory node sides,
each dealing with buffer data and submission/completion
queues (SQ/CQ). Generally, they employ a KV hash-table
whose entries point to corresponding (remote) memory ob-
jects. Whenever there is a request of Put (or Get) from an
application, the systems place the corresponding value into
the host’s buffer MR and submit it by writing the remote
side of SQ MR over RDMA. Since the memory node keeps
polling SQ MR, it can recognize the request. The memory
node then reads the host’s buffer MR, copies the value to
its buffer MR over RDMA, and completes the request by
writing the host’s CQ MR. As it does not lean on virtual mem-
ory systems, object-based systems can address the overhead
imposed by page swap. However, the performance of object-
based systems varies based on the semantics of applications
compared to page-based systems; kswapd fully utilizes local
page caches, but KVS does not for remote accesses. In addi-
tion, this approach is unfortunately limited because it requires
significant source-level modifications for legacy applications.

3 Direct Accessible Memory Aggregation

While caching pages and network-based data exchange are
essential in the current technologies, they can unfortunately
significantly deteriorate the performance of memory disaggre-
gation. DIRECTCXL instead directly connects remote mem-
ory resources to the host’s computing complex and allows
users to access them through sheer load/store instructions.

288    2022 USENIX Annual Technical Conference USENIX Association



��������

�	�

��	

�
�
��
�� �
�����

��

���������� ��� ����

����
��� �����	
��

�
�
��
��

��
��

�������
�� �������
��
��
�������
��

��

���

��
��

��

���

��
��

�
	


��
�
��
�
�

�
��
�
�
�
�

����� �����

�
�

�����

���
�
��

�
�

�����
�

�

�

�

��

���

��
���
����

�
�
��
��
�
�
	

�
�

�
�
��

���	�

�

����

�����
�����

�
�
�	


�
��
�
�

��

� ��!���

���������	
��

��������

����	
��

�������

�������

�����
�������



��
�

��

��"��	������

����������	��
��

���	
��

�

�������
���������	�

��������
	
���

��������
��� �

�
��
���

�����
	�#�

�����
	�#�

�
��


��$������

�
�
�
�
�

%!!
��&
�'�

���������	
�

�
	



�
�
�
��
�

����

%!!
��

����

��	���� ��	"�����

��������������

� �

�

�
�
�
��
�
�
�
�
	

�

�
�
�

�
�
�

��
��
�
�	
��

�
��
������������

�

Figure 2: DIRECTCXL’s connection method. (a) CXL virtual hierarchy. (b) CXL switch.
Figure 3: DIRECTCXL’s network and switch.

Figure 4: DIRECTCXL software
runtime.

3.1 Connecting Host and Memory over CXL
CXL devices and controllers. In practice, existing memory
disaggregation techniques still require computing resources
at the remote memory node side. This is because all DRAM
modules and their interfaces are designed as passive peripher-
als, which require the control computing resources. CXL.mem
in contrast allows the host computing resources directly ac-
cess the underlying memory through PCIe buses (FlexBus); it
works similar to local DRAM, connected to their system buses.
Thus, we design and implement CXL devices as pure passive
modules, each being able to have many DRAM DIMMs with
its own hardware controllers. Our CXL device employs mul-
tiple DRAM controllers, connecting DRAM DIMMs over the
conventional DDR interfaces. Its CXL controller then exposes
the internal DRAM modules to FlexBus through many PCIe
lanes. In the current architecture, the device’s CXL controller
parses incoming PCIe-based CXL packets, called CXL flits,
converts their information (address and length) to DRAM
requests, and serves them from the underlying DRAMs using
the DRAM controllers.
Integrating devices into system memory. Figure 2 shows
how CXL devices’ internal DRAMs are mapped (exposed)
to a host’s memory space over CXL. The host CPU’s sys-
tem bus contains one or more CXL root ports (RPs), which
connect one or more CXL devices as endpoint (EP) devices.
Our host-side kernel driver first enumerates CXL devices by
querying the size of their base address register (BAR) and
their internal memory, called host-managed device memory
(HDM), through PCIe transactions. Based on the retrieved
sizes, the kernel driver maps BAR and HDM in the host’s
reserved system memory space and lets the underlying CXL
devices know where their BAR and HDM (base addresses)
are mapped in the host’s system memory. When the host CPU
accesses an HDM system memory through load/store instruc-
tion, the request is delivered to the corresponding RP, and the
RP converts the requests to a CXL flit. Since HDM is mapped
to a different location of the system memory, the memory
address space of HDM is different from that of EP’s internal
DRAMs. Thus, the CXL controller translates the incoming ad-
dresses by simply deducting HDM’s base address from them
and issues the translated request to the underlying DRAM
controllers. The results are returned to the host via a CXL
switch and FlexBus. Note that, since HDM accesses have no
software intervention or memory data copies, DIRECTCXL
can expose the CXL device’s memory resources to the host
with low access latency.

Designing CXL network switch. Figure 3a illustrates how
DIRECTCXL can disaggregate memory resources from a host
using one or more and CXL devices, and Figure 3b shows
our CXL switch organization therein. The host’s CXL RP is
connected to upstream port (USP) of either a CXL switch
or the CXL device directly. The CXL switch’s downstream
port (DSP) also connects either another CXL switch’s USP or
the CXL device. Note that our CXL switch employs multiple
USPs and DSPs. By setting an internal routing table, our CXL
switch’s fabric manager (FM) reconfigures the switch’s cross-
bar to connect each USP to a different DSP, which creates a
virtual hierarchy from a root (host) to a terminal (CXL de-
vice). Since a CXL device can employ one or more controllers
and many DRAMs, it can also define multiple logical devices,
each exposing its own HDM to a host. Thus, different hosts
can be connected to a CXL switch and a CXL device. Note
that each CXL virtual hierarchy only offers the path from one
to another to ensure that no host is sharing an HDM.

3.2 Software Runtime for DirectCXL
In contrast to RDMA, once a virtual hierarchy is established
between a host and CXL device(s), applications running on
the host can directly access the CXL device by referring to
HDM’s memory space. However, it requires software run-
time/driver to manage the underlying CXL devices and ex-
pose their HDM in the application’s memory space. We thus
support DIRECTCXL runtime that simply splits the address
space of HDM into multiple segments, called cxl-namespace.
DIRECTCXL runtime then allows the applications to access
each CXL-namespace as memory-mapped files (mmap).

Figure 4 shows the software stack of our runtime and how
the application can use the disaggregated memory through
cxl-namespaces. When a CXL device is detected (at a PCIe
enumeration time), DIRECTCXL driver creates an entry de-
vice (e.g., /dev/directcxl) to allow users to manage a
cxl-namespace via ioctl. If users ask a cxl-namespace to
/dev/directcxl, the driver checks a (physically) contiguous
address space on an HDM by referring to its HDM segment
table whose entry includes a segment’s offset, size, and refer-
ence count (recording how many cxl-namespaces that indicate
this segment). Since multiple processes can access this table,
its header also keeps necessary information such as spinlock,
read/write locks, and a summary of table entries (e.g., valid
entry numbers). Once DIRECTCXL driver allocates a seg-
ment based on the user request, it creates a device for mmap
(e.g., /dev/cxl-ns0) and updates the segment table. The user

USENIX Association 2022 USENIX Annual Technical Conference    289



��������	�
����

����	�
�
�
�
��
�
��
	



������
�
���	�

��



����������������

�����
��	������

��������	�

����
����	�

��������

��������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����������

��	
��

��	
�

���

		�

	����


���
����
���

��	

�����

��������

(a) Network topology. (b) Implementation.
Figure 5: CXL-enabled cluster.

application can then map the cxl-namespace to its process
virtual memory space using mmap with vm_area_struct.

Note that DIRECTCXL software runtime is designed for
direct access of CXL devices, which is a similar concept to the
memory-mapped file management of persistent memory de-
velopment toolkit (PMDK [25]). However, it is much simpler
and more flexible for namespace management than PMDK.
For example, PMDK’s namespace is very much the same idea
as NVMe namespace, managed by file systems or DAX with
a fixed size [26]. In contrast, our cxl-namespace is more sim-
ilar to the conventional memory segment, which is directly
exposed to the application without a file system employment.

3.3 Prototype Implementation
Figure 5a illustrates our design of a CXL network topology
to disaggregate memory resources, and the corresponding im-
plementation in a real system is shown in Figure 5b. There
are n numbers of compute hosts connected to m number of
CXL devices through a CXL switch; in our prototype, n and
m are four, but those numbers can scale by having more CXL
switches. Specifically, each CXL device prototype is built on
our customized add-in-card (AIC) CXL memory blade that
employs 16nm FPGA and 8 different DDR4 DRAM modules
(64GB). In the FPGA, we fabricate a CXL controller and eight
DRAM controllers, each managing the CXL endpoint and
internal DRAM channels. As yet there is no processor archi-
tecture supporting CXL, we also build our own in-house host
processor using RISC-V ISAs, which employs four out-of-
order cores whose last-level cache (LLC) implements CXL RP.
Each CXL-enabled host processor is implemented in a high-
performance datacenter accelerator card, taking a role of a
host, which can individually run Linux 5.13 and DIRECTCXL
software runtime. We expose four CXL devices (32 DRAM
modules) to the four hosts through our PCIe backplane. We
extended the backplane with one more accelerator card that
implements DIRECTCXL’s CXL switch. This switch imple-
ments FM that can create multiple virtual hierarchies, each
connecting a host and a CXL device in a flexible manner.

To the best of our knowledge, there are no commercialized
CXL 2.0 IPs for the processor side’s CXL engines and CXL
switch. Thus, we built all DIRECTCXL IPs from the ground.
The host-side processors require advanced configuration and
power interface (ACPI [27]) for CXL 2.0 enumeration (e.g.,
RP location and RP’s reserved address space). Since RISC-V
does not support ACPI yet, we enable the CXL enumeration
by adding such information into the device tree [28]. Specifi-
cally, we update an MMIO register designated as a property of

the tree’s node to let the processor know where CXL RP exists.
On the other hand, we add a new field (cxl-reserved-area)
in the node to indicate where an HDM can be mapped. Our
in-house softcore processors work at 100MHz while CXL
and PCIe IPs (RP, EP, and Switch) operate at 250MHz.

4 Evaluation

Testbed prototypes for memory disaggregation. In addition
to the CXL environment that we implemented in Section 3.3
(DirectCXL), we set up the same configuration with it for our
RDMA-enabled hardware system (RDMA). For RDMA, we use
Mellanox ConnectX-3 VPI InfiniBand RNIC (56Gbps, [29])
instead of our CXL switch as RDMA network interface card
(RNIC). In addition, we port Mellanox OpenFabric Enterprise
Distribution (OFED) v4.9 [30] as an RDMA driver to enable
RNIC in our evaluation testbed. Lastly, we port FastSwap [1]
and HERD [12] into RISC-V Linux 5.13.19 computing envi-
ronment atop RDMA, each realizing page-based disaggregation
(Swap) and object-based disaggregation (KVS).

For better comparison, we also configure the host proces-
sors to use only their local DRAM (Local) by disabling all
the CXL memory nodes. Note that we used the same testbed
hardware mentioned above for both CXL experiments and
non-CXL experiments but differently configured the testbed
for each reference. For example, our testbed’s FPGA chips
for the host (in-house) processors and CXL devices use all
the same architecture/technology and product line-up.
Benchmark and workloads. Since there is no microbench-
mark that we can compare different memory pooling tech-
nologies (RDMA vs. DirectCXL), we also build an in-house
memory benchmark for in-depth analysis of those two tech-
nologies (Section 4.1). For RDMA, this benchmark allocates a
large size of the memory pool at the remote side in advance.
This benchmark allows a host processor to send random mem-
ory requests to a remote node with varying lengths; the re-
mote node serves the requests using the pre-allocated memory
pool. For DirectCXL and Local, the benchmark maps cxl
namespace or anonymous mmap to user spaces, respectively.
The benchmark then generates a group of RISC-V memory
instructions, which can cover a given address length in a
random pattern and directly issues them without software
intervention. For the real workloads, we use Facebook’s deep
learning recommendation model (DLRM [31]), an in-memory
database used for the HERD evaluation (MemDB [12]), and
four graph analysis workloads (MIS [32], BFS [33], CC [34],
and BC [35]) coming from Ligra [36]. All their tables and data
structures are stored in the remote node, while each host’s lo-
cal memory handles the execution code and static data. Table
1 summarizes the per-node memory usage and total data sizes
for each workload that we tested.

4.1 In-depth Analysis of RDMA and CXL
In this subsection, we compare the performance of RDMA
and CXL technologies when the host and memory nodes are

290    2022 USENIX Annual Technical Conference USENIX Association



1K 4K
16K

64K
256K 1M 4M

16M
64M

256M 1G
1

10
100

1k
10k

0 300 2400 2700
Latency (cycles)

PCIe Memory
Network CPU cache 

RDMA

Dire
ct

CXL

DMA

x8.3 faster

DMA

6412
8

25
6

51
2

1K 2K 4K

0
4k
8k

12k
16k

B
re

a
k
d

o
w

n
(c

y
c
le

s
)

Payload (bytes)

L
ib

ra
ry

 
C

o
p

y
 

M
e

m
o

ry
 

N
e

tw
o

rk

6412
8

25
6

51
2

1K 2K 4K

0

1k

2k

B
re

a
k
d

o
w

n
(c

y
c
le

s
)

Payload (bytes)

M
e

m
o

ry
P

C
Ie

 
C

P
U

 C
a

c
h

e
 

L
a

te
n

c
y
 (

c
y
c
le

s
)

Working set size

L
o

c
a

l 
R

D
M

A
 

D
ire

c
tC

X
L

L1D (4)
L2 (24)

Local (60)

CXL (328)

RDMA (2027~2042 cycles)

x5.5
x510.5

x34

Figure 6: RDMA vs. CXL.
(a) RDMA breakdown. (b) CXL breakdown.

Figure 7: Sensitivity tests. Figure 8: Memory hierarchy performance.

configured through a 1:1 connection. Figure 6 shows latency
breakdown of RDMA and DirectCXL when reading 64 bytes of
data. One can observe from the figure that RDMA requires two
DMA operations, which doubles the PCIe transfer and mem-
ory access latency. In addition, the communication overhead
of InfiniBand (Network) takes 78.7% (2129 cycles) of the
total latency (2705 cycles). In contrast, DirectCXL only takes
328 cycles for memory load request, which is 8.3× faster than
RDMA. There are two reasons behind this performance differ-
ence. First, DirectCXL straight connects the compute nodes
and memory nodes using PCIe while RDMA requires proto-
col/interface changes between InfiniBand and PCIe. Second,
DirectCXL can translate memory load/store request from
LLC into the CXL flits whereas RDMA must use DMA to
read/write data from/to memory.
Sensitivity tests. Figure 7a decomposes RDMA latency into es-
sential hardware (Memory and Network), software (Library),
and data transfer latencies (Copy). In this evaluation, we in-
strument two user-level InfiniBand libraries, libibverbs and
libmlx4 to measure the software side latency. Library is
the primary performance bottleneck in RDMA when the size of
payloads is smaller than 1KB (4158 cycles, on average). As
the payloads increase, Copy gets longer and reaches 28.9% of
total execution time. This is because users must copy all their
data into RNIC’s MR, which takes extra overhead in RDMA. On
the other hand, Memory and Network shows a performance
trend similar to RDMA analyzed in Figure 6. Note that the actual
times of Network (Figure 7a) do not decrease as the payload
increases; while Memory increases to handle large size of data,
RNIC can simultaneously transmit the data to the underlying
network. These overlapped cycles are counted by Memory in
our analysis. As shown in Figure 7b, the breakdown analysis
for DirectCXL shows a completely different story; there is
neither software nor data copy overhead. As the payloads
increase, the dominant component of DirectCXL’s latency is
LLC (CPU Cache). This is because LLC can handle 16 con-
current misses through miss status holding registers (MSHR)
in our custom CPU. Thus, many memory requests (64B) com-
posing a large payload data can be stalled at CPU, which
takes 67% of the total latency to handle 4KB payloads. PCIe
shown in Figure 7a does not decrease as the payloads increase
because of a similar reason of RDMA’s Network. However, it

Per-node usage Total
usage

Data stored in
remote memoryLocal Remote

DLRM [31] Less than
100MB

17GB 68GB Embedding tables.
MemDB [12] 4GB 16GB Key-value pairs and tree structure.
Ligra [36] 7GB 28GB Deserialized graph structure.

Table 1: Memory usage characteristic of each workload.

is not as much as what Network did as only 16 concurrent
misses can be overlapped. ote that PCIe shown in Figures 6
and 7b includes the latency of CXL IPs (RP, EP, and Switch),
which is different from the pure cycles of PCIe physical bus.
The pure cycles of PCIe physical bus (FlexBus) account for
28% of DirectCXL latency. The detailed latency decomposi-
tion will be analyzed in Section 4.2.
Memory hierarchy performance. Figure 8 shows latency
cycles of different components in the system’s memory hier-
archy. While Local and DirectCXL exhibits CPU cache by
lowering the memory access latency to 4 cycles, RDMA has neg-
ligible impacts on CPU cache as their network overhead is
much higher than that of Local. The best-case performance of
RDMA was 2027 cycles, which is 6.2× and 510.5× slower than
that of DirectCXL and L1 cache, respectively. DirectCXL
requires 328 cycles whereas Local requires only 60 cycles in
the case of L2 misses. Note that the performance bottleneck
of DirectCXL is PCIe including CXL IPs (77.8% of the total
latency). This can be accelerated by increasing the working
frequency, which will be discussed shortly.

4.2 Latency Distribution and Scaling Study
Latency distribution. In addition to the latency trend (av-
erage) we reported above, we also analyze complete latency
behaviors of Local, RDMA, and DirectCXL. Figure 9 shows
the latency CDF of memory accesses (64B) for the different
pooling methods. RDMA shows the performance curve, which
ranges from 1790 cycles to 4006 cycles. The reason why there
is a difference between the minimum and maximum latency
of RDMA is RNIC’s MTT memory buffer and CPU caches for
data transfers. While RDMA cannot take the benefits from di-
rect load/store instruction with CPU caches, its data transfers
themselves utilize CPU caches. Nevertheless, RDMA cannot
avoid the network accesses for remote memory accesses, mak-
ing its latency worse than Local by 36.8×, on average. In
contrast, the latency behaviors of DirectCXL are similar to
Local. Even though the latency of DirectCXL (reported in
Figures 6 and 7b) is the average value, its best performance
is the same as Local (4∼24 cycles). This is because, as we
showed in the previous section, DirectCXL can take the ben-
efits of CPU caches directly. The tail latency is 2.8× worse
than Local, but its latency curve is similar to that of Local.
This is because both DirectCXL and Local use the same
DRAM (and there is no network access overhead).
Speed scaling estimation. The cycle numbers that we re-
ported here are measured at each host’s CPU using register-
level instrumentation. We believe it is sufficient and better

USENIX Association 2022 USENIX Annual Technical Conference    291



0
200

1800
2000

2200

0
25
50
75

100

C
D

F
 (

%
)

Latency (cycles)

L
o

c
a

l 
R

D
M

A
 

D
ire

c
tC

X
L

 L1D
L2

Local

CXL

4006

Figure 9: Memory-level
latency CDF (64B).

Measurement
clock domain →

DIRECTCXL PCIe 5.0 x8 (Estimated)

CPU (100MHz) CPU (1.2GHz) Time delay

L1/L2 cache 30 30 25 ns
CXL IPs (2.0)* 165 287 239 ns

PCIe FlexBus 91 69 57 ns
DRAM controller 42 126 105 ns

Total 328 512 426 ns
*Including RP, EP, and Switch Unit: cycles

Table 2: Latency breakdown and
estimated 64B load latency.

DLRM

MemDB
0.0

0.5

1.0

N
o

rm
. 

E
x
e

c
. 

T
im

e Swap KVS DirectCXL 

M
IS

B
F

S
C

C
B

C

0.0

0.5

1.0

S
w

a
p

K
V

S
C

X
L0.0

0.5

1.0

N
o

rm
.

E
x
e

c
. 

T
im

e

RDMA Software Workload 

DLRM

S
w

a
p

K
V

S
C

X
L

Mem
DB

S
w

a
p

C
X

L

MIS

S
w

a
p

C
X

L

BFS

S
w

a
p

C
X

L

CC

S
w

a
p

C
X

L

BC

(a) Execution Time. (b) Execution breakdown.
Figure 10: Real workload performance.

than a cross-time-domain analysis to decompose the system
latency. Nevertheless, we estimate a time delay in cases where
the target system accelerates the frequency of its processor
complex and CXL IPs (RP, EP, and Switch) by 1.2GHz and
1GHz, respectively. Table 2 decomposes DirectCXL’s latency
of a 64B memory load and compares it with the estimated time
delay. The cycle counts of L1/L2 cache misses are not differ-
ent as they work in all the same clock domain of CPU. While
other components (FlexBus, CXL IPs, and DRAM controller)
speed up by 4× (250MHz → 1GHz), the number of cycles
increases since CPU gets faster by 12×. Note that, as the
version of PCIe is changed and the number of lanes for PCIe
increases by double, FlexBus’s cycles decrease. The table in-
cludes the time delays corresponding to the estimated system
from the CPU’s viewpoint. While the time delay of FlexBus is
pretty good (∼60ns), the corresponding CXL IPs have room
to improve further with a higher working frequency.

4.3 Performance of Real Workloads

Figure 10a shows the execution latency of Swap, KVS, and
DirectCXL when running DLRM, MemDB, and four work-
loads from Ligra. For better understanding, all the results in
this subsection are normalized to those of Swap. For Ligra, we
only compare DirectCXL with Swap because Ligra’s graph
processing engines (handling in-/out-edges and vertices) is
not compatible with a key-value structure. KVS can reduce the
latency of Swap as it addresses the overhead imposed by page-
based I/O granularity to access the remote memory. However,
it has two major issues behind KVS. First, it requires signif-
icant modification of the application’s source codes, which
is often unable to service (e.g., MIS, BFS, CC, BC). Sec-
ond, KVS requires heavy computation such as hashing at the
memory node, which increases monetary costs. In contrast,
DirectCXL without having a source modification and remote-
side resource exhibits 3× and 2.2× better performance than
Swap and even KVS, respectively.

To better understand this performance improvement of
DirectCXL, we also decompose the execution times into
RDMA, network library intervention (Software), and appli-
cation execution itself (Workload) latencies, and the results
are shown in Figure 10b. This figure demonstrates where
Swap degrades the overall performance from its execution;
51.8% of the execution time is consumed by kernel swap
daemon (kswapd) and FastSwap driver, on average. This is
because Swap just expands memory with the local and remote
based on LRU, which makes its page exchange frequent. The

reason why KVS shows performance better than Swap in the
cases of DLRM and MemDB is mainly related to workload
characteristics and its service optimization. For DLRM, KVS
loads the exact size of embeddings rather than a page, which
reduces Swap’s data transfer overhead as high as 6.9×. While
KVS shows the low overhead in our evaluation, RDMA and
Software can linearly increase as the number of inferences
increases; in our case, we only used 13.5MB (0.0008%) of
embeddings for single inference. For MemDB, as KVS stores
all key-value pairs into local DRAM, it only accesses remote-
side DRAM to inquiry values. However, it spends 55.3% and
24.9% of the execution time for RDMA and Software to han-
dle the remote DRAMs, respectively. In contrast, DirectCXL
removes such hardware and software overhead, which ex-
hibits much better performance than Swap and KVS. Note that
MemDB contains 2M key-value pairs whose value size is
2KB, and its host queries 8M Get requests by randomly gen-
erating their keys. This workload characteristic roughly makes
DirectCXL’s memory accesses be faced with a cache miss
for every four queries. Note that Workload of DirectCXL is
longer than that of KVS, because DirectCXL places all hash
table and tree for key-value pairs whereas KVS has it in local
DRAM. Lastly, all the four graph workloads show similar
trends; Swap is always slower than DirectCXL. They require
multiple graph traverses, which frequently generate random
memory access patterns. As Swap requires exchanging 4KB
pages to read 8B pointers for graph traversing, it shows 2.2×
worse performance than DirectCXL.

5 Conclusion
In this paper, we propose DIRECTCXL that connects host
processor complex and remote memory resources over CXL’s
memory protocol (CXL.mem). The results of our real system
evaluation show that the disaggregated memory resources
of DIRECTCXL can exhibit DRAM-like performance when
the workload can enjoy the host-processor’s cache. For real-
world applications, it exhibits 3× better performance than
RDMA-based memory disaggregation, on average.

6 Future Work and Acknowledgement
The authors are extending the kernel for efficient CXL mem-
ory management and consider having an SoC silicon as fu-
ture work of DirectCXL. This work is protected by one or
more patents. The authors would like to thank the anonymous
reviewers for their comments, and Myoungsoo Jung is the
corresponding author (mj@camelab.org).

292    2022 USENIX Annual Technical Conference USENIX Association

mailto:mj@camelab.org


References

[1] Emmanuel Amaro, Christopher Branner-Augmon, Zhi-
hong Luo, Amy Ousterhout, Marcos K Aguilera, Aurojit
Panda, Sylvia Ratnasamy, and Scott Shenker. Can far
memory improve job throughput? In Proceedings of the
Fifteenth European Conference on Computer Systems,
pages 1–16, 2020.

[2] Ling Liu, Wenqi Cao, Semih Sahin, Qi Zhang, Juhyun
Bae, and Yanzhao Wu. Memory disaggregation: Re-
search problems and opportunities. In 2019 IEEE 39th
International Conference on Distributed Computing Sys-
tems (ICDCS), pages 1664–1673. IEEE, 2019.

[3] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin
AuYoung, Jichuan Chang, Parthasarathy Ranganathan,
and Thomas F Wenisch. System-level implications of
disaggregated memory. In IEEE International Sympo-
sium on High-Performance Comp Architecture, pages
1–12. IEEE, 2012.

[4] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf
Chowdhury, and Kang G Shin. Efficient memory dis-
aggregation with infiniswap. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 17), pages 649–667, 2017.

[5] Marcos K Aguilera, Nadav Amit, Irina Calciu, Xavier
Deguillard, Jayneel Gandhi, Stanko Novakovic, Arun
Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Ki-
ran Tati, et al. Remote regions: a simple abstraction for
remote memory. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 775–787, 2018.

[6] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan
Ruan, Khanh Nguyen, Michael D Bond, Ravi Netravali,
Miryung Kim, and Guoqing Harry Xu. Semeru: A
memory-disaggregated managed runtime. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 261–280, 2020.

[7] Christian Pinto, Dimitris Syrivelis, Michele Gazzetti,
Panos Koutsovasilis, Andrea Reale, Kostas Katrinis,
and H Peter Hofstee. Thymesisflow: a software-
defined, hw/sw co-designed interconnect stack for rack-
scale memory disaggregation. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 868–880. IEEE, 2020.

[8] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag
Khandelwal, Lin Zhong, and Abhishek Bhattacharjee.
Mind: In-network memory management for disaggre-
gated data centers. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, pages
488–504, 2021.

[9] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang,
and Yiying Zhang. Clio: A hardware-software co-
designed disaggregated memory system. In Proceedings
of the 27th ACM International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, pages 417–433, 2022.

[10] Irina Calciu, M Talha Imran, Ivan Puddu, Sanidhya
Kashyap, Hasan Al Maruf, Onur Mutlu, and Aasheesh
Kolli. Rethinking software runtimes for disaggregated
memory. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 79–92, 2021.

[11] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. Dis-
aggregating persistent memory and controlling them
remotely: An exploration of passive disaggregated key-
value stores. In 2020 USENIX Annual Technical Con-
ference (USENIX ATC 20), pages 33–48, 2020.

[12] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Using rdma efficiently for key-value services. In Pro-
ceedings of the 2014 ACM Conference on SIGCOMM,
pages 295–306, 2014.

[13] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. Farm: Fast remote mem-
ory. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), pages 401–414,
2014.

[14] Aleksandar Dragojević, Dushyanth Narayanan, Ed-
mund B Nightingale, Matthew Renzelmann, Alex
Shamis, Anirudh Badam, and Miguel Castro. No com-
promises: Distributed transactions with consistency,
availability, and performance. In Proceedings of the
25th symposium on operating systems principles, pages
54–70, 2015.

[15] Jacob Nelson, Brandon Holt, Brandon Myers, Preston
Briggs, Luis Ceze, Simon Kahan, and Mark Oskin.
Latency-tolerant software distributed shared memory. In
2015 USENIX Annual Technical Conference (USENIX
ATC 15), pages 291–305, 2015.

[16] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K Aguil-
era, and Adam Belay. Aifm: High-performance,
application-integrated far memory. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 315–332, 2020.

[17] Gen-Z Consortium. Gen-Z Final Specifications. https:
//genzconsortium.org/specifications/.

[18] CXL Consortium. Compute Express Link Specification
Revision 2.0. https://www.computeexpresslink.
org/download-the-specification.

USENIX Association 2022 USENIX Annual Technical Conference    293

https://genzconsortium.org/specifications/
https://genzconsortium.org/specifications/
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification


[19] CXL Consortium. Compute Express
Link™ 2.0 White Paper. https://www.
computeexpresslink.org/_files/ugd/0c1418_
14c5283e7f3e40f9b2955c7d0f60bebe.pdf.

[20] Navin Shenoy. A Milestone in Moving Data. https:
//newsroom.intel.com/editorials/milestone-
moving-data.

[21] Debendra Das Sharma. CXL: Coherency, Memory,
and I/O Semantics on PCIe Infrastructure. https:
//www.electronicdesign.com/technologies/
embedded-revolution/article/21162617/cxl-
coherency-memory-and-io-semantics-on-pcie-
infrastructure.

[22] Patrick Kennedy. Compute Express Link
or CXL What it is and Examples. https:
//www.servethehome.com/compute-express-
link-or-cxl-what-it-is-and-examples/.

[23] Hari Subramoni, Ping Lai, Miao Luo, and Dha-
baleswar K Panda. Rdma over ethernet—a preliminary
study. In 2009 IEEE International Conference on Clus-
ter Computing and Workshops, pages 1–9. IEEE, 2009.

[24] Philip Werner Frey and Gustavo Alonso. Minimizing the
hidden cost of rdma. In 2009 29th IEEE International
Conference on Distributed Computing Systems, pages
553–560. IEEE, 2009.

[25] Intel. Persistent Memory Developer Kit Version v1.11.0.
https://pmem.io/.

[26] Intel. NVDIMM Namespace Specification.
https://pmem.io/documents/NVDIMM_Namespace_
Spec.pdf.

[27] UEFI Forum, Inc. Advanced Configuration and Power
Interface (ACPI) Specification Version 6.4. https://
uefi.org/specs/ACPI/6.4/, 2021.

[28] Linaro. The devicetree specification. https://www.
devicetree.org/.

[29] Mellanox. Mellanox ConnectX-3 FDR (56Gbps) Infini-
Band VPI. https://www.mellanox.com/related-
docs/prod_adapter_cards/PB_ConnectX3_VPI_
Card_Dell.pdf.

[30] Xilinx. Mellanox OpenFabrics Enterprise Distri-
bution. https://www.mellanox.com/products/
infiniband-drivers/linux/mlnx_ofed.

[31] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael
Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo
Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu,
Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey
Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman
Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko,
Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vi-
jay Rao, Bill Jia, Liang Xiong, and Misha Smelyan-
skiy. Deep learning recommendation model for per-
sonalization and recommendation systems. CoRR,
abs/1906.00091, 2019.

[32] Michael Luby. A simple parallel algorithm for the max-
imal independent set problem. SIAM journal on com-
puting, 15(4):1036–1053, 1986.

[33] Alan Bundy and Lincoln Wallen. Breadth-first search.
In Catalogue of artificial intelligence tools, pages 13–13.
Springer, 1984.

[34] Fan Chung and Linyuan Lu. Connected components in
random graphs with given expected degree sequences.
Annals of combinatorics, 6(2):125–145, 2002.

[35] Ulrik Brandes. A faster algorithm for betweenness cen-
trality. Journal of mathematical sociology, 25(2):163–
177, 2001.

[36] Julian Shun and Guy E Blelloch. Ligra: a lightweight
graph processing framework for shared memory. In
Proceedings of the 18th ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages
135–146, 2013.

294    2022 USENIX Annual Technical Conference USENIX Association

https://www.computeexpresslink.org/_files/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf
https://newsroom.intel.com/editorials/milestone-moving-data
https://newsroom.intel.com/editorials/milestone-moving-data
https://newsroom.intel.com/editorials/milestone-moving-data
https://www.electronicdesign.com/technologies/embedded-revolution/article/21162617/cxl-coherency-memory-and-io-semantics-on-pcie-infrastructure
https://www.electronicdesign.com/technologies/embedded-revolution/article/21162617/cxl-coherency-memory-and-io-semantics-on-pcie-infrastructure
https://www.electronicdesign.com/technologies/embedded-revolution/article/21162617/cxl-coherency-memory-and-io-semantics-on-pcie-infrastructure
https://www.electronicdesign.com/technologies/embedded-revolution/article/21162617/cxl-coherency-memory-and-io-semantics-on-pcie-infrastructure
https://www.electronicdesign.com/technologies/embedded-revolution/article/21162617/cxl-coherency-memory-and-io-semantics-on-pcie-infrastructure
https://www.servethehome.com/compute-express-link-or-cxl-what-it-is-and-examples/
https://www.servethehome.com/compute-express-link-or-cxl-what-it-is-and-examples/
https://www.servethehome.com/compute-express-link-or-cxl-what-it-is-and-examples/
https://pmem.io/
https://pmem.io/documents/NVDIMM_Namespace_Spec.pdf
https://pmem.io/documents/NVDIMM_Namespace_Spec.pdf
https://uefi.org/specs/ACPI/6.4/
https://uefi.org/specs/ACPI/6.4/
https://www.devicetree.org/
https://www.devicetree.org/
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX3_VPI_Card_Dell.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX3_VPI_Card_Dell.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX3_VPI_Card_Dell.pdf
https://www.mellanox.com/products/infiniband-drivers/linux/mlnx_ofed
https://www.mellanox.com/products/infiniband-drivers/linux/mlnx_ofed


Not that Simple: Email Delivery in the 21st Century

Florian Holzbauer
SBA Research

Johanna Ullrich
University of Vienna*

Martina Lindorfer
TU Wien

Tobias Fiebig
Max-Planck-Institut für Informatik

Abstract
Over the past two decades, the number of RFCs related

to email and its security has exploded from below 100 to
nearly 500. This embedded the Simple Mail Transfer Pro-
tocol (SMTP) into a tree of interdependent and delivery-
relevant standards. In this paper, we investigate how far real-
world deployments keep up with this increasing complexity of
delivery- and security options. To gain an in-depth picture of
email delivery apart from the giants in the ecosystem (Gmail,
Outlook, etc.), we engage people to send emails to eleven
differently configured target domains. Our measurements al-
low us to evaluate core aspects of email delivery, including
security features, DNS configuration, and IP version support
on the sending side across different types of providers.

We find that novel technologies are often insufficiently sup-
ported, even by large providers. For example, while 65.4% of
email providers can resolve hosts via IPv6, only 44.3% can
also deliver emails via IPv6. Concerning security features, we
observe that less than half (41.5%) of all providers rely on
DNSSEC validating resolvers, and encryption is mostly op-
portunistic, with 89.7% of providers accepting invalid certifi-
cates. TLSA, as a DNS-based certificate verification method,
is only used by 31.7% of the providers in our study. Finally,
we turned our eye to the impact modern standards have on
unsolicited bulk email (SPAM). We found that greylisting is
effective, reducing the SPAM volume by roughly half while
not impacting regular delivery. However, and interestingly,
SPAM delivery currently seems to focus on plaintext IPv4
connections, making IPv6-only, TLS-enforcing inbound email
servers a more effective anti-SPAM measure—even though it
also means rejecting a major portion of legitimate emails.

1 Introduction

Electronic mail (email) relies on the Simple Mail Transfer
Protocol (SMTP) for delivery. This protocol was first speci-
fied in 1982 in RFC 821 and is now close to celebrating its

*Christian Doppler Laboratory for Security and Quality Improvement in the Production
System Lifecycle, Security & Privacy Group, Faculty of Computer Science

197
0

198
0

199
0

200
0

201
0

202
0

0

100

200

300

400

500

RF
Cs

Unknown
Informational
Best Current Practice
Historic
Experimental
Draft Standard
Proposed Standard
Internet Standard
Mail
DNS

Figure 1: Overview of the explosion of email-related standards
(“SMTP Camel”), compared to DNS-related standards.

40th birthday [39]. SMTP had two design goals, namely to
allow reliable and efficient delivery of emails. As with many
protocols of the time, security and authenticity were not pri-
orities [16]. In fact, anyone could relay emails through an
SMTP server, which was the default configuration for many
email servers – like Sendmail – until the late 1990s [3].

However, the practical reality of the Internet led to in-
creased security and authenticity requirements [16]. Since
the mid-1990s, hundreds of protocols and extensions have
been introduced to cover these gaps, as illustrated in Figure 1.
In order to authenticate email, attempts mostly rely on the
Domain Name System (DNS), which, in turn, suffers from
authenticity issues. To address those issues, the DNS Security
Extensions (DNSSEC) were introduced in 1999, which en-
abled signing DNS entries [1]. Besides authenticity, the orig-
inal email protocol faced other security-related challenges,
most notably confidentiality, as emails were exchanged in
plaintext. In addition to end-to-end encryption approaches
like Pretty Good Privacy (PGP) [7], this led to an extension
of SMTP for Transport Layer Security (TLS) [18]. Finally,
like all protocols on the Internet, SMTP was also affected by
the introduction of IPv6.

All these factors have turned the simple from SMTP to
complex. To outline this increase in complexity, we created
the SMTP Camel in Figure 1 (after the famous DNS Camel of

USENIX Association 2022 USENIX Annual Technical Conference    295



Bert Hubert, who illustrated the complexity of DNS with
“How many features can we add to this protocol before it
breaks?” [23]). Figure 1 visualizes RFCs related to email –
and, for reference, DNS. We compiled this list by performing
a title/keyword search on all RFCs on September 28, 2021.1

In total, we found 481 email-related RFCs compared to 298
DNS-related ones. Among these, more than half of the RFCs
belong to the standards track, representing mature standards.
We see no development in draft standards as they were de-
clared as deprecated in 2010 [21]. In June 2021, we reached
a total of 225 proposed standards. Proposed standards only
advance to Internet standards once they have “widespread
deployment of multiple implementations from different code
bases” [21]. Currently, only eleven email-related RFCs have
met this requirement, and also the handling of this guideline
by the Internet Engineering Task Force (IETF) varies. This
indicates that the development of new standards has outpaced
their implementation. Furthermore, since the latest email mea-
surement study in 2020 [31], seven new email-related RFCs
have been published.

In this paper, we investigate how the increasing number of
additional standards has influenced email delivery in the wider
ecosystem. Related work already demonstrated that adoption
rates of email-related standards are low and implementations
often rely on insecure defaults [8, 14, 17, 22, 26, 31, 37, 45].
However, previous work predominantly focused on large op-
erators, such as Google (Gmail) or Microsoft (Outlook), and
did not investigate fundamental aspects of email standards,
like supported IP versions and the DNS infrastructure of send-
ing systems. We take a step back and investigate the most
fundamental aspects of email in transit across a wide sample
going beyond major email providers.

To accomplish this, we introduced eleven target address
configurations to verify how email providers implement email-
related standards and protocols, i.e., we set up systems that
– depending on the remote server’s configuration and imple-
mentation – either do or do not receive measurement emails.
Our measurement technique allows us to measure IP support,
STARTTLS configuration, DNSSEC validation, and how dif-
ferent SMTP applications react to greylisting, an anti-SPAM
technique by which incoming emails are initially rejected.
Our focus is on protocols that influence email delivery once
an email has been submitted. To increase the providers’ cov-
erage, we crowdsourced the sending of emails to participants
recruited through mailing lists and social media.

As a result, we collect emails from three different sources,
spanning (1) small participants in the email ecosystem, (2)
large providers, and (3) unsolicited bulk email, aka SPAM.
We are the first to discuss the impact of new and established
standards on email delivery, as – in contrast to most related
measurements – we rely on actively collecting emails, allow-
ing us a more in-depth view of email server configurations.

1https://www.rfc-editor.org/search/rfc_search_detail.php

In summary, we make the following contributions:

• We introduce a new ranking method using passive data
to find the top 15 email providers. Our results highly
overlap with Liu et al. [32], while causing significantly
less measurement overhead (see Section 3).

• We illustrate challenges in the interoperability between
large centralized operators and smaller operators, includ-
ing how the ability to deliver emails as the main objective
limits the adoption of new network and security proto-
cols. We describe how our datasets cover different actors
in the email ecosystem in Section 4.

• We are the first to measure and connect the impact
of protocol extensions in protocols email relies on –
DNS(SEC) and IPv6 – to email delivery and the contrast
between smaller and larger providers (see Section 5).

• We illustrate protocol support and compliance in the
heavy-tail of the email ecosystem, i.e., in a large set of
smaller email operators, and contrast this to earlier work
and patterns found in large providers (see Section 6).

• Based on our results, we derive recommendations for
email system operators on how they can utilize mod-
ern protocol compliance to – currently – reduce SPAM
delivery (see Section 7).

Artifacts: Our measurement can be executed using any valid
domain and a set of machines connected to the Internet. Along
with our paper, we publish a setup-documentation and the
scripts we used to receive and analyze emails sent to our
systems at https://github.com/ichdasich/email-m
easurement-toolchain. For privacy reasons, we cannot
publish our email dataset. This also applies to the SPAM
dataset, as even SPAM may contain PII, for example in the
recipient addresses.

2 Background: Protocols and Standards

In this paper, we focus on standards influencing email de-
livery between email servers, i.e., the Mail Transfer Agent
(MTA). Email submission, e.g., the communication between
Mail User Agent (MUA) and Mail Submission Agent (MSA),
is not part of our study. We focus on IP- and DNS-related
mechanisms that impact delivery. Interpretations of higher-
level delivery security features, like the Sender Policy Frame-
work (SPF) [27], DomainKeys Identified Mail (DKIM) [9],
Authenticated Received Chain (ARC) [4], and Domain-
based Message Authentication, Reporting, and Conformance
(DMARC) [30] are out of scope for our study, as they only in-
fluence the receiver’s decision on whether to accept incoming
emails or not. We also did not include MTA Strict Transport
Security (MTA-STS) in our study as this RFC was too recent

296    2022 USENIX Annual Technical Conference USENIX Association

https://www.rfc-editor.org/search/rfc_search_detail.php
https://github.com/ichdasich/email-measurement-toolchain
https://github.com/ichdasich/email-measurement-toolchain


when we set up our infrastructure [33], but Section 3 describes
how our work can be extended to include it in the future.

IPv4 [38] and IPv6 [10]. Since addresses in the 232 bit
address space of the Internet Protocol Version 4 (IPv4) are
running out [41], Internet Protocol Version 6 (IPv6) with a
2128 bit address space was introduced in the late 1990s. Two
concurrent IP versions introduce a great challenge in terms of
interoperability on the network layer, especially as the adop-
tion of IPv6 is still slow [25]. IP version support impacts
email delivery indirectly via DNS support, i.e., the authorita-
tive and recursive servers support the same IP version, and
directly, i.e., in terms of whether the involved email servers
both support the same IP version. Servers can support IPv4,
IPv6, or both—also referred to as “dual-stack.”

DNSSEC [5]. The DNS-Security Extensions (DNSSEC)
provide authenticity to DNS responses by signing DNS entries
via a keychain along the path of the DNS tree. A DNSSEC
validating recursor responds with SERVFAIL in case of a val-
idation error. As a consequence, the target domain cannot
be resolved, and email delivery fails. Hence, in case of mis-
configurations – common in system operations [11] – or at-
tacks, the DNSSEC validation behavior of DNS resolvers at
email-sending servers becomes important for email delivery.
Similarly, DNSSEC is a prerequisite for DANE (see below).

STARTTLS [19]. The SMTP Service Extension for Secure
SMTP over TLS (STARTTLS) enables TLS for email delivery.
The connection is established on the same port as SMTP. The
original SMTP handshake remains in cleartext. Sending- and
receiving servers can (1) not support TLS, (2) support TLS
and cleartext, (3) enforce TLS. TLS can be configured either
in an (a) opportunistic or (b) strict manner. While opportunis-
tic TLS configurations allow for encrypted connections not
validating the remote certificate, strict configurations cause
email delivery to fail in case of (1) invalid certificates, (2) not
supporting mandatory ciphers, or (3) a connection to a non-
TLS-supporting server. In turn, this can then impact email
delivery, depending on whether a connection can be estab-
lished or not.

DANE [20]. The DNS-Based Authentication of Named En-
tities (DANE) prevents MTA-to-MTA transport encryption
from downgrade attacks, even in the absence of certificates
signed by a certificate authority (CA); this is done through
recording valid CA or end-entity certificates for a domain
name via the TLSA DNS record. Trusting/guaranteeing the
authenticity of TLSA records (i.e., preventing MITM and
DNS cache poisoning scenarios) requires the use of DNSSEC,
as described above. Several email server implementations, in-
cluding Sendmail and Microsoft Exchange, do not yet support
requesting TLSA records, in contrast to for example, Post-
fix and Exim [31].2 DANE can be implemented similar to
2Microsoft announced support after our measurement period in Feb, 2022 (see
https://techcommunity.microsoft.com/t5/exchange-team-blog/
releasing-outbound-smtp-dane-with-dnssec/ba-p/3100920)

Authoritive DNS Server

Mail Server

Participant

Dual Stack

Greylisting

TLS(A)-invalid

TLS-force

Sending MTA
(1) Mail-v4-DNSSEC-broken 
(2) Mail-v6-DNSSEC-broken 
(3) Mail-v4-DNS-v6 
(4) Mail-v6-DNS-v6 
(5) Mail-v4-Baseline 
(6) Mail-v6-Baseline

(7) Mail-v4-Greylisting 
(8) Mail-v6-Greylisting

(9) Mail-Dual-TLS-invalid 
(10) Mail-Dual-TLSA-invalid

(11) Mail-Dual-TLS-force

Dual Stack 
(>4)

IPv6-only 
(3-4)

DNSSEC-broken 
(1-2)

Resolver

Figure 2: Overview of our measurement setup: 3 DNS servers serve
4 email servers with 11 differently configured target addresses.

TLS in an opportunistic or mandatory manner. Email delivery
fails for both opportunistic and mandatory configurations if
a signed TLSA record is available but certificate validation
fails or for mandatory configurations if no TLSA record can
be found.

Anti-SPAM (Greylisting [29]). Greylisting is one of the
most simplistic approaches to reduce SPAM emails. It works
by initially responding with SMTP code 4xx temporary
failure. While reputable servers usually re-attempt email
delivery after several minutes, many SPAM senders do not
keep enough state for this. For email delivery, greylisting in-
troduces delays, and email delivery fails if an implementation
does not attempt redelivery.

3 Methodology

Measurement Platform. Our measurement setup consists
of four email servers running Postfix 3.6 [40] on OpenBSD
6.7 [36] in OpenBSD virtual machines (VMM). As we con-
duct non-performance bound network measurements, the ex-
act type and model of the used hardware are not relevant to
our measurement platform. Furthermore, we rely on three
PowerDNS authoritative nameservers in version 4.3.1 to mea-
sure the impact of different DNS server setups. We configured
a non-default TTL of 300 seconds for all entries in our DNS
zones to minimize the impact of caching, i.e., a DNS resolver
used by multiple study participants. This also affects our
weekly spam domain rotations, pointing them at different
measurement target addresses. However, we consider a max-
imum overlap of five minutes in comparison to a one-week
measurement period negligible. IPv6 connectivity to our sys-
tems was provided via a Hurrican Electric IPv6 tunnel, while
IPv4 connectivity was provided via dedicated IP space from
the RIPE region. On these systems, we set up eleven email
addresses, as shown in Figure 2. For each of these addresses,
we applied different configuration states, which either enable
or prevent remote servers from sending emails to them, de-
pending on their own configuration state. This allows us to
measure the remote servers’ email delivery capabilities and
protocol use by measuring whether they are able to deliver

USENIX Association 2022 USENIX Annual Technical Conference    297

https://techcommunity.microsoft.com/t5/exchange-team-blog/releasing-outbound-smtp-dane-with-dnssec/ba-p/3100920
https://techcommunity.microsoft.com/t5/exchange-team-blog/releasing-outbound-smtp-dane-with-dnssec/ba-p/3100920


measurement@v4-mail.example.com
measurement@v6-mail.example.com
measurement@v4-mail.v6only.example.com
measurement@v6-mail.v6only.example.com
measurement@v4-mail.dnssec-broken.example.com
measurement@v6-mail.dnssec-broken.example.com
measurement@v4-mail-greylisting.example.com
measurement@v6-mail-greylisting.example.com
measurement@mail-tls-force.example.com
measurement@mail-tls-invalid.example.com
measurement@mail-tlsa-invalid.example.com

Figure 3: List of email addresses for the 11 target configurations.

emails to these email addresses. We then asked participants
to send one email with all measurement addresses in the To:
field. If we do not receive a message at a specific target ad-
dress but see in our baseline that the target is included in
the To: header, we know that the respective feature is not
supported. The target addresses can be easily extended to
cover new protocols, e.g., MTA-STS [33] was introduced as
a barrier against downgrade or interception attacks for do-
mains that are unable to deploy DNSSEC. MTA-STS can be
measured by adding two new target addresses in the future.
One could implement the TLS-RPT standard to measure TLS
reporting frequency, and the other could measure if providers
still deliver emails in case of an enforced MTA-STS policy
with non-matching MX records.

3.1 Target Address Configurations

We configured the following eleven different email addresses
at the unique destination domains listed in Figure 3. Below,
we describe the purpose of each of these addresses, i.e., which
configuration parameters we tested with them:

IP Support. In order to test basic delivery behavior,
we created for both IPv4 (measurement@v4-mail., Mail-
v4-Baseline) and IPv6 (measurement@v6-mail., Mail-v6-
Baseline) one address which is configured with no restrictions
on delivery. Similarly, we created distinct IPv4- and IPv6 ad-
dresses for the DNS and greylisting measurements described
below. Note that during our study, we noticed that our choice
not to support STARTTLS on this system did indeed intro-
duce an unexpected parameter in the case of senders that
enforce STARTTLS use. In turn, this allowed us to detect six
providers that enforce STARTTLS for outgoing emails.

DNS Recursion IPv6 Support. To test whether the recur-
sive resolvers of an email sending host support IPv6, we cre-
ated a subdomain that can only be resolved via IPv6, i.e., the
zone had only AAAA glue records, and the hosts in the zone’s
NS records also only have AAAA records. Under that domain,
we then again created two addresses for IPv4 and IPv6 de-
livery (measurement@v4-mail.v6only., Mail-v4-DNS-v6
and measurement@v6-mail.v6only., Mail-v6-DNS-v6).

DNSSEC Validation. To test if the remote site validates
DNSSEC, we set up a subdomain with a non-matching DS
RRset in the parent, i.e., we provide a public key in the par-
ent zone that does not match the key with which records are
signed in our zone. Hence, a DNS recursive resolve validating
DNSSEC is unable to validate DNSSEC for our domain and
should therefore refuse to resolve it. Thus, an email server us-
ing a validating resolver cannot deliver emails to that domain.
Under that domain, we again created two addresses for IPv4-
and IPv6 delivery (measurement@v4-mail.dnssec-broke
n., Mail-v4-DNSSEC-broken and measurement@v6-mail.d
nssec-broken., Mail-v6-DNSSEC-broken).

TLS Configuration. In order to test the TLS and TLSA be-
havior of sending hosts, we configured three email addresses
that required the use of TLS to deliver emails:

• measurement@mail-tls-force.
Mail-Dual-TLS-force on a correctly configured TLS en-
abled server.

• measurement@mail-tls-invalid.
Mail-Dual-TLS-invalid on a server that provides a certifi-
cate with a non-matching CN/DNS0 entry.

• measurement@mail-tlsa-invalid.
Mail-Dual-TLSA-invalid on a server that has a TLSA record
configured, which does not match the supplied certificate.

This setup allows us to verify if systems (1) support START-
TLS, (2) perform opportunistic encryption, and (3) verify
TLSA records. Due to a misconfiguration, these systems ini-
tially did not support TLS1.3. Hence, remote systems that
only support TLS1.3 would be unable to deliver their emails.
We were able to isolate the affected cases (76 emails from 29
providers) and reconstructed the actual state from the stored
SMTP sessions, as the abort conditions differ between ‘not
supporting TLS,’ ‘rejecting the certificate/TLSA record,’ and
‘not having a matching cipher.’

Anti-SPAM (Greylisting). To identify RFC-compliant
SMTP implementations, and as an additional control, we
set up Postgrey that performs greylisting as an anti-SPAM
measure (measurement@v4-mail-greylisting., Mail-v4-
Greylisting and measurement@v6-mail-greylisting.,
Mail-v6-Greylisting). By configuring these addresses, we
can test the impact of greylisting on average SPAM received
and check whether legitimate email servers support multiple
delivery attempts.

3.2 Email Collection and Recruitment

In order to provide different views on email delivery, we tar-
get three types of actors in the email ecosystem: (1) Regular
providers by actively engaging users to send emails to our
measurement system. (2) A set of top-ranked email providers

298    2022 USENIX Annual Technical Conference USENIX Association



Table 1: Recruitment channels for study participants.

Type Name Description

Blogs RIPE Labs Article in RIPE’s Research Blog/Newsfeed
APNIC Article in APNIC’s Blog/Newsfeed

Social Media Twitter Tweets by researchers involved in the project
LinkedIn Posts by researchers involved in the project
Reddit Reddit post to /selfhosted

Mailing Lists NANOG North American Network Operator List
INNOG Indian Network Operator List
AFNOG African Network Operator List
SAFNOG South African Network Operator List
DENOG German Network Operator List
NLNOG Dutch Network Operator List
IRTF-MAPRG Network Research Interest Group at IETF/IRTF
MAIL-OPS Global Mail Operator List

Presentations Internet.nl Presentation at an organization promoting the
adoption of security standards

Personal - Colleagues and personal networks, especially in
the APNIC and LACNIC regions

by registering user accounts and sending emails. (3) Spam-
mers by registering expired domains and collecting unso-
licited emails targeting these domains.

Regular Providers. To collect emails, we actively engaged
Internet users to participate in our study. We recruited par-
ticipants via a social media campaign on Twitter, LinkedIn,
and Reddit, via mailing lists focusing on email and network
operators, blog articles promoted by Internet governance bod-
ies, and our personal networks (see Table 1). Our recruitment
message asked users to visit our website, which provided in-
structions on how the reader can participate in our study, what
the purpose of our study is, and what data access and deletion
rights they have. One critical aspect was to ensure that we
would be able to distinguish whether an email to one of our
measurement hosts was sent and not delivered or not sent at
all. Thus, we instructed participants to add all measurement
addresses to the To: field of a single email. In case a partic-
ipant’s provider performed pre-filtering, e.g., did not accept
delivery to domains they cannot resolve, we removed affected
emails from the dataset.

Large Providers. In order to rank email providers, we rely
on the passively collected Farsight SIE DNS dataset [43].
This enables us to count email servers to which a lot of do-
mains point their MX records, i.e., email servers used for a
lot of domains. We assume that the number of domains us-
ing a provider’s email servers correlates to the provider’s
size. For our ranking, we use DNSDB MX data extracted for
November 2020, which includes data of 73,705,268 different
MX lookups. We do not rank providers based on the amount
of MX lookups, as low TTLs or different DNS resolver setups
might bias the number of lookups. For each MX, we extract the
public suffix, i.e., ‘example.com’ for ‘mail.example.com’ and
‘example.co.uk’ for ‘mail.example.co.uk’ using the Public
Suffix List [35]. This results in 23,378,583 different public
suffixes. We rank public suffixes of MX records by counting

Table 2: Categories of domains from ExpiredDomains.

Category Description

1990s Domains with the first screenshot available on Archive.org between
1990 and 2000 (= “birth year”)

alexa Domains selected based on Alexa traffic rank
backlinks Domains based on number of Majestic external backlinks
dmoz Domains found in the latest snapshot of dmoz.org (~2017)
majestic Domains with low Majestic million global rank
wiki Domains with high numbers of Wikipedia links

the number of different domains pointing their MX records to-
wards them. We then register accounts at the top 15 providers
according to this ranking to send emails to our target domains,
as done in prior work [17, 22, 31, 32, 45]. This enables us to
compare email delivery from regular providers with an exclu-
sive set of large providers, but also to compare the results of
our measurement pipeline to the results of prior work.

Spammers. To collect SPAM emails, we registered expired
domains that are still likely to receive SPAM. To do so, we
relied on expireddomains.net for a list of domains [42].
To increase the likeliness that respective domains still receive
SPAM, we chose them from different categories, based on
their age (“birth year,” i.e., the first entry in Archive.org),
their popularity according to rankings from Alexa and Ma-
jestic, and the number of links from Wikipedia and the (now
defunct) DMOZ content directory. Table 2 lists these cate-
gories; Table 3 lists the domains in each category, as well as
the volume of SPAM we received during our measurements.

Once registered, we pointed MX records of respective do-
mains at our target domains. To identify if domains still re-
ceive SPAM, we executed a three-week baseline measurement.
During this period, all 50 re-registered domains pointed their
MX records to the MX of Mail-v4-Baseline, i.e., our most ba-
sic configuration. We classified the domains’ value for our
measurement based on the amount of SPAM received as high
(multiple times a week), low (once a week), and none (none
received). To verify that received messages are SPAM, we
consulted four active DNS blocklists: bl.spamcop.net, ip
s.backscatterer.org, pbl.spamhaus.org and sbl.spa
mhaus.org. We continuously verified the liveness of these
blocklists by requesting IP 127.0.0.2 as a test record.

In total, we found 26% of domains receive SPAM on a reg-
ular basis, thus falling into category high. In the next step, we
pointed high-value SPAM domains towards a set of our target
addresses in a weekly rotation until each domain had been
pointed at each target at least once. This allowed us to moni-
tor the change in SPAM volume based on the corresponding
test conditions. For these measurements, we relied on a re-
duced set of target addresses. As we only received individual
emails and did not simultaneously measure all conditions for
each sender, we did not differentiate IPv6 behavior for differ-
ent target addresses. We only verified general IPv6 support
(Mail-v6-Baseline), IPv4 sending for IPv6 only DNS (Mail-

USENIX Association 2022 USENIX Annual Technical Conference    299



Table 3: Re-registered domains for SPAM collection and the amount
of SPAM emails we received for each of them.

Category Domain Spam Frequency

1 1990s anx-chicago-rawhide.com low
2 1990s intecconstruction.com high
3 1990s michael-rauch.com -
4 1990s mmf-maintenance.com high
5 1990s sapphire-controls.co.uk high
6 1990s stratos-bde.com low
7 alexa inkpreneur.com -
8 alexa jsmmf.org -
9 alexa kenyamalikmotors.com -
10 alexa lafdo.com high
11 alexa nepaltravelcentre.com high
12 alexa olakassen.com -
13 alexa onmylevelchey.com -
14 backlinks 18Chaa.com low
15 backlinks 521qiangwweisizu.com -
16 backlinks cretms.com low
17 backlinks fotiis.com -
18 backlinks g6china.com -
19 backlinks io365f.com -
20 backlinks io365i.com -
21 backlinks theproxylist.co.uk -
22 backlinks tuncayparlak.com low
23 backlinks vous-y-etes.com -
24 dmoz beechamsdrivingschool.co.uk high
25 dmoz bilder-touren-allgaeu.de -
26 dmoz costatehogrally.com low
27 dmoz djk-handball-coesfeld.de -
28 dmoz leben-ohne-alkohol.eu low
29 dmoz navesprefabricadassprint.com high
30 dmoz parissi.eu -
31 dmoz pringfieldfarms.co.uk -
32 dmoz printshopleeds.co.uk low
33 dmoz smugglegame.com high
34 dmoz sotralentz.es high
35 dmoz survivalschool.ch high
36 dmoz thermoboss.net low
37 majestic djmzengaman.com -
38 majestic eiecan.eu -
39 majestic hkmxdna.com -
40 majestic keerthiwrites.com -
41 majestic kientrucnghethuatduongdai.com -
42 majestic printspixelz.com -
43 majestic studiopaeez.com low
44 majestic thi-marprojects.be high
45 wiki catholic-church-corfu.org low
46 wiki grandeguerrafvg.org -
47 wiki iranairlinenews.com -
48 wiki mosul-network.org -
49 wiki unaf-foot.com -
50 wiki worldipcomgroup.com low

v4-DNS-v6), DNSSEC behavior (Mail-v4-DNSSEC-broken),
as well as our three TLS configurations.

3.3 Ethical Considerations

As our measurements focus on the technical aspects of the
involved email setups, this study was not within the scope
of our local human subject research ethics council. Never-
theless, we informed participants about the purpose of our
data collection, which information we collected, and that they
could withdraw from the study at any time. We received one
request to be removed from the dataset and complied with this
request immediately. In addition, we followed network mea-
surement best practices as outlined in the Menlo report [6,12].

0 1 2 3 4 5 6 7
# Domains (log10)

0.00

0.25

0.50

0.75

1.00

CD
F 

Pr
ov

id
er

Figure 4: Validation of regular study participants tend to be/use
small email providers. We match regular providers to the passive
DNS ranking.

This means that we took the necessary technical precautions
to protect the only Personally Identifiable Information (PII)
we collect, i.e., the sending email addresses. We removed
these addresses from our dataset as soon as possible before
we started the aggregation of our collected data. Also, since
the provider name might reveal PII, we do not publish or
share provider names of smaller providers. For our measure-
ments of large providers, we registered accounts ourselves
and published their names for better comparison to related
work, in accordance with common practice for email-related
measurements [17, 22, 31, 32, 45].

4 Datasets

By following our approach, we collected three datasets cover-
ing (a) regular providers by volunteers sending emails to our
measurement infrastructure, (b) large providers by registering
accounts and sending emails ourselves, and (c) spammers by
collecting unsolicited emails sent to re-registered domains.

(a) Regular Providers. Between July 4, 2020 and October
29, 2021 we received a total of 5,847 emails. After filtering
emails that do not cover all eleven target addresses in the To:
field, a total of 4,660 emails sent by 622 study participants
remained for further analysis. There is a clear dominance of
emails from European countries, see Table 5, a consequence
of recruiting via our personal channels (e.g., on Twitter).

Multiple participants used the same infrastructure to send
emails; beyond, emails of the same user might be sent by
multiple servers in the same domain (e.g. server1.domai
n.any and server2.domain.any). Thus, we grouped the
data set using the email servers’ first-level domain (EHLO
name) at the granularity of providers. This yields a total of
436 providers.

(b) Large Providers. Analysis of the Farsight SIE DNS
dataset revealed the top 15 providers as presented in Table 4.
We noticed a large gap in served domains even within the top
15 providers, ranging from 14.1% (Google) to 0.68% (1&1)
of first-level domains (FLDs) in our passive DNS dataset. The
top 15 providers jointly serve 33.8% of all FLDs with MX
hosts. To gain an overview of provider sizes in our regular
dataset, we matched regular providers with domains in the

300    2022 USENIX Annual Technical Conference USENIX Association



Table 4: Top 15 providers based on passive DNS data. Providers greyed out have no online email service, e.g., Above.com is a domain broker.

IP support DNSSEC Spam TLS

NR Provider 20
15

D
ur

um
er

ic
[1

4]

20
15

Fo
st

er
[1

7]

20
18

H
u

[2
2]

20
20

L
ee

[3
1]

20
21

Ta
ta

ng
[4

5]

20
21

L
iu

[3
2]

# Dom. % Dom. M
ai

l-
v4

-B
as

el
in

e

M
ai

l-
v6

-B
as

el
in

e

M
ai

l-
v4

-D
N

S-
v6

M
ai

l-
v6

-D
N

S-
v6

M
ai

l-
v4

-D
N

SS
E

C
-b

ro
ke

n

M
ai

l-
v6

-D
N

SS
E

C
-b

ro
ke

n

M
ai

l-
v4

-G
re

yl
is

tin
g

M
ai

l-
v6

-G
re

yl
is

tin
g

M
ai

l-
D

ua
l-

T
L

S-
fo

rc
e

M
ai

l-
D

ua
l-

T
L

S-
in

va
lid

M
ai

l-
D

ua
l-

T
L

SA
-i

nv
al

id

1 Google ⋆ △ • 2 ⋄ ⊙ 9,148,093 14.08 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2 Microsoft ⋆ 2 ⋄ ⊙ 3,869,507 5.95 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3 GoDaddy ⋆ ⊙ 2,453,911 3.78 ✓ ✓ ✓ ✓ ✓ ✓

4 OVHCloud ⋆ ⊙ 1,292,615 1.99 ✓ ✓ ✓ ✓ ✓

5 Enom ⊙ 871,527 1.34 ✓ ✓ ✓ ✓ ✓ ✓

6 One.com 797,194 1.23 ✓ ✓ ✓ ✓

7 Namecheap ⊙ 784,486 1.21 ✓ ✓ ✓ ✓ ✓ ✓ ✓

8 Strato ⊙ 762,923 1.17 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

9 Yandex ⋆ △ ⊙ 759,482 1.17 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

10 SiteGround ⊙ 712,418 1.10 ✓ ✓ ✓ ✓ ✓ ✓

11 H-email.net 575,451 0.89

12 Above.com 469,500 0.72

13 Beget ⊙ 447,284 0.69 ✓ ✓ ✓ ✓ ✓ ✓

14 Tencent ⋆ △ ⊙ 442,064 0.68 ✓ ✓ ✓ ✓ ✓ ✓ ✓

15 1&1 440,558 0.68 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Optimal Configuration ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 5: Number of countries/emails/AS per region. Our social me-
dia promotion led to an increased number of emails from European
countries. We skipped large providers as geographical data has no
impact on our provider ranking.

Region Af
ric

a

As
ia

Eu
ro

pe

N.
Am

er
ica

O
ce

an
ia

S.
Am

er
ica

R
eg

ul
ar Countries 5 12 30 2 1 3

Emails 48 168 3,368 1,045 1 30
ASes 5 19 202 60 1 3

SP
A

M Countries 22 32 36 15 2 11
Emails 95 2,056 1,963 2,437 17 204
ASes 50 254 234 170 9 119

passive DNS dataset. Figure 4 shows the amount of FLDs
pointing at each of the study participants’ domains for email.
80% of regular providers have less than 150 domains relying
on them for email service. Comparing our top 15 providers
with previous work, we find the largest overlap, namely eleven
providers, with Liu et al. [32], who used a five-step approach
including MX records, Banner/EHLO messages, and TLS
certificates to detect large email providers. Previous work
relying on manual ranking results in less overlaps, namely
six [14], three [17], two [31, 45], and one [22] (see Table 4),
and suggests that human perception of providers is different
from their actual dominance in the email ecosystem.

(c) Spammers. We executed SPAM measurements in three
phases. First, we conducted a baseline measurement from
March 30, 2021 to April 6, 2021. Next, we pointed SPAM
domains to our other target addresses in a weekly rotation.
Finally, we did another baseline measurement to ensure that
the baselines remained stable over our observation time. We
received a total of 6,772 unsolicited emails. Thereof, 4,442
(65.7%) were classified as SPAM by one of our four DNS
blocklists, suggesting that emails towards the re-registered
domains are indeed SPAM. We included all received emails
in our further analysis. In comparison to our regular provider
dataset, SPAM emails are not dominated by a single region
(see Table 5). In comparison to regular and large providers,
we can only measure the SPAM volume and its reduction in
dependence of the different configurations.

5 Results

For each of the three datasets, namely (a) regular providers, (b)
large providers, and (c) spammers, Figure 5 shows the ratio of
delivered to undelivered emails per target address. We provide
the individual results for the top 15 providers, including a line
indicating the optimal configuration, in Table 4. The optimal
configuration includes IPv4- and IPv6 support for both email
servers and DNS resolvers. Regarding TLS, providers should
implement opportunistic STARTTLS, i.e., still use transport
encryption when facing self-signed or expired certificates.

USENIX Association 2022 USENIX Annual Technical Conference    301



Mail-v6-DNS-v6
Mail-v6-Baseline

Mail-v4-DNS-v6
Mail-v4-Baseline

39.0%
44.3%

65.4%
98.9%

61.0%
55.7%

34.6%

IP Support

Mail-Dual-TLSA-invalid
Mail-Dual-TLS-invalid

Mail-Dual-TLS-force

68.3%
89.7%
89.9%

31.7%

TLS Configuration

Mail-v6-DNSSEC-broken
Mail-v4-DNSSEC-broken 41.5%

88.5%
58.5%

DNSSEC Validation

0 100 200 300 400
Nr Provider

Mail-v6-Greylisting
Mail-v4-Greylisting

44.0%
97.9%

56.0%

Anti-Spam Implementation

Mail Delivery
yes no

(a) Regular Providers

38.5%
38.5%

61.5%
100.0%

61.5%
61.5%

38.5%

IP Support

76.9%
100.0%
100.0%

23.1%

TLS Configuration

23.1%
69.2%

76.9%
30.8%

DNSSEC Validation

0 2 4 6 8 10 12
Nr Provider

38.5%
100.0%

61.5%

Anti-Spam Implementation

Mail Delivery
yes no

(b) Large Providers

46.5%
100.0%

92.6%
53.5%

IP Support

31.8%
27.5%
34.0%

68.2%
72.5%
66.0%

TLS Configuration

63.5% 36.5%
DNSSEC Validation

0.0 0.2 0.4 0.6 0.8 1.0
Spam Volume

63.1% 36.9%
Anti-Spam Implementation

Mail Delivery
yes no

(c) Spammers

Figure 5: Impact of different target address configurations on email delivery. For our investigation of spammers we skipped the IPv6 target
addresses other than the baseline (this affects greylisting, DNSv6, DNSSEC).

However, they should validate TLSA records and reject email
delivery in case of an invalid record. As a foundation for
DANE and other DNS-based security standards, a provider
should rely on a DNSSEC supporting and -validating resolver.
Looking at the top 15 providers, we find major discrepancies
for even the largest providers. We discuss our measurement
results on IP support, TLS configuration, DNSSEC validation,
and anti-SPAM implementation in the following sections.

5.1 IP Support

Email Servers. The Mail-v4-Baseline is configured with-
out any restrictions on email delivery. For regular providers,
however, this baseline is reduced by 5/436 (1.2%) as five
providers enforced TLS causing undeliverability (see also
Section 3.1). For large providers, the baseline is met by all
providers. For spammers, the baseline is necessary to estimate
the number of SPAM emails that are typically sent to the in-
vestigated domains. For all three populations, the delivery to
Mail-v6-Baseline is reduced compared to the IPv4 baseline,
implying limited deployment of IPv6 at email servers. Dif-
ferences among regular and large providers remain small –
the first received IPv6-only mails in 193/436 (44.3%) of the
cases, the latter in 5/13 (38.5%) –, however, SPAM towards
the IPv6 target is drastically reduced and accounts for 7.4%
of the IPv4 baseline.

DNS Resolvers. Both targets, Mail-v4-DNS-v6 and Mail-
v6-DNS-v6, rely on an IPv6-only authoritative nameserver
and allow to infer whether resolvers are capable of IPv6. The
number of successfully delivered emails to Mail-v4-DNS-v6
is consistently higher than for IPv6-only email servers (Mail-
v6-Baseline) – 285/436 (65.4%) vs. 193/436 (44.3%) (regular
providers), 8/13 (61.5%) vs. 5/13 (38.5%) (large providers),

Table 6: DNS and email server IP support levels (IPv4 only, IPv6
only or dual stack) of regular providers; reads f.e. 22 (5.0%) have
dual stack email servers, but IPv4-only DNS resolver.

Email
IPv4 IPv6 Dual

D
N

S IPv4 125 28.7% 1 0.2% 22 5.0%
IPv6 0 0.0% 0 0.0% 1 0.2%
Dual 116 26.6% 0 0.0% 171 39.2%

and 46.5% vs. 7.4% (spammers) – and lead to the conclusion
that IPv6 support is more prevalent among DNS resolvers than
among email servers. The difference is particularly remark-
able for SPAM, and suggests that spammers rely on external
DNS resolvers. In comparison to Mail-v6-Baseline, delivery
towards Mail-v6-DNS-v6 is, if at all, only slightly reduced –
193/436 (44.3%) vs. 170/436 (39%) (regular providers), and
5/13 (38.5%) vs. 5/13 (38.5%) (large providers) –, i.e., IPv6
support at the email server typically implies IPv6 support at
the respective DNS resolver. For the regular providers, Ta-
ble 6 shows interdependencies concerning IP support: Most
dominant are dual stack implementations 171/436 (39.2%)
resp. IPv4-only configurations for email and DNS 125/436
(28.7%), as well as IPv4-only email servers with dual stack
DNS resolvers 116/436 (26.6%).

Key Findings. In summary, we find that less than half of all
regular email providers support IPv6 for their email deploy-
ments. Interestingly, IPv6 support for DNS is more frequent,
even for providers that do not support IPv6 for their email
servers. We conjecture that this is connected to – especially
in smaller setups – using public resolvers like the commonly
known Cloudflare (1.1.1.1) or Google (8.8.8.8) instances. In-
terestingly, we also find that 23/436 (5.3%) of the observed

302    2022 USENIX Annual Technical Conference USENIX Association



providers do use IPv6 for their email setup while not using
it for their DNS resolvers. Even though finding this case is
not unsurprising – PowerDNS, for example, does not perform
IPv6 resolution by default—it still means that these operators
are not able to deliver emails to IPv6-only zones, even though
their email servers support IPv6.

5.2 TLS Configuration
TLS Enforcement. If our target Mail-Dual-TLS-force en-
forces the use of TLS, 392/436 (89.9%) of the regular and all
large providers behave accordingly. These numbers indicate a
high prevalence of TLS capability among email servers. Con-
cerning SPAM, TLS enforcement has a considerable effect
and reduces the number of emails to 34.0%.

TLS Validation. In the presence of invalid certificates, as
provided by Mail-Dual-TLS-invalid, a similar picture emerges
for regular and large providers. As common practice sug-
gests [13] providers regularly fall back on opportunistic
STARTTLS. Just one of the regular providers is more strictly
configured and rejects email delivery in the case of a certifi-
cate with a non-matching CD/DNS0 entry. TLSA mismatch
as caused by Mail-Dual-TLSA-invalid should technically pre-
vent opportunistic encryption from being used. However, we
find that only 138/436 (31.7%) of regular providers and 3/13
(23.1%) of large providers honor the TLSA record and refuse
delivery. When we turn our eye to SPAM delivery, we find that
enforcing TLS has a significant impact on the number of re-
ceived emails. On our two TLS-enforcing targets, only 27.5%
(Mail-Dual-TLS-Force) and 31.8% (Mail-Dual-TLSA-Invalid)
of the baseline values of emails are received.

Key Findings. The broad majority of providers support
TLS. However, emails from 10.1% of regular providers in our
dataset would be lost in case of enforcing it. Providers fulfill-
ing TLS enforcement typically also fall back on opportunistic
encryption in case of invalid certificates. TLSA – a method to
move beyond opportunistic encryption, even in the absence
of CA-signed certificates – is sadly ignored by the majority
of providers. At the same time, TLS enforcement does not
only increase security, but it also reduces SPAM by more than
65%. While spammers could implement TLS quickly, it still
would force them to adopt more costly TLS handshakes.

5.3 DNSSEC Validation
Targets Mail-v4-DNSSEC-broken and Mail-v6-DNSSEC-
broken allow to infer the prevalence of resolvers validating
DNS records. For regular providers, 181/436 (41.5%) deliv-
ered emails to our first target. The remaining 255/436 (58.5%)
of all providers conducted a thorough validation for DNSSEC.
Among the large providers, DNSSEC validation appears less
prevalent: Only 4/13 (30.8%) (IPv4) and 2/5 (40.0%) (IPv6)
of providers validate DNSSEC. We suspect that operators

refrain from deploying DNSSEC to avoid customers missing
emails or being unable to send emails due to misconfigura-
tions. Furthermore, we observed a significant SPAM reduc-
tion for domains with broken DNSSEC. We conjecture that
this is due to common open resolvers that validate DNSSEC
being regularly used by spammers. This suspicion was con-
firmed when we revisited our DNS servers’ logs to identify
the most commonly used DNS resolvers. Query logs are,
however, not fully available as log rotations removed some
logs due to high response numbers. Still this enabled us to
identify the most commonly used DNS resolvers. We were
able to match resolvers for 2839/4660 (61%) regular emails
and for 3399/6772 (50.2%) of emails sent by spammers. We
found 1,443 unique resolver IPs for regular providers and
1,774 for spammers. Relying on MaxMind’s public GeoLite
AS database, we lookuped AS information for each IP. This
resulted in 259 unique ASes used for DNS resolution for reg-
ular providers and 269 for spammers. Comparing the DNS
servers used by regular and large providers with those used
by spammers revealed an overlap of 138 IPs and 62 ASes.

Key Findings. DNSSEC validation is performed in 255/436
(58.5%) (IPv4) and 143/193 (74.0%) (IPv6) and regular
providers. The numbers for large providers are lower, i.e., 4/13
(30.8%) (IPv4) and 2/5 (40.0%) (IPv6). In comparison, previ-
ous work [8] found DNSSEC to be less common; however,
those measurements focused on zones using DNSSEC. The
numbers for DNSSEC validation among spammers are – sur-
prisingly – comparable to those of large providers. However,
this connects to spammers regularly using public resolvers
that already validate DNSSEC.

5.4 Anti-SPAM (Greylisting)
The greylisting targets Mail-v4-Greylisting and Mail-v6-
Greylisting provoked an error in delivery the first time and
accepted the email in a second – delayed – attempt. Legiti-
mate providers reattempt to deliver emails in case of a failure,
and our measurements indeed show that this is the case. Only
4/436 (0.9%) (IPv4) and 1/193 (0.5%) (IPv6) of the regular
providers refrain from retransmission, and no large provider
does so. However, greylisting reduces the number of received
SPAM emails by 36.9%. Interestingly, this makes greylisting
a less effective anti-SPAM measure than enforcing TLS.

Key Findings. Greylisting reduces the SPAM volume by
36.9% and does not introduce delivery problems for legiti-
mate email. However, greylisting has less impact than TLS
enforcement, which reduces SPAM by over 65%.

6 Related Work

In the past years, email has been receiving significant attention
from the research community. In this section, we systematize
eleven email-related measurement studies from 2014 onward.

USENIX Association 2022 USENIX Annual Technical Conference    303



Table 7: Measured adoption rates by related work. Percentages are collected for domains with MX records. SPF, DKIM and DMARC are
included for comparison only as they merely influence the receiver’s decision to accept incoming emails.

Citation Year Active
Meas.

Domains Sample
Size

SPF DKIM DMARC DNSSEC DANE TLS
(inc.)

Adkins et al. [2] 2014 Facebook / - - - - - 76%
Foster et al. [17] 2015 Alexa 1M 42.3% - 1% 3.4% - -
Foster et al. [17] 2015 Adobe 1M 43.6% - 0.9% 2.8% - 54%
Durumeric et al. [14] 2015 • Gmail / - - - - 80%
Durumeric et al. [14] 2015 Alexa 1M 47% - 1.1% - - 81.8%
Hu et al. [22] 2018 Alexa 1M 44.9% - 5.1% - - -
SIDN [44] 2019 .nl 5.9M 44.2% 18.6% 8% 53% - 62%
Kambourakis et al. [26] 2019/20 • Custom 3236 80.7% 59.4% 51.3% 23.2% 17.6% 97.6%
Lee et al. [31] 2020 Alexa 100K - - - - 0.5% -
Tatang et al. [45] 2021 x 2.04M 50% 13% 11% - - -
Yajima et al. [34] 2021 Tranco 10K 88.7% - 54.1% 7.7% 0.8% -
Our work 2020/21 • Custom 417 91.3% 63% 53.5% 57.4%∗ 21.6%∗ 89.9%

∗: We can only verify the percentage of DNSSEC resolvers and TLSA validating email servers.
•: Studies with active measurements
x: Mix of Alexa top 1M, Tranco, Majestics

We find that these studies use different sample sets and mea-
surement methodologies. Sample sets range from top 1M
domain lists to email collections with sample sizes from a
million domains to a few thousand. However, using different
methodologies, they all ultimately report comparable adop-
tion rates of security-related email protocols, including SPF,
DKIM, and DMARC. Hence, we compare their adoption rates
and findings to our results in Table 7 to validate our methodol-
ogy and provide a comprehensive picture of current providers’
email delivery capabilities. Related work on email delivery
so far primarily focused on large providers and did not con-
sider the transport perspective – especially IPv6 and DNS –
highlighting the gap our work fills.

Adoption Rates. Looking at the reported adoption rates
from related work, we do find an upward trend in adoption,
especially for security-related standards. We can also observe
the difference in adoption rates per region. For example, .nl
sees a 53% adoption rate of DNSSEC, which is significantly
higher than the, e.g., 7.67% adoption rate for DNSSEC for
Tranco Top 10K domains reported by Yajima et al. [34]. We
attribute this high adoption rate to the Registrar Scorecard, a
campaign incentivizing the deployment of standards by the
Dutch domain name registrar SIDN, responsible for the .nl
top-level domain [44]. In contrast to the number of DNSSEC-
enabled zones, we find the number of validating resolvers to
be considerably higher. We find a 57.35% of participants in
our study rely on DNSSEC-validating resolvers, mostly due
to common public resolvers, for example, the popular 8.8.8.8
resolver offered by Google.

Large Providers. Related work uses several methods for
identifying and ranking large email providers (see Table 8):
Durumeric et al. [14], Hu et al. [22], and Tatang et al. [45] used
manual rankings by relying on their own expertise. However,
this might induce bias towards the researcher’s experience
and location. Foster et al. [17], and Lee et al. [31] relied on
email address domains from the leak of Adobe user records

Table 8: Overview of large provider sets used in related work.

Year Rel. W. Overlap Size Method

2015 Durumeric et al. [14] 6 19 Manually
2015 Foster et al. [17] 3 22 Adobe leak
2018 Hu et al. [22] 1 35 Manually
2020 Lee et al. [31] 2 29 Adobe leak
2021 Tatang et al. [45] 2 25 Manually
2021 Liu et al. [32] 11 15 Custom

2021 Our work 15 passive DNS

in 2013 [28] to rank email providers. However, this approach
is limited to a one-time data dump and in completeness as it
cannot detect different domains pointing their MX records at
the same provider. Liu et al. [32] proposed a more compre-
hensive approach to detect and rank email providers in 2021.
One of their major components is certificate information gath-
ered through Internet-wide SMTP handshakes. In contrast,
we introduce a new ranking method based on already exist-
ing passive DNS data from DNSDB (see Section 3). Based
on this ranking we list the top 15 providers in Table 4. Our
method thereby overlaps highly with the results of Liu et al.,
while introducing significantly less measurement overhead
and revealing additional providers.

Sender-side Evaluation. We only found two related mea-
surement studies relevant to the sender-side aspects of email
delivery [8, 31]. Chung et al. [8] performed a study focus-
ing on DNSSEC adoption independent of email delivery se-
tups in 2017. They set up ten differently misconfigured tar-
get domains (missing, incorrect, expired RRSIGS; missing
DNSKEYs; incorrect DS; etc.), collecting data from 4,427
DNSSEC capable resolvers (DO bit set) from the Luminati
proxy service. They found that 3,635 (81.1%) failed to vali-
date DNSSEC responses. Only 543 (12.2%) resolvers did han-
dle all ten different scenarios correctly. As we did not focus
on DNSSEC validation specifically, but only wanted to test
if validation was attempted, we relied on a single DNSSEC

304    2022 USENIX Annual Technical Conference USENIX Association



setup for our measurement. Similar to us, Lee et al. [31]
used 14 target domains to measure DNSSEC, STARTTLS,
and DANE validation in 2020. However, they only measured
the top 29 providers ranked by email addresses in the Adobe
leak. The measurement setup is similar to ours, but contrary
to Lee et al., we actively engaged participants to send emails
to our target domains. Hence, we were able to cover a wider
range of providers. Our set of large providers also differs from
Lee et. al. as we used a more comprehensive ranking method,
similar to that of Liu et al. [32]. Other studies evaluate email-
related protocols from the receiver’s perspective [2,14,17,26],
i.e., evaluating emails once they are successfully delivered.
For example, studying DNS TXT records between 2015 and
2018, van der Toorn et al. [46] observed a rise in the adop-
tion of email security standards, such as SPF and DKIM, and
attributed this to stricter policies from large email providers.
However, this line of work generally finds similar problems
on the receiver side as we observed on the sender side, e.g.,
the high complexity of standards, generally low adoption, and
therefore, low validation rates. Durumeric [14] found that
SPF network ranges are usually configured overly broad, e.g.,
nearly 30% of domains allow IPv4 address ranges of more
than a /16 to originate emails. Furthermore, SPF inclusions
are not used carefully, and a multitude of domains trust the
same handful of cloud providers. Hu et al. [22] found that 34
of 35 (97%) of popular email providers deliver forged emails
to inboxes even if validation of either one or multiples of
SPF/DKIM/DMARC failed. Tatang et al. [45] compiled a
list of DKIM selectors and found that domains do not only
commonly share the same selector, but also the same key.

Standard Complexity. In 2021, Yajima et al. [34] first dis-
cussed how standards’ complexity influences their adoption
rate. They measured DNS-based security mechanisms and
found that setup difficulty influences the adoption rate. Their
rating of setup difficulty awards points for the following con-
figuration aspects: DNS record (1pt); DNS server configura-
tion (2pt); email server configuration (2pt); web server config-
uration (2pt); required third party (3pt). DNSSEC and DANE
score the highest with 6 points. While DANE is a relatively
new standard introduced in 2012, DNSSEC was introduced
in 1999 and still faces a relatively low adoption and valida-
tion rate. Potential causes include a (perceived) high risk of
service disruptions due to misconfigurations – even in 2021,
we still regularly see outages of top-level domains due to mis-
configured DNSSEC [24] – and complexity in maintaining
DNSSEC. Further investigating the complexity of DNSSEC
key material handling, Chung et al. [8] found that a majority
of domains roll keys too infrequently, use weak keys, or do
not perform rollovers correctly.

7 Discussion
Successful system operation includes design, implementation,
and maintenance. In a world of ubiquitous networking, sys-

tems like the email ecosystem cannot be redesigned from
scratch, but have to be carefully adapted. This means that
successful further development has to consider the impact of
improvements on the existing ecosystem. Hence, our mea-
surement provides a perspective on the current state of email.

Our measurements pinpoint an apparent gap between the
email ecosystem as standardized by the IETF and its actual
deployment. Recently introduced standards such as TLSA
(validation) have not made it into practice. Thus, our results
suggest that the development of new email standards has to be
accompanied by strategies fostering their actual deployment.

7.1 Heavy-tail Email
A pattern that emerges in our measurements as well as in
the work of, e.g., Liu et al. [32] is the heavy-tail nature of
email: As Table 4 shows, a small portion of operators provide
email services to the majority of users and domains on the
Internet. Our investigation of related work also shows that
studies often focus only on this top part of email providers.
However, when we want to understand the email ecosystem,
the major challenge is identifying and measuring the diverse
tail of email providers and small self-hosted email instances.
This becomes particularly challenging if – like in our mea-
surements – user participation is necessary, and might lead to
a situation where smaller providers are less investigated with
potentially negative impact on their security, resilience, etc.

In a more techno-philosophical dimension, this develop-
ment also raises concerns in the context of centralization. For
example, in 2021 Fiebig et al. measured the migration of uni-
versities to large cloud providers, including their email infras-
tructures [15]. Centralization might accelerate the adoption
of standards (e.g., if the relevant players are directly involved
in standardization), but this can also potentially enforce the
deployment of burdensome standards by small operators, ef-
fectively creating a walled garden. Beyond, failure of a single
large provider, either due to an accidental error or a deliberate
attack, affects a large share of users/domains, emphasizing the
importance of decentralization and diversity for the resilience
of the overall email ecosystem.

What we certainly highlight – if we want to keep a dis-
tributed Internet – is that future development efforts should
not only focus on improving standards themselves, but also
make it easier to follow these standards and enable operators
to run their email infrastructure in full standard compliance.
We encourage RFCs drafted by the IETF to be accompa-
nied by technical and organizational measures facilitating
implementation, reducing the gap between standardization
and deployment.

7.2 Delivery vs. Adoption
Looking at the large provider dataset in our study, we find
that currently especially large providers prioritize email de-
livery over security, e.g., DNSSEC validation is enabled for

USENIX Association 2022 USENIX Annual Technical Conference    305



Google’s public DNS service, but not for the resolvers Gmail
relies on. This is understandable from an operational stand-
point but suggests that security is still considered subordinate
to functional goals. We conjecture that Google prioritizes the
deliverability of emails over strict enforcement of DNSSEC.
The status-quo appears to represent an upside-down world:
Precisely for large providers, the deployment of a new secu-
rity feature appears manageable; yet, they refrain from doing
so in a strict manner. At the same time, small operators imple-
ment the respective features at a disproportionate operational
overhead.

This divergence of the email ecosystem ultimately creates
challenges, as new security features often do address actual
problems. Hence, the operations community must discuss
how this divide can be addressed in the future. The Registrar
Scorecard has already proven that financial incentives are
successful [44]. Thus, we suggest including the design of
such systems already during standardization. The Internet
Governance Forum also recommends financial incentives by
translation of standards into business cases [47]. However, this
poses various challenges, among others the collaboration of
multiple stakeholders, funding, and the operation of respective
evaluation systems, which have to be solved by future work.

7.3 Standard Deployment and SPAM

In our study, we find that TLS enforcement and IPv6-only
delivery have a significant impact on the amount of SPAM
systems receive. While IPv6-only delivery naturally has a sig-
nificant negative impact on legitimate emails being delivered,
this impact is smaller when enforcing TLS. According to our
measurements, emails from about 10% of regular providers
would be affected. However, it is hard to determine an adop-
tion threshold for which enforcement of standards is justified.
On the one hand, TLS is an old and well-understood standard,
fully supported by large providers which represent the driv-
ing force in standard deployment; also the implementation
effort is low compared to other standards like DNSSEC or
DANE. On the other hand, it is unclear why 10.1% of these
providers have not implemented (START)TLS. If this is the
case because delivery is still possible without, enforcement of
TLS should take place; if the reasons are rooted in structural
aspects (e.g., lacking support for certain types of systems or
adequately educated staff), we suggest to target these root
causes first, again requiring additional technical and organiza-
tional measures accompanying RFCs.

8 Conclusion
We investigated email delivery, especially in terms of protocol
use (IPv4 vs. IPv6, recursive DNS servers’ configuration, TLS
sending support) and thereby complement existing related
work, which mostly investigated the receiving side of the
email ecosystem. Together with a review of related work on

email delivery, this allows us to paint a comprehensive picture
of the complexity of email delivery in 2021.

We find that ‘new’ protocols and extensions relevant to
email delivery, like IPv6 and DNSSEC, lack adoption. The
overall ecosystem is slow in this regard, especially since large
email providers prioritize email delivery and – while trying
to offer as many options as possible to receive emails – take
a conservative stance when trying to deliver emails to others.
This highlights the importance of including the heavy-tail of
smaller providers in email-related measurements. Our results
show that standard deployment is lower than it could be. At
the same time, we know that financial incentives work well to
increase deployment rates. Hence, we suggest that such incen-
tive systems should accompany Internet standards. However,
continuous funding appears to be difficult; thus, future work
should also address the impact of non-financial incentives.

Acknowledgements

This material is based upon work partially supported by (1)
the Christian-Doppler-Laboratory for Security and Quality
Improvement in the Production System Lifecycle; the finan-
cial support by the Austrian Federal Ministry for Digital
and Economic Affairs, the National Foundation for Research,
Technology and Development and the Christian Doppler Re-
search Association are gratefully acknowledged; (2) SBA
Research (SBA-K1), a COMET Centre within the framework
of COMET – Competence Centers for Excellent Technologies
Programme and funded by BMK, BMDW, and the province
of Vienna. The COMET Programme is managed by FFG; (3)
Project 877110 2big2fail funded by the Program "BRIDGE 1"
(FFG); (4) Project FO999887504 DynAISEC funded by the
Program "ICT of the Future"—an initiative of the Austrian
Ministry of Climate Action, Environment, Energy, Mobility,
Innovation and Technology; (5) the European Commission
through the H2020 project CyberSecurity4Europe (Grant No.
#830929); and (6) by the Vienna Science and Technology
Fund (WWTF) through project ICT19-056.

Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of their host institutions
or those of the European Commission.

References

[1] Donald E. Eastlake 3rd. Domain Name System Security
Extensions. RFC 2535, RFC Editor, March 1999. http:
//www.rfc-editor.org/rfc/rfc2535.txt.

[2] M. Adkins. The Current State of SMTP STARTTLS
Deployment, 2014. Retrieved Sept. 16, 2021 from ht
tps://www.facebook.com/notes/1453015901605
223.

306    2022 USENIX Annual Technical Conference USENIX Association

http://www.rfc-editor.org/rfc/rfc2535.txt
http://www.rfc-editor.org/rfc/rfc2535.txt
https://www.facebook.com/notes/1453015901605223
https://www.facebook.com/notes/1453015901605223
https://www.facebook.com/notes/1453015901605223


[3] Eric Allman. sendmail 8.9.0 released. Retrieved Sept.
20, 2021 from https://www.sendmail.org/~ca/em
ail/releases/sm890announce.html.

[4] Kurt Andersen, Brandon Long, Seth Blank, and Murray
Kucherawy. The Authenticated Received Chain (ARC)
Protocol. RFC 8617, July 2019. https://www.rfc-e
ditor.org/info/rfc8617.

[5] R. Arends, R. Austein, M. Larson, D. Massey, and
S. Rose. DNS Security Introduction and Require-
ments. RFC 4033, RFC Editor, March 2005. http:
//www.rfc-editor.org/rfc/rfc4033.txt.

[6] Michael Bailey, David Dittrich, Erin Kenneally, and
Doug Maughan. The Menlo Report. IEEE Security
& Privacy, 10(2):71–75, 2012.

[7] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and
R. Thayer. OpenPGP Message Format. RFC 4880,
RFC Editor, November 2007. http://www.rfc-edi
tor.org/rfc/rfc4880.txt.

[8] Taejoong Chung, Roland van Rijswijk-Deij, Balakr-
ishnan Chandrasekaran, David Choffnes, Dave Levin,
Bruce M Maggs, Alan Mislove, and Christo Wilson. A
longitudinal, end-to-end view of the DNSSEC ecosys-
tem. In Proceedings of the USENIX Security Symposium
(USENIX Security 17), 2017.

[9] D. Crocker, T. Hansen, and M. Kucherawy. DomainKeys
Identified Mail (DKIM) Signatures. STD 76, RFC Edi-
tor, September 2011. http://www.rfc-editor.org/
rfc/rfc6376.txt.

[10] Dr. Steve E. Deering and Bob Hinden. Internet Protocol,
Version 6 (IPv6) Specification. RFC 8200, July 2017.
https://rfc-editor.org/rfc/rfc8200.txt.

[11] Constanze Dietrich, Katharina Krombholz, Kevin Bor-
golte, and Tobias Fiebig. Investigating system operators’
perspective on security misconfigurations. In Proceed-
ings of the ACM SIGSAC Conference on Computer and
Communications Security, 2018.

[12] David Dittrich and Erin Kenneally. The Menlo Report:
Ethical Principles Guiding Information and Commu-
nication Technology Research. Technical report, U.S.
Department of Homeland Security, 2012. https://ww
w.dhs.gov/sites/default/files/publications
/CSD-MenloPrinciplesCORE-20120803_1.pdf.

[13] Viktor Dukhovni. Opportunistic Security: Some Pro-
tection Most of the Time. RFC 7435, December 2014.
https://rfc-editor.org/rfc/rfc7435.txt.

[14] Zakir Durumeric, David Adrian, Ariana Mirian, James
Kasten, Elie Bursztein, Nicolas Lidzborski, Kurt
Thomas, Vijay Eranti, Michael Bailey, and J Alex Hal-
derman. Neither snow nor rain nor MITM... an empirical
analysis of email delivery security. In Proceedings of
the Internet Measurement Conference (IMC), 2015.

[15] Tobias Fiebig, Seda Gürses, Carlos H Gañán, Erna
Kotkamp, Fernando Kuipers, Martina Lindorfer,
Menghua Prisse, and Taritha Sari. Heads in the clouds:
Measuring the implications of universities migrating to
public clouds. arXiv preprint arXiv:2104.09462, 2021.

[16] Tobias Fiebig, Franziska Lichtblau, Florian Streibelt,
Thorben Krüger, Pieter Lexis, Randy Bush, and Anja
Feldmann. Learning from the past: designing secure
network protocols. In Cybersecurity Best Practices.
Springer, 2018.

[17] Ian D Foster, Jon Larson, Max Masich, Alex C Snoeren,
Stefan Savage, and Kirill Levchenko. Security by any
other name: On the effectiveness of provider based email
security. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security
(CCS), 2015.

[18] P. Hoffman. SMTP Service Extension for Secure SMTP
over TLS. RFC 2487, RFC Editor, January 1999. http:
//www.rfc-editor.org/rfc/rfc2487.txt.

[19] P. Hoffman. SMTP Service Extension for Secure SMTP
over Transport Layer Security. RFC 3207, RFC Editor,
February 2002. http://www.rfc-editor.org/rfc/
rfc3207.txt.

[20] P. Hoffman and J. Schlyter. The DNS-Based Authen-
tication of Named Entities (DANE) Transport Layer
Security (TLS) Protocol: TLSA. RFC 6698, RFC Edi-
tor, August 2012. http://www.rfc-editor.org/rf
c/rfc6698.txt.

[21] R. Housley, D. Crocker, and E. Burger. Reducing the
Standards Track to Two Maturity Levels. BCP 9, RFC
Editor, October 2011. http://www.rfc-editor.or
g/rfc/rfc6410.txt.

[22] Hang Hu and Gang Wang. End-to-end measurements of
email spoofing attacks. In Proceedings of the USENIX
Security Symposium (USENIX Security 18), 2018.

[23] Bert Hubert. DNS-Camel, 2018. Retrieved Jan. 13,
2022 from https://blog.apnic.net/2018/03/29/
the-dns-camel/.

[24] IANIX. Major DNSSEC Outages and Validation Fail-
ures, November 2021. Retrieved Nov. 16, 2021 from
https://ianix.com/pub/dnssec-outages.html.

USENIX Association 2022 USENIX Annual Technical Conference    307

https://www.sendmail.org/~ca/email/releases/sm890announce.html
https://www.sendmail.org/~ca/email/releases/sm890announce.html
https://www.rfc-editor.org/info/rfc8617
https://www.rfc-editor.org/info/rfc8617
http://www.rfc-editor.org/rfc/rfc4033.txt
http://www.rfc-editor.org/rfc/rfc4033.txt
http://www.rfc-editor.org/rfc/rfc4880.txt
http://www.rfc-editor.org/rfc/rfc4880.txt
http://www.rfc-editor.org/rfc/rfc6376.txt
http://www.rfc-editor.org/rfc/rfc6376.txt
https://rfc-editor.org/rfc/rfc8200.txt
https://www.dhs.gov/sites/default/files/publications/CSD-MenloPrinciplesCORE-20120803_1.pdf
https://www.dhs.gov/sites/default/files/publications/CSD-MenloPrinciplesCORE-20120803_1.pdf
https://www.dhs.gov/sites/default/files/publications/CSD-MenloPrinciplesCORE-20120803_1.pdf
https://rfc-editor.org/rfc/rfc7435.txt
http://www.rfc-editor.org/rfc/rfc2487.txt
http://www.rfc-editor.org/rfc/rfc2487.txt
http://www.rfc-editor.org/rfc/rfc3207.txt
http://www.rfc-editor.org/rfc/rfc3207.txt
http://www.rfc-editor.org/rfc/rfc6698.txt
http://www.rfc-editor.org/rfc/rfc6698.txt
http://www.rfc-editor.org/rfc/rfc6410.txt
http://www.rfc-editor.org/rfc/rfc6410.txt
https://blog.apnic.net/2018/03/29/the-dns-camel/
https://blog.apnic.net/2018/03/29/the-dns-camel/
https://ianix.com/pub/dnssec-outages.html


[25] Siyuan Jia, Matthew Luckie, Bradley Huffaker, Ahmed
Elmokashfi, Emile Aben, Kimberly Claffy, and Amogh
Dhamdhere. Tracking the deployment of IPv6: Topol-
ogy, routing and performance. Computer Networks,
165:106947, 2019.

[26] G. Kambourakis, G. Draper, and I. Sanchez. What
Email Servers Can Tell to Johnny: An Empirical Study
of Provider-to-Provider Email Security. IEEE Access,
8:130066–130081, 2020.

[27] S. Kitterman. Sender Policy Framework (SPF) for Au-
thorizing Use of Domains in Email, Version 1. RFC
7208, RFC Editor, April 2014. http://www.rfc-edi
tor.org/rfc/rfc7208.txt.

[28] Brian Krebs. Adobe To Announce Source Code, Cus-
tomer Data Breach, October 2013. Retrieved Jun. 6,
2022 from https://krebsonsecurity.com/2013/1
0/adobe-to-announce-source-code-customer-d
ata-breach/.

[29] M. Kucherawy and D. Crocker. Email Greylisting: An
Applicability Statement for SMTP. RFC 6647, RFC
Editor, June 2012. http://www.rfc-editor.org/rf
c/rfc6647.txt.

[30] M. Kucherawy and E. Zwicky. Domain-based
Message Authentication, Reporting, and Conformance
(DMARC). RFC 7489, RFC Editor, March 2015. http:
//www.rfc-editor.org/rfc/rfc7489.txt.

[31] Hyeonmin Lee, Aniketh Girish, Roland van Rijswijk-
Deij, Taekyoung Kwon, and Taejoong Chung. A Longi-
tudinal and Comprehensive Study of the DANE Ecosys-
tem in Email. In Proceedings of the USENIX Security
Symposium (USENIX Security 20), 2020.

[32] Enze Liu, Gautam Akiwate, Mattijs Jonker, Ariana
Mirian, Stefan Savage, and Geoffrey M Voelker. Who’s
Got Your Mail? Characterizing Mail Service Provider
Usage. In Proceedings of the ACM Internet Measure-
ment Conference, 2021.

[33] D. Margolis, M. Risher, B. Ramakrishnan, A. Brotman,
and J. Jones. SMTP MTA Strict Transport Security
(MTA-STS). RFC 8461, RFC Editor, September 2018.
http://www.rfc-editor.org/rfc/rfc8461.txt.

[34] Yoshiro Yoneya Masanori Yajima, Daiki Chiba and Tat-
suya Mori. How prevalent is the operation of DNS
security mechanisms? Retrieved Sept. 15, 2021 from
https://indico.dns-oarc.net/event/39/contr
ibutions/867/.

[35] Mozilla. Public Suffix List, 2021. Retrieved Nov. 24,
2021 from https://publicsuffix.org/list/publ
ic_suffix_list.dat.

[36] OpenBSD. OpenBSD 6.7. Retrieved Oct.12, 2021 from
https://www.openbsd.org/67.html.

[37] Damian Poddebniak, Fabian Ising, Hanno Böck, and
Sebastian Schinzel. Why TLS is better without START-
TLS: A Security Analysis of STARTTLS in the Email
Context. In Proceedings of the USENIX Security Sym-
posium (USENIX Security 21). USENIX Association,
2021.

[38] Jonathan B. Postel. Internet Protocol. RFC 791, Septem-
ber 1981. https://www.rfc-editor.org/info/rfc
791.

[39] Jonathan B. Postel. Simple Mail Transfer Protocol.
STD 10, RFC Editor, August 1982. http://www.rf
c-editor.org/rfc/rfc821.txt.

[40] Postfix. Postfix stable release 3.6.0. Retrieved Oct. 12,
2021 from http://www.postfix.org/announceme
nts/postfix-3.6.0.html.

[41] Philipp Richter, Mark Allman, Randy Bush, and Vern
Paxson. A primer on IPv4 scarcity. ACM SIGCOMM
Computer Communication Review, 45(2):21–31, 2015.

[42] Marco Schmidt. Expired Domains, 2021. Retrieved
March 15. 2021 from https://www.expireddomains
.net/.

[43] Farsight Security. Passive DNS historical internet
database: Farsight DNSDB, 2021. Retrieved Nov. 24,
2021 from https://www.farsightsecurity.com/s
olutions/dnsdb/.

[44] SIDN. Registrar Scorecard yields great results. Re-
trieved Sept. 16, 2021 from https://www.sidn.nl/
en/news-and-blogs/registrar-scorecard-yie
lds-great-results.

[45] Dennis Tatang, Florian Zettl, and Thorsten Holz. The
Evolution of DNS-based Email Authentication: Measur-
ing Adoption and Finding Flaws. In Proceedings of the
24th International Symposium on Research in Attacks,
Intrusions and Defenses, 2021.

[46] Olivier van der Toorn, Roland van Rijswijk-Deij, To-
bias Fiebig, Martina Lindorfer, and Anna Sperotto. TX-
Ting 101: Finding Security Issues in the Long Tail of
DNS TXT Records. In Proceedings of the International
Workshop on Traffic Measurements for Cybersecurity
(WTMC), 2020.

[47] De Natris Consult Wout de Natris. Setting the Standard
for a more Secure and Trustworthy Internet, 2020. Re-
trieved from https://www.intgovforum.org/mult
ilingual/index.php?q=filedepot_download/96
15/2023.

308    2022 USENIX Annual Technical Conference USENIX Association

http://www.rfc-editor.org/rfc/rfc7208.txt
http://www.rfc-editor.org/rfc/rfc7208.txt
https://krebsonsecurity.com/2013/10/adobe-to-announce-source-code-customer-data-breach/
https://krebsonsecurity.com/2013/10/adobe-to-announce-source-code-customer-data-breach/
https://krebsonsecurity.com/2013/10/adobe-to-announce-source-code-customer-data-breach/
http://www.rfc-editor.org/rfc/rfc6647.txt
http://www.rfc-editor.org/rfc/rfc6647.txt
http://www.rfc-editor.org/rfc/rfc7489.txt
http://www.rfc-editor.org/rfc/rfc7489.txt
http://www.rfc-editor.org/rfc/rfc8461.txt
https://indico.dns-oarc.net/event/39/contributions/867/
https://indico.dns-oarc.net/event/39/contributions/867/
https://publicsuffix.org/list/public_suffix_list.dat
https://publicsuffix.org/list/public_suffix_list.dat
https://www.openbsd.org/67.html
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc791
http://www.rfc-editor.org/rfc/rfc821.txt
http://www.rfc-editor.org/rfc/rfc821.txt
http://www.postfix.org/announcements/postfix-3.6.0.html
http://www.postfix.org/announcements/postfix-3.6.0.html
https://www.expireddomains.net/
https://www.expireddomains.net/
https://www.farsightsecurity.com/solutions/dnsdb/
https://www.farsightsecurity.com/solutions/dnsdb/
https://www.sidn.nl/en/news-and-blogs/ registrar-scorecard-yields-great-results
https://www.sidn.nl/en/news-and-blogs/ registrar-scorecard-yields-great-results
https://www.sidn.nl/en/news-and-blogs/ registrar-scorecard-yields-great-results
https://www.intgovforum.org/multilingual/index.php?q=filedepot_download/9615/2023
https://www.intgovforum.org/multilingual/index.php?q=filedepot_download/9615/2023
https://www.intgovforum.org/multilingual/index.php?q=filedepot_download/9615/2023


AddrMiner: A Comprehensive Global Active IPv6 Address Discovery System

Guanglei Song1,2, Jiahai Yang1,2, Lin He1,2, Zhiliang Wang1,2, Guo Li1,
Chenxin Duan1, Yaozhong Liu1,2, Zhongxiang Sun3

1Institute for Network Sciences and Cyberspace, BNRist, Tsinghua University
2Quan Cheng Laboratory, Jinan, Shandong, China

3School of Computer and Information Technology, Beijing Jiaotong University

Abstract
Fast Internet-wide scanning is essential for network sit-

uational awareness and asset evaluation. However, the vast
IPv6 address space makes brute-force scanning infeasible.
Although state-of-the-art techniques have made effective at-
tempts, these methods do not work in seedless regions, while
the detection efficiency is low in regions with seeds. More-
over, the constructed hitlists with low coverage cannot truly
represent the active IPv6 address landscape of the Internet.

This paper introduces AddrMiner, a systematic and com-
prehensive global active IPv6 address probing system. We
divide the IPv6 address space regions into three kinds accord-
ing to the number of seed addresses to discover active IPv6
addresses from scratch, from few to many. For the regions
with no seeds, we present AddrMiner-N , leveraging an orga-
nization association strategy to mine active addresses. It fills
the gap of address probing in seedless regions and finds active
addresses covering 86.4K IPv6 prefixes announced by BGP,
accounting for 81.6% of the probed announced prefixes. For
the regions with few seeds, we propose AddrMiner-F , utiliz-
ing a similarity matching strategy to probe active addresses
further. The hit rate of active address probing is improved
by 70%-150% compared to existing algorithms. Moreover,
for the regions with sufficient seeds, we present AddrMiner-S
to generate target addresses based on reinforcement learn-
ing dynamically. It nearly doubles the hit rate compared to
the state-of-the-art algorithms. Finally, we deploy AddrMiner
and discover 2.1 billion active IPv6 addresses, including 1.7
billion de-aliased active addresses and 0.4 billion aliased ad-
dresses, through continuous probing for 13 months. We would
like to further open the door of IPv6 measurement studies by
publicly releasing AddrMiner and sharing our data.

1 Introduction

Internet-wide active address probing is a prerequisite for
Internet-scale network surveys. Existing network research and
applications rely heavily on Internet-wide active address scan-
ning. For example, the probed active addresses can be used

to examine trends and adoption rates of different technolo-
gies [11, 30], measure network topology for reflecting inter-
connections of nodes [4,52], probe Internet services for wide-
ranging assessments [9,25] and resource census [23], and test
network security by measuring the attack surface [16, 34].
Under IPv4, it is feasible to achieve Internet-wide active ad-
dress probing by brute-force scanning the entire IPv4 address
space at the minute level with high-speed scanning tools such
as ZMap [9]. With the rapid development of the Internet as
a globally crucial infrastructure, IPv4 no longer meets its de-
velopment needs, and IPv6 has been promoted and deployed
at an accelerated pace worldwide. For example, more than
36.6% of users accessed Google via IPv6 in 2021, compared
to fewer than 0.7% in 2012 [21]. However, under IPv6, there
are significant challenges to Internet-wide active address dis-
covery. The main reason is that the vast address space of IPv6
makes it more difficult, if not infeasible, to obtain globally
active addresses. For example, it would take at least millions
of years to scan the entire IPv6 address space using 10 Gigabit
links and high-speed scanning tools such as ZMap [9].

To address this issue, researchers usually collect known
active IPv6 addresses (i.e., seeds), learn the characteristics
of seeds, and generate the target addresses that may have
a higher probability of being active for scanning. Although
previous research efforts have examined how to detect active
IPv6 addresses, the issue of how to perform comprehensive
global active IPv6 address discovery remains, mainly in the
following aspects:

(1) Limited usage. In regions where seeds are missing,
existing methods cannot perform effective active IPv6 address
probing or even work [7, 15, 18, 24, 33, 36, 47, 51]. This is
because they need to learn the characteristics of the seeds
to generate target addresses that are more likely to be active.
There is still a gap in active IPv6 address probing in regions
lacking seeds.

(2) Limited detection efficiency. State-of-the-art algorithms
[7,24,47] have improved the efficiency of active IPv6 address
probing. However, these methods are too dependent on seeds.
The seed address sampling bias reduces the efficiency of

USENIX Association 2022 USENIX Annual Technical Conference    309



active address probing because it makes the characteristics of
the actual active address inconsistent with those of the seeds.

(3) Limited coverage. Previous studies, while building a
list of active addresses, called IPv6 hitlist, have tended to
be limited to a few IPv6 prefixes announced by BGP [15,
18, 42, 47]. For example, active IPv6 addresses in the latest
hitlist [18] cover only 25.5K announced prefixes, which is
only ∼21.3% of all announced prefixes. They are not truly
representative of the active IPv6 address landscape of the
Internet. Active detection methods by analyzing seeds are
often also limited by the coverage of the seeds [15, 18, 24, 33,
36, 42, 47, 51].

In general, there still lacks a systematic methodology for
comprehensive global active IPv6 address probing. To solve
the above problems, we design and implement an active ad-
dress probing system, AddrMiner (§4). At its core, Addr-
Miner divides active address probing into three sub-tasks:
active IPv6 address probing for 1) address space regions with
no seeds, 2) address space regions with few seeds, and 3)
address space regions with sufficient seeds, respectively.

First, we present AddrMiner-N for the address space re-
gions without seeds (§5). The core idea is based on the ob-
servation that address patterns (i.e., structure) tend to have
similarities across network configurations. It obtains common
patterns by mining the structural features of active addresses
collected in other regions, and then migrate to regions without
seeds to generate targets for scanning. AddrMiner-N lever-
ages graph data structures to describe the similarity of address
structure features under different networks (§5.2). Then, it
uses graph community discovery algorithms to mine com-
mon address structure features for building a common pattern
library (§5.3). We observe that the address configuration pat-
terns are more similar within the same network organization
than within different organizations. AddrMiner-N selects the
most similar patterns from the library based on organization
association strategy to generate targets (§5.4).

Second, we propose AddrMiner-F , an active address prob-
ing algorithm for the case where the address space regions
contain few seeds (§6). Existing methods cannot effectively
learn seed characteristics for active address probing in this
scenario due to the lack of seeds. The core idea of AddrMiner-
F is also to generate targets for probing by selecting the most
relevant patterns from the common pattern library and migrat-
ing to regions with only a few seeds. Similar to AddrMiner-N ,
AddrMiner-F first uses the same method to build a common
pattern library (can reuse the one built by AddrMiner-N ).
Then, it improves the efficiency of address detection by ex-
tracting relevant patterns from the common pattern library
to generate scanning targets using only a few seeds. This is
because a few seeds can also provide some information for
guiding pattern selection.

Third, we present AddrMiner-S , which learns the density
characteristic of seeds and corrects density bias to find the real
high-density regions of active addresses for address detection,

for the case where the address space regions contain sufficient
seeds (§7). The key idea of AddrMiner-S is motivated by
the higher density regions of active addresses, the higher the
hit rate of active addresses. It uses reinforcement learning
to update the density distribution of the seeds based on the
rewards found for the active addresses and moves toward the
actual address distribution to correct the density bias caused
by the sampling of seeds.

AddrMiner naturally works in all announced prefix spaces
and enables comprehensive active IPv6 address probing in
different scenarios by corresponding algorithms to gradually
discover active IPv6 addresses from scratch, from few to
many.

Contributions. We make the following contributions:

• We present an active IPv6 address probing method,
AddrMiner-N . It fills the gap of address probing in the
seedless address space regions and discovers active IPv6
addresses covering 86.4K prefixes announced by BGP,
accounting for 81.6% of all announced prefixes.

• We propose an active IPv6 address probing method,
AddrMiner-F , which can further discover active IPv6
addresses in address space regions with few seeds. It can
find 70%-150% more active addresses than AddrMiner-
N and the state-of-the-art algorithms.

• We present an efficient active IPv6 address probing
method, AddrMiner-S , which can efficiently perform
active IPv6 address probing in address space regions
with sufficient seeds. Compared with state-of-the-art al-
gorithms, the results show AddrMiner-S improves the
hit rate of active addresses from 28.9% to 56.3%.

• We originally design and implement a global active IPv6
address probing system and discover 2.1 billion active
IPv6 addresses, including 1.7 billion de-aliased active
addresses and 0.4 billion aliased addresses, through con-
tinuous running AddrMiner for 13 months. The devel-
oped code and continuously probed active addresses are
made publicly available at:

https://github.com/AddrMiner/AddrMiner

2 Background

In this section, we briefly introduce the background of IPv6
addresses and discuss the characteristics of IPv6 addresses.

IPv6 addresses are 128 bits long. IPv6 unicast addresses
consist of a global routing prefix, a local subnet identi-
fier, and an interface identifier (IID). We represent IPv6
addresses in a human-readable text format using eight
groups of four hexadecimal characters, each group having
16 bits in total, separated by a colon (“:”). We refer to
each hexadecimal character (corresponding to the four bits

310    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/AddrMiner/AddrMiner


of the address) as a nybble. An example IPv6 address is
2001:0db8:0000:0000:0008:8000:200c:417a. To simplify the
IPv6 representation, the leading zeros of each group are
usually excluded, and the longest all-zero group sequence
is replaced with a double colon (“::”). Thus, the simpli-
fied representation of the IPv6 address in this example is
2001:db8::8:8000:200c:417a.

IPv6 addresses have the following characteristics. (1) Vast-
ness of IPv6 address space: IPv6 address space is 2128, 296

times of IPv4 address space. This makes active IPv6 addresses
very scarce and more hidden, making it a challenging task to
find active IPv6 addresses. (2) Diversity of IIDs: IID can be
assigned in various ways, such as static configuration [20],
stateless address autoconfiguration [37], and DHCPv6 [40].
IPv6 addresses with random IIDs are more difficult to detect.

3 Related Work and Motivation

This section reviews related work and clarifies the motivation
of our work on discovering active addresses in the vast IPv6
address space. The existing work can be divided into the
following three categories:

Public Resources Extraction. This method obtains ac-
tive IPv6 addresses through public resource lookup or resolu-
tion [6, 13, 18, 50]. DNS is a common and effective channel.
Strowes et al. [50] obtained 965K globally routable IPv6 ad-
dresses by exhaustively enumerating the reverse DNS do-
mains in the IPv4 address space and performing AAAA
queries on the results. Fiebig et al. [13, 14] walked the
rDNS tree and collected 5.8M IPv6 addresses. Borgolte et
al. [6] also obtained 2.2M IPv6 addresses through DNSSEC-
signed reverse zones. Besides, Gasser et al. [18] collected
58.5M IPv6 addresses from public data sources, including
Domain Lists [1, 2, 17, 41, 44, 49], FDNS [46], AXFR [35],
Bitnodes [54], and RIPE Atlas [38].

Although we can get IPv6 addresses through public re-
sources, in the latest hitlist [18], these addresses only cover
25.5K announced prefixes, which is only ∼21.3% of all an-
nounced prefixes. Therefore, it is challenging to obtain glob-
ally active IPv6 addresses from public sources alone.

Passive Collection. This approach entails passively col-
lecting traffic or log files at vantage points and extracting
active IPv6 addresses from them [15, 19, 42, 47]. For the first
time, Plonka et al. [42] used IPv6 addresses collected from
the activity logs of all customers accessing a global CDN
as a dataset and analyzed the characteristics of active IPv6
addresses. Subsequently, Foremski et al. [15] proposed a tech-
nique for obtaining potentially active IPv6 addresses from the
initial seed dataset. A similar attempt was made by [19, 47]
using a large Internet Exchange Point as a vantage point to
collect active IPv6 addresses.

However, the above studies have the following shortcom-
ings. First, the vantage point used is not publicly available and
is difficult for others to access. Second, to obtain global active

Problem
Classification

IPv6
Hitlist

Prefixes 
Announced 

By BGP

AddrMiner-N

AddrMiner-F

AddrMiner-S

Aliased Prefix
Detection

Active
Addresses

Policy Engine

No addrs

Few addrs

Sufficient addrs

Public
Sources

Figure 1: High-level overview of AddrMiner

IPv6 addresses, many vantage points need to be deployed
worldwide, with high probing overhead. AddrMiner removes
the vantage point limitation and decreases the threshold for
address probing. Any node configured with IPv6 network can
use AddrMiner to probe active addresses.

Active Address Probing. A viable approach is to dis-
cover more active IPv6 addresses by collecting seeds, min-
ing the structural patterns and characteristics of the seeds to
generate target addresses, and probing the target addresses
[7, 15, 18, 24, 33, 36, 47, 51]. Ullrich et al. [51] proposed
a pattern-based recursive algorithm that greedily includes
more seeds for scanning each iteration through a variable ad-
dress range. Entropy/IP [15, 18] learns the internal structural
characteristics of seeds to generate target addresses and then
scans them to discover active IPv6 addresses. 6Tree [33] and
6Hit [24] combine the hierarchical characteristic of seeds to
construct hierarchical space trees, and dynamically guides the
direction of address generation based on the probing results.
6Gen [36] and DET [47, 48] use the density characteristic
of seeds to detect active IPv6 addresses in high-density re-
gions of seeds. 6GAN [7] aims to discourage aliased address
generation via generative adversarial nets with reinforcement
learning.

Although all the above methods improve active IPv6 ad-
dress probing efficiency, the sampling bias of seeds makes
the characteristics of actual active addresses inconsistent with
those of seeds, resulting in the inability to efficiently generate
target addresses for scanning. Although 6Hit attempts to use
reinforcement learning to reduce the dependence on seeds, it
simply uses the hierarchical characteristic and uses a space
repartition mechanism, which leads to random changes in the
probe space to reduce the address probing efficiency.

4 Overview of AddrMiner

This section describes an active IPv6 address probing system,
AddrMiner, capable of performing systematic and compre-
hensive probing of active IPv6 addresses to achieve the accu-
mulation of detected globally active addresses from scratch.

Figure 1 illustrates a high-level overview of AddrMiner . It
collects seeds to make an IPv6 hitlist from public sources and
divides them into different announced prefix spaces. Then, it
classifies these announced prefix spaces into different scenar-

USENIX Association 2022 USENIX Annual Technical Conference    311



ios based on the number of seeds each prefix space contains.
The policy engine uses different policies for active address
probing according to different scenarios. 1) For announced
prefixes with no seeds, AddrMiner-N uses the organization
association strategy to select candidate patterns to probe for
active IPv6 addresses (§5). 2) For announced prefixes with
few seeds, AddrMiner-F uses the similarity matching strat-
egy to select candidate patterns to discover active addresses
further (§6). 3) For announced prefixes with sufficient seeds,
AddrMiner-S uses reinforcement learning techniques to learn
seed address characteristics while circumventing the short-
comings of similar existing schemes to perform active address
probing more effectively (§7). The classification of the sce-
narios for prefix spaces with seeds is discussed in detail in
Appendix C. The detected active addresses discovered from
the policy engine are tested for aliased prefixes. After elimi-
nating the aliased prefixes, the de-liased active addresses are
the globally active IPv6 addresses and are added to the IPv6
hitlist.

AddrMiner enables comprehensive probing of global active
IPv6 address, and provides more and balanced data to support
further measurement and security analysis of IPv6 networks.

5 AddrMiner-N

This section presents AddrMiner-N , which can guide active
address detection under an announced prefix without seeds
using patterns of active addresses under other prefixes owned
by the same organization to which the prefix without seeds
belongs.

5.1 Overview of AddrMiner-N

Since there are no seeds in the address space region, we can-
not use seeds to guide active address probes. An effective way
to generate targets under such regions is to use specific IPv6
address patterns, i.e., mining the structural characteristics of
active addresses collected in other regions and then migrating
to regions without seeds to generate targets for scanning. This
idea is feasible due to the observation that address patterns
tend to have similarities across network configurations [20].
Our analysis of the tens of millions of IPv6 addresses on the
Gasser’s hitlist [18] confirms this observation. For example,
gateway addresses often have a suffix of ::1 or ::2. Therefore,
the crux of the problem is to obtain a common pattern library
containing address patterns commonly used in address space
regions that have seeds. Our solution, AddrMiner-N , is to use
undirected graphs to represent the similarity between patterns
(§5.2), and then use graph community discovery methods to
find communities with high pattern similarity. Each commu-
nity represents a common address pattern, and these commu-
nities construct a common pattern library (§5.3). Finally, it
uses the organization association strategy to migrate these

Figure 2: Workflow of AddrMiner-N

common address patterns to any announced prefix for address
generation (§5.4).

5.2 Undirected Graph Construction

AddrMiner-N constructs an undirected graph to describe the
differences between address patterns. The nodes represent the
address patterns, and the weights of the edges represent the
similarity between different patterns.

Pattern Representation. The address patterns constructed
by existing strategies [20, 22, 29, 32, 47] often do not corre-
spond to an accurate probing space. If the space is too large,
such as Embedded-IPv4, it will waste a lot of probing re-
sources and reduce the probing efficiency; if the space is too
small, such as low-byte, it will limit the probing range and
fail to find a large number of active addresses. To solve such
a problem, we use Balanced Spatial Pattern Representation
(BSPR) [31] to extract address patterns. BSPR can accept
any IPv6 address set as input and generate flexible patterns
representing the structural characteristics of that address set,
which can be used to generate targets.

First, the BSPR uses four representations to describe the
range of values for any nybble of an IPv6 address, including
Single, List, Interval, and Wildcard:

Single: The nybble takes a fixed value, which means that
the addresses in the address set do not change in the value
taken at that nybble position.

List: The value taken for this nybble is variable, and the
range is the set of values taken for the IPv6 addresses in the
address set at the nybble position.

Interval: The nybble value is variable. The range is a
closed interval consisting of the minimum and maximum
values of the IPv6 address set at the nybble position, possibly
including values that do not appear at the nybble position.

Wildcard: The nybble value is variable and ranges over

312    2022 USENIX Annual Technical Conference USENIX Association



Table 1: The relationship between the four representations
and three statistics used by BSPR

ID Range Entropy Values Representation Example Number of values

0 0 0.00 1 Single a 1
1 ≥ tr ≥ te ≥ tc Wildcard * 16
2 ≥ tr ≥ te < tc List [1cf] 3
3 ≥ tr < te ≥ tc Interval [1-e] 14
4 ≥ tr < te < tc List [2be] 3
5 < tr ≥ te ≥ tc Interval [6-b] 6
6 ≥ tr ≥ te < tc List [679] 3
7 < tr < te < tc List [67] 2

all hexadecimal values and may include values that do not
appear at the nybble position, as indicated by the wildcard *.

To choose a suitable representation, BSPR introduces three
statistics for each nybble of IPv6 address in the input address
set: range, Shannon entropy, and value count. The range is
equal to the maximum value of the value taken by the nybble
minus the minimum value; the Shannon entropy can be calcu-
lated according to Formula (5-1); the value count is equal to
the number of values that have appeared at the position of the
nybble.

E(xi) =−
0xf

∑
v=0x0

p(xi = v) log16 p(xi = v) (5-1)

The base of Formula (5-1) is 16 because the value count of the
nybble is 16, which makes the result of the Shannon entropy
calculation fall into the interval [0,1], where xi represents the
ith nybble. The value range of i is [1,32], meaning the 32
nybbles of an IPv6 address. p(xi = v) can be obtained by
dividing the number of IPv6 addresses that take the value v at
the ith nybble position in the address set by the total number
of addresses.

Table 1 shows how BSPR decides the nybble representation
based on these three statistics. Whether these three statistics
are large or small is determined by three thresholds tr, te and
tc for range, entropy, and value count respectively.

Second, BSPR needs to solve how to determine the value of
the three hyperparameter thresholds. If the thresholds are set
too small, the modeled address space increases rapidly. At one
extreme, all three hyperparameters are set to 0, and the address
generation patterns are all in Wildcard. If the thresholds are
set too large, the modeled address space is too small. At the
other extreme, all three hyperparameters are taken to their
maximum values. The patterns of address generation are all
in List, and the value of each nybble represented by List
depends entirely on the value of the seed address set, which
will aggravate the sample bias.

Suppose the counts of List, Interval, and Wildcard in a pat-
tern are l, r, and w, respectively. L j, R j represent the count of
values taken at the jth List or Interval, respectively. The value
range of Wildcard is the 16 values of a single hexadecimal
number. Therefore, the size of the space range (SR) of any

24033a00.....[48]0[26][0-5][0-9]0 * **

24033b00.....[48]0[16][3-9][0-9]0 1 **

p1

p2

00000000.....  1   0   1     1      1   0 1 11

00000000.....  1   0   1     1      1   0 0 11

sequence 1

sequence 2

𝑠𝑐𝑜𝑟𝑒 = 	(…𝑟*(1,1)×𝐽(𝐴*, 𝐵*) …𝑟* (1,0)×𝐽(𝐴4 , 𝐵4 )…

Figure 3: Calculation of the similarity of two patterns

pattern string is thus calculated as follows:

SR = 16w ·
l

∏
j=1

L j ·
r

∏
j=1

R j (5-2)

Since l, r, and w are affected by the three hyperparameters,
tr, te and tc, SR is a ternary function with respect to these
three parameters. The domains of tr and tc are the integer of
[0,15] and [1,16], respectively. The domain of te is the real
number of [0,1], which can be discretized, for example, with
an interval of 0.05. Let the range of the ternary function SR
be the set Y . Since its domain of definition is a finite set, and
the range of Y is also a finite set. Let the number of elements
of Y be N. The most balanced space range BSR chosen by
BSPR should be the average of the Y range. Here, we use
the geometric mean because it is less influenced by extreme
values than the arithmetic mean.

BSR = N

√
∏

SR j∈Y
SR j (5-3)

Third, BSPR can choose the set of hyperparameters when
the value of SR is closest to that of BSR as the values of
tr, te and tc, as shown in Formula (5-4). Finally, a pattern is
generated based on Table 1.

argmin
tr ,te,tc

|SR−BSR| (5-4)

Similarity Calculation. The core of constructing undi-
rected edges is to determine between which nodes undirected
edges need to be created and the weights of these undirected
edges. Since patterns are represented by strings, the common
methods of calculating the similarity between strings can
also be used. AddrMiner-N introduces Jaccard similarity [28]
and Hamming distance-based similarity [53] to calculate the
similarity between patterns (specific definitions are given in
Appendix A).

Figure 3 shows an example of calculating the similarity
between two pattern strings. Two main aspects are considered
in the calculation: the similarity of the corresponding nybble
representation and the similarity of the values taken by the

USENIX Association 2022 USENIX Annual Technical Conference    313



24033 a 00.....[48]0 [26] [0-5][0-9]0  * **

24033 b 00.....[48]0 [16] [3-9][0-9]0  1 **

p1

p2

24033[ab]00.....[48]0[126][0-9][0-9]0 * ** pnew
∪

Figure 4: Merging process of different patterns

representation. For the similarity of the corresponding nybble
representation, the main focus is to compare whether the
two pattern strings have the same fixed value taken at the
same nybble position, i.e., whether they belong to the Single
representation or not. Non-Single representations include List,
Interval, and Wildcard. We convert all Single representation
nybbles to a zero value, and Non-Single representations are
represented as one, as shown in Sequence 1 and Sequence 2
in Figure 3. In this way, the similarity of the corresponding
nybble representation is obtained by calculating the Hamming
distance between Sequence 1 and Sequence 2. Regarding the
similarity of the values taken by the representation, Jaccard
similarity is used to calculate the similarity of the two sets of
values of the representation at the same nybble position. Thus,
the similarity of the two pattern strings can be obtained by
weighting the Jaccard similarity of the corresponding nybble
with the Hamming distance-based similarity of each nybble
representation as the weight. The calculation is shown in
Formula (5-5), where ai and bi denote the values of Sequence
1 and Sequence 2 at the ith position, and Ai and Bi indicate
the sets of values of pattern strings p1 and p2 at the ith nybble
representation, respectively.

score =
32

∑
i=1

ri (ai,bi) · J (Ai,Bi) , (5-5)

where ri indicates Hamming distance-based similarity at the
ith nybble and J indicates Jaccard similarity.

Finally, a threshold value hmin needs to be determined.
If the similarity between two pattern strings exceeds hmin,
an undirected edge is created. The similarity is used as
the weight of that edge. Otherwise, no undirected edge is
created. The length of announced prefixes generally does
not exceed 56 (14 nybbles). Some prefixes are highly simi-
lar, e.g., 2a02:26f0:128:100:/56 and 2a02:26f0:128:500:/56,
which causes the merge pattern to contain unannounced pre-
fixes, e.g., 2a02:26f0:128:*00:/56, but addresses in the unan-
nounced space are inactive. Therefore, when constructing
the undirected graph, we set hmin to 14.0 to avoid generating
non-announced spaces as much as possible.

5.3 Pattern Mining
After constructing the undirected graph (§5.2), we apply the
community discovery algorithm to cluster similar nodes in

Prefix 
announced 

by BGP

Pattern library

Organization label

To vector

Organization labelPreprocessing

Calculate 
similarity

Multiple

One Address 
generation 
and probe

filter

Candidate pattern

Sorted list of patterns

Figure 5: Organization association strategy

undirected graphs and build a common pattern library by
mining common patterns from communities.

The graph community discovery algorithm will produce
many communities. These nodes have high similarity in the
same community but low similarity in different communities.
After obtaining the community, we merge the patterns of the
nodes contained in the community to extract the common
pattern about the community. To make the pattern contain
more seeds, we adopt the union method to obtain the pattern.
Suppose that C represents a community, which contains k
nodes. That is, C = {p1, p2, ..., pk}. Then the common pattern

of the community is: pC =
k⋃

i=1
pi. At the nybble positions

corresponding to the different patterns, we take a union of
the values corresponding to the nybble. Figure 4 shows the
merging process of different patterns.

5.4 Organization Association Strategy
To probe active addresses under announced prefixes with
no seeds, AddrMiner-N adopts an organization associa-
tion strategy, the core of which is to extract the most rel-
evant patterns of the specified announced prefix from the
pattern library and then use them to generate target ad-
dresses for scanning. The reason for adopting this strat-
egy is that address configuration patterns are more simi-
lar within the same network organization than within dif-
ferent organizations. In the constructed common pattern li-
brary, for example, the announced prefixes of organization
"Wireless Broadband Service Provider Malaysia" contain the
following common patterns: the sixth group of nybbles is
represented by Wildcard, and the other nybbles are repre-
sented by Single, where the last nybble is 1, and the other
nybbles are 0. Specifically, the prefix 2405:7c00:a004::/48
contains the pattern 24057c00a00400000000****00000001
and the prefix 2405:7c00:a000::/48 contains the pat-
tern 24057c00a00000000000****00000001. AddrMiner-N
makes full use of the organization information of announced
prefixes to filter relevant patterns from the pattern library. The
evaluation results in §8.1 show that this strategy can enhance
significantly improve the probing efficiency.

Figure 5 shows the method of filtering the pattern library
using organization labels. We first construct organization la-
bels for the announced prefixes to which the patterns in the

314    2022 USENIX Annual Technical Conference USENIX Association



pattern library belong. We obtain the organization label by
querying the whois information in Hurricane Electric [10].
To avoid the influence of generic words on the organization
association strategy, we remove generic words, such as corpo-
ration, international, etc. For example, the organization label
of the prefix 2a01:111:2003::/48 is "Microsoft Corporation",
we add an English word "Microsoft" to the organization label
of the prefix. Similarly, we obtain the organization labels of
the announced target prefixes in the same way. To calculate
the degree of similarity between the organization labels, we
next convert these labels directly into vectors by using the
most popular fastText [5, 26, 27] pre-training model in word
embedding. Then, we use Euclidean distance to calculate the
similarity between the organization label of the target prefix
and the organization labels of each pattern in the pattern li-
brary. The calculation is shown in Formula (5-6) and yields a
list of korg most similar patterns:

similarity = ∑
i∈T, j∈W

d(vi,v j), (5-6)

where T is the set of words for the organization label of the
target prefix, W is the set of words for the organization label
of a common pattern in the pattern library. This approach
can identify the same network organization, e.g., identifying
"Akamai Technologies, inc" and "Akamai International B.V."
as belonging to the organization "Akamai" and thus selecting
more relevant patterns. Note that when the similarity is small,
i.e., the prefixes belong to different organizations, such as
"Akamai" and "Fastly", the candidate patterns are randomly
selected from the common pattern library.

After obtaining the candidate patterns, we use them to
generate target addresses under the target prefix. More specif-
ically, iterate over each candidate pattern to generate a spec-
ified number of targets, and then replace the prefixes of the
generated target addresses with target prefix. Finally, we probe
whether these addresses are active or not.

6 AddrMiner-F

Target regions with few seeds come from both (1) prefix space
regions containing few seeds selected from the public IPv6
hitlist, and (2) transformed by detecting few active addresses
after running AddrMiner-N in regions without seeds. We
experimentally find that the active address hit rate of the state-
of-the-art algorithm [47] decreases with the number of seeds,
especially when the number of seeds is less than 10, the hit
rate is already less than 1% (See more details in Appendix
C). However, the number of announced prefixes with only
few seeds is large. As shown in §8.1, we find more than
30K announced prefixes with less than 10 seeds. To solve
this problem, we propose AddrMiner-F , which can use few
seeds to extract the most relevant patterns from the common
pattern library to generate targets for scanning and achieve
effective detection of active addresses in announced prefixes

Target pattern

Pattern library

BSPR

Address generation 
and probe

… 𝑝𝑎𝑡𝑡𝑒𝑟𝑛'

Candidate patterns

Similarity    matching

𝑝𝑎𝑡𝑡𝑒𝑟𝑛(

Prefix announced by BGP 

Figure 6: Similarity matching strategy

with few seeds. We call this strategy of matching address
patterns using few seeds the similarity matching strategy.
AddrMiner-F also consists of three steps: undirected graph
construction, pattern mining, and similarity matching strategy.
Among them, the first two steps have been introduced in §5.2
and §5.3, respectively. The similarity matching strategy is
described in detail below.

In this case, we have a small number of IPv6 seeds under
the target prefix. Therefore, the similarity matching strategy
mainly combines these seeds to filter out a more relevant
candidate pattern list from the pattern library. Figure 6 shows
the process of similarity matching strategy. We first use BSPR
to obtain the patterns of few seeds under the target prefix (i.e.,
the target pattern). Then we traverse the pattern library and use
Formula (5-5) to calculate the similarity between the target
pattern and each pattern in the pattern library separately and
find the kheap most similar candidate patterns. After getting
the candidate patterns, we use the address generation method
in §5.4 to generate the target addresses and probe whether
they are active or not.

7 AddrMiner-S

Target regions with sufficient seeds come from three scenarios:
(1) prefix space regions containing sufficient seeds selected
from the public IPv6 hitlist, (2) transformed by detecting suf-
ficient active addresses after running AddrMiner-N in regions
without seeds, and (3) transformed by detecting sufficient ac-
tive addresses after running AddrMiner-F in regions with few
seeds. If the address space regions have enough seeds, the
state-of-the-art address generation algorithms based on seeds
are effective attempts. They learn the characteristics of seeds
to generate target addresses for scanning. However, due to the
seeds’ sampling bias, the characteristics of the seeds do not
coincide with the characteristics of the actual active addresses
under the address space regions. The sampling bias reduces
the probing efficiency and wastes resources. Although 6Hit
attempts to use reinforcement learning to eliminate sampling
bias, it simply uses the hierarchical characteristic of seeds and
it’s space repartition mechanism randomly generates target
addresses to reduce the efficiency of active address detec-
tion. In our work, we propose AddrMiner-S , which learns
seeds’ density characteristic and uses reinforcement learning
to correct the discrepancies in the density distribution caused

USENIX Association 2022 USENIX Annual Technical Conference    315



by the sampling of seeds. In space expansion, AddrMiner-S
guide the target address generation in a larger address space
by merging subspace density characteristic. The model about
AddrMiner-S is built in Appendix B.

7.1 Target Address Generation Based on Rein-
forcement Learning

We know the higher the density of active addresses, the higher
the hit rate of active addresses (The theoretical proof is in Ap-
pendix B). Although the active address density of each region
in the real IPv6 network is unknown, we estimate the active
address density of each region through Thompson sampling.
After discovering seeds’ high-density regions, we use the re-
inforcement learning method to select candidate regions for
generating target addresses in the seed address’s high-density
regions, update the active address density distribution through
feedback rewards of each iteration’s scanning results, and
dynamically adjust the target address generation’s direction.
As the number of iterations increases, the evaluation of the
probability of each action’s reward will become more accu-
rate. Eventually, high-density regions of active addresses in
the real network will be discovered, and address generation
will be performed in the high-density regions.

Space Partition: We first discover the high-density regions
X = {x1,x2, ...,xk} of seeds. To quickly cluster the density
space distribution of seeds, we use the density space tree [47]
to find high-density regions of the seeds in linear time. The
root node represents the entire active address space, and the
leaf node represents a high-density region of seeds. In each
node region xi, there are two attributes αi and βi. Where αi
represents the number of active addresses probed in region xi,
and βi represents the number of inactive addresses discovered
in region xi. Initially, we take out all the leaf nodes from the
density space tree as the high-density regions set X .

After discovering regions with a high density of seeds, we
dynamically probe active IPv6 addresses based on reinforce-
ment learning. The iterative process of reinforcement learning
consists of three main steps: 1) Generate target addresses to
probe (action), 2) Update the reward of probed regions with
the number of active addresses and inactive addresses (ac-
tion’s reward) to update the density distribution, and 3) Merge
the nodes of the space tree to meet the needs of exploring a
larger address space.

Target Generation: To adapt to the large-scale probing of
addresses and speed up address probing, we select multiple
target regions in each iteration, and the budget (the probing
number of target addresses) consumed is b. Since the node
region with a larger reward is more likely to discover active
addresses, in each iteration, we select the top P searchable
regions based on the reward for target address generation in
the candidate regions X . We use prior events (action’s reward)
to evaluate the distribution of active address density. However,
the larger space, the higher the risk of searching in the node

region (more difficult to find active addresses). For example,
in extreme cases, the hit rate of active addresses is extremely
low in the entire IPv6 address space. To reduce the risk of low
address probing efficiency due to excessive space, we use the
region address variable space (variable dimensions) to adjust
the probability of generating active addresses in each region.
The number of target addresses generated in each region is
calculated as follows:

p(xi) =
eRi

log(Vi)∗
n
∑

i=1

eRi
log(Vi)

(7-1)

N(xi) = b∗ p(xi) (7-2)

Where Ri indicates the expected reward in region i, p(xi) indi-
cates the probability of generating target addresses in region
xi, N(xi) indicates the number of target addresses generated
in region xi, Vi represents the number of variable dimensions
in active addresses in region xi, and n represents the probing
regions of the top P percent of the candidate regions X , b
represents the budget consumed per iteration.

Reward Update: We update node regions’ reward to in-
crease the chance of generating target addresses in high-
density regions for next-round probing. After each round of
probing, we need to update the probed node region’s reward
value based on the probing result. Initially, we take out all
the leaf nodes from the density space tree as the high-density
regions set X and each leaf node’s reward in xi is initialized
as follows:

R1
i = Beta(α1

i ,β
1
i ) (7-3)

where Ri represents the expected reward in leaf node region
xi. Initially, α1

i is the number of seeds distributed in the leaf
node region xi plus 1, and β1

i =1.
After each iteration, the expected reward of the probed

region xi is updated as follows:

Rt+1
i = Beta(αt

i +α
∗,βt

i +β
∗) (7-4)

where α∗ represents the number of new active addresses from
scanning result in node region xi, and β∗ represents the num-
ber of new inactive addresses from scanning result in node
region xi. We assume b∗ represent the target address generated
in the node region xi in each iteration. α∗, β∗ and b∗ satisfy
the following relationship: b∗ = α∗ + β∗.

Node Merging: The search space in the node is defined as
the seed address’s variable dimensions, but this will cause the
search space to be incomplete. We adopt the method of merg-
ing upward after the child node’s space search is completed,
thus ensuring that space not included in the child node can be
searched in the parent node.

When a leaf node region needs to be merged, we need
to merge all the leaf nodes of the subtree (T ) rooted at this
leaf node’s parent node to ensure that addresses continue
to be generated in the high-density region. We can get all

316    2022 USENIX Annual Technical Conference USENIX Association



the leaf nodes recursively, but the time consumption is too
high. Because the leaf nodes of T are all included in the
density regions X to be searched, we can store all the node’s
child nodes during the tree-building process and only need to
intersect with X to get all the leaf nodes when merging. The
merging strategy of the node’s parameters is as follows:

1) Probed addresses merge: The active addresses (α f ) and
inactive addresses (β f ) found in the parent node ( f ) region
is equal to the union of the set of active addresses found in
all child nodes (C = {x1, ...,x j}). The specific relationship is
expressed as follows: α f =

⋃ j
i=1 αi and β f =

⋃ j
i=1 βi.

2) Reward merge: The parent node’s reward value still
satisfies beta distribution, and the reward = Beta(α f ,β f ) is
calculated based on the active and inactive addresses obtained
by strategy 1).

3) Space merge: The target address generation space of
the parent node is equal to the variable space of the parent
node minus the variable space of the child nodes. The specific
relationship is expressed as follows:
f .var_space = f .var_space−

⋃ j
i=1 xi.var_space.

8 Evaluation

This section highlights the evaluation of the effectiveness of
active address probing for AddrMiner . AddrMiner is an active
measurement method to discover active addresses. Therefore
in our experimental evaluation, we compare AddrMiner with
active address probing methods, not with passive collection
methods (e.g., vantage point mirroring traffic) or public re-
source extraction methods (e.g., rDNS, Domain Lists, FDNS,
AXFR). In all following experiments, we perform aliased
prefix detection and aliased address removal.

Data: We automated the process of obtaining Gasser’s pub-
licly de-aliased active addresses from December 2020 to June
2021, and obtained 46.2M active IPv6 addresses, covering
49.2K announced prefixes. In addition, we obtained 105,973
announced prefixes from the Pyasn project [3]. As shown in
Table 2, we classify announced prefix spaces into no seed
address spaces, few seed address spaces, and sufficient seed
address spaces according to the number of seeds each an-
nounced prefix space contains. We have explored the number
of seeds on the probing efficiency in Appendix C and selected
target regions with the number of seed addresses less than ten
as few seed scenarios.

Active Detection: When judging whether the target address
is active, we send an ICMPv6 request packet using the ZMap
to each address. If we receive a response from an address, we
determine that it is active at the time of detection.

Default Parameters: We empirically set the important pa-
rameters. In undirected graph construction, hmin is set = 14.0.
In pattern mining, the Louvain algorithm is used for graph
community discovery. Pattern strings with space range SR
greater than 107 are filtered. In AddrMiner-S , we set P to

Table 2: Scenarios classification in the data set
Scenarios Classification The number of announced prefixes
No seeds 56,730
Few seeds (≤ 10) 31,771
Sufficient seeds 17,472

Figure 7: Hit rate of active addresses in the no seed scenario.

0.05, i.e., the top 0.05 percent of the highest reward nodes
are selected for probing. We set korg and kheap to 10.0. The
maximum number of seeds contained in each leaf node is 4,
i.e., δ = 4. We set the granularity of the IPv6 address repre-
sentation to 4, i.e., γ = 4.

8.1 Efficiency of AddrMiner-N

Suppose bcount represents the number of announced prefixes
to be probed, pcount indicates the number of candidate pat-
terns for each announced prefix, and g denotes the number
of addresses generated in each pattern. Thus, the number of
addresses generated in each announced prefix is pcount × g,
and the number of target addresses generated in all announced
prefixes is M = bcount× pcount×g. We generate different num-
bers of target addresses for each announced prefix without
seeds, i.e., bcount = 56,730, pcount = 10, and g=1, 10, 100, 1000.

Figure 7 shows the active address probing results of
AddrMiner-N and other existing methods in the seedless ad-
dress scenario. The vertical axis represents the average hit
rate of probed prefix spaces without seeds (bcount ). We found
that state-of-the-art target address generation algorithms, in-
cluding Entropy/IP [15], 6Gen [36], 6Tree [33], 6Hit [24],
and DET [47], do not work in seedless regions since they
need to learn seeds’ characteristics. Compared with random
scanning, which has extremely hit rate of only about 0.6%,
AddrMiner-N has a higher hit rate of up to 3.6% for active
address probing.

Furthermore, we perform a more comprehensive probing
through the announced prefix space. We use 105,973 an-
nounced prefixes as probing regions, employ 500 patterns un-
der each announced prefix, and generate 100 target addresses
under each pattern, i.e., bcount = 105,973, pcount = 500, and

USENIX Association 2022 USENIX Annual Technical Conference    317



Table 3: The probing results of the two probing methods
Probing Method #Active Addrs #BPFXs Coverage
AddrMiner-N 158,959,500 86,423 81.6%
Random Scanning 708,697 1,421 1.3%

BPFXs: prefixes announced by BGP.

10 100 1000 10000
Target addresses per prefix announced by BGP

0

2

4

6

8

10

12

H
it

ra
te

/%

AddrMiner-N

AddrMiner-F

Entropy/IP

DET

6Tree

6Gen

6Hit

Figure 8: Hit rate of active addresses in the few seed scenario.

g= 100. Thus, we generated about 5.2 billion target addresses
for probing. Table 3 shows the number of active addresses
discovered by the two probing methods and the number of an-
nounced prefixes covered by the active addresses. AddrMiner-
N discovered approximately 159.0M active addresses, cov-
ering 86.4K announced prefixes, accounting for 81.6% of all
announced prefixes. It indicates that AddrMiner-N can per-
form active address probing over a broader address space and
is more suitable for global active IPv6 address probing.

8.2 Efficiency of AddrMiner-F

In few seed scenario, we evaluate AddrMiner-F by comparing
active address hit rate with AddrMiner-N and the state-of-the-
art target address generation algorithms. We generated dif-
ferent numbers of target addresses among 31,771 announced
prefixes containing few seeds, i.e., bcount = 31,771, pcount =
10, and g=1, 10, 100, 1000. Figure 8 shows the hit rate of ac-
tive address probing. When target addresses are small, DET,
6Hit, and 6Tree randomly generate target addresses in low
nybble space. As the target addresses increase, the larger the
target address will cause the hit rate to decrease. Therefore, in
the scenario with few seeds, the state-of-the-art target address
generation algorithms are inferior. The hit rate of active ad-
dresses is very low when the target space represented by the
pattern is too large or too small. We probed all mined com-
mon patterns and found that the hit rate was highest when the
pattern contained 2 variable nybbles ([32-256] targets). This
is because we choose the pattern space closest to the probing
number (G) to generate targets randomly. This explains why
the hit rate of AddrMiner-N increases and then decreases

Table 4: Ratio of common patterns in the pattern library
Patterns Example of patterns in pattern library Ratio/%
Low-byte 20010db800000000000000000000000[1-a] 25.886
Embedded-IPv4 20010db80122034400000000874b2b[3-f][4-f] 7.420
Embedded-port 20010db800000000000000000000[01]*** 0.100
ISATAP fe8000000000000002005efec0000*** 0.002
EUI-64 fe8000000000000002aa00fffe3f[2-f][a-c]1c 3.100
Other 240085001000000000de00e300**00** 63.490

in Figure 7 and Figure 8. As the number of target addresses
increases, the expansion of the probe space reduces the effec-
tiveness of similarity matching, which affects the efficiency
of AddrMiner-F probing. However, AddrMiner-F is more
effective overall than the other methods. When AddrMiner-F
generates 10-10,000 target addresses for each announced pre-
fix containing few seeds, the active address probing efficiency
is improved by 70%-150% compared to existing methods.
AddrMiner-F enables a more efficient transition from few
active address scenario to sufficient address scenario.

8.3 Common Pattern Library Analysis

The common pattern library generated by AddrMiner is a set
of pattern strings. We analyze this pattern library and provide
some further guidance for active IPv6 address probing.

RFC documents [20, 32] presents several common patterns
in the IID of IPv6 address, e.g., may be a low-byte IID with a
run of zeroes followed only by a low number, an embedded-
IPv4 IID inserting one IPv4 address, an embedded-port IID
including the service port in the lowest-order byte of the IID,
an ISATAP IID with "0200:5EFE" flag and IPv4 address, an
EUI-64 IID with an embedded MAC address. Table 4 shows
the common address patterns, examples of pattern strings,
and the ratio in the pattern library. We find that EUI-64 IID
and ISATAP take fixed values at some locations where the
address is fixed, so the pattern strings use the Single policy,
which is a non-dynamically changing nybble, at these fixed
locations. Low-byte address patterns will have more consecu-
tive nybbles in the middle that takes on a value of zero and
only change at the end in multiple consecutive nybble posi-
tions, such as 20010db800000000000000000000000[1-a] for
2001:db8::1 or 2001:db8::4 for these types of IPv6 address
structures. The high percentage of the low-byte address pat-
tern in the pattern library means that a brute-force scanning
can be attempted for such structures, i.e., fixing the value
of the middle nybbles to 0 and traversing only the last con-
secutive nybbles. It explains the high hit rate of incremental
scanning when the number of targets is small. In addition,
AddrMiner can find many additional address patterns, such as
the other types in Table 4, which also account for 63.49% of
the total. Although such address patterns do not correspond to
address patterns known from RFC documents, their stronger
regularity can reduce the difficulty in brute-force scanning of
such addresses and improve the efficiency of address probing.

318    2022 USENIX Annual Technical Conference USENIX Association



In short, AddrMiner can dig out address patterns that not only
contain the address patterns of RFC documents, but can also
discover more valuable address patterns. We do not consider
the assignment of given address space to one of the classes
to be static. Furthermore, AddrMiner adds newly discovered
addresses to the IPv6 hitlist, and updates the common patterns
promptly for dynamic IPv6 address spaces.

8.4 Efficiency of AddrMiner-S

We evaluate the efficiency of AddrMiner-S in probing ac-
tive addresses by comparing the active address hit rate of
AddrMiner-S and the state-of-the-art algorithms.

Here, we randomly select announced prefixes that contain
more than 1K seeds. We run the above algorithms for each
announced prefix to generate target addresses with a budget
of 10 times the seeds. Figure 9(a) illustrates the address prob-
ing efficiency of AddrMiner-S in announced prefixes with
sufficient seeds. We observe that the active address hit rate of
AddrMiner-S outperforms other state-of-the-art algorithms in
every announced prefix. In particular, the active address hit
rate of AddrMiner-S reaches 35.2% in prefix 2001:1291::/32.

To further validate the efficiency of AddrMiner-S , we ran-
domly select 1M active addresses as seeds from Gasser’s
public hitlist. We use AddrMiner-S and state-of-the-art algo-
rithms (Note that 6GAN is not suitable for large-scale global
active address detection since the time complexity is too high
based on deep learning framework) to generate target ad-
dresses with budgets ranging from 10M to 50M. We set the
budget b consumed for each iteration to 10K. Figure 9(b)
shows the probing results after removing the aliased addresses.
We find that AddrMiner-S outperforms the other algorithms.
When the budget is 50M, the hit rates of the algorithms from
highest to lowest are AddrMiner-S (56.3%), DET (28.9%),
6Tree (12.9%), 6Gen (14.6%), and Entropy/IP (3.1%), 6Hit
(2.6%), and the hit rate of AddrMiner-S is almost twice as
much. In particular, 6Hit has a high hit rate when the budget
is small. Still, space expansion leads to a rapid decrease in hit
rate as the budget increases because the target addresses are
generated randomly due to the spatial repartition mechanism
of 6Hit. AddrMiner-S maintains the state learned from sub-
space during space expansion to avoid a rapid decrease in hit
rate and effectively improve detection.

In the ideal sampling case, the density distribution of seeds
is consistent with the density distribution of active addresses
in the actual network. The reward (Ri) of each iteration re-
flects the active address density distribution of the real net-
work. The density distribution of seeds updated by rewards
in the next iteration (Rt+1

i ) is more convergent to the distri-
bution of active addresses in the actual network compared to
the previous iteration (Rt

i). Therefore, the similarity between
the current seed address density distribution and the actual
network’s active address density distribution can be obtained
by calculating the difference in reward ranking after each

iteration using Hamming distance. As shown in Figure 9(c),
the density distribution of seeds increasingly converges to the
density distribution of active addresses in the actual network
as the number of iterations increases. In addition, AddrMiner-
S strikes a balance between exploration and exploitation (the
specific analysis is given in Appendix D).

9 IPv6 Hitlist

AddrMiner probes each IPv6 prefix announced by BGP, re-
quiring approximately one month to probe all announced pre-
fixes. As the number of all announced prefixes exceeds 100K,
this results in a long probing time. Therefore, to deal with the
dynamic changes in the IPv6 space, we repeat the probing
of IPv6 prefixes announced by BGP every month. The probe
period should be set as short as possible to get a more accu-
rate view of active IPv6 addresses, depending on the probe
resources. We have developed AddrMiner for continuously
probing active IPv6 addresses worldwide for 13 months and
discovered 2.1B active addresses (covering 86.4K announced
prefixes), including 1.7 billion de-aliased active addresses
(IPv6 hitlist) and 0.4 billion aliased addresses. Meanwhile,
we found 1.1M aliased prefixes, which are described and ana-
lyzed in Appendix E. The IPv6 hitlist is analyzed as follows:

Time Characteristics. Active IPv6 addresses have time
characteristics. IPv6 addresses, especially client addresses,
have a short lifetime. Therefore, when a probe response is re-
ceived, we can only determine that the IPv6 address is active
at the response time. We analyze the stability of addresses to
determine addresses’ lifetime, mainly by separating server ad-
dresses, router addresses, persistent or stable client addresses,
and temporarily active client addresses.

We define nd-stable to represent the stability of the address.
For example, 1d-stable is active for at least one day during
the continuous detection period, and nd-stable address means
active for at least n days. The active address of nd-stable
is also the address of (n-1)d-stable. We send an ICMPv6
request to each address we collect every day and record these
addresses’ lifetime according to the response information
from January 8, 2021. As shown in Table 5, we found that the
long-term active addresses(100d-stable addresses) are more
than 46%. Compared with temporarily active client addresses,
long-term active addresses are more meaningful for detection.

IID Analysis. We analyze the IID types of active address
assignments to understand the global IPv6 address configura-
tion landscape. Utilizing the addr6 tool [12], we have divided
the IID portion of IPv6 addresses into different types.

In Table 5, we analyze the IID allocation types of different
stable addresses. The 1.7 billion 1-stable de-aliased addresses
mean IPv6 hitlist we collected. We found that pattern-bytes
(some discernible patterns) IID addresses accounted for as
high as 40.8%, closely related to our detection strategy be-
cause we mainly detect active addresses by constructing com-
mon pattern library (similarly, low-byte IID and embedded-

USENIX Association 2022 USENIX Annual Technical Conference    319



0 10 20 30 40 50

Hit rate/%

2001:1291::/32

2001:1498::/32

2001:1458::/32

2001:41d0::/32

2001:470::/32P
re

fix
es

an
no

un
ce

d
by

B
G

P

AddrMiner-S

DET

6Hit

6Tree

6Gen

Entropy/IP

(a) Hit rate in prefixes with sufficient seeds

10 20 30 40 50
Budget(M)

0
10
20
30
40
50
60
70
80

Hi
t r

at
e/

%

AddrMiner-S
DET
6Tree

6Hit
6Gen
Entropy/IP

(b) Hit rate in Gasser’s hitlist.

0 1000 2000 3000 4000 5000
Epoch

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Si
m
ila
rit
y

(c) Consistency of density.

Figure 9: Comparisons between the AddrMiner-S and the state-of-the-art algorithms with sufficient seeds.

Table 5: IID Analysis of Discovered n-stable Addresses
- #IPs EUI-64 Embedded-IPv4 Pattern-bytes Randomized Low-byte

1d-stable(Hitlist) 1.7B 71.4M (4.2%) 251.6M (14.8%) 676.6M (39.8%) 411.4M (24.2%) 277.1M (16.3%)
7d-stable 1.1B (65.8%) 57.8M (3.4%) 212.5M (12.5%) 506.6M (29.8%) 113.9M (6.7%) 227.8M (13.4%)

30d-stable 919.4M (54.1%) 760.8K (0.0%) 204.0M (12.0%) 498.1M (29.3%) 13.6M (0.8%) 202.3M (11.9%)
60d-stable 860.2M (50.6%) 701.6K (0.0%) 190.4M (11.2% ) 464.1M (27.3%) 13.5M (0.8%) 188.7M (11.1%)
100d-stable 783.7M (46.1%) 680.4K (0.0%) 173.4M (10.2%) 425.0M (25.0%) 10.3M (0.6%) 173.3M (10.2%)

IPv4 IID addresses). In addition, the IPv6 hitlist contains
24.2% of randomized IID addresses, which are randomly gen-
erated in high-density regions. The EUI-64 IID addresses are
only 4.2%. This is because Gasser’s hitlist contains a small
proportion of EUI-64 IID addresses. At the same time, the
detected address space is small, and there is no address gener-
ation in the EUI-64 flag. In vertical analysis, we found that
randomized IID and EUI-64 IID addresses are more unstable
during continuous detection. The proportion of temporarily
active client addresses is high, and the lifetime is less than
seven days. Embedded-IPv4 IID, low-byte IID, and pattern-
bytes IID addresses have high stability and a long lifetime.
These are more likely to contain long-term active and stable
client addresses, server addresses, router addresses, etc.

We further analyze the organization and location distribu-
tion of active addresses in the IPv6 hitlist in Appendix F.

10 Ethical Considerations

To perform global IPv6 address probing, we follow ethical
conventions for network measurement, including recommen-
dations provided by Partridge et al. [39] and Dittrich et al. [8].
We first evaluate whether active address measurements in-
duce harm to the probed hosts and networks. We send only
one probe packet to each IP address, which minimally affects
the host and the network where the IP is located. To avoid
duplicate probes, AddrMiner removes IPv6 addresses that
have already been probed from the generated target addresses.
Next, we evaluate whether the probing behavior will cause
harm to the local network. We will use distributed probes with
a probing rate limit of 10 Mbps per probe to avoid causing
problems to the network where the probing point is located
during active address probing.

11 Conclusion and Future Work

This work proposes a systematic methodology, AddrMiner,
which comprehensively probes the global active IPv6 ad-
dresses. We follow ethical conventions for network measure-
ment. AddrMiner divides the global active IPv6 address prob-
ing into three scenarios and accumulates active addresses
from none to many. We used AddrMiner to probe the global
active IPv6 addresses and found 2.1 billion active addresses
within 13 months. AddrMiner removes the limitation of us-
ing a vantage point for active IPv6 address probing. Our
work will effectively support more researchers to conduct in-
depth IPv6 network measurement and security research. We
share code and data at: https://github.com/AddrMiner/
AddrMiner.

In future work, we will continue to probe active IPv6 ad-
dresses. In addition, the blocking strategies and middle boxes
can affect the detection of active addresses [25], we will fur-
ther study their impact on active address detection.

12 Acknowledgments

We would like to thank our shepherd, Adrian Perrig, and the
anonymous reviewers for their insightful comments. We also
thank Chenglong Li, Enhuan Dong, Yichao Wu, Jinjin Wei,
Jinlei Lin, Long Pan, Hao Gao, Yirui Luo, and Leyao Nie
for their feedback and suggestions. This work is supported
by the National Key Research and Development Program of
China under Grant No. 2018YFB1800200 and Beijing Natural
Science Foundation under Grant No.4222026. Lin He and
Jiahai Yang are the corresponding authors of this paper.

320    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/AddrMiner/AddrMiner.
https://github.com/AddrMiner/AddrMiner.


References

[1] Johanna Amann, Oliver Gasser, Quirin Scheitle, Lexi
Brent, Georg Carle, and Ralph Holz. Mission accom-
plished?: HTTPS security after diginotar. In Proceed-
ings of the 2017 Internet Measurement Conference,
pages 325–340. ACM, 2017.

[2] APWG. Apwg: Cross-industry global group supporting
tackling the phishing menace. http://antiphishing.
org, 2018.

[3] Hadi Asghari and Arman Noroozian. Pyasn. https:
//pypi.org/project/pyasn/, 2020.

[4] Robert Beverly, Ramakrishnan Durairajan, David
Plonka, and Justin P Rohrer. In the ip of the beholder:
Strategies for active ipv6 topology discovery. In Pro-
ceedings of the 2018 Internet Measurement Conference,
pages 308–321, 2018.

[5] Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomás Mikolov. Enriching word vectors with subword
information. Trans. Assoc. Comput. Linguistics, 5:135–
146, 2017.

[6] Kevin Borgolte, Shuang Hao, Tobias Fiebig, and Gio-
vanni Vigna. Enumerating active ipv6 hosts for large-
scale security scans via dnssec-signed reverse zones. In
2018 IEEE Symposium on Security and Privacy (S&P),
pages 770–784, 2018.

[7] Tianyu Cui, Gaopeng Gou, Gang Xiong, Chang Liu,
Peipei Fu, and Zhen Li. 6gan: Ipv6 multi-pattern tar-
get generation via generative adversarial nets with rein-
forcement learning. In IEEE INFOCOM 2021 - IEEE
Conference on Computer Communications, pages 1–10,
2021.

[8] David Dittrich, Erin Kenneally, et al. The Menlo Report:
Ethical Principles Guiding Information and Commu-
nication Technology Research. Technical report, US
Department of Homeland Security, 2012.

[9] Zakir Durumeric, Eric Wustrow, and J Alex Halderman.
Zmap: Fast internet-wide scanning and its security appli-
cations. In 22nd USENIX Security Symposium (USENIX
Security 13), pages 605–620, 2013.

[10] Hurricane Electric. Hurricane electric bgp toolkit.
https://bgp.he.net/, 2021.

[11] Adrienne Porter Felt, Richard Barnes, April King, Chris
Palmer, Chris Bentzel, and Parisa Tabriz. Measuring
https adoption on the web. In 26th USENIX security
symposium (USENIX security 17), pages 1323–1338,
2017.

[12] F.Gont. Ipv6 toolkit. https://www.si6networks.
com/research/tools/ipv6toolkit, 2021.

[13] Tobias Fiebig, Kevin Borgolte, Shuang Hao, Christopher
Kruegel, and Giovanni Vigna. Something from nothing
(there): collecting global ipv6 datasets from dns. In
International Conference on Passive and Active Network
Measurement, pages 30–43. Springer, 2017.

[14] Tobias Fiebig, Kevin Borgolte, Shuang Hao, Christo-
pher Kruegel, Giovanni Vigna, and Anja Feldmann. In
rdns we trust: revisiting a common data-source’s reliabil-
ity. In International Conference on Passive and Active
Network Measurement, pages 131–145. Springer, 2018.

[15] Pawel Foremski, David Plonka, and Arthur Berger. En-
tropy/ip: Uncovering structure in ipv6 addresses. In
Proceedings of the 2016 Internet Measurement Confer-
ence, pages 167–181, 2016.

[16] Kensuke Fukuda and John Heidemann. Who knocks at
the ipv6 door? detecting ipv6 scanning. In Proceedings
of the Internet Measurement Conference 2018, pages
231–237, 2018.

[17] Oliver Gasser, Benjamin Hof, Max Helm, Maciej Kor-
czynski, Ralph Holz, and Georg Carle. In log we trust:
Revealing poor security practices with certificate trans-
parency logs and internet measurements. In PAM, vol-
ume 10771 of Lecture Notes in Computer Science, pages
173–185. Springer, 2018.

[18] Oliver Gasser, Quirin Scheitle, Pawel Foremski, Qasim
Lone, Maciej Korczyński, Stephen D Strowes, Luuk
Hendriks, and Georg Carle. Clusters in the expanse: Un-
derstanding and unbiasing ipv6 hitlists. In Proceedings
of the 2018 Internet Measurement Conference, pages
364–378, 2018.

[19] Oliver Gasser, Quirin Scheitle, Sebastian Gebhard, and
Georg Carle. Scanning the ipv6 internet: towards a
comprehensive hitlist. arXiv preprint arXiv:1607.05179,
2016.

[20] Fernando Gont and Tim Chown. Network Reconnais-
sance in IPv6 Networks. RFC 7707, March 2016.

[21] Google. Google ipv6. https://www.google.com/
intl/en/ipv6/statistics.html, 2021.

[22] Lin He, Gang Ren, Ying Liu, and Jiahai Yang. Pavi:
Bootstrapping accountability and privacy to ipv6 inter-
net. IEEE/ACM Transactions on Networking, 29(2):695–
708, 2021.

[23] John Heidemann, Yuri Pradkin, Ramesh Govindan,
Christos Papadopoulos, Genevieve Bartlett, and Joseph
Bannister. Census and survey of the visible internet. In

USENIX Association 2022 USENIX Annual Technical Conference    321

http://antiphishing.org
http://antiphishing.org
https://pypi.org/project/pyasn/
https://pypi.org/project/pyasn/
https://bgp.he.net/
https://www.si6networks.com/research/tools/ipv6toolkit
https://www.si6networks.com/research/tools/ipv6toolkit
https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html


Proceedings of the 8th ACM SIGCOMM conference on
Internet measurement, pages 169–182, 2008.

[24] Bingnan Hou, Zhiping Cai, Kui Wu, Jinshu Su, and Yin-
qiao Xiong. 6Hit: A reinforcement learning-based ap-
proach to target generation for internet-wide ipv6 scan-
ning. In IEEE INFOCOM 2021 - IEEE Conference on
Computer Communications, 2021.

[25] Liz Izhikevich, Renata Teixeira, and Zakir Durumeric.
LZR: Identifying unexpected internet services. In 30th
USENIX Security Symposium (USENIX Security 21),
2021.

[26] Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hervé Jégou, and Tomás Mikolov. Fast-
text.zip: Compressing text classification models. CoRR,
abs/1612.03651, 2016.

[27] Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomás Mikolov. Bag of tricks for efficient text classi-
fication. In EACL (2), pages 427–431. Association for
Computational Linguistics, 2017.

[28] Fatih Karabiber. Jaccard similarity. https:
//www.learndatasci.com/glossary/
jaccard-similarity/.

[29] Seiichi Kawamura and Masanobu Kawashima. A Rec-
ommendation for IPv6 Address Text Representation.
RFC 5952, August 2010.

[30] Platon Kotzias, Abbas Razaghpanah, Johanna Amann,
Kenneth G Paterson, Narseo Vallina-Rodriguez, and
Juan Caballero. Coming of age: A longitudinal study
of tls deployment. In Proceedings of the 2018 Internet
Measurement Conference, pages 415–428, 2018.

[31] Guo Li, Lin He, Guanglei Song, Zhiliang Wang, Jiahai
Yang, Jinlei Lin, and Hao Gao. Ipv6 active address
discovery algorithm based on multi-level classification
and space modeling. Journal of Tsinghua University
(Science and Technology), 61(10):1177–1185, 2021.

[32] Xing Li, Mohamed Boucadair, Christian Huitema,
Marcelo Bagnulo, and Congxiao Bao. IPv6 Addressing
of IPv4/IPv6 Translators. RFC 6052, October 2010.

[33] Zhizhu Liu, Yinqiao Xiong, Xin Liu, Wei Xie, and Pei-
dong Zhu. 6tree: Efficient dynamic discovery of active
addresses in the ipv6 address space. Computer Net-
works, 155:31–46, 2019.

[34] Soo-Jin Moon, Yucheng Yin, Rahul Anand Sharma,
Yifei Yuan, Jonathan M Spring, and Vyas Sekar. Ac-
curately measuring global risk of amplification attacks
using ampmap. In 30th USENIX Security Symposium
(USENIX Security 21), 2021.

[35] Ayman Mukaddam, Imad H. Elhajj, Ayman I. Kayssi,
and Ali Chehab. IP spoofing detection using modified
hop count. In AINA, pages 512–516. IEEE Computer
Society, 2014.

[36] Austin Murdock, Frank Li, Paul Bramsen, Zakir Du-
rumeric, and Vern Paxson. Target generation for internet-
wide ipv6 scanning. In Proceedings of the 2017 Internet
Measurement Conference, pages 242–253, 2017.

[37] Dr. Thomas Narten, Tatsuya Jinmei, and Dr. Susan
Thomson. IPv6 Stateless Address Autoconfiguration.
RFC 4862, September 2007.

[38] RIPE NCC. Ipmap. https://ftp.ripe.net/ripe/
ipmap/, 2018.

[39] Craig Partridge and Mark Allman. Ethical Considera-
tions in Network Measurement Papers. Communications
of the ACM, 59(10):58–64, 2016.

[40] Charles E. Perkins, Bernie Volz, Ted Lemon, Michael
Carney, and Jim Bound. Dynamic Host Configuration
Protocol for IPv6 (DHCPv6). RFC 3315, July 2003.

[41] PhishTank. A nonprofit anti-phishing organization.
http://www.phishtank.com, 2018.

[42] David Plonka and Arthur Berger. Temporal and spatial
classification of active ipv6 addresses. In Proceedings
of the 2015 Internet Measurement Conference, pages
509–522, 2015.

[43] Daniel J. Russo, Benjamin Van Roy, and Ab-
bas Kazerouni. A tutorial on thompson sam-
pling. https://www.overleaf.com/project/
60827af280c8e85011d3b800, 2021.

[44] Quirin Scheitle, Taejoong Chung, Jens Hiller, Oliver
Gasser, Johannes Naab, Roland van Rijswijk-Deij,
Oliver Hohlfeld, Ralph Holz, David R. Choffnes, Alan
Mislove, and Georg Carle. A first look at certification
authority authorization (CAA). Comput. Commun. Rev.,
48(2):10–23, 2018.

[45] Aleksandrs Slivkins. Introduction to multi-armed
bandits. https://arxiv.org/pdf/1904.07272.pdf,
2019.

[46] Rapid7 Project Sonar. Forward dns data. https://
opendata.rapid7.com/sonar.fdns_v2/, 2018.

[47] Guanglei Song, Lin He, Zhiliang Wang, Jiahai Yang,
Tao Jin, Jieling Liu, and Guo Li. Towards the construc-
tion of global ipv6 hitlist and efficient probing of ipv6
address space. In 2020 IEEE/ACM 28th International
Symposium on Quality of Service (IWQoS), pages 1–10.
IEEE, 2020.

322    2022 USENIX Annual Technical Conference USENIX Association

 https://www.learndatasci.com/glossary/jaccard-similarity/
 https://www.learndatasci.com/glossary/jaccard-similarity/
 https://www.learndatasci.com/glossary/jaccard-similarity/
https://ftp.ripe.net/ripe/ipmap/
https://ftp.ripe.net/ripe/ipmap/
http://www.phishtank.com
https://www.overleaf.com/project/60827af280c8e85011d3b800
https://www.overleaf.com/project/60827af280c8e85011d3b800
https://arxiv.org/pdf/1904.07272.pdf
https://opendata.rapid7.com/sonar.fdns_v2/
https://opendata.rapid7.com/sonar.fdns_v2/


[48] Guanglei Song, Jiahai Yang, Zhiliang Wang, Lin He,
Jinlei Lin, Long Pan, Chenxin Duan, and Xiaowen Quan.
Det: Enabling efficient probing of ipv6 active addresses.
IEEE/ACM Transactions on Networking, 2022.

[49] Spamhaus. The spamhaus project6. https://www.
spamhaus.org, 2018.

[50] Stephen D Strowes. Bootstrapping active ipv6 mea-
surement with ipv4 and public dns. arXiv preprint
arXiv:1710.08536, 2017.

[51] Johanna Ullrich, Peter Kieseberg, Katharina Krombholz,
and Edgar Weippl. On reconnaissance with ipv6: a
pattern-based scanning approach. In 2015 10th Interna-
tional Conference on Availability, Reliability and Secu-
rity, pages 186–192. IEEE, 2015.

[52] Kevin Vermeulen, Justin P Rohrer, Robert Beverly,
Olivier Fourmaux, and Timur Friedman. Diamond-
miner: Comprehensive discovery of the internet’s topol-
ogy diamonds. In 17th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 20),
pages 479–493, 2020.

[53] Wikipedia. Hamming distance. https:
//www.tutorialspoint.com/
what-is-hamming-distance, 2022.

[54] Addy Yeowr. Bitnodes api. https://bitnodes.earn.
com/, 2018.

A Similarity Definition

In this section, we give the definition of Jaccard similarity
and Hamming distance-based similarity.

• Jaccard similarity: Jaccard similarity can be used to
calculate the similarity between any two sets. The cal-
culation is shown in Formula (1), where U1 and U2 are
both sets. In particular, if U1 and U2 are both empty sets,
then J(U1,U2) is 0.

J(U1,U2) =
|U1∩U2|
|U1∪U2|

(1)

• Hamming distance-based similarity: For two se-
quences of the same length z1 and z2, their similarity
based on Hamming distance is calculated as follows:

SHD =
n

∑
i=1

r(z1 [i] ,z2 [i])

r(a,b) =

{
1, i f a = b
0, otherwise

(2)

B Model Building of AddrMiner-S

We use a multi-armed bandit model [45] based on Thompson
sampling [43] to dynamically update the density distribution
in the active address space to correct the inconsistency in the
density distribution between the seeds and the actual active
addresses.

We divide the IPv6 address space into different density
regions X = {x1,x2, ...,xk}, and each address region is an
arm of the multi-armed bandits. There are k actions A =
{a1,a2, ...,ak}, and ai refers to scanning the target address
in xi and probing whether it is an active address, where i ∈
[1,k]. Θ = {θ1,θ2, ...,θk} represents the mean reward. The
distribution of each arm reward is the Bernoulli score with Θ

as the parameter:

P(r|ai,θi) =

{
θi, if r = 1
1−θi, otherwise

(3)

When ai is played, the action produces a reward of one with
probability θi, and a reward of zero with probability 1−θi.
The θi can be interpreted as an action’s success probability or
mean reward. Let the agent begin with an independent prior
belief over each θi. Take these priors to be beta-distributed
with parameters A = {α1, ...,αk} and B = {β1, ...,βk}. In par-
ticular, for each action ai, the prior probability density func-
tion of θi is:

P(θi) =
Γ(αi +βi)

Γ(αi)Γ(βi)
θ

αi−1
i (1−θi)

βi−1 (4)

where Γ denotes the gamma function. As observations are
gathered, and the distribution is updated according to Bayes’s
rule. It is particularly convenient to work with Beta distribu-
tions because of their conjugacy properties. In particular, each
action’s posterior distribution is also beta distribution with
parameters that can be updated according to a simple rule:

(αi,βi)←

{
(αi,βi), if at ̸= i
(αi,βi)+(rt ,1− rt), otherwise

(5)

In other words, we choose region xi to scan a target address.
If we find the target address is active (reward = 1), we will
add one to the corresponding αi (βi remains unchanged);
otherwise (reward = 0), will add one to the corresponding
βi (αi unchanged). αi represents the active address probed
in region xi, αi +βi represents the address budget consumed
in region xi, so the hit rate of active addresses in region xi
is αi

αi+βi
. As in Formula (6), the xi’s active address density is

proportional to the hit-rate of active address.

xi.density =
xi.active addresses

xi.size
∝

αi

αi +βi
(6)

In active IPv6 address probing, the key issue is to achieve a
high active address hit rate within a given budget. Assuming

USENIX Association 2022 USENIX Annual Technical Conference    323

https://www.spamhaus.org
https://www.spamhaus.org
https://www.tutorialspoint.com/what-is-hamming-distance
https://www.tutorialspoint.com/what-is-hamming-distance
https://www.tutorialspoint.com/what-is-hamming-distance
https://bitnodes.earn.com/
https://bitnodes.earn.com/


(a) 2001:1291::/32. (b) 2001:1498::/32. (c) 2001:1458::/32.

(d) 2001:41d0::/32. (e) 2001:470::/32.

Figure 10: Comparisons of the probing efficiency between the AddrMiner-S and other address generation algorithms for different
budgets in announced prefixes with sufficient seeds.

that our probing budget is B and the objective function of
address probing is f , the active address probing is a combina-
torial optimization problem of (X , B, f ), they need to satisfy
the following relationship:

n

∑
i=1

(αi +βi)≤ B & αi +βi ≤ xi.size (7)

n represents the number of regions where the target addresses
are generated. Our objective function f represents the hit rate
of the active address within the target address budget B.

f =

n
∑

i=1
αi

n
∑

i=1
αi +βi

(8)

A feasible solution x⊆ X that satisfies Formula (7), then the
most effective solution x∗ is only if f (x∗)≧ f (x),∀x⊆ X .

C Seed Number vs. Probing Efficiency

State-of-the-art address generation algorithms learn the struc-
tural and distributional characteristics of seeds to generate
target addresses that are more likely to survive. However,
these techniques are overly dependent on the quality, quantity,
and distribution of seeds. Theoretically, seed address-based
target address generation algorithms cannot work in target
regions with no seeds, nor can they work efficiently in target
regions with few seeds. Next, we further explore the impact of

Figure 11: The effect of the number of seeds on the efficiency
of active IPv6 address probing.

the number of seeds on the efficiency of active IPv6 address
probing.

From the previous measurements, we find that DET [47]
has better probing efficiency than 6Tree [33], 6Gen [36], and
Entropy/IP [15]. Therefore, we randomly select a different
number of active addresses as seeds in any announced prefix
with a sufficient number of seeds, and use DET to generate
target addresses, with a budget of 10K.

Figure 11 shows the hit rate of active address probing for
DET with a different number of seeds. We find that the hit
rate of the active address is the lowest when the extreme case
of the seed address is 1. At this point, the address probing
strategy is the same as 6Tree and fixed-space brute force

324    2022 USENIX Annual Technical Conference USENIX Association



Table 6: Overview of our IPv6 Hitlist on September 8, 2021
Name #IPs #IPs1 #PFXes #PFXes2 #Top AS1 #Top AS2 #Top AS3 #Top AS4 #Top AS5

1d-stable 2.1B 1.7B 86.4K 83.8K 20.40%8 16.39%■ 13.20%♦ 9.45%8 4.65%▶

7d-stable 1.5B 1.1B 85.7K 83.1K 23.41%8 21.48%■ 14.44%♦ 14.02%8 2.49%■

30d-stable 1.3B 919.4M 80.6K 78.0K 34.96%8 29.75%■ 24.05%♦ 3.85%8 1.73%■

60d-stable 1.3B 860.2M 80.3K 77.6K 36.74%8 31.83%■ 19.62%♦ 4.11%8 1.85%■

100d-stable 1.2B 783.7M 80.1K 78.5K 39.58%■ 34.93%8 13.58%8 4.52%♦ 2.03%■
1 Removing aliased addresses using aliased prefix detection8 Amazon, ■ Fastly, ♦ Imperva, ▶ ChinaTelecom,8 Cloudflare, ■ Akamai.
2 Removing aliased prefixes using aliased prefix detection

Figure 12: The length distribution of aliased prefixes.

scanning. It builds a hierarchical space tree and prioritizes
randomly generates target addresses in low nybble space, so
the probing efficiency of this active address is poor (the hit
rate is less than 0.01%). As the number of seeds increases,
the hit rate of active address probing increases. When the
number of seeds in the target region exceeds 100, the active
address hit rate exceeds 10%. When the number of seeds ex-
ceeds 1000, the hit rate of active addresses remains stable.
Therefore, the seed address-based target address generation
algorithms are very dependent on seeds and cannot effectively
perform global active IPv6 address probing when the number
of seeds is insufficient. In this paper, we divide the global
active IPv6 address probing task into three sub-tasks accord-
ing to the number of seeds in the announced prefix spaces,
including scenarios with no seeds, scenarios with few seeds,
and scenarios with sufficient seeds. We empirically classify
the announced prefix spaces. When the number of seeds in
the announced prefix space exceeds 1000, we classify the
announced prefix space with sufficient seeds. We classify the
announced prefix space with few seeds when the number of
seeds is not greater than 10. Solutions are designed for each
of the above scenarios, effectively solving the global active
IPv6 address probing problem.

Figure 13: The location distribution of IPv6 hitlist.

D Verification of AddrMiner-S

Figures 10(a) to 10(e) show how the hit rate of active ad-
dresses and the number of merged nodes vary with the number
of reinforcement learning iterations. AddrMiner-S can find
more optimal address regions by merging nodes to discover
active addresses (exploration) and generate target addresses
(exploitation) in high-density regions. When the node space is
fully explored, the node merging operation can further expand
the address search space. During the exploration process, the
hit rate of active addresses does not drop suddenly, ensuring
the efficiency of active address probing and discovering new
high-density regions. Thus, AddrMiner-S strikes a balance
between exploration and exploitation. In Figure 10(c), the
sampling bias of the seeds is small, so the hit rate is less
volatile. In Figure 10(e), the sampling bias is obvious. As the
number of iterations increases, high-density regions of the
actual network are discovered, which effectively improves the
efficiency of address probing.

E Aliased Prefix Analysis

During our evaluation process, we found that aliased prefixes
profoundly impact the generation of IPv6 addresses. Because
the entire prefix is configured on the same network device,
when we do not judge the aliased prefix, all addresses in the
aliased prefix space will return an ICMPv6 response packet.
These addresses will consume probing resources and cause a
lot of false active addresses. Therefore, in our probing system,
we consciously detect the aliased prefix and remove aliased

USENIX Association 2022 USENIX Annual Technical Conference    325



addresses.
Figure 12 shows the length distribution of aliased prefixes.

We found that the length of aliases prefix is mostly between
/64 and /84. We also surprisedly found that 2,685 aliased pre-
fixes are announced prefixes, such as 2401:5e40:8000::/33,
assigned to Japan Network Information Center. We further
analyzed and found that the target network opened FTP and
Telnet ports and took anti-probing measures. Therefore, we
inferred that the device where the prefix 2401:5e40:8000::/33
was located could be a honeypot, a decoy network, or a clus-
tered storage system.

The aliased prefix, especially the entire announced prefix
as an aliased prefix, may bring the following security prob-
lems: First, heuristic active address probing will guide a large
number of probes into the aliased prefix space for probing (if
there is no ability to remove the aliased prefix), it will cause
excessive load on the network device configured with the
aliased prefix, and even multiple normal probers will cause
DDoS attacks. In addition, it may also affect the performance
of the upper network.

F IPv6 Hitlist Introduction

We further analyze the organizational distribution and address
location distribution of the IPv6 hitlist in Table 6 and Figure
13, respectively.

326    2022 USENIX Annual Technical Conference USENIX Association



Co-opting Linux Processes for High-Performance Network Simulation

Rob Jansen
U.S. Naval Research Laboratory

rob.g.jansen@nrl.navy.mil

Jim Newsome
Tor Project

jnewsome@torproject.org

Ryan Wails
Georgetown University,

U.S. Naval Research Laboratory
ryan.wails@nrl.navy.mil

Abstract

Network experimentation tools are vitally important to the
process of developing, evaluating, and testing distributed sys-
tems. The state-of-the-art simulation tools are either pro-
hibitively inefficient at large scales or are limited by nontrivial
architectural challenges, inhibiting their widespread adoption.
In this paper, we present the design and implementation of
Phantom,1 a novel tool for conducting distributed system ex-
periments. In Phantom, a discrete-event network simulator
directly executes unmodified applications as Linux processes
and innovatively synthesizes efficient process control, sys-
tem call interposition, and data transfer methods to co-opt the
processes into the simulation environment. Our evaluation
demonstrates that Phantom is up to 2.2× faster than Shadow,
up to 3.4× faster than NS-3, and up to 43× faster than gRaIL
in large P2P benchmarks while offering performance compa-
rable to Shadow in large Tor network simulations.

1 Introduction

Network experimentation tools promote the progression of
network science: they aim to realistically reproduce the ef-
fects of distributed networks at scale in a controlled environ-
ment, enabling the scientific evaluation of performance and
security across a range of system characteristics. Experimen-
tation tools are particularly useful for large-scale distributed
systems that are deployed in the real world, such as the glob-
ally expansive domain name system [50], peer-to-peer and
content distribution networks [14], decentralized data-storage
networks [52], and overlay networks [17]. Due to the sizes
of these deployments and the internet’s great heterogeneity
and rapid change [19], it would be extremely difficult to run
scientifically controlled, replicable experiments with them
in the real world. Tools that enable realistic, scalable, and
controlled experimentation of large-scale distributed systems
can help accelerate research, development, and education.

Approved for public release: distribution is unlimited.

Large-scale distributed systems are often characterized
by a complex set of algorithms and protocols that run in
application-layer software. Previous work has found that it is
prudent to directly execute this software as part of the experi-
mentation process to promote realism [30, 54, 62]. However,
there are nontrivial architectural challenges in designing tools
that meet the scalability and realism requirements. Emulators
such as Mininet [45] do not support large-scale systems be-
cause they are vulnerable to time distortion during periods
of overload [44]. Simulators such as NS-3 [26] run applica-
tion abstractions in place of real software which can cause
unrealistic behavior and lead to invalid results [54].

To meet the large-scale distributed system requirements, the
state-of-the-art tools are designed with hybrid architectures
wherein a network simulator directly executes application
code. However, tools that load and execute applications in
plugin namespaces (i.e., NS-3-DCE [62] and Shadow [30])
suffer from compatibility and correctness issues and high
maintenance costs: applications must be recompiled as plug-
ins, complex code is required to load and run them, and the
system calls they make often leak outside of the simulation.
On the other hand, tools that run applications as Linux pro-
cesses (i.e., gRaIL [54]) incur considerable inter-process over-
head: we have measured at least a 10× performance penalty
in running gRaIL due to inefficient process control, system
call interposition, and data transfer mechanisms. No existing
network simulator simultaneously overcomes the compati-
bility, correctness, maintenance, and performance challenges
found in the state-of-the-art tools.
Introducing Phantom: We present Phantom,1 a novel, multi-
process network simulator that: (i) precludes the compatibil-
ity, correctness, and maintenance issues that have plagued
plugin-based designs; and (ii) overcomes the performance
challenges of existing multi-process designs by innovatively
synthesizing efficient process control, system call interposi-
tion, and data transfer mechanisms. In Phantom, a discrete-
event network simulation core directly executes unmodified

1We use Phantom as a codename in this paper, but our design is merged
into the open-source Shadow simulator and synonymous with Shadow v2 [4].

USENIX Association 2022 USENIX Annual Technical Conference    327



applications as Linux processes, allowing us to take advantage
of native Linux process isolation and management. Phantom
co-opts the Linux processes into a simulation environment
by (i) preloading a shim library (via LD_PRELOAD) that is
used to establish efficient mechanisms for process control and
function interception; (ii) installing a secure computing (i.e.,
seccomp) filter in the processes to guarantee interposition on
system calls that are not preloadable; and (iii) using a novel
inter-process memory mapper that allows us to directly read
and write process memory without incurring inter-process
communication (IPC) overhead. Once the processes are co-
opted, Phantom efficiently emulates system calls they make
and facilitates communication over a simulated network.
Novel Contributions: This paper makes the following novel
contributions to the state of the art in network simulation:
– The innovative design of Phantom, which for the first time

shows how to minimize inter-process overhead in a hybrid,
multi-process network simulator.

– A high-performance implementation of Phantom.
– An extensive evaluation of Phantom through which we

find that it is up to 2.2× faster than Shadow, up to 3.4×
faster than NS-3, and up to 43× faster than gRaIL in large
P2P benchmarks while offering performance comparable
to Shadow in large Tor network simulations.

– A verification of Phantom’s accuracy in small LAN and
WAN networks and in large Tor overlay networks.

Impact: This work has high potential for broad impact across
multiple communities for the purposes of research, devel-
opment, and education. First, researchers building software
prototypes can use Phantom to quickly evaluate their new dis-
tributed system designs in a large-scale network without need-
ing to worry about complicated deployments that are difficult
to manage. Second, Phantom can be built into developers’ test-
ing frameworks so that new code can be continuously tested
and discovered bugs can be identically reproduced. Third,
with facilities to introduce network events (e.g., intermittent
delays or failures), Phantom could help teach network and dis-
tributed systems courses. The Tor Project has already started
using Phantom to develop and test new congestion control
protocols before deploying them to the Tor network [57].
Availability: Phantom is merged into the open-source Shadow
project as of v2 [4] and our artifacts are publicly available [3].

2 Background and Motivation

We motivate the need for Phantom by identifying the key
requirements, existing architectures, and challenges for re-
alistically simulating large-scale distributed systems. (See
Appendix A for extended background on related tools.)

2.1 Requirements
Scalability: Recent work finds that it is imperative to run
network experiments as close as possible to the deployed
scale because reducing the scale can lead to a significant loss

of confidence in the experimental results [40]. Although some
statistical confidence can be recovered with repeated trials,
it can take many more trials at a smaller scale to achieve the
same confidence as larger scale simulations [40].

To increase the scale at which we can run network ex-
periments, a correct and valid execution of the simulation
workload should not depend on the computational abilities
of, or passage of time on, the host machine. Decoupling the
simulation from time and computational constraints allows
us to scale without introducing artifacts in the results due to
over-provisioning and time-distortion [44].
Realism: Distributed systems are often composed of a diverse
set of applications that each contain complex logic. We should
directly execute these applications in order to guarantee that
our experiments identically replicate their logic and obtain
the highest application fidelity possible [30, 54, 62].

Deployed system software is often under active develop-
ment to fix bugs and develop enhancements. We should ex-
ecute applications the same way they would be executed in
deployment; we should not require recompilation or the main-
tenance of application patches or abstractions. Running un-
modified applications enables us to decouple the application
logic and programming language from that of the simulation.
Control: Large-scale distributed systems contain many vari-
ables, and changing any one of them can have cascading net-
work effects that can lead to unexpected behaviors or results.
We should support deterministic execution to obtain scien-
tific control and to guarantee that the results produced by an
experiment can be independently and identically replicated.

2.2 Traditional Architectures
Tools implementing strictly traditional architectures are

unsuitable for evaluating large-scale distributed systems with
logic primarily contained in application-layer software.
Simulation: Network simulators such as NS-3 [26] scale inde-
pendently of the wall-clock time [67] and offer precise exper-
imental control due to deterministic execution [13]. However,
simulators traditionally run application abstractions in place
of real software which can cause unrealistic behavior and lead
to invalid results [54]. As a result, traditional simulators do
not fulfill the application realism requirement.
Emulation: Network emulators such as Mininet [45] directly
execute applications using real kernel network stacks and
therefore offer better application realism. However, emulators
lack perfect scientific control due to non-determinism [12].
Moreover, emulators are generally unable to scale indepen-
dently of computational constraints: if the experiment host
machine is overloaded, time distortion will exacerbate repro-
ducibility issues [44]. We confirm this claim with an experi-
ment in which we find that as the host machine becomes more
loaded with virtual peers, its packet forwarding capacity is
limited and a decreasing fraction of the sent packets are cor-
rectly forwarded (see §5.4 and Figure 14 for details). As a
result, traditional emulators are useful only at small scales.

328    2022 USENIX Annual Technical Conference USENIX Association



Table 1: Properties of Network Experimentation Architectures

Architecture Example Tool Scalability? Realism† Control‡

Emulation Mininet [45]
Simulation NS-3 [26]

Hybrid This Work
? Experiments scale independent of time or computational constraints.
† Unmodified applications can be directly executed without recompilation.
‡ Results can be deterministically replicated with the same RNG seed.

2.3 Hybrid Architectures and Challenges
A hybrid architecture is characterized by the ability to

directly execute applications to promote realism while still
running them in the context of a cohesive network simulation.
As a result, a hybrid architecture enjoys the advantages of
both emulation and simulation and offers the best opportunity
to fulfill the scalability, realism, and control requirements
discussed in §2.1 (see Table 1). However, there are numerous
challenges with hybrid architectures that we believe have
inhibited tools implementing them from achieving widespread
adoption. We describe these challenges by the method for
executing applications: plugin namespaces and processes.
Plugin Namespaces: In this approach, the simulator loads
each application into a new plugin namespace (e.g., using
dlmopen) and directly executes the application in the con-
text of that namespace while using function interposition (via
LD_PRELOAD) to hook the loaded applications into the simu-
lation environment. A plugin design is implemented in both
NS-3-DCE [62] and Shadow [30] and has several limitations:
– Compatibility: The domain of supported applications is lim-

ited to those that are compiled as position-independent li-
braries (PIC) or executables (PIE) that export their symbols
to the dynamic symbol table (rdynamic), are dynamically
linked to libc, and make all system calls through libc.
Rebuilding is tedious and impossible if the source code is
not available (e.g., closed-source software or malware).

– Correctness: Relying solely on preloading is unreliable
because only dynamically linked functions (e.g., those in
libc) can be intercepted using LD_PRELOAD; system calls
invoked via statically linked code or assembly instructions
will leak outside of the simulation and cause errors.

– Maintainability: A custom dynamic loader [63] is required
to load more than 16 namespaces at once, and a portable
threading library [48] is used to support multi-threaded ap-
plications (these account for 62k LoC in Shadow; see §4).
libc functions with nontrivial functionality must be reim-
plemented in order to intercept the system calls they make.

These challenges have limited Shadow’s use to Tor network
simulation [40] while work on simulating Bitcoin has been
abandoned [48] and work on NS-3-DCE has mostly stalled.
Processes: In this approach, applications are executed as stan-
dard Linux processes and hooked into the simulation through
the system call interface using standard kernel facilities. This
design overcomes many of the limitations of the plugin ap-

proach: (i) the simulator can execute any existing applica-
tion without rebuilding it; (ii) kernel subsystems guarantee
reliable process isolation and correct system call intercep-
tion; and (iii) the maintenance of a custom loader, threading
libraries, and reimplemented libc functions is no longer re-
quired. However, the naïve way of connecting multiple pro-
cesses in a cohesive simulation as demonstrated in gRaIL [54]
requires the kernel’s process control (ptrace) subsystem and
is significantly less performant than the plugin approach: we
show in §5.4 that the run time of gRaIL (which extends NS-
3) is 13× that of NS-3 alone, and 43× that of Phantom in
experiments with fixed P2P messaging workloads. Worse per-
formance in gRaIL’s multi-process design can be attributed to:
– Process control: The simulator needs to control the ex-

ecution state of the processes as they progress through
simulated time. The ptrace process control mechanism
(PTRACE_ATTACH or PTRACE_TRACEME) incurs overhead
that is quadratic in the total number of attached processes,
limiting scalability (see Appendix B.1).

– System call interposition: The simulator needs to intercept
system calls made in the processes so they can be emulated.
The ptrace system call mechanism (PTRACE_SYSCALL)
requires at least 4 context switches for every system call,
contributing substantial overhead relative to a same-process
function call (see Appendix B.2).

– Data transfer: The simulator needs to access system call
arguments referencing process memory (e.g., data buffers).
The ptrace memory access mechanism (PTRACE_PEEK
and PTRACE_POKE) requires an additional system call and
mode transition for each word of memory, making it ineffi-
cient for large structs and buffers (see Appendix B.3).

Ideally, we want a simulator with the higher performance of
the uni-process, plugin-based Shadow design (which does not
incur inter-process overhead) and the improved compatibility,
correctness, and maintainability of the multi-process gRaIL
design. However, it was previously unknown if this ideal is at-
tainable due to the multi-process challenges; indeed, we show
throughout §5 that even a more efficient use of ptrace (see
Appendix B) is still less performant than a uni-process design.

3 Design

In this section we describe the novel multi-process Phantom
design that eliminates the limitations of the state-of-the-art
plugin-based architecture and overcomes the performance
challenges of the state-of-the-art process-based simulator.

3.1 Overview
The main component in Phantom is a discrete-event sim-

ulator which drives the simulation (see Figure 1). After ini-
tialization, the simulator directly executes the real applica-
tions of an experiment as Linux processes while using inter-
process communication channels (IPC) between the applica-
tion and simulator processes. Phantom co-opts the applica-

USENIX Association 2022 USENIX Annual Technical Conference    329



Figure 1: Overview of the Phantom design. Phantom directly exe-
cutes application processes, intercepting system calls and handling
them using a shim and an inter-process communication channel.

tion processes into the simulation by intercepting all system
calls they make (e.g., socket, listen, connect, send, recv,
poll, etc.) rather than allowing them to be handled by the
Linux kernel. Phantom handles intercepted system calls by
internally simulating common kernel functionalities that most
applications expect to be available, such as networking facili-
ties (e.g., buffers, protocols, and interfaces), event notification
facilities (e.g., select, poll, and epoll), and file descriptor fa-
cilities (e.g., files, sockets, and pipes). As a result, Phantom
emulates a Linux kernel to the applications while connecting
them through a virtual, simulated network, and the applica-
tions need not be aware that they are running in a simulation.

3.2 Components

3.2.1 Simulation Controller Process

Phantom is a parallel, conservative-time, discrete-event
network simulator that emulates a Linux kernel to the applica-
tions it executes. Simulations are driven by a single controller
process which has two primary functions that occur succes-
sively during an initialization phase and an execution phase.
Initialization Phase: During initialization, the controller
reads and processes configuration inputs. The inputs specify
a number of virtual hosts that should be simulated, a network
graph model that should be used to model network charac-
teristics such as routing, latency, and packet loss between
the virtual hosts, and the file paths and arguments needed
to directly execute the applications on the virtual hosts. The
controller initializes internal simulation state accordingly.
Execution Phase: Simulation work is organized into events
that each occur at a discrete simulation time. Each event is
assigned to a virtual host and stored in a host-specific event
queue: a min-heap that sorts events by their simulation time.

The controller manages the global simulation clock and
synchronizes simulation time by using time barriers to estab-
lish discrete execution rounds: time intervals during which
events may be safely executed in parallel. The time barrier
in a round is set such that no event that is executed for any
host in that round will enqueue a new event for any other host
in the same round. This conservative-time algorithm guaran-
tees that simulation time always advances on each host, even
when concurrently executing distinct hosts’ events. When the
next event time in every host’s event queue exceeds the time
barrier for the current round, the controller updates the global
clock and advances the execution round.

3.2.2 Parallel Worker Threads

Phantom concurrently executes the events in each execu-
tion round using worker threads (workers) that are managed
with high level abstractions we call logical processors (LPs).
Phantom allows a configurable number of LPs and controls
the state of an independently configurable number of workers
such that only a number of workers equal to the number of
LPs are concurrently active.2

The following algorithm employs a work stealing [10, 65]
strategy to schedule the worker threads, ensuring that each LP
will always be running a worker thread as long as one with
remaining work exists. When an execution round begins, one
worker thread starts running for each LP while the remaining
workers remain waiting. While running, a worker dequeues
and executes all events that occur within the current round
(as set by the controller) for all hosts assigned to it. When a
worker completes all outstanding events for the current round,
it: (i) starts running another waiting worker that has yet to run
in this round (if any exist); and (ii) starts waiting to be run
again during the following round. An execution round ends
when all workers have entered the waiting state.

3.2.3 Direct Application Execution

During initialization, each virtual host is configured to di-
rectly execute some number of applications. Phantom inter-
nally creates virtual process and thread data structures to store
the state needed to manage the execution of the applications
(e.g., file descriptor tables and standard input/output handles).
Managed Processes and Threads: Phantom directly exe-
cutes specified application binaries and allows for configura-
tion of the command-line arguments and the start time within
the simulation. Each application is launched by a Phantom
worker with a vfork+execvpe sequence.

The application execution procedure results in the creation
of one or more Linux processes and threads that are managed
by their parent Phantom worker. Each worker (i) uses our
preload shim library to co-opt their managed processes into
the simulation, and (ii) uses our inter-process communication
mechanisms to modulate the running state of the managed
processes such that only one of a worker and its managed
processes are running at any time (thus maintaining that only
one task per LP is concurrently active).
Preload Shim: In order to assist with controlling the man-
aged processes and threads, we create a custom shared library,
subsequently referred to as “the shim”, which is loaded into
each managed process’s address space using the LD_PRELOAD
environment variable. We use the shim to: (i) execute initial-
ization code in the shim’s constructor functions and establish
an inter-process communication channel (see §3.2.6); and
(ii) intercept functions defined in libraries that are dynami-
cally linked to the applications (e.g., libc; see §3.2.4).

2Limiting the number of LPs to be at most the number of available CPU
cores avoids performance degradation caused by CPU oversubscription.

330    2022 USENIX Annual Technical Conference USENIX Association



Figure 2: Control flow when intercepting system calls in Phantom.

3.2.4 System Call Interposition

Phantom co-opts processes into the simulation by intercept-
ing functions at the system call interface using two intercep-
tion strategies: preloading and seccomp (see Figure 2).
Primary Strategy: Preloading: Recall from §3.2.3 that Phan-
tom preloads a shared library shim into each process it exe-
cutes using the LD_PRELOAD environment variable. Because
the shim is preloaded, the dynamic loader loads the shim be-
fore all other shared objects linked to the managed process
and the shim is the first library searched when attempting to
dynamically resolve symbols. This feature allows us to selec-
tively override functions in other shared libraries by supplying
identically named functions with alternative implementations
inside the shim. Preloading is efficient, as it changes only
the address of the instruction that is next executed when a
dynamically-linked function is invoked. Therefore, we use
preloading as our primary interception strategy.

Notice that preloading works by intercepting shared library
functions, not system calls. While preloading can interpose dy-
namically linked calls to libc system call wrapper functions
made from outside of libc, it cannot interpose the statically
linked calls made from inside of libc (e.g., internal calls from
printf to write).3 If using preloading alone, we would need
to reimplement printf and any other libc functionality we
wanted to support and not just the system call wrappers—an
untenable engineering burden. Preloading alone would also
fail to intercept system calls made without using libc at all,
e.g., those made by directly using a syscall instruction.
Secondary Strategy: seccomp: Phantom intercepts system
calls that are not handled by the preloading strategy using the
kernel’s seccomp (secure computing) facility. The seccomp
facility enables a process to set a filter on the system calls that
are made by the process and to associate an action with the
filter. We install a seccomp filter that traps all system calls
except for: (i) sigreturn; and (ii) system calls originating
from Phantom’s own preloaded shim. We install a SIGSYS
signal handler for system calls trapped by the seccomp filter;
whenever a system call matching the filter is invoked, the
kernel traps it and instead calls our signal handler function.

We use seccomp as our secondary interception strategy
because, although it can intercept all system calls, it is less
efficient than preloading; it requires: (i) a mode transition

3APIs that invoke vDSO functions (e.g., time) rather than make system
calls can either be preloaded or we can dynamically rewrite the vDSO to
guarantee that it makes interposable system calls [55].

from the process to the kernel when the system call is invoked;
(ii) execution of the seccomp filter; and (iii) a mode transition
back to the process to invoke the shim callback function.
Because most system calls are preloadable, we infrequently
incur the additional overhead from seccomp in practice.

3.2.5 Emulating System Calls
Both system call interception strategies from §3.2.4 result

in a syscall handler function being executed in the shim, i.e.,
within the managed process. System calls can be emulated
either directly in the shim or in the controller (see Figure 2).
In the Shim: Frequently made system calls that can be em-
ulated using little state from the controller can be serviced
directly in the shim without incurring additional overhead
related to IPC. For example, the shim directly handles the
time, gettimeofday, and clock_gettime system calls by
arranging for the controller to share and maintain the cur-
rent simulation time in a shared memory control block that is
accessible to the shim as described in §3.2.6.
In the Controller: The remaining system calls are serviced
in the simulator controller process. The system call number
and arguments are sent to the controller using the IPC control
channel as described in §3.2.6. The controller handles the sys-
tem calls internally using lightweight implementations that
effectively form a simulated kernel that completely replaces
the functionality normally provided by the Linux kernel. The
simulated kernel (re)implements (i.e., simulates) important
system functionality, including: the passage of time; input and
output operations on file, socket, pipe, timer, and event de-
scriptors; packet transmissions with respect to transport layer
protocols such as TCP and UDP; and aspects of computer
networking including routing, queuing, and bandwidth lim-
its. (See Appendix D for additional details.) Importantly, this
approach enables us to establish a private, simulated network
environment that is completely isolated from the real network,
but is internally interoperable and entirely controllable.
Determinism: Phantom uses a pseudorandom generator that
is seeded with a configurable seed as its single source of ran-
domness throughout the simulation. Care is taken to ensure
that all random bytes that are needed during the simulation
are initiated from this source, including during the emula-
tion of system calls such as getrandom and when emulating
reads from files like /dev/*random. This approach allows
Phantom to produce deterministic simulations, improving sci-
entific control over the experimentation process and enabling
experimental results to be replicated.

3.2.6 Managed Process-to-Controller Communication
We use control channels to exchange fixed-size messages

with each managed process (e.g., system call arguments), and
a memory manager to exchange dynamic amounts of data
(e.g., a buffer passed to a send system call; see Figure 3).
Control Channel: Phantom establishes a control channel
with the shim of each managed process by allocating an ini-
tial block of shared memory and sharing the handle to this

USENIX Association 2022 USENIX Annual Technical Conference    331



Figure 3: Phantom uses shared memory as a control channel, mod-
ulating control using semaphores. The app1 shim intercepts send,
writes its arguments into the shared syscall registers, and then uses
semaphores to pass control. The controller reads the registers, uses
the memory manager to directly copy the send buffer into simulated
packets, and schedules an event so the packets arrive at the receiver
following network semantics. The controller writes the retval register
and passes control back so app1 continues running. An analogous
process occurs when app2 calls recv (or any other system call).

memory during process startup using an environment vari-
able. This control block uses a fixed data structure layout that
includes semaphores and messaging state (e.g., system call
arguments). The semaphores provide a safe and efficient way
for a message sender to signal that a new message is available
and for a message receiver to wait for a new message; the
controller uses this functionality to modulate the execution
state of the process (see §3.2.7). We use shared memory and
semaphores because we found this combination to perform
better than alternative approaches (see Appendix C).
Memory Manager: We designed an inter-process memory ac-
cess manager to enable the controller to directly and efficiently
read and write the memory of each managed process with-
out extraneous data copies or control messages. The memory
manager tracks the memory mappings that are active across
various regions of a process’s memory, which are analogous
to the mappings found in the /proc/<pid>/maps file. Upon
initialization, the memory manager creates a sparse memory
file for each process, where a virtual address in the process
corresponds to the same offset in the file. The memory man-
ager initially remaps the process’s stack and heap memory
regions into this file. As the process runs, the memory man-
ager brokers all read, write, or other mapping requests that
involve managed process memory in order to: (i) also map
requests for anonymous private regions (such as those made
when serving large allocation requests) into the shared file;
(ii) maintain a consistent view of the process’s address space;
and (iii) simplify system call handling by translating memory
pointers to shared memory pointers as needed. Whenever the
memory manager receives an access request for an address
that is not mapped into the shared file, it utilizes the kernel’s
process_vm_readv and process_vm_writev facilities to
directly transfer data between the controller and the managed
process’s address space without copying it into kernel space.

3.2.7 Managed Process/Thread Scheduling

We use the IPC control channel from §3.2.6 to control the
execution state of each managed process. When a process

first loads, it immediately waits on the channel semaphore
to receive a message from Phantom before starting. When
a Phantom worker runs (following the algorithm in §3.2.2),
the worker initially sends a start message to the process it
manages and waits to receive a message back from the pro-
cess. The process then runs until it invokes a system call that
is interposed as described in §3.2.4, sends a system call re-
quest message back through the control channel to the waiting
Phantom worker, and waits to receive the system call result
message from Phantom.

There are two possible scheduling outcomes when a Phan-
tom worker handles a system call requested by a managed
process. For system calls that can be handled immediately
(non-blocking calls, or blocking calls for which a result is
ready), the Phantom worker returns the result over the control
channel and the scheduling cycle continues. For system calls
that cannot be handled immediately (blocking system calls
whose result is not ready), the Phantom worker must wait for
some condition to become true (e.g., a packet to arrive or a
timeout to occur). Such conditions are internally registered,
and then the worker leaves the managed process in an idle
state while it continues executing simulation events (and ad-
vancing simulation time). When the condition later becomes
true (e.g., a timeout occurred), the worker executes an event
that causes it to check the system call state and return the time-
out result to the process over the control channel. The process
continues executing and the scheduling cycle continues.

The effect of this scheduling process is that each Phan-
tom worker only allows a single thread of execution across
all processes it manages; each of the remaining managed
processes/threads will always be idle, waiting for a result mes-
sage from the worker for the previously requested system call.
Using this scheduling process, Phantom has precise control
over the execution state of all managed processes and guar-
antees nonconcurrent access of managed processes’ memory
through the memory manager from §3.2.6.

3.2.8 Linux CPU Scheduling

Phantom is designed to work with the Linux CPU affin-
ity (i.e., CPU pinning) scheduling feature. CPU affinity is a
scheduling attribute associated with running Linux processes.
A process’s CPU affinity can be adjusted to restrict the pro-
cess to run only on a specified subset of CPUs (e.g., a single
CPU). CPU pinning can improve performance by reducing
the frequency of cache misses, CPU migrations, and context
switches. In particular, Linux semaphores shared between
two same-core processes incur fewer context switches than
when shared between cross-core processes (see Appendix C).
Recall that Phantom will run either a worker thread or one
of its managed processes, but never both at the same time.
This design choice enables us to naturally pin each worker
and all of its managed processes to the same core in order to
capitalize on the CPU pinning performance benefits.

332    2022 USENIX Annual Technical Conference USENIX Association



4 Implementation

We implement Phantom using the plugin-based Shadow as a
basis because: (i) we will show in §5.4 that Shadow outper-
forms other simulators; and (ii) it will be fairer to compare the
plugin- and process-based architectures using tools that share
the same foundation. See Appendix A.3 for Shadow details.
Transforming Shadow: We forked Shadow v1.14.0 and iden-
tified the components that are no longer necessary for Phan-
tom. Of the 94,259 lines of code (LoC) in Shadow v1.14.0,4

we removed 47,959 LoC (50.9%) containing a custom ver-
sion of the GNU portable threads library that was used to
simulate application threading [48], 14,498 LoC (15.9%) con-
taining a custom loader that dynamically loads plugins using
dlmopen [63], and 6,559 LoC (7.0%) that implemented the
interface between Shadow and the libc functions it preloads.
We also found that 6,315 LoC (6.7%) implemented tests and
2,123 LoC (2.3%) implemented tools, leaving just 16,805
LoC (17.8%) implementing core simulator functionality that
Phantom integrates (see Appendix D for more details).
Implementing Phantom: We implemented Phantom’s de-
sign from §3 on top of our stripped down version of Shadow.
Our full Phantom implementation supports 164 system calls
and contains 56,742 LoC: tests account for about 15,653
LoC (27.6%), tools account for 1,956 LoC (3.4%), and the re-
maining 39,133 LoC (69.0%) implements core functionality.

5 Evaluation

We evaluate Phantom by running micro- and macrobench-
marks, by verifying its simulation accuracy, and by comparing
it to related tools. (See Appendix E for additional details.)

In our benchmarks, we compare three distinct state-of-
the-art simulator architectures (see Appendix A): (i) multi-
process, seccomp (Phantom); (ii) multi-process, ptrace
(gRaIL); and (iii) uni-process, plugin namespaces (Shadow).
For fairness, we compare all three architectures running on
top of an identical simulator framework and network stack
(i.e., Shadow’s), thus ensuring that we can isolate performance
differences and attribute them exclusively to the change in ar-
chitecture and not to, e.g., differently inefficient code running
in independent code-bases.5

All experiments use CPU pinning and our primary intercep-
tion strategy (preloading) unless otherwise noted. All simula-
tions were repeated ten times with unique seeds; we present
the results as the mean across the ten trials with 99% CIs.

4LoC are counted with the scc tool: https://github.com/boyter/scc
5Because gRaIL was originally implemented on top of NS-3, we ported

the design to Shadow by implementing ptrace as an optional alternative
to the seccomp secondary interposition strategy. We found and mitigated
many sources of ptrace overhead (see Appendix B) and our implementation
should be considered an optimized, near-best-case version of gRaIL.

only
ptra

ce

preload+ptra
ce

only
seccomp

preload+seccomp

uni-p
ro

cess
0

10

20

B
en

ch
m

ar
k

T
im

e
(µ

s)

16 16.0715.34
13.37

9.51

blocking nanosleep

only
ptra

ce

preload+ptra
ce

only
seccomp

preload+seccomp

uni-p
ro

cess
0

10

20

9.41 9.8 9.64

6.8

0

nonblocking nanosleep

only
ptra

ce

preload+ptra
ce

only
seccomp

preload+seccomp

uni-p
ro

cess
0

10

20
15.6416.0315.26

11.13

7.78

1k write+read

Figure 4: Time to execute blocking, nonblocking, and io-based sys-
tem calls using several interception methods, compared to Shadow’s
uni-process preload-based design.

5.1 Performance: Microbenchmarks

Setup: We anticipate that one of the major sources of over-
head in a multi-process design is due to inter-process com-
munication and context switching, which in Phantom oc-
curs whenever a system call is executed. There are three
main types of system calls: (i) blocking calls that require the
simulator to update state (e.g., advance time) before return-
ing; (ii) nonblocking calls that can return immediately; and
(iii) input/output (io) calls that involve reading or writing a dy-
namically sized buffer. We benchmark these operations using
a small program that either invokes the nanosleep system
call (with a timeout of 1 for blocking or 0 for nonblocking),
or invokes a write and then a read operation on a pipe. The
program loops repeatedly for 10k iterations and measures the
time required to complete each benchmark after timing 10k
iterations of a no-op as a baseline. We report the difference be-
tween the mean time to execute each of the three benchmarks
and the mean time to execute the no-op baseline.
Results: We ran the benchmarks in our multi-process archi-
tecture using several alternative interception methods, and in
Shadow’s uni-process preload-based architecture. Figure 4
shows similar trends across all three benchmarks. First, we
notice that using preloading and ptrace together is slightly
slower than using ptrace alone; this is because the shim
intercepts the system call and then (since it does not have
a handler) it invokes the system function to pass control to
ptrace, which adds a few instructions relative to the standard
use of ptrace. Second, seccomp with preloading is signifi-
cantly faster than seccomp alone (and both ptrace modes),
because preloading allows us to intercept system calls without
incurring the overhead of a mode transition and the execu-
tion of the seccomp filter. Third, the uni-process design is the
fastest of all methods tested; while the blocking and io-based
system calls incur some overhead due to switching portable
threads (using setjmp and longjmp), a non-blocking system
call is effectively a function call.

Figure 5 shows the results from running our io-based
benchmark while setting the buffer size to 1k, 4k, 16k, and
64k bytes. Phantom with the relatively simple approach of
using process_vm_readv and process_vm_writev is the

USENIX Association 2022 USENIX Annual Technical Conference    333

https://github.com/boyter/scc


pro
c vm

pro
c mmap

uni-p
ro

cess
0

20

40

B
en

ch
m

ar
k

T
im

e
(µ

s)

13.68
11.13

7.78

1k write+read

pro
c vm

pro
c mmap

uni-p
ro

cess
0

20

40

15.1
11.42

8.77

4k write+read

pro
c vm

pro
c mmap

uni-p
ro

cess
0

20

40

20.44

11.5611.57

16k write+read

pro
c vm

pro
c mmap

uni-p
ro

cess
0

20

40
44.16

22.66
25.28

64k write+read

Figure 5: Time to execute io-based system calls using Phantom’s
process_vm_read and process_vm_write fallback facilities com-
pared to its primary inter-process memory mapping design.

sta
ndard

pin+sta
ndard

realti
me

pin+realti
me

0

20

40

60

B
en

ch
m

ar
k

T
im

e
(µ

s)

37.55

13.37

33.16

10.24

blocking nanosleep

sta
ndard

pin+sta
ndard

realti
me

pin+realti
me

0

20

40

60

18.45

6.8

23.65

12.19

nonblocking nanosleep

sta
ndard

pin+sta
ndard

realti
me

pin+realti
me

0

20

40

60
50.26

11.13

40.21

10.82

1k write+read

Figure 6: Time to execute our microbenchmarks in Phantom when
using the Linux CPU pinning and realtime scheduling features.

slowest. This is partly from the context switch overhead be-
tween Phantom and the managed thread for each read and
write call, and the kernel/user mode transition overhead of
making the process_vm system calls. While these overheads
are not dependent on the buffer size, and are amortized for
larger buffer sizes, the process_vm system calls have signif-
icant per-page overhead for validating permissions, pinning
each page in memory before doing the copy, and then un-
pinning them. Hence, the process_vm approach gets signifi-
cantly worse than the alternatives as the buffer size increases.

While Phantom’s mmap-based approach (§3.2.6) still has the
fixed overhead of context switches between Phantom and the
managed thread for each read and write, it uses an interval-
map of mapped regions (not pages) to validate and translate
each pointer. Since this cost is fixed, rather than per-page as
with the process_vm calls, its overhead relative to the uni-
process approach is amortized for larger buffers and becomes
less than the uni-process overhead for 64 KB buffers.

Figure 6 shows the time to execute our benchmarks using
the Linux CPU pinning feature described in §3.2.8 in addition
to the sched_fifo Linux realtime scheduler. We observe
that CPU pinning significantly improves Phantom’s perfor-
mance while mixed results are obtained when using realtime
scheduling. Run time under realtime scheduling decreases
by 48–73% when adding CPU pinning, indicating that the
primary benefit is from pinning. CPU pinning improves per-
formance particularly well in Phantom due to our design in
which a worker modulates its running state and that of each
of its managed processes such that no two of these run con-

currently. Therefore, workers and their managed processes
will effectively share the same CPU core, improving caching
and limiting cross-core migration. We also tested Phantom
using ptrace and Shadow’s uni-process design and found
that pinning provides comparable or better performance than
other modes (see Appendix E.1 for more details).

5.2 Performance: Macrobenchmarks
While microbenchmarks enable us to test the effects of

system call operations in isolation, macrobenchmarks provide
us with a more wholistic understanding of performance while
simulating a larger distributed network.

5.2.1 Setup

To run our macrobenchmarks, we write a simple peer-
to-peer (P2P) messaging application whose behavior is in-
spired by the parallel hold (PHOLD) model commonly used
to benchmark discrete-event simulators [20].6 Our P2P appli-
cation uses standard UDP sockets for network communication
and works as follows. Each peer first creates and sends some
number m of messages at startup using sendto and then uses
poll to wait for incoming messages to arrive. Whenever a
message is received with recvfrom: (i) a number c of AES
encryptions and c AES decryptions are performed to produce
computational load; and (ii) a new message with a 1k payload
is created and sent to produce network load. Whenever a peer
sends a message, it makes a weighted choice of the destina-
tion peer where peers’ weights are drawn from a configurable
probability distribution W ; we use W to create unbalanced
workloads across peers.

To benchmark performance we create distributed networks
with p peers, each running our P2P application on a distinct
virtual host. The network latency between each pair of hosts
is set to 50 ms and each host’s bandwidth is unrestricted. All
peers start at the same time and run for ten simulated sec-
onds, resulting in 200 communication rounds. Unless other-
wise mentioned, our experiments use defaults of p=1k peers,
m=100 messages, c=0 AES (encrypt, decrypt) sequences, and
W is the exponential function e−3x for x ∈ [0,1] (to produce
unbalanced peer workloads).

5.2.2 Results

Interception Strategy and LP Count: We run experiments
that vary the interception strategy and LP count to investigate
their effects on performance. Our results in Figure 7 show that
the uni-process Shadow simulation completes faster than the
multi-process Phantom simulations when using 14 or fewer
LPs (consistent with our microbenchmark results). However,
when the number of LPs exceeds 14, the seccomp intercep-
tion strategy (with or without preloading) performs better
than both the ptrace strategy and the uni-process design.
We observe diminishing returns and performance regressions

6We modify the PHOLD model because it is shown to lead to well-
balanced workloads that are not representative of real-world networks [11].

334    2022 USENIX Annual Technical Conference USENIX Association



7 14 21 28 35 42 49 56

Logical Processors Count

101

102

103

B
en

ch
m

ar
k

T
im

e
(s

)

only ptrace
preload+ptrace
only seccomp

preload+seccomp
uni-process

Figure 7: The time to complete our P2P benchmark across a vary-
ing set of interception strategies and number of logical processors
(i.e. concurrently active worker threads). The y-axis is in log scale.

sta
ndard

pin+sta
ndard

realti
me

pin+realti
me

0

100

B
en

ch
m

ar
k

T
im

e
(s

) 159.69

78.27

147.14

102.56

ptrace

sta
ndard

pin+sta
ndard

realti
me

pin+realti
me

0

100 91.76

34.32

105.77

32.37

seccomp

sta
ndard

pin+sta
ndard

realti
me

pin+realti
me

0

100
59.89 52.84 59.27 53.08

uni-process

Figure 8: Time to complete our P2P benchmark when using the
Linux CPU pinning and realtime scheduling features.

with ptrace and the uni-process design when using more
than 14 LPs (the number of cores available on each of the
two CPUs), while seccomp is able to make effective use of
additional LPs. Finally, using a large number of LPs causes
more than a 7× slowdown in ptrace (from 79s with 14 LPs
to 581s with 56 LPs) which we speculate is due to inefficient
kernel facilities. We observed similar trends in the initializa-
tion time—the time for Phantom to launch all processes or
Shadow to load all namespaces: Phantom with seccomp is
more than 3× as fast (0.84s) as both ptrace (3.5s) and the
uni-process design (2.6s) at initializing processes when using
28 LPs (see Appendix E.2 for more details).

We conclude from our results that using a combination of
the preloading and seccomp interception strategies leads to
the best performance in Phantom: preloading with seccomp
improves performance over seccomp alone because it reduces
the overhead from mode transitions and executions of the
seccomp filter. As in the microbenchmarks, preloading has
little effect when used with ptrace as expected. Finally, using
a number of LPs equal to the number of CPU cores (i.e., half
of the available hyper-threads) produces reasonable perfor-
mance for both Phantom and Shadow. Hence, we use 28 LPs
and enable preloading in the remaining experiments.
Linux CPU Scheduling: Figure 8 shows the results of our
investigation into the effects of Linux CPU scheduling on the
performance of our macrobenchmark. As in our microbench-
marks, we find that CPU pinning has a positive effect on per-
formance: Phantom with seccomp completes the benchmark
2.5× faster with CPU pinning than with standard scheduling.

pro
c vm

pro
c mmap

uni-p
ro

cess
0

20

40

60

B
en

ch
m

ar
k

T
im

e
(s

)

35.6 34.7

53.1

pro
c vm

pro
c mmap

uni-p
ro

cess
0

1

2

M
ax

R
A

M
U

se
d

(G
iB

)

1.17

1.49

2.24

pro
c vm

pro
c mmap

uni-p
ro

cess
0

1

P
ag

e
F

au
lt

s
(×

10
6
)

0.35
0.47

1.52

Figure 9: Performance of our P2P benchmark using Phantom’s
process_vm_read and process_vm_write fallback facilities com-
pared to its primary inter-process memory mapping design.

th
read/host

th
read/LP

0

20

40

60

B
en

ch
m

ar
k

T
im

e
(s

)

33.1

40.5

seccomp

th
read/host

th
read/LP

53.1
54.9

uni-proc

th
read/host

th
read/LP

0

1

2

M
ax

R
A

M
U

se
d

(G
iB

)

1.5

1.1

seccomp

th
read/host

th
read/LP

2.25

1.6

uni-proc

th
read/host

th
read/LP

0

2

4

6

8

10

C
P

U
M

ig
ra

ti
on

s
(×

10
3
)

9.31

3.24

seccomp

th
read/host

th
read/LP

5.61

0.06

uni-proc

Figure 10: Performance of our P2P benchmark when Phantom
(seccomp) and Shadow (uni-proc) are configured to use one worker
thread per virtual host or one worker per logical processor (LP).

Pinning has a similar but slightly smaller relative effect on
ptrace, and a positive but minor effect on the uni-process
design. We observe in our measurements that pinning reduces
the number of CPU migrations that occur during the simu-
lation from 5.8M to 8.6k for Phantom with seccomp, from
3.6M to 8.1k for Phantom with ptrace, and from 180k to
5.7k for Shadow’s uni-process design. Realtime scheduling
again shows mixed results, but always performs better than
standard scheduling when combined with pinning. We con-
clude that pinning provides a consistently positive effect on
performance, and enable it in the remaining experiments.
Inter-Process Memory Manager: Figure 9 shows the per-
formance of Phantom’s inter-process memory mapping de-
sign across three metrics. First, we find that Phantom com-
pletes the benchmark in comparable time when: (i) using
the primary mmap-based approach; and (ii) being restricted
to the fallback approach of using process_vm_read and
process_vm_write. Recall that our P2P macrobenchmark
sends messages with 1k payloads, and in our microbench-
mark we found that the performance of the memory map-
ping approach improves relative to the fallback mechanism
as the payload size increases. Second, we observe that the
memory mapping design uses slightly more RAM and causes
slightly more page faults because it requires additional state
to track the memory mappings. Phantom always finishes the
benchmark sooner than Shadow’s uni-process design (<70%)
while using less RAM (<65%) and causing fewer page faults
(<35%). (We find that the same general trends hold when
running Phantom with ptrace; see Appendix E.2 for details.)

USENIX Association 2022 USENIX Annual Technical Conference    335



1k 2k 4k 8k 16k 32k 64k

Virtual Host Count

100

101

102

T
ot

al
T

im
e

(m
)

ptrace
seccomp
uni-process

(a) Time to Complete Benchmark

1k 2k 4k 8k 16k 32k 64k

Virtual Host Count

101

103

In
it

ia
liz

e
T

im
e

(s
)

ptrace
seccomp
uni-process

(b) Time to Launch Processes or Load Namespaces

1k 2k 4k 8k 16k 32k 64k

Virtual Host Count

101

102

M
ax

R
A

M
U

se
d

(G
iB

)

ptrace
seccomp
uni-process

(c) Memory Used during Benchmark

Figure 11: Performance of our P2P benchmark when scaling the number of hosts from 1k to 64k hosts (i.e., processes in Phantom or namespaces
in Shadow). Both axes are plotted in log scale on all subplots. Running 32k or more hosts in Shadow exceeded the machine’s RAM (256 GiB).

Worker Thread Scheduling: Figure 10 shows the perfor-
mance of our work-stealing worker thread scheduling design
(described in §3.2.2) in which we run one worker thread
per virtual host, compared to a work-stealing algorithm from
Shadow that runs one worker thread per logical processor
(LP). The benchmark completes more quickly when using
one worker thread per host (i.e., 1000 workers in our bench-
mark) than when using one worker per LP (i.e., 28 workers in
this experiment), for both Phantom and Shadow. We observe
that by using additional threads, we increase the maximum
RAM used and the number of CPU migrations that occur
while running the benchmark. (We again find that the same
general trends hold when running Phantom with ptrace;
see Appendix E.2 for details.) We conclude that using more
threads should be done in consideration of available RAM.
Peer Workload: We conducted an investigation into the ef-
fects of varying peer workloads by varying the number of
messages m, the number of AES (encrypt, decrypt) sequences
c, and the peer weight distribution W . As expected, increasing
m and c resulted in a roughly linear increase in benchmark
times in both Phantom and Shadow, while the workload dis-
tributions we tested had minor effect on performance. We
present more details in Appendix E.2 due to space constraints.
Distributed Network Scale: We investigate the performance
of our P2P benchmark while scaling the network size from
1k to 64k hosts. Our results in Figure 11 show that Phantom
with seccomp outperforms ptrace and Shadow’s uni-process
design in terms of benchmark time, while initialization time
(the time to launch all processes in Phantom or load all names-
paces in Shadow) and memory usage both scale more effi-
ciently in Phantom than in Shadow. (Running 32k or more
hosts in Shadow exceeded the machine’s RAM (256 GiB).)

Figure 11a shows that the benchmark time exhibits growth
that is nearly linear in the number of hosts (ptrace: r = 0.999,
seccomp: r = 0.995, uni-process: r = 0.994, where r = 1
indicates perfect correlation) with 91ms per host for ptrace,
51ms per host for seccomp, and 96ms per host for uni-process.
Accordingly, uni-process completes the 16k benchmark in
25m compared to 21m for ptrace and 10m for seccomp
despite running the 1k benchmark in 55s compared to 78s
for ptrace and 33s for seccomp. Phantom with seccomp
completed the benchmark fastest for all tested network sizes.

Figure 11b shows how the initialization time changes
as the host count increases. Here, clear separation between
Phantom’s design (which launches multiple processes) and
Shadow’s uni-process design (which loads multiple names-
paces) can be observed through visual inspection. Despite a
slight shift in growth between 4k and 16k hosts for seccomp,
we find that Phantom is more efficient and scalable than
Shadow at initializing virtual hosts’ processes. For exam-
ple, at 16k hosts Shadow completed initialization in about 8m
while Phantom completed it in less than 1.5m.

Figure 11c shows that Phantom uses significantly less RAM
to complete the benchmark than Shadow. At 1k hosts Shadow
uses 2.3 GiB but Phantom with seccomp only uses 1.5 GiB
(∼65%), while at 16k hosts Shadow uses 90 GiB but Phan-
tom with seccomp only uses 26 GiB (∼29%). Phantom’s
relatively lower memory usage allows us to scale the number
of hosts in the P2P benchmark to 4× the size of the largest
network in which a benchmark was successful in Shadow.
Conclusions: We draw two primary conclusions from our
benchmarks. First, Phantom outperforms the state-of-the-
art uni-process Shadow design by effectively mitigating the
multi-process performance challenges identified in §2.3. Sec-
ond, Phantom consistently outperforms a simulator built
around our implementation of ptrace (which we argue in
Appendix B outperforms gRaIL’s use of ptrace).

5.3 Accuracy: Verification
In this section, we verify that Phantom can accurately sim-

ulate basic network characteristics as well as more complex
Tor overlay networks [17]. Recall that, as described in §4,
Phantom integrates the network stack from Shadow; we do
not claim the design or implementation of this network stack
as a contribution of this paper. Shadow’s network has already
been extensively validated in previous work [30, 32, 37, 40].
Therefore, our primary focus is to verify that Phantom does
not reduce the accuracy of the simulated network relative to
Shadow; we consider our verification successful if Phantom
and Shadow produce similar simulated network results.
Basic Network Verification: We evaluate the extent to which
Phantom can accurately simulate basic network characteris-
tics that are typical of LAN and WAN networks. Our evalua-
tion considers two nodes that communicate over a single link.

336    2022 USENIX Annual Technical Conference USENIX Association



0 500 1000

0

500

1000
configured latency: 10 ms

0 50 100 150

0

5

10
configured bandwidth: 10 Mbit/s

0 500 1000

0

500

1000

A
ch

ie
ve

d
B

an
d

w
id

th
(M

b
it

/s
)

configured latency: 75 ms

0 50 100 150

0

50

100
configured bandwidth: 100 Mbit/s

0 500 1000
Configured Bandwidth (Mbit/s)

0

500

1000
configured latency: 175 ms

0 50 100 150
Configured Latency (ms)

0

500

1000
configured bandwidth: 1000 Mbit/s

limit phantom shadow baremetal

Figure 12: Our basic network verification experiments show that
Phantom and Shadow produce identical iperf results across a range
of configured bandwidths and latencies and that Phantom achieves
comparable or higher link utilization than our baremetal setup.

We configure the link with a latency and bandwidth capacity,
and then use iperf and a UDP ping application to measure
the available network bandwidth and latency, respectively,
between the nodes. We conducted the experiment across a
range of latency and bandwidth settings in Phantom, Shadow,
and using two baremetal machines in our lab connected by a
10 Gbit/s physical link (where we used netem to emulate the
configured latency and bandwidth). Our results in Figure 12
show that: (i) Phantom and Shadow produce indistinguish-
able results across all tested bandwidths and latencies; and
(ii) Phantom generally achieves comparable or higher link
utilization than the netem-based baremetal setup. (See Ap-
pendix E.3.1 for more details, including a description of our
latency verification which shows a maximum error of 3%.)
Tor Network Verification: We evaluate the extent to which
Phantom can accurately simulate more complex Tor networks
using the state-of-the-art Tor modeling tools and methods [40].
We configure a Tor network using a total of 12,232 Linux pro-
cesses to generate a total of 74 Gbit/s of network traffic, which
is equivalent to the expected combined traffic of about 238k
users and represents a scale of about 30% of the public Tor
network (more explanation is provided in Appendix E.3.2).

We run 10 Tor simulations for 60 simulated minutes each
in both Phantom and Shadow and find that: (i) both tools re-
quire 27 real hours to run each simulation; and (ii) Shadow
uses at most 1116 GiB of RAM while Phantom uses at most
1032 GiB (92.5% relative to Shadow). We measure no signifi-
cant difference in the simulated network performance across
6 metrics including circuit build time, circuit round trip time,
circuit goodput, and Tor network transfer times for 50 KiB,
1 MiB, and 5 MiB files: Figure 13 shows that the performance
distributions from Phantom and Shadow are within CI bounds.
We conclude that Phantom does not reduce the accuracy rela-
tive to Shadow in conducting network experiments.

0 2
Circuit Build Time (s)

0.0

0.9

0.99

C
D

F
(t

ai
l

lo
g)

0.0 0.5
Circuit RTT (s)

0 5 10
Circuit Goodput (Mbit/s) ..

0 1 2
TTLB 50KiB (s)

0.0

0.9

0.99

C
D

F
(t

ai
l

lo
g)

0.0 2.5 5.0
TTLB 1MiB (s)

0 10
TTLB 5MiB (s)

phantom shadow

Figure 13: Our Tor network verification experiments show that
Phantom and Shadow produce nearly identical Tor performance
results (within CI bounds) since they share a network stack.

See Appendix E.3.2 for additional analyses and perfor-
mance comparisons across a total of 6 network scale factors.

5.4 Comparison to Related Tools
In this section, we compare Phantom to popular tools im-

plementing emulation, simulation, and hybrid architectures.
Mininet: Mininet is a network emulator that creates (i) a net-
work of virtual hosts that run applications as Linux processes;
(ii) virtual network interfaces within the Linux kernel; and
(iii) virtual switches, controllers, and links that are managed
by Mininet [45]. (See Appendix A.1 for more details.)

Mininet’s network emulation architecture offers poor con-
trol and scalability because the host kernel is responsible for
handling packet events, and the packet routing process is un-
predictable and sensitive to load. If the host machine becomes
overloaded, Mininet will experience time distortion that will
degrade experiment realism and control.

We demonstrate Mininet’s limitations by running a peer-
to-peer benchmark (see §5.2.1) while scaling the number
of peers in the experiment. Because each peer introduces a
constant number of packets into the experiment, the expected
number of packets and work to perform in the experiment
grows linearly with the number of hosts. However, we find
that load and network congestion on the host machine affects
the outcome of the experiment. Figure 14 shows the average
number of packets received per second by the virtual hosts
(averaged over 10 trial runs). As the host machine becomes
more loaded with virtual peers, its packet forwarding capacity
is limited, and fewer packets than expected are forwarded. In
contrast, Figure 14 shows that Phantom produces the expected
packet throughput in simulated time (Phantom may run faster
or slower than real time as necessary to achieve correctness).
NS-3 and gRaIL: NS-3 is a popular network simulator
that simulates all aspects of networking and all application
logic [26], while gRaIL extends NS-3 by enabling simulated
nodes to directly execute applications as standard Linux pro-
cesses managed by the kernel’s ptrace facility [54]. (See
Appendix A.2 for more details.)

USENIX Association 2022 USENIX Annual Technical Conference    337



20 40 60 80 100

Virtual Host Count

0

1

2

A
vg

.
P

ac
ke

ts
/s

×105

phantom
mininet

Figure 14: Average packet forwarding rate of a fixed P2P messaging
workload in Phantom and Mininet as the number of hosts is varied.

phantom
shadow ns-3 grail

100

101

R
u

n
ti

m
e

(s
)

0.8 0.7

2.5

12.3

101 Hosts

phantom
shadow ns-3 grail

101

102

2.7

5.8 7

100.3

102 Hosts

phantom
shadow ns-3 grail

102

103

22.6

50.6
75.9

975.3

103 Hosts

Figure 15: Runtime of a fixed P2P messaging workload in Phantom,
Shadow, NS-3, and gRaIL as the number of hosts is varied.

We evaluate the performance cost of running our P2P
benchmark from §5.2.1, replicating its logic so that it could
also run as an NS-3 application. We configured the benchmark
with m=100 messages, c=0 AES operations, and W=uniform
distribution. We vary the number of hosts while configuring
50 ms pairwise latencies and 1 Gbit/s network bandwidths,
and run experiments using multiple simulation tools.

Figure 15 shows the real time (mean of 10 trial runs) re-
quired to complete 10 seconds of network simulation paral-
lelized across all cores on a blade server (see Appendix E.1)
as the number of hosts is varied.7 In our 1k host experiment,
we find that (i) Phantom is 2.2× and 3.4× faster than Shadow
and NS-3, respectively; and (ii) gRaIL’s inefficient multi-
process design is about 13× slower than NS-3 alone, and
43× slower than Phantom, demonstrating that Phantom effec-
tively eliminates IPC overhead as a performance bottleneck
and overcomes the multi-process challenges from §2.3.
Shadow: Shadow [30] implements a hybrid, uni-process ar-
chitecture in which applications are directly executed in plu-
gin namespaces and preloading is used (via LD_PRELOAD) to
intercept libc function calls and hook the applications into
the simulation. (See Appendix A.3 for more details.)

Although Figure 15 shows that it performs well, Shadow’s
plugin architecture is limited in its compatibility, correctness,
and maintainability: as shown in Table 2, applications run-
ning in Shadow must be compiled as position-independent,
must be dynamically linked to libc, and must not make sys-
tem calls via statically linked or assembly code (or else they
will not be interceptable). Because we cannot guarantee that

7Runtimes are normalized by the amount of work performed (i.e., packets
delivered) by each simulator; this resulted in runtime adjustments of < 5%
for all but gRaIL, which delivered only 56% of the expected packets and thus
had its runtime adjusted by a factor of 1.8.

Table 2: Application Properties Supported in Hybrid Simulators

Application Property Shadow Phantom

Multiple threads (e.g., support for pthreads)
Multiple processes (e.g., support for fork)
Not position-independent (i.e., PIC or PIE)
Not dynamically linked to libc
Symbols not exported to dynamic symbol table
System calls made in statically linked code
System calls made in assembly (i.e., avoiding libc)
100% statically linked (e.g., some go programs)

Does not work in tool or architecture Works in tool & architecture
Not implemented in tool (as of writing) but supported by architecture

libc functions will not internally issue multiple unique sys-
tem calls, Shadow’s design requires reimplementing both the
kernel system calls and the libc functions that invoke them.

Phantom overcomes Shadow’s limitations by running ap-
plications as standard Linux processes, allowing us to take
advantage of the kernel’s high-performance process isolation
features. Moreover, Phantom uses seccomp to guarantee that
system calls can be intercepted no matter how the applica-
tion initiates them (see Table 2), enabling us to reduce the
emulation scope to the system call interface and support a
much larger set of applications; Phantom’s supported applica-
tion set is primarily limited by the system calls and protocols
implemented in its simulated kernel, which can be extended
over time (our design could also be incorporated into other
simulators, such as NS-3). Phantom enjoys these advantages
while also meeting or exceeding Shadow’s performance (as
we have shown throughout §5).

6 Conclusion

We have designed, implemented, and thoroughly evaluated
Phantom, a novel, high-performance network simulator for
large-scale distributed systems. Phantom’s multi-process
design eliminates the compatibility, correctness, and main-
tainability limitations that we believe have inhibited the
widespread adoption of existing plugin-based simulators.
With our innovative synthesis of efficient process control,
system call interposition, and data transfer mechanisms, Phan-
tom also overcomes the inter-process performance challenges
of the state-of-the-art multi-process simulator. Through our
extensive evaluation, we have demonstrated that Phantom
achieves better performance and is more scalable than alter-
native simulators across a variety of important benchmarks.
Acknowledgments: We thank our shepherd and the anony-
mous reviewers for their valuable feedback. We thank Steven
Engler for discussions about design and support during de-
velopment. This work has been partially supported by the
Office of Naval Research (ONR), the Defense Advanced Re-
search Projects Agency (DARPA), and the National Science
Foundation (NSF) under award CNS-1925497.

338    2022 USENIX Annual Technical Conference USENIX Association



References

[1] The Tor Metrics Portal. https://metrics.torproject.org,
April 2021.

[2] Performance Experiments. https://gitlab.torproject.
org/legacy/trac/-/wikis/org/roadmaps/CoreTor/
PerformanceExperiments, September 2021.

[3] Artifact for “Co-opting Linux Processes for High-
Performance Network Simulation”. https://netsim-
atc2022.github.io, May 2022.

[4] Shadow: real applications, simulated networks. https:
//shadow.github.io, May 2022.

[5] M. AlSabah and I. Goldberg. PCTCP: Per-circuit TCP-
over-IPsec Transport for Anonymous Communication
Overlay Networks. In ACM Conference on Computer
and Communications Security (CCS), 2013.

[6] M. AlSabah and I. Goldberg. Performance and Security
Improvements for Tor: A Survey. ACM Computing
Surveys (CSUR), 49(2):32, 2016.

[7] M. AlSabah, K. Bauer, I. Goldberg, D. Grunwald, D. Mc-
Coy, S. Savage, and G. M. Voelker. DefenestraTor:
Throwing Out Windows in Tor. In Privacy Enhanc-
ing Technologies Symposium (PETS), 2011.

[8] M. AlSabah, K. Bauer, T. Elahi, and I. Goldberg. The
Path Less Travelled: Overcoming Tor’s Bottlenecks with
Traffic Splitting. In Privacy Enhancing Technologies
Symposium (PETS), 2013.

[9] A. Barton and M. Wright. DeNASA: Destination-Naive
AS-Awareness in Anonymous Communications. Pro-
ceedings on Privacy Enhancing Technologies (PoPETs),
2016(4):356–372, 2016.

[10] R. D. Blumofe and C. E. Leiserson. Scheduling multi-
threaded computations by work stealing. J. ACM, 46(5):
720–748, Sept. 1999.

[11] V. Bonnet. Benchmarking parallel discrete event simu-
lations. Master’s thesis, Utrecht University, 2017.

[12] R. Chertov, S. Fahmy, and N. B. Shroff. Fidelity of
network simulation and emulation: A case study of tcp-
targeted denial of service attacks. ACM Transactions on
Modeling and Computer Simulation, 19(1), Jan. 2009.

[13] W.-F. Chiang, G. Gopalakrishnan, Z. Rakamaric, D. H.
Ahn, and G. L. Lee. Determinism and reproducibility in
large-scale hpc systems. In Workshop on Determinism
and Correctness in Parallel Programming, 2013.

[14] B. Cohen. Incentives build robustness in bittorrent. In
Workshop on Economics of Peer-to-Peer systems, 2003.

[15] B. Conrad and F. Shirazi. Analyzing the Effectiveness
of DoS Attacks on Tor. In Conference on Security of
Information and Networks, 2014.

[16] S. Dahal, J. Lee, J. Kang, and S. Shin. Analysis on End-
to-End Node Selection Probability in Tor Network. In
International Conference on Information Networking
(ICOIN), 2015.

[17] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
Second-Generation Onion Router. In USENIX Security
Symposium (USENIX-Sec), 2004.

[18] T.-N. Dinh, F. Rochet, O. Pereira, and D. S. Wal-
lach. Scaling Up Anonymous Communication with Effi-
cient Nanopayment Channels. Proceedings on Privacy
Enhancing Technologies (PoPETs), 2020(3):175–203,
2020.

[19] S. Floyd and V. Paxson. Difficulties in simulating the
internet. IEEE/ACM Transactions on Networking, 9(4),
2001.

[20] R. M. Fujimoto. Performance of time warp under
synthetic workloads. In SCS Multiconference on Dis-
tributed Simulation, 1990.

[21] J. Geddes, R. Jansen, and N. Hopper. How Low Can
You Go: Balancing Performance with Anonymity in Tor.
In Privacy Enhancing Technologies Symposium (PETS),
2013.

[22] J. Geddes, R. Jansen, and N. Hopper. IMUX: Managing
Tor Connections from Two to Infinity, and Beyond. In
ACM Workshop on Privacy in the Electronic Society
(WPES), 2014.

[23] J. Geddes, M. Schliep, and N. Hopper. ABRA
CADABRA: Magically Increasing Network Utilization
in Tor by Avoiding Bottlenecks. In ACM Workshop on
Privacy in the Electronic Society (WPES), 2016.

[24] D. Gopal and N. Heninger. Torchestra: Reducing Inter-
active Traffic Delays over Tor. In ACM Workshop on
Privacy in the Electronic Society (WPES), 2012.

[25] H. Hanley, Y. Sun, S. Wagh, and P. Mittal. DPSelect:
A Differential Privacy Based Guard Relay Selection
Algorithm for Tor. Proceedings on Privacy Enhancing
Technologies (PoPETs), 2019(2):166–186, 2019.

[26] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley. ns-3
project goals. In Workshop on NS-2: the IP network
simulator, 2006. See also https://www.nsnam.org.

[27] N. Hopper. Challenges in protecting Tor hidden services
from botnet abuse. In Financial Cryptography and Data
Security (FC), 2014.

USENIX Association 2022 USENIX Annual Technical Conference    339

https://metrics.torproject.org
https://gitlab.torproject.org/legacy/trac/-/wikis/org/roadmaps/CoreTor/PerformanceExperiments
https://gitlab.torproject.org/legacy/trac/-/wikis/org/roadmaps/CoreTor/PerformanceExperiments
https://gitlab.torproject.org/legacy/trac/-/wikis/org/roadmaps/CoreTor/PerformanceExperiments
https://netsim-atc2022.github.io
https://netsim-atc2022.github.io
https://shadow.github.io
https://shadow.github.io
https://www.nsnam.org


[28] M. Imani, A. Barton, and M. Wright. Guard Sets in
Tor using AS Relationships. Proceedings on Privacy
Enhancing Technologies (PoPETs), 2018(1):145–165,
2018.

[29] M. Imani, M. Amirabadi, and M. Wright. Modified
Relay Selection and Circuit Selection for Faster Tor.
IET Communications, 13(17):2723–2734, 2019.

[30] R. Jansen and N. Hopper. Shadow: Running Tor in a
Box for Accurate and Efficient Experimentation. In
Network and Distributed System Security Symposium
(NDSS), 2012. See also https://shadow.github.io.

[31] R. Jansen, N. Hopper, and Y. Kim. Recruiting New Tor
Relays with BRAIDS. In ACM Conference on Computer
and Communications Security (CCS), 2010.

[32] R. Jansen, K. Bauer, N. Hopper, and R. Dingledine.
Methodically Modeling the Tor Network. In USENIX
Workshop on Cyber Security Experimentation and Test
(CSET), 2012.

[33] R. Jansen, P. F. Syverson, and N. Hopper. Throttling Tor
Bandwidth Parasites. In USENIX Security Symposium
(USENIX-Sec), 2012.

[34] R. Jansen, A. Johnson, and P. Syverson. LIRA:
Lightweight Incentivized Routing for Anonymity. In
Network and Distributed System Security Symposium
(NDSS), 2013.

[35] R. Jansen, J. Geddes, C. Wacek, M. Sherr, and P. Syver-
son. Never Been KIST: Tor’s Congestion Management
Blossoms with Kernel-Informed Socket Transport. In
USENIX Security Symposium (USENIX-Sec), 2014.

[36] R. Jansen, F. Tschorsch, A. Johnson, and B. Scheuer-
mann. The Sniper Attack: Anonymously Deanonymiz-
ing and Disabling the Tor Network. In Network and
Distributed System Security Symposium (NDSS), 2014.

[37] R. Jansen, M. Traudt, J. Geddes, C. Wacek, M. Sherr, and
P. Syverson. KIST: Kernel-Informed Socket Transport
for Tor. ACM Transactions on Privacy and Security
(TOPS), 22(1):3:1–3:37, December 2018.

[38] R. Jansen, M. Traudt, and N. Hopper. Privacy-
Preserving Dynamic Learning of Tor Network Traf-
fic. In ACM Conference on Computer and Commu-
nications Security (CCS), 2018. See also https://tmodel-
ccs2018.github.io.

[39] R. Jansen, T. Vaidya, and M. Sherr. Point Break: A
Study of Bandwidth Denial-of-Service Attacks against
Tor. In USENIX Security Symposium (USENIX-Sec),
2019.

[40] R. Jansen, J. Tracey, and I. Goldberg. Once is never
enough: Foundations for sound statistical inference
in Tor network experimentation. In USENIX Secu-
rity Symposium (USENIX-Sec), 2021. See also https:
//neverenough-sec2021.github.io.

[41] A. Johnson, R. Jansen, N. Hopper, A. Segal, and P. Syver-
son. PeerFlow: Secure Load Balancing in Tor. Pro-
ceedings on Privacy Enhancing Technologies (PoPETs),
2017(2):74–94, 2017.

[42] A. Johnson, R. Jansen, A. D. Jaggard, J. Feigenbaum,
and P. Syverson. Avoiding The Man on the Wire: Im-
proving Tor’s Security with Trust-Aware Path Selection.
In Network and Distributed System Security Symposium
(NDSS), 2017.

[43] K. Kiran, S. S. Chalke, M. Usman, P. D. Shenoy, and
K. Venugopal. Anonymity and Performance Analysis of
Stream Isolation in Tor Network. In International Con-
ference on Computing, Communication and Networking
Technologies (ICCCNT), 2019.

[44] J. Lamps, V. Babu, D. M. Nicol, V. Adam, and R. Kumar.
Temporal integration of emulation and network simu-
lators on linux multiprocessors. ACM Transactions on
Modeling and Computer Simulation, 28(1), Jan. 2018.

[45] B. Lantz, B. Heller, and N. McKeown. A network in a
laptop: rapid prototyping for software-defined networks.
In Workshop on Hot Topics in Networks (HotNets), 2010.
See also http://mininet.org.

[46] D. Lin, M. Sherr, and B. T. Loo. Scalable and Anony-
mous Group Communication with MTor. Proceedings
on Privacy Enhancing Technologies (PoPETs), 2016(2):
22–39, 2016.

[47] Z. Liu, Y. Liu, P. Winter, P. Mittal, and Y.-C. Hu. TorPo-
lice: Towards Enforcing Service-Defined Access Poli-
cies for Anonymous Communication in the Tor Net-
work. In International Conference on Network Proto-
cols, 2017.

[48] A. Miller and R. Jansen. Shadow-Bitcoin: Scalable
Simulation via Direct Execution of Multi-threaded Ap-
plications. In USENIX Workshop on Cyber Security
Experimentation and Test (CSET), 2015. See also
https://github.com/shadow/shadow-plugin-bitcoin.

[49] A. Mitseva, M. Aleksandrova, T. Engel, and
A. Panchenko. Security and Performance Impli-
cations of BGP Rerouting-Resistant Guard Selection
Algorithms for Tor. In IFIP International Conference
on ICT Systems Security and Privacy Protection, 2020.

[50] P. Mockapetris and K. J. Dunlap. Development of the
domain name system. In Communications Architectures
and Protocols, SIGCOMM ’88, page 123–133, 1988.

340    2022 USENIX Annual Technical Conference USENIX Association

https://shadow.github.io
https://tmodel-ccs2018.github.io
https://tmodel-ccs2018.github.io
https://neverenough-sec2021.github.io
https://neverenough-sec2021.github.io
http://mininet.org
https://github.com/shadow/shadow-plugin-bitcoin


[51] W. B. Moore, C. Wacek, and M. Sherr. Exploring the
Potential Benefits of Expanded Rate Limiting in Tor:
Slow and Steady Wins the Race with Tortoise. In Annual
Computer Security Applications Conference (ACSAC),
2011.

[52] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. 2008.

[53] R. Naumann, S. Dietzel, and B. Scheuermann. To-
wards more realistic network simulations: Leveraging
the system-call barrier. In Ad Hoc Networks, pages
180–191. Springer, 2017.

[54] R. Naumann, S. Dietzel, and B. Scheuermann. Push the
barrier: Discrete event protocol emulation. IEEE/ACM
Transactions on Networking, 27(2):635–648, 2019.

[55] O. S. Navarro Leija, K. Shiptoski, R. G. Scott, B. Wang,
N. Renner, R. R. Newton, and J. Devietti. Reproducible
containers. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020.

[56] J. Newsome (sporksmith). do_wait: make
PIDTYPE_PID case O(1) instead of O(n).
https://github.com/torvalds/linux/commit/
5449162ac001a926ad8884882b071601df5edb44,
May 2021.

[57] M. Perry. Shadow Experiments for Congestion Con-
trol. https://gitlab.torproject.org/tpo/core/tor/-/issues/
40404, December 2021.

[58] F. Rochet and O. Pereira. Waterfilling: Balancing the
Tor network with maximum diversity. Proceedings on
Privacy Enhancing Technologies (PoPETs), 2017(2):4–
22, 2017.

[59] F. Rochet and O. Pereira. Dropping on the Edge: Flexi-
bility and Traffic Confirmation in Onion Routing Proto-
cols. Proceedings on Privacy Enhancing Technologies
(PoPETs), 2018(2):27–46, 2018.

[60] F. Rochet, R. Wails, A. Johnson, P. Mittal, and O. Pereira.
CLAPS: Client-Location-Aware Path Selection in Tor.
In ACM Conference on Computer and Communications
Security (CCS), 2020.

[61] F. Shirazi, C. Diaz, and J. Wright. Towards Measuring
Resilience in Anonymous Communication Networks.
In ACM Workshop on Privacy in the Electronic Society
(WPES), 2015.

[62] H. Tazaki, F. Uarbani, E. Mancini, M. Lacage, D. Ca-
mara, T. Turletti, and W. Dabbous. Direct code execu-
tion: Revisiting library os architecture for reproducible
network experiments. In ACM conference on Emerging
networking experiments and technologies, 2013.

[63] J. Tracey, R. Jansen, and I. Goldberg. High Performance
Tor Experimentation from the Magic of Dynamic ELFs.
In USENIX Workshop on Cyber Security Experimenta-
tion and Test (CSET), 2018.

[64] F. Tschorsch and B. Scheuermann. Mind the Gap: To-
wards a Backpressure-Based Transport Protocol for the
Tor Network. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2016.

[65] M. T. Vandevoorde and E. S. Roberts. Workcrews: An
abstraction for controlling parallelism. International
Journal of Parallel Programming, 17(4):347–366, 1988.

[66] C. Wacek, H. Tan, K. Bauer, and M. Sherr. An Empirical
Evaluation of Relay Selection in Tor. In Network and
Distributed System Security Symposium (NDSS), 2013.

[67] G. Yan et al. Simulation of large scale networks using
ssf. In Winter Simulation Conference, 2003.

[68] L. Yang and F. Li. mTor: A Multipath Tor Routing Be-
yond Bandwidth Throttling. In 2015 IEEE Conference
on Communications and Network Security (CNS), 2015.

[69] L. Yang and F. Li. Enhancing Traffic Analysis Resis-
tance for Tor Hidden Services with Multipath Routing.
In International Conference on Security and Privacy in
Communication Systems, 2015.

USENIX Association 2022 USENIX Annual Technical Conference    341

https://github.com/torvalds/linux/commit/5449162ac001a926ad8884882b071601df5edb44
https://github.com/torvalds/linux/commit/5449162ac001a926ad8884882b071601df5edb44
https://gitlab.torproject.org/tpo/core/tor/-/issues/40404
https://gitlab.torproject.org/tpo/core/tor/-/issues/40404


Appendices

A Background Details for Related Tools

In this appendix we provide extended background on exist-
ing tools for network experimentation. We consider popular
tools from the architecture categories listed in §2.2 and §2.3:
Mininet [45] (emulation), NS-3 [26] (simulation), gRaIL [54]
(hybrid, multi-process, ptrace controller), and Shadow (hy-
brid, uni-process, plugin namespaces) [30].

A.1 Mininet
Mininet is a popular network emulator that implements a

common design approach for network experimentation tools.
Mininet creates a network of virtual hosts that run applica-
tions as standard Linux processes, virtual switches that sup-
port OpenFlow for custom routing and software-defined net-
working, and virtual controllers and links. Mininet executes
application binaries and routes network packets through vir-
tual network interfaces created within the Linux kernel [45].
The packets are routed by virtual switching and routing ap-
pliances managed by Mininet. Network attributes, such as
link bandwidth and latency, are emulated using Linux’s traffic
control (tc) facilities.

Mininet’s design is very flexible: most any application can
be run directly without the need of explicitly programmed
network simulation routines, making it easy to spin up a new
network and quickly start testing software. However, Mininet
offers poor control and scalability because the host kernel is
responsible for handling packet events, which is unpredictable
and sensitive to load as we show in §5.4.

A.2 NS-3 and gRaIL
NS-3 is one of the most widely-used network simulation

tools used by network researchers. NS-3 simulations are com-
posed of virtual nodes running application and routing soft-
ware that are implemented entirely within NS-3’s application
logic (written in C++). NS-3 experiments offer a high de-
gree of control and reproducibility, because all aspects of
the networking—from generating a packet within an appli-
cation to physically transmitting the packet’s bits over physi-
cal media—are simulated. However, a serious drawback of
NS-3’s design is that real applications cannot be run within
the simulation. For example, to run ping between two NS-
3 nodes, a ping application simulator must be hand-crafted
within NS-3 application code (as opposed to directing the
nodes to execute a ping binary). Although this requirement
may be acceptable to simulate simple applications, generating
realistic simulations of complex protocols (e.g., Tor [17]) is
difficult due to engineering complexities (e.g., the Tor code-
base contains tens of thousands of lines of code).

Two NS-3 modules have been developed that do allow for
real application execution within NS-3 simulations: (i) direct-
code execution (DCE) mode [62], and (ii) the discrete event

protocol emulation vessel (gRaIL) [54]. In the more recent
gRaIL approach, NS-3 nodes are configured to run real appli-
cation binaries (e.g., /usr/sbin/ping) which are forked and
executed as genuine Linux processes. The progress of these
processes are managed by Linux’s process tracing facility
ptrace, which allows the NS-3 process to intercept system
calls made by the applications and translate them into NS-3
simulation events. Configuring NS-3 with gRaIL improves
simulation realism, but has a very high performance cost as
we show in §5.4.

A.3 Shadow
Shadow is a hybrid, uni-process network experimenta-

tion tool that incorporates aspects of both simulation and
emulation [30]. At its core, Shadow is a conservative-time
discrete-event network simulator that simulates network pro-
tocols (e.g., TCP and UDP), threading (using GNU portable
threads [48]), and other kernel operations. Shadow dynam-
ically loads applications into their own namespaces (using
dlmopen and a custom loader [63]) and directly executes ap-
plication code in the simulator process. Shadow hooks the
applications into the simulation using function interposition,
but emulates a Linux environment so that application code
functions as if it was running in Linux.

Shadow represents the state-of-the-art hybrid network simu-
lator tool for directly executing applications in large-scale dis-
tributed system simulations. A primary reason is that Shadow
is designed to be high-performance: it runs as a single process
(with multiple threads) to avoid inter-process overhead and
unnecessary data copies. This has led Shadow to become the
standard tool for simulating the Tor anonymity network [40].
However, Shadow has not had widespread use outside of the
niche Tor application; Shadow has been shown to simulate
Bitcoin networks [48], but that work has since been aban-
doned due to compatibility, correctness, and maintainability
issues as we describe in §5.4.

B Interposing System Calls with ptrace

As described in §4, we implemented a system call interposi-
tion strategy based on ptrace to better understand the per-
formance limits of a simulator designed around ptrace. Our
ptrace implementation provides an alternative to Phantom’s
seccomp secondary interposition strategy (see §3.2.4).

gRaIL [54] is designed solely around the use of ptrace
to control processes, system calls, and data transfer. Unfor-
tunately, during our ptrace implementation and evaluation,
we learned that the way that gRaIL uses ptrace (which is
a standard and intuitive way to use ptrace) results in sev-
eral scalability and performance problems that significantly
reduce the performance of a hybrid network simulator. Since
we wanted to understand the performance limits of ptrace,
we developed enhancements to make ptrace more efficient
and work around its bottlenecks.

342    2022 USENIX Annual Technical Conference USENIX Association



In this appendix, we describe what we learned about mak-
ing a ptrace-based system more performant and scalable. We
argue that our improvements make our application of ptrace
in a simulator significantly more performant and scalable than
gRaIL’s. Moreover, our implementation inside of Phantom en-
ables us to more fairly evaluate and compare the best version
of gRaIL that it could be rather than its inefficient prototype.

B.1 Scaling waitpid to Many Tracees
In initial evaluations, we were surprised to find that when

adding n hosts to a PHOLD [20] simulation, in which the total
number of messages passed scales linearly with the number of
hosts, the simulation time grew quadratically with n instead
of linearly. This turned out to be because the waitpid syscall,
which is used by a ptrace tracer to wait for the next ptrace
stop from a given tracee, performed a linear scan of child tasks,
making its performance O(n) in the number of processes in
the simulation; i.e. adding a process with some fixed amount
of work to the simulation not only added that amount of work,
but also made the management of every other process in the
simulation slower.

Since this behavior of waitpid is potentially surprising,
and could hurt performance for other large-scale uses of
ptrace, we implemented a kernel patch making it O(1) in-
stead of O(n). That patch was accepted, and first included in
Linux kernel version v5.13-rc1 [56].

Since we wanted good performance in today’s Linux distri-
butions without needing to install a custom kernel, we also
implemented a workaround in Phantom’s ptrace code. Ini-
tially we worked around this with a dedicated "fork proxy"
thread to initially fork each managed process. This way the (at
the time) one-per-CPU "worker thread" weren’t parents of the
managed processes. However, waitpid also performed an O(n)
linear scan of tracees. This meant that when switching from
running one managed thread to another, the worker thread
needed to ptrace-detach from the blocked thread (sending it
a SIGSTOP to prevent it from running), and ptrace-reattach
to the next thread to run. This workaround added substan-
tial overhead, but was an overall performance improvement
for simulations involving more than around 1000 managed
threads per worker thread.

We were later able to remove the fork-proxy workaround
when we moved to the logical-processor-based scheduler de-
scribed in §3.2.2. Since each worker thread only manages the
processes and tasks of a single simulated host, waitpid does
not become more expensive as hosts are added.

B.2 Reducing Per-syscall ptrace Stops
Many ptrace-based systems, including gRaIL [53, 54] use

the PTRACE_SYSCALL command to execute the tracee until its
next syscall. When the tracee makes a syscall, the tracee is put
into a syscall-enter-stop. The tracer can then fetch the
memory registers of traced program to examine the syscall
arguments using a PTRACE_GETREGS command (and memory

referenced by those parameters as per Appendix B.3). In the
case where the tracer desires to emulate the syscall, as is
usually the case in Phantom, the tracer can:
1. issue a PTRACE_SETREGS command to change the syscall-

number being requested to an invalid one;
2. issue another PTRACE_SYSCALL command to allow the

tracee to execute the syscall, which will result in the
issuing of an ENOSYS signal that puts the tracee into a
syscall-exit-stop;

3. overwrite the error result to emulate the original syscall
using PTRACE_SETREGS etc.; and

4. allow the tracee to continue running again with another
PTRACE_SYSCALL command.

Using this approach, there are a minimum of 4 context-
switches per syscall (assuming the tracee and tracer are exe-
cuting on the same CPU):
1. tracee to tracer at the syscall-enter-stop;
2. tracer to tracee to execute the (no-op) syscall;
3. tracee to tracer at the syscall-exit-stop; and
4. tracer to tracee to resume the tracee’s execution.

The ptrace syscall has an alternative command for when
syscalls are to be emulated instead of just monitored: the
PTRACE_SYSEMU command. As with PTRACE_SYSCALL, the
tracee enters ptrace-enter-stop when first encountering a
syscall. If the tracer continues again using PTRACE_SYSEMU,
there is no syscall-exit-stop, saving 2 context-switches.

The primary downside of using PTRACE_SYSEMU is that if
we really do want the managed process to execute the orig-
inal syscall (perhaps with modified arguments), we can no
longer just resume the original syscall, because the kernel
does not execute the syscall when using PTRACE_SYSEMU. In
Phantom we instead first get out of the ptrace-enter-stop,
with a PTRACE_SINGLESTEP command, overwrite the instruc-
tion pointer to "rewind" it to point to the syscall instruction
again, and then PTRACE_SINGLESTEP again to actually exe-
cute it. This adds an extra ptrace-stop relative to the case
where we would use PTRACE_SYSCALL, but this tradeoff is
worthwhile when most syscalls are being emulated (as is the
case in Phantom).

B.3 Efficiently Accessing Tracee Memory

The mechanism for accessing tracee memory via ptrace
itself is PTRACE_PEEK and PTRACE_POKE. This is the mech-
anism used by many ptrace-based systems, including
gRaIL [53, 54] and DetTrace [55]. Unfortunately, this mech-
anism requires a separate syscall and accompanying mode
transition to access each word of memory, making it ineffi-
cient for large structs and buffers.

We could reduce the number of syscalls required for
large memory accesses by instead reading and writing the
/proc/[pid]/mem pseudo-file. After opening the file (which
requires already being ptrace-attached), accessing a contigu-
ous buffer can be done with a single pread or pwrite syscall

USENIX Association 2022 USENIX Annual Technical Conference    343



and multiple buffers can be accessed at the same time with
preadv and pwritev.

However, we instead make use of the process_vm_readv
and process_vm_writev syscalls, which are analagous to
preadv and pwritev but are specialized for accessing the
memory of another process. They are a bit simpler to use,
since they take the pid of the target process instead of need-
ing to open and maintain a file descriptor. They also do not re-
quire the caller to be ptrace-attached to the target process—a
feature that Phantom utilizes in order to use the same code for
accessing managed process memory no matter if we are using
the ptrace- or seccomp-based syscall interception strategies.

As discussed in §3.2.6, in Phantom we make most mem-
ory accesses even more efficient by remapping some of the
tracee’s memory regions into a shared memory file, which
is also mapped into Phantom. As we show in Figure 5, this
further increases cross-process data transfer performance.

B.4 Enabling Work Stealing
In Shadow, there is roughly one worker thread per-CPU,

and in each round of the simulation, each worker thread pro-
cesses a queue of simulated hosts. When a worker thread’s
queue is empty, it steals hosts from another worker’s queue.

Unfortunately, when using ptrace, only the thread that
originally ptrace-attached a traced thread is permitted to
issue ptrace commands; other threads in the process are not.
This means that one worker thread cannot steal a simulated
host from another worker thread and control its managed
processes while the original worker thread is still attached.

We briefly pursued patching the kernel to lift this restriction,
but it would involve a fair bit of complexity, and there is un-
derstandable hesitancy from kernel developers to add further
complexity to the already quite complex ptrace subsystem
in order to support a somewhat niche use-case.

We initially solved this problem by detaching ptrace from
each managed thread in a host when done processing that
host’s events for the round, and re-attaching each thread the
first time we need to control it each round. This process had
substantial overhead, which was incurred even if the host and
its threads were executed by the same worker the next round.

Phantom’s logical-processor-based scheduler design de-
scribed in §3.2.2 addresses this problem. In Phantom’s
scheduling architecture, worker threads are stolen by logi-
cal processors, but hosts never move between worker threads.
Therefore a worker thread can stay attached to its managed
threads for the entire simulation.

B.5 Avoiding ptrace Stops on Some Syscalls
As shown in Figure 4, intercepting a syscall via

LD_PRELOAD and servicing it via IPC is significantly faster
than intercepting and servicing it via ptrace. Unfortunately it
is difficult to create a hybrid approach that uses LD_PRELOAD
but falls back to ptrace, because ptrace stops for every
syscall. Even if we avoid a ptrace-stop by intercepting a

syscall via LD_PRELOAD, any syscall we make to communi-
cate with Phantom will still generate a ptrace-stop, negating
the performance benefit.

We prototyped a solution that worked around this prob-
lem by never making a syscall to perform IPC; after sending
a message in the shared memory segment, we would do a
busy-wait to receive the response instead of making a futex
syscall. This approach actually worked well for simulations
that otherwise had idle cores to spare—the Phantom worker
thread could service the syscall on one CPU while the man-
aged thread spun in its loop on another. However, since this
effectively halved the maximum concurrency, we ultimately
discarded this approach.

A better solution to this problem is to use a seccomp filter
to have some syscalls generate a SECCOMP_RET_TRACE event,
and then use ptrace to catch those instead of stopping on
every syscall [55].

In Phantom we similarly leveraged seccomp, but config-
ured seccomp to trap to a signal handler (SECCOMP_TRAP) in
the managed thread. The signal handler uses IPC if needed
to communicate with Phantom, doing away with ptrace
altogether. We have not performed a direct performance
comparison between this SECCOMP_TRAP approach and the
SECCOMP_RET_TRACE approach, but expect it to have simi-
lar or better performance: while SECCOMP_RET_TRACE skips
the transfer from control in the kernel to the managed thread
before context-switching to the tracing thread, using memory-
based IPC from the SECCOMP_TRAP handler lets us transfer
the register values more cheaply than PTRACE_GETREGS and
PTRACE_SETREGS. More importantly, we can service some
syscalls from the SECCOMP_TRAP handler without having to
context-switch to Phantom at all, as described in §3.2.5.

C Context Switching Performance

In Phantom’s process-oriented architecture, control and mes-
sages must be exchanged between Phantom’s worker pro-
cesses and managed application processes via interprocess
communication (IPC). Linux and the POSIX standard offer
many facilities for exchanging data across process boundaries
and synchronizing processes. In this appendix, we examine
the cost associated with a process context switch when facil-
itated by a given synchronization method. The control flow
being measured is as follows, for a communicating parent
process and child process pair:
1. The child waits for control from the parent;
2. The parent signals to the child that it should run, and waits

for the child;
3. The child gains control, immediately signals back to the

parent that it should run, and goes into the wait state; and
4. The parent wakes up and regains control.
In other words, this benchmark measures the latency required
to perform a context-switch round-trip from a parent process
to a child process and then back to the parent.

344    2022 USENIX Annual Technical Conference USENIX Association



Ato
mic

Flag

M
essa

ge Queue

Semaphore

Unix
Domain

Socket
0.0

2.5

5.0

L
at

en
cy

(µ
s)

4.4
5.1

4.1

6.3

Same Core

Ato
mic

Flag

M
essa

ge Queue

Semaphore

Unix
Domain

Socket
0

20

1.4

14.1 15.4

32.7

Cross Core

Ato
mic

Flag

M
essa

ge Queue

Semaphore

Unix
Domain

Socket
0

20

40

1.5

21.4

28.7

35

Cross Node

Figure 16: Time required to perform a process context-switch round
trip under various synchronization mechanisms and process CPU
affinity values.

Four synchronization mechanisms are included in the
benchmark:
1. An _Atomic _Bool flag placed in shared memory. Wait-

ing is performed by repeatedly checking if the value is
true (i.e., spinning), and signaling is performed by setting
the flags value to true.

2. A POSIX semaphore place in shared memory. Waiting
is performed with sem_wait and signaling is performed
with sem_post.

3. A Unix domain socket with ends shared by the parent and
child process. Waiting is performed with recv called on
the socket’s file descriptor and signaling is performed with
send called on the descriptor.

4. A POSIX message queue shared by the processes. Wait-
ing is performed by calling mq_recv and signaling is per-
formed with mq_send.
In addition to the mechanism, in this benchmark we also

vary the CPU affinity of the parent and child processes. The
cost of context switching varies depending upon which pro-
cessors are executing the processes. The benchmark tests
three cases: (i) when the parent and child are pinned to the
same CPU core; (ii) when the parent and child are pinned to
separate cores on the same CPU; and (iii) when the parent
and child are pinned to separate cores on separate NUMA
nodes and CPUs.

We ran these benchmarks on a machine with two 14-core
Intel Xeon E5-2697 CPUs clocked at 2.60 GHz (the same ma-
chine used in our §5 experiments). The machine was running
CentOS 7 and Linux kernel version 5.11.6-1. Figure 16 shows
the average context-switch round-trip time taken over 100k
repeated trials. (99% confidence interval ranges are drawn at
the top of each bar, but in every case the interval size is almost
zero.) These results show that POSIX message queues and
semaphores slightly outperform Unix domain sockets, and
that semaphores are the most efficient synchronization method
when the processes are pinned to the same core (which is the
case in Phantom). Cross-core and cross-node context switch-
ing is significantly more expensive than same-core, with the
exception of the atomic boolean flag; when using this syn-

chronization mechanism, having two CPUs that can spin in
parallel minimizes latency. However, spinning can waste CPU
cycles and is not economical when the CPU is under load.
Hence, we find that POSIX semaphores are the most perfor-
mant mechanism to synchronize control between Phantom
and its managed, child processes.

D Simulated System and Network Facilities

In this appendix, we describe at a high level the system and
network facilities that Phantom simulates. These simulated
components are mostly borrowed from Shadow (see §4), but
significant attention was required to integrate these with Phan-
tom’s new system call interposition, memory manager, and
process scheduling interfaces.
Time: As a simulator, Phantom has complete control over
simulated time. Attempts by managed processes to obtain
the current time are handled by returning the simulated time
(relative to a recent epoch) instead. (Because retrieving time
is a hot-path function, time-related system calls are handled
in the shim as described in §3.2.5.)
Input/Output: Phantom simulates file descriptors and tracks
them using a lookup table for each managed process. This
ensures a consistent mapping of file descriptor numbers to the
internal objects needed to operate on them. Files are simulated
internally by using real OS files and translating between the
simulated and real file descriptor numbers. Other descriptors
can be completely simulated internally, including sockets,
pipes, timers, and events. Event notification facilities (e.g.,
select, poll, and epoll) can also be simulated by tracking
the state of each simulated descriptor and triggering callback
events when those states change in a way that requires action.
Both blocking and non-blocking operations are supported as
described in §3.2.7.
Transport: Phantom is a packet-level simulator that imple-
ments simulated versions of protocols such as TCP and UDP.
Although packet-level semantics are simulated with respect to
the associated socket protocols, packet payloads (application
data) sent by the managed processes are copied only once
into internal buffers. Transferring this data between virtual
hosts across the simulated network amounts to transferring
the memory address of the original data location, minimizing
overhead when transferring simulated packets.
Network: Phantom simulates DNS using a simple name to
virtual IP address mapping. Routing is simplified to running
shortest path over a configurable network graph to compute
end-to-end latency and packet loss. In addition to these net-
work characteristics, packets sent over the simulated network
will also be subject to: (i) virtual host bandwidth limits which
are simulated using token buckets; and (ii) network queuing
semantics which are simulated using an implementation of
the CoDel (controlled delay) network scheduling algorithm.

USENIX Association 2022 USENIX Annual Technical Conference    345



sta
ndard

pin+sta
ndard

realti
me

pin+realti
me

0

20

40

60

B
en

ch
m

ar
k

T
im

e
(µ

s)

54.52

16.07

36

26.82

blocking nanosleep

sta
ndard

pin+sta
ndard

realti
me

pin+realti
me

0

20

40

60

24.39

9.8

23.09
18.39

nonblocking nanosleep

sta
ndard

pin+sta
ndard

realti
me

pin+realti
me

0

20

40

60

38

16.03

34.03
28.88

1k write+read

Figure 17: Time to execute our microbenchmarks from §5.1 when
Phantom is configured to run with the ptrace interception strategy
and the Linux CPU pinning and realtime scheduling features.

sta
ndard

pin+sta
ndard

realti
me

pin+realti
me

0

10

20

30

B
en

ch
m

ar
k

T
im

e
(µ

s)

9.86 9.51

23.56
25.23

blocking nanosleep

sta
ndard

pin+sta
ndard

realti
me

pin+realti
me

0

10

20

30

0 0 0.41 0.11

nonblocking nanosleep

sta
ndard

pin+sta
ndard

realti
me

pin+realti
me

0

10

20

30

7.87 7.78

19.62 19.05

1k write+read

Figure 18: Time to execute our microbenchmarks from §5.1 in
the uni-process, preload-based Shadow architecture when using the
Linux CPU pinning and realtime scheduling features.

E Extended Evaluation

In this appendix, we include some extended evaluation details
and results that we were unable to include in the main body
of the paper (in §5) due to space constraints.

E.1 Extended Microbenchmarks
We conducted the evaluation here and in §5.1 using a

blade server cluster in which each blade contained identical
hardware: 256 GiB of RAM and 2×14 core Intel Xeon E5-
2697v3 CPUs (56 total hyper-threads) running at 2.6 GHz.
Each blade machine was running CentOS 7 and Linux kernel
version 5.11.6-1. We configured our experiments to run in
docker containers to ensure that we were running identical
software stacks across the blade machines.

Figure 17 shows the effect of Linux CPU scheduling fea-
tures when running Phantom with a ptrace interception strat-
egy. We find that CPU pinning alone performs the best and
that adding realtime scheduling along with CPU pinning has
an adverse effect. Running with realtime scheduling alone
only slightly improves performance over using the standard
Linux scheduling mechanisms.

Figure 18 shows the effect of Linux CPU scheduling
features on a uni-process design. The choice of Linux
CPU scheduling feature has little effect on the nonblock-
ing nanosleep benchmark, since it is effectively a function
call and already incredibly efficient. Interestingly, realtime
scheduling reduces performance for both the blocking and io-

7 14 21 28 35 42 49 56

Logical Processors Count

0

2

4

6

8

In
it

ia
liz

at
io

n
T

im
e

(s
)

only ptrace
preload+ptrace
only seccomp
preload+seccomp
uni-process

Figure 19: Initialization time is the time for Phantom to launch all
managed processes (or for uni-process Shadow to load all names-
paces) and run them until the first blocking system call.

pro
c vm

pro
c mmap

uni-p
ro

cess
0

25

50

75

B
en

ch
m

ar
k

T
im

e
(s

)

78.7 79.2

53.1

pro
c vm

pro
c mmap

uni-p
ro

cess
0

1

2

M
ax

R
A

M
U

se
d

(G
iB

)

1.17
1.39

2.24

pro
c vm

pro
c mmap

uni-p
ro

cess
0.0

0.5

1.0

1.5

P
ag

e
F

au
lt

s
(×

10
6
)

0.42

0.66

1.52

Figure 20: Performance of our P2P benchmark with Phan-
tom using ptrace interception with process_vm_read and
process_vm_write fallback facilities compared to its primary inter-
process memory mapping design.

based benchmarks, and adding pinning and realtime schedul-
ing together does not mitigate these effects.

E.2 Extended Macrobenchmarks
We conducted the evaluation here and in §5.2 using the

same blade server cluster that we used for the microbench-
marks (see Appendix E.1).
Interception Strategies: Figure 19 shows the initialization
time for Phantom with various interception strategies com-
pared to the uni-process Shadow design. As expected, preload-
ing has an insignificant effect on launch/load times. When
using seccomp, Phantom completes the initialization process
the faster than the uni-process design. Initialization takes
the longest when using ptrace, and scales the worst as the
number of LPs increases.
Memory Manager: Figure 20 shows that, when config-
ured to use the ptrace interception strategy, the inter-
process memory mapping design performs comparably to
process_vm_read and process_vm_write fallback facili-
ties despite using slightly more RAM and causing slightly
more page faults. Phantom’s memory manager uses less RAM
than Shadow’s uni-process design in all cases.
Thread Scheduler: Figure 21 shows the performance of
the work-stealing thread schedulers when running Phantom
with the ptrace interception strategy compared to the perfor-
mance when using the schedulers in the uni-process Shadow
design. Consistent with our results from §5.2, we find that

346    2022 USENIX Annual Technical Conference USENIX Association



th
read/host

th
read/LP

0

20

40

60

80

B
en

ch
m

ar
k

T
im

e
(s

)

78.4
86.9

ptrace

th
read/host

th
read/LP

53.1 54.9

uni-proc

th
read/host

th
read/LP

0

1

2

M
ax

R
A

M
U

se
d

(G
iB

)

1.39

1

ptrace

th
read/host

th
read/LP

2.25

1.6

uni-proc

th
read/host

th
read/LP

0

2

4

6

8

C
P

U
M

ig
ra

ti
on

s
(×

10
3
)

7.43

3.14

ptrace

th
read/host

th
read/LP

5.61

0.06

uni-proc

Figure 21: Performance of our P2P benchmark when our worker
thread scheduler uses one thread per virtual host or one thread per
logical processor (LP).

using one worker thread per virtual host decreases the time
to complete the P2P benchmark relative to using one worker
thread per LP despite using more RAM and causing more
CPU migrations.
Peer Workload: We investigated the performance effect of
varying the workloads in our P2P benchmark. In §5.2.1 we de-
scribed the configurable parameters in our benchmark: each
peer sends m messages, when receiving a message a peer
performs c AES (encrypt, decrypt) sequences before send-
ing another message, and message destinations are selected
according to a peer weighting function W .

Figure 22a shows the results when varying c in the range
[0,3]. In Phantom with seccomp interception and in Shadow’s
uni-process design, we observe a roughly linear increase in
the benchmark time when increasing the number of AES
operations that must be performed upon receipt of every mes-
sage as expected. Interestingly, the linear constant appears
to be slightly larger for seccomp than for uni-process, and
much larger for ptrace. We speculate that the observed per-
formance may be due to caching differences.

Figure 22b shows the results when varying m in the set
{1,10,100,1k}. After subtracting the baseline initialization
time (represented roughly by the 1 msg/host case), we observe
a linear increase in the benchmark time as we increase the
message load; this is the expected result since increasing the
message load also increases the amount of work the simulator
must perform.

Figure 22c shows the results when varying the workload
distribution. In addition to the exponential function defined
in §5.2.1 as e−3x for x ∈ [0,1], we also consider a “uniform”
distribution function where each peer has an equal probability
of being selected as the destination for any message, and a
“ring” distribution function where each peer simply selects its
closest neighbor as the destination of its outgoing messages.
We can see from Figure 22c that these alternative workload
distribution functions have minor effect on performance in
our simulations.

E.3 Extended Network Verification
In this appendix, we present extended details and results

from our evaluation of Phantom’s ability to accurately repre-
sent network characteristics from §5.3.

ptra
ce

seccomp

uni-p
ro

cess
0

200

B
en

ch
m

ar
k

T
im

e
(s

)

78.9

32.1
53.1

0 AES/msg

ptra
ce

seccomp

uni-p
ro

cess
0

200 136

74.5 77.7

1 AES/msg

ptra
ce

seccomp

uni-p
ro

cess
0

200

276

120 118

2 AES/msg

ptra
ce

seccomp

uni-p
ro

cess
0

200

336

164 159

3 AES/msg

(a) The effects of varying CPU load

ptra
ce

seccomp

uni-p
ro

cess
0

10

20

B
en

ch
m

ar
k

T
im

e
(s

)

4.4

1.7

4.1

1 msg/host

ptra
ce

seccomp

uni-p
ro

cess
0

10

20

11.1

4.7

8.6

10 msg/host

ptra
ce

seccomp

uni-p
ro

cess
0

50

100
78.9

32.1

53.1

100 msg/host

ptra
ce

seccomp

uni-p
ro

cess
0

500

758

367

513

1k msg/host

(b) The effects of varying message load

ptra
ce

seccomp

uni-p
ro

cess
0

50

B
en

ch
m

ar
k

T
im

e
(s

)
77.5

29.9

53.1

uniform workload

ptra
ce

seccomp

uni-p
ro

cess
0

50

78.9

32.1

53.1

exponential workload

ptra
ce

seccomp

uni-p
ro

cess
0

50

79.3

27.3

52.4

ring workload

(c) The effects of varying peer load distribution

Figure 22: Performance of our P2P benchmark in Phantom using
the seccomp and ptrace interception strategies and in Shadow’s
uni-process design while varying the benchmark CPU and network
load parameters.

E.3.1 Extended Basic Network Verification

We verify that Phantom accurately models networked ap-
plication behavior when those applications are run in different
networks with a variety of bandwidth and latency properties.
We use two test applications, iPerf and a UDP echo applica-
tion, to measure Phantom’s simulated bandwidth and latency
characteristics. We compare the measurements collected from
Phantom to a set of baremetal measurements we collected by
running the same applications on two physically-networked
servers with emulated bandwidth and latency properties. Ad-
ditionally, we collected iPerf bandwidth measurements using
Shadow so that we could verify that Phantom does not simu-
late network activity differently than Shadow does. Below we
describe the experimental setup and the the results from our
two experiments.
Setup: To collect simulated bandwidth measurements, we ran
a series of iPerf(v2) simulations with Phantom and Shadow.
In each simulation, a single client and server communicate

USENIX Association 2022 USENIX Annual Technical Conference    347



using iPerf’s single-threaded TCP benchmark. The client
sends traffic for 10 s, and the server runs until all the data
from the client is received. Bandwidth is recorded from the
server, which is receiving the traffic, in three-second intervals.
Each simulation uses a network configured with a different
bandwidth and one-way latency. For these experiments, we
consider bandwidth values between 1 Mbit/s and 1 Gbit/s,
and one-way latency values between 1 ms and 175 ms. We de-
termined that 175 ms was a realistic upper-bound on latency
in wide-area networks by examining RIPE Atlas ping mea-
surements from Jan. 11, 2021: we found that the maximum
latency reported by the probes for all built-in measurements
was 173.5 ms after removing outliers.

To collect simulated latency measurements, a custom UDP
echo application is ran between a client and a server with
Phantom. The echo application simply measures the time
required for the client to echo a UDP packet sent by the server,
which estimates the round-trip time between the server and
the client. We consider the same range of latency values in
these experiments as in the bandwidth experiments.

To collect emulated baremetal measurements for com-
parison, we ran the same applications on two physically-
networked servers. The machines had 2×Intel Xeon E5-
2697 v3 CPUs, 256 GiB of RAM, and ran Debian 11 with
Linux Kernel v5.10.0-8. They were both connected with
NetXtreme II BCM57810 10 Gigabit Ethernet NICs through
a 10 Gbit/s switch. We used Linux’s netem facilities to config-
ure each machine’s NIC with a specified bandwidth rate limit
and packet latency. Additionally, we set the machine’s TCP
stack to use the Reno congestion control algorithm, which is
also implemented in Shadow and Phantom.
iPerf Bandwidth Measurements: Figure 12 in §5.3 com-
pares iPerf-reported bandwidth from the baremetal measure-
ments, Phantom, and Shadow. In the left three plots, latency
is held constant (at either 10 ms, 75 ms, or 175 ms) and
iPerf-reported bandwidth is plotted versus the experimentally-
configured bandwidth limit. In the right three plots, band-
width is held constant (at either 10 Mbit/s, 100 Mbit/s, or
1 Gbit/s) and iPerf-reported bandwidth is plotted versus the
experimentally-configured packet one-way latency. These
plots show the bandwidth reported by iPerf during the 3-
second interval closest to the half-way point of the transfer,
which estimates the sustained maximum bandwidth achieved
between the client and the server. We find that Phantom does
not change modeling accuracy relative to Shadow, and that
Phantom-reported performance matches baremetal-reported
performance in most network conditions. With more extreme
bandwidth and latency values, Phantom is able to achieve
higher link-utilization than baremetal. These differences may
be accounted for by different parameterizations of Phantom’s
TCP stack and Linux’s (e.g., different initial window sizes).
Extending and tuning Phantom’s TCP stack to more closely
approximate the behavior of Linux’s networking facilities is
a promising direction for future work.

Table 3: The Number of Virtual Hosts, Processes, and the Amount
of Traffic in each Simulated Tor Network of the Given Scale

Network Scale 5% 10% 15% 20% 25% 30%

Clients 436 871 1307 1742 2178 2614
Relays 349 694 1039 1385 1732 2076
Servers 40 79 119 158 198 238

Total Virtual Hosts 825 1644 2465 3285 4108 4928

Tor 785 1565 2346 3127 3910 4690
OnionTrace 785 1565 2346 3127 3910 4690

TGen 476 950 1426 1900 2376 2852
Total Processes 2046 4080 6118 8154 10196 12232

Simulated Gbit/s? 12 24 37 49 62 74
Equivalent Tor Users 39.6k 79.2k 119k 158k 198k 238k

? Mean across 20 total simulations for each network scale.

Latency Measurements: Both the Phantom and baremetal
measured RTT latency values matched nearly identically with
the value specified in the experiment for all configured la-
tencies. The largest percent-error between the simulated and
emulated results (taking the emulated measurements to be
ground-truth) was 3%, which occurred at the lowest config-
ured one-way latency (1 ms): the Phantom-measured RTT
was 2 ms, whereas the baremetal measured RTT was 2.07 ms.
The difference can be accounted for by software processing
time, which Phantom does not simulate.

E.3.2 Extended Tor Network Verification

We consider large-scale Tor network simulation as a prac-
tical use case for Phantom. By supporting Tor, we believe
Phantom will have broader impact particularly among re-
searchers in the privacy-enhancing technologies community
since they commonly use simulation [5, 7–9, 15, 16, 18, 21–
25, 27–29, 31, 33–37, 39, 41–43, 46, 47, 49, 51, 58–61, 64,
66, 68, 69] to explore Tor performance and security research
problems [6]. Moreover, the Tor Project has recently adopted
the use of simulation in their own network planning and per-
formance analyses [2], and Phantom has already been used to
guide these efforts [57].

The Tor anonymity network [17] contains over 6k relay
nodes [1] and about 800k users that are simultaneously active,
i.e., running a Tor client and generating network traffic [38].
Constructing a simulated Tor network that is representative
of the real Tor network involves a significant modeling and
configuration effort [40]. Important factors that must be con-
sidered include the number of virtual hosts running Tor clients
and relays, traffic generator clients and servers, the network
latency between these hosts, the bandwidth available to these
hosts, and the configured behavior of the clients, relays, and
traffic generators. Fortunately, recent foundational work on
Tor network experimentation has contributed methods and
tools to guide our experimentation process [40]. We use these
tools directly to create Tor network configs and run experi-
ments in both Phantom and Shadow (Tor network modeling
is outside the scope of this paper).

348    2022 USENIX Annual Technical Conference USENIX Association



5 10 15 20 25 30

Tor Network Model Scale (%)

5

10

15

20

25

30

A
bs

ol
ut

e
R

un
T

im
e

(h
)

phantom
shadow

(a) Absolute Run Time

5 10 15 20 25 30

Tor Network Model Scale (%)

90

95

100

105

110

R
el

at
iv

e
R

un
T

im
e

(%
)

phantom
shadow

(b) Run Time Relative to Shadow

5 10 15 20 25 30

Tor Network Model Scale (%)

90

92

94

96

98

100

R
el

at
iv

e
R

A
M

U
se

d
(%

)

phantom
shadow

(c) Max RAM Used Relative to Shadow

Figure 23: The time and memory required to complete each Tor network simulation in Phantom (using seccomp interception) and in Shadow’s
uni-process design as the network model scale increases. (b) and (c) show performance relative to Shadow’s baseline.

Setup: We generate 10 unique Tor network configs for each of
6 network scale factors using Tor network state from 2021-01;
Table 3 shows the total number of virtual hosts and Linux pro-
cesses used at each scale. Each client host runs three processes:
(i) a TGen traffic generator process that generates traffic ac-
cording to Markov models created by measuring the real Tor
network [38]; (ii) a Tor process in client mode that forwards
the TGen traffic into our private Tor network; and (iii) an
OnionTrace process that connects to Tor to gather statistics
and log information. Each relay host runs a Tor process in
relay mode that forwards traffic in our private Tor network,
and an OnionTrace process that gathers statistics and logs.
Each server host simply runs a TGen server process that co-
ordinates with TGen clients to generate traffic. Table 3 also
shows the total volume of traffic being simulated at each scale,
and the equivalent expected number of Tor users that it would
take to generate that traffic in the public Tor network.

We run each of the resulting 60 Tor networks using Tor
v0.4.5.9 in Phantom (using seccomp) and in Shadow (the
state-of-the-art Tor network simulator). We conducted the
evaluation using a blade server cluster in which each blade
contained identical hardware: 1.25 TiB of RAM and 4×8
core Intel Xeon E5-4627v2 CPUs (without hyper-threading
support) running at 3.30 GHz. For all experiments, we enable
CPU pinning, disable realtime scheduling, and use 32 LPs
(one LP per core) following our results from §5. We present
the results as the mean across the ten networks at each scale
with 95% confidence intervals (CIs).
Verification Results: We analyze the performance character-
istics in each simulation, e.g., the simulated time to transfer
data through the simulated Tor network. Recall from §5.3 that
our primary goal is to validate that Phantom does not reduce
the accuracy of the simulated network stack that it integrates
and that we consider our validation successful if Phantom and
Shadow produce similar simulated network results.

Figure 13 in §5.3 shows the simulated Tor performance
results from using both Phantom and Shadow to each simulate
the ten 30% scale Tor networks. Shown are several Tor per-
formance metrics, including: circuit build times; circuit round
trip times (time from data request to first byte of response);
circuit goodput (transfer rate for range [0.5 MiB, 1 MiB] over
1 MiB and 5 MiB transfers); and client download times for

transfers of 50 KiB, 1 MiB, and 5 MiB. The shaded areas
represent 95% confidence intervals that were computed fol-
lowing recently published methods [40]. We do not find a
significant difference in performance measured in the sim-
ulated Tor network across several metrics when comparing
Phantom to Shadow. Again, this is the desired and expected
result since both Shadow and Phantom share a network stack
implementation. We conclude that Phantom maintains the
same level of simulator accuracy that Shadow provided; i.e.,
Phantom’s multi-process design does not degrade the level of
accuracy that can be provided by a simulated network.
Performance Results: Figure 23 shows the simulators’ per-
formance when running the Tor network simulations.

Figure 23a shows that the absolute time to complete a 60
simulated minute experiment is roughly linear in the network
scale, where Phantom completed the experiment in the 10%,
20%, and 30% networks in 9, 18, and 27 hours, respectively.
Phantom’s run time is remarkably similar Shadow’s, even
though Phantom incurs IPC overhead while Shadow does not;
this demonstrates the efficiency of Phantom’s design even
when simulating somewhat complex distributed systems.

We plot simulation run time relative to Shadow’s baseline
in Figure 23b. Although there is large uncertainty in small net-
work scales (consistent with prior work [40]), we observe that
Phantom is competitive to Shadow’s uni-process performance
at smaller scales and comparable at larger scales: at 30% scale,
Shadow’s performance falls within Phantom’s 95% CI.

Figure 23c shows the max RAM used by Phantom to sim-
ulate each network scale relative to Shadow’s baseline. We
observe that Phantom is more memory-efficient than Shadow:
while Shadow used 178, 357, 540, 727, 919, and 1116 GiB
at network scales of 5%, 10%, 15%, 20%, 25%, and 30%,
respectively, Phantom used at least 90.4% (at 5% scale) and
at most 92.5% (at 30% scale) of RAM relative to Shadow.

We conclude that Phantom effectively overcomes the multi-
process performance challenges identified in §2.3: Phan-
tom’s multi-process design offers comparable performance
to Shadow’s uni-process design while being more memory
efficient. In addition to its performance, Phantom offers sig-
nificant improvements over Shadow because its multi-process
design precludes Shadow’s compatibility, correctness, and
maintainability limitations that we identified in §2.3.

USENIX Association 2022 USENIX Annual Technical Conference    349





KSG: Augmenting Kernel Fuzzing with System Call Specification Generation

Hao Sun

Tsinghua University

Yuheng Shen

Tsinghua University

Jianzhong Liu

Tsinghua University

Yiru Xu

Tsinghua University

Yu Jiang ∗

Tsinghua University

Abstract

Kernel fuzzing is a dynamic testing technique that has suc-

cessfully found numerous kernel vulnerabilities. However,

existing kernel fuzzers, such as Syzkaller, depend on system

call specifications to generate test cases. Writing such specifi-

cations requires an immense amount of domain knowledge

while being extremely laborious. Meanwhile, automated gen-

eration of the specification is still an open problem due to the

complexity of the kernel, including entry function extraction

and input type identification. As a result, the current amount

of system call information is insufficient to test the entire

kernel code base thoroughly. Syzkaller covers an average of

38% of Linux kernel code with current Syzlang specifications

for a prolonged time of fuzzing.

In this paper, we propose KSG to generate system call

specifications for kernel fuzzers automatically. First, it uti-

lizes probe-based tracing to extract entry functions accurately.

Then, it uses path-sensitive analysis to collect precise in-

put types and range constraints in each execution path of

entry functions. Based on the aforementioned information,

KSG generates specifications in the domain language Sy-

zlang, which is used by most kernel fuzzers. We evaluated

KSG on several versions of the Linux kernel. It automatically

generated 2433 unique specifications. Leveraging the newly

generated specifications, Syzkaller and Moonshine achieved

coverage improvements of 22% and 23% respectively. Fur-

thermore, our approach assisted fuzzers to discover 26 pre-

viously unknown bugs, where 13 and 6 bugs were fixed and

assigned with CVEs, respectively.

1 Introduction

The operating system kernel is one of the most complex com-

ponents and forms the foundation of the software system. It is

responsible for core functionalities, such as communication

and IO of userspace applications. The security of the kernel

is crucial as kernel bugs can lead to huge impacts easily, e.g.,

∗Yu Jiang is the corresponding author of this paper.

causing userspace applications to be unresponsive [24] and

allowing an attacker to completely compromise a target sys-

tem [22]. Fuzz testing [19] is a popular technique for automati-

cally discovering security vulnerabilities and has already been

applied to the kernel domain. For instance, Syzkaller [33], one

of the most widely used kernel fuzzers, has been integrated

into Linux testing pipeline. It has reported thousands of kernel

bugs [31] up until now, demonstrating the effectiveness of

applying fuzzing to kernel testing.

The driving force of the kernel fuzzer’s bug discovery capa-

bility is system call specifications, which provide a rich set of

system call information. As shown in Figure 2, a system call

can accept parameters with different types based on underly-

ing submodules’ requirements. The prototype of system calls

are written in C, a weakly typed language, that does not pro-

vide much information of system calls’ arguments, e.g., many

parameters are defined as void*. Therefore, it is difficult for

fuzzers to generate inputs that satisfy the submodules’ struc-

tural constraints without additional information, resulting in

low fuzzing efficiency. To address this issue, existing kernel

fuzzers, such as Syzkaller, use a domain language called Sy-

zlang [34] to encode system call specifications. Syzlang is a

strongly typed language and can specialize system calls to

specific submodules with precise input types, as shown in

Figure 1. With this domain knowledge, fuzzing efficiency can

be improved significantly. Meanwhile, the amount of specifi-

cations has a significant impact on the performance of fuzzers.

Fuzzers can generate inputs to test kernel submodules that

are well-encoded in the specifications, but they have difficulty

reaching kernel code that is not encoded. Therefore, many

researchers have to manually write numerous specifications

to test the kernel thoroughly.

However, encoding system call specifications requires an

immense amount of domain knowledge, resulting in signif-

icant time costs and insufficient number of specifications.

Many system calls in the Linux kernel are an abstraction over

corresponding functionalities of kernel submodules, which

are responsible for dispatching the user input to submodules’

operations. The actual types of the system call’s parame-

USENIX Association 2022 USENIX Annual Technical Conference    351



ters depend on the specific invoked submodule. Therefore,

most specifications are encoded for specific submodules, e.g.,

dev_loop.txt in Syzkaller is specifications for loop device. In

order to encode specifications manually, the following differ-

ent aspects of domain knowledge are required: (1) the precise

input types of system call used by the submodule; (2) the

range constraints on specific input parameters; (3) the domain

language used by fuzzers for specifications. However, the

large amount of kernel submodules and the complexity of the

input types make it difficult to encode specifications for a wide

range of kernel functionalities. Consequently, most specifica-

tions are written by kernel experts, but the extensive manual

effort required has caused specification shortage. Based on the

coverage data reported by Syzbot’s dashboard [32], Syzkaller

covers an average of 38% of Linux kernel code with the cur-

rent Syzlang specifications for a prolonged time of fuzzing.

Several recent works perform automatic specification gen-

eration [4, 6, 11], but they are either designed for particular

system calls or close-sourced scenarios. In order to further

reduce manual efforts, we need to generate specifications for

more system calls and their corresponding submodules.

Source code analysis can be used to generate specifications

effectively, but several challenges need to be addressed due to

the complexity of the Linux kernel. First, extracting entries

that should be analyzed is difficult because entries can be

registered dynamically. In order to generate specifications for

specific submodules, we need to analyze submodules’ opera-

tions invoked by system calls, and we refer to these operations

as entries. However, entries can be registered dynamically

in many scenarios, for instance, during kernel initialization

and module loading. Consequently, it is challenging to ex-

tract entries using current static analysis methods. Second, the

input types of entries can vary in different execution paths, re-

sulting in difficulties identifying them. The functionalities of

kernel submodules are complex, while the number of entries

for accessing them is limited. In consequence, the submod-

ules’ entries can accept different input types across execution

paths. We need to collect input types and corresponding range

constraints in each execution path of every entry, which poses

significant complexity to the analysis. Finally, to generate

specifications in domain languages used by kernel fuzzers,

we need to perform syntax mapping and semantic encoding

based on the collected information.

To address the aforementioned challenges, we propose

KSG (Kernel Specification Generator) to automatically gener-

ate system call specifications for kernel fuzzers. KSG mainly

contains three steps. First, in order to extract submodules’

entries without being bound to their implementation details,

KSG utilizes a probe-based tracing with Linux eBPF [2] and

kprobe [13]. Based on the extracted entries, KSG uses path-

sensitive analysis to collect precise input types and range

constraints in each execution path of entries, which is based

on Clang Static Analyzer (CSA) [20]. Finally, based on the

gathered information, KSG generates system call specifica-

tions in domain language Syzlang, which is used by most

kernel fuzzers, to improve the fuzzing efficiency. We evalu-

ated KSG on multiple versions of Linux kernel. It generates

8 specialized calls per minute, with a total of 2433 special-

ized calls generated in 5 hours, 1460 of which are new to

existing specifications. Leveraging the generated specifica-

tions, Syzkaller and Moonshine’s [23] coverage are improved

by 22% and 23%, respectively. Furthermore, KSG assisted

fuzzers to discover 26 previously unknown bugs, with 13 and

6 were fixed and assigned with CVEs, respectively.

Overall, we make the following technical contributions:

• We propose an analysis approach for system call speci-

fication generation. It incorporates multiple techniques

to precisely collect submodules’ entries and their types

and range constraints on each execution path.

• We designed and implemented KSG, which extracts sub-

modules’ entries with eBPF and kprobe and performs

path-sensitive analysis based on Clang Static Analyzer.

Leveraging the collected information, KSG generates

specifications in Syzlang for kernel fuzzers.

• The evaluation result shows that KSG generated 2433

specifications in total, which can improve the coverage of

Syzkaller and Moonshine by 22% and 23% respectively,

and assisted fuzzers to find 26 new bugs.

2 Background and Related Works

2.1 Kernel Fuzzing

Fuzz testing is an automated vulnerability discovery approach.

Its idea is to continuously generate input to trigger program

crashes with the assistance of various sanitizers [27, 28].

Within each fuzz loop, the fuzzer selects the seed from the

given corpus with certain guided strategies [5, 25]. Then, it

mutates the seed by combining multiple mutation operators,

and feeds the generated input to the target program for ex-

ecution [7, 16]. Meanwhile, the fuzzer collects interesting

program behavior, e.g., coverage [3], to determine whether an

input is valuable for further mutations, thus continuously opti-

mizing the fuzzing campaign. Take AFL [15] for instance. It

is a coverage-guided userspace program fuzzer that has found

hundreds of vulnerabilities in widely-used libraries. Many

works optimize each part of the fuzz loop [1, 17, 18, 36, 40].

For instance, RIFF [37] moves computations done originally

at runtime to instrumentation time, thus reducing the instru-

mentation code while utilizing vector instructions to improve

throughput. Consequently, its coverage measurement mecha-

nism can reduce fuzzing overhead significantly.

The overall process used in kernel fuzzing is similar to

that used in userspace, but each specific part can be different

due to the complexity of the kernel. Specifically, the idea

of kernel fuzzing is to generate high-quality input to trigger

352    2022 USENIX Annual Technical Conference USENIX Association



kernel crash assisted with kinds of kernel sanitizers [8, 9],

which is the same as a standard fuzz loop. However, unlike

userspace fuzzing, the input structure of system calls can be

complicated, and the cost of each test case execution is expen-

sive.Therefore, the inputs generated by kernel fuzzers need

to satisfy the structural and range constraints; otherwise, it

would be rejected early by input validation, thus wasting huge

amounts of fuzzing time. Existing fuzzers use specifications

to encode input information of system calls to address this.

Based on this domain knowledge, the performance of kernel

fuzzers can be improved considerably.

Syzkaller is a state-of-the-art kernel fuzzer developed by

Google. In order to generate high-quality input, it utilizes

the domain language Syzlang to encode system call spec-

ifications manually. Although the encoding process brings

substantial costs, they enable Syzkaller to discover thousands

of bugs in the Linux kernel. Meanwhile, many works improve

each part of kernel fuzzing [12, 14, 21, 26, 29, 35, 38]. Take

Moonshine [23] as an example, it proposes a seed distilla-

tion algorithm to collect system call sequences from real-

world applications and provide initial seeds for kernel fuzzers.

Healer [30] optimizes input synthesis with system call influ-

ence relations and utilizes a dynamic learning algorithm to

identify such relation between calls. Although both works

improve the fuzzing performance significantly, their perfor-

mance, like Syzkaller, depends on the quality and abundance

of Syzlang specifications.

2.2 System Call Specification

Many system calls in Linux are an abstraction over corre-

sponding functionalities of kernel submodules, and they are re-

sponsible for dispatching the user input to submodules’ opera-

tions. A system call can accept parameters with different types

based on submodules’ expectations. As shown in Figure 1, the

input types of socket-related calls can vary for different under-

lying protocols. The type of parameter val in setsockopt

is void*, where it becomes struct tcp_repair_window

when protocol is TCP, while other protocols can define dif-

ferent types. The structure of val can be very complex since

each protocol supported by the Linux kernel can utilize differ-

ent types. Besides, the original type of val (void*) does not

provide any structural information to fuzzer. Without further

input information, fuzzer cannot test setsockopt effectively

since most generated inputs do not satisfy the requirements

of specific protocols and will be rejected by input validation.

Kernel fuzzers utilize specifications written in domain lan-

guage to generate input. For instance, Syzkaller utilizes Sy-

zlang to encode specifications for specific submodules. Within

each submodule’s specification, kernel experts first define the

resource type corresponding to the submodule. The re-

source type in Syzlang infers that the value of a parameter

can only be constructed by the kernel and represents a kind of

kernel resource. Then, kernel experts specialize system calls

resource sock_tcp[sock_in]

tcp_repair_window {

snd_wl1         int32

snd_wnd         int32

…

}

socket$TCP(domain const[AF_INET], type const[SOCK_STREAM],    
protocol const[0]) sock_tcp

setsockopt$TCP(sock sock_tcp, level const[IPPROTO_TCP], 
opt_name const[TCP_REPAIR_WINDOW], 

val ptr[tcp_repair_window], len len[val])

Simple program using TCP

// setup TCP

sock_tcp = socket(AF_INET, SOCK_STREAM, 0);

...

// setup fields of tcp_repair_window

struct tcp_repair_window window = { .snd_wll = ...};

...

// set socket option

setsockopt(sock_tcp, IPPROTO_TCP, TCP_REPAIR_WINDOW,   

&window, sizeof(window));

Syzlang specification for TCP

int socket(int domain, int type, int protocol);

int setsockopt(int socket, int level, int option_name, 
const void *val, socklen_t len);

Socket system call prototype

用

Figure 1: The input types of socket-related calls can vary for

different protocols. The type of parameter val is void*, it

becomes struct tcp_repair_window when the protocol

is TCP, and other protocols can define different types. With

Syzlang (the bottom part), calls can be specialized to specific

protocol with range constraints (highlighted in red) and pre-

cise types (highlighted in blue).

that can access the submodule to multiple simplified calls via

adding range constraints and qualifying the input type. Take

Figure 1 as an example, it demonstrates parts of specifications

written for TCP. The resource type sock_tcp represents a

created TCP socket. Each parameter of the specialized call

socket$TCP is qualified as a constant value (highlighted in

red), which guides kernel fuzzers to set up TCP socket cor-

rectly. The parameter val of setsockopt$TCP is qualified as

tcp_repair_window, which is the correct type correspond-

ing to TCP_REPAIR_WINDOW option. Using Syzlang, these

socket-related calls can be specialized to specific protocols

with range constraints and precise types. Kernel fuzzers can

use specialized calls to considerably improve their efficiency.

However, manually encoding specifications can be time-

consuming due to the required domain knowledge mentioned

in Section 1. Several works propose to generate specifications

for specific system calls or particular scenarios. DIFUZE [6]

is dedicated to generating specifications for system call ioctl

of Android drivers and is the most relevant work to ours. It

first finds all uses of file_operations related structures to

identify the handle of ioctl. DIFUZE then tries to extract

the device name from specific registration functions in the

kernel. Finally, it detects the command values and correspond-

USENIX Association 2022 USENIX Annual Technical Conference    353



ing parameter structures with LLVM’s analysis capabilities,

e.g., range analysis. With the above steps, DIFUZE can gener-

ate correct usages of ioctl from different drivers. However,

most submodules’ operations are registered dynamically with

unpredictable manners, which results in false negatives in DI-

FUZE. Besides, its pattern-based method can only be used to

analyze ioctl. Meanwhile, Syzgen [4] and IMF [11] propose

to generate specifications for close-sourced components of

macOS. They capture system calls issued by userspace appli-

cations and generate specifications by analyzing the parame-

ters’ value of captured calls. Nevertheless, both approaches do

not utilize the available source code in open source scenarios

to generate more effective system call specifications.

3 Challenges

3.1 Extracting Entries of Submodules

In order to generate specifications for specific submodules,

we need to analyze the submodules’ entries that are invoked

by system calls. Specifically, Linux defines the operations

that submodules should implement with structures containing

function pointers, e.g., file_operations and proto_ops

as shown in Figure 2. Submodules implement these opera-

tions and register them to the kernel. We refer to these op-

erations as entries. The responsibility of many system calls

is to dispatch the input to the registered operations via in-

direct function call; thus, they do not contain much input

information of the specific submodules. The submodules’ en-

tries define the input types to the system calls for accessing

themselves. Therefore, we need to analyze specific entries to

obtain concrete input types to generate high-quality specifica-

tions. Take Figure 1 as an example, val’s type is void* and

the system call setsockopt does not make any restriction

on its concrete type. In TCP scenarios, setsockopt passes

val to the entry tcp_setsockopt, which requires val’s type

should to be struct tcp_repair_window* when the op-

tion is TCP_REPAIR_WINDOW. We need to analyze the entry

tcp_setsockopt to generate specifications for setsockopt

in TCP scenarios.

However, the submodules’ entries can be registered dy-

namically in many situations, making it difficult to extract

them. Submodules implement operations and store the func-

tion pointers in the corresponding structures, which are regis-

tered to the kernel with kinds of registration functions. The

process mentioned above occurs at various times, such as

kernel initialization and module loading. However, identi-

fying the pointer’s target is challenging with current static

analysis approach. The various registration points further in-

crease the engineering efforts. For example, Figure 2 shows

the definitions of file_operations and proto_ops, which

contain the operations for kinds of files and sockets. Device

drivers can implement file_operations according to their

needs and register the structure to VFS during module loading.

struct proto_ops {

listen(…);

setsockopt(…);

sendmsg(…);

connect(…);

…

};

Socket Operations

Socket VFS

tcp_listen(…)

tcp_connect(…)

…

TCP

caif_listen(…)

caif_connect(…)

…

vcs_open(…)

vcs_read(…)

…

tty_open(…)

tty_read(…)

…

CAN TTY VCS

Submodules

Register ops Indirect call

struct file_operations {

open(…); 

read(…);

write(…);

unlocked_ioctl(…);

…

};

File Operations

… …

用

Figure 2: The definitions of file_operations and

proto_ops contain the operations for files and sockets. De-

vice drivers can implement file_operations as their needs

and register this structure to VFS. Different protocols can reg-

ister their own operations to socket layer in different ways.

Different protocols can register their proto_ops operations

to the socket layer in different ways during kernel initializ-

ing. In order to generate specifications for submodules, we

need to extract their entries and address the aforementioned

dynamism.

3.2 Identifying Input Types of Entries

The second challenge is that each entry’s input type can be

different across execution paths, which further increases the

complexity of the analysis. As mentioned above, the kernel

defines the operations that submodules need to implement via

various structures containing function pointers. The number

of such function pointers in each specific structure is limited,

while each submodule can be very complex. Consequently,

many submodules’ entries accept different input types in dif-

ferent execution paths to satisfy their functional requirements.

In other words, the input type to the submodule’s entry is not

fixed; some of the input parameters are responsible for con-

trolling the execution path, while other parameters or fields

have different types depending on the value of the former.

Figure 3 shows the TCP submodule’s implementation of sys-

tem call setsockopt, which is registered with proto_ops

structure. The value of the parameter optname is mainly used

to determine the different execution paths, while optval has

different types based on the value of the former. In order

to generate specifications, we need to identify the parame-

ters’ type and collect corresponding range constraints in each

execution path of the entries.

However, variables can be aliased with each other and cast

to different types by different means, resulting in the difficulty

in identifying their types and collecting corresponding range

constraints in each execution path. To demonstrate the former

354    2022 USENIX Annual Technical Conference USENIX Association



static int do_tcp_setsockopt(struct sock *sk, int level,

int optname, sockptr_t optval, unsigned int optlen)

{

struct tcp_sock *tp = tcp_sk(sk);

...

switch (optname) {

case TCP_CONGESTION: {

char name[TCP_CA_NAME_MAX];

// type of `optval` is char[TCP_CA_NAME_MAX]

strncpy_from_sockptr(name, optval,  …);
}

case TCP_MAXSEG:

int val;

// type of `optval` is int*

copy_from_sockptr(&val, optval, sizeof(val));

tp->rx_opt.user_mss = val; 

case TCP_REPAIR_WINDOW:

struct tcp_repair_window opt;

// type of `optval` is tcp_repair_window* 

if (copy_from_sockptr(&opt, optval, sizeof(opt)))

return -EFAULT;

}

return err;

}

Path1:

Path2:

Path3:

Figure 3: do_tcp_setsockopt is TCP’s implementation of

proto_ops. The type of parameter optval varies for differ-

ent value of optname. This demonstrates that the input type

of submodule’s entry can be different across execution paths

case, the value of variable p0 with scalar type can be assigned

to another variable p1. Meanwhile, p1 can be cast to a pointer,

which infers that p0 represents an address. We will miss this

kind of information without handling the alias between vari-

ables. To demonstrate the latter case, as shown in Figure 3,

although parameter optval is declared as sockptr_t type, it

is converted to different types under different cases of switch

statement using different cast methods. For instance, optval

is cast to void* type with C-style cast expression before the

switch statement. optval is treated as int* type on Path

2, because copy_from_sockptr calls copy_from_user to

copy sizeof(val) bytes from userspace, while variable val

is int type. The above pattern is common in the kernel, thus

we need to adequately handle the aliasing issue and type

casting to properly collect types and ranges constraints.

4 Key Techniques

Figure 4 shows the overall workflow of KSG. First, the kernel

source code is compiled based on the given configuration,

which outputs a bootable kernel image and a series of files

containing the Clang AST. The AST provides the kernel with

code information for each stage of the analysis. When the ker-

nel boots, the entry extraction module hooks multiple probes

dynamically before and after specific kernel functions. KSG

then scans various device files and network protocols, thus

triggering the execution of hooked kernel functions, which can

be captured by the probes. Consequently, the probes can detect

and extract the submodules’ entries. Based on the AST and

entries, KSG analyzes the range constraints and input types in

Clang

Compiler

Entry

Extraction

Kernel 

Source 

Kernel 

Image

Spec

Generation

Kernel

AST

Submodule

Entries
Specifications

Type

Collection

Constraint

Collection

Variable

Types

Range

Constraints

用

Figure 4: Workflow of KSG. The kernel code is compiled to

a bootable image and files containing the clang AST. Sub-

modules’ entries can be detected and extracted by the entry

extraction module. Based on the AST and entries, KSG col-

lects the range constraints and input types in each execution

path of each entry with path-sensitive analysis. Finally, KSG

generates specifications based on the collected information.

each execution path of each entry with path-sensitive analysis.

Finally, based on the collected information, KSG generates

specifications in domain language Syzlang for fuzzers, where

the syntax mapping and semantics encoding are performed.

The specifications can be generated with the aforementioned

process, and the effectiveness of fuzzers can be improved with

the generated specifications.

4.1 Entry Extraction

As mentioned above, we need to analyze the submodules’ en-

tries for specification generation. However, the entries can be

registered in many scenarios, causing difficulties in locating

them. To address this, KSG utilizes a probe-based tracing

to extract the entries. Although entries of different submod-

ules can be registered with unpredictable manners, they are

eventually stored into the specific data structures’ fields in

the kernel. For instance, entry file_operations is stored

into the f_ops field of struct file, which is maintained by

virtual file system (VFS). In another instance, different pro-

tocols of the net subsystem store entry proto_ops into field

ops of struct socket. Therefore, instead of analyzing the

entries’ registration points, KSG extracts entries by capturing

data structures containing the respective submodules’ entries,

which we refer to as target structures.

Figure 5 shows the workflow of entry extraction. When the

kernel boots, KSG hooks multiple probes before and after spe-

cific kernel functions utilizing Linux eBPF and kprobe ( 1 ).

eBPF and kprobe enable KSG to hook our custom functions

into any kernel function. We refer to these extended functions

as probes and to hooked kernel functions as target functions.

The target functions we choose are a mandatory part to access

the submodules and are responsible for constructing target

structures, thus they enable the probes to capture the execution

of them and access target structures. Then, KSG scans the ker-

nel resources corresponding to submodules from userspace.

USENIX Association 2022 USENIX Annual Technical Conference    355



Register

Probes

System

call

Dump

Entries

Runtime Probes

do_filp_open()

… …

struct 

proto_ops

Hooked functions Operation struct

Extracted Entries

Scan Devices

Scan Protos

…

User Space Kernel Space

1

2

3

5

4

8

6

7
9

10

struct 

file_operations

__sock_create()

Figure 5: Workflow of entry extraction. KSG hooks probes

before and after the target kernel functions. Then, it scans

resources and traps into kernel space. The target functions are

executed, and the whole process is captured by the probes,

which extract submodules’ entries and save their addresses.

Finally, KSG symbolizes addresses of the entries in userspace.

For instance, KSG opens device files and specific network

protocols via system calls open and socket to access VFS

and net submodules ( 2 & 3 ). After trapping into kernel

space, these system calls invoke the target functions, which

construct the target structures ( 4 ). Then the whole process

is captured by the probes, which extract the submodules’ en-

tries via accessing certain field of the target structures ( 5 &

6 ). The entries are then stored into data structures provided

by eBPF so that the extracted entries can be accessed from

userspace ( 7 & 8 ). Finally, KSG reads the entries via bpf

system call, and symbolize entries to the corresponding ker-

nel symbols with Linux /proc/kallsyms. The above process

enables KSG to extract submodules’ entries accurately.

Take device drivers for instance, the probes will be hooked

after the execution of kernel function do_filp_open, which

is called by system call open and is responsible for opening

files used by VFS. Then, KSG accesses files in specific direc-

tories of the system recursively, e.g., /dev and /proc. After

capturing the execution of do_filp_open, the probe first fil-

ters the threads, thus ensuring that only KSG’s execution is

captured. The probe accesses the kernel data struct file,

which represents the state of an opened file, and reads the

field f_ops of it. Field f_ops is filer_operations type

and contains the submodule’s entries. KSG saves f_ops into

eBPF maps so that entries can be read and symbolized in

userspace. Since Linux treats almost everything as a file and

most submodules are accessible from VFS, the above proce-

dure can extract most submodules’ entries. For sockets, KSG

scans all the protocols supported by the kernel and captures

the kernel function __sock_create, which is called by sys-

tem call socket. KSG extracts the entry proto_ops of each

protocol by accessing the field ops in the struct socket.

4.2 Types and Constraints Collection

With submodules’ entries being extracted, KSG needs to col-

lect input information from them for specification generation.

However, the parameters’ types of each entry can vary across

execution paths. To identify parameters’ types of each exe-

cution path, KSG needs to check if a parameter, originally

declared in scalar type, is cast to pointer, and collect the most

precise type of each pointer. Overall, KSG utilizes the sym-

bolic execution of Clang Static Analyzer (CSA) to perform

intra-procedural, path-sensitive analysis on submodules’ en-

tries. During symbolic execution, KSG checks all expressions

that can determine the parameters’ types of each execution

path and associate the most precise type with each parameter

using the comparison rules in Table 1. When the symbolic

execution of a path is finished, all the needed type information

is collected and the range constraints are recorded in the CSA.

To correctly identify parameters’ types, KSG first needs

to handle the alias between variables. CSA associates vari-

ables with unique symbolic values and allocates a memory

region for each variable based on its memory model [39].

Aliasing issue can be handled with this mechanism because

CSA guarantees that variables that are aliased with each other

either have the same symbol or point to the same memory

region during symbolic execution. Specifically, if the sym-

bolic value of a variable is sym0, then the symbolic value of

variables that are assigned with the former will also be sym0.

Variables with pointer type that have the same address during

concrete execution always point to the same memory region

during symbolic execution. CSA itself associates the gath-

ered range constraints to symbolic value instead of particular

variables. Since symbolic value is associated with variables

and is updated accordingly during symbolic execution, range

constraints can be collected and propagated by CSA.

Based on the mechanism mentioned above, we associate

the type information with symbols and memory regions to

collect and propagate them properly. Specifically, for vari-

ables that are originally declared in scalar type but are cast

to pointers, KSG maps the symbolic value of these variables

to the memory regions of pointers in SymRegionMap (Line 1)

as shown in Algorithm 1. For pointers, KSG associates the

most precise type that is known with the best effort in specific

program point with their memory regions, which is stored in

RegionTypeMap (Line 2). A special map RegionMap (Line 3)

is used to record the connections between regions in a pointer

to pointer cast. RegionMap is needed because CSA creates

new element region for this kind of cast, while these regions

represent the same variable semantically. The above three

global maps can be used to record and propagate the collected

type information during symbolic execution.

KSG collects input types in each execution path during

CSA’s symbolic execution procedure. Specifically, whenever

CSA executes the type cast expression, including explicit C-

style casts and implicit casts, and kernel functions with copy

356    2022 USENIX Annual Technical Conference USENIX Association



Algorithm 1: Collecting Types

1 SymRegionMap := /0

2 RegionTypeMap := /0

3 RegionMap := /0

4 for CastExpr ∈ Entry do

5 S := SourceSym(CastExpr)
6 T := TargetSym(CastExpr)
7 if IsIntegerToPtr(CastExpr) then

8 R := Region(T )
9 SymRegionMap[S] := R

10 continue

11 if !IsPtrToPtr(CastExpr) then

12 continue

13 R0 := Region(S)
14 R1 := Region(T )
15 Record(R0,R1,RegionMap)
16 STy := KnownType(R0,RegionTypeMap)
17 T Ty := KnownType(R1,RegionTypeMap)
18 if IsMorePrecise(STy,T Ty) then

19 updateRegionType(R1,STy)

20 else

21 updateRegionType(R0,T Ty)

semantics, such as copy_from_user, KSG obtains the type

information from the expressions and updates the global maps

mentioned above based on the comparison rules shown in Ta-

ble 1. As shown in Algorithm 1, KSG records the mapping

between the symbolic value of the scalar and the memory re-

gion of the pointer, which handles the integer to pointer casts

(Lines 8 to 10). The recorded mapping can be used to retrieve

the region of a pointer that is declared in scalar type. For a

pointer to pointer cast, the algorithm first gets the respective

regions of the source pointer and the target pointer (Lines 13

to 14), and records the connection between these regions into

RegionMap (Line 15). Then it identifies the current known

type of regions with RegionTypeMap, and the declared type

of region is used if it has not been recorded (Lines 16 to 17).

Based on the rules in Table 1, the algorithm updates the re-

gions with the more precise type (Lines 18 to 21). For kernel

functions with copy semantics, KSG utilizes a similar ap-

proach. Take copy_from_user as an example, KSG gets the

current known type of the source pointer and the target pointer,

and performs the type comparison first. Then, it checks if the

last parameter is an unary expression sizeof, if so, KSG

performs an additional comparison with the corresponding

type. KSG updates the RegionTypeMap with the most precise

type. Furthermore, KSG records the data flow direction of

pointers based on the analyzed kernel functions. For example,

copy_from_user infers the In direction and KSG associates

this information with the corresponding memory region.

To associate the memory region with the most precise type

in each execution path, KSG utilizes type comparisons. As

shown in Table 1, the algorithm divides the types into four

categories. First, void or void* is less precise than all other

types because they do not encode any structural information.

Scalar type that has longer bit width is more precise than

another scalar type. Both scalar and compound type are less

precise than pointer type, because it’s a common use case in

kernel to store the pointer value to scalar or pointer-sized com-

pound type. For pointer types, the algorithm applies the above

rules to the underlying type recursively. With the procedure

above, KSG can identity the concrete type of each parameter

and field of compound type.

Table 1: Rules for comparison between source type and target

type. ‘>’ represents that the source type is more precise than

the target type, ‘<’ is the opposite. Size means that the result

depends on the size of comparison types. Underlying means

comparing the underlying type recursively.

Void Scalar Compound Ptr

Void = < < <

Scalar > Size < <

Compound > > Size <

Ptr > > > Underlying

Figure 6 shows a running example of do_tcp_setsockopt

with Algorithm 1. First, CSA marks the input parame-

ter optname and optval as symbol sym0 and sym1, re-

spectively. After the first case condition, it collects range

constraint of sym0, indicating that optname equals to

TCP_REPAIR_OPTIONS on the current execution path. Al-

gorithm 1 is invoked when CSA enters the kernel func-

tion copy_from_sockptr since it calls copy_from_user

eventually. Symbolic value sym1 is associated with mem-

ory region region0, which is recorded in SymRegionMap,

because optval (integer type) is cast to a pointer. The map-

ping from region0 to struct tcp_repair_opt is also

recorded in RegionTypeMap. Finally, CSA captures another

range constraint of opt’s field opt_code. In this way, KSG

knows the concrete type of sym1 based on the information in

SymRegionMap and RegionTypeMap. This example demon-

strates that the types and range constraints can be collected

properly and the second challenge can be addressed by com-

bining CSA and type collection.

4.3 Specification Generation

Leveraging the above approach, KSG can collect parameters’

types and range constraints in each execution path of submod-

ules’ entries. Based on the collected information, KSG gen-

erates specifications in domain language Syzlang for kernel

fuzzers. The generation procedure needs to accomplish two

USENIX Association 2022 USENIX Annual Technical Conference    357



do_tcp_setsockopt(optname, 

optval, …)

case: TCP_REPAIR_OPTIONS

copy_from_sockptr(opt, optval, …)

opt.opt_code == 

TCP_REPAIR_OPTIONS

Symbols: 

optname: sym0

optval: sym1

Constraints:

sym0 == TCP_REPAIR_OPTIONS

SymRegionMap:

sym1 => region0

RegionTypeMap:

region0 => struct tcp_repair_opt

Symbols: 

opt.opt_code: sym2

Constraints:

sym0 == TCP_REPAIR_OPTIONS

sym2 == TCP_REPAIR_OPTIONS

Execution Path Types and Constraints

Figure 6: Running example for Algorithm 1. CSA first marks

optname and optval as symbolic value sym0 and sym1. Then

it captures range constraint on symbolic value sym0. Algo-

rithm 1 maps sym1 to memory region region0 since optval

is cast to pointer type. Finally, CSA further captures an-

other range constraint of sym2, symbolic value of opt’s field

opt_code.

major goals: syntax mapping and semantic encoding. The for-

mer performs the mapping from C language AST to Syzlang

AST and the latter encodes the collected range constraints

into the generated specifications.

KSG divides the generation process into two steps. The first

step generates the definitions of Syzlang resource type corre-

sponding to the submodule, and the system calls that are re-

sponsible for creating the former. As mentioned in Section 4.1,

KSG scans device files and protocols to extract submodules’

entries. Meanwhile, the needed information for accessing the

submodule is recorded. For instance, the file paths are saved

for device drivers and the domain, type and proto are saved

for specific sockets. Based on this information, KSG defines

resource type for each submodule, and the name of the defined

resource type follows specific rules. For example, resource

types for device and socket are prefixed with fd and sock, re-

spectively. For TCP submodule shown in Figure 1, sock_tcp

is defined in this step. Then, KSG generates the correspond-

ing system calls that create the resource type. For example,

KSG generates the system call open for device drivers, and

the input path of open is qualified to the file path of the device.

The specialized version of system call socket is generated

for each protocol, e.g., socket$TCP shown in Figure 1.

The second step generates the specialized calls for the re-

maining entries of a submodule. Specifically, KSG generates

a specialized call for each execution path of each entry. The

duplicated calls are filtered, and the parameters’ types of each

generated specialized call are qualified to the corresponding

type in the execution path. Specifically, for a variable de-

clared in scalar type, KSG first checks if it is a pointer via

querying SymRegionMap and maps it to Syzlang pointer if so;

otherwise, KSG obtains its bit size according to the AST in-

formation and maps it to the corresponding numeric type with

same bit size in Syzlang. Meanwhile, KSG checks whether

the symbol of the scalar has range constraints by querying

the program state of CSA. The corresponding constraint is

represented as Syzlang’s const type or ranged integer type.

For array type, KSG first maps its element type to Syzlang

type recursively, then queries CSA whether its length has

range constraints. KSG constructs the corresponding Syzlang

array type based on the mapped element type and length infor-

mation. For pointer type, KSG first gets the memory region

of the pointer from CSA, and queries the concrete type as-

sociated with the region from RegionTypeMap. KSG then

maps the type of pointee recursively, and queries data flow

direction associated with the memory region. KSG constructs

the Syzlang pointer type with the mapped pointee’s type and

collected data flow direction. Finally, KSG maps each field of

compound type to Syzlang type and generates the correspond-

ing compound type in Syzlang. Based on the above mapping

rules, KSG can generate specifications for submodules’ en-

tries based on the collected types and range constraints.

Take Figure 1 as an example, KSG generates three special-

ized system calls for each path of do_tcp_setsockopt. The

type of optname is mapped to const type in Syzlang based

on range constraints of each path. In the meantime, the type of

optval is mapped to array, int32, and struct, respectively.

Listing 1 in the Appendix shows part of generated specifica-

tions for driver /dev/pts, which manual specifications do

not cover. Listing 2 shows part of generated specifications for

the socket X25.

5 Implementation

Entry extraction. We implement eBPF programs based on

BCC [10] and hook them as kprobe into target kernel func-

tions. Two probes are used to capture the entries of device

drivers’ and protocols’ operations, respectively. We currently

utilize a userspace program to trigger the extraction process.

The program first attaches the probes to the kernel. It then

scans kernel-provided resources, such as opening files in /dev,

mounting all the supported file systems, opening files in dif-

ferent file systems, and creating all the supported sockets of

the kernel. These operations allow us to extract the imple-

mentation of the corresponding file operations and socket

operations for different submodules.

Types and Constraints. We implement the types and con-

straints collection based on Clang13. Algorithm 1 is imple-

mented as multiple CSA checkers that are hooked after each

time CSA simulates execution of cast expression and be-

fore the execution of functions with copy semantics, e.g.,

copy_from_user. These checkers read the symbol values

and memory regions of the expressions in the hooked opera-

358    2022 USENIX Annual Technical Conference USENIX Association



tions from current program state, and update the type informa-

tion stored in the global maps based on the type comparison

rules in Table 1. For better intra-procedure analysis, we utilize

the cross translation unit (CTU) analysis of CSA based on

pre-dumped AST and compilation database. We customized

the analysis configuration, e.g., increasing the max number of

imported translation units, limiting the loop time since it does

not provide new information for specification generation but

reduces efficiency. Besides, we also modeled a larger number

of kernel library APIs via implementing CSA checkers for

better symbolic execution, including kmalloc, string manip-

ulation functions, etc. These checkers observe the symbolic

execution of the kernel and actively participate in modeling

the program behavior via modifying the region bindings and

range constraints stored in the program state.

Specification Generation. The generation procedure is

implemented as plugins too that are hooked into CSA at the

end of each execution path’s simulation. We first implement

AST to fully support Syzlang language. Based on the type in-

formation stored in the global maps and the range constraints

of each symbol in the CSA, the translation of KSG maps the

C language AST to Syzlang AST. In order to generate the

specifications, the mapped AST is serialized into text format

that conforms to the syntax rules of Syzlang, thus allowing

kernel fuzzers to use the generated specifications and speed

up the entire fuzzing campaign.

6 Evaluation

In this section, we evaluate the effectiveness of KSG on re-

cent versions of Linux and fuzzers. Specifically, we chose

Linux-5.15, 5.10, and 5.4 as our target versions. Linux 5.15

is the latest version prior to submission, whereas 5.10 and 5.4

are widely used by many distributions. To evaluate the effec-

tiveness of the generated specifications in improving fuzzers’

performance, we took the generated specifications as input

to Syzkaller and Moonshine, and compared the code cover-

age and bug finding capabilities to their original version. We

chose Syzkaller because it is the state-of-the-art kernel fuzzer.

Moonshine improves Syzkaller’s fuzzing efficiency by distill-

ing high-quality seeds for it and is a representative fuzzer. We

design experiments to address the following questions:

• RQ1: How does KSG perform in generating system call

specifications in terms of efficiency and quality?

• RQ2: How effective are the generated specifications in

improving the coverage of kernel fuzzers?

• RQ3: How effective are the generated specifications in

assisting kernel fuzzers to find bugs?

Experiment Settings The experiments were conducted on

a Linux server with a 16-core Intel i7-10700K CPU and

32 GiB of memory. Each version of the kernel uses the

same compilation configuration. Specifically, CONFIG_BPF

and CONFIG_KPROBE were enabled for entry extraction. We

also enabled CONFIG_KCOV to collect code coverage. We ex-

tended fuzzers with the generated specifications, and we refer

to those extended fuzzers as Syzkaller+ and Moonshine+,

respectively. All 4 fuzzers were configured with the same pa-

rameters in terms of QEMU configurations and base system

call specifications. Specifically, we started all experiments

simultaneously and distributed the resources evenly, includ-

ing 2 cores and 4 GiB of memory for each virtual machine.

All 4 fuzzers adopted the same base version of the Syzlang

specifications. To reduce statistical errors, each experiment

was repeated 3 times and executed over a period of 72 hours,

and the average results were reported.

6.1 Specification Generation

We executed KSG on three versions of the Linux kernel and

the whole process of specification generation is automatic. Ta-

ble 2 shows the results of this process. During entry extraction,

KSG scanned 1098 unique device files and 78 different sock-

ets in total, and extracted 572 and 222 entries, respectively.

Note that the number of entries is not equal to the number of

scanned files and sockets multiplied by the number of func-

tion pointers defined in file_operations and proto_ops.

This is because: first, the registered operations of different

files and sockets can be the same; second, each submodule

does not need to implement all the operations; finally, KSG

de-duplicates the extracted entries and verifies the extracted

addresses. Besides, we manually verified the correctness of

extracted entries by reading the source code corresponding

to the submodule. The result shows that KSG can correctly

extract the entries of all files and sockets that are accessible

from userspace. Furthermore, since KSG performs entry ex-

traction dynamically based on eBPF after kernel booted and

all submodules loaded, the correctness of the extracted entries

can also be guaranteed.

Table 2: KSG extracted 792 entries by scanning 78 sockets

and 1098 device files. After path-sensitive analysis in 5h,

KSG generated specifications containing 2433 specialized

calls, and 1460 of them are new to existing specifications.

Scanned Entries Specs New Specs

Socket 78 222 923 +586
Driver 1098 572 1510 +874
Overall 1176 794 2433 +1460

By performing path-sensitive analysis on submodules’ en-

tries, KSG generates 8 specialized calls per minute, with a to-

tal of 2433 specialized calls generated in 5 hours. Of this total,

1510 specialized calls are generated from device drivers while

923 specialized calls corresponded to sockets. Specifically, for

USENIX Association 2022 USENIX Annual Technical Conference    359



64% of the extracted entries, the number of generated special-

ized calls is less than 2. This is because the input types remain

consistent across the execution paths. For instance, KSG gen-

erates one specialized call for system call bind of each type

of socket. The input address is qualified to the type defined

by the corresponding socket type, while the type of such pa-

rameter in C prototype does not constrain the input structure.

Although the number of specialized calls for this 64% of the

entries is limited, encoding specifications for them requires

extensive domain knowledge, whereas KSG can automate

this process leveraging the source code analysis. For 36%

of the extracted entries, the number of generated specialized

calls is more than 2 because the input types of these entries

can vary in different execution paths. The average number

of specialized calls for these entries is 4, and KSG generates

up to 29 specialized calls for system call getsockopt of X25

socket. For those 36% of the entries, the manual efforts of

writing specifications would be vast, while the automation of

KSG can significantly reduce the time cost of this process.

Compared with the existing specifications that contains

1204 specialized calls for the drivers and sockets scanned by

KSG, 1460 generated calls are new, of which 586 and 874 are

generated from the analyzed sockets and drivers, respectively.

In order to further verify the correctness of the generated

specifications, we manually checked if the range constants

match the collected parameter types by reading the source

code of submodules. The final result shows that KSG can

correctly extract the input types and the corresponding range

constraints in each execution path of submodules’ entries.

6.2 Coverage Improvement

To answer RQ2, we took 1460 new specialized calls as input

to Syzkaller and Moonshine, while monitoring the fuzzing

process and sampling each fuzzer’s statistics in the 72-hour

run. Figure 7 shows the comparison of branch coverage be-

tween fuzzers and Table 3 lists detailed statistics. The base

specifications used by Syzkaller and Moonshine contain 4144

specialized calls in total, including specifications encoded for

submodules that have not been handled by KSG. With 1460

new specialized calls, Syzkaller+ and Moonshine+ achieved

22% and 23% coverage improvement, respectively.

As shown in Figure 7, both Syzkaller+ and Moonshine+

can achieve higher coverage statistics than their original ver-

sion in the same amount of time. Specifically, all tools show

significant growth in the first 8 hours, where the advantage of

the generated specifications is not obvious. After fuzzing for 8

hours, the coverage growth of Syzkaller and Moonshine starts

to slow down, whereas that of Syzkaller+ and Moonshine+

is significantly faster than the former. This is because KSG

does not improve kernel fuzzers’ throughput or efficiency,

but rather enables fuzzers to reach more modules and code

with additional generated specifications. Therefore, all fuzzers

perform at similar rates before 8 hours since they have yet

0 8 16 24 32 40 48 56 64 72

0.5

1

1.5

2

2.5

3
·105

Time [h]

N
u

m
b

er
o

f
B

ra
n

ch
es

C
o
v
er

ed

Linux v5.15

Syzkaller+

Syzkaller

0 8 16 24 32 40 48 56 64 72

0.5

1

1.5

2

2.5

3
·105

Time [h]

N
u

m
b

e
r

o
f

B
ra

n
c
h

e
s

C
o
v
e
re

d

Linux v5.15

Moonshine+

Moonshine

0 8 16 24 32 40 48 56 64 72

0.5

1

1.5

2

2.5

3
·105

Time [h]

N
u

m
b

er
o

f
B

ra
n

ch
es

C
o
v
er

ed

Linux v5.10

Syzkaller+

Syzkaller

0 8 16 24 32 40 48 56 64 72

0.5

1

1.5

2

2.5

3
·105

Time [h]

N
u

m
b

e
r

o
f

B
ra

n
c
h

e
s

C
o
v
e
re

d

Linux v5.10

Moonshine+

Moonshine

0 8 16 24 32 40 48 56 64 72

0.5

1

1.5

2

2.5

3
·105

Time [h]

N
u

m
b

er
o

f
B

ra
n

ch
es

C
o
v
er

ed

Linux v5.4

Syzkaller+

Syzkaller

0 8 16 24 32 40 48 56 64 72

0.5

1

1.5

2

2.5

3
·105

Time [h]

N
u

m
b

e
r

o
f

B
ra

n
c
h

e
s

C
o
v
e
re

d

Linux v5.4

Moonshine+

Moonshine

Figure 7: Coverage growth of Syzkaller and Moonshine with

generated system call specifications on three versions of Linux

kernel over 72 hours. In all kernel versions, Syzkaller+ and

Moonshine+ achieve the higher coverage statistics.

to cover the code reachable using manually-written specifi-

cations. They diverge after 8 hours as the manually-written

specifications cannot provide the kernel fuzzers with more

low hanging fruit, while the generated specifications allow

the fuzzers to continue finding more code in more modules.

In principle, fuzzers utilize the generated specifications to

generate test cases. In order to further demonstrate the reason

behind the improvement, we analyzed the output corpus of

all fuzzers and calculated the percentage of test cases that

contain the newly generated calls in the whole corpus. At the

end of 72-hour experiment, the average percentage of such

inputs in the corpus is 28%. Therefore, the reason behind the

coverage improvement is that the generated specifications pro-

vide new test portals for fuzzers. Syzkaller+ and Moonshine+

can synthesize test cases based on the new specifications

thus covering kernel code that used to be unreachable. Mean-

while, the improvement can demonstrate the quality of the

generated specifications, since specifications with low quality,

e.g., range constraints mismatch input types, can even hinder

fuzzers’ capabilities. The above results prove that the gener-

ated specifications can assist fuzzers in exploring more code

in the kernel.

360    2022 USENIX Annual Technical Conference USENIX Association



Table 3: Coverage statistics of fuzzers compare to their origi-

nal versions. Columns “min-impr” and “max-impr” present

the minimum / maximum improvement.

(a) Syzkaller+ vs. Syskaller

Version min-impr max-impr Average

5.15 +18% +24% +21%
5.10 +19% +25% +22%
5.4 +20% +28% +24%

Overall +19% +25% +22%

(b) Moonshine+ vs. Moonshine

Version min-impr max-impr Average

5.15 +19% +24% +22%
5.10 +20% +25% +23%
5.4 +20% +26% +24%

Overall +19% +25% +23%

6.3 Bug Finding and Case Studies

To answer RQ3, we tested the Linux kernel with Syzkaller+

and Moonshine+ for two weeks. As a result, we found 138

unique vulnerabilities in total and 26 were confirmed by main-

tainers as previously unknown bugs, of which 13 and 6 were

fixed and assigned with CVEs, respectively. Table 4 lists the

details of those vulnerabilities. Most of these vulnerabilities

are critical. For instance, KSG assisted fuzzers to discover

a vulnerability with a 7.0 CVSS score (CVE-2021-4028).

Although Syzkaller has been testing the Linux kernel contin-

uously with large amounts of computing resources, these 26

vulnerabilities have not been reported. The reason why KSG

assisted Syzkaller+ and Moonshine+ to discover 26 previously

unknown vulnerabilities is that the generated specifications

provide fuzzers with more information of system calls. Based

on this domain knowledge, Syzkaller+ and Moonshine+ can

generate test cases to test kernel code that used to be difficult

for fuzzers to reach. The above result shows that the speci-

fications automatically generated by KSG can improve the

fuzzers’ vulnerability detection capabilities.

Case Study: CVE-2021-4148 KSG assisted fuzzers to

discover a vulnerability in VFS. As shown in Figure 8,

block_invalidatepage() would throw BUG due to asser-

tion failure if stop is greater than PAGE_SIZE. However, the

input generated by the fuzzer is a huge page, and the length

is the size of the huge page due to the read-only FS THP sup-

port. This triggers kernel crash directly and Figure 8 shows

a fix for this. However, the root cause of this vulnerability is

complicated. Specifically, the kernel isn’t supposed to get a

writable file descriptor on a file that has huge pages added

to the page cache without the filesystem’s knowledge. VFS

should have truncated the page cache when it found THPs

in the cache. Except for the fix mentioned, this vulnerabil-

Table 4: KSG assisted fuzzers to discover 26 previously un-

known vulnerabilities. All of these vulnerabilities have been

confirmed by maintainers; 13 of these bugs have been fixed

by corresponding patches and another 6 have been assigned

with CVEs.

Operation Risk Status

sk_stream_kill_queues logic bug Fixed

__init_work use after free CVE-2021-4150

truncate_inode_page logic bug Fixed

__folio_mark_dirty logic bug Fixed

kvm_arch_vcpu_create logic bug CVE-2021-4032

cma_cancel_listens use after free Fixed

io_wq_submit_work logic bug CVE-2021-4023

btrfs_alloc_tree_block logic bug Fixed

__btrfs_tree_lock deadlock CVE-2021-4149

smp_call_function soft lockup Confirmed

block_invalidatepage dereference null CVE-2021-4148

rdma_listen use after free CVE-2021-4028

ext4_block_write_begin logic bug Confirmed

io_ring_exit_work task hung Fixed

skb_try_coalesce task hung Confirmed

btrfs_search_slot deadlock Fixed

__set_page_dirty logic bug Confirmed

__kernel_read logic bug Fixed

xlog_cil_commit dereference null Fixed

hub_port_init task hung Confirmed

hci_cmd_timeout logic bug Confirmed

cgroup_rstat_flush_locked data race Fixed

btrfs_free_tree_block logic bug Confirmed

io_uring_cancel_generic task hung Fixed

hci_uart_tx_wakeup logic bug Fixed

blk_mq_get_tag logic bug Fixed

ity was fixed properly with additional patches. Leveraging

the newly generated specifications, the fuzzer synthesized the

corresponding test cases thus triggering the assertion failure.

7 Discussion and Limitations

During the experiments, we found a total of 231 specialized

calls from existing specifications that are encoded for the

submodules scanned by KSG, but are nonexistent in the gen-

erated specifications. We believe there are three major reasons

for this. First, KSG mainly considers range constraints while

handwritten specifications encode other parameters seman-

tics, e.g., defining parameters that are checksums of other

fields as instances of the csum type in Syzlang. Second, ker-

nel experts can redefine original input types from system call

definitions to other types with the same memory layout to

generate argument values more efficiently. For instance, some

submodules use the high 16 bits and low 16 bits of a u32 num-

ber for different purposes, and kernel experts redefine them as

two u16 types so that fuzzer can generate and mutate values

for them individually. For these two limitations, we can im-

prove KSG further by hooking more kernel functions during

USENIX Association 2022 USENIX Annual Technical Conference    361



diff --git a/fs/buffer.c b/fs/buffer.c
index ab7573d72dd7..4bcb54c4d1be 100644
--- a/fs/buffer.c
+++ b/fs/buffer.c
@@ -1507,7 +1507,7 @@ void block_invalidatepage(struct 
page *page, unsigned int offset,

/*
* Check for overflow
*/

- BUG_ON(stop > PAGE_SIZE || stop < length);
+       BUG_ON(stop > thp_size(page) || stop < length);

head = page_buffers(page);
bh = head;

@@ -1535,7 +1535,7 @@ void block_invalidatepage(struct 
page *page, unsigned int offset,

* The get_block cached value has been 
unconditionally invalidated,

* so real IO is not possible anymore.
*/

- if (length == PAGE_SIZE)
+       if (length >= PAGE_SIZE)

try_to_release_page(page, 0);
out:

return;

Figure 8: When the size of the stop is greater than

PAGE_SIZE, block_invalidatepage() would throw BUG.

Fuzzer triggered this crash by passing a huge page, where

the length is the size of huge page due to FS THP support.

This figure shows a direct fixing patch for CVE-2021-4148.

path-sensitive analysis to collect more parameters’ semantics

as well as redefining input types based parameters’ usage.

Finally, the kernel code contains low-level operations, e.g.,

inline assembly, which may not be well modeled by CSA,

thus leading to the range constraints and type information

being missed during the analysis procedure. To address this,

we can construct checkers to simulate common low-level op-

erations so that the related information can be collected and

propagated properly.

Currently, we mainly apply KSG to generate specifications

for drivers and sockets. Since many resources in Linux are rep-

resented as files in VFS , using file-operation-relevant system

calls allows us to extract entry information for many submod-

ules. Meanwhile, in principle, KSG is generalizable. For other

multiplexing system calls, we can adapt entry extraction to

the target through a slight analysis of the internal implementa-

tion to find the kernel functions that need to be injected; then,

we can apply the rest of KSG. For other system calls, we can

directly execute the collecting algorithm of KSG and generate

specifications based on gathered information since these steps

only depend on the source code information. Take system

call prctl() as an example, KSG can collect the argument

constraints directly from sys_prctl().

8 Conclusion

In this paper, we propose KSG to automatically generate

system call specifications for kernel fuzzers based on entry

extraction and types and constraints collection. The evalua-

tion shows that KSG generates 8 specialized calls per minute,

with a total of 2433 specialized calls generated in 5 hours.

Leveraging the generated specifications, Syzkaller and Moon-

shine’s coverage were improved 22% and 23%, respectively.

Furthermore, KSG assisted fuzzers to discover 26 previously

unknown bugs. The above result demonstrates that KSG is

effective in generating system call specifications, and the gen-

erated specifications can improve the fuzzers’ performance.

For future work, we will extend KSG to other system calls

or submodules to generate more specifications since some

submodules are not covered by KSG yet, and submodules

like drivers can change over time, which potentially involves

making modifications to entry extraction. More importantly,

we can augment KSG to infer semantic information of system

calls’ parameters, thus significantly improving the generated

specifications, which can be implemented with multiple CSA

checkers encoded carefully with domain knowledge.

Acknowledgments

We sincerely appreciate the guidance from our shepherd.

We would also like to thank the anonymous reviewers

for their valuable comments and input to improve our

paper. This research is sponsored in part by the NSFC

Program (No. 62022046, 92167101, U1911401, 62021002,

62192730), National Key Research and Development Project

(No. 2019YFB1706200, No2021QY0604).

References

[1] Domagoj Babić, Stefan Bucur, Yaohui Chen, Franjo

Ivančić, Tim King, Markus Kusano, Caroline Lemieux,

László Szekeres, and Wei Wang. FUDGE: Fuzz Driver

Generation at Scale. In Proceedings of the 2019 27th

ACM Joint Meeting on European Software Engineer-

ing Conference and Symposium on the Foundations of

Software Engineering, ESEC/FSE 2019, page 975–985,

New York, NY, USA, 2019. Association for Computing

Machinery.

[2] Daniel Borkmann. Linux eBPF. https://ebpf.io.

[3] Peng Chen and Hao Chen. Angora: Efficient Fuzzing

by Principled Search. In 2018 IEEE Symposium on

Security and Privacy (SP), pages 711–725, 2018.

[4] Weiteng Chen, Yu Wang, Zheng Zhang, and Zhiyun

Qian. SyzGen: Automated Generation of Syscall Speci-

fication of Closed-Source MacOS Drivers. In Proceed-

ings of the 2021 ACM SIGSAC Conference on Computer

and Communications Security, CCS ’21, page 749–763,

New York, NY, USA, 2021. Association for Computing

Machinery.

362    2022 USENIX Annual Technical Conference USENIX Association

https://ebpf.io


[5] Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang,

Mingzhe Wang, Chijin Zhou, Xun Jiao, and Zhuo Su.

EnFuzz: Ensemble Fuzzing with Seed Synchronization

among Diverse Fuzzers. In 28th USENIX Security Sym-

posium (USENIX Security 19), pages 1967–1983, Santa

Clara, CA, August 2019. USENIX Association.

[6] Jake Corina, Aravind Machiry, Christopher Salls, Yan

Shoshitaishvili, Shuang Hao, Christopher Kruegel, and

Giovanni Vigna. Difuze: Interface aware fuzzing for

kernel drivers. In Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security,

CCS ’17, page 2123–2138, New York, NY, USA, 2017.

Association for Computing Machinery.

[7] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin.

Grammar-Based Whitebox Fuzzing. In Proceedings of

the 29th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’08, page

206–215, New York, NY, USA, 2008. Association for

Computing Machinery.

[8] Google. Kernel address sanitizer. https:

//www.kernel.org/doc/html/latest/dev-tools/

kasan.html.

[9] Google. Kernel concurrency sanitizer. https:

//www.kernel.org/doc/html/latest/dev-tools/

kcsan.html.

[10] Brendan Gregg’. BPF Compiler Collection. https:

//www.iovisor.org/technology/bcc.

[11] HyungSeok Han and Sang Kil Cha. IMF: Inferred

Model-Based Fuzzer. In Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications

Security, CCS ’17, page 2345–2358, New York, NY,

USA, 2017. Association for Computing Machinery.

[12] Dae R. Jeong, Kyungtae Kim, Basavesh Shivakumar,

Byoungyoung Lee, and Insik Shin. Razzer: Finding

Kernel Race Bugs through Fuzzing. In IEEE Symposium

on Security and Privacy, pages 754–768. IEEE, 2019.

[13] Jim Keniston. Linux Kprobe. https://www.kernel.

org/doc/html/latest/trace/kprobes.html.

[14] Kyungtae Kim, Dae R. Jeong, Chung Hwan Kim,

Yeongjin Jang, Insik Shin, and Byoungyoung Lee. HFL:

Hybrid Fuzzing on the Linux Kernel. In NDSS, 2020.

[15] lcamtuf. American fuzzy lop, 2013. https://lcamtuf.

coredump.cx/afl/.

[16] Caroline Lemieux and Koushik Sen. Fairfuzz: A tar-

geted mutation strategy for increasing greybox fuzz test-

ing coverage. In Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software En-

gineering, ASE 2018, page 475–485, New York, NY,

USA, 2018. Association for Computing Machinery.

[17] J. Liang, M. Wang, C. Zhou, Z. Wu, Y. Jiang, J. Liu,

Z. Liu, and J. Sun. PATA: Fuzzing with Path Aware Taint

Analysis. In 2022 2022 IEEE Symposium on Security

and Privacy (SP) (SP), pages 154–170, Los Alamitos,

CA, USA, may 2022. IEEE Computer Society.

[18] Jie Liang, Yu Jiang, Yuanliang Chen, Mingzhe Wang,

Chijin Zhou, and Jiaguang Sun. PAFL: Extend Fuzzing

Optimizations of Single Mode to Industrial Parallel

Mode. In Proceedings of the 2018 26th ACM Joint

Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engi-

neering, ESEC/FSE 2018, page 809–814, New York,

NY, USA, 2018. Association for Computing Machinery.

[19] Jie Liang, Mingzhe Wang, Yuanliang Chen, Yu Jiang,

and Renwei Zhang. Fuzz testing in practice: Obstacles

and solutions. In 2018 IEEE 25th International Confer-

ence on Software Analysis, Evolution and Reengineering

(SANER), pages 562–566, 2018.

[20] LLVM Developer Group. Clang Static Analyzer. https:

//clang-analyzer.llvm.org/.

[21] Dominik Maier, Benedikt Radtke, and Bastian Har-

ren. Unicorefuzz: On the Viability of Emulation

for Kernelspace Fuzzing. In Proceedings of the

13th USENIX Conference on Offensive Technologies,

WOOT’19, page 8, USA, 2019. USENIX Association.

[22] Andy Nguyen. CVE-2020-12352, 2020. https://nvd.

nist.gov/vuln/detail/CVE-2020-12352.

[23] Shankara Pailoor, Andrew Aday, and Suman Jana.

MoonShine: Optimizing OS Fuzzer Seed Selection with

Trace Distillation. In 27th USENIX Security Symposium

(USENIX Security 18), pages 729–743, Baltimore, MD,

August 2018. USENIX Association.

[24] Manfred Paul. CVE-2021-3490, 2021. https://nvd.

nist.gov/vuln/detail/CVE-2021-3490.

[25] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos,

Jonathan Foote, David Warren, Gustavo Grieco, and

David Brumley. Optimizing Seed Selection for Fuzzing.

In 23rd USENIX Security Symposium (USENIX Secu-

rity 14), pages 861–875, San Diego, CA, August 2014.

USENIX Association.

[26] Sergej Schumilo, Cornelius Aschermann, Robert Gaw-

lik, Sebastian Schinzel, and Thorsten Holz. kAFL:

Hardware-Assisted Feedback Fuzzing for OS Kernels.

In 26th USENIX Security Symposium (USENIX Secu-

rity 17), pages 167–182, Vancouver, BC, August 2017.

USENIX Association.

USENIX Association 2022 USENIX Annual Technical Conference    363

https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kasan.html
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://www.kernel.org/doc/html/latest/dev-tools/kcsan.html
https://www.iovisor.org/technology/bcc
https://www.iovisor.org/technology/bcc
https://www.kernel.org/doc/html/latest/trace/kprobes.html
https://www.kernel.org/doc/html/latest/trace/kprobes.html
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://clang-analyzer.llvm.org/
https://clang-analyzer.llvm.org/
https://nvd.nist.gov/vuln/detail/CVE-2020-12352
https://nvd.nist.gov/vuln/detail/CVE-2020-12352
https://nvd.nist.gov/vuln/detail/CVE-2021-3490
https://nvd.nist.gov/vuln/detail/CVE-2021-3490


[27] Konstantin Serebryany, Derek Bruening, Alexander

Potapenko, and Dmitry Vyukov. AddressSanitizer: A

Fast Address Sanity Checker. In Proceedings of the

2012 USENIX Conference on Annual Technical Confer-

ence, USENIX ATC’12, page 28, USA, 2012. USENIX

Association.

[28] Konstantin Serebryany and Timur Iskhodzhanov.

Threadsanitizer: Data race detection in practice. In

Proceedings of the Workshop on Binary Instrumentation

and Applications, WBIA ’09, page 62–71, New York,

NY, USA, 2009. Association for Computing Machinery.

[29] Yuheng Shen, Hao Sun, Yu Jiang, Heyuan Shi, Yixiao

Yang, and Wanli Chang. Rtkaller: State-Aware Task

Generation for RTOS Fuzzing. ACM Trans. Embed.

Comput. Syst., 20(5s), sep 2021.

[30] Hao Sun, Yuheng Shen, Cong Wang, Jianzhong Liu,

Yu Jiang, Ting Chen, and Aiguo Cui. HEALER: Rela-

tion Learning Guided Kernel Fuzzing, page 344–358.

Association for Computing Machinery, New York, NY,

USA, 2021.

[31] Dmitry Vyukov and Andrey Konovalov. Syzbot, 2015.

https://syzkaller.appspot.com/upstream.

[32] Dmitry Vyukov and Andrey Konovalov. Syzbot Dash-

board, 2015. https://storage.googleapis.com/

syzkaller/cover/ci-qemu-upstream.html.

[33] Dmitry Vyukov and Andrey Konovalov. Syzkaller:

an unsupervised coverage-guided kernel fuzzer, 2015.

https://github.com/google/syzkaller.

[34] Dmitry Vyukov and Andrey Konovalov. Sy-

zlang: System Call Description Language, 2015.

https://github.com/google/syzkaller/blob/

master/docs/syscall_descriptions_syntax.md.

[35] Daimeng Wang, Zheng Zhang, Hang Zhang, Zhiyun

Qian, Srikanth V. Krishnamurthy, and Nael Abu-

Ghazaleh. SyzVegas: Beating Kernel Fuzzing Odds

with Reinforcement Learning. In 30th USENIX Security

Symposium (USENIX Security 21), pages 2741–2758.

USENIX Association, August 2021.

[36] Mingzhe Wang, Jie Liang, Yuanliang Chen, Yu Jiang,

Xun Jiao, Han Liu, Xibin Zhao, and Jiaguang Sun.

SAFL: Increasing and Accelerating Testing Coverage

with Symbolic Execution and Guided Fuzzing. In Pro-

ceedings of the 40th International Conference on Soft-

ware Engineering: Companion Proceeedings, ICSE ’18,

page 61–64, New York, NY, USA, 2018. Association

for Computing Machinery.

[37] Mingzhe Wang, Jie Liang, Chijin Zhou, Yu Jiang, Rui

Wang, Chengnian Sun, and Jiaguang Sun. RIFF:

Reduced Instruction Footprint for Coverage-Guided

Fuzzing. In 2021 USENIX Annual Technical Conference

(USENIX ATC 21), pages 147–159. USENIX Associa-

tion, July 2021.

[38] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Tae-

soo Kim. Krace: Data Race Fuzzing for Kernel File

Systems. In 2020 IEEE Symposium on Security and

Privacy (SP), pages 1643–1660, 2020.

[39] Zhongxing Xu, Ted Kremenek, and Jian Zhang. A mem-

ory model for static analysis of c programs. In Proceed-

ings of the 4th International Conference on Leveraging

Applications of Formal Methods, Verification, and Vali-

dation - Volume Part I, ISoLA’10, page 535–548, Berlin,

Heidelberg, 2010. Springer-Verlag.

[40] Mingrui Zhang, Jianzhong Liu, Fuchen Ma, Huafeng

Zhang, and Yu Jiang. Intelligen: automatic driver syn-

thesis for fuzz testing. In 2021 IEEE/ACM 43rd Interna-

tional Conference on Software Engineering: Software

Engineering in Practice (ICSE-SEIP), pages 318–327.

IEEE, 2021.

364    2022 USENIX Annual Technical Conference USENIX Association

https://syzkaller.appspot.com/upstream
https://storage.googleapis.com/syzkaller/cover/ci-qemu-upstream.html
https://storage.googleapis.com/syzkaller/cover/ci-qemu-upstream.html
https://github.com/google/syzkaller
https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md
https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md


9 APPENDIX

9.1 Generated Specifications

Listing 1 shows part of generated system call specifications

for /dev/pts. During entry extraction, KSG extracts struct

file_operation of device /dev/pts via accessing device

files under /dev/pts directory. KSG then performs path

sensitive analysis on each extracted entry to collect types

and range constraints. During the first step of generation,

KSG defines the resource type fd_dev_pts_0, where the

name of resource type is generated based the accessed file.

openat$dev_pts_0_0 is also generated during this step and

the target file path is qualified to /dev/pts/0. After the sec-

ond step of the generation, the rest of specialized calls and

related types were generated based on the collected types and

range constraints.

Listing 1: Generated specifications for /dev/pts driver

resource fd_dev_pts_0[fd]

openat$dev_pts_0_0(fd const[AT_FDCWD], file

ptr[in, string["/dev/pts/0"]], flags flags

[open_flags], mode flags[open_mode])

fd_dev_pts_0

...

ioctl$dev_pts_0_16(fd fd_dev_pts_0 , cmd const

[0x5413], arg ptr[in, winsize])

ioctl$dev_pts_0_11(fd fd_dev_pts_0 , cmd const

[0x80045440], arg ptr[in, int32])

ioctl$dev_pts_0_3(fd fd_dev_pts_0 , cmd const[0

x541f], arg ptr[in, serial_struct])

ioctl$dev_pts_0_5(fd fd_dev_pts_0 , cmd const[0

x545d], arg ptr[in, serial_icounter_struct

])

...

serial_icounter_struct {

cts int32

dsr int32

rng int32

dcd int32

rx int32

tx int32

frame int32

overrun int32

parity int32

brk int32

buf_overrun int32

reserved array[int32 , 9]

}

serial_struct {

...

closing_wait2 int16

iomem_base ptr[out, array[int8]]

...

}

winsize {

ws_row int16

ws_col int16

ws_xpixel int16

ws_ypixel int16

}

Listing 2 shows part of generated system call specifica-

tions for socket X25. During entry extraction, KSG extracts

struct proto_ops of X25 via invoking system call socket

with address family AF_X25. KSG then performs path sen-

sitive analysis on each extracted entry to collect types and

range constraints. During the first step of generation, KSG

defines the resource type sock_X25_SeqPacket, where the

name of resource type is generated based the address family

and socket type. socket$X25_SeqPacket is also generated

during this step and the parameters are qualified to corre-

sponding constant. After the second step of the generation,

the rest of specialized calls and related types were generated

based on the collected types and range constraints.

Listing 2: Generated specifications for X25 socket

resource sock_X25_SeqPacket[sock]

socket$X25_SeqPacket(domain const[0x9], type

const[0x5], proto const[0x0])

sock_X25_SeqPacket

bind$X25_SeqPacket_0(sock sock_X25_SeqPacket ,

addr ptr[in, sockaddr_x25], len bytesize[

addr])

...

setsockopt$X25_SeqPacket_0(sock

sock_X25_SeqPacket , level const[0x106],

opt_name const[0x1], buf ptr[in, int32],

len ptr[in, int32])

...

ioctl$X25_SeqPacket_6(fd sock_X25_SeqPacket ,

cmd const[0x89e5], arg ptr[in,

x25_calluserdata])

ioctl$X25_SeqPacket_4(fd sock_X25_SeqPacket ,

cmd const[0x89ec], arg ptr[in,

x25_causediag])

ioctl$X25_SeqPacket_9(fd sock_X25_SeqPacket ,

cmd const[0x89ea], arg ptr[in,

x25_dte_facilities])

ioctl$X25_SeqPacket_10(fd sock_X25_SeqPacket ,

cmd const[0x89e3], arg ptr[in,

x25_facilities])

...

sockaddr_x25{

sx25_family const[0x9, int16]

sx25_addr x25_address

}

x25_address{

x25_addr array[int8 , 16]

}

x25_calluserdata {

cudlength int32

cuddata array[int8 , 128]

}

x25_causediag {

cause int8

diagnostic int8

}

x25_dte_facilities {

...

}

x25_facilities {

...

}

USENIX Association 2022 USENIX Annual Technical Conference    365





DLOS: Effective Static Detection of Deadlocks in OS Kernels

Jia-Ju Bai
Tsinghua University

Tuo Li
Tsinghua University

Shi-Min Hu
Tsinghua University

Abstract
Deadlocks in OS kernels can cause critical problems like per-
formance degradation and system hangs. However, detecting
deadlocks in OS kernels is quite challenging, due to high
complexity of concurrent execution and large code bases of
OS kernels. In this paper, we design a practical static anal-
ysis approach named DLOS, to effectively detect deadlocks
in OS kernels. DLOS consists of three key techniques: (1)
a summary-based lock-usage analysis to efficiently extract
the code paths containing distinct locking constraints from
kernel code; (2) a reachability-based comparison method to
efficiently detect locking cycles from locking constraints; (3)
a two-dimensional filtering strategy to effectively drop false
positives by validating code-path feasibility and concurrency.
We have evaluated DLOS on Linux 5.10, and find 54 real
deadlocks, with a false positive rate of 17%. We have re-
ported these deadlocks to Linux kernel developers, and 31 of
them have been confirmed.

1 Introduction

Concurrent execution improves the performance of OS ker-
nels, but can inevitably introduce concurrency bugs. Some
studies [37, 38, 51] have shown that a large part of reported
OS bugs are related to kernel concurrency. Deadlock is a com-
mon kind of concurrency bugs, caused by a locking cycle in
different threads. For example, one thread acquires the locks
A and then B, while the other concurrent thread acquires the
locks B and then A, and thus a deadlock caused by the ABBA
locking cycle occurs. Deadlocks in OS kernels are dangerous,
because they can infinitely block the involved threads, causing
performance degradation and even system hangs.

To find deadlocks, many existing approaches [5, 9–11, 15,
21, 27, 28, 31, 33, 44, 45, 55] dynamically monitor thread ex-
ecution and lock-related operations to detect locking cycles.
These approaches have shown promising results in both user-
level applications and OS kernels. For example, Lockdep [33]
is a widely-used lock-usage validator integrated in the Linux

kernel. It detects deadlocks, double locks and other lock-
ing issues, by dynamically tracking the state of each lock
class and checking the dependencies between different lock
classes. However, dynamic analysis approaches require well-
constructed workloads or substantial test cases to cover the
code containing bugs, and thus their detection coverage is
often limited in runtime testing.

To improve detection coverage, some approaches [30, 41,
42, 46, 52] use static analysis to detect deadlocks in user-
level applications. However, these approaches are ineffective
in detecting deadlocks in OS kernels, for two main reasons.
First, these approaches requires a fixed entry point (such as
a main function) to start dataflow analysis; but an OS kernel
consists of many kernel modules, each of which has no such
a fixed entry point [4, 43]. Second, these approaches need
to identify concurrent code and perform concurrency alias
analysis according to thread-creation function calls (such as
the calls to pthread_create) and related arguments; but the
concurrency of OS kernel is often determined by the concur-
rent execution of specific interface functions in each kernel
module [2], not explicitly calling thread-creation functions.

To our knowledge, RacerX [19] is the sole existing static
analysis approach to systematically detect deadlocks in OS
kernels. It uses locking constraint to describe the locking situ-
ation when each lock is acquired, e.g., if a code path acquires
the locks A and then B, its locking constraint is A→B. Rac-
erX performs flow-sensitive and inter-procedural analysis to
identify the code paths containing locking constraints (such
code paths are referred to as target code paths subsequently)
from OS kernel code, and then recursively compares between
each two target code paths with their locking constraints to
detect locking cycles as deadlocks.

However, RacerX still has some limitations. First, though
using some heuristic techniques (like result ranking), RacerX
still has a high false positive rate of 46%, due to neglecting
the feasibility and concurrency of code paths. Second, RacerX
neglects alias relationships, causing both false positives and
negatives. Finally, RacerX simply compares between each two
target code paths with their locking constraints in a recursive

USENIX Association 2022 USENIX Annual Technical Conference    367



way to detect locking cycles. This method works well for old
OS kernels (like Linux 2.5.62 checked in its paper), but can be
inefficient for modern OS kernels (like Linux 5.10 checked in
our evaluation) that are much larger and more complex. Since
the RacerX paper published in 2003, no new static approach
has been proposed to systematically detect deadlocks in OS
kernels. Thus, it is important to design a new static approach
to perform effective deadlock detection in modern OS kernels.

In this paper, we design a practical static analysis approach
named DLOS, to effectively detect deadlocks in OS kernels.
DLOS consists of three key techniques:

(1) DLOS uses a summary-based lock-usage analysis to
efficiently extract the code paths containing distinct locking
constraints from kernel code. Our analysis uses function sum-
maries to avoid repeated code analysis in the same functions,
and it also drops the target code paths containing repeated
locking constraints. To improve accuracy, our analysis is flow-
sensitive and inter-procedural with the consideration of alias
relationships, and it also uses a light-weight method to vali-
date code-path feasibility with an SMT solver.

(2) DLOS uses a reachability-based comparison method to
efficiently detect locking cycles from locking constraints. We
observe that there are substantial target code paths containing
distinct locking constraints in modern OS kernels (like Linux
5.10). Thus, when detecting locking cycles, simply comparing
between each two target code paths with their locking con-
straints in a recursive way is quite time-consuming. To solve
this problem, for each target code path, our method maintains
a constraint reachability graph to store the locking constraints
that are reachable starting the comparison from this code path,
and the involved target code paths. By using constraint reach-
ability graphs, our method can reduce repeated comparison of
locking constraints, to improve the detection efficiency. If a
locking cycle is found, it is considered as a possible deadlock,
with the involved target code paths and locking constraints.

(3) DLOS uses a two-dimensional filtering strategy to ef-
fectively drop false positives, by validating the feasibilty and
concurrency of target code paths for each possible deadlock.
On the one hand, as using an SMT solver to completely vali-
date the feasibility of each code path is quite time-consuming,
our strategy validates code paths in a phased way. Specifically,
during locking-constraint extraction, as substantial code paths
are required to be validated, making the validation efficiency
more important, our strategy uses a simple and light-weight
path-condition checking method to drop obviously infeasi-
ble code paths containing locking constraints; and then after
locking-cycle detection, as the code paths of possible dead-
locks should occupy a very small proportion of all the code
paths, making the validation accuracy more important, our
strategy uses a complete and heavy-weight path-condition
checking method to drop false deadlocks. On the other hand,
for each possible deadlock, our strategy checks the concur-
rency of its code paths, by analyzing their call graphs and
looking for common locks acquired in these code paths.

Two-dimensional 
filtering strategy

Deadlock reports

S1: Locking-constraint 
extraction

OS kernel
source code

Summary-based 
lock-usage analysis

Reachability-based 
comparison method

Code paths containing 
locking constraints

Possible deadlocks  
due to locking cycles

S2: Locking-cycle 
detection

S3: False-positive 
filtering

Figure 1: DLOS workflow.

Overall, DLOS has three main stages shown in Figure 1.
In Stage 1, DLOS uses our summary-based lock-usage analy-
sis to extract the code paths containing distinct locking con-
straints. In Stage 2, according to the extracted code paths
and locking constraints, DLOS uses our reachability-based
comparison method to detect possible deadlocks. In Stage 3,
DLOS uses our two-dimensional filtering strategy to check
possible deadlocks and drop false positives. After these stages,
DLOS reports the final reports of the found deadlocks.

Compared to RacerX, DLOS has two main advantages.
First, DLOS can achieve better accuracy than RacerX, by val-
idating code-path feasibility with an SMT solver, considering
alias relationships and checking the concurrency of the in-
volved code paths for reported deadlocks. Second, DLOS can
spend less time than RacerX, by extracting and comparing
locking constraints more efficiently.

We have implemented DLOS with LLVM [32] and Z3 [54].
DLOS performs automated static analysis on the LLVM byte-
code of the checked OS kernel. Overall, we make three main
contributions in this paper:

• We analyze the challenges of static deadlock detection in
OS kernels, and propose three key challenges to address
these challenges: (1) a summary-based lock-usage analy-
sis to efficiently extract the code paths containing distinct
locking constraints from kernel code; (2) a reachability-
based comparison method to efficiently detect locking
cycles from locking constraints; (3) a two-dimensional
filtering strategy to effectively drop false positives by
validating code-path feasibility and concurrency.

• Based on these three key techniques, we design a practi-
cal static analysis approach named DLOS, to effectively
detect deadlocks in OS kernels.

• We evaluate DLOS on Linux 4.9 and 5.10, and find 46
and 65 deadlocks, respectively. We manually check these
deadlocks, and find that 39 and 54 deadlocks are real. 21
of the real deadlocks found in Linux 4.9 have been fixed
in Linux 5.10. We have reported the 54 real deadlocks
found in Linux 5.10 to Linux kernel developers, and 31
of them have been confirmed.

The rest of this paper is organized as follows. Section 2 in-
troduces the background and motivation. Section 3 introduces
the challenges of static deadlock detection in OS kernels and
our key techniques to address these challenges. Section 4
introduces DLOS. Section 5 shows our evaluation. Section 6

368    2022 USENIX Annual Technical Conference USENIX Association



makes a discussion about DLOS. Section 7 presents related
work, and Section 8 concludes this paper.

2 Background and Motivation

We first introduce deadlock and its detection, then explain the
concurrency model of OS kernels, and finally motivate our
work using a real deadlock in the Linux kernel.

2.1 Deadlock and Its Detection
To protect critical data from concurrent accesses, several kinds
of synchronization primitives are designed and used. Locks
are the most frequently-used synchronization primitives in
real-world programs, to guarantee atomicity and prevent data
races. However, if locks are incorrectly used, a deadlock can
occur when one thread holds a lock that other concurrent
threads want to acquire and vice versa.

Locking cycles in concurrent threads can cause deadlocks.
The most common case is the ABBA lock in two threads, as
shown in Figure 2(a). Namely, one thread acquires the locks A
and then B (A→B), while the other concurrent thread acquires
the locks B and then A (B→A), causing a locking cycle (A→B,
B→A). In three or more threads, deadlocks can also occur due
to such locking cycles, as shown in Figure 2(b).

spin_lock(A);
......
spin_lock(B);

spin_lock(B);
......
spin_lock(A);

Thread T1 Thread T2

spin_lock(A);
......
spin_lock(B);

spin_lock(B);
......
spin_lock(C);

Thread T1 Thread T2

spin_lock(C);
......
spin_lock(A);

Thread T3

Locking constraint: T1{A→B}, T2{B→A}
Locking cycle: A→B, B→A   Deadlock!

(a) Deadlock in two threads

Locking constraint: T1{A→B}, T2{B→C}, T3{C→A}
Locking cycle: A→B, B→C, C→A   Deadlock!

(b) Deadlock in three threads

Figure 2: Deadlock examples.

For dynamic analysis, deadlock detection has two basic
steps, namely extracting locking constraints in concurrent
threads and then comparing these locking constraints to de-
tect locking cycles. For static analysis, deadlock detection is
similar but more complex. On the one hand, without exact
runtime information about thread execution, static analysis
has to identify locking constraints from each code path and
validate the concurrency of code paths. On the other hand,
without exact values of accessed variables, static analysis has
to validate the feasibility of code paths using an SMT solver.

2.2 Concurrency Model of the OS Kernel
A modern OS kernel consists of many kernel modules, includ-
ing filesystems, network modules, device drivers, etc. Each
kernel module has some specific interface functions that are
called by upper-level programs, including other kernel mod-
ules via function-pointer calls and user-level applications via
system calls. Figure 3 shows some examples of interface
functions that are assigned to function-pointer fields. These
interface functions form the entry points of the kernel module,

FILE: linux-5.10/fs/gfs/file.c

1108. file_operations gfs2_file_fops = {
1109.     .llseek = gfs2_llseek,
1110.     .read_iter = generic_file_read_iter,
1111.     .write_iter = gfs2_file_write_iter,
1112.     .unlocked_ioctl = gfs2_ioctl,

  ......
1123. }

FILE: linux-5.10/drivers/net/wan/lmc_main.c

808. struct net_device_ops lmc_ops = {
809.     .ndo_open = lmc_open,
810. .ndo_stop = lmc_close,
811. .ndo_change_mtu = hdlc_change_mtu,
812. .ndo_start_xmit = hdlc_start_xmit,

  ......
816. }

Figure 3: Examples of interface functions in kernel modules.

and all other functions defined in the kernel module are called
by them [4,43]. Due to this execution model, the concurrency
of OS kernel is often determined by the concurrent execution
of specific interface functions in each kernel module [2]. In
fact, a kernel module can also explicitly call thread-creation
functions (such as kthread_create in the Linux kernel), but
such operations are not common in kernel module code.

Different from the OS kernel, each user-level application
has a fixed entry point (like a main function) and explic-
itly calls thread-creation functions (like pthread_create) to
start concurrent execution. Accordingly, to detect deadlocks
in user-level applications, existing static approaches [30, 41,
42, 46, 52] start dataflow analysis from this fixed entry point,
and identify concurrent code for concurrency alias analysis
according to thread-creation function calls and related argu-
ments. Due to the difference between the concurrency models
of OS kernels and user-level applications, these approaches
are ineffective in detecting deadlocks in OS kernels.

2.3 Motivating Example
Figure 4 presents a real and already fixed deadlock in the
btrfs filesystem, and this bug is found by our approach DLOS
in the evaluation of checking Linux 4.9. When the func-
tion btrfs_read_chunk_tree is executed on the code path
P1, it acquires the locks root->fs_info->chunk_mutex
and then orig->device_list_mutex; when the function
btrfs_remove_chunk is executed on the code path P2,
it acquires the locks fs_devices->device_list_mutex
and then root->fs_info->chunk_mutex. During filesys-
tem execution, the functions btrfs_read_chunk_tree and
btrfs_remove_chunk are able to be concurrently executed
at runtime, and the locks orig->device_list_mutex and
fs_devices->device_list_mutex can be identical, and
thus an ABBA deadlock can occur. This deadlock was in-
troduced by the commit 57ba4cb85bff [16] in Linux 4.7,
and it was found by Lockdep [33] and fixed by the commit
01d01caf19ff [17] in Linux 5.9, after over 4 years later. In
fact, Lockdep is integrated in the Linux kernel for dynamic
deadlock detection, but it took Lockdep such a long time to
find this deadlock, because the interleaving of the code paths
P1 and P2 are infrequent in real execution.

This example illustrates why deadlocks occur in OS ker-
nels. First, determining concurrent code paths and identi-
fying the same locks in these code paths require substan-
tial knowledge of OS kernels. In the example, without deep
understanding of filesystems and extensive testing, it may

USENIX Association 2022 USENIX Annual Technical Conference    369



Code Path P1:
// FILE: linux-4.9/fs/btrfs/volumes.c
btrfs_read_chunk_tree

 -> lock_chunks [Line 6803]
     -> mutex_lock(&root->fs_info->chunk_mutex) [Line 517]
 -> read_one_dev [Line 6833]

 -> open_seed_devices [Line 6601]
 -> clone_fs_devices [Line 6558]

 -> mutex_lock(&orig->device_list_mutex) [Line 734]

Code Path P2:
// FILE: linux-4.9/fs/btrfs/volumes.c
btrfs_remove_chunk

 -> mutex_lock(&fs_devices->device_list_mutex) [Line 2844]
 -> lock_chunks [Line 2857]

 -> mutex_lock(&root->fs_info->chunk_mutex) [Line 517]

A→B

B→A

Figure 4: A real deadlock in Linux 4.9 btrfs filesystem.

be difficult to know code paths P1 and P2 can be concur-
rently executed, and the locks orig->device_list_mutex
and fs_devices->device_list_mutex can be identical.
Second, incorrect fixing of known bugs can introduce new
and hard-to-find concurrency bugs. In the example, the com-
mit 57ba4cb85bff introducing the deadlock aimed to fix a
harmful data race in the functions btrfs_remove_chunk
and btrfs_dev_replace_finishing, but this commit in-
cautiously introduces a locking cycle in the functions
btrfs_remove_chunk and btrfs_read_chunk_tree. Fi-
nally, multiple functions (including concurrent functions and
the functions called by them) and variables in these functions
need to be considered.

By scanning the reported deadlocks in the Linux kernel, we
find that most of them are found in stress testing and kernel
fuzzing. But the detection coverage of runtime testing heavily
relies on the provided workloads, causing many real dead-
locks to be missed. Static analysis can conveniently achieve
high detection coverage without actual execution of the OS
kernel. However, as the sole existing static approach of sys-
tematically detecting deadlocks in OS kernels, RacerX [19]
still has many false positives, and its concurrency analysis can
be inefficient to modern OS kernels (like Linux 5.10 checked
in our evaluation) that are much larger and more complex
than old OS kernels (like Linux 2.5.62 checked in the RacerX
paper). Thus, it is important to design a new static approach to
perform effective deadlock detection in modern OS kernels.

3 Challenges and Key Techniques

To detect deadlocks, static analysis needs to first extract the
code paths containing distinct locking constraints (such code
paths are referred to as target code paths subsequently) from
kernel code, and then compare these code paths with their
locking constraints to detect locking cycles as deadlocks.
However, performing these steps for checking OS kernel code
has three main challenges:
C1: Extracting locking constraints. A modern OS kernel
is very large and complex, because it has many kernel mod-
ules and lots of functions with complicated call graphs. Thus,
extracting locking contraints in OS kernel code can be quite
time-consuming and inaccurate.

C2: Detecting locking cycles. Due to the large and complex
code base of the OS kernel, there are substantial target code
paths containing distinct locking constraints. Thus, when de-
tecting locking cycles, simply comparing between each two
target code paths with their locking constraints in a recursive
way is quite inefficient.
C3: Dropping false bugs. On the one hand, without validat-
ing the feasibility of code paths, static analysis can extract
many infeasible target code paths and thus report many false
bugs. On the other hand, each deadlock involves two or more
target code paths that should be able to concurrently executed.
Thus, without validating the concurrency of these target code
paths, static analysis can report many false bugs whose target
code paths cannot be concurrently executed.

To solve the above challenges, we propose three key tech-
niques. For C1, we propose a summary-based lock-usage
analysis to efficiently extract the code paths containing dis-
tinct locking constraints from kernel code. For C2, we propose
a reachability-based comparison method to efficiently detect
locking cycles from locking constraints. For C3, we propose
a two-dimensional filtering strategy to effectively drop false
positives by validating code-path feasibility and concurrency.
We will introduce these techniques as follows.

3.1 Summary-Based Lock-Usage Analysis
Our summary-based lock-usage analysis has two basic stages:
(S1) performing a dataflow analysis to collect target code
paths containing distinct lock-acquire/release operations; and
then (S2) performing a static lockset analysis to compute
locking constraints for each target code path.
S1: Collecting target code paths. In this stage, the dataflow
analysis has some properties: 1) this analysis is flow-sensitive
and inter-procedural with the consideration of alias relation-
ships, which can improve the accuracy; 2) this analysis uses
function summaries to reduce repeated analysis, which can
improve the efficiency; 3) this analysis drops the target code
paths containing repeated lock-acquire/release operations,
which can reduce repeated comparison in locking-cycle de-
tection; 4) this analysis uses a light-weight method to validate
the feasibility of each analyzed code path, which can reduce
false positives of deadlock detection. This dataflow analysis
traverses the code paths in the analyzed function func.

Figure 5 shows the main procedure of this dataflow anal-
ysis, which is represented as DataFlowAnalysis. It creates a
function summary func_sum, which stores basic information
about func (like function name and function-definition loca-
tion) and the target code paths in func. This function summary
is initialized with no target code path (line 1). This analysis
handles each code path code_path in func with three steps
(lines 2-30). First, it creates a data structure tar_path to col-
lect the lock-acquire/release function calls and analyzed basic
blocks in code_path (line 3), and then checks each function
call call in code_path (lines 4-26). If call is used to acquire

370    2022 USENIX Annual Technical Conference USENIX Association



1 

DataFlowAnalysis(func) 
Input: func – the analyzed function 
Output: func_sum – function summary storing basic information about func  

and the target code paths in func 

1: func_sum->tar_path_set := ø; 
2: foreach  code_path  in  GetCodePathSet(func)  do 
3: tar_path := CreateTargetCodePath(code_path); 
4: foreach  call  in  GetCallSetInPath(code_path)  do 
5: called_func := GetCalledFunction(call); 
6: if  CheckLockFunction(called_func)  then 
7: AddLockVector(call, tar_path->lock_vec); 
8: else 
9: // Use function summary to reduce repeated analysis 

10: called_func_sum := FindFuncSummary(called_func); 
11: if  called_func_sum == NULL  then 
12: called_func_sum := DataFlowAnalysis(called_func); 
13: end if 
14: // Top-down analysis of all target code paths in the callee 
15: called_tar_path_set := called_func_sum->tar_path_set; 
16: foreach  called_tar_path  in  called_tar_path_set  do 
17: tar_path_tmp := SplicePathInfo(tar_path, called_tar_path); 
18: if  LightPathCheck(tar_path_tmp) == TRUE  then 
19: AddPathSet(tar_path_tmp, func_sum->tar_path_set); 
20: end if 
21: end foreach 
22: // Bottom-up analysis of one target code path selected in the callee 
23: rand_tar_path := RandomSelect(called_tar_path_set); 
24: tar_path := SplicePathInfo(tar_path, rand_tar_path); 
25: end if 
26: end foreach 
27: if  LightPathCheck(tar_path) == TRUE  then 
28: AddPathSet(tar_path, func_sum->tar_path_set); 
29:     end if 
30: end foreach 
31: DropRepeatTargetCodePath(func_sum->tar_path_set); 
32: return func_sum; 

Figure 5: Dataflow analysis of collecting target code paths.

or release a lock, it is added into the lock-operation vector
lock_vec of tar_path (line 7); otherwise this analysis handles
its called function called_func. If called_func has been al-
ready analyzed, its function summary is gotten and stored
as called_func_sum (line 10); otherwise, DataFlowAnaly-
sis is recursively used to compute its function summary as
called_func_sum (line 12). Then, from called_func_sum, this
analysis gets and handles the target code paths in called_func
(lines 15-21) in a top-down manner. For each such target code
path called_tar_path, this analysis splices it with tar_path to
form a new and possible target code path tar_path_tmp. This
analysis uses a light-weight method (will be explained in Sec-
tion 3.3) to validate the code-path feasibility of tar_path_tmp;
if the code path is feasible, tar_path_tmp is considered as
a possibly real target code path in func and added into the
function summary func_sum->tar_path_set (lines 18-20). To
avoid the explosion of bottom-up code paths from the callee
function called_func, this analysis randomly selects one of the
target code paths in this function and splices it into tar_path
(lines 23-24). Before the code path ends, this analysis uses the
light-weight method again to validate the code-path feasibility
of tar_path; if the code path is feasible, tar_path is consid-
ered as a possibly real target code path in func and added
into the function summary func_sum->tar_path_set (lines
27-29). After handling each code path, this analysis checks
func_sum->tar_path_set to drop the target code paths con-
taining identical lock-operation vectors (line 31), which can

reduce repeated comparison of target code paths in locking-
cycle detection. Finally, this analysis returns the function
summary func_sum (line 32), which can be used to analyze
other functions that call func.

Besides the procedure shown in Figure 5, this dataflow
analysis also performs an intra-procedural, flow-insensitive
and Andersen-style alias analysis [1] to identify all variables
aliased with the lock argument of each lock-acquire/release
function call. The alias analysis can help to improve the accu-
racy of computing locking constraints in S2. Moreover, each
function summary stores the information about arguments
and global variables, and drops the information about local
variables, which are never used outside the function.

// This function is first analyzed 
void affs_free_block(struct super_block *sb, ...) {

  struct affs_sb_info *sbi = sb->s_fs_info;  // Alias
  ......
  mutex_lock(&sbi->s_bmlock);
  ......
  // Create and use function summary
  affs_mark_sb_dirty(sb);
  mutex_unlock(&sbi->s_bmlock);

} // Create function summary at function return

void affs_mark_sb_dirty(struct super_block *sb) {
  struct affs_sb_info *sbi = sb->s_fs_info;  // Alias
  ......
  spin_lock(&sbi->work_lock);
  ......

      spin_unlock(&sbi->work_lock);
}  // Create function summary at function return

// This function is then analyzed
void affs_alloc_block(struct super_block *sb, ...) {

  struct affs_sb_info *sbi = sb->s_fs_info;  // Alias
  ......
  mutex_lock(&sbi->s_bmlock);
  ......
  // Reuse function summary
  affs_mark_sb_dirty(sb);
  mutex_unlock(&sbi->s_bmlock);

} // Create function summary at function return

4

5

6

1

2

3

10

11

12
13

8

7

14

9

FuncSummary(affs_free_block):
  Target code path1:

 (1) Basic blocks in the code path
 (2) Lock-operation vector:

 mutex_lock(sb->s_fs_info->s_bmlock)
 spin_lock(sb->s_fs_info->work_lock)
 spin_unlock(sb->s_fs_info->work_lock)
 mutex_lock(sb->s_fs_info->s_bmlock)

  ......

FuncSummary(affs_mark_sb_dirty):
  Target code path1:

 (1) Basic blocks in the code path
 (2) Lock-operation vector: 

  spin_lock(sb->s_fs_info->work_lock)
  spin_unlock(sb->s_fs_info->work_lock)

  ......

FuncSummary(affs_alloc_block):
  Target code path1:

 (1) Basic blocks in the code path
 (2) Lock-operation vector:

 mutex_lock(sb->s_fs_info->s_bmlock)
 spin_lock(sb->s_fs_info->work_lock)
 spin_unlock(sb->s_fs_info->work_lock)
 mutex_lock(sb->s_fs_info->s_bmlock)

  ......

Code path Function summary

Steps

Splice

Splice

Figure 6: Example of summary-based dataflow analysis.

Example. We illustrate this dataflow analysis using the
simplified code of the Linux affs filesystem in Figure 6.
This figure shows three functions and partial code paths of
them. According to the function position order, this analy-
sis first analyzes the function affs_free_block and then
affs_alloc_block, the analysis steps are represented as
n©. This dataflow analysis also considers the alias relation-

ships at 1©, 4© and 10©. At 3©, there is a function call to
affs_mark_sb_dirty, so this dataflow analysis first han-
dles this function, then creates its function summary, and
finally splices the target code path of this function summary
into the analyzed target code path of affs_free_block. At
12©, the function affs_mark_sb_dirty is called again, so its
function summary is reused, and the target code path of this
function summary is spliced into the analyzed target code
path of affs_alloc_block. By using the function summary,
the analysis efficiency can be effectively improved.

Note that to avoid path explosion caused by bottom-up
code paths of each callee function, this dataflow analysis uses
a partial bottom-up analysis. Specifically, it randomly selects
one of the target code paths in its function summary, and
splices this path into the analyzed target code in the caller
function, as shown at lines 23-24 in Figure 5. However, this
method can miss other target code paths of the callee function,
which can cause false negatives of deadlock detection. Even

USENIX Association 2022 USENIX Annual Technical Conference    371



TP1 TP2 TP3
A→B D→A B→C

TP4
B→E

Start from TP1{A→B}:
TP1{A→B} and TP2{D→A}: STOP
TP1{A→B} and TP3{B→C}: CONTINUE!

  TP3{B→C} and TP2{D→A}: STOP
     TP3{B→C} and TP4{B→E}: STOP
TP1{A→B} and TP4{B→E}:  CONTINUE!

  TP4{B→E} and TP2{D→A}: STOP   
  TP4{B→E} and TP3{B→C}: STOP

Start from TP2{D→A}:
TP2{D→A} and TP1{A→B}: CONTINUE!

  TP1{A→B} and TP3{B→C}: CONTINUE!
  TP3{B→C} and TP4{B→E}: STOP

  TP1{A→B} and TP4{B→E}: CONTINUE!
       TP4{B→E} and TP3{B→C}: STOP

TP2{D→A} and TP3{B→C}: STOP
TP2{D→A} and TP4{B→E}: STOP

Figure 7: Example of the traditional comparison.

so, compared to RacerX [19] that only has top-down analysis
without bottom-up analysis, this dataflow analysis is more
accurate by using partial bottom-up analysis. In the future, we
will implement a more complete and low-complexity bottom-
up analysis, by referring to some existing approaches [39,40].
S2: Computing locking constraints. This step uses a static
lockset analysis to compute locking constraints in the target
code paths collected in S1. This lockset analysis is similar
to dynamic lockset analysis proposed in Eraser [47] for race
detection, but in a static way. For each target code path, this
lockset analysis maintains a lockset storing the held locks,
and it handles lock-acquire and -release function calls.

When encountering a lock-acquire function call, this anal-
ysis first creates and adds related locking constraints in the
analyzed target code path, according to the locks in the lockset
and the acquired lock of this call; and then it adds this ac-
quired lock into the lockset. For example, when this analysis
handles the function call acquiring the lock X, if the lockset LS
stores the held locks A and B, it first creates two locking con-
straints A→X and B→X, then adds these locking constraints
into the analyzed target code path, and finally adds X into LS.
When encountering a lock-release function call, this analysis
looks for and drops the involved lock in the lockset.

3.2 Reachability-Based Comparison Method
After extracting target code paths, we need to compare them to
detect locking cycles as possible deadlocks. During compari-
son, we use a field-based analysis to identify the same locks
in different code paths, if the lock variables’ data structure
types and fields are identical, which is similar to RacerX [19]
and DCUAF [2]. Moreover, because a locking cycle can in-
volve multiple target code paths (like the example deadlock
in Figure 2(b)), the traditional method (used by existing static
approaches like RacerX [19]) starts the comparison from each
locking constraint in each target code path, and then recur-
sively compares between each two target code paths with their
locking constraints. Specifically, this method compares the
current locking constraint with each locking contraint of each
unhandled target code path. If they are matched, the current
locking constraint is replaced with the matched locking con-
traint, and the comparison continues; if they are not matched,
the comparison selects other target code paths. If all target
code paths have been handled, the comparison stops. Once a
locking cycle is found, this method reports a deadlock.

Start from TP1{A→B}:
TP1{A→B} and TP2{D→A}: STOP
TP1{A→B} and TP3{B→C}: CONTINUE!
     [Create a reachable node A→C]
     TP3{B→C} and TP2{D→A}: STOP
     TP3{B→C} and TP4{B→E}: STOP
TP1{A→B} and TP4{B→E}: CONTINUE!
     [Create a reachable node A→E]
     TP4{B→E} and TP2{D→A}: STOP
     TP4{B→E} and TP3{B→C}: STOP
[TP1 has complete reachability graph]

Start from TP2{D→A}:
TP2{D→A} and TP1{A→B}: STOP (no cycle)
TP2{D→A} and TP1{A→C}: STOP (no cycle)
TP2{D→A} and TP1{A→E}: STOP (no cycle)
TP2{D→A} and TP3{B→C}: STOP
TP2{D→A} and TP4{B→E}: STOP

TP1 TP2 TP3
A→B D→A B→C

TP4
B→E

A→C, [TP3]
A→E, [TP4]

Figure 8: Example of our reachability-based comparison.

Example with the traditional comparison. We illustrate this
traditional method using an example in Figure 7, containing
four target code paths (TP1, TP2, TP3 and TP4), each of which
contains one locking constraint. This method first starts the
comparison from the locking constraint A→B in TP1 (namely
TP1{A→B}), and then starts the comparison from the locking
constraint D→A in TP2 (namely TP2{D→A}). The detailed
comparison steps are also shown in the figure.

In Figure 7, we find that when starting the comparison
from TP2{D→A}, some steps (marked in blue and bold font)
perform repeated comparison that has been done when start-
ing from TP1{A→B}. In fact, such repeated comparison of
locking constraints are common in locking cycle detection,
because many code paths handle the same locks but have dif-
ferent locking orders, leading to different locking constraints.
Thus, if such repeated comparison can be reduced, the locking
cycle detection can be much more efficient.

Based on this idea, we propose a reachability-based method
to efficiently compare locking constraints for locking-cycle
detection. During comparison, this method maintains a con-
straint reachability graph for the target code path that the com-
parison starts from. This reachability graph contains some
reachable nodes, each of which indicates an indirect locking
constraint used for subsequent comparison:∧n

i=1(T Pi{Ai→ Ai+1})⇒ T Pindirect{A1→ An+1,T Pset}
T Pset = {T P1,T P2, ...,T Pn}

This indirect locking constraint is added in the handled
target code path. When our method finishes the comparison
starting from all the locking constraints in this target code
path, its reachability graph is completely built. The indirect
locking constraints in this reachability graph are used to re-
duce repeated comparison involving the handled target code
path. Specifically, if any locking constraint (direct or indirect)
in this target code path is matched, the comparison stops and
checks whether there is a locking cycle. Note that our method
assumes a target code path is never concurrently executed
with itself, because static analysis has insufficient information
to infer whether a code path can be concurrently executed
with itself. This assumption is also followed by existing static
approaches, such as RacerX [19] and DCUAF [2].

372    2022 USENIX Annual Technical Conference USENIX Association



Example with our reachability-based comparison. To illus-
trate our method, we still use the example in Figure 7. The
key steps performed by our method are marked in red and
bold font. Our method still first starts the comparison from the
locking constraint TP1{A→B}. Because TP1{A→B} matches
TP3{B→C} and TP4{B→E}, our method creates two indi-
rect locking constraints TP1{A→C, [TP3]} and TP1{A→E,
[TP4]} and adds them in the target code path TP1. After TP1
is handled, its reachability graph is completely built. When
our method starts the comparison from the locking constraint
TP2{D→A}, the three locking constraints (including two indi-
rect ones) in TP1 are matched. Because the reachability graph
of TP1 is complete, the comparison stops when these locking
constraints are handled, which can avoid the repeated steps
performed by the traditional comparison method in Figure 7.
In this way, our method can effectively reduce the time usage
of locking-cycle detection.

Besides, for each indirect locking constraint, our method
also stores the related original locking constaints and target
code paths. During comparison, if a locking cycle is found
as a possible deadlock, our method can conveniently recover
the information about the involved locks and their code paths,
which is used for false-positive filtering in Section 3.3.

3.3 Two-Dimensional Filtering Strategy
For a possible deadlock, our strategy checks whether it is
a false positive, in two dimensions, namely validating the
feasibility and concurrency of its target code paths.
D1: Validating code-path feasibility. For a given code path,
we can use an SMT solver to validate the satisfiability of all
the branch conditions and variable accesses (including read
and write operations) in this code path. For deadlock detection,
there are two possible stages where code-path validation can
be performed: (S1) during the dataflow analysis extracts target
code paths in Section 3.1, we can validate the feasibility
of each extracted target code path; (S2) after locking-cycle
detection in Section 3.2, we can validate the feasibility of the
target code paths for each possible deadlock.

In S1, because the dataflow analysis needs to handle sub-
stantial code paths, if we perform complete and accurate val-
idation of these code paths, the time cost will be quite high.
In S2, we believe that the code paths of possible deadlocks
should occupy a very small proportion of all the target code
paths extracted in the dataflow analysis, and thus it is accept-
able to perform complete and accurate validation of these
code paths. An alternative way is to just perform code-path
validation in S2. However, without the validation in S1, lots of
infeasible target code paths will be extracted for locking-cycle
detection, which can also introduce high time cost.

Based on the above consideration, our strategy uses a staged
and balanced way. In S1, our strategy uses a simple and light-
weight path-condition checking method to efficiently check
the extracted target code paths. This method checks only

if (val == 1)
  spin_lock(A);

......
if (val == 2)
  spin_lock(B);

TP1

(a) Branch condition

Locking constraint: 
TP1{A→B}   FALSE!

a = b + 5;
spin_lock(A);
......
if (a < b)
  spin_lock(B);

TP1

(b) Path conditions in one path

if (dev->data > 0)
  spin_lock(A);

......
if (dev->data > 0)

  spin_lock(B);

TP1

Locking constraint: TP1{A→B}, TP2{B→A}
Locking cycle: A→B, B→A   FALSE!

(c) Path conditions in two paths

data = dev->data;
spin_lock(B);
......
if (data == 0)
  spin_lock(A);

TP2

if (dev)
  spin_lock(B);

......
if (dev)
  spin_lock(A);

TP2

Locking constraint: TP1{A→B}, TP2{B→A}
Locking cycle: A→B, B→A   FALSE!

Figure 9: Examples of code-path feasibility validation.

spin_lock(X);
......
spin_lock(A);
......
spin_lock(B);

TP1

(a) Common lock

spin_lock(X);
......
spin_lock(B);
......
spin_lock(A);

TP2

Func X
  -> FuncP

  -> spin_lock(A);
  -> spin_lock(B);  

TP1

(b) Common part in call graph

Func X
  -> FuncQ
  -> spin_lock(B);
  -> spin_lock(A);  

TP2

Figure 10: Examples of code-path concurrency checking.

branch conditions in each code path, without handling vari-
able accesses outside branch conditions. Thus, this method
is fast but relatively inaccurate, and it can quickly drop many
target code paths that are obviously infeasible. Figure 9(a)
shows an example target code path that can be dropped by this
method. In S2, our strategy uses a complete and heavy-weight
path-condition checking method to accurately check the code
paths of possible deadlocks. This method checks both branch
conditions and variable accesses in each code path. Thus, this
method is relatively slow but accurate, and it can effectively
drop false deadlocks involving complex path conditions.

In fact, because a deadlock contains two or more code paths
that are interleaved in concurrent execution, these code paths
may access some shared variables that should have identical
values. Thus, for each possible deadlock, the heavy-weight
method in S2 performs code-path validation in two ways.
First, for each code path of this deadlock, the method validates
its feasibility; if any code path is identified to be infeasible
by an SMT solver, this deadlock is considered to be false
and dropped. Second, the method extracts shared variables
having identical data structure types and fields in each two
code paths, then identifies the variable accesess and branch
conditions that are related to these shared variables in the
code paths, and finally translates the identified operations into
SMT constraints of an SMT solver. If these SMT constraints
are computed to be unsatisfiable, this deadlock is considered
to be false and dropped. Figure 9(b) and Figure 9(c) show
two example false deadlocks that can be dropped in these two
ways, respectively.

D2: Checking code-path concurrency. For a deadlock, its
target code paths should be able to be concurrently executed;
otherwise, this deadlock is false. For each possible deadlock,
our strategy checks the concurrency of its target code paths in
two ways. First, our strategy checks whether there is a com-
mon lock acquired before the involved lock-acquire opera-
tions in any two of the target code paths. If so, these code paths
cannot be concurrently executed, so this possible deadlock
is considered to be false and dropped. Second, our strategy
extracts the call graph of each target code path, and checks
whether any two of these call graphs have common parts. If so,

USENIX Association 2022 USENIX Annual Technical Conference    373



DLOS

Lock-usage 
analyzer

Clang 
compiler

Locking-cycle 
detector

LLVM
bytecode

Target 
code paths

Information 
collector

Function 
information

Possible 
deadlocks

OS kernel 
source code

Deadlock 
validator

Final 
deadlocks

Figure 11: DLOS architecture.

it indicates that the related two code paths may be sequentially
executed at different time points of the same thread, so this
possible deadlock is considered to be false and dropped. Fig-
ure 10(a) and Figure 10(b) show two example false deadlocks
that can be dropped in these two ways, respectively.

4 DLOS Approach

Based on the three key techniques in Section 3, we design a
practical static approach named DLOS, to detect deadlocks
in OS kernels. We have implemented DLOS with Clang [13]
and Z3 [54]. DLOS automatically performs static analysis on
the LLVM bytecode files of the OS kernel. Figure 11 shows
the architecture of DLOS, which has four phases:
P1: Source-code compilation. The Clang compiler com-
piles the kernel source files into LLVM bytecode files, and
then the information collector handles each function in LLVM
bytecode to collect the function’s information (including func-
tion name, function-definition position, etc.). The information
is used for inter-procedural analysis across source files.
P2: Locking-constraint extraction. The lock-usage ana-
lyzer uses our summary-based lock-usage analysis to handle
LLVM bytecode files. This analysis starts at the entry of each
function in the kernel code, to extract target code paths con-
taining distinct locking constraints.
P3: Locking-cycle detection. The locking-cycle detector
uses our reachability-based comparison method to check the
extracted target code paths with locking constraints, and de-
tects locking cycles as possible deadlocks. We observe that a
kernel module often acquires private locks that are not acces-
sible for other kernel modules, and thus the detector focuses
on checking target code paths in the same kernel module.
P4: False-positive filtering. The deadlock validator uses our
two-dimensional filtering strategy to check possible deadlocks
and drop false positives. Besides, two possible deadlocks may
have identical problematic locking operations but differ in
code paths. To drop such repeated bugs, for a new possi-
ble deadlock, the validator checks whether it has the same
problematic locking operations with any already detected
deadlock; if so, it is considered to be repeated and dropped.
Implementation details. DLOS performs lock-usage analysis
and path validation from the entry of each function in OS code,
so it can handle different execution contexts like interrupt han-
dling. However, DLOS does not handle function-pointer calls

at present, so it cannot detect deadlocks across kernel mod-
ules connected by function pointers. Besides, DLOS cannot
analyze RCU locks, as RCU lock-acquiring/release functions
(like rcu_read_lock and rcu_read_unlock) have no argu-
ment. Finally, to accelerate deadlock detection, DLOS can
support the parallelism of handling multiple kernel modules
using multi-thread execution.

5 Evaluation

To validate the effectiveness of DLOS, we evaluate it on the
Linux kernel. To cover different kernel versions, we select an
old version 4.9 and a recent version 5.10. Table 1 shows the
basic information about these kernel versions, and source code
lines are counted by CLOC [14]. We run the experiments on a
regular x86-64 PC with eight Intel i7-3770@3.40G CPUs and
16GB memory. We use the kernel configuration allyesconfig
to enable all kernel code for the x86-64 architecture.

Description Linux 4.9 Linux 5.10
Release time December 2016 December 2020
Source files (.c) 23.7K 29.4K
Source code lines (.c) 11.4M 14.7M

Table 1: Basic information about the checked OS kernels.

5.1 Bug Detection
We configure DLOS with common lock-acquiring/release
functions (like spin_lock and spin_unlock) according to
the Linux kernel documents [34], and then run DLOS to au-
tomatically check the kernel source code. We manually check
all the deadlocks found by DLOS to identify real bugs. Table 2
shows the results, and we have the following findings:
Code analysis. DLOS can scale to large code bases of OS
kernels. Specifically, it analyzes 8.5M and 11.7M source code
lines in 14.5K and 19.9K source files in Linux 4.9 and 5.10,
respectively, within 7 hours. The remaining 2.9M and 3.0M
source code lines in 9.2K and 9.5K source files are not ana-
lyzed, because they are not enabled by allyesconfig for the
x86-64 architecture.
Efficiency improvement. DLOS improves the analysis effi-
ciency from two aspects:

First, when extracting target code paths containing locking
constraints, our lock-usage analysis uses function summaries
to reduce repeated code analysis in the same functions. Specif-
ically, around 93% of the times DLOS handles a function call
is able to reuse an existing function summary, without the
need of analyzing the function’s definition again.

Second, when detecting locking cycles, our reachability-
based comparison method uses constraint reachability graphs
to reduce repeated comparison of locking constraints. Specifi-
cally, with 196K and 222K indirect locking constraints created
by our method, 851K and 946K times of repeated comparison
are reduced in Linux 4.9 and 5.10, respectively.

374    2022 USENIX Annual Technical Conference USENIX Association



Description Linux 4.9 Linux 5.10

Lock-usage
analysis

Source files (analyzed/all) 14.5K/23.7K 19.9K / 29.4K
Source code lines (analyzed/all) 8.5M/11.4M 11.7M/14.7M
Times of handling functions 4,102K 5,032K
Times of reusing function summaries 3,816K 4,682K
Extracted distinct target code paths 102K 117K
Extracted locking constraints 323K 439K

Locking-cycle
detection

Created indirect locking constraints 196K 222K
Times of reducing comparison 851K 946K
Possible deadlocks 465 539

False-positive
filtering

Dropped infeasible target code paths 464K 524K
False bugs due to infeasible paths 220 258
False bugs due to common locks 78 94
False bugs due to call graphs 101 122
Total false bugs 419 474

Deadlock Found bugs 46 65
Real bugs 39 54

Time usage

Lock-usage analysis 265m 294m
Locking-cycle detection 85m 96m
False-positive filtering 22m 28m
Total time 372m 418m

Table 2: Deadlock-detection results.

False-positive dropping. DLOS uses our two-dimensional
filtering strategy to drop false positives from three aspects:

First, when extracting target code paths containing lock-
ing constraints, our strategy uses a simple and light-weight
code-path validation method to drop 464K and 524K infea-
sible target code paths in Linux 4.9 and 5.10, respectively.
In addition, by dropping these target code paths, the related
unnecessary locking-constraint comparison can be avoided in
locking-cycle detection, which also improves the efficiency
of deadlock detection.

Second, after locking-cycle detection reports possible dead-
locks, our strategy uses a complete and heavy-weight code-
path validation method to drop 220 and 258 false bugs in
Linux 4.9 and 5.10, respectively. Indeed, these false bugs’
code paths are failed to be dropped in our lock-usage analysis,
because the light-weight code-path validation method used in
this analysis is efficient but relatively inaccurate. To improve
accuracy, the heavy-weight code-path validation method com-
pletely checks both branch conditions and variable accesses
in the code paths of each possible deadlock, and thus it suc-
cessfully drops these false bugs after locking cycle detection.

Finally, our strategy checks the concurrency of possible
deadlocks, and drops 179 and 216 false bugs in Linux 4.9 and
5.10, respectively, because their target code paths are consid-
ered to be non-concurrent. Specifically, 78 and 94 bugs are
dropped due to holding a common lock in target code paths;
101 and 122 bugs are dropped due to containing common
parts in the call graphs of target code paths.

Deadlock finding. DLOS reports 46 and 65 deadlocks in
Linux 4.9 and 5.10, respectively. We spent eight hours on
checking all these 111 reported deadlocks. We identify 39
and 54 deadlocks are real in Linux 4.9 and 5.10, respectively.
21 real deadlocks in Linux 4.9 have been fixed in Linux
5.10, including the deadlock in the btrfs filesystem shown in
Figure 4. Thus, DLOS can find known deadlocks. Moreover,
we have reported the 54 real deadlocks in Linux 5.10 to Linux

kernel developers, and 31 of them have been confirmed. We
are still waiting for the reply of the remaining ones. Thus,
DLOS can find new deadlocks.

We infer that these real deadlocks are missed by Lockdep
in extensive kernel testing, because their thread interleavings
are infrequent to occur, and constructing workloads to cover
these thread interleavings is difficult. Thus, DLOS can indeed
find many deadlocks that are hard to find in runtime testing.

Besides, we believe that DLOS is helpful to deadlock re-
production, because it produces the detailed code paths of the
found deadlocks. With these code paths, time delays can be
strategically injected and carefully controlled, to cover spe-
cific thread interleavings and reproduce the found deadlocks.
We have manually performed this way for several deadlocks
in kernel modules that we can run, including the two dead-
locks in Figure 4 and Figure 12(a), and these deadlocks can
be successfully reproduced at runtime.
Deadlock details. Among the 93 real deadlocks in Linux 4.9
and 5.10, 78 (33 in Linux 4.9 and 45 in Linux 5.10) occur in
device drivers, and 15 (6 in Linux 4.9 and 9 in Linux 5.10)
occur in filesystems. This result indicates that device drivers
remain a significant source of OS bugs [49]. Besides, for
86 deadlocks (35 in Linux 4.9 and 51 in Linux 5.10), DLOS
reports two code paths for each of them, indicating it is caused
by two locks in two threads; for the remaining 7 deadlocks,
DLOS reports three code paths for each of them, indicating it
is caused by three locks in three threads.

5.2 False Positives and Negatives

False positives. DLOS reports 7 and 11 false bugs in Linux
4.9 and 5.10, resulting the false positives rates of 15% and
17%, respectively. By manually checking these false bugs, we
find that they are reported for three main reasons:

First, the field-based analysis in locking-cycle detection can
make mistakes when identifying the same locks in different
code paths. This analysis identifies the same locks if the locks
variables have the same data structure types and fields; but two
different lock variables can also have the same data structure
types and fields, and their data structure variables are different.
This analysis cannot handle such cases at present. This reason
causes DLOS to report 3 and 5 false bugs in Linux 4.9 and
5.10, respectively.

Second, although DLOS uses Z3 to validate path feasibility,
it can still make mistakes when handling some complex cases,
such as complicated arithmetic conditions and data depen-
dence across multiple functions. This reason causes DLOS to
report 2 and 3 false bugs in Linux 4.9 and 5.10, respectively.

Finally, the alias analysis in our lock-usage analysis is intra-
procedural and flow-insensitive, and thus can identify wrong
alias relationships across function calls, causing mistakes in
locking-constraint extraction. This reason causes DLOS to
report 2 and 3 false bugs in Linux 4.9 and 5.10, respectively.

USENIX Association 2022 USENIX Annual Technical Conference    375



False negatives. DLOS may still miss some real deadlocks
for three main reasons:

First, our lock-usage analysis performs incomplete bottom-
up analysis of each callee function, to avoid path explosion of
inter-procedural analysis. Specifically, it randomly selects one
of the target code paths in the callee function, and splices it
into the analyzed target code in the caller function. Although
the other target code paths in the callee function are handled in
top-down analysis, they are neglected in bottom-up analysis,
causing some locking constraints in the target code paths of
the caller function to be missed.

Second, DLOS does not analyze function-pointer calls, and
thus it cannot build complete call graphs for inter-procedural
analysis. As a result, DLOS may miss real deadlocks involv-
ing the code that is reached through function-pointer calls.

Finally, DLOS considers that a target code path is never
concurrently executed with itself. Indeed, to reduce false posi-
tives, DLOS validates two code paths’ concurrency by check-
ing their common locks and call graphs. However, this valida-
tion is infeasible for two identical code paths, and thus DLOS
does not detect deadlocks occuring in the same target code
path of different execution contexts.

5.3 Case Studies of the Found Deadlocks

Figure 12 shows two deadlocks found by DLOS in Linux 5.10,
and they have been confirmed by Linux kernel developers.
Deadlock in SysRq command handling for filesystems. In
Figure 12(a), when the function do_thaw_all_callback
is executed on the code path P1, it first acquires the
read-write semaphore sb->s_umount and then the mu-
tex lock bdev->bd_fsfreeze_mutex; when the function
freeze_bdev is executed on the code path P2, it first ac-
quires the mutex lock bdev->bd_fsfreeze_mutex and then
the read-write semaphore sb->s_umount. During SysRq
commands [50] are handled for filesystems, the functions
do_thaw_all_callback and freeze_bdev can be concur-
rently executed, and thus an ABBA deadlock can occur.
Deadlock in the LPFC SCSI driver. In Figure 12(b),
when the function lpfc_nvmet_unsol_fcp_issue_abort
is executed on the code path P1, it acquires the spinlocks
ctxp->ctxlock and then phba->sli4_hba.abts_nvmet_-
buf_list_lock; when the function lpfc_sli4_nvmet_-
xri_aborted is executed on the code path P2, it acquires
the spinlocks phba->sli4_hba.abts_nvmet_buf_list_-
lock and then ctxp->ctxlock. During driver execution,
the functions lpfc_nvmet_unsol_fcp_issue_abort and
lpfc_sli4_nvmet_xri_aborted can be concurrently exe-
cuted, and thus an ABBA deadlock can occur.

From the feedback of kernel developers, the confirmed
deadlocks found by DLOS require infrequent and special test
cases to find at runtime, which indicates that DLOS is useful
to detecting hard-to-trigger deadlocks via static analysis.

Code Path P1:
// FILE: linux-5.10/fs/super.c
do_thaw_all_callback

 -> down_write(&sb->s_umount) [Line 1028]
 -> emergency_thaw_bdev [Line 1030]

 -> thaw_bdev [526]
 -> mutex_lock(&bdev->bd_fsfreeze_mutex) [Line 734]

Code Path P2:
// FILE: linux-5.10/fs/block_dev.c
freeze_bdev

 -> mutex_lock(&bdev->bd_fsfreeze_mutex) [Line 556]
 -> freeze_super [Line 576]

 -> down_write(&sb->s_umount) [Line 517]

(a) Deadlock in SysRq command handling for filesystems

Code Path P1:
// FILE: linux-5.10/drivers/scsi/lpfc/lpfc_nvmet.c
lpfc_nvmet_unsol_fcp_issue_abort

 -> spin_lock_irqsave(&ctxp->ctxlock, flags) [Line 3502]
 -> spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock) [Line 3504]

Code Path P2:
// FILE: linux-5.10/drivers/scsi/lpfc/lpfc_nvmet.c
lpfc_sli4_nvmet_xri_aborted

 -> spin_lock(&phba->sli4_hba.abts_nvmet_buf_list_lock) [Line 1787]
 -> spin_lock(&ctxp->ctxlock) [1794]

(b) Deadlock in the LPFC SCSI driver

Figure 12: Two real deadlocks found by DLOS in Linux 5.10.

5.4 Comparison Experiment

We aim to experimentally compare to RacerX [19], which
is the sole existing static approach to systematically detect
deadlocks in OS kernels. However, RacerX is not open-source,
and Linux kernel 2.5.62 checked in its paper is too old to be
normally compiled by Clang. Thus, we have to try our best to
implement a RacerX-like tool according to its paper.

RacerX [19] performs code analysis with summary caches,
which seems similar to function summaries used in our lock-
usage analysis. However, RacerX lacks the other two key
techniques used in DLOS, namely the reachability-based com-
parison method to improve the efficiency of locking-cycle
detection, and the two-dimensional filtering strategy to drop
false positives. To validate the value of these two techniques
in comparison, we implement three tools by modifying DLOS:
(1) DLOS!reach that uses the traditional comparison method in
RacerX for locking-cycle detection to replace the reachability-
based comparison method in DLOS; (2) DLOS! f ilter that re-
moves the two-dimensional filtering strategy in DLOS; (3)
RacerX-like that both uses the traditional comparison method
for locking-cycle detection and removes the two-dimensional
filtering strategy in DLOS.

We run these three tools to check the whole Linux 5.10
code, but the DLOS!reach and RacerX-like tools run for over
60 hours, without finishing their detection. Thus, for more
clear comparison, we select six kernel modules in Linux 5.10,
and run these tools and DLOS to check the source code of
these kernel modules. These six kernel modules include: two
ones (sb and lpfc) that has real deadlocks found by DLOS,
two ones (fpga and ocfs2) that has false deadlocks found by
DLOS, and two ones (jfs and bcache) that has no deadlock
found by DLOS. Table 3 shows the results, and we find that:

376    2022 USENIX Annual Technical Conference USENIX Association



Description DLOS!reach DLOS! f ilter RacerX-like DLOS

sb Found bugs (real/all) 6/6 6/14 6/14 6/6
Time usage 30s 14s 27s 16s

lpfc Found bugs (real/all) 7/7 7/25 7/25 7/7
Time usage 524s 162s 501s 181s

fpga Found bugs (real/all) 0/2 0/5 0/5 0/2
Time usage 21s 9s 18s 11s

ocfs2 Found bugs (real/all) 0/2 0/10 0/10 0/2
Time usage 936s 214s 892s 253s

jfs Found bugs (real/all) 0/0 0/0 0/0 0/0
Time usage 305s 101s 280s 122s

bcache Found bugs (real/all) 0/0 0/3 0/3 0/0
Time usage 78s 28s 71s 33s

Table 3: Comparison results of six Linux kernel modules.

First, the DLOS!reach tool achieves the same accuracy with
DLOS, but it spends more time on locking-cycle detection.
Thus, our reachability-based comparison method is more effi-
cient than the traditional comparison method in RacerX, when
performing locking-cycle detection.

Second, the DLOS! f ilter tool reports many more false bugs
than DLOS, though it finds the real deadlocks found by DLOS.
Thus, our two-dimensional filtering strategy is useful to drop-
ping false positives in deadlock detection. Moreover, we ob-
serve that the DLOS! f ilter tool spends less time than DLOS.
Indeed, without validating the feasibility or concurrency of
target code paths, the DLOS! f ilter tool can decrease time us-
age; but this tool extracts many infeasible target code paths
for locking-constraint comparison, which also increases the
time usage of locking-cycle detection. As a whole, the de-
creased time usage is more than the increased time usage in
the experiment, and thus the DLOS! f ilter tool has less time
usage than DLOS.

Finally, the RacerX-like tool spends less time than the
DLOS!reach tool, because it does not validate the feasibility or
concurrency of target code paths, but causing more false bugs
to be reported. The RacerX-like tool spends more time than
the DLOS! f ilter tool, because it detects locking cycles with
the traditional comparison method, which is less efficient than
our reachability-based comparison method; but it achieves
the same accuracy with the DLOS! f ilter tool, because neither
of them drops false positives. Compared to the RacerX-like
tool, DLOS achieves better accuracy in deadlock detection
with less time usage.

6 Discussion

Interleaving model. DLOS identifies each target code path
from the entry of each function in OS code, and then it con-
siders that two different target code paths identified by our
lock-usage analysis can be concurrently executed. To reduce
false positives, DLOS validates their concurrency by check-
ing common locks and call graphs using our two-dimensional
filtering strategy. As this strategy is infeasible in handling
the case that a target code path is concurrently executed with
itself, DLOS cannot detect deadlocks occurring in this case.

Detecting deadlocks in other OS kernels. Besides the
Linux kernel, DLOS can also check other OS kernels to detect
their deadlocks. However, doing so has some practical diffi-
culties. For example, some APIs used in DLOS have different
usages between these OSes and Linux, and these OSes have
different processes of kernel-code compilation from Linux.
At present, we have preliminarily run DLOS in NetBSD to
check its kernel source code, and found one real deadlock in
the sysmon kernel module without false positive. This dead-
lock has been confirmed by NetBSD kernel developers.

Detecting deadlocks involving waiting queues. Besides
the deadlocks caused by locking cycles, incorrect operations
on waiting queues can also cause deadlocks in OS kernels. For
example, one thread waits for the event E1 and then triggers
the event E2, while the other concurrent thread waits for the
event E2 and then triggers the event E1, so a deadlock can
occur for these two threads. In kernel code, waiting queues
and locks can be used together to cause deadlocks, which
are more difficult to detect. At present, no static approach
(including RacerX) can detect such deadlocks, and thus we
plan to extend DLOS to detecting them.

Detecting other locking issues. We believe that DLOS can
be extended to detecting other locking issues, such as dou-
ble locks and using sleep-able locks while holding spinlocks.
Indeed, computing locksets and validating code-path feasibil-
ity are two important steps in detecting locking issues, and
our lock-usage analysis and filtering strategy can effectively
perform these steps, respectively.

Limitations and future works. DLOS can be strengthened
in some aspects. First, DLOS does not handle function-pointer
calls in its lock-usage analysis, and thus it may miss deadlocks
involving the code that is reached through function-pointer
calls, especially the deadlocks across kernel modules con-
nected by function pointers. To relieve this limitation, we plan
to apply existing function-pointer analysis [3, 36] in DLOS
to detect more deadlocks and reduce false negatives. Second,
to reduce the complexity of analyzing loops and recursive
calls, DLOS unrolls each loop and recursive call just once,
causing soundness loss in static analysis. Such soundness loss
can introduce both false positives and negatives, when DLOS
analyzes the code involving loops and recursive calls. To re-
lieve this limitation, we plan to adapt existing loop-oriented
analysis [35, 48] in DLOS to soundly handle loops and recur-
sive calls. Thirdly, DLOS does not handle some special cases
at present, such as RCU locks, memory barriers, assembly
instructions and concurrent execution of the same code path,
which may also cause false positives and negatives in dead-
lock detection. To relieve this limitation, we plan to consider
these special cases in our static analysis, to further improve
analysis accuracy. Finally, we plan to port DLOS to detect-
ing deadlocks in other OS kernels, and to extend DLOS to
detecting deadlocks involving waiting queues as well as other
locking issues.

USENIX Association 2022 USENIX Annual Technical Conference    377



7 Related Work

7.1 Dynamic Analysis of Deadlocks

Many approaches [5, 9–11, 15, 21, 27, 28, 31, 33, 44, 45, 55]
dynamically monitor thread execution and lock-related opera-
tions to detect locking cycles. Most of them are used for user-
level applications. For example, Pulse [31] is an operating
system mechanism to detect deadlocks in applications. It peri-
odically identifies long-sleeping application processes and the
events they are waiting for, then uses high-level speculative
execution to a general resource graph about each identified
application process, and finally detects cycles in the graph
as deadlocks. UnDead [55] is an efficient dynamic approach
for deadlock detection. It uses several techniques to reduce
runtime overhead, such as only recording unique lock depen-
dencies (identical to locking constraints in this paper) for
every thread during the execution and dropping unnecessary
information in runtime recording.

Lockdep [33] is a kernel lock-usage validator, which can
find different kinds of lock-related bugs, such as double locks
and deadlocks. Lockdep performs runtime monitoring and
checking based on the granularity of lock class, which de-
scribes a group of locks that are logically the same with
respect to locking rules. Specifically, Lockdep dynamically
tracks the state of each lock class and checks the dependencies
between different lock classes. If any state or dependency is
incorrect when lock-related operations are performed, Lock-
dep will report related bugs at runtime.

By using exact runtime information about thread execu-
tion and lock-related operations, dynamic analysis approaches
can effectively reduce false positives in deadlock detection.
However, dynamic analysis requires substantial test cases to
achieve high testing coverage and reduce false negatives, and
it also introduces runtime overhead for the tested programs.

7.2 Static Analysis of Deadlocks

Some approaches [30, 41, 42, 46, 52] use static analysis to
detect deadlocks in user-level applications, without actually
running the applications. Naik et al. [30] design a sound static
approach to check deadlocks in C programs. For the checked
program, this approach performs context-sensitive and thread-
sensitive analysis on its inter-procedural control flows, based
on abstract interpretation. During the analysis, this approach
checks lock-related operations to extract lock dependencies
and detect locking cycles as possible deadlocks. This ap-
proach also uses a non-concurrency analysis to drop false pos-
itives, by checking common locks and thread-creation/joining
operations. Santhiar et al. [46] design a static approach to de-
tect deadlocks in asynchronous C# programs. This approach
uses a new representation of the mixed synchronous and asyn-
chronous control flows, and constructs a deadlock detection
graph based on this representation. However, OS kernels and

user-level applications have different concurrency models
(described in Section 2.2), and thus these approaches are inef-
fective in detecting deadlocks in OS kernels.

To our knowledge, RacerX [19] is the sole existing static
analysis approach to systematically detect deadlocks in OS
kernels. However, it has a high false positive rate of 46%, due
to neglecting the feasibility and concurrency of code paths;
and its locking-cycle detection method is simple and ineffi-
cient. Compared to RacerX, DLOS checks the feasibility and
concurrency of code paths to achieve better accuracy, and uses
a reachability-based comparison method in locking-cycle de-
tection to achieve higher efficiency. Besides, we also note that
Breuer et al. [6–8] have several works that focus on detect-
ing deadlocks caused by sleeping whiling holding spinlocks.
As these works have no systematic technique of detecting
deadlocks caused by locking cycles, we do not particularly
introduce and compare to these works in this paper.

7.3 Detection of Kernel Concurrency Bugs
Besides deadlocks, OS kernels also suffer from other kinds
of concurrency bugs, such as data races and atomicity vio-
lations. To detect these kernel concurrency bugs, some ap-
proaches [2, 12, 18, 47] use static or dynamic lockset analy-
sis to track shared variables and lock-related operations, and
some approaches [20, 25, 29] perform sampling to monitor
concurrent memory accesses. Moreover, to actually cover
infrequent thread interleavings and detect hard-to-find concur-
rency bugs, some approaches [22–24,26,53] perform random
thread scheduling or coverage-guided thread-interleaving ex-
ploration in runtime testing. Though these approaches do
not target deadlocks, some of their techniques (like lockset
analysis) are useful for DLOS in deadlock detection.

8 Conclusion

Deadlocks in OS kernels are dangerous and hard-to-find. To
detect these bugs, we design a practical static analysis ap-
proach named DLOS. It has three key techniques, including a
summary-based lock-usage analysis to efficiently extract code
paths containing distinct locking constraints, a reachability-
based comparison method to efficiently detect locking cycles,
and a two-dimensional filtering strategy to effectively drop
false positives. In the evaluation, DLOS finds 54 real dead-
locks in Linux 5.10, and 31 of them have been confirmed.

Acknowledgment

We thank our shepherd and anonymous reviewers for their
helpful advice on the paper. We also thank Linux kernel devel-
opers, who gave useful feedback and advice to us. This work
was supported by the National Natural Science Foundation of
China under Project 62002195.

378    2022 USENIX Annual Technical Conference USENIX Association



References

[1] Lars Ole Andersen. Program analysis and specializa-
tion for the C programming language. PhD thesis, Uni-
versity of Cophenhagen, 1994.

[2] Jia-Ju Bai, Julia Lawall, Qiu-Liang Chen, and Shi-Min
Hu. Effective static analysis of concurrency use-after-
free bugs in Linux device drivers. In Proceedings of
the 2019 USENIX Annual Technical Conference (ATC),
pages 255–268, 2019.

[3] Jia-Ju Bai, Julia Lawall, and Shi-Min Hu. Effective de-
tection of sleep-in-atomic-context bugs in the Linux ker-
nel. ACM Transactions on Computer Systems (TOCS),
36(4):1–30, 2020.

[4] Jia-Ju Bai, Yu-Ping Wang, and Shi-Min Hu. AutoPA:
automatically generating active driver from original pas-
sive driver code. In Proceedings of the 2018 Interna-
tional Symposium on Code Generation and Optimiza-
tion (CGO), pages 288–299, 2018.

[5] Saddek Bensalem and Klaus Havelund. Dynamic dead-
lock analysis of multi-threaded programs. In Proceed-
ings of the 2005 Haifa Verification Conference, pages
208–223, 2005.

[6] Peter T Breuer and Simon Pickin. Checking for dead-
lock, double-free and other abuses in the Linux kernel
source code. In Proceedings of the 2006 International
Conference on Computational Science, pages 765–772,
2006.

[7] Peter T Breuer, Simon Pickin, and Maria Larrondo
Petrie. Detecting deadlock, double-free and other abuses
in a million lines of Linux kernel source. In Proceed-
ings of the 30th NASA Software Engineering Workshop,
pages 223–233, 2006.

[8] Peter T Breuer and Marisol Garciá Valls. Static deadlock
detection in the Linux kernel. In Proceedings of the
9th Ada-Europe International Conference on Reliable
Software Technologies, pages 52–64, 2004.

[9] Yan Cai and WK Chan. MagicFuzzer: scalable deadlock
detection for large-scale applications. In Proceedings
of the 34th International Conference on Software Engi-
neering (ICSE), pages 606–616, 2012.

[10] Yan Cai and Qiong Lu. Dynamic testing for deadlocks
via constraints. IEEE Transactions on Software Engi-
neering (TSE), 42(9):825–842, 2016.

[11] Yan Cai, Ruijie Meng, and Jens Palsberg. Low-overhead
deadlock prediction. In Proceedings of the 42nd Inter-
national Conference on Software Engineering (ICSE),
pages 1298–1309, 2020.

[12] Qiu-Liang Chen, Jia-Ju Bai, Zu-Ming Jiang, Julia
Lawall, and Shi-Min Hu. Detecting data races caused
by inconsistent lock protection in device drivers. In Pro-
ceedings of the 26th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER),
pages 366–376, 2019.

[13] Clang: a LLVM-based compiler for C/C++ program.
https://clang.llvm.org/.

[14] CLOC: count lines of code. https://cloc.sourceforge.net.

[15] Tiago Cogumbreiro, Raymond Hu, Francisco Martins,
and Nobuko Yoshida. Dynamic deadlock verification
for general barrier synchronisation. In Proceedings of
the 20th International Symposium on Principles and
Practice of Parallel Programming (PPoPP), pages 150–
160, 2015.

[16] Linux commit 57ba4cb85bff. https://github.com/tor-
valds/linux/commit/57ba4cb85bff.

[17] Linux commit 01d01caf19ff. https://github.com/tor-
valds/linux/commit/01d01caf19ff.

[18] Pantazis Deligiannis, Alastair F Donaldson, and Zvon-
imir Rakamaric. Fast and precise symbolic analysis of
concurrency bugs in device drivers. In Proceedings of
the 30th International Conference on Automated Soft-
ware Engineering (ASE), pages 166–177, 2015.

[19] Dawson Engler and Ken Ashcraft. RacerX: effective,
static detection of race conditions and deadlocks. In
Proceedings of the 19th International Symposium on
Operating Systems Principles (SOSP), pages 237–252,
2003.

[20] John Erickson, Madanlal Musuvathi, Sebastian Burck-
hardt, and Kirk Olynyk. Effective data-race detection
for the kernel. In Proceedings of the 9th International
Conference on Operating Systems Design and Imple-
mentation (OSDI), pages 151–162, 2010.

[21] Mahdi Eslamimehr and Jens Palsberg. Sherlock: scal-
able deadlock detection for concurrent programs. In
Proceedings of the 22nd International Symposium on
Foundations of Software Engineering (FSE), pages 353–
365, 2014.

[22] Pedro Fonseca, Rodrigo Rodrigues, and Björn B Bran-
denburg. SKI: exposing kernel concurrency bugs
through systematic schedule exploration. In Proceed-
ings of the 11th International Conference on Operating
Systems Design and Implementation (OSDI), pages 415–
431, 2014.

USENIX Association 2022 USENIX Annual Technical Conference    379



[23] Sishuai Gong, Deniz Altinbüken, Pedro Fonseca, and
Petros Maniatis. Snowboard: finding kernel concur-
rency bugs through systematic inter-thread communica-
tion analysis. In Proceedings of the 28th International
Symposium on Operating Systems Principles (SOSP),
pages 66–83, 2021.

[24] Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar,
Byoungyoung Lee, and Insik Shin. Razzer: finding
kernel race bugs through fuzzing. In Proceedings of the
2019 IEEE Symposium on Security and Privacy, pages
754–768, 2019.

[25] Yunyun Jiang, Yi Yang, Tian Xiao, Tianwei Sheng, and
Wenguang Chen. DRDDR: a lightweight method to
detect data races in Linux kernel. Journal of Supercom-
puting, 72(4):1645–1659, 2016.

[26] Zu-Ming Jiang, Jia-Ju Bai, Kangjie Lu, and Shi-Min Hu.
Context-sensitive and directional concurrency fuzzing
for data-race detection. In Proceedings of the 29th
Network and Distributed System Security Symposium
(NDSS), 2022.

[27] Pallavi Joshi, Mayur Naik, Koushik Sen, and David Gay.
An effective dynamic analysis for detecting generalized
deadlocks. In Proceedings of the 18th International
Symposium on Foundations of Software Engineering
(FSE), pages 327–336, 2010.

[28] Pallavi Joshi, Chang-Seo Park, Koushik Sen, and Mayur
Naik. A randomized dynamic program analysis tech-
nique for detecting real deadlocks. In Proceedings of
the 30th International Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 110–
120, 2009.

[29] KCSAN: concurrency sanitizer for the Linux kernel.
https://github.com/google/ktsan/wiki/KCSAN.

[30] Daniel Kroening, Daniel Poetzl, Peter Schrammel, and
Björn Wachter. Sound static deadlock analysis for
C/Pthreads. In Proceedings of the 31st International
Conference on Automated Software Engineering (ASE),
pages 379–390, 2016.

[31] Tong Li, Carla Schlatter Ellis, Alvin R Lebeck, and
Daniel J Sorin. Pulse: a dynamic deadlock detection
mechanism using speculative execution. In Proceed-
ings of the 2005 USENIX Annual Technical Conference
(ATC), pages 31–44, 2005.

[32] LLVM compiler infrastructure. https://llvm.org/.

[33] Lockdep: runtime locking correctness validator in the
Linux kernel. https://www.kernel.org/doc/html/latest/
locking/lockdep-design.html.

[34] Linux kernel locking documents. https://www.kernel.
org/doc/html/latest/locking/index.html.

[35] Paul Lokuciejewski, Daniel Cordes, Heiko Falk, and Pe-
ter Marwedel. A fast and precise static loop analysis
based on abstract interpretation, program slicing and
polytope models. In Proceedings of the 2009 Interna-
tional Symposium on Code Generation and Optimiza-
tion (CGO), pages 136–146, 2009.

[36] Kangjie Lu and Hong Hu. Where does it go? refining
indirect-call targets with multi-layer type analysis. In
Proceedings of the 26th International Conference on
Computer and Communications Security (CCS), pages
1867–1881, 2019.

[37] Lanyue Lu, Andrea C Arpaci-Dusseau, Remzi H Arpaci-
Dusseau, and Shan Lu. A study of Linux file system
evolution. In Proceedings of the 11th International
Conference on File and Storage Technologies (FAST)),
pages 31–44, 2013.

[38] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou.
Learning from mistakes: a comprehensive study on real
world concurrency bug characteristics. In Proceedings
of the 13th International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pages 329–339, 2008.

[39] Ivan Matosevic and Tarek S Abdelrahman. Efficient
bottom-up heap analysis for symbolic path-based data
access summaries. In Proceedings of the 2012 Interna-
tional Symposium on Code Generation and Optimiza-
tion (CGO), pages 252–263, 2012.

[40] Scott McPeak, Charles-Henri Gros, and Murali Krishna
Ramanathan. Scalable and incremental software bug
detection. In Proceedings of the 9th International Sym-
posium on Foundations of Software Engineering (FSE),
pages 554–564, 2013.

[41] Mayur Naik, Chang-Seo Park, Koushik Sen, and David
Gay. Effective static deadlock detection. In Proceed-
ings of the 31st International Conference on Software
Engineering (ICSE), pages 386–396, 2009.

[42] Nicholas Ng and Nobuko Yoshida. Static deadlock
detection for concurrent Go by global session graph
synthesis. In Proceedings of the 25th International
Conference on Compiler Construction (CC), pages 174–
184, 2016.

[43] Leonid Ryzhyk, Yanjin Zhu, and Gernot Heiser. The
case for active device drivers. In Proceedings of the
1st Asia-Pacific Workshop on Systems (APSys), pages
25–30, 2010.

380    2022 USENIX Annual Technical Conference USENIX Association



[44] Malavika Samak and Murali Krishna Ramanathan. Mul-
tithreaded test synthesis for deadlock detection. In Pro-
ceedings of the 2014 International Conference on Object
Oriented Programming Systems Languages and Appli-
cations (OOPSLA), pages 473–489, 2014.

[45] Malavika Samak and Murali Krishna Ramanathan.
Trace driven dynamic deadlock detection and reproduc-
tion. In Proceedings of the 19th International Sympo-
sium on Principles and Practice of Parallel Program-
ming (PPoPP), pages 29–42, 2014.

[46] Anirudh Santhiar and Aditya Kanade. Static deadlock
detection for asynchronous C# programs. In Proceed-
ings of the 38th International Conference on Program-
ming Language Design and Implementation (PLDI),
pages 292–305, 2017.

[47] Stefan Savage, Michael Burrows, Greg Nelson, Patrick
Sobalvarro, and Thomas Anderson. Eraser: a dynamic
data race detector for multithreaded programs. ACM
Transactions on Computer Systems (TOCS), 15(4):391–
411, 1997.

[48] Yulei Sui, Xiaokang Fan, Hao Zhou, and Jingling Xue.
Loop-oriented pointer analysis for automatic simd vec-
torization. ACM Transactions on Embedded Computing
Systems (TECS), 17(2):1–31, 2018.

[49] Michael M. Swift, Brian N. Bershad, and Henry M.
Levy. Improving the reliability of commodity oper-

ating systems. In Proceedings of the 19th International
Symposium on Operating Systems Principles (SOSP),
pages 207–222, 2003.

[50] Linux kernel SysRq documents. https://www.kernel.org/
doc/html/latest/admin-guide/sysrq.html.

[51] Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang,
Yuanyuan Zhou, and Chengxiang Zhai. Bug charac-
teristics in open source software. Empirical Software
Engineering, 19(6):1665–1705, 2014.

[52] Amy Williams, William Thies, and Michael D Ernst.
Static deadlock detection for Java libraries. In Pro-
ceedings of the 19th European Conference on Object-
Oriented Programming (ECOOP), pages 602–629,
2005.

[53] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Tae-
soo Kim. KRACE: data race fuzzing for kernel file
systems. In Proceedings of the 2020 IEEE Symposium
on Security and Privacy, pages 1643–1660, 2020.

[54] Z3: a theorem prover. https://github.com/Z3Prover/z3.

[55] Jinpeng Zhou, Sam Silvestro, Hongyu Liu, Yan Cai,
and Tongping Liu. Undead: detecting and preventing
deadlocks in production software. In Proceedings of the
32nd International Conference on Automated Software
Engineering (ASE), pages 729–740, 2017.

USENIX Association 2022 USENIX Annual Technical Conference    381





Modulo: Finding Convergence Failure Bugs in Distributed Systems
with Divergence Resync Models

Beom Heyn Kim§†, Taesoo Kim§‡, and David Lie†

§Samsung Research †University of Toronto ‡Georgia Institute of Technology
{beomheyn.kim,tsgates.kim}@samsung.com, lie@eecg.toronto.edu

Abstract
While there exist many consistency models for distributed
systems, most of those models seek to provide the basic guar-
antee of convergence: given enough time and no further inputs,
all replicas in the system should eventually converge to the
same state. However, because of Convergence Failure Bugs
(CFBs), many distributed systems do not provide even this
basic guarantee. The violation of the convergence property
can be crucial to safety-critical applications collectively work-
ing together with a shared distributed system. Indeed, many
CFBs are reported as major issues by developers. Our key
insight is that CFBs are caused by divergence, or differences
between the state of replicas, and that a focused exploration of
divergence states can reveal bugs in the convergence logic of
real distributed systems while avoiding state explosion. Based
on this insight, we have designed and implemented Modulo,
the first Model-Based Testing tool using Divergence Resync
Models (DRMs) to systematically explore divergence and
convergence in real distributed systems. Modulo uses DRMs
to explore an abstract state machine of the system and derive
schedules, the intermediate representation of test cases, which
are then translated into test inputs and injected into systems
under test (SUTs). We ran Modulo to check ZooKeeper, Mon-
goDB, and Redis and found 11 bugs (including 6 previously
unknown ones)

1 Introduction

The emergence of cloud-scale applications has driven the
need for distributed storage systems to support them. To
provide availability and scalability, those systems replicate
data across several replicas, which may be distributed in a
single datacenter or even globally across several datacen-
ters [1–5, 32, 39, 50, 57, 62]. To tolerate network partitions
and delays, many of these systems adopt weaker-consistency
guarantees [58, 59], allowing them to replicate data asyn-
chronously. This means that clients connected to different
replicas may observe different states of the data. The exact
order and delay of concurrent operations on replicated data is

governed by a “consistency model,” which attempts to strike
a balance between intuitive behavior (favoring stronger con-
sistency guarantees) and scalability and partition tolerance
(favoring weaker guarantees).

Regardless of these differences, most of consistency mod-
els in practice guarantee a common property, which is that
given enough time and no further modifications to the data,
all replicas will eventually arrive at the same contents for
the data—something we call the convergence guarantee also
known as eventual consistency. However, distributed systems
are inherently designed to be temporarily inconsistent so
that they may continue to respond to requests, even as they
converge to a consistent state by replicating data among the
replicas. We call this temporary inconsistency divergence.
Yet, divergence can cause more than temporary inconsistency
in the presence of failures. Divergence in the presence of fail-
ures may also lead to conflicts, where different replicas have
incompatible states, which can only be resolved by truncating
or removing data from one or more of the replicas. While it
is not the sole cause, we find that a major cause of systems
failing to converge is defects in the convergence logic after the
failure recovery. Such bugs leading to convergence failures
are named Convergence Failure Bugs (CFBs).

Looking into bug databases of a couple of systems for
the period from 2010 to 2017, we found about 10 bugs that
are already reported and fixed by developers and external
users [23,31,33,34,51,55,56,60,64]. They are all marked by
developers as either “Blocker”, “Critical” or “Major” in terms
of severity. This demonstrates that CFBs are perceived by
developers as real, prevalent and important bugs to find and fix.
In some case, the convergence failure is noticed by developers
as visible to clients [31], which can directly cause clients to
make incorrect decisions leading to serious consequences.
Thus, a convergence failure can be crucial to safety-critical
applications collectively working together through a shared
distributed system.

To exercise distributed systems’ convergence logic, more
divergence than would naturally occur during regular use
needs to be generated. This paper presents Modulo, the first
Model-Based Testing tool that systematically explores differ-

USENIX Association 2022 USENIX Annual Technical Conference    383



ent divergence states by alternately injecting events that cause
divergence and convergence into the real distributed systems.

Modulo overcomes limitations in previous solutions for de-
tecting CFBs in distributed systems. On one hand, distributed
systems model-checkers [27, 29, 35, 41, 42, 44, 52, 61] aim
to provide formal verification of a distributed system, and as
such must ensure that they exhaustively explore the state space
of the system under test (SUT). To achieve exhaustive explo-
ration, they must tightly control all nondeterministic events
so as to drive the SUT through all possible states. Unfortu-
nately, tightly controlling all events leads to the well-known
“state-explosion problem,” as the number of states grows ex-
ponentially with the number of events that are controlled. To
reduce the severity of state-explosion, a smart and insightful
abstraction of target behavior is needed. None of existing
model-checkers has explored the state-space consisting of
divergence and convergence.

On the other hand, random testing approaches, such as
Jepsen [38], do not aim for formal verification but rather sim-
ply to find bugs, and thus they need not exhaustively explore
all states. This frees them from having to control all nonde-
terministic events. Instead, random testing approaches inject
a targeted set of external events (randomly of course) and,
rather than controlling all other events, allow the SUT to
randomly visit states depending on how events interleave nat-
urally during execution. Random testing approaches typically
do not record the states explored, so they cannot provide any
guarantee or measure of state-space coverage. Moreover, be-
cause they do not know which events are important, they may
not be able to provide a sequence of inputs that can reliably
reproduce the bug.

Modulo’s key contributions stem from our observation that
many CFBs arise from flaws in the convergence logic of dis-
tributed systems, and are orthogonal to other functions of the
system. Thus, CFBs can often be reproduced purely by par-
tially controlling only the few events that lead to convergence
and divergence. This partial control allows Modulo to sig-
nificantly reduce the severity of the state explosion problem,
while still enabling it to deeply explore different divergence
states of the SUT.

Different distributed systems have different techniques to
converge replicas after a failure. To abstract these differences
so that it can generalize across different systems, Modulo in-
troduces Divergence Resync Models (DRMs), which consist
of an Abstract Execution Model (AEM) and a Concrete Exe-
cution Model (CEM). The AEM describes abstract conditions
for convergence and divergence events. For example, systems
like ZooKeeper and MongoDB require quorum before they
can accept client requests that could cause divergence be-
tween replicas. The AEM for these systems thus specifies
the conditions under which the systems quorum will have
been achieved (i.e., the majority of replicas are available).
The CEM maps the AEM conditions, as well as divergence
and convergence events, to API calls for a specific SUT. Mod-

ulo uses the AEM to generate schedules of abstract events
that alternate between divergence and convergence and the
CEM to execute these schedules on the SUT to search the
convergence code of the system for CFBs.

We ran Modulo on ZooKeeper, MongoDB, and Redis as
SUTs and found 11 CFBs, including 6 new ones that had not
been found before. For each of these bugs, Modulo provides
a schedule of inputs that deterministically triggers the bug. To
find these CFBs, we used 5 DRMs—1 for ZooKeeper, 1 for
MongoDB, and 3 for Redis, which range from 72-782 lines
of code in size.

We made the following novel contributions:

• As far as we know, Modulo is the first systematic test gen-
eration system, specifically designed to discover CFBs.

• We introduce the concept of Divergence Resync Models
(DRMs) that inject events specifically designed to elicit
and discover the existence of CFBs.

• We design, implement and evaluate Modulo, a system
that uses DRMs to find CFBs in real distributed systems.

• We perform an empirical study to demonstrate the ef-
fectiveness of the proposed approach by integrating the
prototype to 3 mature open-source distributed systems:
ZooKeeper, MongoDB, and Redis. Modulo was able to
find several critical CFBs in them.

§2 gives the overview of divergence and convergence, the
core concepts of Modulo and DRMs, and provides an exam-
ple CFB that Modulo can find. §3 describes the architecture
of Modulo and the 5 DRMs we use in this study. We then
document our experience and empirical results of applying
Modulo to mature open-source distributed systems in §4. Sub-
sequently, we present further discussion on Modulo compared
to previous proposals in §5 and discuss related work in §6.
Finally, we draw our conclusions in §7.

2 Overview

2.1 System Model
We model a distributed storage system as a set of replicas,
each of which is a key-value store. In an idealized system, the
storage system consists of one replica, and each write would
transition the key-value store in the system from one state to
the next. However, in the distributed implementation of the
system, each write is applied to one of the replicas, and then
the distributed storage system asynchronously replicates the
write to the remaining replicas until every replica converges
to the same state. Thus, at any given time, there can be sev-
eral replicas that differ from our idealized single replica. Our
target system should manage updates and resolve conflicts to
maintain the convergence of replicas. That is, our proposed

384    2022 USENIX Annual Technical Conference USENIX Association



approach is not designed to test those systems allowing multi-
master updates with gossip protocols where the convergence
property is not guaranteed.

Our approach injects failures into the system-under-test to
drive it into corner cases. Failures are erroneous states where
synchronization between replicas is interrupted, so conver-
gence does not occur without reverting to the normal state
via failure recoveries. Failures may be caused by several rea-
sons, such as crash of replicas, suspension of replicas, and
links failures between replicas. After recovering from failures,
convergence should occur and replicas must have identical
structure in terms of write sequences contained in their log.
Regarding the convergence property, we focus on those sys-
tems that are partially synchronous, although there is nothing
stopping us from applying Modulo to eventually consistent
systems such as Cassandra, which is left as a future work.
Quorum-based systems we tested with Modulo require a quo-
rum to elect a leader, but may ingest writes expecting failures
will be recovered soon. In contrast, Redis does not use leader
election, so it does not require a quorum to start servicing
clients. It lets the sync source to replicate any changes down
to the sync targets recursively.

2.2 Divergence and Convergence

We formally define divergence as the total number of writes
that need to be applied across all replicas to make their key-
value stores equal to the single idealized replica. Convergence
is simply the complement of divergence (i.e., convergence =
−divergence), where the replicas are said to be converged
when divergence is zero. Resynchronization (resync) is an op-
eration implemented by distributed storage systems to achieve
convergence after a failed replica recovers. Resync reduces di-
vergence by replicating writes from a replica to the recovered
replica and may implement conflict resolution to eliminate
write operations that prevent the replicas from achieving con-
vergence. Conflict resolution is particularly complex as it
usually results in data loss, which storage systems seek to
avoid unless absolutely necessary.

Divergence occurs in the natural course of the operation of
a distributed system as writes are applied to replicas. How-
ever, under normal circumstances, the amount of divergence is
usually small, as systems aim to replicate writes fairly quickly,
subject to standard networking and processing delays. How-
ever, failures may further increase divergence. For instance,
replica crashes and network outages can prevent replicas from
replicating operations for an extended period of time. This
will trigger defects related to assumptions about the resources
needed to track outstanding operations or about the length of
time that replicas may be unavailable. Repeated failures may
result in replicas changing leader or master roles, which can
result in conflicts, allowing Modulo to exercise the conflict
resolution logic of distributed systems.

A simple example illustrating the concept of divergence

x

A

B

C

x
x x

x x

W(k, v0)

k:v0

k:v0

k:v0

W(k, v1)

k:v1

k:v1

W(k, v2)

k:v2

k:v0

k:v1

k:v2

k:v2 k:v2

k:v2

k:v2

Divergence Convergence

❶

Client

❷

❸

❹

❺

Leader Failed delivery
x Failure Recovery

unreachable

Figure 1: Divergence and convergence. Replicas A, B and
C diverge their states upon failures of B and C. Since the
leader replica A is alive, the latest state of A can be replicated
to replicas B and C upon their recovery, resulting in the state
convergence.

and convergence is given in Figure 1. The divergence example
starts in an initial state where A is the leader replica and B
and C are non-leader replicas. At time 1 , a write of v0 to k,
W (k,v0), is sent by a client to A, A applies the operation and
then replicates it to B and C. At time 2 , B fails and, another
write, W (k,v1), is sent to A. Only A and C can apply the write,
thus there is some amount of temporary divergence among
replicas. At time 3 , C fails, and another write, W (k,v2), is
sent to A. Only A can apply the write, resulting in even more
divergence among the 3 replicas. Convergence can simply be
regarded as the decrease of divergence in the system. At time
4 , B recovers from the failure and rejoins the distributed sys-
tem. Most distributed systems implement resync procedures
that attempt to bring B up to date with the most recent state
on the other replicas. Thus, B can converge with A by repli-
cating W (k,v2). At time 5 , C recovers and resyncs with A
by replicating W (k,v2), resulting in full convergence among
the 3 replicas. Now, there is no divergence in the system. (i.e.,
all replicas have the same key-value stores).

2.3 An Example Bug

To illustrate the type of bugs Modulo will find, we give an
example of a new bug that Modulo discovered in ZooKeeper
version 3.4.11 [8]. ZooKeeper requires a quorum of replicas
to be online to operate, where quorum is defined as more than
one-half the total number of replicas. In each epoch, which
is a predefined period of time, the replicas in the quorum
elect one of them as the “leader.” All write operations are
serialized through the elected leader, and all other replicas
(called “followers”) replicate operations from the leader.

ZooKeeper replicas employ 2 mechanisms to save data
so that it can be recovered after a crash. First, the replicas
use a write-ahead transaction log that can be replayed after
a failure to recover the state of data that did not properly
persist. Transactions are appended into the log as they get
committed. Because all changes caused by transactions are

USENIX Association 2022 USENIX Annual Technical Conference    385



A

B

C

W(k3, v8)

k1:v1

❶Client Leader Failed delivery
x Failure Recovery

epoch4
x

x

x

x

epoch5

k1:v1
k3:v3

k1:v1
k3:v3

k1:v6
k3:v3

k1:v1
k3:v3

k1:v6→v1
k3:v3

resync

x
epoch6

resync
ΔSNAP

W(k5, v10)

k1:v1
k3:v3❸

❷

x

x
❺

❹

epoch7

resync
ΔDIFFk3:v8

k3:v8

k1:v1
k3:v8→v3
k3:v8

k5:v10

Log
Resync

k3:v8 k5:v10

replayed

replayed
❻ 

Bug: failed to 
truncate the log

Symptom: v8 is 
incorrectly restored

,x

TRUNC

k1:v6

x

k5:v10

k1:v1
k3:v3→v8
k5:v10

k1:v1
k3:v3

k5:v10
k5:v10

x
Snapshot{ }

Figure 2: Running example (ZooKeeper Bug#1). The replica B fails to truncate the past log (k3: v8) upon recovery with the
SNAP resync (see, §2.3). To observe this bug, another failure and recovery step is required right after the bug is triggered ( 6 ).
Modulo successfully formulated the exact sequences of steps to trigger this previously unknown CFB.

sequentially logged, replaying transactions in the log will
restore the state of a replica. Second, replicas periodically
clear the transaction log and persist a snapshot of in-memory
data to disk, which can then be reloaded into memory after a
failure. Taking a snapshot of memory is considerably slower
than writing transactions into the write-ahead log as they
occur, so ZooKeeper only takes snapshots after the transaction
log has grown to some point or after resync following a failure
depending on the resync logic. For example, in ZooKeeper
3.4.11, taking snapshot occurs on followers if they resync with
a new leader via SNAP or by sending a truncation request,
which are further explained in following paragraphs. The
example is replica C taking a snapshot after the resync at time
2 in Figure 2.

ZooKeeper uses 2 mechanisms to resync replicas after repli-
cas have recovered from a failure. One mechanism is DIFF
resync, where another replica transfers all missing operations
from its transaction log to the recovered replica. The other
mechanism is SNAP resync, where another replica sends its
entire key-value store to the recovered replica. ZooKeeper
picks DIFF resync if the leader’s log contains all transac-
tions required for resync. However, this can lead to problems
as old log entries may be purged by an earlier snapshot. If
ZooKeeper’s resync logic determines the leader does not have
all required transactions in its log, then the SNAP mechanism
will be selected. For example, in ZooKeeper version 3.4.11,
when followers resync with the leader that does not have a
log containing entries that are newer than its snapshot, the
SNAP mechanism is used (e.g., SNAP resync at time 3 in
Figure 2).

The base case that can happen during the resync is replicat-
ing operations that have not been replicated to those replicas
recovered from a failure. Moreover, it may be necessary for
a recovering replica to truncate its local write-ahead log and
remove conflicting operations. During resync, a leader sends
a truncation request (TRUNC) to a follower. Conflicting op-
erations may exist if one replica had been the leader and
committed some operations that had not yet been replicated

to other replicas before failing, and another replica is subse-
quently elected as the new leader and commits another set of
operations, resulting in two conflicting sets of operations.

We illustrate the example bug in Figure 2. Suppose we
initially have replicas A, B and C and the epoch is at 4. Both
A and B have the same set of key-value pairs k1 : v1, k2 : v2,
k3 : v3, k4 : v4 and k5 : v5. Also, their log contains entries for
all writes creating the key-value set. C has the same key-value
set except for k1 : v6 and its log additionally contains the entry
for the write, W (k1,v6). Currently, A and B are up and C is
down. B is the leader of the epoch 4.

At time 1 , A crashes and a write, W (k3,v8), is made,
which B accepts and commits 1. Then, B crashes. At time 2 ,
A and C restart and resync using TRUNC. C restores its key-
value set by replaying its truncated log and takes a snapshot.
Note that neither A nor C has seen the write, W (k3,v8), yet
at this point. Then, A and C crash and B and C restart. C
becomes the new leader. At time 3 , because C has no log
entry newer than its snapshot, C resync with B using the
SNAP mechanism. Yet, C does not send a truncation request
to B, so B accepts and restores using the C’s snapshot but
fails to truncate the write, W (k3,v8), from its log, which is
the root cause of the bug. However, at this point, the bug is
not apparent yet. At time 4 , B crashes and another write,
W (k5,v10), is committed on C. Then, C crashes and B and C
restart. Now, C becomes the leader. At time 5 , B and C use
DIFF resync to replicate W (k5,v10) from C to B. At time 6 ,
B replays its log and restores k3 : v8, while C still has k3 : v3.
Because of the failure to truncate the log entry for k3 : v8 on
B, the replicas believe they have converged when in fact they
have not, and the system fails to reach convergence.

This example illustrates several key features of the CFBs
that Modulo is designed to discover. First, a long series of very
specific steps is required to trigger the bug—far larger than
are likely to happen simply due to randomized stress testing.
The series of steps is essentially the alternating sequence of

1W (k2,v7) injected at the epoch 3 and W (k4,v9) injected at the epoch 5
are not shown in the figure.

386    2022 USENIX Annual Technical Conference USENIX Association



Verification Result
A.X = B.X 
& B.X = C.X 
& C.X = A.X

Verification Result
A.X = B.X 
& B.X = C.X 
& C.X = A.X

Schedule 
Generator

Concrete 
Executor
Divergence: 
    [0,1,0]

Convergence:
    [A,C]

Modulo

CEM State 
Exploration

CEM System-Under-Test

1. Restart A
2. Restart C
3. Wait for 

Resync

Modulo Parameters:
- numOps
- numReplicas

Verification Result
A.X = B.X = C.X...

Schedule Files

DRM:

AEM State 
Exploration

AEM

CEM

AEM

1. Crash A 
2. Crash C
3. W(k1,v3)
4. Wait for 

Commit
5. Crash B

...

Schedule 1
Schedule 2...

Schedule 1
Schedule 2...

Schedule 1
Schedule 2

...

Figure 3: Modulo Architecture. Gray boxes are input and out-
put of Modulo. Blue boxes are Modulo components. Yellow
boxes are DRM components.

convergence and divergence that causes the CFB to surface.
Modulo specifically targets the generation of such sequences
using DRMs, which we discuss in Section 3. Second, because
the sequence is very deep, it would be very difficult to find
such bugs through a naïve search of the entire state space of
all the replicas. However, the root cause and nature of the bug
make it orthogonal to the detailed internal state of the replicas,
which can be influenced by internal events such as thread
interleaving and the order of lock acquisitions. Instead, it is
the generation of divergence and convergence events between
the replicas in ZooKeeper that triggers the bugs, which are
the events that Modulo seeks to explore. By focusing only
on controlling events related to divergence and convergence,
such as replica failure and recovery, Modulo is able to explore
deep sequences such as these without being constrained by
state explosion.

3 Modulo

As shown in Figure 3, Modulo consists of 2 core components:
a schedule generator and a concrete executor. To use Modulo,
the user provides a DRM and 2 parameters: numReplicas,
which indicates the number of replicas, and numOps, which
indicates the total number of writes that will be applied to
the SUT. Modulo then uses the DRM to produce a schedule
of divergence transitions (D→) and convergence transitions
(C →), which are then executed by the concrete executor on
the SUT. D→ cause more divergence in a system while C →
cause convergence among available replicas. After executing
each schedule, the concrete executor waits for the SUT to be
quiescent after pre-configured time duration. Then, it checks
whether all replicas in the SUT have converged (i.e., have
identical state) by reading values of each key and compare
those across replicas. Finally, the result is recorded in a file
for more detailed analysis.

A DRM contains 2 subcomponents: an Abstract Execution
Model (AEM) and a Concrete Execution Model (CEM). The

AEM describes the conditions under which C → and D→
may take place. For example, an SUT may require a quorum
of replicas to be available before write operations will be
accepted and divergence may occur, which would be specified
in the AEM. AEMs describe such requirements abstractly in
terms of the AEM state, given in Table 1, such that a single
AEM may be used to test multiple SUTs. For example, both
ZooKeeper and MongoDB require quorums, so an AEM that
models quorums is used to test both, while an AEM that does
not model quorums may be needed to test systems that do
not rely on quorum. The output of the schedule generator
in Modulo is a set of schedule files, which are consumed by
the concrete executor. We describe this further in §3.3. The
concrete executor uses the CEMs to map C → and D→ in
the schedules to concrete operations that drive a SUT into the
states dictated by the schedule. As such, CEMs are necessarily
specific to the SUT.

An AEM specifies a finite state machine of the system-
under-test and the CEM translates transitions in the AEM
into corresponding transitions on the system-under-test. The
user is required to abstract away unnecessary details in the
AEM to limit the state space being tested to interesting states.
The relationship between the AEM and the CEM can thus
be viewed as the AEM specifying the state space to test and
the CEM translating tests specified by that state space into
concrete tests to run on the actual SUT. Modulo exhaustively
explores the AEM’s finite state machine. Failures are detected
directly on the SUT when it fails to converge after a certain
amount of time. There are differences in the DRMs to test
each SUT differently. For instance, Redis’s DRMs need a way
to model the link failures and recoveries between pairs of
replicas, different from ZooKeeper’s and MongoDB’s DRM.

We describe the most generic form of AEMs and CEMs
below, which can be flexibly extended to more sophisticated
models. Table 1 and 2 are for the baseline AEM used for
ZooKeeper and MongoDB. Our baseline AEM abstract away
the role of replicas, but the leader is distinguished during
concrete execution of CEM to find out to which replica a
write should be injected. For more complex AEMs like the
one used for Redis, we need to extend states and transitions
of AEM to model the network link failures.

3.1 Abstract Execution Model

The AEM specifies a state machine, whose state space Mod-
ulo explores to produce the schedule of C → and D→. At
each state, Modulo systematically performs C → and D→
depending on whether the guard conditions specified in the
AEM are met or not. The guard conditions are boolean func-
tions over the state of the AEM. During D→, Modulo simu-
lates a client that sends zero or more write operations from
the sequence of write operations W : 〈wn|n ∈ {0..numOps}〉,
where numOps is the parameter specified as part of the test
configuration. The term replicaState is a vector of length

USENIX Association 2022 USENIX Annual Technical Conference    387



Variable Description

replicaState List of non-negative integer values. State of all replicas
that defines the latest write operation applied

onlineStatus List of boolean values. Status of the replica indicating
if the replica is online or offline

Table 1: AEM State Description.

numReplicas, with each element indicating the index of the
latest write operation in W that a particular replica has ob-
served. The term onlineStatus is also a vector of length
numReplicas, which stores the status of each replica as ei-
ther online, meaning that the replica is available, or offline,
meaning that the replica is unavailable because it has failed
for reasons such as a crash or a link failure.

Modulo performs C → and D→ on the AEM according to
the transition descriptions given in Table 2. For D→, Modulo
fails zero or more replicas, followed by zero or more write
operations from the write sequence (though obviously there
should be either non-zero replica failures or non-zero writes).
For example, consider the replicaState of a 3-replica system,
which can be represented by a tuple [RA,RB,RC] with each
element corresponding to a replica’s replicaState. Recall that
the replicaState is the index of the latest write that the replica
has ideally replicated. Thus, a divergence transition that ap-
plies a write to replica A, which is replicated to replica B,
will change the replicaState from [1,1,1], to [2,2,1]. Because
replica C did not replicate the write due to a failure, its repli-
caState does not increase. For C →, Modulo returns one or
more replicas back to operation and initiates resync. In cases
where resync is automatic, the AEM will simply model all
online replicas as achieving the latest write index. However,
some systems, like Redis, allow manual resync between a
subset of replicas, in which case the AEM may explore states
with different subsets of replicas resynchronizing. In general,
if the type of resync or failure that can occur depends on the
abstract AEM state, then the AEM model will specify the type
of resync or failure for each C → and D→ in the generated
schedules accordingly. If it does not, then the CEM will run
the SUT several times with the same schedule, trying out the
different SUT-specific failure and resync methods. The CEM,
which we discuss in §3.2, specifies many of the details on
how replica failures are caused and how Modulo can tell if
resync is complete.

Modulo’s schedule generator applies symmetry reduc-
tion [15] to remove schedules that have identical states. For
example, in a system with replicaState of [3,3,1], where repli-
cas A and B have replicated up to write #3 while replica C has
only replicated up to write #1, failing replica A or replica B is
symmetrical, so Modulo will only produce one schedule for
both of those cases. One notable caveat is that some systems,
such as ZooKeeper, distinguish one leader replica from the
others. We can extend AEMs in a straightforward way by

Transition Description

convergence replicaState: set each online replica’s write index
to the latest write that the replica can resynchronize to
onlineStatus: set one or more replicas to online

divergence replicaState: increase replica’s write index based on
number of writes applied
onlineStatus: set zero or more replicas to offline

Table 2: AEM Transition Description.

adding a state variable to track which replica is the leader, and
a leader and the non-leader will be considered not identical
for the purposes of symmetry reduction.

An AEM produces schedules for a CEM to interpret and
inject events to a SUT. The following is the schedule we used
to find our example ZooKeeper bug, which was generated by
using Q/C/Z-DRM (see §3.3) with the modulo parameters
numOps = 5 and numReplicas = 3. The example Figure 2
illustrates what happens between 5 and 10 . Note that we use
integer values to indicate the degree for divergence but to iden-
tify replicas for convergence (i.e., 0 for A, 1 for B and 2 for C).

D→: Divergence, C →: Convergence
1 D→ [0, 0, 1] // introducing divergence by making C
commit a write W (k1,v6) while other replicas are failed;
then fail C
2 C → [0, 1] // introducing convergence by recovering
failures of A and B and having them resync; C remains
failed
3 D→ [0, 1, 0]
4 C → [0, 1] // epoch 4 begins; B becomes a leader
5 D→ [0, 1, 0] // W (k3,v8) is committed on B
6 C → [0, 2] // resync TRUNC; C takes a snapshot
7 D→ [1, 0, 0] // skipped in the figure
8 C → [1, 2] // SNAP resync; truncation fails (Bug)
9 D→ [0, 0, 1] // W (k5,v10) is committed on C
10 C → [1, 2] // resync DIFF; Bug manifests
11 C → [0]

3.2 Concrete Execution Model

The purpose of a CEM is to translate the abstract C → and
D→ in the schedules generated from an AEM into concrete
actions that can be performed on an SUT, to drive it down
the individual schedules. For example, a D→ may indicate
that one of the replicas advances its write index while the
others do not, which the CEM may translate as failing 2
replicas and then injecting a write into the SUT. As such,
the concrete executor and CEM share some similarities with
concrete model-checkers, except that the Modulo’s concrete
executor only explores C → and D→ sequences specified by
the schedules generated by the AEM, and thus only control the
aspects of the concrete state that map onto the abstract state

388    2022 USENIX Annual Technical Conference USENIX Association



of the AEM, namely whether replicas are online or offline,
and what writes are replicated by each replica.

In most cases, C → and D→ can be mapped to a set of
SUT-specific APIs to write keys in the SUT and to check if
resync has completed. In some cases, CEMs may also need
to monitor log files to infer whether the certain aspects of
resynchronization, such as leader election, have completed.
Finally, in some extreme cases, we may need to instrument the
SUT itself to reveal such interfaces to the CEM. For example,
if we wanted to make the leader replica explicit when the
system does not provide such information, we can replace the
default leader election protocol with the one that can explicitly
report the result of the leader election to our tool. Different
SUTs have different requirements that must be met before
they can accept writes. For example, some systems require
a leader to be elected before they can ingest writes. These
requirements must also be encoded in the CEM so that writes
specified in the abstract schedule are correctly applied to the
concrete SUT.

For each type of transition specified by the AEM, the CEM
may have several ways of realizing that transition, allowing
multiple concrete test sequences to be generated from a single
abstract schedule. For example, some SUTs treat different
types of failures differently (i.e., replica crash vs a network
partition). The CEM may run the same schedule but select
a different failure type at each D→. Similarly, there can be
different options during C →. Another place where CEM may
have several options is what concrete set of writes, in terms
of key names and values, will be used to realize the abstract
writes in the AEM. In most cases, a set of unique values to a
small set of keys suffices.

Below we show how our Q/C/Z-DRM’s CEM in-
terprets and injects events into a SUT for realizing
divergence and convergence transitions to manifest
our example bug. setData(<k>,<v>) sets <k> to <v>.

To realize, D→ [0, 1, 0]:
1 Crash A // no need to crash C, as it is already down
2 setData(<k3>,<v8>) to B
3 Wait for commit on B
4 Crash B

To realize, C → [0, 2]:
1 Restart A
2 Restart C
3 Wait for resync completion

3.3 DRM Examples

Overview. Table 3 shows the description of DRMs we have
implemented to test ZooKeeper, MongoDB, and Redis in our
experiments. We name the DRMs according to the following
format: The first letter indicates whether the SUT requires a
quorum of replicas (i.e., more than one-half of the replicas
must be online) to receive write requests or not. Our DRM

models support both systems that require quorum (Q) and
those that are stand-alone (S). The second is how replica fail-
ures are injected in the model. For failure methods, Modulo
can forcibly kill replicas with the signal SIGKILL to simulate
crash failures (C), suspend replicas with the signal SIGSTOP
to simulate systems stalled due to a sudden burst of heavy load
(S), prevent replicas from communicating to simulate link fail-
ures (L) or decommission replicas from a cluster to simulate
replica replacement (D). The third is which SUT it is writ-
ten for, either ZooKeeper (Z), MongoDB (M), or Redis (R).
Models are named using the scheme <quorum_requirement>
/<failure_modes>/<SUT>.

Also, the user-specified portion of each DRM is presented
in Table 3. We had to manually write between 72 to 782
lines of code, which is the result of the effort trying to re-
duce the manual effort required for each DRM. We put the
majority of the code overlapped across DRMs into library
or template classes that users can use or extend. We believe
we can further reduce the number of codes to write manually.
Even for S/CL/R-DRM which required the largest codes for
us to write has a large portion of the code that can be further
implemented as a library or a template class. Therefore, we
think the manual effort required to use DRMs is not heavy
and it can become even lighter as the library and templates
get mature.

Methodology. In implementing DRMs, we learned a couple
of key lessons. First, one should write DRMs in a top-down
approach. Think about the most general behavior first. Then,
one can extend it by inheriting the most part while overriding
only for differences. By doing so, users can reduce the amount
of the code they need to write significantly. For instance, write
a DRM that injects only one type of failure first. Then, users
can write a DRM that can inject multiple types of failures by
reusing many lines of code.

Second, focus on the behavior that matters to find target
bugs. Users may have a specific type of CFBs they want
to find foremost. For instance, ZooKeeper has suffered from
errors in transaction log handling. To create more complicated
cases, crashing and restarting is important because transaction
log is backed by files where a new file is created everytime a
new epoch begins. However, focusing on crash failures may
not be effective for other systems that rely heavily on full
resync using a single transaction log file or that may always
use a snapshot resync. For those systems, exploring various
network partition failures may be more effective.

Third, pay attention to configuration parameters. Dis-
tributed systems rely on various configuration parameter val-
ues and their behaviors depend on them. For example, Redis
maintains a log of transactions failed replicas missed for a
certain timeout period in case a failed replica comes back.
Normally, this speeds up resync if the replica returns before
the timeout. Modelling divergence behavior to wait longer
than the timeout before triggering resync will cause the log to
be prematurely discarded and replication fail silently without

USENIX Association 2022 USENIX Annual Technical Conference    389



attempting to use full resync or SNAP resync.
We now describe some interesting aspects of some models

we built in more detail below.

Q/C/Z-DRM. This model is used for ZooKeeper, which re-
quires a quorum of replicas to be online to start servicing
requests. This DRM only models crash failures. Since a quo-
rum is required, a D→ is only allowed when enough replicas
to form a quorum are online, but at the same time C → are not
enabled when all replicas are online because there is no diver-
gence to resolve. This model simply uses kill -9 to send a
SIGKILL signal, simulating crash failures. Since a quorum is
required, the model is restricted in that it must ensure a quo-
rum of replicas is available before it can start injecting write
operations, otherwise the write operation will be rejected by
the SUT. Also, after C →, it needs to pause before executing
the next D→ in order to ensure that resync is complete. In
ZooKeeper prior to version 3.5, log messages are scanned to
confirm the existence of a leader that guarantees the resync
completion. As of 3.5, it is not the case, so we use timeout.

Q/C/M-DRM. We reuse the same AEM as the Q/C/Z-
DRM’s. This demonstrates how AEMs can be reused for
different SUTs. To confirm the resync completion, we use
an MongoDB API call to query the internal document,
“replSetGetStatus,” to retrieve the timestamp of the lat-
est transaction committed on each replica. Then, we wait until
those timestamps of every replica becomes same. In case
replicas never converge, potentially due to a CFB, it uses an
internal time out.

S/S/R-DRM. This DRM does not require a quorum to start
servicing clients. It models a chain replication where any
replica can become a sync source and a sync target 2. Any
write committed by a sync source will be replicated to its
sync targets. Sync targets cannot have more than one sync
source, but sync source can have multiple sync targets. This
DRM considers suspend failures instead of crash failures.
Also, this DRM starts with an initial state where no replica
is connected with another replica. For recovery, we check if
the replica is connected with another one and, if not, then
we establish new links with other replicas. This model uses
kill -STOP and kill -CONT to suspend and resume Re-
dis processes, respectively. To confirm the completion of
resync, this model employs the hybrid of 2 methods. First, it
uses the info API call to read the master_link_status,
master_sync_in_progress, aof_rewrite_in_progress
and rgb_bgsave_in_progress variables that indicate
whether resync is complete. Second, we found that just rely-
ing on these variables can cause the CEM to miss some cases
when resync is complete. Thus, the CEM also uses a timeout
to ensure forward progress. We believe this reduces unneces-
sarily long timeout, and demonstrates how flexible Modulo

2See: https://redislabs.com/ebook/part-2-core-concepts/
chapter-4-keeping-data-safe-and-ensuring-performance/
4-2-replication/4-2-3-masterslave-chains/

can be. Unlike ZooKeeper and MongoDB where resync is
automatically triggered by recovering failures, Redis does not
automatically trigger resync after a new replica joins. Instead,
Redis requires a slaveof API call to be explicitly invoked to
trigger resync. Thus, this CEM explicitly has replicas estab-
lish links between sync sources and a sync targets using the
API call, as specified in schedules by its AEM.

S/L/R-DRM. This DRM models link failures only, causing
a replica stop replicating data from its sync source. When it
recovers a partitioned replica, it considers all possible scenar-
ios of re-establishing replication links. This model simulates
link failures using the Redis API command slaveof no one,
which tells a replica that it has no sync source, causing it to
stop replicating data from its sync source. When a link is
re-established, the slaveof API is used.

S/CL/R-DRM. This model uses both crash and link failures.
In addition, C → can pick one of 2 kinds of resync strategies.
One is online resync and the other one is offline resync. Online
resync is a built-in resync mechanisms of Redis that gets
triggered by re-establishing links between sync sources and
sync targets. Offline resync, on the other hand, is a manual
resync procedure that can be performed by an administrator.
An administrator may manually copy the snapshot of a sync
source to a sync target and then may have the sync target start
off on the snapshot copy. Because, it considers both types
of failures, it generates a larger state-space than the previous
AEMs.

3.4 Implementation
Modulo is implemented in Java and comprises roughly 8.4K
lines of code. Schedule generation is implemented in about
281 lines of code, and concrete execution takes about 766 lines
of code. Our DRMs total 7.3K lines of code where the AEMs
and CEMs consist of 2.8K and 4.6K lines of code, respectively,
including DRM examples, a library and templates.

A significant part of the DRM implementation consists
of SUT log parsing, API interaction and analysis code to
infer the state of SUT replicas. To give a concrete example,
ZooKeeper records whether a replica is a leader or not in its
log message file as follows:

LEADING - LEADER ELECTION TOOK - 230
Follower sid: 0 : info : ...
Synchronizing with Follower sid: 0 ...

Similarly, a follower replica will log the following messages:

FOLLOWING - LEADER ELECTION TOOK - 217
Resolved hostname: 127.0.0.1 to address: ...
Getting a diff from the leader 0x100000009

Thus, the DRM can scan log message files of ZooKeeper look-
ing for messages containing either LEADING or FOLLOWING

390    2022 USENIX Annual Technical Conference USENIX Association

https://redislabs.com/ebook/part-2-core-concepts/chapter-4-keeping-data-safe-and-ensuring-performance/4-2-replication/4-2-3-masterslave-chains/
https://redislabs.com/ebook/part-2-core-concepts/chapter-4-keeping-data-safe-and-ensuring-performance/4-2-replication/4-2-3-masterslave-chains/
https://redislabs.com/ebook/part-2-core-concepts/chapter-4-keeping-data-safe-and-ensuring-performance/4-2-replication/4-2-3-masterslave-chains/


Name AEM CEM Lines of Code
(Parameters) (AEM/CEM/Total)

Q/C/Z-DRM Only considers crash failures. Using kill -9 to send SIGKILL for crash failures. USER 54/59/113
(numOps = {1..5}, C → ensures the quorum exists before D→. Confirm the quorum exists before writes. LIB 339/620/959
numReplicas = {3..5}) Crashes all replicas at the end of D→ Using log scanning to confirm the leader for versions

before 3.5, but, as of 3.5, relying on timeout.

Q/C/M-DRM Same as Q/C/Z-DRM Using an API to retrieve “replSetGetStatus” USER 54/117/171
(same as above) and compare timestamps of the last transaction LIB 339/907/1246

on each replica to wait for resync completion

S/S/R-DRM Only considers suspend failures. Using kill -STOP and kill -CONT to simulate USER 33/39/72
(numOps = {1..2}, Considers all replicas initially partitioned. suspend and resume. Using the ‘info’ API and LIB 955/1240/2195
numReplicas = {4}) As recovering suspend failures, establish links timeout to wait for resync completion. Using

between the recovered replica and an online the ‘slaveof’ API to trigger resync
replica.

S/L/R-DRM Only considers link failures between The ‘slaveof’ API is used for link failures USER 0/110/110
(numOps = {1}, an arbitrary pair of replicas. and recoveries. LIB 955/1240/2195
numReplicas = {3}) Considers replicas initially connected Initially, forming links as a single

in a single ‘slave chain.’ slave chain.

S/CL/R-DRM Considers both link and crash failures. For the offline resync strategy, a script USER 405/377/782
(numOps = {1,2}, Considers two types of resync strategies: copying over snapshots and starting up LIB 955/1240/2195
numReplicas = {2}) online resync and offline resync. a replica with the snapshot is used.

Table 3: The summary/comparison of DRM Examples. The naming convention indicates the quorum requirement, failure modes,
and the target SUT. Below the name, we also present modulo parameter values we used. AEM and CEM give more detailed
descriptions of each subcomponent of the given DRM example. Only the differences of each DRM compared to the one above is
specified. The rightmost column shows the lines of code (LOC) for user-specified portion of DRMs (USER) and for a library and
templates users use (LIB)—only the part directly interfacing with user-specified portion is counted. Since each DRM may use
different template, there can be difference in LOC for LIB.

indicating which role they have switched to. The DRM needs
to keep track which replica is the leader in order to success-
fully inject write operations to cause divergence, because only
the leader replica can ingest write operations.

4 Evaluation

We present our results from running Modulo on 3 mature,
open-source, distributed storage systems: ZooKeeper, Mon-
goDB, and Redis.

4.1 Bug Discovery
In Table 4, we summarize the CFBs found and tabulate the
time Modulo took to find each of the bugs, as well as the num-
ber of transitions of the schedule manifesting the bug. More
detailed description is provided in Appendix A. Those bugs
labelled with “New!" had not been reported until we discov-
ered. Our evaluation study has been conducted between 2017
and 2020— ZooKeeper Bug #1 and ZooKeeper Bug #2 were
found in 2017, while ZooKeeper Bug #3, ZooKeeper Bug #4,
and ZooKeeper Bug #5 were discovered in 2020. We note that
some bugs are quite complex, requiring a specific sequence
of more than 10 transitions to trigger the bug. Also, DRM
state space is evaluated in terms of the number of schedules
generated for different DRMs and different modulo parameter

values. Lastly, we show the state coverage measurement over
time for the setting used to test the most recent ZooKeeper
version.

4.2 Testing Performance

Table 4 also shows how much time our prototype took to find
each bug mentioned above. The performance was measured
on a machine with an 2.83GHz Intel Core2 Quad CPU and
8GB of RAM. We found that the limiting factor for the testing
speed of Modulo is (1) the speed of the underlying distributed
system and (2) how easily Modulo can infer that the system
has converged after a C → so that it can inject a D→. In
general, distributed systems do not prioritize speed during
replication operations, and the lack of interfaces to infer when
they are done can lead to slower testing as in the case of
MongoDB. Without an interface that allows the CEM to tell
if convergence had been achieved, Modulo had to check the
timestamp of the keys on every replica to see if they were
the same. In addition, MongoDB can take a long time to
achieve convergence, forcing the CEM to use a very high
timeout value (10 minutes in our experiments). In contrast,
the CEMs for ZooKeeper and Redis can infer that convergence
has occurred in other ways that do not require either checking
or a timeout. We believe it should be possible to modify
MongoDB to allow Modulo to infer whether convergence has

USENIX Association 2022 USENIX Annual Technical Conference    391



Bug ID DRM Root Cause Elapsed Time/ # of
Time Schedule Trans.

ZooKeeper Bug #1(New!) [8] Q/C/Z-DRM Fail to truncate operations due to missing invocation 11 hours 33 sec 11
ZooKeeper Bug #2(New!) [9] Q/C/Z-DRM Fail to truncate operations due to file handling mistake 2 hours 39 sec 11
ZooKeeper Bug #3(New!) [10] Q/C/Z-DRM Fail to replicate operations due to an incomplete log 23 min 33 sec 7
ZooKeeper Bug #4(New!) [11] Q/C/Z-DRM Fail to truncate operations due to a pointer handling mistake 47 min 30 sec 10
ZooKeeper Bug #5(New!) [12] Q/C/Z-DRM Fail to truncate operations due to missing invocation 20 hours 37 sec 10

MongoDB Bug #1 Q/C/M-DRM Fail to truncate operations due to incomplete timestamp information 18 min 6 min 3
MongoDB Bug #2(New!) [36] Q/C/M-DRM Fail to replicate operations due to incomplete protocol design 4 hours 5 min 5

Redis Bug #1 [25] S/S/R-DRM Fail to invoke snapshot sync due to incomplete protocol design 6 hours 6 min 6
Redis Bug #2 [53] S/CL/R-DRM Fail to replicate operations due to lacking resync related information 11 min 14 sec 4
Redis Bug #3 [53] S/CL/R-DRM Fail to replicate operations due to lacking resync related information 2 min 6 sec 3
Redis Bug #4 [22] S/L/R-DRM Fail to truncate operations due to incomplete protocol design 2 min 33 sec 2

Table 4: CFB Analysis Summary.

DRM numOps numReplicas # of Schedules

Q/C/Z 1 3 6
2 3 80
3 3 1035
4 3 13381
5 3 172993
3 4 3428
3 5 54655

S/S/R 2 4 13586

S/L/R 2 3 263

S/CL/R 1 2 8
2 2 96

Table 5: DRM State Space Size (# of Schedules).

occurred without the needing to rely on timeouts and intend
to explore this in the future.

4.3 DRM State Exploration

Table 5 shows several examples of the DRM state space size
in terms of the number of schedules generated. As the number
of numOps or numReplicas increase, the number of sched-
ules generated quickly grows. The largest number of sched-
ules were generated for Q/C/Z-DRM with numOps = 5 and
numReplicas = 3 which we used to test ZooKeeper 3.4.11
and found the example bug. Nevertheless, as we reason in
§5, the state space for Modulo to search is much smaller than
explicit state model-checkers.

In Figure 4, we measured how state space coverage is in-
creased during our evaluation finding bugs in the version
of ZooKeeper, 3.7. We fixed numReplicas at 3 and varied
numOps from 1 to 4, which increases the time taken. For
each numOps setting, we ran tests separately one after an-
other. Bugs can be found by schedules with no particular
probability distribution. Considering this, it is important to
run each test exhaustively not to miss any bug. Our design
choice to split AEM and schedule generation from the con-

0

5

10

15

20

25

30

0.001 0.01 0.1 1 10

St
at

e
C

ov
er

ag
e

(%
)

Cumulative Time (hr)

ZooKeeper Bug #4
ZooKeeper Bug #5

Figure 4: DRM State Coverage graph. We show the state
coverage measurements from testing ZooKeeper 3.7. X-axis
shows the cumulative time and Y-axis shows the state cover-
age ratio based on the number of schedules executed. Also,
we mark when we found ZooKeeper Bug #4 and ZooKeeper
Bug #5.

crete test execution by CEM also enables easy parallelization.
Indeed, we when parallelize our tests, we get a linear increase
in throughput.

5 Discussion

Modulo is designed to detect CFBs efficiently by only ex-
ploring system states that are relevant to its DRMs, which
only model states and events relevant to C → and D→
state transitions. In contrast to traditional system model-
checking [27,29,35,41,42,44,52,61], Modulo is less complete,
meaning it may miss bugs that manifest due to events like lock
acquisition and thread interruption, as these are not captured
by C → and D→ in DRMs. However, by abstracting away
states and events not relevant to DRMs, Modulo is able to
explore considerably deeper bugs that, in some cases, take 10
or more transitions to manifest. Furthermore, Modulo finds

392    2022 USENIX Annual Technical Conference USENIX Association



these bugs in real, concrete systems rather than in abstract
models, making reproduction and confirmation of bugs much
simpler.

Compared to distributed systems random testing, such as
that employed by Jepsen [38], Modulo is more systematic,
complete and exhaustive. Random testing can find many cru-
cial bugs by randomly injecting external events; however,
it is neither systematic, complete nor exhaustive for the fol-
lowing reasons. First, it does not model how the underly-
ing distributed system works, including key concepts such
as divergence and convergence. Hence, random testing may
miss corner cases regarding divergence and convergence. Sec-
ond, fuzzing does not control nondeterministic events. For
instance, without delaying the timing of a crash-failure in-
jection, a replica may crash before ensuring a write injected
before the crash is committed. Third, random testing cannot
reproduce bugs the way Modulo can, making the analysis and
reproduction of bugs more challenging.

Modulo significantly reduces the severity of state explo-
sion by taking a simple abstract model and mapping it onto
transitions on a real concrete system. This allows Modulo to
find deeper bugs than systems that attempt to explore more
complex state spaces. To illustrate, Modulo’s AEM’s typically
model 3-replica systems with between 1 and 5 writes. Before
each write in the sequence, a replica can typically (1) do
nothing, (2) receive or replicate the write operation, or (3) fail-
ure/recovery (e.g. crash/restart). Since replicas may have an
arbitrary number of transitions where they may do nothing, we
typically cap the maximum number of transitions in a replica
an AEM may have at around 8. Thus we can estimate a rough
upper bound for the state space of such a system as 3(8×3)

or roughly 300 million. In practice, the number of reachable
states is far less, because replicas can accept writes only when
they are online, and other AEM-specific restrictions such as
quorum requirements further limit the transitions that replicas
may execute. In practice, Modulo’s targeted approach leads to
have AEMs produce anywhere from few schedules to tens of
thousands of schedules, which is about 10 to 105 of states. In
comparison, models checked by explicit state model checkers
may contain more than 1020 or even 10250 states [17]. Our
relatively small DRMs mean that Modulo is able to explore
more scenarios than traditional model checkers could in given
time, increasing the likelihood of finding target bugs, without
exploring states that are irrelevant to find those specific types
of bugs.

Meanwhile, we also note that a targeted approach can be
seen as a disadvantage for finding many of various types of
bugs. Indeed, as Modulo is targeted to find a specific type of
CFBs, the number of bugs we found from our evaluation is
relatively low. Nevertheless, we envision that the number of
bugs found by Modulo can be increased, as developers who
are more expert of each SUT can develop a larger collection
of DRMs that are more effective to explore corner cases.

We acknowledge that Modulo does depend on domain

knowledge of the system-under-test to specify DRMs, and
this would also be required to apply Modulo to other types of
distributed systems. In our experience, a single user without
previous experience may conservatively take about 2 weeks
to learn about the system-under-test and 2 weeks to write the
first DRM. When we first applied Modulo to Redis, using
the same model as ZooKeeper and MongoDB did not lead to
bugs, because Redis, started as an in-memory key-value store,
has a simpler persistent storage mechanism. Subsequently,
we found exploring suspend or link failures enabled Mod-
ulo to trigger more complex functionality. Modulo’s method-
ology, abstraction and concrete execution, is not necessar-
ily restricted to key-value stores but can be applied to other
distributed systems. Paxos-based systems can be effectively
tested using Modulo by modelling message/thread interleav-
ing alongside failure injections.

Our main limitation is that the schedules generated by the
abstract model must be run on the real SUT, which executes
much slower than an abstract model would. In addition, many
operations require pauses and timeouts before they can com-
plete. For example, a system may not consider a replica failed
until a certain time has passed, and leader election must com-
plete after replicas recover before writes can be ingested by
the system. Since they are not always possible to avoid, in
practice we find that these timeouts are the ultimate limit on
how fast Modulo can find bugs. We think virtualizing clocks
and fast-forwarding time may help [42].

6 Related Work

Distributed Systems Testing. Some previous proposals for
distributed systems testing employ state-space exploration.
However, their state-spaces are more focused on interleaving
concurrent internal events, such as thread scheduling or net-
work message delivery [20, 28]. Also, previous work presents
a tool for injecting network-partitioning failures for cloud sys-
tems [7], yet it does not inject crash failures, and it requires an
OpenFlow-capable hardware component to simulate network-
partitioning. Jepsen is an open-source testing tool that injects
various types of failures into distributed database systems [38].
However, unlike Modulo, Jepsen randomly generates inputs,
which implies that the state space for input sequences cannot
be efficiently reduced without missing corner cases and, in
some cases, reproducing bugs may be very difficult due to
the nondeterministic ordering of events that Jepsen does not
control. Furthermore, Jepsen does not record any information
about the state exploration, therefore it cannot provide any
guarantee about the state-space coverage. There has been a
work that focuses on interleaving low-level file system opera-
tions across distributed replicas along with crash failures [6],
but it is limited to crash injection only and does not test the
divergence and convergence behaviors of distributed systems.

Model-based testing systematically derives test cases from

USENIX Association 2022 USENIX Annual Technical Conference    393



an abstract model of the SUT [14, 37, 45, 48, 49, 54]. Dalal
et al. [18] devised a method that can generate various input
parameter values for tests from the abstract model called the
Test Data Model. A technique that can derive test cases for
system testing from an UML statechart was developed by
Offutt et al. [47]. Also, Gargantini et al. [24] propose to use
model checking to derive test cases from an abstract model.
In addition, Andrews et al. [13] came up with a technique that
models a web application as a finite state machine to generate
tests. Also, Yang et al. [63] applied model-based testing to
find security flaws in about 500 implementations of OAuth
2.0. More recently, Davis et al. [19] used model-based test-
ing to ensure specification-implementation conformance of
distributed systems. However, previous proposals for model-
based testing do not look for CFBs. Also, none of the existing
model-based studies test the divergence and convergence of
replicated distributed storage systems as the SUT.

Distributed Systems Model Checking. Model checking has
been extensively studied and used to prove the correctness of
complex systems and to find bugs in them. Clarke and Emer-
son [16] were the first to propose model checking, which
exhaustively explores the state space of abstract models spec-
ified in temporal logic. Dill developed a model checker called
Murphi [21], which is used to prove the correctness of various
systems, including distributed shared memory systems. SPIN
is another popular abstract model-checking tool [30]. More
recently, Lamport [40] developed TLA+, a specification lan-
guage, and TLC, a model checker for TLA+, which has been
used by Amazon, showing the practicality of model checking
in the industry. Nevertheless, abstract model-checking cannot
find bugs in implementations directly.

Concrete model-checking is used to employ an implemen-
tation as a model to explore directly. Musuvathi et al. [44]
proposed a concrete model-checker using implementations
as the model to verify. Godefroid [26] also proposed the
same idea around the same time. Killian et al. [35] devised
a technique that enables checking for not only safety prop-
erties but also liveness properties. Lin et al. [42] developed
a black-box concrete model-checker that does not need to
know about the source code by interposing events at the in-
terface layer between the target system and the underlying
operating system. Model checking not only proves the cor-
rectness of the system but also predicts if the implementation
execution is driving the system to faulty states, steering the
system execution away to prevent this [61]. Simsa et al. [52]
explored the generalization of concrete model-checking to
provide the flexibility for determining the level of controls
for nondeterminism. Recently, concrete model-checkers have
been improved to detect deep bugs by exploring scenarios
involving multiple failures [41, 43]. Unlike Modulo, previous
concrete model-checkers explore various tightly controlled
sequences of concurrent internal events.

7 Conclusion

Modulo mitigates the traditional state-explosion problems
of systematic model-checking approaches to find CFBs by
abstracting away all states and state transitions that are not re-
lated to the concepts of convergence and divergence. Modulo
applies schedules derived from state explorations of small ab-
stract models of such systems to real distributed systems. Our
work identified several factors that lead to such bugs, which in-
clude (1) employing several resync or failure-handling mech-
anisms whose interactions are difficult to foresee, (2) hard
limits or inadequate designs for handling large amounts of
divergence, and (3) assumptions about length of time that
replicas may have failed and failures that span events like
leader transitions. While it is beneficial to generate counter-
examples that trigger the bugs on real systems, we find that
this also slows down the speed at which Modulo can find bugs,
as it must examine the state of the system at to determine if
it can inject the next input or not, and it must wait for the
distributed system itself to complete its replication operations
before adding divergence.

Acknowledgments

We thank the anonymous reviewers and our shepherd, Nathan
Bronson, for their wonderful guidance and feedback. We also
thank Ashvin Goel and Eyal de Lara for their helpful com-
ments. This research was supported by NSERC Discovery
Grant RGPIN-2018-05931, a Canada Research Chair, and
NSF CNS-1749711.

References

[1] Apache HBase. https://hbase.apache.org.

[2] Couchbase Server. https://www.couchbase.com.

[3] MemcacheDB. http://memcachedb.org.

[4] MongoDB. https://www.mongodb.com/.

[5] Riak. http://basho.com/products.

[6] Ramnatthan Alagappan, Aishwarya Ganesan, Yuvraj Pa-
tel, Thanumalayan Sankaranarayana Pillai, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Corre-
lated crash vulnerabilities. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’16, pages 151–167, Berkeley,
CA, USA, 2016. USENIX Association.

[7] Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta,
and Samer Al-Kiswany. An analysis of network-
partitioning failures in cloud systems. In Proceedings of

394    2022 USENIX Annual Technical Conference USENIX Association

https://hbase.apache.org
https://www.couchbase.com
http://memcachedb.org
https://www.mongodb.com/
http://basho.com/products


the 12th USENIX Conference on Operating Systems De-
sign and Implementation, OSDI’18, pages 51–68, Berke-
ley, CA, USA, 2018. USENIX Association.

[8] anaud. Synchronization code on the follower does not
properly truncate uncommitted write resulting in data
inconsistency, 2017. https://issues.apache.org/
jira/browse/ZOOKEEPER-2945.

[9] anaud. The truncate() function in filetxnlog.java may
fail to properly remove an uncommitted write resulting
in data inconsistency, 2017. https://issues.apache.
org/jira/browse/ZOOKEEPER-2946.

[10] anaud. Convergence fail when a follower tries to
resync with a leader having incomplete commitlog,
2020. https://issues.apache.org/jira/browse/
ZOOKEEPER-3972.

[11] anaud. Convergence fails when a follower missed the
committedlog synching with the leader if it was an
old leader and the leader falls back to send snapshot.,
2020. https://issues.apache.org/jira/browse/
ZOOKEEPER-3946.

[12] anaud. truncate in filetxnlog.java is buggy and fails
to correctly truncate a file containing a single transac-
tion only the follower saw, 2020. https://issues.
apache.org/jira/browse/ZOOKEEPER-3947.

[13] Anneliese A. Andrews, Jeff Offutt, and Roger T. Alexan-
der. Testing web applications by modeling with FSMs.
Softw. Syst. Model., 4(3):326–345, July 2005.

[14] Lionel C. Briand and Yvan Labiche. A UML-based
approach to system testing. In Proceedings of the 4th
International Conference on The Unified Modeling Lan-
guage, Modeling Languages, Concepts, and Tools, UML
’01, pages 194–208, London, UK, UK, 2001. Springer-
Verlag.

[15] E. M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla.
Symmetry reductions in model checking. In Alan J. Hu
and Moshe Y. Vardi, editors, Computer Aided Verifica-
tion, pages 147–158, Berlin, Heidelberg, 1998. Springer
Berlin Heidelberg.

[16] Edmund M. Clarke and E. Allen Emerson. Design and
synthesis of synchronization skeletons using branching
time temporal logic. In Dexter Kozen, editor, Logics
of Programs, pages 52–71, Berlin, Heidelberg, 1982.
Springer Berlin Heidelberg.

[17] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan
Lu, and Helmut Veith. Progress on the state explosion
problem in model checking. In Informatics - 10 Years
Back. 10 Years Ahead., page 176–194, Berlin, Heidel-
berg, 2001. Springer-Verlag.

[18] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M.
Lott, G. C. Patton, and B. M. Horowitz. Model-based
testing in practice. In Proceedings of the 21st Interna-
tional Conference on Software Engineering, ICSE ’99,
pages 285–294, New York, NY, USA, 1999. ACM.

[19] A. Jesse Jiryu Davis, Max Hirschhorn, and Judah
Schvimer. Extreme modelling in practice. Proceed-
ings of the VLDB Endowment, 13(9):1346–1358, May
2020.

[20] Pantazis Deligiannis, Matt McCutchen, Paul Thom-
son, Shuo Chen, Alastair F. Donaldson, John Erickson,
Cheng Huang, Akash Lal, Rashmi Mudduluru, Shaz
Qadeer, and Wolfram Schulte. Uncovering bugs in dis-
tributed storage systems during testing (not in produc-
tion!). In Proceedings of the 14th Usenix Conference
on File and Storage Technologies, FAST’16, pages 249–
262, Berkeley, CA, USA, 2016. USENIX Association.

[21] David L. Dill. The Murphi verification system. In Pro-
ceedings of the 8th International Conference on Com-
puter Aided Verification, CAV ’96, pages 390–393, Lon-
don, UK, UK, 1996. Springer-Verlag.

[22] fdingiit. Questions about potential data inconsistency
/ unexpected FSYNC base on 4.0.2, 2017. https://
github.com/antirez/redis/issues/4407.

[23] Camille Fournier. leader/follower coherence issue when
follower is receiving a diff, 2010. https://issues.
apache.org/jira/browse/ZOOKEEPER-962.

[24] Angelo Gargantini and Constance Heitmeyer. Using
model checking to generate tests from requirements
specifications. SIGSOFT Softw. Eng. Notes, 24(6):146–
162, October 1999.

[25] GeorgeBJ. Replication inconsistent issue, 2015. https:
//github.com/antirez/redis/issues/2694.

[26] Patrice Godefroid. Model checking for programming
languages using Verisoft. In Proceedings of the 24th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’97, pages 174–186,
New York, NY, USA, 1997. ACM.

[27] Rachid Guerraoui and Maysam Yabandeh. Model check-
ing a networked system without the network. In Pro-
ceedings of NSDI’11: 8th USENIX Symposium on Net-
worked Systems Design and Implementation, page 225,
2011.

[28] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Al-
varo, Joseph M. Hellerstein, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, Koushik Sen, and Dhruba
Borthakur. FATE and DESTINI: A framework for cloud

USENIX Association 2022 USENIX Annual Technical Conference    395

https://issues.apache.org/jira/browse/ZOOKEEPER-2945
https://issues.apache.org/jira/browse/ZOOKEEPER-2945
https://issues.apache.org/jira/browse/ZOOKEEPER-2946
https://issues.apache.org/jira/browse/ZOOKEEPER-2946
https://issues.apache.org/jira/browse/ZOOKEEPER-3972
https://issues.apache.org/jira/browse/ZOOKEEPER-3972
https://issues.apache.org/jira/browse/ZOOKEEPER-3946
https://issues.apache.org/jira/browse/ZOOKEEPER-3946
https://issues.apache.org/jira/browse/ZOOKEEPER-3947
https://issues.apache.org/jira/browse/ZOOKEEPER-3947
https://github.com/antirez/redis/issues/4407
https://github.com/antirez/redis/issues/4407
https://issues.apache.org/jira/browse/ZOOKEEPER-962
https://issues.apache.org/jira/browse/ZOOKEEPER-962
https://github.com/antirez/redis/issues/2694
https://github.com/antirez/redis/issues/2694


recovery testing. In Proceedings of the 8th USENIX Con-
ference on Networked Systems Design and Implemen-
tation, NSDI’11, pages 238–252, Berkeley, CA, USA,
2011. USENIX Association.

[29] Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu, Jun-
feng Yang, and Lintao Zhang. Practical software model
checking via dynamic interface reduction. In Proceed-
ings of the Twenty-Third ACM Symposium on Operating
Systems Principles, pages 265–278. ACM, 2011.

[30] Gerard J. Holzmann. The model checker SPIN. IEEE
Trans. Softw. Eng., 23(5):279–295, May 1997.

[31] Hailin Hu. Inconsistent query results between primary
and secondary, 2017. https://jira.mongodb.org/
browse/SERVER-31663.

[32] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and
Benjamin Reed. ZooKeeper: Wait-free coordination
for internet-scale systems. In Proceedings of the 2010
USENIX Conference on USENIX Annual Technical Con-
ference, USENIXATC’10, pages 11–11, Berkeley, CA,
USA, 2010. USENIX Association.

[33] Jacky007. Data inconsistency when follower is receiv-
ing a diff with a dirty snapshot, 2012. https://issues.
apache.org/jira/browse/ZOOKEEPER-1549.

[34] Vishal Kathuria. Data inconsistency when the node(s)
with the highest zxid is not present at the time of leader
election, 2011. https://issues.apache.org/jira/
browse/ZOOKEEPER-1154.

[35] Charles Killian, James W. Anderson, Ranjit Jhala, and
Amin Vahdat. Life, death, and the critical transition:
Finding liveness bugs in systems code. In Proceedings
of NSDI’07: 4th USENIX Symposium on Networked
Systems Design and Implementation. NSDI, 2007.

[36] Beom Heyn Kim. Initial sync not replicating old
oplog entries may have a stale node give up resync
and permanently stay in recovering state, 2018. https:
//jira.mongodb.org/browse/SERVER-35774.

[37] Y. G. Kim, H. S. Hong, D. H. Bae, and S. D. Cha. Test
cases generation from uml state diagrams. IEE Proceed-
ings - Software, 146(4):187–192, Aug 1999.

[38] Kyle Kingsbury. Distributed systems safety research.
https://jepsen.io/.

[39] Avinash Lakshman and Prashant Malik. Cassandra: A
decentralized structured storage system. SIGOPS Oper.
Syst. Rev., 44(2):35–40, April 2010.

[40] Leslie Lamport. Specifying concurrent systems with
TLA+, 1999.

[41] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi
Joshi, Jeffrey F. Lukman, and Haryadi S. Gunawi.
SAMC: semantic-aware model checking for fast dis-
covery of deep bugs in cloud systems. In 11th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 14), pages 399–414, 2014.

[42] Haoxiang Lin, Mao Yang, Fan Long, Lintao Zhang, and
Lidong Zhou. MODIST: transparent model checking
of unmodified distributed systems. In Proceedings of
NSDI’09: 6th USENIX Symposium on Networked Sys-
tems Design and Implementation. NSDI, 2009.

[43] Jeffrey F. Lukman, Huan Ke, Cesar A. Stuardo, Riza O.
Suminto, Daniar H. Kurniawan, Dikaimin Simon, Sa-
tria Priambada, Chen Tian, Feng Ye, Tanakorn Leesa-
tapornwongsa, Aarti Gupta, Shan Lu, and Haryadi S.
Gunawi. FlyMC: Highly scalable testing of complex
interleavings in distributed systems. In Proceedings of
the Fourteenth EuroSys Conference 2019, EuroSys ’19,
pages 20:1–20:16, New York, NY, USA, 2019. ACM.

[44] Madanlal Musuvathi, David Y. W. Park, Andy Chou,
Dawson R. Engler, and David L. Dill. CMC: A prag-
matic approach to model checking real code. ACM
SIGOPS Operating Systems Review, 36(SI):75–88,
2002.

[45] Clementine Nebut, Franck Fleurey, Yves Le Traon, and
Jean-Marc Jezequel. Automatic test generation: A
use case driven approach. IEEE Trans. Softw. Eng.,
32(3):140–155, March 2006.

[46] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan
Munteanu, Marc Brooker, and Michael Deardeuff. How
Amazon Web Services uses formal methods. Commun.
ACM, 58(4):66–73, March 2015.

[47] Jeff Offutt and Aynur Abdurazik. Generating tests from
UML specifications. In Proceedings of the 2nd Interna-
tional Conference on The Unified Modeling Language:
Beyond the Standard, UML’99, pages 416–429, Berlin,
Heidelberg, 1999. Springer-Verlag.

[48] Jeff Offutt, Shaoying Liu, Aynur Abdurazik, and Paul
Ammann. Generating test data from state-based specifi-
cations. Softw. Test., Verif. Reliab., 13(1):25–53, 2003.

[49] Debra J. Richardson, Stephanie Leif Aha, and T. Owen
O’Malley. Specification-based test oracles for reactive
systems. In Proceedings of the 14th International Con-
ference on Software Engineering, ICSE ’92, pages 105–
118, New York, NY, USA, 1992. ACM.

[50] Salvatore Sanfilippo. Redis. https://redis.io/.

396    2022 USENIX Annual Technical Conference USENIX Association

https://jira.mongodb.org/browse/SERVER-31663
https://jira.mongodb.org/browse/SERVER-31663
https://issues.apache.org/jira/browse/ZOOKEEPER-1549
https://issues.apache.org/jira/browse/ZOOKEEPER-1549
https://issues.apache.org/jira/browse/ZOOKEEPER-1154
https://issues.apache.org/jira/browse/ZOOKEEPER-1154
https://jira.mongodb.org/browse/SERVER-35774
https://jira.mongodb.org/browse/SERVER-35774
https://jepsen.io/
https://redis.io/


[51] Andy Schwerin. Multi-updates may fail to detect
replica set primary step-down, leading to inconsis-
tency., 2014. https://jira.mongodb.org/browse/
SERVER-12516.

[52] Jiri Simsa, Randy Bryant, and Garth Gibson. dBug:
Systematic evaluation of distributed systems. In Pro-
ceedings of the 5th International Conference on Sys-
tems Software Verification, SSV’10, page 3, USA, 2010.
USENIX Association.

[53] soloestoy. Redis 4.x PSYNC2 & RDB: data
inconsistency between master and slave, bug lo-
cated, 2017. https://github.com/antirez/redis/
issues/4316.

[54] Phil Stocks and David Carrington. A framework for
specification-based testing. IEEE Trans. Softw. Eng.,
22(11):777–793, November 1996.

[55] Jeremy Stribling. Missing data after restart-
ing+expanding a cluster, 2011. https://issues.
apache.org/jira/browse/ZOOKEEPER-1319.

[56] Jeremy Stribling. Data inconsistencies and unex-
pired ephemeral nodes after cluster restart, 2012.
https://issues.apache.org/jira/browse/
ZOOKEEPER-1367.

[57] Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Feinberg,
Chinmay Soman, and Sam Shah. Serving large-scale
batch computed data with project Voldemort. In Pro-
ceedings of the 10th USENIX Conference on File and
Storage Technologies, FAST’12, pages 18–18, Berkeley,
CA, USA, 2012. USENIX Association.

[58] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna
Kotla, Mahesh Balakrishnan, Marcos K. Aguilera, and
Hussam Abu-Libdeh. Consistency-Based Service Level
Agreements for Cloud Storage. In The 24rd ACM Sympo-
sium on Operating Systems Principles (SOSP), Novem-
ber 2013.

[59] Werner Vogels. Eventually consistent. Commun. ACM,
52(1):40–44, January 2009.

[60] Ryan Witt. Secondary keeps getting into an inconsistent
state, 2014. https://jira.mongodb.org/browse/
SERVER-13222.

[61] Maysam Yabandeh, Nikola Knezevic, Dejan Kostic, and
Viktor Kuncak. CrystalBall: Predicting and prevent-
ing inconsistencies in deployed distributed systems. In
NSDI, volume 9, pages 229–244, 2009.

[62] Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray,
Gian Merlino, and Deep Ganguli. Druid: A real-time
analytical data store. In Proceedings of the 2014 ACM

SIGMOD International Conference on Management of
Data, SIGMOD ’14, pages 157–168, New York, NY,
USA, 2014. ACM.

[63] Ronghai Yang, Guanchen Li, Wing Cheong Lau, Ke-
huan Zhang, and Pili Hu. Model-based security testing:
An empirical study on OAuth 2.0 implementations. In
Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, ASIA CCS
’16, pages 651–662, New York, NY, USA, 2016. ACM.

[64] Christian Ziech. Data loss after truncate on transac-
tion log, 2012. https://issues.apache.org/jira/
browse/ZOOKEEPER-1489.

A Bug Description

A.1 ZooKeeper Bugs
We discovered 5 new bugs in ZooKeeper by finding 2 new
bugs in version 3.4.11, 1 new bug in version 3.5.8 and 2 new
bugs in version 3.7.0. We reported them to the ZooKeeper
developers and reported bugs were designated as ZooKeeper
Bug #1, ZooKeeper Bug #2, ZooKeeper Bug #3, ZooKeeper
Bug #4 and ZooKeeper Bug #5 [8–12]. We got confirmation
for ZooKeeper Bug #1 and ZooKeeper Bug #3. ZooKeeper
Bug #1 is described in §2.3. All our experiments used 3 repli-
cas. Initially, all 3 replicas are online and synchronized with
a initial key-value set. Also, the Q/C/Z-DRM implementation
for ZooKeeper crashes all replicas after each D→ and im-
plements C → by restarting replicas in the quorum, which
automatically triggers resync between each replica and the
elected leader.

As described earlier, ZooKeeper implements 2 different
resync mechanisms: DIFF resync and SNAP resync. Conflict-
resolution logic often fails to correctly truncate transaction
logs when SNAP resync is used, which results in persistent
inconsistency. This problem is further exacerbated by an ap-
parent reluctance on the part of the developers to truncate
transaction logs, perhaps out of a conservative preference
not to lose data unless absolutely necessary, which results in
cases where logs should have been truncated but were not.
Other complexities, such as using multiple log files instead of
a single log file and incorrect assumptions about those files,
contributed to other bugs. We saw similar bugs are recurring
and stem from the similar portion of the resync implementa-
tion. It shows that the complexity of the resync mechanisms
in ZooKeeper has been the major source of CFBs.

A.2 MongoDB Bugs
We run Modulo on MongoDB version 3.0.0 and discovered
2 bugs. One was fixed in later versions of MongoDB by
upgrading their replication protocol, Replica Set Protocol
version), from Protocol Version 0 to Protocol Version 1. The

USENIX Association 2022 USENIX Annual Technical Conference    397

https://jira.mongodb.org/browse/SERVER-12516
https://jira.mongodb.org/browse/SERVER-12516
https://github.com/antirez/redis/issues/4316
https://github.com/antirez/redis/issues/4316
https://issues.apache.org/jira/browse/ZOOKEEPER-1319
https://issues.apache.org/jira/browse/ZOOKEEPER-1319
https://issues.apache.org/jira/browse/ZOOKEEPER-1367
https://issues.apache.org/jira/browse/ZOOKEEPER-1367
https://jira.mongodb.org/browse/SERVER-13222
https://jira.mongodb.org/browse/SERVER-13222
https://issues.apache.org/jira/browse/ZOOKEEPER-1489
https://issues.apache.org/jira/browse/ZOOKEEPER-1489


other one was new and we reported it on the MongoDB Bug
Database [36]. We used 3 replicas in the DRM and the same
initial state as we did with ZooKeeper.

The first MongoDB bug we discussed occurred because
the developers failed to anticipate the situation where a pri-
mary commits some operations that have not been replicated
to other replicas, operations only the primary is thus aware
of. Modulo found the bug and the bug had never previously
reported. However, the bug does not manifest on the latest
version of MongoDB. On further inspection, we found that
Replica Set Protocol Version 0, which had this bug, was re-
placed by Replica Set Protocol Version 1, which was imple-
mented in MongoDB version 3.2 and became the default
protocol after version 3.6. Thus, this particular bug was not
fixed directly by developers, but instead eliminated when the
afflicted protocol was replaced by a completely new protocol.
With Modulo’s bug report, we estimate that the bug could
have been fixed by changing 10’s of lines of code, but in-
stead was fixed when the entire protocol was re-implemented,
which required changing 12 files containing roughly 7.4K
lines of code.

The second bug demonstrates the perils of simultaneously
using several resync mechanisms. Having several resync
mechanisms allows MongoDB to select among them to im-
prove efficiency, but the mechanisms have slightly different
side effects, which, under the right circumstances, can com-
bine to put the system into an unrecoverable state.

A.3 Redis Bugs

Modulo found 4 CFBs [22, 25, 53] in Redis versions 2.8.0
and 4.0.0. Upon further examination, we found all had been
previously reported.

In Redis, crash failures always lead to the SNAP resync,
which simply replicates the entire state of the sync source to
the sync target. As mentioned earlier, this trivially guaran-
tees convergence since the sync target is now a mirror of the
sync source. To trigger more complex resync mechanisms,
Modulo required DRMs that could exercise other replication
and failure recovery mechanisms that Redis provides. Unlike
Zookeeper and MongoDB, this required the development of 3
different DRMs, and each DRM was responsible for finding
at least 1 CFB. We found it useful to have separate DRMs as
each DRM could separately exercise some of Redis’ features,
while combining them would have resulted in a larger state
space and more schedules to explore.

In terms of time and effort, Redis took the most: a novice
Redis user took a couple of weeks to initially write each
DRM, where most of the time was spent understanding Redis’
mechanisms and API. The Redis DRMs are also roughly 2-3
times larger and more complex than ZooKeeper and Mon-
goDB DRMs because replicas may specify any sync source
to resync from, giving more possibilities. Qualitatively, we
feel the effort to construct DRMs is similar to that of writing a

specification in a formal specification language such as TLA+,
which has been cited as an acceptable cost by developers at
Amazon [46]. The user needs to understand the important
properties of the system they want to test, and be able to ab-
stract them away from implementation details. In addition,
the user must also be able to reduce a system to a smaller
number of replicas and smaller number of keys to reduce the
state space. However, unlike model checkers such as TLA+,
which run on an abstract state machine representation of the
SUT, Modulo marries the advantages of a reduced state space
produced by the manual abstraction, with the ability to repro-
duce the bugs found using a counter-example of real inputs
that can be run on the concrete system.

398    2022 USENIX Annual Technical Conference USENIX Association



SoftTRR: Protect Page Tables against Rowhammer Attacks
using Software-only Target Row Refresh

Zhi Zhang1, Yueqiang Cheng2, Minghua Wang3, Wei He4,7, Wenhao Wang4,7 B,
Surya Nepal1, Yansong Gao5, Kang Li3, Zhe Wang6,7, and Chenggang Wu6,7

1CSIRO’s Data61, Australia
2NIO Security Research

3Baidu Security
4State Key Laboratory of Information Security, Institute of Information Engineering, CAS

5Nanjing University of Science and Technology, China
6State Key Laboratory of Computer Architecture, Institute of Computing Technology, CAS

7University of Chinese Academy of Sciences

Abstract
Rowhammer attacks that corrupt level-1 page tables to gain
kernel privilege are the most detrimental to system security
and hard to mitigate. However, recently proposed software-
only mitigations are not effective against such kernel privilege
escalation attacks.

In this paper, we propose an effective and practical
software-only defense, called SoftTRR, to protect page tables
from all existing rowhammer attacks on x86. The key idea of
SoftTRR is to refresh the rows occupied by page tables when
a suspicious rowhammer activity is detected. SoftTRR is mo-
tivated by DRAM-chip-based target row refresh (ChipTRR)
but eliminates its main security limitation (i.e., ChipTRR
tracks a limited number of rows and thus can be bypassed by
many-sided hammer [17]). Specifically, SoftTRR protects an
unlimited number of page tables by tracking memory accesses
to the rows that are in close proximity to page-table rows and
refreshing the page-table rows once the tracked access count
exceeds a pre-defined threshold. We implement a prototype
of SoftTRR as a loadable kernel module, and evaluate its
security effectiveness, performance overhead, and memory
consumption. The experimental results show that SoftTRR
protects page tables from real-world rowhammer attacks and
incurs small performance overhead as well as memory cost.

1 Introduction

Rowhammer is a software-induced dynamic random-access
memory (DRAM) vulnerability that frequently accessing (i.e.,
hammering) DRAM aggressor rows can induce bit flips in
neighboring victim rows. An attacker can hammer aggressor
rows to corrupt different types of sensitive objects on victim

rows without access to them, breaking memory management
unit (MMU)-based memory protection, achieving privilege
escalation [13,46,62] or leaking sensitive information [11,37].
Of the many sensitive objects that have been corrupted by
the rowhammer attacks, page table corruption is the most
detrimental to system security, making kernel privilege esca-
lation attacks the mainstream [57]. To date, kernel privilege
escalation attacks [13, 22, 46, 53, 59, 62] focus on corrupting
level-1 page table entry (L1PTE) and some of them have been
demonstrated to gain kernel privilege from unprivileged appli-
cations [13,46,62], or even from JavaScript in webpages [22].

Multiple software-only mitigation schemes [12, 34, 57] can
be used to mitigate the kernel privilege escalation attacks.
Compared to hardware defenses [30, 38, 40, 49], software-
only schemes have the appeal of compatibility with existing
hardware, allowing better deployability. However, existing
software-only mitigations require modifications to memory
allocator and they are not effective against all the kernel privi-
lege escalation attacks. Specifically, CATT [12] and CTA [57]
are vulnerable to a recent privilege escalation attack (PTham-
mer [62]) that targets L1PTE. ZebRAM [34] assumes that bit
flips occur in a victim row that is one-row from hammered
aggressor row(s), making itself unable to defend against (ker-
nel privilege escalation) rowhammer attacks where a victim
row is no less than 2-row from the hammered rows [32,62].
To this end, we ask:

Is there an effective and practical software-only defense that
protects page tables against rowhammer attacks?

Our Contributions. In this paper, we provide a positive an-
swer to the question. We propose a new software-only defense
that defends against all existing kernel privilege escalation
attacks on x86, called SoftTRR. SoftTRR is motivated by

USENIX Association 2022 USENIX Annual Technical Conference    399



a hardware defense, i.e., ChipTRR (known as TRR in the
DRAM standards [30, 40]). ChipTRR is designed to count
rows’ activations and refreshing adjacent rows to suppress
bit flips if the activation counts reach a pre-defined threshold.
ChipTRR was believed to eliminate the rowhammer effect
in present-day DDR4-based systems, until it was completely
circumvented by [17].

We observe that the root cause of failure of ChipTRR is that
it tracks a limited number of rows. Thus, bit flips are still pos-
sible when multiple rows are being hammered and the number
of hammered rows is larger than the tracked rows (i.e., many-
sided hammer [17]). SoftTRR addresses this limitation by
monitoring and tracking all rows neighboring (victim) rows
containing page tables. SoftTRR leverages MMU-enforced
virtual memory subsystem to frequently track memory ac-
cesses to any rows adjacent to page-table rows, and refreshes
page-table rows when necessary, making SoftTRR effective
in preventing rowhammer from breaking page table integrity.

Specifically, MMU is an essential component of modern
processors that supports OS kernel to enforce memory isola-
tion. With the assistance from MMU, the kernel, configures
page tables, mediates every memory access from user space,
and captures any unauthorized access that triggers a hardware
exception. On top of that, the kernel can capture the memory
access where relevant page tables have an unused rsrv bit set
(see page fault handler in Section 4.3). With this observation,
SoftTRR uses the kernel as the root of trust and frequently
configures page tables with the rsrv bit set to track memory
accesses to rows that neighbor rows of page tables. When
the tracked memory-access counters reach a pre-determined
limit, corresponding page-table rows will be refreshed. By
SoftTRR’s design, an adjacent or neighboring row can be
multiple-row from a page-table row, thus voiding the above
assumption of one-row-distance between victim and aggres-
sor rows made by ZebRAM [34]. In our implementation, the
adjacent rows are up to 6-row away from the aggressor rows,
the largest row distance that has been observed so far [32].

Our prototype implementation of SoftTRR is a loadable
kernel module (LKM) without any modification to the kernel.
The LKM has about 1700 source lines of code and it has
been deployed into three Linux systems where underlying
hardware have either DDR3 or DDR4 modules. We evaluated
SoftTRR-deployed systems in terms of security effective-
ness, performance, memory consumption and robustness. The
experimental results show that SoftTRR is effective in miti-
gating kernel privilege escalation attacks. Besides, SoftTRR
incurs low overhead on the tested benchmarks and its memory
consumption is within hundreds of KiB in a real-world use
case of LAMP (i.e., Linux, Apache, Mysql and PHP). We also
validate the robustness of a SoftTRR-enabled system using
system-call stress tests, results of which show that the system
runs as stable as a vanilla system.

In summary, the main contributions are as follows:
• We introduce SoftTRR to defend against rowhammer at-

tacks on page tables. Compared to prior works, SoftTRR is
an effective and practical software-only mitigation scheme.
• We implement a lightweight SoftTRR prototype to collect
page tables, track memory access, and refresh target page
tables by leveraging MMU and OS kernel features.
• We evaluate SoftTRR’s effectiveness against 3 representa-
tive rowhammer attacks, its performance overhead and mem-
ory consumption. The experimental results show that Soft-
TRR successfully protects page tables against the attacks, and
incurs negligible overhead and memory cost.

2 Background and Related Work

In this section, we first describe DRAM and its address map-
ping. We then present the rowhammer vulnerability as well
as its hardware and software defenses. Please refer to [42, 63]
for rowhammer surveys.

2.1 DRAM

The main memory of most modern computers uses DRAM.
Memory modules are usually produced in the form of dual
inline memory module (DIMM), where both sides of the
memory module have separate electrical contacts for mem-
ory chips. Each memory module is directly connected to the
CPU’s memory controller through one of the two channels.
Logically, each memory module consists of two ranks, corre-
sponding to its two sides, and each rank consists of multiple
banks. A bank is structured as arrays of memory cells with
rows and columns.

Every cell of a bank stores one bit of data whose value
depends on whether the cell is electrically charged or not.
As the charge stored in the cell disperses over time, every
cell’s charge must be restored or refreshed periodically in a
specified time period (i.e., tREFW), a typical value of which is
64 milliseconds (ms).
DRAM Address Mapping. The memory controller decides
how physical-address bits are mapped to a DRAM address.
A DRAM address refers to a 3-tuple of bank, row, column
(DIMM, channel, and rank are included into the bank tuple
field). As this mapping is not publicly documented on the
Intel processor platform, it has been reverse-engineered by
multiple works [44, 45, 55, 59].

2.2 Rowhammer Vulnerability

Kim et al. [33] are the first to perform a large scale study of
rowhammer on DDR3 modules, results of which have shown
that the vulnerability can be triggered by software accesses,
that is, frequently accessing rows of i+1 and i−1 (i.e., ag-
gressor rows) cause bit flips (i.e., charge leakage) in row i
(i.e., victim row).

400    2022 USENIX Annual Technical Conference USENIX Association



There are four hammer patterns in existing works. First,
double-sided hammer refers to a case where two adjacent rows
of the victim row are hammered simultaneously, which is the
most effective hammer pattern in inducing bit flips on DDR3
modules [46]. Second, single-sided hammer randomly picks
two aggressor rows in the same bank and hammers them [46].
Third, one-location hammer selects a single aggressor row for
hammer. This hammer pattern only applies to certain systems
where the DRAM controller employs an advanced policy (i.e.,
the closed-page policy) to optimize performance [21]. Last,
many-sided hammer chooses more than two aggressor rows
within the same bank for hammer. The aggressor rows are
usually separated by one row and two out of them are adjacent
to the victim row [17, 29].

2.3 Rowhammer Defenses

Hardware Solutions. Existing hardware solutions employed
by the industry can be summarized into three main categories.
The first is to decrease the DRAM refresh period [33] to re-
fresh all DRAM rows more frequently. For instance, three
computer manufacturers (HP [25], Lenovo [39] and Apple [3])
deployed firmware updates to decrease the refresh period from
64 ms to 32 ms. However, clflush-free rowhammer attacks [5]
still induce bit flips in the reduced refresh period. Decreasing
the refresh period by more than 7x can make the rowhammer
impossible but it will impose unacceptable overhead to the sys-
tems [33]. The second one is proposed by Intel [28] that lever-
ages Error Correcting Code (ECC) memory to correct single-
bit errors and detect double-bit errors. However, ECC has
been reverse engineered and is vulnerable to rowhammer [15].
The last is to track row’s activation count and various ap-
proaches have been proposed [30, 33, 38, 40, 43, 47–49, 60].
Among them, ChipTRR [30,40] was adopted by recent DDR4
manufacturers but it has been reverse-engineered and de-
feated [17, 23, 29]. None of other approaches are widely de-
ployed due to their limitations (e.g., significant area cost or
performance downsides) [7].
Software Defenses. Software defenses include both mit-
igation and detection techniques. As sensitive data is re-
quired to be within victim rows for exploitation, existing
mitigation techniques modify memory allocator and en-
force DRAM-aware memory isolation at different granular-
ity [9, 12, 34, 52, 54, 57]. CATT [12] implements DRAM
isolation between user and kernel memory. CTA [57] pro-
vides a dedicated DRAM region for level-1 page tables. Ze-
bRAM [34] isolates rows of sensitive data in a zebra pattern.
These defenses can prevent page tables from being hammered.
Albeit on different hardware, SoftTRR has an averaged over-
head of 0.75% on SPECint 2006 (see Appendix A), similar
to that of CATT [12] and CTA [57]. However, ZebRAM has
a much higher overhead of 4%–5%. ALIS [52] isolates DMA
memory to prevent the remote rowhammer attack [52] target-
ing a memcached application. RIP-RH [9] provides DRAM

isolation for local user processes.
Anvil [5] utilizes CPU performance counters to monitor

cache miss rate and detects a rowhammer attack, as typical
rowhammer attacks incur frequent cache misses. However,
Anvil is prone to false positives [12, 57]. Besides, its current
implementation cannot detect the PThammer attack [62]. The
other detection technique is RADAR [61]. As rowhammer
attacks exhibit recognizable rowhammer-correlated sideband
patterns in the spectrum of the DRAM clock signal, RADAR
leverages peripheral customized devices to capture and ana-
lyze the electromagnetic signals emitted by a DRAM-based
system.

3 SoftTRR: Software-only Target Row Refresh

We discuss threat model and assumptions in Section 3.1, de-
sign principles in Section 3.2 and design overview in Sec-
tion 3.3. Section 4 describes implementation details.

3.1 Threat Model and Assumptions

Our primary goal is to protect page tables and guarantee that
an adversary cannot corrupt them to gain kernel privilege
through rowhammer on x86 architectures. In our implementa-
tion of SoftTRR, we focus on protecting level-1 page tables
(L1PTs), the same goal as in CTA [57], because all exist-
ing page-table-oriented rowhammer attacks aim at corrupting
L1PTs. Even when higher levels of PTs are corrupted, they
are hard to be exploited (see details in CTA [57]). In spite of
that, SoftTRR can be extended to protect other levels of page
tables and we discuss it in Section 7.

We assume the kernel as the root of trust, and the kernel
module implementing SoftTRR is well protected. We con-
sider threats coming from both local adversaries and remote
adversaries. A local adversary resides in a low privilege user
process and thus can execute arbitrary code within her privi-
lege boundary. A remote adversary stays outside by launching
an attack, e.g., through a website with JavaScript.

The DRAM address mappings and in-DRAM address
remappings can be reverse-engineered using prior works [14,
44, 55, 59] and they are assumed to be available. Besides,
previous software-only rowhammer defenses [9, 12, 34, 57]
consider that hammering rowi only affects rowi+1 and rowi−1,
which however is not consistent with a recent work by Kim et
al. [32]. Particularly, they performed a comprehensive study
of 1580 DRAM chips (300 DRAM modules in total) from
three major DRAM manufacturers and found that bit flips can
occur in rows that are up to 6-row away from the hammered
rowi. SoftTRR by design protects rows of page tables from
being flipped by rows that are N-row away and its current
implementation allows that the distance between an adjacent
row and an L1PT row ranges from 1-row to 6-row, the largest
row distance observed by Kim et al. [32].

USENIX Association 2022 USENIX Annual Technical Conference    401



Flip

Page Table

Non Page-Table 

Page Table 
Collector 

Kernel
Page Table

collect

maintain

Page-Table & Adjacent Page
Page & DRAM Information

Page-Table Rows
Charge-Leak Counters

Adjacent Page
Tracer

trace
maintain

Row Refresher

refresh

DRAM Bank

SoftTRR Module

trigger

Figure 1: SoftTRR Overview. SoftTRR is a kernel module and has three main components. Page Table collector maintains
information about page-table pages and their adjacent pages in close proximity. Adjacent Page Tracer traces access to the
maintained adjacent pages and updates charge-leak counters for relevant rows of page-table pages. When the counters reach a
pre-determined limit, Row Refresher is triggered to refresh desired rows hosting page-table pages. In comparison, non-page-table
rows (highlighted in green) are vulnerable to bit flips.

3.2 Design Principles

SoftTRR follows the security and practicality design princi-
ples described below. The security principle is to guarantee
SoftTRR can defend against all existing rowhammer attacks
targeting page tables. The practicality principles aim to make
SoftTRR applicable to real-world systems.
• DP1: SoftTRR should be effective in protecting ALL page
tables. Without this completeness guarantee, an attacker can
gain kernel privilege by compromising the integrity of page
tables that are not protected by SoftTRR.
• DP2: SoftTRR should be compatible with OS kernels. It
neither modifies/adds kernel source code nor breaks kernel
code integrity through binary instrumentation, which hinders
its adoption in practice.
• DP3: SoftTRR should have small performance overhead to
a protected system.

3.3 Design Overview

SoftTRR, residing in the kernel space, collects all page ta-
bles, and monitors their entire life cycle from page-table cre-
ation to page-table release. For each collected page-table
page, SoftTRR identifies all its adjacent pages in DRAM and
traces memory accesses to the adjacent pages. Thus, Soft-
TRR is aware of which adjacent page is accessed. When the
traced access count reaches a pre-determined limit, SoftTRR
knows which page-table page is at the risk of being flipped
and promptly refreshes the page (satisfying DP1).

All existing software-only mitigation techniques (see Sec-
tion 2) deeply hack into the memory allocator to become

DRAM-aware and add extra allocation/deallocation con-
straints. Unlike them, SoftTRR only acquires offline domain
knowledge (e.g., DRAM address (re)mappings of physical ad-
dresses), without requiring a new memory allocator or chang-
ing legacy allocator logic (satisfying DP2).

When paging is enabled, memory accesses are performed
through page tables or relevant TLB entries, and SoftTRR
flushes TLB and configures page tables to trace memory ac-
cesses to those adjacent pages. Thus, the access to an adjacent
page raises a hardware exception, which is captured by Soft-
TRR for the tracing purpose. If no such access occurs, no
overhead is introduced. Thus, the accesses to non-adjacent
pages are at full speed, isolating the performance overhead
caused by the accesses to adjacent pages (satisfying DP3).

As shown in Figure 1, SoftTRR has three critical compo-
nents. Page Table Collector actively collects all page tables
and maintains their page and DRAM information. It also col-
lects and maintains adjacent pages. Besides being accessible
to unprivileged users, a page is considered as adjacent when it-
self or its corresponding page-table page is adjacent to (N-row
from) another page-table page. This is based on an observa-
tion from Zhang et al. [62]. In particular, rowhammer attacks
corrupting page tables are classified into two categories. For
explicit attacks [13,46], they require attacker-accessible mem-
ory adjacent to L1PT pages. For implicit attacks [62], they
only need mutual adjacency among L1PT pages.

Adjacent Page Tracer keeps a close watch over memory
accesses to collected adjacent pages, and maintains a charge-
leak counter for a row where a page-table page resides. If any
one row of adjacent pages has been accessed, the charge-leak
counters of nearby page-table rows are updated accordingly,
indicating that the page-table rows leak charge once.

402    2022 USENIX Annual Technical Conference USENIX Association



Row Refresher remains dormant if charge-leak counters do
not reach a pre-determined limit. If yes, a rowhammer attempt
is believed to be taking place and the above tracer triggers row
refresher, which will promptly refreshes desired rows whose
charge-leak counters reach the limit.

4 Implementation

As stated in Section 3.1, SoftTRR implements L1PT protec-
tion and a row of adjacent pages can be up to 6-row away
from a row of L1PT pages. Our prototype implementation is
a loadable kernel module (LKM) without modifications to the
kernel. The LKM consists of around 1700 source lines of code
and works with Ubuntu installation running a default Linux
kernel 4.4.211. Before we talk about the three aforementioned
components of SoftTRR, we first introduce important data
structures as below.

4.1 Data Structures
We reuse the kernel’s red-black tree structure [16], an effi-
cient self-balancing binary search tree that guarantees search-
ing in Θ(logn) time (n is the number of tree nodes). As
shown in Table 1, we have three red-black trees and a ring
buffer, i.e., pt_rbtree, adj_rbtree, pt_row_rbtree and
pte_ringbuf, respectively.

Specifically, pt_rbtree stores L1PT page information
while adj_rbtree stores information of pages that are ad-
jacent to L1PT pages. For the two trees, a physical page
number (PPN) is used as the node key and thus a new node
will be allocated when information of a new L1PT page or
adjacent page needs to be stored. Besides, pt_row_rbtree
stores DRAM information about L1PT pages. For this tree
node, row_index works as the node key and a node can have
one or more bank structures (i.e., bank_struct). One bank
structure stores bank_index that one or more L1PT pages
own (e.g., multiple L1PT pages share the same row of the
same bank). Also note that a page can span across multi-
ple banks [55] and thus an L1PT page can have multiple
bank_struct. pt_count records the number of L1PT PPNs
that are in the same row of the same bank. leak_count, short
for the charge-leak counter in Section 3.3, stores the number
of accesses to rows that are adjacent to a row of row_index in
the same bank. For a given DRAM module, we leverage a pub-
licly available alogrithm [55] to reverse-engineer its DRAM
address mapping, and embed the mapping into the kernel
before acquiring a physical page’s DRAM information. We
allocate each node of each tree using the slab allocator [10],
which is an efficient memory management mechanism in-
tended for the kernel’s small object allocation compared to
the buddy allocator.
pte_ringbuf stores information of leaf page table entries

(PTEs) that are collected by adjacent page tracer (see Sec-
tion 4.3). These PTEs point to either adjacent pages them-

selves or huge pages containing adjacent pages. If the adjacent
page is a 4 KiB page, the PTE is an L1PT entry. If the adja-
cent page is part of a huge page (i.e., 2 MiB or 1 GiB), the
PTE is either an L2PT entry or an L3PT entry. Each node
of pte_ringbuf is a structure that has three main fields also
shown in Table 1. Particularly, pte is a pointer to the leaf
PTE. vaddr is a virtual address referring to an adjacent page
or its corresponding huge page. mm is a pointer to a kernel
structure (i.e., mm_struct) about a process’s address space
where vaddr belongs. The adjacent page tracer combines
vaddr and mm to flush the TLB entry that stores the adjacent
page’s virtual-to-physical address mapping.

4.2 Page Table Collector

For user processes/threads that are already in the main
memory before our module is loaded, page table collec-
tor enumerates the list of task_struct to find every ex-
isting process/thread, as Linux kernel uses task_struct
for existing user processes/threads. It then performs page-
table walk for every virtual page in each valid virtual mem-
ory area (VMA) of each user process to collect informa-
tion of L1PT pages and their adjacent pages. Specifically,
pt_rbtree and pt_row_rbtree store distinct L1PT pages,
and their DRAM bank and row indexes, respectively. To build
adj_rbtree, the collector finds out all user pages that are
adjacent to L1PT pages in DRAM. It also selects all L1PT
pages from pt_rbtree that are adjacent to each other and
puts all PPNs pointed by selected L1PT pages’ valid entries
into adj_rbtree. For free pages that are adjacent to L1PT
pages and allocated for use later (e.g., a free page is allocated
and mapped to the user space right after the collector finishes
collecting all adjacent pages), the adjacent page tracer handles
them appropriately (see Section 4.3).

For L1PT pages that are dynamically allocated or freed
after the above collection, we perform dynamic inline hooks
to multiple kernel functions. Inline hook is called trampoline
or detours hook, which is a method of receiving control when
a hooked function is called. Dynamic kernel hook only re-
quires loading a kernel module without kernel recompilation
or binary rewriting, making itself easy to deploy in practice
(e.g., Kprobes, Kpatch [19, 35, 36]).

We leverage a library1 to hook two kernel functions,
i.e., __pte_alloc and __free_pages. __pte_alloc traces
newly allocated L1PT pages. __free_pages monitors dy-
namically released pages. The collector hooks these two func-
tions to update the three red-black trees as follows:
• For a newly allocated L1PT page, its page, bank and row
indexes will be updated into pt_rbtree and pt_row_rbtree,
respectively. If there are new user pages that are adjacent to
the L1PT page, they are added into adj_rbtree.

1https://github.com/cppcoffee/inl_hook

USENIX Association 2022 USENIX Annual Technical Conference    403



Data Structures Main Fields in A Node Descriptions
pt_rbtree PPN (key) A unique page frame number of an L1PT page.
adj_rbtree PPN (key) A unique page frame number of an adjacent page.

pt_row_rbtree

row_index (key) A row index of one or more L1PT pages.

bank_struct
bank_index A bank index of one or more L1PT pages.
pt_count The number of L1PT pages that have the same indexes of bank and row.
leak_count The number of accesses to rows adjacent to a row of row_index and bank_index.

pte_ringbuf
pte A pointer to a page table entry relevant to an adjacent page.

vaddr A virtual address relevant to an adjacent page.
mm A pointer to mm_struct relevant to a process where vaddr resides.

Table 1: Data structures used by SoftTRR.

• If an adjacent page is freed, it will be removed from
adj_rbtree.
• If an L1PT page is freed, it will be removed from
pt_rbtree. Also, the collector acquires a node in
pt_row_rbtree that has the freed page’s row index. Within
the node, pt_count in each bank_struct corresponding to
the freed page is decremented by one. If every pt_count
for the node becomes 0, then the node is deleted from
pt_row_rbtree. Besides, the freed page’s adjacent pages
in adj_rbtree are removed.

4.3 Adjacent Page Tracer
To trace memory accesses to adjacent pages at runtime, the
adjacent page tracer leverages page fault handler.
Page Fault Handler. A page fault is a type of hardware
exception. Whenever a user access to a virtual page violates
access permissions dictated by one PTE, a page fault arises
and will be captured by the MMU. As a response, the MMU
will switch the process context to the kernel, which invokes
the page fault handler to handle the fault based on an error
code. The error code is generated by hardware and there are
7 page-fault error codes [27]. For instance, when a memory
access to a virtual address that is marked as non-present in
the PTE (i.e., present bit is cleared), the access triggers a
non-present page fault with P bit in the error code set to 0.
To handle this page fault, the page fault handler can allocate
a new physical page for the virtual address and marks the
address as present in the PTE, the so-called demand paging.
Leverage Page Fault. The adjacent page tracer can trace the
memory access to a page by configuring flag bits in a PTE and
hooking the page fault handler (i.e., do_page_fault function
in the kernel space). As the memory access can be read,
write or instruction fetch, not every flag bit can be leveraged.
For instance, a physical page becomes read-only when its
corresponding PTE has RW bit cleared. Once write-access to
the page occurs, a page fault is generated with W/R bit of the
error code set to 1. Thus, we experimented with each flag bit,
results of which show that both present bit and rsrv bit in
a PTE can be used for the tracing purpose. Next, we discuss
why the tracer chooses rsrv bit rather than present bit.

Particularly, configuring present bit to trace the memory

access causes a kernel crash, as the kernel performs active
checks of present bit in a leaf PTE in multiple cases. For
instance, when a process is forking a new child process, the
kernel checks present bit in the process’s leaf PTEs. If one
of the PTEs points to a physical page that is traced, present
bit in the PTE is set to 0 by the tracer. When such a case
occurs to the kernel check, the kernel will abort, because the
tracer is unaware of when the forking occurs and it cannot
restore present bit to 1 to pass the kernel check.

On top of that, we observe that one PTE has multiple rsrv
bits in x86 which are unused and set to 0 by default. An access
to a page with one rsrv bit in the PTE set to 1 will trigger
a page fault and generate an error code with RSVD bit set to
1 (this RSVD error has been leveraged in prior works [2, 6,
8, 18, 56] for different purposes). In contrast to the present
bit check, the kernel does not check against leaf PTEs’ rsrv
bits. For instance, if an adjacent page is a part of a huge
page of 2 MiB, its leaf PTE is an L2PT entry and the kernel
does not inspect any rsrv bit in the entry. As the page table
management is a core component of the kernel, its code logic
remains relatively stable. Take a recent stable Linux kernel
version (i.e., 5.10.4) as an example, there is no check against
any rsrv bit, either. It is probably because that rsrv bits
remain unused in leaf PTEs. In our implementation, the tracer
chooses a rsrv bit, i.e., bit 51 in the PTE.

Trace Adjacent Page. Upon the tracer has configured rsrv
bits in relevant PTEs pointing to the adjacent pages or the
huge pages containing the adjacent pages, and flushed desired
TLB entries, subsequent access to an adjacent page or its huge
page will trigger a page fault. As do_page_fault is hooked,
the tracer captures a faulting (huge) page with an expected
error code of RSVD and collects complete DRAM informa-
tion from the faulting (huge) page. Thus, the tracer updates
leak_count of L1PT pages that are adjacent to either the
captured (huge) page or its leaf page-table page. As an L1PT
page may have multiple bank_struct, leak_count of each
bank_struct for the L1PT page should be updated accord-
ingly. If the leak_count reaches a pre-determined limit in
Figure 2, row refresher will be triggered (see Section 4.4).

We note that the tracer clears rsrv bit before transferring
control back to the user space to resume the memory access.
However, any subsequent access to the same adjacent page

404    2022 USENIX Annual Technical Conference USENIX Association



or its huge page is no longer traced as rsrv bit is cleared. To
address this issue, the tracer sets up a periodic timer to config-
ure rsrv bit in a fixed interval and thus traces the accesses as
frequently as possible. Specifically, when a timer comes, the
tracer leverages kernel’s reverse mapping feature to translate
a PPN in adj_rbtree to a set of virtual addresses, as a PPN
can be mapped to multiple virtual addresses. For each address,
the tracer performs page-table walk, sets rsrv bit in its leaf
PTE and flushes its cached TLB entry.

It is clearly inefficient to do the reverse-mapping and page-
table walk for every PPN in adj_rbtree in every timer event.
To improve the efficiency, the tracer sets rsrv bit in PTEs
relevant to the pages in adj_rbtree and then frees corre-
sponding nodes in adj_rbtree in the first timer. If page
faults with the error code of RSVD occur, the tracer captures
them and stores the faulting addresses’ PTE information into a
dedicated ring buffer (i.e., pte_ringbuf). When subsequent
timer events come, the tracer sets rsrv bits in PTEs stored in
pte_ringbuf, and handles remaining nodes in adj_rbtree
which are updated by the page table collector.

For any new page that is allocated for the user space in
the default page fault handler, the tracer checks if its PPN
or its L1PT page’s PPN (if exists) is adjacent to any PPN in
pt_rbtree. If so, its leaf PTE information is inserted into
pte_ringbuf.

Particularly, pte_ringbuf maintains two pointers for up-
dates, i.e., head and tail. If a new PTE is inserted to
pte_ringbuf, the head pointer is updated and points to the
empty node next to the node of latest inserted PTE. If one
PTE is removed from pte_ringbuf (i.e., its rsrv bit has
been configured), the tail pointer is updated and points to
the least recently inserted PTE. When the head and the tail
point to the same ring buffer node, the buffer becomes empty.
The ring buffer size is pre-determined empirically. When the
node number between the tail and the head pointers is no
less than 80% of the total node number of the ring buffer,
the tracer allocates a larger ring buffer (e.g., four times of the
old ring buffer size in our implementation), which will store
newly inserted PTE. The old ring buffer will be freed when
its stored PTEs are all consumed by the tracer.

As shown in Figure 2, the time interval between two con-
secutive timer events (denoted as timer_inr) should be small
enough to keep adjacent pages under close surveillance and
leak_count is updated promptly. On the other hand, our sys-
tem might experience unacceptable overhead if the timer is too
frequent and causes numerous context switches between user
and kernel. To this end, we discuss how to decide timer_inr
in Section 4.5 to keep SoftTRR’s security guarantee while
minimize its performance impacts.

4.4 Row Refresher

Direct-physical Map. Linux systems and paravirtualized hy-
pervisors (e.g., Xen) map the whole available physical mem-

t0

timer_inr
t1 t3t2 tn

memory access

threshold reaches count_limit

t

Figure 2: The adjacent page tracer sets up tracing to adja-
cent pages in each time point from t0, t1, t2, t3, ..., tn and
the interval between two adjacent time points is timer_inr.
The tracer captures the first memory access (highlighted in
green) and ignores subsequent memory accesses in each in-
terval of timer_inr and updates leak_count. Whenever
leak_count reaches count_limit, the row refresher starts.

ory directly into the kernel space [31, 58] in order for the
kernel to access any data or code in the physical memory.
Thus, every physical page allocated for the user space has
been mapped to at least two virtual pages, i.e., a user virtual
page and a kernel virtual page. While for a kernel’s physical
page, it is mapped to a single kernel virtual page.
Refresh Desired Rows. If leak_count in bank_struct
reaches a pre-determined limit (denoted as count_limit), the
row refresher refreshes desired rows specified by relevant
bank_struct. As each node in pt_row_rbtree provides
bank indexes and row indexes, the refresher leverages them to
reconstruct a physical address. Based on the direct-physical
map, the refresher finds out a kernel virtual address mapped
to the physical address. As a read-access to a row can auto-
matically re-charge the row and prevent potential bit flips, the
refresher flushes CPU caches of the kernel virtual address,
reads the virtual address, and resets leak_count to 0 at last.

If count_limit is set too small (e.g., 1), the refreshing cost
may become unacceptable as many unnecessary refreshes are
introduced by regular memory accesses to adjacent pages. If
count_limit is too large, the refresher is unable to promptly
refresh a row before it is flipped. Thus, count_limit should be
no less than 2 and we decide its value in the next section.

4.5 Offline Profile
SoftTRR decides realistic and reasonable timer_inr and
count_limit to keep its security and practicality design princi-
ples. As illustrated in Figure 2, the adjacent page tracer only
captures the first memory access to an adjacent page within
each timer_inr and updates leak_count. The subsequent
memory accesses within timer_inr to the same page will be ig-
nored by the tracer. Thus, the maximum time period (denoted
as threshold) for hammer before the page is refreshed has
such an equation: threshold = timer_inr× (count_limit −1).
This means that SoftTRR must carefully set threshold short
enough to ensure that no bit flip occurs within threshold.

We decide threshold based on the equation:

USENIX Association 2022 USENIX Annual Technical Conference    405



Machine Model Hardware Configuration Attack SoftTRR
CPU Arch. CPU Model DRAM (Part No.) n Targeted Victim Pages Bit Flip Failed?

Dell Optiplex 390 KabyLake i7-7700k Kingston DDR4 Memory Spray [46] "(99P5701-005.A00G)

Dell Optiplex 990 SandyBridge i5-2400 Samsung DDR3 CATTmew [13] "(M378B5273DH0-CH9)

Thinkpad X230 IvyBridge i5-3230M Samsung DDR3 PThammer [62] "(M471B5273DH0-CH9)

Table 2: Each rowhammer attack targets n (e.g., 50 in our experiments) victim pages of L1PTEs. With SoftTRR enabled, each
attack fails to induce bit flips in these pages, indicating that those attacks have been mitigated.

threshold = tRC×#ACT , where tRC is the time inter-
val between two successive ACT commands and #ACT is
the number of activations for all the hammered rows that
is required to induce the first bit flip. Thus, we guarantee
that no bit flip occurs within the time interval of threshold.
We learn from Kim et al. [32] that tRC is around 50 ns and
#ACT per row is in the order of 20 K on DDR3 modules and
10 K on DDR4 modules. Compared to DDR3 modules that
require at least 1 aggressor row, no less than 2 aggressor
rows are required in DDR4 modules due to the ChipTRR. As
such, #ACT for triggering the first bit flip is around 20 K for
both DDR3 and DDR4 modules. To this end, threshold is
set to 1 ms, below which DRAM modules are believed to
be rowhammer-free. As both timer_inr and count_limit for
SoftTRR are unsigned integers, timer_inr is set to 1 ms and
count_limit is set to 2.

5 Security Evaluation

We now turn to evaluate the security effectiveness of SoftTRR
on three different hardware configurations, summarized in
Table 2, all running Ubuntu.

We deploy SoftTRR into each system against one rep-
resentative kernel privilege escalation attack, i.e., Memory
Spray [46] that hammers user memory adjacent to L1PTEs,
CATTmew [13] that hammers device driver buffer adjacent
to L1PTEs, and PThammer [62] that implicitly hammers
L1PTEs adjacent to other L1PTEs. Both Memory Spray and
CATTmew are explicit rowhammer attacks with two different
types of memory accessible to unprivileged users. PThammer
is the only published implicit rowhammer attack.

5.1 Defeating Memory Spray

Background. The Memory Spray [46] is the first rowhammer
attack targeting L1PTs. It is a probabilistic attack, as it sprays
numerous L1PT pages into the memory with the hope that
some L1PT pages are placed onto victim rows adjacent to
attacker-controlled rows. As such, exploitable bits in L1PTEs
can be flipped, resulting in kernel privilege escalation.
Evaluation Details. We test the effectiveness of SoftTRR
against the Memory Spray on the Dell Optiplex 390. In this

machine, traditional 2-sided hammer pattern cannot trigger
any bit flip and instead we use the 3-sided hammer identified
by TRRespass2. We first conduct 3-sided hammer to randomly
identify n (e.g., 50 in our evaluation) vulnerable pages that
have reproducible bit flips, that is, a vulnerable page has at
least one victim physical address (Pv) and hammering three
aggressor addresses Pa, Pb and Pc will flip bits in Pv.

We then optimize the attack by using the kernel privilege to
put page tables onto vulnerable pages in a deterministic way.
Specifically, we spray n pages of L1PTs by creating a virtual
memory region of 2n MiB, ask the kernel to copy the content
of the n pages of L1PTs into the n vulnerable pages, which
are then used to translate the virtual memory region. The
vulnerable pages now contain L1PTs and the original L1PTs
are removed. By doing so, an attacker will definitely corrupt
any one of the L1PTs pages by hammering three relevant
aggressor addresses. When SoftTRR is enabled to collect and
protect the n pages of L1PTs, we re-start the optimized attack
for n hours (one-hour hammer for one vulnerable L1PT page)
and observe no single bit flip in those n pages of L1PTs by
checking their integrity, indicating that the Memory Spray
attack has been successfully defeated.

5.2 Defeating CATTmew

Background. As mentioned in Section 2, CATT [12] en-
forces physical user-kernel isolation. CATTmew [13] breaks
CATT’s security guarantee by identifying device (e.g., SCSI
Generic) driver buffers that are kernel memory but can be
accessed by unprivileged users. CATTmew exploits the driver
buffers to ambush adjacent L1PT pages for hammer, with the
hope that these L1PT pages are prone to bit flips.
Evaluation Details. We use 2-sided hammer to search n
vulnerable pages on the Dell Optiplex 990. A vulnerable page
has at least one victim physical address (Pv) and hammering
two aggressor addresses (Pa and Pb) flips bits in Pv.

We then rely on the kernel privilege to convert CATTmew
into a deterministic attack. Specifically, we spray n L1PT
pages and copy their entries onto the n vulnerable pages as
what we did in the optimized Memory Spray attack. On top
of that, we apply for the SCSI Generic (SG) buffer using

2https://github.com/vusec/trrespass

406    2022 USENIX Annual Technical Conference USENIX Association



Linux user APIs. In this test machine, we can apply as large
as 123 MiB and only 8n KiB of the SG buffer are enough. We
instruct the kernel to copy the allocated SG buffer’s content
into the 2n aggressor pages and change the buffer’s address
mappings accordingly. To this end, hammering the buffer will
induce bit flips in the vulnerable L1PT pages. However, when
SoftTRR is set active, no single bit flip has been observed in
those L1PT pages after n hours of hammering, indicating that
SoftTRR is effective in defeating the CATTmew attack.

5.3 Defeating PThammer

Background. Rowhammer attacks before PThammer [62]
are explicit rowhammer that require access to an exploitable
aggressor row (e.g. adjacent to a row of L1PTs). PThammer
voids this requirement. By spaying L1PT pages and placing
some onto victim rows with a high probability, PThammer
exploits page-table walk to produce frequent loads of some
L1PTEs from aggressor rows (i.e., “implicitly hammering
L1PTEs"), which will induce bit flips in other L1PTEs in
victim rows.
Evaluation Details. We optimize PThammer by using the
kernel privilege to present a more efficient and deterministic
attack on the Thinkpad X230. Specifically, PThammer uses
eviction sets to flush TLB entries and CPU caches of desired
L1PTEs and user memory loads trigger the page-table walk to
implicitly hammer the L1PTEs. However, the eviction-based
flush is probabilistic. In our test, the kernel assists PTham-
mer in performing the flush through explicit instructions (i.e.,
invlpg for TLB flush and clflush for L1PTEs flush). Thus,
its hammer instruction sequence is kernel-assisted flush with
a user memory load, which is less efficient than the aforemen-
tioned 2-sided hammer that applies clflush for user data
flush. In such a case, we cannot use the traditional 2-sided
hammer to identify vulnerable pages, as these pages may be-
come non-flippable to the kernel-assisted hammer. To address
this issue, we add a certain number of NOP (e.g., 180) instruc-
tions into the 2-sided hammer instruction sequence to meet
the time cost taken by the kernel-assisted hammer. By doing
so, n vulnerable pages of interest can be discovered.

As PThammer massages L1PTEs onto vulnerable pages
with a probability, we instead spray 3n L1PT pages by creat-
ing a virtual memory region of 6n MiB. We then ask the kernel
to copy all entries of the L1PT pages into the n vulnerable
pages and the 2n aggressor pages. The kernel then changes
the address mappings of the created virtual memory region
by using the new 3n L1PT pages. As such, the optimized
PThammer successfully induces bit flips in the n vulnerable
L1PT pages by using the kernel-assisted hammer against the
2n aggressor L1PT pages. In comparison, we enable SoftTRR
before starting the optimized PThammer. As each 2 aggres-
sor L1PT pages is adjacent to a vulnerable L1PT page in
pt_rbtree, SoftTRR traces memory accesses to the created
virtual pages pointed by the L1PT page entries. Considering

Benchmarks Programs SoftTRR Overhead
∆±1 ∆±6 (default)

SPECspeed 2017 Integer

perlbench_s 0.67% 0.67%
gcc_s 0.23% 0.92%
mcf_s -0.76% 0.30%
omnetpp_s -0.81% 1.82%
xalancbmk_s 0.36% 2.50%
x264_s 0.00% 0.61%
deepsjeng_s 0.00% 0.28%
leela_s 0.23% 0.46%
exchange2_s -0.70% -0.23%
xz_s 1.48% 0.93%
Mean 0.07% 0.83%

Phoronix

Apache -0.16% 0.32%
unpack-linux 1.31% 1.84%
iozone 0.89% -1.15%
postmark 0.89% 0.00%
stream:Copy 0.01% 0.00%
stream:Scale 0.60% 0.23%
stream:Triad 0.07% 0.37%
stream:Add 0.03% 0.35%
compress-7zip 1.52% 2.24%
openssl 0.14% 0.13%
pybench 0.00% 0.52%
phpbench 0.92% 0.01%
cacheben:read -0.38% 0.26%
cacheben:write -0.26% -0.44%
cacheben:modify -0.01% 0.67%
ramspeed:INT -0.09% -0.63%
ramspeed:FP -0.15% -0.63%
Mean 0.22% 0.24%

memcached

Statistics
Ops 0.39% 0.18%
TPS 0.39% 0.15%
Net_rate 0.46% 0.31%

Table 3: Benchmark results for SPECspeed 2017 Integer,
Phoronix and memcached.

that the PThammer still requires frequent memory loads of
the created virtual pages for page-table walk, it cannot bypass
the tracing. After n hours of hammering the 2n aggressor
pages, no bit flip occurs, meaning that SoftTRR has mitigated
PThammer.

6 Performance Evaluation

We evaluate the performance impacts induced by SoftTRR,
i.e., SoftTRR’s runtime overhead, memory consumption and
system robustness are evaluated in Section 6.1, Section 6.2
and Section 6.3, respectively. The experiments are conducted
in a DDR4-based system. The system is Ubuntu running
on top of a Dell Desktop with Intel i7-7700K and Samsung
16 GiB DDR4 (part number: M378A2G43AB3-CWE). By
default, the row distance implemented by SoftTRR between
adjacent rows and L1PT-page rows is up to 6-row, denoted
by ∆±6. In comparison, we also measure its impacts in the
scenario of only one-row-distance that previous works (e.g.,
[34]) assume, denoted by ∆±1. The results show that SoftTRR

USENIX Association 2022 USENIX Annual Technical Conference    407



0 5 10 15 20 25 30 35 40 45 50 55 60
Time (mins)

500

520

540

560

580

600

M
em

or
y 

Co
ns

um
pt

io
n 

(K
iB

)

Δ±1
Δ±6

Figure 3: The memory consumed by SoftTRR in both ∆±1
and ∆±6 for the LAMP production environment.

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (mins)

0

200

400

600

800

1000

1200

1400

1600

Pr
ot

ec
te

d 
L1

PT
 P

ag
e 

Nu
m

 (d
as

he
d 

lin
e)

0

100

200

300

400

500

600

700
Tr

ac
ed

 A
dj

ac
en

t P
ag

e 
Nu

m
 (s

ol
id

 li
ne

)

Δ±1
Δ±1
Δ±6
Δ±6

Figure 4: The numbers of protected L1PT pages and traced
adjacent pages in both ∆±1 and ∆±6 for the LAMP production
environment.

in both scenarios of ∆±6 and ∆±1 incurs an average slow-
down within 0.83% indicating that the row distance may have
a relatively small impact on the performance overhead. We
note that the cost of initially loading SoftTRR into the kernel
is around 28 ms and it occurs only once. We also validate the
system robustness of SoftTRR, results of which show that
SoftTRR does not affect the stability of the protected system,
making itself practical.

6.1 Benchmark Runtime Overhead

We measure SoftTRR-induced runtime overhead using two
popular benchmarks and an industrial memory-intensive appli-
cation, i.e., SPECspeed 2017 Integer [50], Phoronix test
suite3 and memcached4.

3https://github.com/phoronix-test-suite/phoronix-test-suite
4http://memcached.org/latest

SPEC CPU 2017 is an industry standard benchmark pack-
age that contains CPU-intensive programs for measuring
compute-intensive performance. It has 43 benchmarks in total
and is organized into 4 suites, among which SPECspeed 2017
Integer has been used. This suite launches 10 integer programs
with a specific configuration file customized from Example-
linux-gcc-x86.cfg and the benchmark results are summarized
in Table 3. As we can see from the table, the overhead of ∆±6
(0.83%) and ∆±1 (0.07%) are less than 1%.

Phoronix is a free and open-source benchmark software
for mainstream OSes (e.g., Linux, MacOS and Windows).
It allows for testing performance overhead against common
applications in an automated manner. As this suite has a large
number of programs testing different aspects of a system,
we select a subset of the available programs to stress-test
performance of CPU, memory, network I/O and disk I/O. As
shown in Table 3, the average performance overhead is 0.22%
for ∆±1 and 0.24% for ∆±6, respectively, indicating that the
Phoronix overhead is negligible in both scenarios.
memcached is a pervasively used in-memory data storage

system and can consume as much memory as possible. To
evaluate the performance impacts of SoftTRR on memcached,
we start memcached as a memory-intensive process, that is,
13 out of 16 GiB are allocated for memcached, to stress-test
SoftTRR. We then run memaslap [1] for 5 times (with 5
minutes in each time) to benchmark the memcached pro-
cess. The memaslap tool is a load generation and benchmark
for memcached-based servers and allows generating various
workloads. In our experiments, memaslap specifies default
workloads for memcached (i.e., the task window size is 10 K,
the thread for startup is 1 and each thread has 16 self-governed
concurrencies to handle socket connections). As shown in Ta-
ble 3, the average overhead of Ops, TPS and Net_rate are
only 0.39%, 0.39% and 0.46% for ∆±1 and 0.18%, 0.15%,
and 0.31% for ∆±6, respectively.

6.2 LAMP Runtime Memory Consumption

We use a real-world use case to measure runtime memory
consumption of SoftTRR, that is, a LAMP server (i.e., Linux,
Apache, MySQL and PHP). We run a common tool (i.e.,
Nikto [51]) in another machine for 60 minutes to stress test
the LAMP server. Nikto is a web server scanner that tests the
LAMP server for insecure files and outdated server software.
It also carries out generic and server type specific checks.

The memory cost induced by SoftTRR within the 60 min-
utes is shown in Figure 3. The memory consumption is a
total memory size of three red-black trees (i.e., pt_rbtree,
pt_row_rbtree and adj_rbtree) and the ring buffer (i.e.,
pte_ringbuf). We note that the pre-allocated pte_ringbuf
is 396 KiB. As shown in the figure, the memory costs in both
∆±1 and ∆±6 increase gradually and reach a relatively stable
level in the last 15 minutes. Both ∆±1 and ∆±6 have a similar
and low memory cost (i.e., less than 600 KiB).

408    2022 USENIX Annual Technical Conference USENIX Association



Linux Test Project Vanilla System SoftTRR
∆±1 ∆±6 (default)

File

open " " "

close " " "

ftruncate " " "

rename " " "

Network

Listen " " "

Socket " " "

Send " " "

Recv " " "

Memory

mmap " " "

munmap " " "

brk " " "

mlock " " "

munlock " " "

mremap " " "

Process
getpid " " "

exit " " "

clone " " "

Misc.
ioctl " " "

prctl " " "

vhangup " " "

Table 4: System-call stress tests from Linux Test Project (":
the stress test does not report any problem.).

Protected and Traced Page Number. When computing the
memory consumption, we also collect the unique page num-
bers that SoftTRR protects and traces, respectively. Figure 4
shows that both protected L1PT page number and traced adja-
cent page number in ∆±1 and ∆±6 increase and become stable
within the 60 minutes. We note that the protected L1PT page
numbers in ∆±1 and ∆±6 are in the same order of magnitude
as the overall system activities in both scenarios are similar
to each other. As an L1PT-page row in ∆±6 can have up to
12 adjacent rows, 6 times the adjacent row number that an
L1PT-page row can have in ∆±1, more adjacent pages are ex-
pected to be collected in ∆±6. Figure 4 shows that the traced
adjacent page number in ∆±6 is higher than that in ∆±1.

6.3 System Robustness
To evaluate the robustness of our test system after deploying
SoftTRR, we select 20 system calls of different types and
perform stress tests for each selected system call on both the
vanilla system and the SoftTRR-based system. The stress tests
come from Linux Test Project (LTP)5 and they are used to
identify system problems. Particularly, we follow the LTP’s
quick guide to run a single test each time using the default
configuration without explicitly specifying any parameters
(e.g., binding the test onto one or more CPU cores. As such,
we first run all the tests on the vanilla system, results of which
are used as the baseline to compare with that of SoftTRR.
As can be seen from Table 4, the stress test results clearly

5https://github.com/linux-test-project/ltp

show that there is no deviation for the SoftTRR-based system
compared to the vanilla system. Besides, we do not observe
any issue when executing previous benchmarks. As a result,
the test system runs stably with SoftTRR enabled.

7 Discussion

Other Data Objects Protection. If critical data structures
of SoftTRR are targeted, we can easily extend SoftTRR to
protect them. Similar to the L1PT protection described in
Section 3.3, SoftTRR treats its own data structures as pro-
tected objects. To protect sensitive user objects (e.g., binary
code pages of setuid processes or DNN model weight pages)
against existing attacks [21, 24], RIP-RH [9] is effective by
physically isolating trusted user processes. Orthogonal to RIP-
RH, SoftTRR can also be extended to defeat such attacks.
Particularly, trusted users pass specified objects to SoftTRR
through a provided user API (e.g., netlink) and SoftTRR
thus uses a similar mechanism to protect those objects.
Level-1 and Higher-level Page Table. Existing kernel privi-
lege escalation attacks focus on corrupting L1PTs, and there is
no demonstrated attack that has successfully exploited higher-
level page tables [57]. If such an attack may be feasible in the
future, we can easily extend our SoftTRR to protect higher-
level page tables. For instance, when SoftTRR is extended to
protect L2PT pages, SoftTRR collects desired user pages if
they or their corresponding L1PT or L2PT pages are adjacent
to either L1PT or L2PT pages. SoftTRR traces the collected
user pages by setting rsrv bits in their leaf PTEs and refreshes
relevant page-table pages when necessary. As the number of
higher-level PT pages is significantly smaller than the number
of L1PT pages (e.g., an L2PT page can point up to 512 L1PT
pages), we believe that the additional performance overhead
will not be high.
DMA-based Kernel Privilege Escalation Attack. There is
NO existing DMA-based kernel privilege escalation attack on
x86. Such attack is demonstrated on ARM (Drammer [53]),
and it has been defeated by GuardION [54] that enforces
DMA memory isolation. In the future, if such attacks on x86
prove to be feasible, we can take the following two ways to
solve. One is to integrate SoftTRR with existing orthogonal
defenses. In particular, ALIS [52] on x86 physically isolates
DMA memory using guard rows and bit flips are thus confined
to DMA memory of attackers.

Alternatively, SoftTRR can leverage IOMMU [26] to mon-
itor remote access to DMA memory by configuring I/O page
tables, similar to MMU-based page tables. Specifically, Soft-
TRR collects (I/O) page tables and their adjacent DMA mem-
ory pages that are allocated to users. By configuring I/O page
tables, SoftTRR traces accesses to the collected DMA pages.
When IOMMU is widely available on x86, we believe that
SoftTRR can leverage it to defend (I/O) page tables against
unknown DMA-based kernel privilege escalation attacks.

USENIX Association 2022 USENIX Annual Technical Conference    409



Half-Double Attack. Inspired by [17], Google recently pro-
poses a new hammer technique, called Half-Double [20],
which induces bit flips in a target victim row that is 2-row
away from a row being hammered. Specifically, Half-Double
observes that some ChipTRR implementations in DDR4 mod-
ules will refresh a row’s two neighboring rows if the row is
detected to be hammered. With this key observation, Half-
Double hammers a row (known as Far Aggressor), which
enables ChipTRR to frequently refresh the row’s neighboring
rows (known as Near Aggressor). As such, Half-Double can
combine the frequent refreshes and a few activations against
Near Aggressors to induce bit flips in victim rows that are
2-row away from a Far Aggressor.

However, we believe that Half-Double is unlikely to bypass
SoftTRR and break page tables. In order to induce the first
bit flip, #ACT required by Half-Double to hammer one Far
Aggressor is about 296K, whereas SoftTRR assumes that the
minimum #ACT is 20K for the first bit flip based on Kim et
al. [32]. Thus, SoftTRR can detect Half-Double’s hammering
and refresh page-table rows (if any) from being flipped by a 2-
row-distance Far Aggressor. In the current implementation of
SoftTRR, it can protect page-table rows from being corrupted
by a Far Aggressor that is up to 6-row away.

Possible Performance Degradation Attack. We did not
observe a high performance impact in our real-world appli-
cations and it might rarely occur that memory accesses con-
centrate on locations adjacent to L1PTEs. The system perfor-
mance can be badly affected (as a kind of DoS attack [41]) if
an adversary stresses SoftTRR by causing many additional
page faults and refreshes. To alleviate such attack, SoftTRR
can count the number of refreshes. If the count reaches a
threshold, it can raise an alarm and leverage the scheduling
information to narrow down the list of potentially malicious
processes.

Support for ARM Architecture. Although there are re-
served bits in page table entries in the ARM architecture,
setting these bits will not trigger any hardware fault [4]. If
we extend SoftTRR to provide ARM support, a possible solu-
tion is to disable the page table walk and capture the address-
translation fault. However, this solution may introduce a larger
performance overhead, as each memory access to a process
triggers the fault if the process has pages adjacent to L1PT
pages. Alternatively, we can leverage the present bit rather
than the reserved bit in both x86 and ARM. As discussed in
Section 4.3, the kernel performs active checks of the present
bit in a leaf PTE. To address this issue, we can leverage the
approach [56] to find all the functions where the kernel per-
forms the check. By hooking these functions, we can restore
the present bit and bypass the kernel check.

Support for Hardware-assisted Virtualization . SoftTRR,
by design, works in a bare-metal system. To adapt itself to
work in the guest OS kernel of a VM, SoftTRR needs the map-
pings of guest physical addresses to DRAM addresses. As

host physical addresses to DRAM mappings and in-DRAM
address remappings can be reverse-engineered through prior
works [14, 44, 55, 59], SoftTRR requires the guest-to-host
memory mapping that is managed by the hypervisor. To this
end, SoftTRR can register a virtual interrupt to communicate
with the hypervisor. Particularly, upon the VM’s physical
memory is allocated, SoftTRR obtains the guest-to-host mem-
ory mapping through the registered interrupt. If the VM’s
physical memory is updated at runtime, the hypervisor noti-
fies the SoftTRR of the updated mapping. If the hypervisor
maintains mostly consecutive mapping (e.g., the Xen hyper-
visor uses 1 GiB huge-pages by default), we do not think
maintaining the mapping would cause a major issue (e.g.,
SoftTRR only maintains a mapping of 1K entries even if the
VM’s memory is up to 1 TiB).

8 Conclusion

In this paper, we proposed a software-only defense, named
SoftTRR, that protects level-1 page tables against rowhammer
attacks on x86. SoftTRR is a loadable kernel module and
compatible with commodity Linux systems without requiring
any kernel modification.

We evaluated the security effectiveness of SoftTRR-
enabled systems using three kernel privilege escalation at-
tacks. Also, we measured SoftTRR’s performance overhead,
memory cost, and stability using multiple benchmark suites
and a real-world use case. The experimental results indicate
that SoftTRR is effective in defending against all the men-
tioned attacks, and practical in incurring low performance
overhead and memory cost. Besides, it does not affect the
system stability.

Acknowledgments

We thank our anonymous reviewers and shepherd for their in-
sightful comments and suggestions. This work was supported
in part by the National Key R&D Program of China (Grant
No. 2020YFB1805402), the National Natural Science Foun-
dation of China (Grant No. 61802397, 62002167, 61901209,
U1736208 and 61902374), and the National Natural Science
Foundation of JiangSu (Grant No. BK20200461). Zhi Zhang
and Yueqiang Cheng are joint first authors. Wenhao Wang is
the corresponding author.

References

[1] A Load Generation and Benchmark Tool. memaslap.
http://docs.libmemcached.org/bin/memaslap.
html.

[2] Neha Agarwal and Thomas F Wenisch. Thermo-
stat: Application-transparent page management for two-

410    2022 USENIX Annual Technical Conference USENIX Association

http://docs.libmemcached.org/bin/memaslap.html
http://docs.libmemcached.org/bin/memaslap.html


tiered main memory. In Architectural Support for Pro-
gramming Languages and Operating Systems, pages
631–644, 2017.

[3] Apple, Inc. About the security content of mac efi secu-
rity update 2015-001. https://support.apple.com/
en-au/HT204934, August 2015.

[4] ARM, Inc. Arm architecture reference manual armv8,
for armv8-a architecture profile. https://developer.
arm.com/documentation/ddi0487/gb.

[5] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek,
Rui Qiao, Reetuparna Das, Matthew Hicks, Yossi Oren,
and Todd Austin. ANVIL: Software-based protection
against next-generation rowhammer attacks. In Archi-
tectural Support for Programming Languages and Op-
erating Systems, pages 743–755, 2016.

[6] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang,
Mark D Hill, and Michael M Swift. Efficient virtual
memory for big memory servers. In International
Symposium on Computer Architecture, pages 237–248,
2013.

[7] Tanj Bennett, Stefan Saroiu, Alec Wolman, and Lucian
Cojocar. Panopticon: A complete in-dram rowhammer
mitigation. In Workshop on DRAM Security, 2021.

[8] Abhishek Bhattacharjee. Large-reach memory man-
agement unit caches. In International Symposium on
Microarchitecture, pages 383–394, 2013.

[9] Carsten Bock, Ferdinand Brasser, David Gens, Christo-
pher Liebchen, and Ahamd-Reza Sadeghi. RIP-RH: Pre-
venting rowhammer-based inter-process attacks. In Asia
Conference on Computer and Communications Security,
pages 561–572, 2019.

[10] Jeff Bonwick. The slab allocator: An object-caching
kernel memory allocator. In USENIX summer, 1994.

[11] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Dedup est machina: memory deduplication
as an advanced exploitation vector. In IEEE Symposium
on Security and Privacy, pages 987–1004, 2016.

[12] Ferdinand Brasser, Lucas Davi, David Gens, Christo-
pher Liebchen, and Ahmad-Reza Sadeghi. CAn’t Touch
This: Software-only mitigation against rowhammer at-
tacks targeting kernel memory. In USENIX Security
Symposium, 2017.

[13] Yueqiang Cheng, Zhi Zhang, Surya Nepal, and Zhi
Wang. CATTmew: Defeating software-only physical
kernel isolation. IEEE Transactions on Dependable and
Secure Computing, 2019.

[14] Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai,
Stefan Saroiu, Alec Wolman, and Onur Mutlu. Are we
susceptible to rowhammer? an end-to-end methodology
for cloud providers. In IEEE Symposium on Security
and Privacy, May 2020.

[15] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and
Herbert Bos. Exploiting correcting codes: on the effec-
tiveness of ECC memory against rowhammer attacks. In
IEEE Symposium on Security and Privacy, pages 55–71,
2019.

[16] Jonathan Corbet. Trees ii: red-black trees. https:
//lwn.net/Articles/184495/, 2006.

[17] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor
van der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert
Bos, and Kaveh Razavi. TRRespass: Exploiting the
many sides of target row refresh. In IEEE Symposium
on Security and Privacy, 2020.

[18] Jayneel Gandhi, Arkaprava Basu, Mark D Hill, and
Michael M Swift. Badgertrap: A tool to instrument
x86-64 tlb misses. ACM SIGARCH Computer Architec-
ture News, 42(2):20–23, 2014.

[19] Mohamad Gebai and Michel R Dagenais. Survey and
analysis of kernel and userspace tracers on linux: De-
sign, implementation, and overhead. ACM Computing
Surveys, pages 1–33, 2018.

[20] Google, Inc. Half-double: Next-row-over assisted
rowhammer. https://github.com/google/
hammer-kit/blob/main/20210525_half_double.
pdf, May 2021.

[21] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel
Genkin, Jonas Juffinger, Sioli O’Connell, Wolfgang
Schoechl, and Yuval Yarom. Another flip in the wall of
rowhammer defenses. In IEEE Symposium on Security
and Privacy, pages 245–261, 2018.

[22] Daniel Gruss, Clémentine Maurice, and Stefan Mangard.
Rowhammer.js: A remote software-induced fault attack
in JavaScript. In Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 300–321, 2016.

[23] Hasan Hassan, Yahya Can Tugrul, Jeremie S Kim, Victor
Van der Veen, Kaveh Razavi, and Onur Mutlu. Uncover-
ing in-dram rowhammer protection mechanisms: A new
methodology, custom rowhammer patterns, and implica-
tions. In International Symposium on Microarchitecture,
pages 1198–1213, 2021.

[24] Sanghyun Hong, Pietro Frigo, Yiğitcan Kaya, Cristiano
Giuffrida, and Tudor Dumitras, . Terminal brain damage:
Exposing the graceless degradation in deep neural net-
works under hardware fault attacks. In USENIX Security
Symposium, pages 497–514, 2019.

USENIX Association 2022 USENIX Annual Technical Conference    411

https://support.apple.com/en-au/HT204934
https://support.apple.com/en-au/HT204934
https://developer.arm.com/documentation/ddi0487/gb
https://developer.arm.com/documentation/ddi0487/gb
https://lwn.net/Articles/184495/
https://lwn.net/Articles/184495/
https://github.com/google/hammer-kit/blob/main/20210525_half_double.pdf
https://github.com/google/hammer-kit/blob/main/20210525_half_double.pdf
https://github.com/google/hammer-kit/blob/main/20210525_half_double.pdf


[25] HP, Inc. Hp moonshot component pack.
https://support.hpe.com/hpsc/doc/public/
display?docId=c04676483, May 2015.

[26] Intel, Inc. Intel 64 and IA-32 architectures software
developer’s manual combined volumes: 1, 2a, 2b, 2c, 3a,
3b and 3c. October 2011.

[27] Intel, Inc. Intel 64 and IA-32 architectures optimization
reference manual. September 2014.

[28] Intel, Inc. The role of ecc memory. https://www.
intel.com/content/www/us/en/workstations/
workstation-ecc-memory-brief.html, 2015.

[29] Patrick Jattke, Victor van der Veen, Pietro Frigo, Stijn
Gunter, and Kaveh Razavi. Blacksmith: Scalable
rowhammering in the frequency domain. In IEEE Sym-
posium on Security and Privacy, 2022.

[30] JEDEC Solid State Technology Association. Low power
double data rate 4 (LPDDR4). https://www.jedec.
org/standards-documents/docs/jesd209-4b,
2015.

[31] Kernel.org. Virtual memory map with 4 level page
tables (x86_64). https://www.kernel.org/doc/
Documentation/x86/x86_64/mm.txt, 2009.

[32] Jeremie S Kim, Minesh Patel, A Giray Yaglikci, Hasan
Hassan, Roknoddin Azizi, Lois Orosa, and Onur Mutlu.
Revisiting rowhammer: An experimental analysis of
modern dram devices and mitigation techniques. In In-
ternational Symposium on Computer Architecture, 2020.

[33] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin,
Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. Flipping bits in memory without
accessing them: an experimental study of DRAM distur-
bance errors. In International Symposium on Computer
Architecture, page 361–372, 2014.

[34] Radhesh Krishnan Konoth, Marco Oliverio, Andrei
Tatar, Dennis Andriesse, Herbert Bos, Cristiano Giuf-
frida, and Kaveh Razavi. ZebRAM: comprehensive and
compatible software protection against rowhammer at-
tacks. In Operating Systems Design and Implementation,
pages 697–710, 2018.

[35] Anil Kurmus, Sergej Dechand, and Rüdiger Kapitza.
Quantifiable run-time kernel attack surface reduction.
In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, pages 212–
234, 2014.

[36] Anil Kurmus, Alessandro Sorniotti, and Rüdiger
Kapitza. Attack surface reduction for commodity os
kernels: trimmed garden plants may attract less bugs.

In Proceedings of the Fourth European Workshop on
System Security, pages 1–6, 2011.

[37] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yu-
val Yarom. RAMBleed: Reading bits in memory without
accessing them. In IEEE Symposium on Security and
Privacy, 2020.

[38] Eojin Lee, Ingab Kang, Sukhan Lee, G Edward Suh,
and Jung Ho Ahn. TWiCe: preventing row-hammering
by exploiting time window counters. In International
Symposium on Computer Architecture, pages 385–396,
2019.

[39] LENOVO, Inc. Row hammer privilege escalation lenovo
security advisory. https://support.lenovo.com/
au/en/product_security/row_hammer, August
2015.

[40] Micron, Inc. DDR4 SDRAM Datasheet. https://www.
micron.com/products/dram/ddr4-sdram/, 2015.

[41] Thomas Moscibroda and Onur Mutlu. Memory perfor-
mance attacks: Denial of memory service in multi-core
systems. In USENIX Security Symposium, 2007.

[42] Onur Mutlu and Jeremie S Kim. Rowhammer: A retro-
spective. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2019.

[43] Yeonhong Park, Woosuk Kwon, Eojin Lee, Tae Jun Ham,
Jung Ho Ahn, and Jae W Lee. Graphene: Strong yet
lightweight row hammer protection. In International
Symposium on Microarchitecture, pages 1–13, 2020.

[44] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael
Schwarz, and Stefan Mangard. DRAMA: Exploiting
DRAM addressing for cross-CPU attacks. In USENIX
Security Symposium, pages 565–581, 2016.

[45] Mark Seaborn. How physical addresses
map to rows and banks in dram. http:
//lackingrhoticity.blogspot.com.au/2015/05/
how-physical-addresses-map-to-rows-and-banks.
html, 2015.

[46] Mark Seaborn and Thomas Dullien. Exploiting the
DRAM rowhammer bug to gain kernel privileges. In
Black Hat’15, 2015.

[47] Seyed Mohammad Seyedzadeh, Alex K Jones, and Rami
Melhem. Counter-based tree structure for row hammer-
ing mitigation in DRAM. IEEE Computer Architecture
Letters, 16(1):18–21, 2016.

[48] Seyed Mohammad Seyedzadeh, Alex K Jones, and Rami
Melhem. Mitigating wordline crosstalk using adaptive
trees of counters. In International Symposium on Com-
puter Architecture, pages 612–623, 2018.

412    2022 USENIX Annual Technical Conference USENIX Association

https://support.hpe.com/hpsc/doc/public/display?docId=c04676483
https://support.hpe.com/hpsc/doc/public/display?docId=c04676483
https://www.intel.com/content/www/us/en/workstations/workstation-ecc-memory-brief.html
https://www.intel.com/content/www/us/en/workstations/workstation-ecc-memory-brief.html
https://www.intel.com/content/www/us/en/workstations/workstation-ecc-memory-brief.html
https://www.jedec.org/standards-documents/docs/jesd209-4b
https://www.jedec.org/standards-documents/docs/jesd209-4b
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://support.lenovo.com/au/en/product_security/row_hammer
https://support.lenovo.com/au/en/product_security/row_hammer
https://www.micron.com/products/dram/ddr4-sdram/
https://www.micron.com/products/dram/ddr4-sdram/
http://lackingrhoticity.blogspot.com.au/2015/05/how-physical-addresses-map-to-rows-and-banks.html
http://lackingrhoticity.blogspot.com.au/2015/05/how-physical-addresses-map-to-rows-and-banks.html
http://lackingrhoticity.blogspot.com.au/2015/05/how-physical-addresses-map-to-rows-and-banks.html
http://lackingrhoticity.blogspot.com.au/2015/05/how-physical-addresses-map-to-rows-and-banks.html


[49] Mungyu Son, Hyunsun Park, Junwhan Ahn, and
Sungjoo Yoo. Making DRAM stronger against row
hammering. In Design Automation Conference, pages
1–6, 2017.

[50] Standard Performance Evaluation Corporation. Spec
cpu 2017. https://www.spec.org, 2017.

[51] Chris Sullo. https://cirt.net/nikto, 2012.

[52] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athana-
sopoulos, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. Throwhammer: Rowhammer attacks over the
network and defenses. In USENIX Annual Technical
Conference, 2018.

[53] Victor van der Veen, Yanick Fratantonio, Martina Lin-
dorfer, Daniel Gruss, Clémentine Maurice, Giovanni Vi-
gna, Herbert Bos, Kaveh Razavi, and Cristiano Giuffrida.
Drammer: Deterministic rowhammer attacks on mobile
platforms. In ACM SIGSAC Conference on Computer
and Communications Security, pages 1675–1689, 2016.

[54] Victor van der Veen, Martina Lindorfer, Yanick Fratan-
tonio, Harikrishnan Padmanabha Pillai, Giovanni Vigna,
Christopher Kruegel, Herbert Bos, and Kaveh Razavi.
Guardion: Practical mitigation of dma-based rowham-
mer attacks on arm. In International Conference on
Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 92–113. Springer, 2018.

[55] Minghua Wang, Zhi Zhang, Yueqiang Cheng, and Surya
Nepal. Dramdig: A knowledge-assisted tool to uncover
dram address mapping. In Design Automation Confer-
ence, 2020.

[56] Zhe Wang, Chenggang Wu, Yinqian Zhang, Bowen
Tang, Pen-Chung Yew, Mengyao Xie, Yuanming Lai,
Yan Kang, Yueqiang Cheng, and Zhiping Shi. Safehid-
den: an efficient and secure information hiding tech-
nique using re-randomization. In USENIX Security
Symposium, pages 1239–1256, 2019.

[57] Xin-Chuan Wu, Timothy Sherwood, Frederic T. Chong,
and Yanjing Li. Protecting page tables from rowhammer
attacks using monotonic pointers in DRAM true-cells.
In Architectural Support for Programming Languages
and Operating Systems, pages 645–657, 2019.

[58] xenbits.xen.org. source code (page.h). http:
//xenbits.xen.org/gitweb/?p=xen.git;a=blob;
hb=refs/heads/stable-4.3;f=xen/include/
asm-x86/x86_64/page.h, 2009.

[59] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu
Teodorescu. One bit flips, one cloud flops: Cross-
VM row hammer attacks and privilege escalation. In
USENIX Security Symposium, pages 19–35, 2016.

[60] Abdullah Giray Yağlıkçı, Minesh Patel, Jeremie S Kim,
Roknoddin Azizi, Ataberk Olgun, Lois Orosa, Hasan
Hassan, Jisung Park, Konstantinos Kanellopoulos, Taha
Shahroodi, Ghose Saugata, and Mutlu Onur. Blockham-
mer: Preventing rowhammer at low cost by blacklisting
rapidly-accessed dram rows. In High Performance Com-
puter Architecture, 2021.

[61] Zhenkai Zhang, Zihao Zhan, Daniel Balasubramanian,
Bo Li, Peter Volgyesi, and Xenofon Koutsoukos. Lever-
aging EM side-channel information to detect rowham-
mer attacks. In IEEE Symposium on Security and Pri-
vacy, 2020.

[62] Zhi Zhang, Yueqiang Cheng, Dongxi Liu, Surya Nepal,
Zhi Wang, and Yuval Yarom. Pthammer: Cross-user-
kernel-boundary rowhammer through implicit accesses.
In International Symposium on Microarchitecture, 2020.

[63] Zhi Zhang, Jiahao Qi, Yueqiang Cheng, Shijie Jiang,
Yiyang Lin, Yansong Gao, Surya Nepal, Yi Zou, Jiliang
Zhang, and Yang Xiang. A retrospective and futurespec-
tive of rowhammer attacks and defenses on dram. arXiv
preprint arXiv:2201.02986, 2022.

USENIX Association 2022 USENIX Annual Technical Conference    413

https://www.spec.org
https://cirt.net/nikto
http://xenbits.xen.org/gitweb/?p=xen.git;a=blob;hb=refs/heads/stable-4.3;f=xen/include/asm-x86/x86_64/page.h
http://xenbits.xen.org/gitweb/?p=xen.git;a=blob;hb=refs/heads/stable-4.3;f=xen/include/asm-x86/x86_64/page.h
http://xenbits.xen.org/gitweb/?p=xen.git;a=blob;hb=refs/heads/stable-4.3;f=xen/include/asm-x86/x86_64/page.h
http://xenbits.xen.org/gitweb/?p=xen.git;a=blob;hb=refs/heads/stable-4.3;f=xen/include/asm-x86/x86_64/page.h


A SPECint 2006

SPECint 2006 is an industry standard benchmark suite in-
tended for measuring the performance of CPU and memory.
For this suite, we launch 12 integer programs with a specific
configuration file (i.e., linux64-amd64-gcc43+.cfg) and sum-
marize the benchmark results in Table 5. As we can see from
the table, the overhead of ∆±6 (i.e., 0.75%) is a bit higher than
that of ∆±1 (i.e., 0.04%) although the row distance of ∆±6 is
an order of magnitude larger than that of ∆±1.

Programs SoftTRR Overhead
∆±1 ∆±6 (default)

perlbench 0.47% 1.42%
bzip2 -0.61% 1.52%
gcc 0.00% 0.51%
mcf -2.08% -2.08%
gobmk 0.30% 0.60%
hmmer 0.41% 0.83%
sjeng 0.00% 0.26%
libquantum 0.00% 0.59%
h264ref 0.00% 0.89%
omnetpp 0.32% 0.00%
astar 0.97% 2.60%
xalancbmk 0.63% 1.89%
Mean 0.04% 0.75%

Table 5: SPECint 2006 benchmark results.

B Artifact

Abstract
This artifact contains a prototype implementation of SoftTRR
that protects level-1 page tables from rowhammer attacks. It
works as a loadable Linux kernel module without any modifi-
cations to the kernel.

Scope
This artifact is effective and practical in protecting level-1
page tables from being corrupted by rowhammer attacks. Par-
ticularly, it leverages realistic and reasonable software re-
freshes to mitigate a rowhammer attack where a hammered
row can be up to 6-row away from a targeted row hosting
level-1 page tables.

Contents
This artifact has 6 main source files, which are briefly in-
troduced as follows. defense.c is to initialize our kernel
module such as registering dynamic hooks to relevant ker-
nel functions (we rely on a third-party inline hook library

https://github.com/cppcoffee/inl_hook that resides in the di-
rectory of inl_hook in our repository). victim_handler.c col-
lects level-1 page-table pages and their physically adjacent
pages. pgfault.c monitors do_page_fault to trace memory
accesses to pages that are physically adjacent to level-1 page-
table pages. rbtree.c, dramaddr.c and kernel_symbol.c provide
some helper functions such as maintaining important data
structures and DRAM address mappings, parsing relevant
kernel symbols, etc. We refer the readers to our repository for
more details.

Hosting
This artifact is available at
https://doi.org/10.6084/m9.figshare.19721692.

414    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/cppcoffee/inl_hook
https://doi.org/10.6084/m9.figshare.19721692


Hardening Hypervisors with Ombro
Ethan Johnson, Colin Pronovost, and John Criswell

Department of Computer Science, University of Rochester

Abstract
This paper presents Ombro, a low-level virtual instruction set
architecture (vISA) which enforces compiler-based security
policies on real-world commodity hypervisors. We extend the
Secure Virtual Architecture (which itself extends the LLVM
compiler’s Intermediate Representation) to support the full
set of hardware operations needed to run an x86 commodity
hypervisor used in some of the world’s largest public clouds,
namely, the Xen 4.12 hypervisor, running in full hardware-
accelerated mode using Intel’s Virtual Machine Extensions
(VMX). We have ported Xen 4.12 to the Ombro vISA and
demonstrated that it can run unmodified guest VMs of real-
world relevance (namely, Linux guests under Xen’s HVM
and PVH modes). Furthermore, to demonstrate Ombro’s abil-
ity to harden hypervisors from attack, Ombro implements
control flow integrity and the first protected shadow (split)
stack for x86 hypervisors. Our performance results show that
Ombro achieves this protection without imposing measurable
overheads on most application benchmarks.

1 Introduction
Various ideas have been proposed and demonstrated that

can improve hypervisor security against low-level attacks
such as memory safety vulnerabilities. One such approach
would be to re-implement the hypervisor in a safe language
such as Rust [1], but this is considered prohibitively labor-
intensive for real-world hypervisors such as Xen [3], Vir-
tualBox [46], or Hyper-V [42]. Another is to provide a
whole-VM trusted execution environment (TEE) that pro-
tects VMs from a compromised hypervisor by isolating and
removing most of the hypervisor from the trusted computing
base [32, 41, 55, 56]; this approach is powerful and promising
but tends to impose heavyweight requirements (e.g. moving
the non-trusted portion of the hypervisor into VMX/SVM’s
non-root (guest) mode, which imposes high overheads e.g.
on VM exit handling) [41, 56] or substantial modifications
to hardware [32, 55]. Enclave-based TEEs such as Intel’s
SGX [30] offer similar benefits but provide a more func-
tionally limited operating environment compared to whole-
VM TEEs. Designs such as HyperSafe [51], which adds
lightweight control flow integrity (CFI) protection to the hyp-
ervisor, make hypervisors more resilient against attack but
face an “arms race” of rapidly evolving attacks [7, 8, 27, 29],
necessitating the addition of further defenses such as a shadow
stack (HyperSafe [51] is vulnerable to attacks that corrupt
return addresses) to remain viable.

When applied to kernel-mode software like hypervisors,
hardening approaches such as CFI must account for the fact

that the raw hardware/software interface provided by the na-
tive ISA is much “messier” than the execution environment
user-mode applications can expect. Low-level operations
which are typically thought of as transparent and orthogo-
nal, such as context switches, VMX/SVM guest entry/exit,
page table updates, and control register modifications, are
fully exposed to host-kernel-mode software. These operations
present numerous opportunities for security invariants such
as CFI enforcement to be undermined when software logic
has been corrupted by a memory safety exploit.

Prior work on the Secure Virtual Architecture (SVA) [15,
17] addresses this issue by extending the LLVM compiler’s
Intermediate Representation (IR) with virtual instructions
(a.k.a. intrinsics) that encapsulate these low-level hardware/
software interactions with principled, higher-level abstrac-
tions intended for use by kernel-mode code. Program state
discontinuities that could break security enforcement are pre-
vented, since operations such as context switches and paging
updates are handled safely by a thin, trusted layer of code
provided by the compiler to implement the virtual instruc-
tions, whose behavior cannot be compromised by bugs in
a kernel or hypervisor built upon them. To date, SVA has
been used to successfully enforce security policies such as
memory safety [16] and CFI [13] on commodity Linux and
FreeBSD OS kernels. Initial support for hardware-accelerated
virtual machines via Intel VMX has been added to SVA [34],
but it lacks several key features needed to support real pro-
duction hypervisors such as Xen [3], VirtualBox [46] and
Hyper-V [42], and also lacks SMP (multiprocessor) support,
a necessity in the modern cloud.

In this paper, we present Ombro, a low-level virtual instruc-
tion set architecture (vISA) designed to support the efficient
and complete implementation of compiler-based security mit-
igations in real-world commodity hypervisors. We extend
SVA to support the full set of hardware features needed to
support the Xen 4.12 hypervisor [3], including virtual APIC
support, model-specific register (MSR) virtualization, and I/O
port virtualization. We also add the first SMP support to SVA
(benefiting non-hypervisor designs as well that are based on it)
and make several key design improvements to SVA’s existing
VMX support [34] to address shortcomings in performance
and its ability to integrate with the Xen codebase. We have
ported Xen 4.12 to the Ombro vISA and demonstrate that it
can run unmodified guest VMs of real-world relevance (Linux
guests under Xen’s HVM and PVH modes) with negligible
performance impacts on most application benchmarks. Ad-
ditionally, as a case study in the kinds of hypervisor security
mitigations whose design and implementation Ombro sup-

USENIX Association 2022 USENIX Annual Technical Conference    415



ports, we demonstrate the implementation of control flow
integrity with return address protection (shadow/split stack)
using the tools provided by Ombro, and that these mitigations
add no further performance impacts to guest operations.

To summarize, our contributions are as follows:

• We have enhanced the SVA vISA developed in
Shade [34] to support a full-featured production-quality
hypervisor (namely, Xen). We have also added symmet-
ric multiprocessing (SMP) support to the SVA vISA.

• We have developed techniques that ensure that bugs
in hypervisors cannot break return address and control
flow integrity. We have created a prototype of a system,
dubbed Ombro, that uses our enhanced SVA vISA to en-
force these policies on a production-quality hypervisor.

• We have ported the Xen hypervisor to Ombro. This is
the first full port of a full-featured production-quality
hypervisor to the SVA virtual instruction set.

• We have evaluated the performance of Ombro and found
that the vISA imposes negligible performance impacts
on most guest application benchmarks. We have also
found that the addition of CFI and return address protec-
tion imposes no measurable overheads.

2 Background
Ombro employs virtual instruction set computing

(VISC) [5, 16] to ensure that its security guarantees (which
mitigate control-flow hijacking) are not bypassed via low-
level interactions between the hypervisor and the x86 hard-
ware. Here, we present background information on VISC,
the VISC-based Secure Virtual Architecture (SVA), and its
features and limitations relevant to Ombro.

2.1 Virtual Instruction Set Computing
Virtual instruction set computing (VISC) [5] is a system

design in which the instruction set to which software is com-
piled (the virtual instruction set or vISA) is decoupled from
the instruction set implemented by the processor (the native
instruction set). A trusted code generator translates code from
the virtual instruction set to the native instruction set. This
translation can occur at any time (at compile time, link time,
install time, boot time, or just-in-time during program execu-
tion). The defining characteristic of VISC is that all software
in the system must be translated from virtual instruction set
code to native instruction set code. In an idealized theoretical
VISC system, this includes applications as well as system
software (e.g. operating system kernels and hypervisor execu-
tives), i.e., all code on the system must target the virtual ISA
rather than the native ISA. Practical designs may elect to relax
this requirement within specific domains (e.g. applications
or guest VMs running in less-privileged hardware modes) to
maintain support for existing native-code applications.

Secure Virtual Architecture (SVA) [15,16] is a VISC infras-
tructure that leverages the trusted code generator to enforce
security policies on all software in the system stack, including
the OS kernel and (optionally) library and application code.
Because software must be translated by SVA’s trusted code
generator, SVA can instrument code during native code gen-
eration to enforce security policies. SVA’s virtual instruction
set is an extended version of the original LLVM Intermediate
Representation (LLVM IR) [39], allowing SVA to use aggres-
sive static analysis to optimize away provably unnecessary
run-time security checks.

SVA extends LLVM IR with new virtual instructions
(called intrinsics) to support low-level privileged operations
such as I/O, MMU configuration, and context switching in
kernel-mode software without the need for native assembly
code or direct access to privileged in-memory hardware data
structures (page tables, etc.) [15]. These intrinsics are im-
plemented by a small library of trusted code (the “SVA-OS
runtime”) which is, architecturally, considered part of the com-
piler, and linked or inlined into the target program as necessary
during translation from virtual to native code. The resultant
vISA provided to kernel programmers is designed to make
it impossible to express computations that would violate the
security policies specified for the system. To the extent that
goal cannot be ensured statically, the SVA-OS implementa-
tion vets inputs and sanitizes outputs at runtime to prevent
raw hardware functions from being used in unsafe ways.

To prevent attacker-compromised kernel-mode software
from simply bypassing the vISA by executing native code,
newer versions of SVA [13–15, 22, 34] enforce code segment
integrity on the kernel by using software fault isolation [50] to
prevent it from utilizing any kernelspace page-table mappings
that are both writable and executable. This ensures that all
native code has been translated or validated by the SVA code
generator (either ahead of time or by request at runtime) and
contains any necessary instrumentation while not containing
privileged native instructions that would bypass the vISA.

Because it is possible to fully implement kernel-mode sys-
tem software (e.g., OS kernels or hypervisors) using the SVA
vISA’s virtual instructions, compiler-based security transfor-
mations such as control flow integrity (CFI) [4], software fault
isolation (SFI) [50], or memory safety [20] enforcement can
be performed on it at the LLVM IR level without “blind spots”
arising from opaque native assembly or instructions with priv-
ileged side effects. SVA has been used to safely and efficiently
support a variety of security policies and popular OS kernels
over the years. The original SVA prototype enforced both
spatial and temporal memory safety on the Linux 2.4 ker-
nel [15, 16]. Subsequent iterations exchanged full memory
safety for low-overhead CFI enforced on the FreeBSD 9.0
kernel [13] and explored a novel application of lightweight
SFI instrumentation on the kernel to protect userspace applica-
tions from a compromised kernel [14]. Other SVA derivatives
have explored adding protection against cache and speculative

416    2022 USENIX Annual Technical Conference USENIX Association



side-channel threats against protected userspace applications
in a Virtual Ghost system [21, 22, 34].

2.2 Kernel-Mode Memory Protection in SVA
Starting with the Virtual Ghost project [14], SVA has sup-

ported protecting designated sections of the host-virtual ad-
dress space against tampering by kernel-mode (Ring 0) code
using software fault isolation (SFI) [50]. This protection can
be used as a foundation for multiple security policies and can
optionally protect portions of userspace as well as kernelspace
(lower and upper halves of the address space).

The SVA native code translator instruments all load and
store instructions within host-kernel-mode code with SFI
checks that determine whether the access references a virtual
address within the protected region. If so, the check detects a
violation and generates a trap, allowing the SVA VM to take
corrective action, such as alerting the system administrator or
terminating system execution. Otherwise, the load or store is
allowed to proceed normally [14].

SVA’s SFI checks can be implemented using traditional
bitmasking instructions [50] or a fast scheme developed for
Apparition [22] based on Intel’s Memory Protection Exten-
sions (MPX) [30]. The architecture is flexible and can be read-
ily adapted to other hardware protection mechanisms such as
segmentation [30] or memory protection keys [28, 30].

The memory region(s) protected by these SFI checks can
be used to store user or kernel secrets where they cannot be
seen or modified by the kernel/hypervisor. Depending on the
needs of particular threat models, enforcement designs, and
system performance, SFI checks can be omitted on loads so
as to protect data against tampering even if it does not need
to be secret [14].

SVA uses this memory protection in its design to make its
other enforcement mechanisms complete while maintaining
high performance. For instance, SVA maintains its own direct
map (one-to-one mapping of all physical memory) within
the kernelspace SFI-protected region, allowing intrinsics to
write to page tables and code pages while leaving the kernel’s
mappings to them read-only; this avoids the need to expen-
sively switch page tables or mappings on every such intrinsic
call [22]. SVA likewise uses its SFI to ensure the integrity of
its own metadata, such as tables tracking the permitted and
current usage types of each physical memory frame [15, 22].

In Virtual Ghost [14], Apparition [22], and Shade [34], a
userspace SFI-protected region is used to hide application
secrets from a compromised OS kernel. In Ombro, we will
use SVA’s SFI to protect hypervisor control stacks and enforce
return address integrity (Section 7).

2.3 VMX Support in SVA
Shade [34] added initial support for Intel VMX to SVA.

Shade extended the SVA vISA with intrinsics and conceptual
idioms for management of hardware-accelerated guest VMs—
specifically, VM entry and exit (world switches), extended

paging, and VMCS management—while ensuring that these
newly introduced capabilities would not compromise SVA’s
ability to enforce the security policies introduced in prior
work (specifically Virtual Ghost [14] and Apparition [22]).

VMX facilitates world switches (the host/guest context
switches associated with VM entry and exit) by giving the
hypervisor open-ended control over each state element—
instruction pointer, control and segment registers, etc.—as
an individual field within a special in-memory data structure
called the Virtual Machine Control Structure (VMCS) [30].
Different state elements are handled differently according
to their importance in maintaining consistent system oper-
ation, and this behavior can (to an extent) be controlled by
the hypervisor via flags in the VMCS. Some fields can be
bidirectionally saved/restored by the processor as part of the
host/guest-mode transition; for others, the hypervisor is ex-
pected to load an arbitrary value into the VMCS to which the
register will be reset on VM exit. Others, such as the general
purpose registers, are untouched by entry and exit, requiring
the hypervisor to save and restore them itself.

This makes security enforcement on hypervisors challeng-
ing because the architecture implicitly assumes the hypervisor
can be trusted. The ability to set host-state fields and entry/exit
control flags in the VMCS affords countless opportunities for
a compromised hypervisor to exploit VM exit to escape CFI
enforcement and other security measures. Besides the instruc-
tion pointer itself, fields such as the stack pointer, segment
registers, and control registers (which can disable security
features such as protected mode, No-Execute (NX) pages,
and SMEP [30]) can completely redefine the hypervisor’s
environment, rendering many protections useless.

Shade addresses these issues in SVA by encapsulating the
VM entry/exit process (VMLAUNCH/VMRESUME) into an SVA
intrinsic, runvm, which handles switching of sensitive state
during world switches [34]. runvm has the semantics of a
self-contained function call, contrasting with the broad, open-
ended modification of system state possible with the native
interface. Shade keeps context-switched guest state for the
host and each guest VM within SFI-protected SVA internal
memory (Section 2.2), providing access to individual guest
state fields only through targeted intrinsics. The VMCS itself
is likewise stored in protected memory and accessible to the
hypervisor through intrinsics (read/writevmcs) which only
permit access to non-sensitive fields (or vet/sanitize input/
output for partially sensitive fields). VMCS fields related
to features that SVA needs to control at a higher level (e.g.
extended paging) are blocked by read/writevmcs, forcing
the hypervisor to use the appropriate higher-level intrinsics.

While Shade laid important high-level groundwork for
safely supporting the use of VMX acceleration in an SVA-
based system, it fell short of being able to support a full-scale
commodity hypervisor like Xen (or even a lightweight virtual-
ization support driver like KVM [36]). Shade was developed
and evaluated with a minimalist “toy” hypervisor that exer-

USENIX Association 2022 USENIX Annual Technical Conference    417



cised core VMX operations without the complexity of a full
hypervisor. This facilitated the initial design and debugging
of complex intrinsics such as runvm, but precluded an end-
to-end performance evaluation and left unclear the question
of whether the design choices made in the vISA would truly
be conducive to porting a real hypervisor without invasive
code changes or performance impacts. Shade also lacked
support for key VMX features important to real-world hyper-
visors such as accelerated interrupt controller (APIC), model-
specific register (MSR), and I/O port virtualization [30], and
only supported vetting of a small subset of VMCS fields. Our
work remedies these shortcomings, allowing us to port Xen
4.12 to the SVA vISA and use it to enforce and evaluate a se-
curity policy of real-world interest (return address protection
for CFI) on a real-world hypervisor.

3 Threat Model
Our threat model assumes that we have a system running a

single bare-metal hypervisor, such as Xen, on the hardware.
This hypervisor hosts one or more guest virtual machines
running various operating systems. The hypervisor is benign
but may have exploitable memory safety errors that permit
control-flow hijacking attacks such as return-to-libc [49] and
return-oriented programming (ROP) [47] attacks. As we want
to mitigate advanced control-flow hijacking attacks [7, 8, 18,
27], our defense must protect the integrity (but not necessarily
confidentiality) of return and return-from-interrupt addresses.
Non-control data attacks [9], Data-Oriented Programming
(DOP) attacks [29], and other memory safety attacks that
do not corrupt return addresses, function pointers, and other
control data are out of scope.

4 Design
In this work, we present three major design contributions:

1. We extend and improve upon the SVA virtual instruction
set architecture (vISA) of the Shade [34] project to effi-
ciently support the full set of hardware features needed
to run the Xen 4.12 hypervisor [3] in support of guest
VMs accelerated using the Virtual Machine Extensions
(VMX) [30] feaures of modern Intel x86-64 processors.

2. We extend the SVA vISA to support symmetric multipro-
cessing (SMP), an essential feature of modern systems
that historical SVA designs notably lacked.

3. We present a design for an efficient and straightforward
scheme enforcing forward-edge control flow integrity
(CFI) with return address integrity (i.e. backward-edge
CFI). This serves as a case study in how the SVA vISA
can be used to support sound and efficient enforcement
of security policies on commodity hypervisors, and also
represents an advancement in its own right on the state
of the art [51] as the first efficient protected shadow stack
design for a hypervisor.

Processor

Ombro Virtual Machine

Xen Hypervisor (SVA vISA Code)

Non-Accelerated

PV Guest Kernel

(Native Code)
(Optional)

Native ISA

R0

Guest

Applications

(Native Code)

Guest Kernel

(Native Code)

Guest

Applications

(Native Code)

Guest Kernel

(Native Code)

VMX

Non-Root

Mode

(Accelerated

HVM/PVH

Guests)

Guest 

Applications

(Native Code)
(Optional)

V
M

X
 R

o
o
t 

M
o
d
e

R
in

g
 3

 (
P

V
 g

u
es

ts
)

R
in

g
 0

 (
X

en
)

Virtual ISA

R3

Figure 1: Ombro Architecture

Figure 1 depicts the overall architecture of Ombro as used to
enforce security policies on the Xen 4.12 hypervisor.1 Om-
bro permits the hypervisor to run in the processor’s highest-
privileged mode—Ring 0 of VMX root mode—without rely-
ing on hardware privilege isolation to enforce security poli-
cies on the hypervisor. The hypervisor is compiled to the SVA
vISA rather than native code, preventing computations from
being expressed that could violate security policy. The Ombro
Virtual Machine’s2 SVA-OS runtime support library—a thin
layer of trusted native code provided by the SVA native code
translator (i.e. the compiler; see Section 2.1) to implement
the dynamic security checks required to safely implement
the vISA on native hardware—runs alongside the hypervisor
in this fully privileged mode, having been linked or inlined
directly into the compiled hypervisor by the SVA native code
translator. Software fault isolation (SFI) [50] (Section 2.2)
and control flow integrity (CFI) [4] provided by SVA ensure
that the hypervisor, despite running with full hardware priv-
ileges, cannot compromise the Ombro Virtual Machine or
escape the vISA to run unrestricted native code.

Notably, Ombro does not require guest VM code (or host
userspace application code for an OS-resident hypervisor)
to be compiled to the SVA vISA. The hypervisor/host OS
continues to employ standard x86 privilege isolation features
(namely, privilege rings and VMX root/non-root modes) to
isolate guest VMs and userspace applications from the hyper-
visor/kernel and each other, allowing guests and applications
to run unmodified native code. Only the hypervisor/host ker-
nel itself must be ported to the SVA vISA so that it can be
safely controlled within the processor’s most privileged mode.

Section 5 presents the extensions and improvements we
make to the Shade [34] version of the SVA vISA to support a
full commodity hypervisor (Xen 4.12). Section 6 describes
specific enhancements to the SVA design that are necessary
to support multi-processor systems, addressing a weakness in
prior SVA work. Section 7 presents a design that utilizes the
SVA vISA to efficiently and soundly enforce return address

1Our design supports any x86-64 hypervisor in principle, including those
integrated with a host OS kernel; for concreteness, we focus on Xen in this
work. In an OS-resident hypervisor, host userspace applications take the
place of non-accelerated paravirtual guests in Ring 3 of VMX root mode.

2“Virtual machine” here refers to the language-theoretic sense of the term,
not to the concept of a “guest virtual machine” provided by hypervisors. We
aim to consistently use “guest VM” to refer to the latter throughout this work.

418    2022 USENIX Annual Technical Conference USENIX Association



integrity on Xen to defend the hypervisor against advanced
control-flow hijacking attacks.

Guest Virtualization Modes Supported. The Xen 4.12 hyp-
ervisor, for legacy reasons, supports a variety of operating
modes for guest VMs on the x86-64 platform, which can be
used simultaneously for different guests [54]. These represent
a continuum of hardware acceleration usage and guest OS
support, ranging from the traditional non-accelerated para-
virtualization described in the original Xen paper [23] (re-
ferred to as “PV” mode in Xen’s documentation [54]), to
VMX-accelerated full virtualization supporting native guests
(“HVM” mode), to a modern paravirtual approach utilizing
VMX acceleration with Xen-aware guests (“PVH” mode).

Because classic PV mode is being de-emphasized by the
Xen project and likely to be phased out in the future [54],
Ombro’s design only supports VMX-accelerated guests (i.e.
HVM and PVH) and does not provide a complete set of
intrinsics for the hypervisor to support PV guests running
in usermode (host Ring 3). However, doing so would be a
straightforward extension of the existing SVA vISA, which
fully supports [14–16, 22, 34]) OS kernels with userspace ap-
plications in Ring 3. Our prototype (Section 8) does exactly
this (in a limited way with some shortcuts) for implementation
convenience. At times, we refer to PV concepts in design sec-
tions for the sake of clarity to readers familiar with Xen. They
are not, however, relevant to our security design, as the design
is intended for a modern Xen installation utilizing HVM/PVH
for all guests including the control domain (dom0).

Terminology: Guest VMs, Domains, vCPUs, etc. SVA in-
terfaces (following Intel’s convention) use the term “guest
virtual machine” to refer to a singular guest CPU virtualized
by a hypervisor. Each such guest CPU exists in one-to-one
correspondence with a Virtual Machine Control Structure
(VMCS) [30]. From the physical CPU’s and SVA’s perspec-
tive, it does not matter how the hypervisor may choose to
group those virtual CPUs together. However, this distinction
is important to Xen, which refers to the overall VM (which
may include multiple emulated CPUs) as a “domain” and
individual virtualized CPUs as “vCPUs”. Each vCPU thus
corresponds to exactly one VMCS, and to one “guest VM”
from SVA’s perspective. Xen performs context switches on
a per-vCPU basis, not per-domain (different vCPUs from
the same or different domains are context switched as in-
dependent entities), which is in line with Intel’s and SVA’s
perspective. In this paper, we sometimes refer to “vCPUs”
rather than “guest VMs“ when this distinction is important.

5 vISA Additions and Improvements
Our experience porting Xen to the SVA vISA developed

for Shade [34] led us to extend and improve upon the vISA,
adding missing support for hardware virtualization elements
used by Xen and mitigating disruptions to Xen’s performance
and code structure. We describe these improvements below.

5.1 Securing Higher-Level VMX Features
The Intel VMX feature set is controlled primarily through

control and state fields in a large (page-sized) in-memory,
per-vCPU data structure called the Virtual Machine Control
Structure (VMCS) [30]. Most VMX settings and subfeatures
are controlled straightforwardly via individual VMCS fields
or bits within a field consolidating similar controls. Some
subfeatures, however, are more complex and are spread across
multiple VMCS fields; some even utilize subsidiary control
pages that the hypervisor must provide and link into the main
VMCS by storing (host-)physical pointers into specific fields.

Shade’s vISA support for the VMCS (Section 2.3) is in-
sufficient to manage multi-field controls and substructures
because its read/writevmcs intrinsics operate on individual
fields and cannot readily account for behavioral dependencies
between them (e.g. fields activated by bits in other fields, or
structure pointers that must be set prior to enabling a fea-
ture in a different field). Thus, Shade must err on the side of
caution wherever invalid field combinations could lead to se-
curity holes or undefined behavior: it categorically blocks the
hypervisor from writing to such fields and forces the features
they control to be disabled or utilized in a hardcoded fashion
preconfigured by the SVA runtime.

While this achieved Shade’s goal of ensuring security for
the host system while supporting basic VMX functionality, it
locks the hypervisor out of performance- and functionality-
critical VMX features such as extended paging, interrupt con-
troller (local APIC) virtualization, and MSR3 and I/O port
virtualization. Shade provided higher-level intrinsics support-
ing extended paging by extending SVA’s existing support for
vetting host page table updates [34] but did not attempt to de-
sign vISA support for APIC, MSR, or I/O port virtualization.

Ombro extends the design of the vISA to support APIC,
MSR, and I/O port virtualization as first-class idioms; Table 1
summarizes the new intrinsics. As all three of these features
entail both multi-VMCS-field dependencies and substructures
linked into the VMCS (and APIC virtualization interacts with
MSR virtualization), we address them via similar techniques.

MSR and I/O virtualization are the more straightforward
of these to support. By default, VMX guests are blocked from
accessing MSRs or performing port I/O (i.e., rd/wrmsr and
port I/O instructions cause VM exits) [30]. When MSR or
I/O virtualization is enabled in the VMCS, the processor will
selectively allow guests to read or write particular MSRs or
I/O ports based on whether their corresponding bits are set in
the MSR and I/O bitmaps, which are substructures linked via
host-physical pointers in the VMCS. This hardware design
has multiple security implications in an SVA system.

Firstly, as MSRs control privileged processor features (in-
cluding crucial security features like long mode and page-

3Model-specific registers (MSRs) are a class of indexed control and in-
formation registers used extensively in the x86 ISA to manage privileged
processor features [30]. They have widely varying semantic and security
implications and represent a substantial portion of the x86 ISA’s complexity.

USENIX Association 2022 USENIX Annual Technical Conference    419



Table 1: APIC, MSR, and I/O Virtualization Intrinsics
Name (Arguments) Description
vlapic.enable Enable APIC virtualization for
(paddr virtual apic page, the active VM using the xAPIC
paddr apic access page) (MMIO) interface
vlapic.enable x2apic Enable APIC virtualization for
(paddr virtual apic page) the active VM using the x2APIC

(MSR) interface.
vlapic.disable Disable the currently active

VM’s local APIC (or use exit-
based virtualization).

posted interrupts enable Enable posted interrupt process-
(u8 vector, paddr descriptor) ing for the currently active VM.
posted interrupts disable Disable posted interrupt process-

ing for the currently active VM.
msr intercept.{get,set,clear} Get, set, or clear an MSR inter-
(int vmid, u32 msr, enum rw) cept for the specified VM.
io intercept.{get,set,clear} Get, set, or clear an I/O port
(int vmid, u16 port) intercept for the specified VM.

level execute permissions [30]), the vISA cannot allow un-
trusted host software (e.g. the hypervisor or host kernel) to
access them arbitrarily. Thus, neither of the rdmsr or wrmsr
instructions are present in the SVA vISA; relevant processor
features are managed through higher-level vISA idioms or
controlled directly by SVA. A guest VM, however, can exe-
cute native (non-vISA) kernel-mode code; its access to MSRs
is therefore constrained only by the MSR bitmaps. Therefore,
it is necessary for Ombro to constrain the settings of the MSR
bitmaps on a per-MSR level.

Secondly, the bitmaps themselves, being VMCS substruc-
tures addressed via raw host-physical pointers, would repre-
sent a security hole if the hypervisor were allowed to control
them directly. A compromised hypervisor could configure
the processor to use bitmap addresses corresponding to arbi-
trary physical memory, including SVA-protected pages (Sec-
tion 2.2), allowing it to trick SVA into overwriting protected
memory (since SVA must write to the bitmaps to ensure guests
exit when accessing security-sensitive MSRs) or infer the con-
tents of protected memory based on a guest’s behavior.4

Ombro addresses these issues by allocating and taking
ownership of the MSR and I/O bitmaps itself in protected
memory, as it does with the VMCS (Section 2.3). The
msr_intercept.clear intrinsic (Table 1) checks the pro-
vided MSR index against a whitelist of known-safe MSRs
that guests can access without compromising Ombro’s secu-
rity policies. io_intercept.clear does not need to impose
any restrictions under Ombro’s threat model, as the only need
is to prevent abuse of the bitmap substructure (per-port filter-
ing is available for potential use under other threat models).

APIC virtualization (APICv) poses similar challenges but is
more complex. Modern processors support both legacy xAPIC
mode (in which the APIC is controlled via a memory-mapped
I/O (MMIO) interface) and the newer x2APIC mode (which is
controlled via MSRs) [30]. Traditionally, hypervisors would

4While Ombro’s threat model (Section 3) does not require confidential-
ity of SVA-protected memory, other SVA-based systems such as Virtual
Ghost [14] and Shade [34] do, making this a relevant design consideration.

configure VMX to force a VM exit on all APIC accesses,
either via extended paging (for the xAPIC MMIO interface)
or by configuring the MSR bitmaps to force exits for APIC-
related MSRs (for x2APIC). This allows the hypervisor to
fully emulate the APIC in software, but is slow.

APICv allows certain common APIC accesses by the guest
to be virtualized in hardware without a VM exit. The hyper-
visor provides a virtual-APIC page in memory whose fields
stand in for the real APIC’s registers when a guest attempts
to access them [30]. Guest reads to APIC registers via the
MMIO (xAPIC) or MSR (x2APIC) interfaces see the values
provided by the hypervisor in the virtual-APIC page. Guest
APIC writes are virtualized by hardware without a VM exit
in situations involving the task- and processor-priority regis-
ters, end-of-interrupt signaling, and self-IPIs; unvirtualizable
writes are stored to the virtual-APIC page followed by a VM
exit so the hypervisor can handle them conventionally.

Relatedly, posted-interrupt processing [30] allows a hyp-
ervisor to send interrupts to a guest running on a different
processor without forcing that guest to VM exit. When a
processor in guest mode receives a (real) inter-processor inter-
rupt to a specified notification vector, it will (without exiting)
check an in-memory posted-interrupt descriptor to see if one
or more virtual interrupt records have been deposited within
(e.g. by the hypervisor on the sending CPU), and if so, deliver
them to the running guest through its virtual APIC.

Both features effectively map pages of host-physical mem-
ory into a guest’s address space with (limited) write access,
posing a clear security risk under our threat model, as this
could be used to defeat SVA-protected memory (e.g. the re-
turn address stacks described in Section 7). Unlike with MSR
and I/O port virtualization, it is not convenient to simply have
Ombro take ownership of the virtual-APIC page and posted-
interrupt descriptor in protected memory, as the hypervisor
needs to frequently read and write to them for normal oper-
ation. Thus, to allow the hypervisor to safely control these
pages, our APICv intrinsics (Table 1) check and record the
VMCS’s references to them in SVA’s memory metadata tables
(which track the usage of every 4-kB physical memory frame;
see Sections 2.2 and 6.1) as if they were page mappings acces-
sible to the hypervisor. The hypervisor is thus only allowed
to use non-sensitive pages it “owns” as APICv VMCS sub-
structures. Additionally, Ombro ensures that the vector used
for posted-interrupt notifications does not overlap with any
intercepted by SVA.

5.2 Guest Context Switching Optimizations
The x86 platform supports context switching of floating-

point unit (FPU) state using the XSAVE and XRSTOR instruc-
tions [30]. These instructions save or load a processor’s entire
FPU state, as well as that of several non-FPU features such
as vector and memory protection extensions, as a several-kB
monolithic data structure; system software is thus architected
to perform these slow operations as infrequently as possible.

420    2022 USENIX Annual Technical Conference USENIX Association



Xen refrains from using the FPU during its own execution,
leaving guest state untouched and allowing Xen to only per-
form XSAVE/XRSTOR when context switching from one guest
vCPU to another.

Shade [34] took the straightforward but inefficient approach
of context switching FPU state on every VM entry/exit. This
provided a clean abstraction wherein no guest state is ever
active on the processor in host mode or vice versa, but port-
ing Xen to the SVA vISA for Ombro showed this to be a
flawed design, yielding more than 200% overhead over base-
line (non-SVA) Xen in our no-op hypercall (VM entry/exit)
microbenchmark and unacceptably high overheads of up to
60% on VM-exit-heavy guest workloads (Section 10).

Ombro eliminates this source of overhead by extending
the SVA vISA’s existing thread abstraction, which can be
context switched independently of processor privilege level
transitions, to include guest VM (VMX non-root mode) state
in addition to userspace host process (Ring 3) state as in prior
SVA work [14,16]. This better matches how real-world hyper-
visors like Xen model context switching and allows FPU state
to be switched on vCPU context switches instead of requiring
it on every VM entry/exit. Because slow-switching elements
of the guest’s state (the FPU, some MSRs, etc.) are thus active
even while the system is in host mode, this provides a slightly
less flexible programming model to the hypervisor than in
Shade, but these limitations are non-issues in practice and
can be worked around: Xen already avoids using the FPU
in hypervisor context; an OS-integrated hypervisor would
simply allocate separate SVA threads for guest VMs and host
processes; and a hypervisor could free up the FPU for itself
by context switching to a dummy SVA thread not associated
with a guest VM or host process.

5.3 VMCS Management Optimizations
Ombro makes two additional improvements to the SVA

vISA to eliminate overheads related to VMCS management
induced in Xen by the Shade [34] design. The foremost of
these is that, unlike the native ISA, Shade only permits a
single VMCS to be loaded on a CPU at a time. The native
ISA only permits one VMCS to be active at a time, but others
need not be unloaded to load a new one [30], allowing them
to remain cached by the hardware for future context switches.
This distinction is crucial to performance; we found via an
informal benchmark that modifying Xen to explicitly clear
(flush) the outgoing VMCS in every context switch induces
unacceptably high (over 4x) runtime overhead on guests when
the machine’s physical CPUs are oversubscribed (i.e., when
vCPU context switches are frequent). Ombro addresses this
limitation by loosening the vISA to allow multiple loaded
VMCSes to coexist, relying on the mutex in the SVA thread
structure (Sections 5.2 and 6.1) to ensure a VMCS cannot be
loaded on multiple CPUs at once (which is undefined behavior
in the native ISA [30]).

The second improvement changes VMCS initialization (the
allocvm intrinsic) to provide benign defaults for all security-
sensitive VMCS and guest state fields rather than requiring
the hypervisor to specify them up-front. While VMCS con-
struction is not performance-critical for Xen, it occurs early in
vCPU creation before Xen has determined most of the guest’s
initial state, making it awkward to port Xen to use Shade’s
interface. Ombro’s interface is more general and agnostic to
hypervisor design choices.

6 SMP Support in SVA
Ombro adds symmetric multiprocessing (SMP) support to

SVA that all previous SVA systems [13–16, 21, 22, 34] lacked.
This required several changes to the internal design of the
SVA runtime library to make it thread-safe and to add support
for multi-propcessor TLB coherency. However, we made no
changes to the outward-facing SVA-OS virtual instruction
set; the original design [15–17] proved general enough to be
applicable to both uni- and multi-processor systems.

6.1 Thread Safety and Reference Counting
SVA maintains several data structures in its internal pro-

tected memory (Section 2.2) to track system state that it main-
tains on behalf of the hypervisor/OS kernel and to ensure
that its intrinsics are not used to configure the system in a
way that could undermine other security protections. These
include thread structures used for context switching host pro-
cesses [16] and guest vCPUs (Section 5.2) and a table tracking
typed references to each physical memory frame to prevent
host-kernel-mode software from using its control over the
MMU to evade SVA’s memory protections or code integrity
enforcement [15].

As these structures must be thread-safe in a multi-processor
system, Ombro adds locking to SVA’s thread structures and to
each entry in the frame usage table. Intrinsic calls attempting
to load or save a thread or to change a frame’s usage type
must obtain the relevant lock to prevent races. Incrementing/
decrementing a frame’s reference count in the table when a
page mapping is updated is a lock-free operation utilizing an
atomic compare-exchange loop to perform the update while
checking for integer overflow/underflow.

Additionally, Ombro expands the frame reference counts
themselves to separately count read-only and writable page
mappings to each frame. Prior SVA work [15,22,34] did not al-
low system software to create any mappings to SVA-protected
frames even when they only require tamper-protection and not
confidentiality (e.g. kernel code or page tables). This required
ad-hoc (and OS-specific) handling in SVA of special cases
like the kernel’s direct map and read access to page tables.
Ombro allows these to be handled through ordinary intrinsic
calls, making SVA more system-agnostic and allowing Xen
to continue supporting non-VMX PV guests under Ombro.

USENIX Association 2022 USENIX Annual Technical Conference    421



6.2 TLB Shootdowns
In an SVA system, physical memory frames used for

security-sensitive purposes such as page-table pages, host-
kernel-mode code, or SFI-protected memory (e.g. return ad-
dress stacks in Ombro—see Section 7) are tracked by SVA
so it can prevent system software from mapping them into
the virtual address space with inappropriate permissions or
outside the SFI-protected region [14, 15, 22]. To prevent use-
after-free attacks based on stale TLB entries, SVA flushes
the TLB whenever a frame’s usage type changes and one
or both of the types involved are security-sensitive (because
x86 does not support selective TLB flushes based on physical
addresses [30], a full TLB flush must be used).

On multiprocessor systems, this TLB flush must include
all processors, necessitating TLB shootdowns. Ombro im-
plements this by broadcasting an inter-processor interrupt
(IPI) [30] to all processors at a reserved interrupt vector, which
is received by an SVA handler that performs each local TLB
flush. The processor initiating the shootdown will not release
its lock on the frame’s usage type until all other processors
have acknowledged completion of the flush, ensuring that
software cannot create a conflicting mapping based on the
new type that would violate security policy.

7 Return Address Integrity
To defend against advanced control-flow hijacking attacks

as described in our threat model (Section 3), Ombro must pro-
tect the integrity of return and return-from-interrupt addresses
in Xen. We address this by using the vISA primitives pro-
vided by SVA to implement a split stack in Xen, where return
addresses are stored on one stack (called the control stack)
while local variables are stored on a separate stack (called
the data stack). The control stack is protected against tamper-
ing using SVA’s kernel-mode memory protection mechanism
(Section 2.2), while memory writes utilizing dynamic point-
ers or offsets that could be controlled by an attacker are only
permitted to access the data stack in ordinary (unprotected)
Xen memory.

7.1 Security Guarantees
Ombro ensures return address integrity (all functions re-

turn control flow to their dynamic callers) by enforcing the
following invariants on the hypervisor at runtime:

Invariant 1. Function calls always save the return address
on the control stack, or do not save any return address (e.g.
tail calls).

Invariant 2. Returns will always retrieve the return address
from the correct location on the control stack, i.e. into which
the return address was saved by the matching dynamic caller.

Invariant 3. Control stacks cannot be corrupted by any
code outside of trusted SVA-OS intrinsics, even when memory
safety errors are exploited.

Invariant 4. System software cannot use an SVA-OS intrinsic
to tamper with a control stack’s contents or a control stack
pointer on its behalf.

7.2 Enforcement Design
In a split stack design, the control and data stack are tracked

by separate stack pointers that can be incremented and decre-
mented independently [10, 59]. In Ombro, we use the native
x86 stack pointer register, RSP, for the control stack, so that
call and return instructions naturally use the control stack for
return addresses. This maintains Invariant 1 and contributes
to Invariant 2. The data stack is tracked by a free general-
purpose register reserved from the callee-saved set (R15 in
our prototype). The compiler is modified accordingly to facil-
itate this; function prologues and epilogues create and destroy
stack frames using the data stack pointer, leaving the control
stack pointer to be adjusted only by the return-address pushes
and pops performed by call and return instructions.

Call and return instructions are the only ones permitted
to modify the control stack pointer RSP outside of SVA-OS
intrinsics. They always respectively decrement or increment
RSP by exactly 8 bytes (the Ombro compiler will not emit
returns that pop additional values off the stack), ensuring that
only the relevant return address is affected. No other data is
stored on the control stack besides the single return address
pushed by each call and popped by the corresponding return;
the data stack is used for local variables, argument passing,
and callee-saved registers. As forward-edge CFI prevents
functions being entered except through a call (non-tail-call
jumps can only target another location within the current
function), calls and returns are guaranteed to occur in correctly
nested (matching) order. Hence Invariant 2 is ensured.

Because calls and returns occur in nested order, underflow
of the control stack pointer cannot occur. Overflow is ad-
dressed by placing a guard page at the end of each control
stack; guard pages are marked as invalid in the page tables,
ensuring that any attempt to read or write beyond the space
allocated for a control stack will be intercepted and prevented
by an SVA fault handler.

Ombro instruments all host-Ring-0 code outside of SVA-
OS intrinsic implementations with SFI checks on memory
stores (Section 2.2), ensuring that any attempts to write to a
protected virtual address region will be caught and prevented.
SVA’s enforcement of code segment integrity (Section 2.1)
in conjunction with forward-edge CFI [13, 22] ensures that
these SFI checks cannot be bypassed even in the presence of
memory safety errors. The control stack is allocated within
the SFI-protected virtual address region by SVA on Xen’s
behalf. Only call and return instructions are exempted from
SFI checks (so that they can access the control stack as in-
tended); these are generated by the compiler such that they
always access the stack using a predictable static offset from
RSP, so they cannot be used to access any other location in
service of an exploit. Hence Invariant 3 is ensured.

422    2022 USENIX Annual Technical Conference USENIX Association



The SVA vISA provides no means for system software to
set or adjust the host-Ring-0 control stack pointer RSP, or to
write to any location on a control stack, except pushing/pop-
ping from it via calls and returns. SVA allocates a control
stack for each CPU (Xen allocates hypervisor stacks on a
per-physical-CPU basis) and points RSP to it as a side effect
of SVA’s boot-time per-CPU initialization; thereafter, SVA
maintains the integrity of RSP across all intrinsic calls, context
switches, and VM entry/exit. Per our threat model (Section 3),
the hypervisor is considered benign prior to exploitation by a
memory safety error; SVA initialization occurs during early
boot before significant attack surfaces become available (there
is no network yet, nor have any guest VMs been started, in-
cluding the dom0 control domain). The SVA-OS intrinsic
implementations themselves are part of the trusted comput-
ing base and thus assumed to correctly implement the vISA,
ensuring that Invariant 4 is upheld after initialization.

8 Implementation
The prototype we built to evaluate Ombro is based on

source code for the SVA-OS runtime support library (see Sec-
tion 2.1, Figure 1, and Section 4) inherited from the Shade [34]
project and other previous SVA work [14–16, 22]. We signifi-
cantly modernized and refactored the codebase to address lim-
itations of prior work, which included adding multi-processor
support and overhauling the page reference tracking system to
be more flexible (Section 6). Overall, we improved the code
to be substantially less fragile and more maintainable, and
generalized aspects of the code that were specific to using
SVA with OS kernels (and FreeBSD in particular), such that
it could support a bare-metal hypervisor like Xen while retain-
ing support for OS kernels (including those with integrated
hypervisors). We upgraded SVA to be based on the LLVM
10.0.0 compiler [2] instead of LLVM 3.1 as in Shade [34] and
prior work. In parallel, we ported the x86-64 implementation
of Xen 4.12 [3] to target Ombro’s version of the SVA vISA,
linking it at compile time with the SVA-OS runtime support
library (as in prior SVA work).

Our software trusted computing base (TCB) relative to our
threat model (Section 3) consists of the SVA runtime library
(11,453 lines of code (LOC)), our CFI and SFI passes added to
the LLVM compiler (792 LOC), and non-pass modifications
to LLVM implementing our split stack transformation (497
LOC added/changed), totaling 12,742 LOC.5

Porting Xen 4.12 to the SVA vISA and supporting Ombro’s
split stack transformation entailed adding/changing ≤3,389
LOC6 (out of 313,377 total in Xen—about 1%), mostly in low-
level code dealing with page tables, VM entry/exit, VMCSes,

5We counted non-comment/whitespace lines using sloccount [52] for
the SVA library and passes and manually from git diffs for the rest.

6Most changes are gated behind #ifdefs, leaving the original code in
place; we took the difference between vanilla Xen and the Ombro port using
sloccount and added twice the number of removed lines from git diff
as an upper bound on the undercount.

and system boot. By comparison, prior work’s port of Linux
2.4.22 to SVA [16] modified 5,066 LOC out of 632,469 total
(0.8%). This shows that the difficulty of an SVA port scales
roughly but not exactly with the scope of the system.

As Section 4 describes, Ombro’s security design assumes
that all domains are used only in VMX-accelerated modes
(HVM and PVH), but our prototype retains partial support
for classic PV mode. Although Xen 4.12 supports a PVH
dom0, we found it useful to use a PV dom0 in order to have a
working, debuggable environment while porting VMX-related
components to SVA, as the dom0 is responsible for controlling
Xen and providing hardware drivers. We did not attempt to
fully port Xen’s PV code to SVA, leaving some native assem-
bly and unsafe (to our threat model, not Xen’s) workarounds
in place, though this could be completed with a little extra
work and minor enhancements to the SVA vISA. Since we
benchmarked (Section 10) within a PVH domU, we do not
expect significant performance differences between a PV and
PVH dom0, especially since we used the same configuration
for both Ombro and baseline Xen.

Further Implementation Experience Discussion. Some
readers may be interested in further discussion of our experi-
ence porting Xen to the SVA vISA and how that experience, as
well as our incremental performance evaluations throughout,
fed back into our design process and motivated specific design
changes. For reasons of space, that discussion is deferred to
Appendix B.

9 Security Analysis
Prior work [7,8,18,25,27] has shown that defenses relying

on CFI [4] to mitigate memory safety attacks must prevent
the corruption of return addresses in order to repel advanced
control-flow hijacking attacks, as static determination of the
call sites to which control flow may return leaves sufficient
loopholes for an attacker to perform arbitrary computation [8].
To this end, Ombro implements a split control/data stack
in Xen (Section 7) and uses SVA’s SFI-based kernel-mode
memory protection facility (Section 2.2) to protect the control
stack (and hence return addresses) from tampering.

Zhou et al. [58] proposed a framework for evaluating the
attack surface exposed by a security policy providing return-
address protection, drawing from Göktaş et al.’s [27] taxon-
omy classifying the different types of control-flow “gadgets”
that can be used by an attacker to assemble a code-reuse attack
in the presence of CFI. Call-site (CS) gadgets begin at a return
point following a call instruction, and Entry-point (EP) gad-
gets begin at the entry point to a function. Orthogonally, they
classify the methods by which gadgets can be linked together
to form a “chain” useful for computation: by corrupting return
addresses on the stack (return-oriented programming), indi-
rect jump targets (jump-oriented programming), or function
pointers (call-oriented programming). Depending on the CFI
policy in effect and the availability of gadgets in the target

USENIX Association 2022 USENIX Annual Technical Conference    423



program, it may be possible and/or necessary to mix differ-
ent gadget types and chaining methods to achieve a practical
chain. Pure call-oriented programming, in which only func-
tion pointers are manipulated to link gadgets, turns out to be
difficult or impractical to achieve in many cases, particularly
in scenarios where it is not possible for the attacker to repeat-
edly exploit memory safety errors; return- or jump-oriented
gadget linking must typically be used to perform initial setup
before the attacker can pivot to a call-oriented chain [7, 27].

Because Ombro’s split stack design prevents any corruption
of Xen’s control stack (which includes return as well as return-
from-interrupt addresses), return-oriented gadget linking is
categorically precluded. Additionally, the SVA vISA does not
include LLVM’s indirect jump (indirectbr) instruction and
does not need it to support Xen, the Linux kernel [16], or the
FreeBSD kernel [13, 14]. Thus, jump-oriented gadget linking
is precluded. Cumulatively, this severely limits the ability of
an attacker to assemble a useful gadget chain, particularly
in single-exploit scenarios, as only call-oriented chaining is
possible. That, in turn, is further limited by Ombro’s forward-
edge CFI protection.

Ombro’s label-based forward-edge CFI scheme is based
on that of KCoFI [13]; it is relatively coarse-grained, allow-
ing indirect calls to target any valid function entry point (but
nowhere else). Since the protected control stack already pre-
vents return-oriented gadget chaining, and the prohibition of
indirectbr prevents jump-oriented chaining, the net effect
of adding this forward-edge CFI enforcement is to limit an at-
tacker to a restricted form of pure call-oriented programming:
only entry-point (EP) gadgets can be used and they can only
be chained together via corrupted function pointers.

Ombro may be susceptible to the pure-call-oriented “Con-
trol Jujutsu” attack described by Evans et al. [25], who showed
that, in popular programs, common function pointer coding
patterns make it possible to assemble purely call-oriented
chains of EP gadgets even when return addresses are fully pro-
tected and strong static analysis is used to limit forward-edge
control flow transfers to those intended by normal program
operation. Specifically, they noticed that this was possible
in Apache and Nginx due to extensive use of function point-
ers to provide C++-style runtime polymorphism in C, which
exacerbates the lack of context-sensitivity in static (label-
based) CFI. We observe that Xen frequently utilizes similar
code patterns, using function pointers to delegate at runtime
to method implementations specific to particular virtualiza-
tion modes, hardware capabilities, etc. Hence, similar attacks
might be possible against Xen protected by Ombro. It is un-
clear, however, whether such attacks can work in practice
against a bare-metal hypervisor like Xen. Evans et al. relied
on the proliferation of arbitrary-code-execution system calls
such as system() and execve() to invoke a shell rather than
attempting to achieve arbitrary computation through code
reuse alone; these elements do not exist in Xen, and similarly
desirable functionality from an attacker’s perspective (e.g.,

giving the attacker’s domain dom0 privileges or mapping a
victim domain’s memory into the attacker’s) is not necessarily
invoked from as many places in the codebase.

Although our prototype implementation only restricts indi-
rect calls to calling any valid function, it would be straightfor-
ward to extend our label-based CFI approach to utilize a more
precise control flow graph based on more advanced static anal-
ysis. Because Xen is a monolithic executable and does not
support run-time module loading, whole-program analysis
could be used to identify functions that are never address-
taken (i.e. never indirectly called) and refrain from emitting
CFI labels for them, eliminating them as viable targets for
gadget chaining. While such functions might be reachable
“downstream” of other functions that are called indirectly,
this could make return-to-library [49] and similar short-chain
code-reuse attacks more difficult, furthering the goal of mak-
ing it difficult to reach functionality of ultimate interest to an
attacker. (Most indirectly-called functions in Xen are focused
on low-level platform-specific and scheduling-related func-
tionality, and do not interact directly with code manipulating
sensitive high-level fields such as access controls.)

Since it is built using SVA, Ombro prevents many attacks
(such as code injection) even if an attacker successfully di-
verts control flow. Because SVA prevents tampering with host-
kernel-mode code pages (i.e. Xen or SVA code) to ensure that
all privileged code is compiled with the trusted vISA transla-
tor (Section 2.1), it is impossible for an attacker to pivot from
code reuse to a more flexible code-injection attack, which is
typically the goal of code-reuse payloads in practice [27, 35];
attackers must perform all malicious computation via code
reuse. While ROP “compilers” do exist (e.g. [48]), they are
incapable of compiling complex high-level payloads, partic-
ularly for the restrictive code-reuse modalities necessary to
defeat Ombro’s CFI. This effectively limits attackers to non-
control data and data-oriented programming (DOP) attacks,
which are outside our threat model’s scope (Section 3). DOP
could also face practical headwinds similar to Control Jujutsu.

10 Performance Evaluation
To evaluate Ombro’s performance, we selected a portfolio

of real-world application macrobenchmarks (Section 10.1)
that we believe are reflective of typical cloud workloads. We
used the Phoronix Test Suite’s pts/kernel suite [40, 44] as a
starting point, with the following adjustments:

• We excluded benchmarks that failed to compile or run
on our test system running unmodified Xen (see system
details below). We used a more recent version (2.4.48)
of the Apache benchmark rather than exclude it due to
its real-world importance and use by related work [41].

• Because the full pts/kernel suite takes days to run and in-
cludes numerous configurations of the same applications
with minor differences, we ran a single configuration of

424    2022 USENIX Annual Technical Conference USENIX Association



each application, selecting the longest-running one that
completed in less than five minutes. Our full suite runs
in approximately three hours. Phoronix runs each bench-
mark at least three times and until the standard deviation
of all runs is less than 3.5% or a benchmark-specific cut-
off threshold is met; the result reported for each bench-
mark is the (arithmetic) mean of these runs [45].

• We chose to add a Memcached benchmark (v1.6.9, also
from Phoronix) because it is used by related work [41]
and represents a stress test for Ombro’s overheads. We
used the “Get” configuration with four connections.

We also developed and ran microbenchmarks (Section 10.2)
for hypercall latency (VM entry/exit), EPT fault handling, and
inter-processor interrupts (IPIs); our selection of microbench-
marks parallels related work [41].

For all of our experiments, we used a Dell Precision 7820
workstation with an Intel Xeon Silver 4208 (Cascade Lake)
CPU (8 cores/16 threads at 2.10 GHz with 11 MB L3
cache) [11], 32 GB 2666 MHz DDR4 memory, a 256 GB
M.2 NVMe SSD, and a 2 TB SATA 7200 RPM hard drive.
All disk I/O for the experiments used the SSD (the hard drive
was unused); the dom0 (control VM) had direct access to the
SSD and the domU (guest VM)’s virtual disk was directly
backed by a physical partition (not a file-based disk image).

For our baseline, we ran unmodified (“vanilla”) Xen 4.12
with an Arch Linux (kernel 5.15.12-arch1-1, packages up-
dated 2022-01-047) dom0 running in PV (traditional paravirt-
ualization) mode. The benchmarks ran within a domU running
the same Linux distribution in PVH (VMX-accelerated with
paravirtual optimizations) mode. The domU was allocated
16 vCPUs and 24 GB of RAM. We used GCC 11.1.0 to com-
pile the benchmark applications. We disabled Spectre [37]
mitigations such as IBRS [30] for all benchmark runs to pro-
vide a fair comparison, since our prototype did not implement
them (for reasons of time). We likewise enabled eager FPU
saving in vanilla Xen as Ombro saves FPU state on every
vCPU context switch (Section 5.2).

We evaluated Ombro using the implementation described
in Section 8, i.e., Xen 4.12 ported to the SVA vISA and com-
piled with CFI, SFI, and split-stack transformations. All other
configurations were the same as for the baseline.

10.1 Macrobenchmark Results
Table 2 summarizes our macrobenchmark results compar-

ing baseline unmodified Xen (labeled “vanilla”) with Ombro.
As Table 2 shows, Ombro incurs no detectable overheads (dif-
ferences are within or close to noise margins) on most bench-
marks, even though we selected a predominantly I/O-intensive
(i.e. challenging to virtualize) benchmark set. Several excep-
tions, particularly Memcached, RocksDB, and LevelDB, are
discussed further in Section 10.3 and Appendix A.1.

7Arch Linux is a “rolling” distribution without versioned releases, so the
package date stands in lieu of a version number.

Table 2: Macrobenchmark Results
Benchmark Units Vanilla Ombro

(↑↓ is better) Result Std. Dev. Ovhd. Std. Dev.
PostgreSQL TPS ↑ 4266.496 26.7% -17.84% 18.5%
PostgreSQL ms (avg. lat.) ↓ 61.644 21.0% -16.72% 18.9%
MBW MiB/s ↑ 6694.581 0.3% -2.88% 0.1%
BenchmarkMutex ns ↓ 39.967 0.9% -0.67% 0.0%
PostMark TPS ↑ 4335.000 1.0% -0.58% 1.0%
pmbench µs ↓ 0.113 4.5% -0.55% 4.2%
OSBench (Create Files) µs/event ↓ 24.270 0.3% -0.07% 0.8%
ctx_clock clocks ↓ 240.000 0.0% 0.00% 0.0%
OpenSSL (RSA 4096) signs/s ↑ 1516.867 0.3% 0.05% 0.2%
StressNG (RdRand) bogo ops/s ↑ 250298.447 0.0% 0.06% 0.0%
Apache req/s 212698.913 0.4% 0.34% 0.1%
t-test1 s ↓ 23.587 0.9% 0.75% 0.6%
iPerf (TCP) Mbits/s ↑ 28029.667 2.3% 0.75% 1.1%
SQLite s ↓ 83.164 0.8% 1.06% 0.7%
Hackbench s ↓ 140.056 0.8% 4.53% 1.8%
Schbench µs ↓ 18762.667 0.7% 4.59% 8.0%
IPC (TCP Socket) messages/s ↑ 473697.400 13.3% 4.63% 12.1%
LevelDB µs/op ↓ 428.367 0.1% 12.62% 0.3%
RocksDB ops/s ↑ 34557.667 0.1% 12.82% 0.3%
Memcached ops/s ↑ 46960.733 0.2% 21.81% 2.1%
Geometric mean 0.87%

Table 3: Microbenchmark Results (TSC cycles)
Benchmark Vanilla Ombro

Cycles Std. Dev. Cycles Std. Dev. Ovhd.
No-op hypercall 750 18.5% 1465 14.2% 95%
EPT fault 4180 10.0% 5693 8.88% 36%
vCPU self-IPI 1731 12.9% 2353 14.6% 36%
IPI (vCPU→vCPU) 2966 14.6% 3531 14.4% 19%

We also ran our benchmarks with Ombro’s split stack, CFI,
and SFI transforms disabled to determine if Ombro’s security
instrumentation contributes significant performance overhead.
Our results show no discernible difference, i.e., nearly all
of Ombro’s overhead comes from the vISA itself, not the
instrumentation. Appendix A.2 contains detailed results.

10.2 Microbenchmarks
Table 3 summarizes our microbenchmark results for key

hypervisor operations. We ran 228 timed iterations of each
benchmark (reporting the arithmetic mean) after 212 untimed
warmup iterations. Results are in hardware timestamp counter
(TSC) cycles measured using the rdtsc instruction (with
Xen’s rdtsc interception disabled) before and after the oper-
ation (or sending/receiving on the respective CPUs for IPIs;
our processor synchronizes the TSC across cores [30]).

Each microbenchmark includes a VM entry/exit cycle,
which is minimally exercised by the no-op hypercall bench-
mark. Ombro’s base hypercall overhead is substantially
greater than the overhead of more complex operations, which
are themselves greater than our macrobenchmark overheads in
Section 10.1. This indicates that VM entry/exit is the primary
source of Ombro’s overhead. Since hardware acceleration is
designed to make VM exits relatively rare, Ombro’s overhead
only substantially impacts difficult-to-virtualize workloads
that incur frequent VM exits.

10.3 Overhead Sources and Their Remedies
Prior work [41] illustrated that Memcached’s performance

is highly sensitive to changes in VM entry/exit latency be-

USENIX Association 2022 USENIX Annual Technical Conference    425



cause it is frequently bottlenecked by the need to send inter-
processor interrupts (IPIs) between guest vCPUs, e.g. by
Linux’s implementation of the futex() system call. IPIs
are efficient on a “bare-metal” (unvirtualized) system but
expensive to virtualize because hypervisors cannot safely ex-
pose the interrupt controller (local APIC) to guests, requiring
a VM exit to virtualize the APIC in software whenever an
IPI is to be sent. Although VMX currently provides exit-
free hardware-virtualized delivery of virtual interrupts (Sec-
tion 5.1), the sending of them is not yet virtualized, making
this a major pain point for virtualizing popular applications
like Memcached. Besides Memcached, our RocksDB and
LevelDB benchmarks are of a similar nature (multi-threaded
in-memory databases) and exhibit the same sensitivity.

To confirm our hypothesis that Ombro’s overheads come al-
most exclusively from VM entry/exit overheads (Section 10.2)
and that this is responsible for our three macrobenchmark out-
liers, we conducted an informal experiment where we mod-
ified vanilla Xen to add artificial (busy-wait) overhead after
each VM exit. With this modification, vanilla Xen’s mac-
robenchmark results closely matched those of Ombro (the
same benchmarks showed similar slowdowns).

We conclude, therefore, that Ombro’s overheads on these
outliers are not of great concern, as the IPI virtualization
problem is shared with vanilla Xen (and x86 virtualization
in general). We explore this further in Appendix A.1, where
we compare vanilla Xen with a bare-metal (unvirtualized)
system; we observe that baseline Xen’s overheads on Mem-
cached, RocksDB, and LevelDB (and others) far outweigh the
additional impact of Ombro on Xen. We note also that Intel
has announced plans to introduce hardware-accelerated IPI
virtualization in future processors [12] to address this issue;
we expect this will eliminate Ombro’s overheads on these
workloads as it will eliminate the underlying VM exits.

As Appendix A.2 details, none of Ombro’s effective over-
head is attributable to its compile-time security instrumen-
tation (split stack, CFI, and SFI). This bodes well for the
prospects of using the SVA approach and infrastructure to
implement stronger security hardening, such as full memory
safety [20, 43, 57], on hypervisors, as hypervisor execution
evidently does not represent a sufficient fraction of system run-
time to make instrumentation on it costly in absolute terms.

11 Related Work
Compiler-based virtual machines decouple the instruction

set used to express computation from the instruction set im-
plemented by the hardware. Ombro builds directly upon prior
work with the Low Level Virtual Architecture [5, 17] and
Secure Virtual Architecture [16], described in Section 2.

Previous work has enforced CFI and/or return address in-
tegrity on systems code, but none have enforced return address
integrity for hypervisors. KCoFI [13] and KCFI [26] enforce
control flow integrity on OS kernel code but do not provide
return address integrity. Silhouette [58] provides CFI and a

protected shadow stack for application code running in priv-
ileged mode on embedded systems and inspired our attack
surface analysis (Section 9). Kage [24] uses compiler-based
techniques similar to Ombro’s to provide CFI and a protected
shadow stack for an embedded real-time OS while splitting
the kernel into trusted and untrusted layers. IskiOS [28] pro-
vides a protected shadow stack for the Linux kernel by uti-
lizing Intel’s Memory Protection Keys feature [30] but does
not enforce it on hypervisor code. Ombro could incorporate
IskiOS’s technique in lieu of SVA’s MPX-based SFI enforce-
ment option if Intel deprecates MPX as planned [31].

HyperSafe [51] enforces control flow integrity on hyper-
visor code and controls how the hypervisor configures the
MMU to prevent attackers from corrupting page tables, hyp-
ervisor code pages, or CFI labels. Unlike Ombro, it does not
provide return address integrity and is therefore susceptible
to advanced ROP attacks [7,8,18,27]. The HyperSafe authors
designed and evaluated a shadow stack variant in conjunction
with their CFI scheme but found it to have high overhead
(over 300%) due to its reliance on the x86 platform’s WP bit
as an isolation mechanism [51]. In contrast, Ombro’s use of
SFI for kernel-mode isolation provides efficient control stack
protection. HyperSafe also does not appear to constrain VMX
features (e.g., by protecting the VMCS) whereas Ombro does.

Whole-VM trusted execution environments (TEEs) that
protect guest VMs from compromised hypervisors, such as
CloudVisor [41, 56], H-SVM [32, 33], and HyperCoffer [55],
are an orthogonal approach to hardening the hypervisor itself
against attack. Ombro’s SVA-based VISC approach could
readily lend itself to implementation of a whole-VM TEE
using SFI and vISA restrictions in lieu of the hardware-based
isolation mechanisms used by prior work, similar to Virtual
Ghost’s [14] and Apparition’s [22] approach for OS kernels.
In such a system, a whole-VM TEE could be combined with
Ombro-style hypervisor hardening for additional defense-in-
depth with (we believe) minimal cumulative overhead.

12 Future Work and Conclusions
Several interesting directions for future work exist. We

can explore additional security policies that SVA-based sys-
tems could enforce on hypervisor code, such as code pointer
integrity [38] and memory safety [20, 43, 57]. We can also ex-
plore replacing hardware-enforced security enforcement and
isolation with compiler instrumentation techniques. For exam-
ple, we could explore whether compiler-based enforcement
could allow us to create hypervisors with isolated components
as previous work [53] does using hardware isolation features.

In conclusion, we have expanded the SVA vISA and ported
the Xen hypervisor to it, have used the vISA to implement
the first protected shadow (split) stack for a hypervisor, and
have demonstrated its efficiency on real-world benchmarks.

We thank the anonymous reviewers and shepherd for their
helpful feedback. This work was supported by NSF grant
CNS-1629770 and ONR award N00014-17-1-2996.

426    2022 USENIX Annual Technical Conference USENIX Association



References
[1] The Rust Programmng Language. https://www.rust-

lang.org [Online; accessed 2022-06-08].

[2] The LLVM Compiler Infrastructure Project. [Online;
accessed 2022-01-12].

[3] Xen Project. https://xenproject.org [Online; ac-
cessed 2021-08-07].

[4] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay
Ligatti. Control-Flow Integrity Principles, Implementa-
tions, and Applications. ACM Transactions on Informa-
tion Systems Security, 13:4:1–4:40, November 2009.

[5] Vikram Adve, Chris Lattner, Michael Brukman, Anand
Shukla, and Brian Gaeke. LLVA: A Low-Level Vir-
tual Instruction Set Architecture. In Proceedings of
the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-36, pages 205–216, San
Diego, CA, 2003. IEEE Computer Society.

[6] Daniel P. Bovet and Marco Cesati. Understanding the
LINUX Kernel. O’Reilly, Sebastopol, CA, 2nd edition,
2002.

[7] Nicholas Carlini and David Wagner. ROP Is Still Dan-
gerous: Breaking Modern Defenses. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 385–
399, San Diego, CA, August 2014. USENIX Associa-
tion.

[8] Nicolas Carlini, Antonio Barresi, Mathias Payer, David
Wagner, and Thomas R. Gross. Control-flow Bend-
ing: On the Effectiveness of Control-flow Integrity. In
Proceedings of the 24th USENIX Security Symposium
(SEC), pages 161–176, Washington, D.C., 2015.

[9] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and
Ravishankar K. Iyer. Non-Control-Data Attacks Are Re-
alistic Threats. In Proceedings of the 14th USENIX Se-
curity Symposium (SEC), pages 12–12, Baltimore, MD,
2005.

[10] Clang Documentation. SafeStack. https://
clang.llvm.org/docs/SafeStack.html [Online; ac-
cessed 18-June-2021].

[11] Intel Corporation. Intel Xeon Silver 4208 Processor.
https://ark.intel.com/content/www/us/en/
ark/products/193390/intel-xeon-silver-4208-
processor-11m-cache-2-10-ghz.html. [Online;
accessed 2021-08-11].

[12] Intel Corporation. Intel Architecture Instruction Set
Features and Future Extensions Programming Refer-
ence. https://software.intel.com/content/www/
us/en/develop/download/intel-architecture-

instruction-set-extensions-programming-
reference.html, May 2021. [Downloaded 2022-01-
12].

[13] John Criswell, Nathan Dautenhahn, and Vikram Adve.
KCoFI: Complete Control-Flow Integrity for Commod-
ity Operating System Kernels. In Proceedings of the
35th IEEE Symposium on Security and Privacy (S&P),
pages 292–307, San Jose, CA, May 2014.

[14] John Criswell, Nathan Dautenhahn, and Vikram Adve.
Virtual Ghost: Protecting Applications from Hostile Op-
erating Systems. In Proceedings of the 19th Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS’14,
pages 81–96, 2014.

[15] John Criswell, Nicolas Geoffray, and Vikram Adve.
Memory Safety for Low-Level Software/Hardware In-
teractions. In Proceedings of the 18th USENIX Security
Symposium, Security’09, pages 83–100, 2009.

[16] John Criswell, Andrew Lenharth, Dinakar Dhurjati, and
Vikram Adve. Secure Virtual Architecture: A Safe Exe-
cution Environment for Commodity Operating Systems.
In Proceedings of the 21st ACM SIGOPS Symposium
on Operating Systems Principles, SOSP’07, pages 351–
366, Stevenson, WA, 2007. ACM.

[17] John Criswell, Brent Monroe, and Vikram Adve. A
Virtual Instruction Set Interface for Operating System
Kernels. In Workshop on the Interaction between Oper-
ating Systems and Computer Architecture, pages 26–33,
Boston, MA, USA, June 2006.

[18] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann,
and Fabian Monrose. Stitching the Gadgets: On the In-
effectiveness of Coarse-Grained Control-Flow Integrity
Protection. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 401–416, San Diego, CA,
August 2014. USENIX Association.

[19] Hoss Firooznia (Universitato de Roĉestro Es-
perantistoj). About Esperanto. https:
//esperanto.lodestone.org/esperanto/en [On-
line; accessed 2022-06-08].

[20] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve.
SAFECode: Enforcing Alias Analysis for Weakly
Typed Languages. In ACM SIGPLAN Conference on
Programming Language Design and Implementation,
Ottawa, Canada, June 2006.

[21] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan Cox,
and Sandhya Dwarkadas. Spectres, Virtual Ghosts, and

USENIX Association 2022 USENIX Annual Technical Conference    427

https://www.rust-lang.org
https://www.rust-lang.org
https://xenproject.org
https://clang.llvm.org/docs/SafeStack.html
https://clang.llvm.org/docs/SafeStack.html
https://ark.intel.com/content/www/us/en/ark/products/193390/intel-xeon-silver-4208-processor-11m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/193390/intel-xeon-silver-4208-processor-11m-cache-2-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/193390/intel-xeon-silver-4208-processor-11m-cache-2-10-ghz.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://esperanto.lodestone.org/esperanto/en
https://esperanto.lodestone.org/esperanto/en


Hardware Support. In Proceedings of the 7th Interna-
tional Workshop on Hardware and Architectural Sup-
port for Security and Privacy, HASP’18, pages 5:1–5:9,
Los Angeles, CA, 2018. ACM.

[22] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan L.
Cox, and Sandhya Dwarkadas. Shielding Software from
Privileged Side-Channel Attacks. In Proceedings of the
27th USENIX Security Symposium, Security’18, pages
1441–1458, 2018.

[23] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,
A. Warfield, P. Barham, and R. Neugebauer. Xen and the
Art of Virtualization. pages 164–177, Bolton Landing,
NY, USA, October 2003.

[24] Yufei Du, Zhuojia Shen, Komail Dharsee, Jie Zhou,
Robert J Walls, and John Criswell. Holistic Control-
Flow Protection on Real-Time Embedded Systems with
Kage. In Proceedings of the 31st USENIX Security
Symposium, Security ’22. USENIX Association, 2022.

[25] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard
Shrobe, Martin Rinard, Hamed Okhravi, and Stelios
Sidiroglou-Douskos. Control Jujutsu: On the Weak-
nesses of Fine-Grained Control Flow Integrity. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’15, pages
901–913, Denver, CO, 2015. ACM.

[26] X. Ge, N. Talele, M. Payer, and T. Jaeger. Fine-Grained
Control-Flow Integrity for Kernel Software. In Proceed-
ings of the 1st IEEE European Symposium on Security
and Privacy (EuroS&P), pages 179–194, Saarbrücken,
Germany, March 2016.

[27] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and
Georgios Portokalidis. Out of Control: Overcoming
Control-Flow Integrity. In Proceedings of the 35th IEEE
Symposium on Security and Privacy (S&P), pages 575–
589, San Jose, CA, May 2014.

[28] Spyridoula Gravani, Mohammad Hedayati, John
Criswell, and Michael L. Scott. Fast Intra-Kernel
Isolation and Security with IskiOS. In Proceedings
of the Twenty Fourth International Symposium on
Research in Attacks, Intrusions and Defenses, RAID
’21, 2021.

[29] Hong Hu, Shweta Shinde, Sendroiu Adrian,
Zheng Leong Chua, Prateek Saxena, and Zhenkai Liang.
Data-Oriented Programming: On the Expressiveness
of Non-Control Data Attacks. In Security and Privacy
(SP), 2016 IEEE Symposium on, pages 969–986. IEEE,
2016.

[30] Intel. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual. May 2018. 325462-067US.

[31] Intel Corp. Introduction to Intel R© Mem-
ory Protection Extensions, July 2013. https:
//software.intel.com/content/www/us/en/
develop/articles/introduction-to-intel-
memory-protection-extensions.html [Online;
accessed 2020-11-10].

[32] S. Jin, J. Ahn, J. Seol, S. Cha, J. Huh, and S. Maeng.
H-SVM: Hardware-Assisted Secure Virtual Machines
under a Vulnerable Hypervisor. IEEE Transactions on
Computers, 64(10):2833–2846, Oct 2015.

[33] Seongwook Jin, Jeongseob Ahn, Sanghoon Cha, and
Jaehyuk Huh. Architectural Support for Secure Virtual-
ization under a Vulnerable Hypervisor. In 2011 44th An-
nual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 272–283. IEEE, 2011.

[34] Ethan Johnson, Komail Dharsee, and John Criswell. Se-
cure Guest Virtual Machine Support in Apparition. In
Proceedings of the 15th ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environments,
VEE 2019, pages 17–30, New York, NY, USA, 2019.
ACM.

[35] Mateusz Jurczyk and Sergei Glazunov. Google
Project Zero: In-the-Wild Series: Windows Exploits.
https://googleprojectzero.blogspot.com/2021/
01/in-wild-series-windows-exploits.html,
2021. [Online; accessed 2021-11-02].

[36] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and An-
thony Liguori. kvm: The Linux Virtual Machine Monitor.
In Proceedings of the Linux Symposium, volume 1, pages
225–230, Ottawa, Ontario, Canada, Jun 2007.

[37] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In Proceedings of the 40th
IEEE Symposium on Security and Privacy, SP’19, San
Francisco, CA, 2019. IEEE.

[38] Volodymyr Kuznetsov, László Szekeres, Mathias Payer,
George Candea, R. Sekar, and Dawn Song. Code-Pointer
Integrity. In Proceedings of the 11th USENIX Confer-
ence on Operating Systems Design and Implementation,
OSDI’14, pages 147–163, Berkeley, CA, USA, 2014.
USENIX Association.

[39] Chris Lattner and Vikram Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis & Transfor-
mation. In Proceedings of the International Sympo-
sium on Code Generation and Optimization: Feedback-
Directed and Runtime Optimization, CGO’04, pages 75–
86, Palo Alto, CA, 2004. IEEE Computer Society.

428    2022 USENIX Annual Technical Conference USENIX Association

https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-memory-protection-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-memory-protection-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-memory-protection-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-memory-protection-extensions.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-windows-exploits.html
https://googleprojectzero.blogspot.com/2021/01/in-wild-series-windows-exploits.html


[40] Phoronix Media. Phoronix Test Suite. https://
www.phoronix-test-suite.com. [Online; accessed
2019-03-11].

[41] Zeyu Mi, Dingji Li, Haibo Chen, Binyu Zang, and Haib-
ing Guan. (Mostly) Exitless VM Protection from
Untrusted Hypervisor through Disaggregated Nested
Virtualization. In 29th USENIX Security Symposium
(USENIX Security 20), pages 1695–1712. USENIX As-
sociation, August 2020.

[42] Microsoft. Introduction to Hyper-V on Windows
10, 2018. https://docs.microsoft.com/en-us/
virtualization/hyper-v-on-windows/about/
[Online; accessed 2021-08-07].

[43] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin,
and Steve Zdancewic. SoftBound: Highly Compatible
and Complete Spatial Memory Safety for C. In Pro-
ceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI ’09, pages 245–258, New York, NY, USA, 2009.
ACM.

[44] OpenBenchmarking. Common Kernel Bench-
marks. https://openbenchmarking.org/suite/
pts/kernel. [Online; accessed 2021-08-11].

[45] OpenBenchmarking. Phoronix Test Suite Docu-
mentation. https://github.com/phoronix-test-
suite/phoronix-test-suite/blob/master/
documentation/phoronix-test-suite.md. [On-
line; accessed 2022-01-12].

[46] Oracle Corporation. VirtualBox. https://
www.virtualbox.org [Online; accessed 2022-06-08].

[47] Ryan Roemer, Erik Buchanan, Hovav Shacham, and
Stefan Savage. Return-Oriented Programming: Systems,
Languages, and Applications. ACM Transactions on
Information Systems Security (TISSEC), 15(1):2:1–2:34,
March 2012.

[48] Edward J. Schwartz, Thanassis Avgerinos, and David
Brumley. Q: Exploit Hardening Made Easy. In Pro-
ceedings of the 20th USENIX Conference on Secu-
rity, SEC’11, pages 25–25, Berkeley, CA, USA, 2011.
USENIX Association.

[49] Minh Tran, Mark Etheridge, Tyler Bletsch, Xuxian Jiang,
Vincent Freeh, and Peng Ning. On the Expressiveness
of Return-into-libc Attacks. In Proceedings of the 14th
International Conference on Recent Advances in Intru-
sion Detection (RAID), pages 121–141, Menlo Park, CA,
2011.

[50] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and
Susan L. Graham. Efficient Software-Based Fault Iso-
lation. In Proceedings of the 14th ACM Symposium on
Operating Systems Principles, SOSP’93, pages 203–216,
Asheville, NC, 1993. ACM.

[51] Z. Wang and X. Jiang. HyperSafe: A Lightweight Ap-
proach to Provide Lifetime Hypervisor Control-Flow
Integrity. In Proceedings of the 31st IEEE Symposium
on Security and Privacy (S&P), pages 380–395, May
2010.

[52] David A. Wheeler. SLOCCount. http://
www.dwheeler.com/sloccount/ [Online; accessed
2022-06-08].

[53] Dan Williams, Yaohui Hu, Umesh Deshpande, Piush K.
Sinha, Nilton Bila, Kartik Gopalan, and Hani Jamjoom.
Enabling Efficient Hypervisor-as-a-Service Clouds with
Ephemeral Virtualization. In Proceedings of the 12th
ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, VEE 2016, New York,
NY, USA, 2016. ACM.

[54] Xen Project. Understanding the Virtualization Spec-
trum, 2014. https://wiki.xenproject.org/wiki/
Understanding_the_Virtualization_Spectrum
[Online; accessed 2021-08-05].

[55] Yubin Xia, Yutao Liu, and Haibo Chen. Architecture
Support for Guest-Transparent VM Protection from Un-
trusted Hypervisor and Physical Attacks. In 2013 IEEE
19th International Symposium on High Performance
Computer Architecture (HPCA), pages 246–257. IEEE,
2013.

[56] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang.
CloudVisor: Retrofitting Protection of Virtual Machines
in Multi-Tenant Cloud with Nested Virtualization. In
Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP ’11, pages 203–
216, New York, NY, USA, 2011. ACM.

[57] Tong Zhang, Dongyoon Lee, and Changhee Jung.
BOGO: Buy Spatial Memory Safety, Get Temporal
Memory Safety (Almost) Free. In Proceedings of the
Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, ASPLOS ’19, pages 631–644, 2019.

[58] Jie Zhou, Yufei Du, Zhuojia Shen, Lele Ma, John
Criswell, and Robert J. Walls. Silhouette: Efficient Pro-
tected Shadow Stacks for Embedded Systems. In 29th
USENIX Security Symposium (USENIX Security 20),
pages 1219–1236. USENIX Association, August 2020.

USENIX Association 2022 USENIX Annual Technical Conference    429

https://www.phoronix-test-suite.com
https://www.phoronix-test-suite.com
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://openbenchmarking.org/suite/pts/kernel
https://openbenchmarking.org/suite/pts/kernel
https://github.com/phoronix-test-suite/phoronix-test-suite/blob/master/documentation/phoronix-test-suite.md
https://github.com/phoronix-test-suite/phoronix-test-suite/blob/master/documentation/phoronix-test-suite.md
https://github.com/phoronix-test-suite/phoronix-test-suite/blob/master/documentation/phoronix-test-suite.md
https://www.virtualbox.org
https://www.virtualbox.org
http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/
https://wiki.xenproject.org/wiki/Understanding_the_Virtualization_Spectrum
https://wiki.xenproject.org/wiki/Understanding_the_Virtualization_Spectrum


[59] Philipp Zieris and Julian Horsch. A Leak-Resilient
Dual Stack Scheme for Backward-Edge Control-Flow
Integrity. In 13th ACM Asia Conf. on Computer & Com-
munications Security (ASIACCS), Incheon, Republic of
Korea, June 2018.

430    2022 USENIX Annual Technical Conference USENIX Association



A Additional Benchmarks
In this appendix, we provide results and discussion of addi-

tional benchmarks that we conducted in order to shed light on
the main results presented in Section 10. We did not include
these results in the main body of the paper because they ei-
ther served to demonstrate existing issues known from prior
work that we do not claim as novel results, or presented no
statistically significant contrast and thus could be summarized
adequately in the main text without detailed results.

A.1 Unmodified Xen vs. Unvirtualized
In Section 10.1, we observed that a few benchmarks from

our subset of the Phoronix suite, particularly Memcached,
RocksDB, and LevelDB, exhibited non-negligible overheads
(unlike most of our macrobenchmarks) under Ombro as com-
pared to baseline (“vanilla”) Xen. Through further experimen-
tation (Section 10.2) and reference to existing literature in the
field [41], we were able to conclude (Section 10.3) that the pri-
mary cause of these particular benchmarks’ poor behavior was
likely due to the fact that they frequently send inter-processor
interrupts (IPIs) to communicate between threads running
on different virtual CPUs (vCPUs), which on current Intel
processors requires taking a VM exit [12, 30].

As VM exits are expensive (slow) operations for hyper-
visors to handle due to the substantial amount of processor
state that must be saved and loaded during a world switch,
hypervisor and hardware design generally tries to make them
infrequent as a share of total execution time. Workloads that
do not make that possible (such as these problematic bench-
marks) can therefore expect to incur substantial overheads
simply from being virtualized in the first place.

To illustrate this issue, we re-ran our macrobenchmark
suite (Section 10.1) on our test machine in a “bare-metal”
(i.e. unvirtualized) configuration and compared the results
to that of vanilla Xen, as shown in Table 4. For consistency
with our main results, vanilla Xen is retained as the baseline,
with the bare-metal results compared to it, yielding negative
“overheads”, i.e. speedups, for bare metal. As can be seen,
the benchmarks that showed non-negligible overheads under
Ombro in Section 10.1 all run substantially faster on bare
metal than under vanilla Xen, the difference between the two
being far greater in magnitude than the difference between
Ombro and vanilla Xen. In fact, most of the benchmarks,
including the ones to which Ombro added no or negligible
overhead over vanilla Xen, show significant gaps between
unvirtualized and virtualized execution.

Our methodology for the bare-metal benchmark runs was
to boot a copy of the same Linux installation used for the
domU (unprivileged guest domain) in Xen-based benchmark
runs directly from the system bootloader instead of through
Xen. As it is the same system except for the addition of a few
driver packages needed to support running on physical hard-
ware, this minimizes differences between the configurations,

but the comparison is nonetheless imperfect: the bare-metal
runs had access to the system’s full 32 GB of RAM, whereas
the Xen-based runs were limited to 24 GB in the domU, as we
needed to leave some of the system’s memory for Xen and the
dom0. This, as well as effects such as the difference between
virtualized and unvirtualized disk I/O, could potentially am-
plify the difference measured between vanilla Xen and bare
metal. We therefore do not attempt to draw strong quantitative
conclusions from the detailed results of this comparison and
suffice to note qualitatively that the outliers in our Ombro
benchmarks are clearly especially difficult cases for vanilla
Xen as well. This is consistent with the conclusions of prior
work [41] and the fact that Intel is planning to introduce IPI
virtualization to future processors so that workloads such as
these no longer need to incur frequent VM exits [12].

A.2 Ombro without Instrumentation
As part of our performance evaluation (Section 10), we

wished to measure whether Ombro’s control flow integrity
(CFI), software fault isolation (SFI), and split stack transfor-
mations had measurable impacts on performance. This would
allow us to separate overheads due to instrumentation from
those incurred simply by porting Xen to the SVA virtual in-
struction set (vISA).

To this end, we set a flag in the compiler that instructed it
to not add CFI and SFI checks to the generated code or to
perform the split stack transformation when building Xen in
the Ombro configuration. This results in a build of Ombro
which does not have functional hardening protections beyond
vanilla Xen but still uses SVA intrinsics rather than native
assembly to perform low-level operations. Thus, it measures
any overheads from extra data copying or code indirection
entailed by routing through the virtual instructions as well as
the overheads of any runtime security checks peformed by
the intrinsics themselves.

We ran our macrobenchmark suite on this “no-
instrumentation” build of Ombro/Xen and compared it with
vanilla Xen, as summarized in Table 5. As in Appendix A.1,
we use vanilla Xen as our baseline for consistency with our
main results in Section 10.1. The overheads listed for “Ombro
without instrumentation” can therefore be compared head-to-
head with the “Ombro” numbers in Section 10.1.

As can be seen, the results for Ombro without instrumen-
tation do not exhibit a clear contrast from the Ombro results
in Section 10.1 that rises above the noise floor. (In fact, the
geometric mean for Ombro without instrumentation shows
higher overhead than ordinary Ombro, which can be clearly
attributed to experimental noise given the high standard devia-
tions on the benchmarks that turned out the most favorably for
ordinary Ombro, particularly the PostgreSQL benchmarks.)
We therefore conclude that the CFI and SFI instrumentation
and the split stack transformation add no measurable overhead
to the “core” vISA port. This makes sense in light of our con-
clusion from Sections 10.2 and 10.3 that Ombro’s overheads

USENIX Association 2022 USENIX Annual Technical Conference    431



are driven primarily by an increase in VM entry/exit latency,
not by overheads on Xen’s own execution (e.g. scheduling
and VM-exit handling such as hardware emulation).

The observation that CFI, SFI, and split-stack enforcement
on Xen do not measurably impact overall performance indi-
cates that Ombro’s increased VM entry/exit latency is coming
from the extra data copying and operations performed by
SVA’s implementation of VM entry/exit, rather than from
Xen itself being slowed down by the compile-time security
transformations. As our Ombro benchmarks were conducted
with SVA’s standard bitmasking SFI implementation selected
(Section 2.2) instead of the optional MPX-accelerated SFI
implementation from Apparition [22] (which is in principle
faster), this leads to a secondary conclusion that optimizing
SVA’s CFI and SFI instrumentation is neither necessary nor
worthwhile for Ombro, even though it has been for past SVA-
based systems.

B Implementation and Porting Experience
Section 8 describes our prototype implementation of Om-

bro (i.e. the SVA compiler and runtime library plus our port
of the Xen hypervisor to the SVA vISA) as used in our perfor-
mance evaluation (Section 10). However, as the construction
of this prototype represents a great deal of the work involved
in this project, this appendix discusses that experience fur-
ther for the benefit of interested readers. We discuss practical
observations from the experience of building the prototype
(B.1) as well as how our observations of the prototype’s per-
formance fed back into the design process (B.2).

B.1 Engineering Observations
The process of porting Xen to SVA took two programmers

(a PhD student and a research programmer) roughly two years
to complete. This includes the substantial infrastructural im-
provements to SVA described in Section 8; qualitatively, we
improved SVA from a minimally functional research proto-
type (previous SVA systems could not even run large-scale ap-
plications like the Apache web server without crashing) to one
that, while perhaps not “production-grade”, can confidently
run a complete Xen system with multiple guests hosting a full
spectrum of complex end-user applications. These include a
fully working MATE desktop GUI under the Ubuntu-based
Linux Mint and a Wayland-based window manager (Sway)
under Arch Linux (we used Arch for our benchmarks but ex-
ercised both distributions heavily during development); web
browsers like Firefox and Chrome; development tools like
Clang and GCC; and a full Phoronix suite of kernel-intensive
real-world macrobenchmarks (Section 10). Notably, we did
not need to exclude any benchmarks for lack of compatibility
with Ombro, although a few failed to compile on the unmodi-
fied baseline system, likely due to the system compiler being
too new.

We expect that, particularly with these SVA infrastructure
improvements in place, an experienced hypervisor developer

could repeat our port of Xen (or port another hypervisor) to
SVA/Ombro in substantially less time than we took, as we
spent a lot of those two years learning about hypervisor and
VMX inner workings and debugging opaque low-level issues.

Once we completed the port of Xen to SVA and had a fully
working system, it was relatively straightforward to imple-
ment return address protection via a compile-time split stack
transformation (Section 7). The split-stack-related changes to
the compiler, SVA runtime library, and Xen were relatively
small (see LOC numbers in Section 8) and took only about a
month to complete, during which we also began the perfor-
mance evaluation and writing of the paper.

We believe this success highlights the power and flexibility
of the SVA approach. SVA provides a well-defined interface
for low-level software/hardware interactions along with a ro-
bust toolkit of primitives useful for enforcing confidentiality
and integrity policies, such as kernel-mode memory protection
and mediation of hardware data structures (e.g. page tables
and VMCSes). This foundation gives security researchers a
proven framework within which they can experiment with
novel security policies and enforcement mechanisms, allow-
ing them to focus on the security and performance tradeoffs
of their contributions rather than reinventing and reimple-
menting solutions to the myriad known pitfalls of securing
kernel-mode code.

B.2 Performance-Driven Design Changes
As our performance analyses (Section 10 and Appendix A)

show, the entirety of Ombro’s statistically significant overhead
(only seen on certain IPI-heavy benchmarks) comes from the
basic port of Xen to the SVA vISA, not from its compile-time
security instrumentation on Xen (CFI, SFI, and split stack).
In earlier versions of our vISA design, its overheads were
substantially larger, and appeared on more benchmarks, than
in the final version presented in this paper. These overheads
yielded insights that drove several design changes to the vISA
which dramatically improved performance to bring Ombro
more in line with a non-SVA baseline.

Active vs. Loaded VMCSes in the vISA. The first such
change, detailed in Section 5.3, corrected a limitation of the
Shade [34] version of the vISA that was not previously evi-
dent because Shade’s hypervisor support was not sufficiently
sophisticated to support a real-world hypervisor or evaluate
performance at any level higher than microbenchmarks that
exercised the functionality of individual VMX instructions.
Shade interpreted Intel’s concept of there only being one “ac-
tive VMCS” at a time on a processor [30] as meaning that
a previous VMCS had to be explicitly unloaded (using the
VMCLEAR instruction) before a different one could be loaded
(via VMPTRLD). While porting Xen, however, it quickly be-
came clear that Xen expects to be able to maintain multiple
loaded VMCSes even as it switches between different active
ones in vCPU context switches—i.e. to perform subsequent

432    2022 USENIX Annual Technical Conference USENIX Association



VMPTRLDs on multiple VMCSes within a working set without
VMCLEARing any of them until the respective vCPU is ready
to be torn down or migrated to a different physical CPU.

To see how much impact Shade’s more restrictive interface
would have on real-world performance, we modified Xen to
explicitly flush the outgoing vCPU’s VMCS on every context
switch and informally measured the impact on a domU guest
running a context-switching stress test program we had cre-
ated for debugging. If the (single-threaded) guest was the only
significant load on the machine, no slowdown was evident
compared to vanilla Xen—unsurprising, since few context
switches were occurring. However, when we forced context
switches by running a CPU-intensive application on all cores
in the dom0, we found that the domU’s performance dropped
precipitously, by over 4x.

Clearly, the hardware is able to take significant advantage
of Xen’s default behavior by retaining multiple VMCSes in
on-chip cache across vCPU context switches. Ombro there-
fore (Section 5.3) improves the vISA to support calling the
loadvm intrinsic on a new VMCS without having to first
call unloadvm on a then-current one. While this (slightly)
complicates the vISA’s conceptual model of VMCS behavior
compared to Shade, the performance improvements are well
worth it, demonstrating that this facet of the native ISA is
indeed essential to preserve at the vISA level.

Tying Guest State to SVA Thread Switches vs. VM En-
try/Exit. The sole remaining source of vISA overhead that
appeared in our benchmarks (Section 10 and Appendix A)
is attributable to overhead on VM entry and exit. While en-
try/exit overheads should ideally not be performance-critical
due to hardware-accelerated virtualization that makes VM
exits rare, real systems fall short of this ideal. As our perfor-
mance analysis in Section 10.3 explains, this is particularly
true for IPI-heavy workloads that incur frequent VM exits. It
is therefore desirable to minimize the SVA vISA’s impact on
entry/exit latency as much as possible.

As Section 5.2 discusses, Shade’s version of the runvm
intrinsic [34] was designed to present a conceptually clean
abstraction wherein no guest state is ever active on the proces-
sor when running in host mode (outside of the runvm intrinsic
itself) or vice versa. This necessitated that runvm’s implemen-
tation context-switch all system state elements, on every entry
and exit, that could be modified by a guest and which could
affect host software’s view of system state.

While porting Xen, we realized that this design decision
was overly prescriptive on hypervisor and host-OS design
and negatively impacted performance, since it forced heavy-
weight state components such as the FPU and MSRs to be
switched on every VM entry/exit. In practice, the hypervisor/
kernel is not expecting SVA to completely hide the guest’s
existence from it; rather, it will save and restore its own state
on higher-level context switches (between guest vCPUs or
host userspace threads) to accommodate the guest’s occupa-
tion of the processor. This allows the hypervisor/kernel to

minimize unnecessary copying by refraining from disturbing
major state components like the FPU except when it decides
to schedule a different vCPU or thread to run; it also allows it
to implement lazy FPU saving [6] if desired.

Since its original versions [16,17], SVA has provided vISA
primitives to assist OS kernels in safely transitioning between
their own execution state and that of userspace threads as
they handle interrupts, traps, and system calls and make con-
text switches. This, we realized, is exactly the model used by
real-world hypervisors for making context switches between
vCPUs. It was therefore natural to eliminate Shade’s excessive
orthogonality between userspace-thread and guest-vCPU con-
text switches in favor of unifying them under SVA’s existing
thread abstraction [13,14]. As described in Section 5.2, guest
vCPU state is now stored in the same fields within SVA’s
thread context structures as used for userspace threads, the
only difference being that the hypervisor/OS kernel chooses
to enter that context via a call to the runvm intrinsic (VM entry
to VMX non-root mode) rather than via SVA’s iret function
(return to host Ring 3 from interrupt/trap/syscall handler).

Besides streamlining the SVA vISA, this conceptual change
improved Ombro’s VM entry/exit overhead from over 200%
to just 95% (Section 10.2) and macrobenchmark overhead
on the worst IPI-heavy outlier from 60% to 21.81% (Sec-
tion 10.1). Based on further informal experimentation, we
believe reducing the overhead further may be possible, but the
current implementation has reached a point of diminishing
returns, making it more profitable to focus on eliminating the
root cause of excessive VM exits in the outlier benchmarks,
e.g. through Intel’s upcoming hardware IPI virtualization sup-
port [12] as discussed in Section 10.3 and Appendix A.1.

C Background on the Name Ombro
For readers who are curious what the name Ombro signifies,

it is a word meaning “shade” or “shadow” in the constructed
international auxiliary language Esperanto [19]—the only arti-
ficial language that has successfully become a “living” human
language. This follows a loose tradition within our research
group of naming systems after a general theme of “ghosts”
or “shadows”, which originated with systems building on the
Virtual Ghost [14] project. These initially included Appari-
tion [22] and Shade [34] (direct descendants of Virtual Ghost)
and expanded to include some non-SVA-based shadow stack
projects such as Silhouette [58], IskiOS [28], and Kage [24]
(the latter two translating “shadow” in Greek and Japanese
respectively). Ombro was doubly appropriate for the work
presented in this paper as it can be interpreted either as a
translation of “Shade” (the project we directly extend) or as
referring to the “shadow stacks” we provide for Xen to protect
return addresses.

The Esperanto origin of Ombro is also apropos to the na-
ture of a virtual instruction set computing (VISC) system
like SVA, as Esperanto is an academically-constructed yet
practically-purposed human language designed to streamline

USENIX Association 2022 USENIX Annual Technical Conference    433



second language learning by minimizing irregularities and
exceptions—much as the SVA virtual instruction set architec-
ture (vISA) does in relation to native hardware ISAs to make
analysis and protection of low-level system software easier.
Like SVA’s role in mediating the interface between hardware
ISAs and low-level software, Esperanto is not meant to re-
place native languages but to supplement them in situations
where they struggle to fulfill their communication goals.

The Ombro name was selected by the lead author (Ethan
Johnson) who studied and learned Esperanto as a hobby dur-
ing the development of this work. He has attained intermediate
proficiency in the language and welcomes correspondence
either in English aŭ en Esperanto.

434    2022 USENIX Annual Technical Conference USENIX Association



Table 4: Unmodified Xen 4.12.0 vs. No Hypervisor (arrows indicate whether higher or lower is better)

Benchmark Units Vanilla Xen Std. Dev. Bare Metal Std. Dev. % Ovhd.
RocksDB ops/s ↑ 34557.667 0.1% 852098.333 1.1% -2365.73%
Memcached ops/s ↑ 46960.733 0.2% 84270.000 0.6% -79.45%
PostgreSQL TPS ↑ 4266.496 26.7% 7625.012 7.8% -78.72%
Hackbench s ↓ 140.056 0.8% 37.645 4.2% -73.12%
LevelDB µs/op ↓ 428.367 0.1% 168.999 0.2% -60.55%
IPC (TCP Socket) messages/s ↑ 473697.400 13.3% 739706.667 2.2% -56.16%
PostgreSQL ms (avg. lat.) ↓ 61.644 21.0% 32.989 8.5% -46.48%
Apache req/s 212698.913 0.4% 257396.147 0.3% -21.01%
OSBench (Create Files) µs/event ↓ 24.270 0.3% 19.570 0.1% -19.37%
PostMark TPS ↑ 4335.000 1.0% 5102.000 0.0% -17.69%
pmbench µs ↓ 0.113 4.5% 0.094 1.0% -16.54%
MBW MiB/s ↑ 6694.581 0.3% 7793.890 0.8% -16.42%
ctx_clock clocks ↓ 6694.581 0.3% 7793.890 0.8% -16.42%
t-test1 s ↓ 23.587 0.9% 21.874 0.5% -7.26%
iPerf (TCP) Mbits/s ↑ 28029.667 2.3% 29551.667 0.3% -5.43%
SQLite s ↓ 83.164 0.8% 81.030 0.6% -2.57%
BenchmarkMutex ns ↓ 39.967 0.9% 39.200 0.0% -1.92%
StressNG (RdRand) bogo ops/s ↑ 250298.447 0.0% 251830.763 0.0% -0.61%
OpenSSL (RSA 4096) signs/s ↑ 1516.867 0.3% 1499.200 0.6% 1.16%
Schbench µs ↓ 18762.667 0.7% 20819.200 3.1% 10.96%

Table 5: Unmodified Xen 4.12.0 vs. Ombro without CFI, SFI, or Split Stack Transformations (arrows indicate whether higher or
lower is better)

Benchmark Units Vanilla Xen Std. Dev. Ombro without
instrumentation

Std. Dev. % Ovhd.

PostgreSQL ms (avg. lat.) ↓ 61.644 21.0% 59.805 19.9% -2.98%
MBW MiB/s ↑ 6694.581 0.3% 6884.724 0.2% -2.84%
pmbench µs ↓ 0.113 4.5% 0.110 3.8% -2.60%
PostgreSQL TPS ↑ 4266.496 26.7% 4364.444 24.1% -2.30%
OSBench (Create Files) µs/event ↓ 24.270 0.3% 24.207 0.1% -0.26%
BenchmarkMutex ns ↓ 39.967 0.9% 39.933 1.0% -0.08%
OpenSSL (RSA 4096) signs/s ↑ 1516.867 0.3% 1517.400 0.1% -0.04%
SQLite s ↓ 83.164 0.8% 83.152 0.8% -0.01%
ctx_clock clocks ↓ 240.000 0.0% 240.000 0.0% 0.00%
PostMark TPS ↑ 4335.000 1.0% 4335.000 1.0% 0.00%
StressNG (RdRand) bogo ops/s ↑ 250298.447 0.0% 250127.343 0.0% 0.07%
t-test1 s ↓ 23.587 0.9% 23.642 1.1% 0.23%
Apache req/s 212698.913 0.4% 208431.403 0.1% 2.01%
iPerf (TCP) Mbits/s ↑ 28029.667 2.3% 27447.667 2.4% 2.08%
Schbench µs ↓ 18762.667 0.7% 19934.857 9.8% 6.25%
Hackbench s ↓ 140.056 0.8% 149.015 0.5% 6.40%
IPC (TCP Socket) messages/s ↑ 473697.400 13.3% 430804.400 8.6% 9.05%
LevelDB µs/op ↓ 428.367 0.1% 494.449 0.1% 15.43%
RocksDB ops/s ↑ 34557.667 0.1% 28721.333 0.4% 16.89%
Memcached ops/s ↑ 46960.733 0.2% 35734.733 1.5% 23.91%
Geometric Mean 3.32%

USENIX Association 2022 USENIX Annual Technical Conference    435





HyperEnclave: An Open and Cross-platform Trusted Execution Environment

Yuekai Jia1, Shuang Liu2, Wenhao Wang3,4(B∗), Yu Chen1, Zhengde Zhai2,
Shoumeng Yan2, and Zhengyu He2

1Tsinghua University
2Ant Group

3SKLOIS, Institute of Information Engineering, CAS
4School of Cyber Security, University of Chinese Academy of Sciences

Abstract
A number of trusted execution environments (TEEs) have
been proposed by both academia and industry. However, most
of them require specific hardware or firmware changes and
are bound to specific hardware vendors (such as Intel, AMD,
ARM, and IBM). In this paper, we propose HyperEnclave,
an open and cross-platform process-based TEE that relies
on the widely-available virtualization extension to create the
isolated execution environment. In particular, HyperEnclave
is designed to support the flexible enclave operation modes to
fulfill the security and performance demands under various en-
clave workloads. We provide the enclave SDK to run existing
SGX programs on HyperEnclave with little or no source code
changes. We have implemented HyperEnclave on commodity
AMD servers and deployed the system in a world-leading
FinTech company to support real-world privacy-preserving
computations. The evaluation on both micro-benchmarks and
application benchmarks shows the design of HyperEnclave
introduces only a small overhead.

1 Introduction

In recent years, trusted execution environments (TEEs) are
emerging as a new form of computing paradigm, known as
confidential computing, due to the high demand for privacy-
preserving data processing technologies that can handle mas-
sive data samples. TEEs provide hardware-enforced memory
partitions where sensitive data can be securely processed.
Existing TEE designs support different levels of TEE abstrac-
tions, such as process-based (Intel’s Software Guard eXten-
sions (SGX) [55]), VM-based (AMD SEV [45]), separate
worlds (ARM TrustZone [16]), and hybrid (Keystone [49]).
Currently, the most prominent example of TEEs is Intel SGX,
which is widely available in commercial off-the-shelf (COTS)
desktop and server processors.
Motivations. Most of today’s TEE technologies are close-
sourced and require specific hardware or firmware changes

∗Corresponding author: Wenhao Wang (wangwenhao@iie.ac.cn).

that are difficult to audit, slow to evolve, and thus are inferior
to cryptographic alternatives (such as homomorphic encryp-
tion), which are based upon public algorithms and widely
available hardware. Moreover, most existing TEE designs
restrict the enclaves (i.e., the protected TEE regions) to run
only in fixed mode.1 It is difficult to support the performance
and security requirements of various types of applications
that need to be protected by TEEs. For example, Intel SGX
enclaves run in the user mode and cannot access privileged
resources (such as the file system, the IDT, and page tables)
and process privileged events (interrupt and exceptions). As a
result, running I/O-intensive and memory-demanding tasks
leads to significant performance degradation.

To fill the gap, in this paper we propose the design of Hyper-
Enclave to support confidential cloud computing that can run
securely on both legacy servers readily available in the cloud,
and on the rising ARM (or RISC-V in the future) servers, with-
out requiring specific hardware features. For this purpose, our
design provides a process-based TEE abstraction using the
widely available virtualization extension (for isolation) and
TPM (for root of trust and randomness etc.). To better fulfill
the needs for specific enclave workloads, HyperEnclave sup-
ports the flexible enclave operation modes, i.e., the enclaves
can run at different privilege levels and can have access to
certain privileged resources (see Sec. 4 for more details).
Design details. In our design, the system runs in three modes.
A trusted software layer, called RustMonitor (security monitor
written in Rust), runs in the monitor mode, which is mapped to
the VMX root mode. RustMonitor is responsible for enforcing
the isolation and is part of the trusted computing base (TCB).
The untrusted OS (referred to as the primary OS) provides an
execution environment for the untrusted part of applications;
the untrusted OS and application parts run in the normal
mode, which is mapped to the VMX non-root mode. The
trusted part of application (i.e., enclave) runs in the secure
mode, which can be mapped flexibly to ring-3 or ring-0 of the
VMX non-root mode, or ring-3 of the VMX root mode.

1An exception is CURE [20], which however requires hardware changes
to the CPU core and the system bus to support the flexible enclaves (Sec. 9).

USENIX Association 2022 USENIX Annual Technical Conference    437

mailto:wangwenhao@iie.ac.cn


Memory isolation is enforced with hardware-based mem-
ory protection of the memory-management unit (MMU). As
we observe that existing process-based TEEs (e.g., Inktag [38]
and Intel SGX [55]) are vulnerable to page-table-based at-
tacks [74], our memory isolation scheme chooses to manage
the enclave’s page table and page fault events entirely by the
trusted code, removing the involvement of the primary OS.
The design also prevents certain types of enclave malware
attacks (Sec. 3.2).

To minimize the attack surface, we adopt an approach
called measured late launch: the primary OS kernel is first
booted; then a chunk of special kernel code, implemented
as a kernel module in the primary OS, runs to initiate Rust-
Monitor in the most privileged level (i.e., the monitor mode)
and demotes the primary OS to the normal mode. All booted
components during the booting process are measured and ex-
tended to the TPM Platform Configuration Registers (PCRs).
Since the TPM attestation guarantees that PCRs cannot be
rolled back, the design ensures that RustMonitor is securely
launched; otherwise, a violation of the TPM quote would be
detected during remote attestation.

We have implemented HyperEnclave on commodity AMD
servers. In total RustMonitor consists of about 7,500 lines
of Rust code. The APIs of our enclave SDK are compatible
with the official SGX SDK. As a result, code written for SGX
could be easily ported to run on HyperEnclave by recompiling
the code with little (or no) source code changes. We have
ported a number of SGX applications, as well as the Rust SGX
SDK [71] and the Occlum library OS [64] to HyperEnclave.
The micro-benchmarks show that the overheads for ECALLs
and OCALLs are < 9,700 and < 5,260 cycles respectively
(14,432 and 12,432 cycles respectively on Intel SGX). The
evaluation on a suite of real-world applications shows that the
overhead is small (e.g., the overhead on SQLite is only 5%).
Contributions. In summary, the paper proposes the design of
HyperEnclave, with the following contributions:
• An open2 and cross-platform processed-based TEE with

minimum hardware requirements (virtualization extensions
and TPM) that can run existing SGX programs with little
or no source code changes, which enables the reuse of the
rich toolchains and ecosystem for Intel SGX.

• Supporting the flexible enclave operation modes to fulfill
the diverse security and performance requirements of en-
clave applications without hardware or firmware changes.

• A memory isolation scheme that the enclave’s page table
and page fault are managed entirely by the trust code, which
mitigates the page-table-based attacks and the enclave mal-
ware attacks.

• A measured late launch approach, combined with the TPM-
based attestation to reduce the attack surface.

• An implementation on commodity servers (mostly) using
the memory safe language Rust, and an evaluation on real

2The code will be available at https://github.com/HyperEnclave.

hardware and applications, demonstrating that the proposed
design is practical and only has a small overhead.

2 Background

2.1 Trusted Execution Environment
A Trusted Execution Environment (TEE) is designed to en-
sure that sensitive data is stored, processed, and protected in
an isolated and trusted environment. The isolated area could
be a separate system apart from the normal operating sys-
tem (such as the TrustZone [16] secure world), a part of a
process address space (such as an Intel SGX [55] enclave),
or a stand-alone VM (such as a virtual machine protected
by AMD SEV [45] or Intel TDX [41]). To resist the privi-
leged attacker, TEE needs to thwart not only the OS-level
adversary but also the malicious party who has physical ac-
cess to the platform. To this end, it offers hardware-enforced
security features including isolated execution, integrity, and
confidentiality protection of the enclave, along with the abil-
ity to authenticate the code running inside a trusted platform
through remote attestation.
Isolation. At the core of a TEE is the memory isolation
scheme, which guarantees that code, data, and the runtime
state of the enclave cannot be accessed or tampered with
by untrusted parties. For Intel SGX, the protected memory
(i.e., the enclave) is mapped to a special physical memory
area called Enclave Page Cache (EPC), which is encrypted
and cannot be directly accessed by other software, firmware,
BIOS, and direct memory access (DMA).
Attestation. The goal of remote attestation is to generate
an attestation quote, which includes the measurement of the
software state, signed with the attestation key embedded in the
hardware. The remote user verifies the validity of the quote by
checking the signature (which reflects the hardware identity)
and the measurement (which proves the software state).

2.2 Trusted Platform Module
Trusted Platform Module (TPM) is both an industry-
standard [36] and an ISO/IEC standard [4] for a secure cryp-
toprocessor. It is used by nearly all PC and server manufactur-
ers. Firmware TPMs (fTPMs) are firmware-based (e.g. UEFI)
TPM implementations. At the time of this writing, Intel, AMD,
and Qualcomm all have implemented fTPMs.

TPM has a set of Platform Configuration Registers (PCRs),
which can be used for the measurement of the booted code
during the boot process. PCRs are reset to zero on system
reboot or power on-off. During every boot process, the PCRs
can only be extended with the new measurement (called PCR
extend), and thus cannot be set to arbitrary values.

Every TPM ships with a unique asymmetric key, called the
Endorsement Key (EK), embedded by the manufacturer as
the root of trust. The TPM can generate a quote of the PCR

438    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/HyperEnclave


values, signed using the TPM Attestation Identity Keys (AIK),
while the AIK is generated inside TPM and certified using
EK. Any modifications of the booted code would be reflected
in the quote. Upon receiving the quote, the remote party can
validate the signing key comes from an authentic TPM and
can be assured that the PCR digest report has not been altered.

2.3 Threat Model

Like the other TEE proposals [23, 49], we trust the un-
derlying hardware, including the processor establishing the
virtualization-based isolation, the System Management Mode
(SMM) code, as well as the TPM. We assume that the Core
Root of Trust for Measurement (CRTM) is trusted and im-
mutable. HyperEnclave mitigates certain physical memory
attacks, such as cold boot attacks and bus snooping attacks
with the hardware support for memory encryption. We don’t
fully trust the operator and assume the attacker cannot mount
physical attacks during the boot process, i.e., we assume that
the system is initially benign (during system boot), and the
early OS during the boot stage is part of the TCB. This can
be achieved in two ways.
• Firstly, the power-on event can be secured with a hardware

device, such as an HSM (i.e., hardware security module).
The platform enters the boot process only with the engage-
ment and supervision of a trusted party, who owns the HSM.
After that, the operators for maintenance are not trusted.

• Secondly, the boot process can be enhanced to defend
against adversaries with physical accesses. To prevent I/O
attacks, we can harden the OS to remove unnecessary de-
vices and disable the DMA capability of peripherals before
IOMMU is enabled. We can enable memory encryption
at an early stage (e.g., in the BIOS, before any off-chip
memory is used) to prevent physical memory attacks.
However, after RustMonitor is launched, the primary OS

is demoted to the normal mode, and can be under the control
of the attacker, who may try to compromise the RustMonitor
or enclaves, e.g., try to access the protected memory directly
or through DMA. We consider the enclave code may be mali-
cious or controlled by an attacker due to memory bugs. Our
design needs to prevent a compromised enclave from con-
taminating the other enclaves or the RustMonitor. We also
prevent the attacks against the primary OS or the application
code, such as those presented in [63]. Similar to other TEEs,
in this paper we do not focus on the prevention of denial of
service (DoS) attacks or side channel attacks, such as cache
timing and speculative execution attacks [48].

3 Design

HyperEnclave is designed to support confidential cloud com-
puting without requiring specific hardware features. There-
fore, HyperEnclave is built upon the widely available virtual-

Hardware

CPU DeviceRAM EPC TPMAPIC NICDisk

RustMonitor

Hypercall/Syscall 
Handler

Memory
Management

Enclave
Management

Initialization & Demotion

vCPU

Enclave-A

SDK tRTS

ENCLUENCLS

Normal VM

Primary OS Kernel Module

App-A

SDK uRTS

App-B

SDK uRTS

Enclave-B

SDK tRTS

ECALL

OCALL

......

Secure ModeNormal ModeMonitor Mode

Figure 1: System Overview.

ization extension. In particular, HyperEnclave is designed to
support the process-based TEE model (similar to Intel SGX)
for the following reasons.

• Minimized TCB. To protect an application using the
process-based TEE, the TCB includes only the protected
code itself, while in the other forms of TEE, much more
code must be included, such as the guest operating system
for VM-based TEEs.

• Established ecosystem. Since Intel SGX is currently the
most prevalent TEE supported in the cloud (major CSPs,
including GCP, Azure, and Aliyun, provide SGX-based in-
stances [9, 62]), a rich set of toolchains and applications
have been developed. Supporting the SGX model reduces
the porting effort and makes it easy to deploy confidential
computing tasks in the cloud.

• Cloud computing trends. We have witnessed a clear trend
towards running container-based serverless applications in
the cloud. Protecting these applications against untrusted
clouds using TEEs is important. Considering that such com-
puting tasks are typically short-lived, and favor a short start-
up time, maintaining a VM seems to be too heavy-weight.

In this section, we introduce HyperEnclave using x86 nota-
tions, as we prototyped HyperEnclave on AMD servers.

3.1 System Overview

HyperEnclave supports the following modes: the monitor
mode, i.e., VMX root operation mode; the normal mode for
the primary OS and untrusted part of applications, i.e., ring-0
and ring-3 of the VMX non-root operation mode respectively;
and the secure mode for the enclave, which could be ring-3
and ring-0 of the VMX non-root operation mode, or ring-3
of the VMX root operation mode, depending on the enclave
operation mode. We will introduce the flexible operation
mode supported by HyperEnclave in Sec. 4. As illustrated in
Figure 1, HyperEnclave consists of the following components:

USENIX Association 2022 USENIX Annual Technical Conference    439



• RustMonitor is a lightweight hypervisor running in the
monitor mode that manages the enclave memory, enforces
the memory isolation, and controls the enclave state tran-
sitions. It works as a resource monitor, while complicated
tasks are offloaded to the primary OS.

• RustMonitor creates a unique guest VM (referred to as the
normal VM) that runs the primary OS (such as Linux) and
hosts the untrusted part of applications in the normal mode.
The primary OS is still in charge of process scheduling
and I/O devices management, but it is not trusted by the
RustMonitor and enclaves.

• Application is the untrusted part of the application which
runs in the primary OS.

• The kernel module. We provide a kernel module in the
primary OS to load, measure, and launch RustMonitor, as
well as to invoke the emulated privileged operations.

• To ease development, HyperEnclave provides an enclave
SDK with APIs compatible with the official Intel SGX
SDK [12], including both the untrusted runtime and trusted
runtime (i.e., SDK uRTS and SDK tRTS). As such, most
SGX programs can run on HyperEnclave with little or no
source code changes.

• Enclave is the trusted part of the application running in the
secure mode.

3.2 Memory Management and Protection

Challenges. For process-based TEEs, the enclave runs in
the user mode and is not able to manage its own page ta-
ble. Existing designs (e.g., Intel SGX, TrustVisor [54]) allow
the untrusted OS to manage the enclave’s page table. To
prevent memory mapping attacks (i.e., attacks by manipulat-
ing the enclave’s address mappings, as shown in Figure 9,
Appendix A.1), the design of SGX extends the Page Miss-
ing Handler (PMH) and introduces a new metadata called
EPCM for additional security checks on TLB misses [32].
Without secure hardware support, a prevalent software solu-
tion [19, 54, 75] is to make the page tables write-protected by
setting the page table entries (PTEs) for pages holding the
page tables, i.e., any update to the page table traps to the hy-
pervisor and then be verified. However, on x86 platforms the
updates of access and dirty bits of the PTEs also trap into the
hypervisor, leading to non-negligible overhead. Even-worse,
since the enclave page fault is also processed by the OS, the
above designs are still vulnerable to the page table-based-
attacks, such as the controlled-channel attacks [74].

The design becomes more challenging to support enclave
dynamic memory management (i.e., EDMM on SGX2 plat-
forms [34]), i.e, dynamically adding or removing enclave
pages, or changing the enclave page attributes or types af-
ter the enclave is initialized. Without EDMM, all physical
memory that the enclave might ever use must be committed
before enclave initialization. Therefore, EDMM reduces en-

clave build time and enables new enclave features, such as
on-demand stack and heap growth, and on-demand creation
of code pages to support just-in-time (JIT) compilation. On
SGX2 platforms, the enclaves need to send the EDMM re-
quest to the SGX driver through OCALLs, who then makes
the requested changes. Since the driver is untrusted by the
enclaves, the changes need to be explicitly checked and ac-
cepted by the enclaves to take effect, which involves heavy
enclave mode switches.
HyperEnclave memory management. We observe that the
above challenges are rooted in the fact that the enclave’s
page table and page faults are both managed by the primary
OS. In HyperEnclave, though the enclave is still part of the
application’s address space, we create a separate page table for
the enclave and let RustMonitor manage the enclave’s page
table and page fault without the involvement of the primary
OS3, while the page tables in the normal VM are still managed
by the primary OS. However, the design faces new challenges:
since the enclave can access the application’s entire address
space, upon a change to the mapping of the page tables in the
applications, e.g, due to page swapping, the updated mapping
needs to be synchronized to the enclave’s page table managed
by RustMonitor.

To eliminate the overhead for synchronization, we pre-
allocate a marshalling buffer in the application’s address
space, which is shared with the enclave. The mappings of
the marshalling buffer are fixed during the entire enclave life
cycle by pre-populating the physical memory and pinning
it in the memory. All data exchanged between the enclave
and the application must be passed through the marshalling
buffer. The application’s memory mappings (except those for
the marshalling buffer) are not needed by the enclave and
are not included in the enclave’s page table. Such a design
also mitigates the known enclave malware attacks [63], as
the enclave cannot access the application’s address space but
the marshalling buffer (Sec. 6 for more details). We remind
the attacker may manipulate the marshalling buffer, however
it does not cause additional security issues, since the buffer
is untrusted by design where the developer is responsible to
ensure that the data transmitted through the buffer is authentic
and protected (same as the SGX model).

When the enclave accesses a virtual address that is not
committed with a physical page (e.g., due to page swapping
or EDMM), a page fault is raised and the enclave traps to
RustMonitor. RustMonitor picks up a free page from the
enclave memory pool, inserts a new mapping to the enclave’s
page table, and resumes the enclave’s execution. When the
enclave requests changing the page permissions, the enclave
issues a hypercall to RustMonitor to update the permissions
in the enclave’s page table and clear the corresponding TLB
entries.4

HyperEnclave memory isolation. Figure 2 shows the mem-

3P-Enclave can manage its own guest page table (Sec. 4.3).
4P-Enclave can change the page permissions by itself (Sec. 4.3).

440    2022 USENIX Annual Technical Conference USENIX Association



Normal VM

Primary OS

App-AApp-B

RustMonitor
memoryNormal memory EPC memory

Memory view

App's code & data

Enclave's code & data

Enclave-A Enclave-B

Marshalling buffer

Encrypted memory

......

Figure 2: Memory isolation.

ory mappings of the applications within the normal VM and
the enclaves. The application’s memory within the normal
VM is managed with nested paging, while the enclave’s mem-
ory could be managed through nested paging or through nor-
mal 1-level address translation, determined by the correspond-
ing operation mode (Sec. 4). As a result, HyperEnclave en-
forces the following security requirements.
• R-1: The primary OS and applications are not allowed to

access the physical memory belonging to RustMonitor and
the enclaves.

• R-2: The enclave is not allowed to access physical memory
belonging to RustMonitor and other enclaves. It is designed
to have access to only a specific memory region shared with
the untrusted application for parameter passing (i.e., the
marshalling buffer).

• R-3: DMA accesses from malicious peripherals to the phys-
ical memory belonging to RustMonitor and the enclaves are
not allowed. In order to prevent such attacks, HyperEnclave
restricts the physical memory used by the peripherals with
the support of the Input-Output Memory Management Unit
(IOMMU) in modern processors.

Memory encryption. To thwart physical memory attacks,
such as cold boot and bus snooping attacks, HyperEnclave
may leverage hardware memory encryption (such as AMD
SME [44] and Intel MKTME [42]) to encrypt partial physi-
cal memory at the page granularity. If the platform does not
support hardware memory encryption, HyperEnclave may
consider to apply software approaches [76] to encrypt the
isolated memory. This approach, however, may impose sub-
stantial overhead compared with hardware based solutions.

3.3 Trusted Boot, Attestation and Sealing
Measured Late Launch. The boot process of HyperEnclave
is shown in Figure 3. On system boot, a static and immutable
piece of code, known as the Core Root of Trust for Mea-
surement (CRTM), executes first to bootstrap the process of
building a measurement chain for subsequent firmware and
software, including the BIOS, grub, the primary OS kernel,
and initramfs. The measurements are stored to TPM PCRs

grub primary OS
kernel

TPM PCRs

services &
applications

primary OS
kernel (demoted)

bootloader kernel space early
userspace userspacekernel space

(normal mode)

control flow extend measurementsload & measure

initramfs

kernel module

RustMonitor
 
 

 attestation key

Figure 3: Measured Late Launch.

enclave measurement signature (ems)

hypervisor attestation pub key (hapk)

TPM_Quote

digest(PCR[0-7, 8-9, 12-13])
signature

TPM_AK_Cert

TPM attestation pub key (tapk)
PCR[0-7, 8-9, 12]

Figure 4: The HyperEnclave quote structure.

for each boot component, so that any modification will be
reflected in the attestation quote.

To reduce the attack surface from the primary OS, we put
the RustMonitor image into the initramfs. The kernel mea-
sures the RustMonitor image and extends the value to TPM
PCRs, then it launches RustMonitor in early userspace, i.e.,
before any userspace program that relies on the disk file sys-
tem starts to run. Along with the measured boot, it ensures
that the software state when RustMonitor is loaded is trusted.

After RustMonitor is loaded, the execution continues at the
pre-defined entry. RustMonitor sets up its own running con-
text (such as the stack, page table, IDT, etc.) and prepares the
virtual CPU (vCPU) configurations for each CPU. Then Rust-
Monitor launches the normal VM and demotes the primary
OS to the normal mode. Returning to the kernel module, the
kernel continues to boot in the normal mode and is unaware
of the existence of RustMonitor.

HyperEnclave applies the above approach (referred to as
measured late launch) so that RustMonitor is loaded as a type-
2 hypervisor (like KVM) while runs as a type-1 hypervisor
(like Xen). In this way, RustMonitor does not need to trust
the primary OS anymore after the primary OS is demoted to
the normal mode.
Remote Attestation. With the measured late launch, all
booted components are measured and extended to the TPM.
After RustMonitor is booted, it needs to extend the trust to
the enclaves. For this purpose, RustMonitor derives an attesta-
tion key pair which is used to sign the enclave measurement.
Then RustMonitor extends the derived public key to the TPM

USENIX Association 2022 USENIX Annual Technical Conference    441



PCR, and the private key never leaves RustMonitor which is
protected by memory isolation and encryption.

During enclave creation, all pages added to the enclave
(including the corresponding page content, page type, and
RWX permissions) are measured by RustMonitor to generate
the enclave measurement. The (intermediate) measurement
is stored in RustMonitor’s memory, which is invisible to the
enclaves and the primary OS.

Similar to TPM and Intel SGX, HyperEnclave adopts a
SIGn-and-MAc (SIGMA) attestation protocol for the remote
attestation flow. As shown in Figure 4, we denote the pub-
lic key of RustMonitor’s attestation key by the hypervisor
attestation public key (hapk). The enclave measurement is
signed using RustMonitor’s attestation key to form the enclave
measurement signature (ems). The TPM quote TMP_Quote,
which is signed using the TPM attestation key, includes the
PCRs for the measurement of all booted code, and the mea-
surement of hapk. Upon receiving the attestation report, the
remote user can verify the report by comparing the measure-
ment of booted code (including the CRTM, BIOS, grub, ker-
nel, initramfs, and hypervisor) and the enclave, as well as
verifying the certificate chain for generating the signature.
Secret key generation. When RustMonitor is initialized for
the first time, it generates a root key Kroot from the random
number generator (RNG) module of the TPM. Kroot is stored
outside the TPM using TPM’s seal operation. During the boot-
ing process on system reset, RustMonitor decrypts Kroot using
TPM’s unseal operation, which guarantees that Kroot can only
be unsealed with the exactly same TPM chip with match-
ing PCR configurations. Furthermore, RustMonitor floods
the PCRs with a constant before transferring control to the
primary OS to prevent it from retrieving Kroot . All other key
materials, including the enclave’s sealing key and report key
are derived from both Kroot and the enclave’s measurement.

3.4 The Enclave SDK

Porting existing applications to the enclaves can be cum-
bersome since TEEs usually expose limited hardware and
software interfaces and provide additional security services
(e.g., attestation and sealing). For process-based TEEs, the
applications need to be partitioned into the trusted and un-
trusted parts, and the interfaces need to be carefully designed
to avoid various security pitfalls [27, 46, 69]. A lot of effort
has been spent and many tools have been developed for Intel
SGX, due to its dominant position in the market, including
library OSes [64,67], containers [18], automatic partition and
protection tools [50, 68], WebAssembly Micro Runtime [57],
and interface protection [65]. Consequently, Intel SGX has
supported securely running applications written in C/C++,
Rust, Java, Python, etc., without expensive code refactoring.

We provide the enclave SDK with APIs compatible with
the official Intel SGX SDK to ease the development of appli-
cations on HyperEnclave. The enclave SDK is retrofitting the

official SGX SDK. By replacing the SGX user leaf functions
(e.g., EENTER, EEXIT, and ERESUME) with hypercalls, SGX
programs can run on HyperEnclave with little or no source
code changes. Once the enclave executes these user leaf func-
tions, it traps to RustMonitor and RustMonitor emulates the
functionalities of the corresponding SGX instructions.

The enclave is compiled as a trusted library of the appli-
cation, while the application itself runs in the primary OS.
The enclave life cycle is managed through the emulation of
a set of privileged SGX instructions (i.e., ECREATE, EADD,
EINIT, etc.). To this end, the kernel module running in the
primary OS provides similar functionalities by invoking Rust-
Monitor through hypercalls, and exposes the functionalities
to the applications by the ioctl() interfaces. By emulating
the privileged SGX instructions, RustMonitor is responsible
for the management of the enclave’s life cycle (Sec. 4).

To be compatible with the official Intel SGX SDK,
most data structures involved in HyperEnclave (such as the
SIGSTRUCT structure, the SECS page, and the TCS page)
are similar to that of SGX. With the HyperEnclave design, it
is straightforward to support dynamic enclave management
in an enclave, since the enclave memory and page fault are all
managed by RustMonitor. Multi-threading within the enclave
is supported by associating one TCS page for each enclave
thread within the enclave. Exception handling within the en-
clave is supported by setting more than 1 SSA page for each
TCS. The details are omitted due to space constraints and we
refer the readers to the SGX manual [11] for more details.

4 Flexible Enclave Operation Mode

A wide range of existing applications can be offloaded to
the TEEs, such as computing-intensive tasks (machine learn-
ing [60]), input and output (IO)-intensive tasks (such as
the Apache and Nginx web server [18]), memory-intensive
tasks (Redis and Memcached [18]), and tasks which favor
in-enclave exception handling and privilege separation [21].
Most TEEs support running the enclaves only in fixed mode,
Intel SGX (also TrustVisor [54] and Secage [51]) enclaves in
particular, as part of the application address space, run in user
mode. As a result, the user mode enclave is not allowed to ac-
cess the privileged resources (such as the IDT and page tables)
and process the privileged events (interrupt and exceptions).
It must switch to the untrusted code to gain access to privi-
leged resources and handle the events. The I/O-intensive and
memory-intensive tasks essentially involve the frequent world
switches which are expensive and introduce non-negligible
performance losses, even though both software and hardware
optimizations have been proposed trying to reduce the context
switch latencies [61, 66, 73]. In this section, we introduce the
three enclave operation modes supported by HyperEnclave,
as shown in Figure 5. The world switches in different enclave
operation modes are shown in Figure 6.

442    2022 USENIX Annual Technical Conference USENIX Association



(c) HyperEnclave

G
ue

st
 

Pr
iv

.
G

ue
st

 
U

se
r

H
os

t P
riv

.

③

RustMonitor

HU-Enclave

②

P-Enclave

Encl. Encl.

①

GU-Enclave

H
ost U

ser

OS

App

(a) Intel SGX

H
os

t P
riv

.

OS

App Enclave

H
os

t U
se

r

(b) TrustVisor

TrustVisor

PAL

G
ue

st
 

Pr
iv

.
G

ue
st

 
U

se
r

H
os

t P
riv

.

OS

App

Figure 5: Comparison of the enclave operation modes sup-
ported by process-based TEEs. (a) Intel SGX runs enclaves in
the host user mode (or guest user mode in the virtualization
environment). (b) TrustVisor runs the protected code (Pieces
of Application Logic, PALs) in the guest user mode. (c) Hy-
perEnclave supports 3 coexisting enclave operation modes: 1⃝
GU-Enclaves running in guest user mode; 2⃝ P-Enclaves run-
ning in guest privileged mode and optional guest user mode;
3⃝ HU-Enclaves running in host user mode.

4.1 Guest User Enclaves

Guest user enclave (GU-Enclave) is the basic enclave oper-
ation mode which is typically running computing-intensive
tasks. The enclave runs in the guest user mode (i.e., guest
ring-3 of the VMX non-root operation mode).

During the enclave creation, RustMonitor prepares a vCPU
structure which contains a guest page table (GPT) and a nested
page table (NPT) for GU-Enclave. On entry and exit between
the normal VM and the enclave VM, RustMonitor switches
the vCPU states (e.g. the instruction pointer, thread pointer,
NPT, and GPT) accordingly.

To handle the interrupts and exceptions during the enclave
running, RustMonitor configures the vCPU to trap all inter-
rupts and exceptions to the monitor mode. RustMonitor then
saves the enclave’s context, forwards the interrupt or excep-
tion to the normal VM. After the primary OS completes han-
dling the interrupt or exception, the application invokes the
ERESUME hypercall, which traps to RustMonitor to restore
the enclave’s context and resume the execution of the enclave.

4.2 Host User Enclaves

Host user enclave (HU-Enclave) is running in host user mode.
It delivers the optimal world switch efficiency by substitut-
ing the mode switch (hypercalls: ∼ 880 CPU cycles on our
platform) with the ring switch (syscalls: ∼ 120 CPU cycles

RustMonitor

OS

App

①
②

④
③

GU-Enclave
or 

P-Enclave

④ VM entry
① VM exit (hypercall) ② VM entry
③ VM exit (hypercall)

EENTER

(a) GU-Enclave and P-Enclave

OS

App HU-Enclave

RustMonitor

①

②

④

③

④ VM entry
① VM exit (hypercall) ② syscall return
③ syscall

EEXIT

(b) HU-Enclave

Figure 6: World switches for the supported enclave operation
modes. (a) Using hypercalls to enter and exit GU-Enclave and
P-Enclave. (b) Using syscalls and syscall returns to enter and
exit HU-Enclave.

on our platform) (Figure 6). It further eliminates the extra
virtualization overhead (e.g. vCPU context switching and
two-dimensional page walking) in GU-Enclave. HU-Enclave
may benefit the I/O-intensive workload according to our eval-
uation in Sec 7. By comparison, running enclaves in the guest
user mode provides more defensive depth.

When loading the HU-Enclave, RustMonitor prepares a
process context, e.g. creates a level-1 page table. On enclave
entry, RustMonitor updates the CPU state and invokes the
system call return instruction (i.e., SYSRET on x86 platforms)
to enter the HU-Enclave. Correspondingly, on enclave exit,
HU-enclave invokes the system call instruction (i.e., SYSCALL
on x86 platforms) and traps into RustMonitor. The ENCLU
leaf instructions (e.g., EGETKEY, EREPORT) are emulated
as a system call. Interrupts and exceptions within the HU-
Enclaves also trap into the RustMonitor. The procedures are
similar to those for the GU-Enclaves described in Sec. 4.1.

4.3 Privileged Enclaves
Inspired by the VM-based TEEs, such as AMD SEV [45], Hy-
perEnclave supports privilege enclaves (P-Enclaves) which
run in guest privileged mode. P-Enclave is permitted to ac-
cess the GDT, IDT, and level-1 page table which benefits a
wide variety of applications, as demonstrated by Dune [21].
One such example is the garbage collector, an essential fea-
ture for Java applications (existing works port the JVM to
enclaves [26, 43]). The garbage collector frequently changes
page permissions to trigger page faults in order to track the
page status. For user mode enclaves (e.g., GU-Enclaves and
HU-Enclaves), it has to involve the primary OS to update the
page table and handle the page fault which suffers huge per-
formance loss due to world switches. P-Enclaves eliminate
the world switch by supporting in-enclave exception han-
dling and level-1 page table management. More specifically,
P-Enclaves configures its own exception handler to handle
certain exceptions (such as page fault). RustMonitor passes

USENIX Association 2022 USENIX Annual Technical Conference    443



through the white-list exceptions to the P-Enclave and for-
wards others to the primary OS. Furthermore, P-Enclaves can
also support page-table-based in-enclave isolation schemes,
e.g., sandboxing untrusted third-party libraries.

With the ability to receive interrupts within the enclaves, P-
Enclaves may also detect abnormal interrupt events by count-
ing the frequency, before requesting RustMonitor to route
them to the primary OS. As such, existing interrupt-based
side channel attacks [24, 37, 40, 58, 59, 70] could be detected
and mitigated. We leave further exploration in this direction
to future work due to space constraints.

5 Implementations

We report our implementation of HyperEnclave on an AMD
platform that supports hardware virtualization technology and
memory encryption. In the current implementation, RustMon-
itor consists of about 7,500 lines of code written mostly in
Rust, and the kernel module for the primary OS has about
3,500 lines of C code. Also, we made about 2,000 lines of
code changes to the official Intel SGX SDK (version 2.13).

5.1 RustMonitor
RustMonitor runs at the highest privilege level and enforces
the isolation for the enclaves. To reduce the risks caused by
memory corruption or concurrency bugs, we implemented
RustMonitor mostly in Rust, a memory-safe language, with
only a few lines of assembly code used for context switches.
Compared with existing hypervisors such as KVM [47] and
Xen [29], RustMonitor is much smaller and thus easier to be
formally verified. We are working on the formal verification
of RustMonitor and plan to release the result as a separate
report.

When the platform is booted, we configure the kernel com-
mand line parameters in the grub to reserve regions of physical
memory, which are exclusively used by RustMonitor and the
enclaves. RustMonitor manages the reserved physical mem-
ory by maintaining a list of free pages. When an enclave page
is needed, e.g., when adding an enclave page during enclave
creation, a free page is retrieved from the pool; when the
enclave page is freed, the page is attached to the list again.
Moreover, RustMonitor also manages the enclave’s page ta-
bles and processes the page fault.

5.2 The Kernel Module
The kernel module is loaded by the primary OS during the
booting process. Then it loads, measures, and launches Rust-
Monitor, with the measurement extended to the TPM PCR as
part of the TPM quote. When the kernel module is loaded, a
device file is created and mounted at /dev/hyper_enclave.
The application can open it and issue the ioctl() to invoke
the emulated privileged operations.

5.3 The Enclave SDK

HyperEnclave retrofits the official SGX SDK as follows.
Supporting the SGX SDK APIs. We replace the SGX user
leaf functions (e.g. EENTER, EEXIT, ERESUME, etc.) in the
SGX SDK with hypercalls or system calls. Our implementa-
tion retains the same parameter semantics and orders as SGX
for compatibility purposes.
Parameters passing with the marshalling buffer. In Hyper-
Enclave, the enclave can only access its own address space
and the marshalling buffer shared with the application. The
size of the marshalling buffer can be configured in the en-
clave’s configuration file, with a default size. The data needs
to be transmitted to the marshalling buffer before invoking
edge calls. We modified SGX SDK to handle the transitions,
which are thus transparent to the developer.

We modified the untrusted runtime library in the SDK
(i.e., libsgx_urts.so), such that during enclave initializa-
tion a marshalling buffer is allocated using mmap() with
MAP_POPULATE flags set. As a result, the GPAs for the mar-
shalling buffers are pre-populated. Then an ioctl() is issued
to request the primary OS not to compact or swap out the
physical pages of the marshalling buffers during the enclave’s
lifetime. When the application invokes the emulated EINIT
instruction to mark the initialization of the enclave, the base
address and the size of the marshalling buffer are passed to
RustMonitor, who will add the mapping of the marshalling
buffer in the enclave’s page table. In this way, the marshalling
buffer is now shared between the enclave and the untrusted
application. The base address and the size of the marshalling
buffer are also passed to the trusted runtime library to transmit
data from the marshalling buffer to the enclave.

The current OCALL’s implementation in the SGX SDK
invokes the sgx_ocalloc() within the enclave to allocate a
buffer on the stack area of the untrusted application, which
is then used for cross-enclave data transmission. As such, we
only need to modify the sgx_ocalloc() function to allocate
a memory area in the marshalling buffer. To support parame-
ter passing through the marshalling buffer for ECALLs, we
modified SGX’s Edger8r tool to automatically generate code
that copies the transmitted data into the marshalling buffer.

The SGX programming model supports passing parameters
with the user_check attribute. For such parameters, the SDK
tool will not generate code to check the address range or per-
form data movement. Since the enclave code could access the
entire process’s address space, some enclave programs may
use a pointer with the user_check attribute to manipulate
the data buffer outside the enclave directly, without account-
ing for the overhead for copying the data across the enclave
boundary. To deal with it, we added an interface for the de-
veloper to allocate the buffer within the marshalling buffer,
in the cases when the developer may use parameters with the
user_check attribute.

The remote attestation flow is similar to SGX, following

444    2022 USENIX Annual Technical Conference USENIX Association



the same SIGn-and-MAc (SIGMA) protocol. We extended
the sgx_quote_t structure in the SDK to include the Hy-
perEnclave quote, and the modification is transparent to the
enclave code.

With the above design, most SGX programs could run on
HyperEnclave without source code changes. Furthermore, to
ease the development of HyperEnclave applications, we have
also ported the Rust SGX SDK [71] and the Occlum library
OS [64] to HyperEnclave.

6 Security Analysis

Trust Establishment. HyperEnclave relies on measured boot
to bootstrap the trust of RustMonitor, a common approach for
the design of TEEs (e.g., TrustZone [16] and Keystone [49]).
All the components during booting (including the CRTM,
BIOS, grub, kernel, and initramfs) are measured and extended
to the TPM PCRs. As a result, any tampering of the booted
code will be reflected and audited through remote attestation.

We consider HyperEnclave is deployed in a controlled envi-
ronment (i.e., the data center in the cloud computing scenario)
such that the attacker has limited physical access to the plat-
forms. To reduce the attack surface and minimize the TCB,
we put the RustMonitor image into the initramfs, and Rust-
Monitor is loaded and measured in early userspace. In this
phase, the primary OS kernel does not accept external inputs
from the user, and the peripherals such as network connection
are disabled. With the measured late launch approach, Rust-
Monitor does not need to trust the primary OS anymore after
the OS is demoted to the normal mode.
Enclave memory isolation. As presented in Sec. 3.2, the
enclave’s memory and page tables are maintained by Rust-
Monitor, which are inaccessible to the primary OS. The TLBs
are cleared upon world switches to prevent illegal memory
accesses using stale TLB entries. RustMonitor prevents the
primary OS to access the reserved physical memory by remov-
ing the corresponding mappings from its NPT. RustMonitor
also configures the IOMMU to prevent unauthorized device
accesses to the reserved physical memory.

Our design prevents the memory mapping attacks since the
primary OS cannot interfere with the enclave’s address map-
pings. We introduce the marshalling buffer to support memory
sharing between the enclave and the application. The applica-
tion pre-allocates a marshalling buffer in normal memory and
passes the base address and size of the buffer to RustMonitor
during enclave initialization. In case the application may pass
crafted addresses (e.g., to overwrite the enclave memory),
before adding the mapping of the marshalling buffer to the
enclave’s page table, RustMonitor ensures the address range
of the marshalling buffer is outside the enclave address range.
Defense Against Compromised Enclaves. Previous work
demonstrates that enclave malware may steal secret data or
hijack the control-flow of the application outside the en-
clave [63]. HyperEnclave is designed to confine potentially

malicious enclaves as follows.
• Preventing arbitrary memory accesses to the application.

The SGX enclave could access the entire address space of
the application, and it is possible for attacks such as leaking
the secret keys or stack canaries, or tampering with the code
pointers for control flow attacks. In HyperEnclave, the en-
clave can only access its own memory and the marshalling
buffer, which is only used for parameter passing.

• Preventing arbitrary control flows after EEXIT. The SGX
design allows the enclave to jump to arbitrary addresses
by setting rbx before executing the EEXIT instruction (i.e.,
exiting the enclave), opening door to enclave malware at-
tacks [63]. In our design, since the EEXIT instruction is
emulated by RustMonitor, it is easy to prevent such attacks
by adding the validity check when EEXIT is invoked.

Physical attacks. Hardware memory encryption techniques
such as AMD SME could be used to protect the enclave from
physical attacks such as cold boot attacks or bus snooping
attacks. With memory encryption, data are always encrypted
in the memory or on the memory bus, and are only decrypted
within the CPU. The memory encryption key is generated
randomly on system boot and stored in the CPU, which cannot
be accessed explicitly by software.
Side channel attacks. Compared with SGX, HyperEnclave
can mitigate certain types of side channel attacks. Since the
enclave’s guest page tables and page fault events are pro-
cessed by RustMonitor without primary OS involvement, the
latter cannot mount page-table-based attacks [25, 72, 74]. We
leave the protection against micro-architectural attacks such
as speculative execution attacks as future work.

7 Evaluation

We deployed HyperEnclave on a server with two AMD EPYC
7601 CPUs (2 threads per core, total of 128 logical cores) with
512 GB DDR4 RAM. We configure 2 GB reserved memory
for RustMonitor, and 24 GB for EPC memory. The primary
OS is Ubuntu 18.04 LTS with Linux kernel 4.19.91. For com-
parison, we run the same experiments on an Intel Xeon E3-
1270 v6 CPU with SGX enabled, with 64 GB DDR4 RAM,
running the same OS. The SGX SDK version for both Hyper-
Enclave and the native SGX hardware are 2.13. All programs
are compiled with GCC 7.5.0 and the same optimization level.

We tried to rule out differences between hardware. Ex-
cept where explicitly stated, the evaluations didn’t exceed
the EPC size, so as not to trigger excessive page swapping.
All evaluations were performed in single-threaded mode. For
micro-benchmarks (Table 1 and Table 2), we compare Hyper-
Enclave on AMD hardware with SGX on Intel hardware using
the same SGX SDK. We measured the core cycles to avoid the
influence of CPU frequencies. For real-world workloads, we
set the baselines as the counterparts with no security protec-
tions on Intel and AMD platforms respectively, and compare

USENIX Association 2022 USENIX Annual Technical Conference    445



EENTER EEXIT ECALL OCALL

Intel SGX - - 14,432 12,432

HU-Enclave 1,163 1,144 8,440 4,120
GU-Enclave 1,704 1,319 9,480 4,920

P-Enclave 1,649 1,401 9,700 5,260

Table 1: Latency of SGX primitives on HyperEnclave and
Intel (in CPU cycles).

Intel SGX GU-Enclave P-Enclave

#UD 28,561 17,490 258
#PF – 2,660 1,132

Table 2: Average CPU cycles of handling an #UD and #PF
exception inside the enclaves.

the relative slowdowns introduced by SGX and HyperEn-
clave. Since we only compare the relative slowdowns, we
stress that the absolute performance results are on dissimilar
platforms and are not directly comparable. All HyperEnclave
evaluations were measured with memory encryption enabled.

We’ve been careful in ensuring HyperEnclave implements
the TEE functionality correctly. Still, memory encryption be-
tween SGX1 and HyperEnclave is different, i.e., Merkel tree
and AES-CTR versus AES-XTS (see Figure 11 in Sec. A.3
for the evaluation of memory encryption overhead), which
may explain the improvement for memory-intensive work-
loads. Besides, world switches for HyperEnclave (especially,
HU-enclave) are faster, which explains the improvement for
I/O-intensive workloads.

7.1 World Switches Performance
We measured the latency of edge calls (i.e., ECALLs and
OCALLs) on both HyperEnclave (under different enclave op-
eration modes) and Intel SGX. The test code runs empty edge
calls with no explicit parameters 1,000,000 times and takes
the median value. We also measured the instruction-level la-
tency for the emulated EENTER and EEXIT instructions on
HyperEnclave. We were not able to measure the instruction-
level latency on SGX since the RDTSCP instruction is not
supported within the enclaves on our SGX platform.

The results are shown in Table 1. It shows that HU-Enclave
has the optimal edge calls performance as it reduces a mode
switch (∼ 880 cycles) to a ring switch (∼ 120 cycles) while
P-Enclave is slower than GU-Enclave for it needs to switch
more privileged states during the world switches. All of the
results are comparable with Intel SGX.

7.2 Enclave Exception Handling
We used the undefined instruction exception (#UD) and the
page fault exception (#PF) to evaluate the enclave exception
handling performance. In the #UD benchmark, the test code

0 5 10 15 20 25 30
5

10
15
20
25
30
35

HyperEnclave

0 5 10 15 20 25 30
5

10
15
20
25
30
35

HyperEnclave

0 5 10 15 20 25 30
(a) ECALLs

5
10
15
20
25
30
35

Intel SGX

0 5 10 15 20 25 30
(b) OCALLs

5
10
15
20
25
30
35

Intel SGX

M
ed

ia
n
of

cy
cl
es

(x
10

00
)

in
in (ms_buf)

out
out (ms_buf)

in&out
in&out (ms_buf)

Figure 7: Marshalling buffer overhead for ECALLs and
OCALLs with various data size, and with the marshalling
buffer (marked as ms_buf) enabled and disabled.

executes an undefined instruction in the enclave to trigger the
exception 1,000,000 times. The exception handler advances
the instruction pointer and returns. For P-Enclave, the excep-
tions are captured and handled entirely within the enclaves,
without enclave mode switches. For GU-Enclave and SGX,
an exception causes an asynchronous enclave exit (AEX)
and switches the CPU to the untrusted OS, then executes a
two-phase exception handling [7]. The result shows that the
exception handling within P-Enclaves is about 68× and 110×
faster than GU-Enclave and Intel SGX respectively (Table 2).

We further simulated a typical garbage collector (GC) sce-
nario that the test code first allocated a large memory buffer,
then the write permissions to the buffer were revoked by
changing the enclave’s page table. After that, the enclave ac-
cessed the buffer to trigger the page faults. In the exception
handler, the write permission is restored. The result (Table 2)
shows that P-Enclave is about 2.3× faster than GU-Enclave,
for P-Enclave updates the page table and handles the page
faults by itself, while GU-Enclave needs to trap into RustMon-
itor to update the page tables. Note that we did not evaluate
GC on Intel SGX, since our SGX1 platform does not support
page permission modifications after the enclave initialization.

7.3 Marshalling Buffer Overhead
To measure the overhead of introducing the marshalling buffer,
we constructed a GU-Enclave variant that does not use the
marshalling buffer as the baseline. We measured the over-
head for both ECALLs and OCALLs with various sizes of the
transferred data while varying the directions for data move-
ment (i.e., “in”, “out” and “in&out”). We ensure the data to
be transferred is not cached using the CLFLUSH instruction.
We evaluated the performance for transferring the same data
on SGX for comparison.

Figure 7 provides the results for ECALLs and OCALLs
respectively. It shows that the overhead increases almost lin-

446    2022 USENIX Annual Technical Conference USENIX Association



NUM
ERI

C S
ORT

STR
ING

SOR
T

BIT
FIEL

D

FP E
MU

LAT
ION
FOU

RIE
R

ASS
IGN

MEN
T

IDE
A

HUF
FMA

N

NEU
RAL

NET

LU
DEC

OM
POS

ITIO
N

0.0
0.2
0.4
0.6
0.8
1.0
1.2 1.00 1.00 0.99 0.99 1.00 0.95 0.99 1.00 0.97 1.00

AMD
Baseline HyperEnclave SGX

NUM
ERI

C S
ORT

STR
ING

SOR
T

BIT
FIEL

D

FP E
MU

LAT
ION
FOU

RIE
R

ASS
IGN

MEN
T

IDE
A

HUF
FMA

N

NEU
RAL

NET

LU
DEC

OM
POS

ITIO
N

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0.91 0.96 0.97 0.97 0.98 0.95 0.99 0.98 1.03 0.99
Intel

Ite
ra
tio

ns
/s
ec

(n
or
m
al
iz
ed

)

(a) NBench

0

100

200

300

0

100

200

300
0 20 40 60 80 100120140160180200

0
10
20
30
40
50
60

0.98 0.97 0.97 0.96 0.96 0.96 0.96 0.96 0.95 0.95

AMD

Baseline
SGX

GU-Enclave
HU-Enclave

Memory usage

0 20 40 60 80 100120140160180200
0

15
30
45
60
75
90

0.75 0.75 0.75
0.66 0.61 0.57 0.54 0.53 0.55 0.50

Intel

Th
ro
ug

hp
ut

(k
op

/s
)

Number of records (x1000)

M
em

ory
Usage

(M
B)

(b) SQLite

1 10 20 30 40 50 60 70 80 90 100

2K
3K
4K
5K
6K
7K
8K

0.69 0.71
0.71

0.73
0.74 0.75 0.78 0.74 0.74 0.76 0.75

0.82
0.83

0.81
0.83 0.84 0.85 0.88 0.83 0.83 0.86 0.84

AMD

Baseline
SGX

GU-Enclave
HU-Enclave

1 10 20 30 40 50 60 70 80 90 100
2K
4K
6K
8K

10K
12K
14K

0.51 0.58
0.58

0.62 0.60 0.62 0.61 0.63 0.63 0.62 0.63

Intel

Th
ro
ug

hp
ut

(r
eq

/s
)

Requested web page size (KB)

(c) Lighttpd on Occlum

5 7.5 10 12.5 15 17.5 20

0.5
1.0
1.5
2.0
2.5

AMD

Baseline
SGX

GU-Enclave
HU-Enclave

5 10 15 20 25 30 35
0.2
0.4
0.6
0.8
1.0
1.2

Intel

La
te
nc

y
(m

s)

Throughput (kop/s)

(d) Redis on Occlum

Figure 8: Performance of NBench, SQLite, Lighttpd, and Redis on AMD (with HyperEnclave) and Intel (with SGX).

early with the data size. For ECALLs, the overhead for “in”,
“out” and “in&out” directions is 8%, 11% and 21% respec-
tively for transferring 16 KB data, due to the extra memory
copy. For OCALLs, the overhead is negligible, since it allo-
cates a buffer on the marshalling buffer without additional
memory copy (Sec. 5.3). We remind that data transfers in
ECALLs contribute a small portion to the processing time
for many real-world computation workloads, especially for
computation or memory intensive tasks.

7.4 Real-world Workloads

The evaluations were conducted on four real-world appli-
cations: an algorithm benchmark suite NBench [53], a
lightweight web server Lighttpd [13], two popular databases
SQLite [14] and Redis [15], as representations for CPU inten-
sive, I/O-intensive, and memory-intensive tasks. We ported
the library OS Occlum [64] (v0.21) to the enclave SDK to
reduce the porting effort for Lighttpd and Redis. We measured
the performance on both HyperEnclave and Intel SGX, using
the same code compiled under the SDK simulation mode as
the baseline (providing no security guarantees).
NBench. NBench measures the performance of a system’s
CPU, FPU, and memory system, without I/O and system calls
involved. We used an adaptation of NBench to SGX, i.e.,
SGX-NBench [8] with no source code modification for our
evaluation. As shown in Figure 8a, the overhead introduced
by HyperEnclave and SGX is about 1% and 3% respectively.
SQLite. We ported SQLite (v3.19.3) with the enclave SDK,
and evaluated it on both Intel SGX and HyperEnclave (GU-
Enclave and HU-Enclave) using the YCSB [30] workload
A (50% reads, 50% updates). In this evaluation we focused
on the memory performance, so we configured the database
as in-memory and embedded the client into the enclave to
avoid I/O operations. We increased the number of records
and measured the time for 100,000 database operations. As
shown in Figure 8b, on SGX the throughput is about 75%
of the baseline for small memory usage. When the memory
usage exceeds the EPC size (about 90 MB), the performance
drops to 50% due to page swapping. On HyperEnclave, both

GU-Enclave and HU-Enclave have almost the same perfor-
mance as the baseline (< 5% overhead). We speculate that it’s
because the memory encryption performance for AMD SME
(without integrity protection) is faster than SGX.
Lighttpd. We ran a Lighttpd (v1.4.40) server with Occlum on
both SGX and HyperEnclave (GU-Enclave and HU-Enclave
modes). We used the Apache HTTP benchmarking tool [10]
and ran 100 concurrent clients over the local loopback to fetch
various sizes of web pages to evaluate the throughput. In this
evaluation, the overhead mainly comes from the frequent
enclave mode switches (Table 1). As shown in Figure 8c,
HU-Enclave delivers the best performance as expected (81%
∼ 88% of the baseline). GU-Enclave achieves 69% ∼ 78% of
the baseline, while SGX achieves 51% ∼ 63% of the baseline.
Redis. We use Redis to evaluate the performance under
the comprehensive scenarios where both memory and I/O
are intensive. We ran a Redis (v6.0.9) database server with
Occlum on both SGX and HyperEnclave (GU-Enclave and
HU-Enclave modes). Similar to SQLite, we configured the
database as in-memory and used the YCSB workload A. For
the evaluation, we first loaded 50,000 records (in total 50
MB data) and then performed 100,000 operations from 20
clients over the local loopback. We increased the request fre-
quency and measured the latency under different throughput.
As shown in Figure 8d, HU-Enclave achieves 89% of the
maximum throughput of the baseline, while GU-Enclave and
SGX are about 72% and 48% of the baseline, respectively.

8 Discussions

HyperEnclave on other platforms. HyperEnclave requires
the virtualization extension (specifically, two-level address
translation) for isolation and TPM for the root of trust and
randomness, etc. Virtualization is supported on many ARM
servers (such as the ARMv8 platforms [2]). The RISC-V H-
extension specification has evolved to v0.6.1 in 2021. Both
ARM and RISC-V virtualization support two-level address
translation. Certain TPM products already support ARM
servers. Research has been conducted to support firmware
TPM on RISC-V [22]. As such, signs are promising that

USENIX Association 2022 USENIX Annual Technical Conference    447



HyperEnclave can be adapted to run on ARM and RISC-V
platforms.

However, porting HyperEnclave to ARM and RISC-V plat-
forms requires non-trivial engineering effort, considering that
the instruction set architectures (ISAs) are totally different.
Take the ARMv8 architecture as an example. The software
modules can be mapped to different exception levels (ELs):
The monitor mode for RustMonitor can be mapped to EL2;
The normal mode for the primary OS and untrusted part of
the applications can be mapped to EL1 and EL0 respectively;
The secure mode for enclaves can be mapped flexibly to EL1
or EL0. Memory isolation can be supported similarly with the
support of stage 2 address translations. Furthermore, the offi-
cial Intel SGX SDK only supports x86 platforms. In particular,
the transitions across enclave boundaries are handled with
platform-dependent assembly code, and need to be rewritten
according to the application binary interface (ABI) of the tar-
geted platforms. We leave the further exploration of adapting
HyperEnclave to other platforms as future work.
Attack surfaces under different enclave operation modes.
The untrusted primary OS still runs within the VM and the at-
tack surface from the primary OS to enclaves does not change.
Running the enclaves in privileged mode or in the host, how-
ever, may expose more attack surfaces to a malicious enclave.
For example, it may make the enclave malware easier to esca-
late to host ring-0, if the enclave runs in the host already.

9 Related Works

Most existing TEEs require specific hardware or firmware
changes [17, 33, 39, 39, 41, 45, 55]. Specifically, CURE [20]
changes the CPU core to support the enclave identifier (eid),
and modifies the system bus to support the memory and pe-
ripheral arbiters for memory and peripheral access control ac-
cording to the eid. Then the trusted security monitor can con-
figure the hardware primitives to support the flexible enclaves.
In contrast, HyperEnclave supports flexible enclave modes on
commodity hardwares without hardware or firmware changes.

A line of research has been conducted to build the iso-
lated execution environment (e.g., PAL for TrustVisor and
HAP for InkTag) using virtualization extensions, including
TrustVisor [54], InkTag [38], Overshadow [28], AWS Nitro
Enclaves [3], Microsoft Defender Credential Guard [5] and
Hyper-V Shielded VMs [6]. TrustVisor makes the PAL page
table pages read-only to prevent memory mapping attacks.
The design introduces much overhead during PAL registra-
tion and switches from/to PALs. Even worse, it triggers many
NPT violations in high memory pressures scenarios, due to
the updates to the access and dirty bits of the PAL page tables,
introducing huge overhead [52]. In Inktag, the HAP page ta-
bles are managed by the hypervisor. It allows the untrusted OS
to request the hypervisor to update the HAP page tables. Both
TrustVisor and InkTag are susceptible to page-table-based
attacks [72, 74]. Furthermore, these designs usually contain a

large code base in the TCB, including device drivers, guest IO
emulation, network and block device virtualization, etc. For
example, AWS Nitro Enclaves [3] are constructed by the host
KVM and Linux, and thus the host Linux kernel is always
trusted. We made the design choice to minimize the TCB of
RustMonitor, which performs basic CPU/memory virtualiza-
tion and enclave management. The primary OS kernel only
needs to be trusted during the boot process and is demoted
after RustMonitor starts.

Komodo [35] implements an SGX-like enclave protection
model in the TrustZone environment. Keystone [49] supports
customizable TEEs on RISC-V platforms. Komodo enclaves
run in secure user mode, while Keystone enclaves run in U-
mode and S-mode. In comparison, HyperEnclave supports
flexible enclave mode (guest ring-3, guest ring-0/ring-3, and
host ring-3). Both Komodo and HyperEnclave use page-table-
based memory isolation, while Keystone uses PMP (physical
memory protection) for memory isolation.

Recently, ARM introduced the Realm Management Exten-
sion (RME) in the forthcoming ARMv9-A architecture [1].
The monitor (running at EL3) enforces physical memory iso-
lation among the secure, non-secure, and Realm worlds. The
trusted Realm Management Monitor (RMM), which executes
at EL2 in Realm security state (R-EL2), isolates the Realms
from each other through the stage 2 page tables. Similar to
HyperEnclave, the RMM is much simpler than a typical hy-
pervisor and relies on the non-secure hypervisor for device
emulation etc. RME requires architectural extensions, while
HyperEnclave does not. Moreover, HyperEnclave decouples
its trust chain from the CPU as much as possible to construct
an open and cross-platform TEE.

10 Conclusion

In this paper, we proposed HyperEnclave, an open TEE that
can run on various platforms with minimum hardware re-
quirements. It supports the process-based TEE model, and
SGX programs can run on HyperEnclave with little or no
code changes. Moreover, HyperEnclave supports the flexible
enclave operation modes to fulfill various enclave workloads.
We implemented HyperEnclave on commodity AMD servers
and deployed the system internally for real-world compu-
tations. We are working on the formal verification of the
implementation and plan to open source to the community.

Acknowledgments

We would like to thank our shepherd David Cock and the
anonymous reviewers for their invaluable feedback. This work
was supported in part by the National Key R&D Program
of China (Grant No. 2020YFB1805402) and the National
Natural Science Foundation of China (Grant No. 61802397
and No. U19A2060).

448    2022 USENIX Annual Technical Conference USENIX Association



References

[1] Arm Realm Management Extension (RME) Sys-
tem Architecture. https://developer.arm.com/
documentation/den0129/latest.

[2] Armv8 white paper. https://community.arm.com/
docs/DOC-10896.

[3] AWS Nitro Enclaves User Guide. https:
//docs.aws.amazon.com/enclaves/latest/
user/nitro-enclave.html.

[4] ISO/IEC, P.D.: 11889: Information technology – Secu-
rity techniques – Trusted platform module.

[5] Manage Windows Defender Credential Guard.
https://docs.microsoft.com/en-us/
windows/security/identity-protection/
credential-guard/credential-guard-manage.

[6] Microsoft Hyper-V Shielded VM. https:
//www.techtarget.com/searchwindowsserver/
definition/Microsoft-Hyper-V-Shielded-VM.

[7] SGX two phase exception handling. https://github.
com/MWShan/linux-sgx/blob/master/docs/
DesignDocs/IntelSGXExceptionHandling-Linux.
md.

[8] The nbench benchmark ported to SGX. https://
github.com/utds3lab/sgx-nbench, 2017.

[9] Google. Asylo. https://asylo.dev/, 2019.

[10] ab - apache http server benchmarking tool. https://
httpd.apache.org/docs/2.4/programs/ab.html,
2021.

[11] Intel 64 and IA-32 architectures software developer’s
manual, combined volumes:1,2A,2B,2C,3A,3B,3C
and 3D. https://software.intel.com/content/
dam/develop/external/us/en/documents-tps/
325462-sdm-vol-1-2abcd-3abcd.pdf, 2021. Order
Number: 325462-075US, June 2021.

[12] Intel SGX for Linux. https://github.com/intel/
linux-sgx, 2021.

[13] Lighttpd. https://www.lighttpd.net, 2021.

[14] SQLite. https://www.sqlite.org, 2021.

[15] Redis. https://redis.io, 2022.

[16] T. Alves and D. Felton. Trustzone: Integrated hardware
and software security. white paper, 2004.

[17] ARM. Arm Confidential Compute Archi-
tecture. https://www.arm.com/why-arm/
architecture/security-features/
arm-confidential-compute-architecture,
2020.

[18] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas
Knauth, Andre Martin, Christian Priebe, Joshua Lind,
Divya Muthukumaran, Dan O’keeffe, Mark L Stillwell,
et al. SCONE: Secure linux containers with intel SGX.
In 12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 16), pages 689–703,
2016.

[19] Ahmed M. Azab, P. Ning, Jitesh Shah, Quan Chen, Ro-
han Bhutkar, G. Ganesh, Jia Ma, and Wenbo Shen. Hy-
pervision across worlds: Real-time kernel protection
from the arm trustzone secure world. Proceedings of
the 2014 ACM SIGSAC Conference on Computer and
Communications Security, 2014.

[20] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky,
Patrick Jauernig, Matthias Klimmek, Ahmad-Reza
Sadeghi, and Emmanuel Stapf. CURE: A security ar-
chitecture with customizable and resilient enclaves. In
30th USENIX Security Symposium (USENIX Security
21). USENIX Association, August 2021.

[21] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David
Terei, David Mazières, and Christos Kozyrakis. Dune:
Safe user-level access to privileged CPU features. In
10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12), pages 335–348, Holly-
wood, CA, October 2012. USENIX Association.

[22] Marouene Boubakri, Fausto Chiatante, and Belhassen
Zouari. Towards a firmware TPM on RISC-V. In 2021
Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 647–650. IEEE, 2021.

[23] F. Brasser, D. Gens, P. Jauernig, A. R. Sadeghi, and
E. Stapf. Sanctuary: Arming trustzone with user-space
enclaves. In Network and Distributed System Security
Symposium, 2019.

[24] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software grand exposure:sgx cache attacks
are practical. In 11th USENIX Workshop on Offensive
Technologies (WOOT 17), 2017.

[25] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling your secrets with-
out page faults: Stealthy page table-based attacks on en-
claved execution. In 26th USENIX Security Symposium
(USENIX Security 17), pages 1041–1056, Vancouver,
BC, August 2017. USENIX Association.

USENIX Association 2022 USENIX Annual Technical Conference    449

https://developer.arm.com/documentation/den0129/latest
https://developer.arm.com/documentation/den0129/latest
https://community.arm.com/docs/DOC-10896
https://community.arm.com/docs/DOC-10896
https://docs.aws.amazon.com/enclaves/latest/user/nitro-enclave.html
https://docs.aws.amazon.com/enclaves/latest/user/nitro-enclave.html
https://docs.aws.amazon.com/enclaves/latest/user/nitro-enclave.html
https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard-manage
https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard-manage
https://docs.microsoft.com/en-us/windows/security/identity-protection/credential-guard/credential-guard-manage
https://www.techtarget.com/searchwindowsserver/definition/Microsoft-Hyper-V-Shielded-VM
https://www.techtarget.com/searchwindowsserver/definition/Microsoft-Hyper-V-Shielded-VM
https://www.techtarget.com/searchwindowsserver/definition/Microsoft-Hyper-V-Shielded-VM
https://github.com/MWShan/linux-sgx/blob/master/docs/DesignDocs/IntelSGXExceptionHandling-Linux.md
https://github.com/MWShan/linux-sgx/blob/master/docs/DesignDocs/IntelSGXExceptionHandling-Linux.md
https://github.com/MWShan/linux-sgx/blob/master/docs/DesignDocs/IntelSGXExceptionHandling-Linux.md
https://github.com/MWShan/linux-sgx/blob/master/docs/DesignDocs/IntelSGXExceptionHandling-Linux.md
https://github.com/utds3lab/sgx-nbench
https://github.com/utds3lab/sgx-nbench
https://asylo.dev/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/325462-sdm-vol-1-2abcd-3abcd.pdf
https://github.com/intel/linux-sgx
https://github.com/intel/linux-sgx
https://www.lighttpd.net
https://www.sqlite.org
https://redis.io
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture


[26] Chia che Tsai, Jeongseok Son, Bhushan Jain, John
McAvey, Raluca A. Popa, and Donald E. Porter. Civet:
An efficient java partitioning framework for hardware
enclaves. In USENIX Security Symposium, 2020.

[27] Stephen Checkoway and Hovav Shacham. Iago attacks:
Why the system call api is a bad untrusted rpc inter-
face. ACM SIGARCH Computer Architecture News,
41(1):253–264, 2013.

[28] Xiaoxin Chen, Tal Garfinkel, E Christopher Lewis,
Pratap Subrahmanyam, Carl A Waldspurger, Dan Boneh,
Jeffrey Dwoskin, and Dan RK Ports. Overshadow: a
virtualization-based approach to retrofitting protection
in commodity operating systems. ACM SIGOPS Oper-
ating Systems Review, 42(2):2–13, 2008.

[29] David Chisnall. The definitive guide to the xen hypervi-
sor. Pearson Education, 2008.

[30] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10, page
143–154, New York, NY, USA, 2010. Association for
Computing Machinery.

[31] Standard Performance Evaluation Corporation. SPEC
CPU 2017. https://www.spec.org/cpu2017/,
2021.

[32] Victor Costan and S. Devadas. Intel sgx explained. IACR
Cryptol. ePrint Arch., 2016:86, 2016.

[33] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanc-
tum: Minimal hardware extensions for strong soft-
ware isolation. In 25th USENIX Security Symposium
(USENIX Security 16), pages 857–874, Austin, TX, Au-
gust 2016. USENIX Association.

[34] McKeen F., Alexandrovich I., Anati I., Caspi D., John-
son S., Leslie H. R., and Rozas C. Intel software guard
extensions (intel sgx) support for dynamic memory man-
agement inside an enclave. Hardware and Architectural
Support for Security and Privacy, 2016.

[35] Andrew Ferraiuolo, Andrew Baumann, Chris Haw-
blitzel, and Bryan Parno. Komodo: Using verification
to disentangle secure-enclave hardware from software.
In SOSP’17, 2017.

[36] Trusted Computing Group. TPM Library Specification
2.0, 2016.

[37] Marcus Hähnel, Weidong Cui, and Marcus Peinado.
High-resolution side channels for untrusted operating
systems. In 2017 USENIX Annual Technical Conference
(USENIXATC 17), pages 299–312, 2017.

[38] Owen S. Hofmann, Sangman Kim, Alan M. Dunn,
Michael Z. Lee, and Emmett Witchel. Inktag: secure ap-
plications on an untrusted operating system. ASPLOS ...
proceedings. International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 253–264, 2013.

[39] Guerney DH Hunt, Ramachandra Pai, Michael V Le,
Hani Jamjoom, Sukadev Bhattiprolu, Rick Boivie, Lau-
rent Dufour, Brad Frey, Mohit Kapur, Kenneth A Gold-
man, et al. Confidential computing for openpower. In
Proceedings of the Sixteenth European Conference on
Computer Systems, pages 294–310, 2021.

[40] Tianlin Huo, Xiaoni Meng, Wenhao Wang, Chunliang
Hao, Pei Zhao, Jian Zhai, and Mingshu Li. Bluethunder:
A 2-level directional predictor based side-channel attack
against sgx. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pages 321–347, 2020.

[41] Intel. Intel Trust Domain Extensions. https:
//software.intel.com/content/dam/develop/
external/us/en/documents/tdxwhitepaper-v4.
pdf, 2020.

[42] Intel. Intel Architecture Memory Encryp-
tion Technologies Specification. https:
//software.intel.com/content/dam/
develop/external/us/en/documents-tps/
multi-key-total-memory-encryption-spec.pdf,
2021.

[43] Jianyu Jiang, Xusheng Chen, Tsz On Li, Cheng Wang,
Tianxiang Shen, Shixiong Zhao, Heming Cui, Cho-Li
Wang, and Fengwei Zhang. Uranus: Simple, efficient
sgx programming and its applications. Proceedings
of the 15th ACM Asia Conference on Computer and
Communications Security, 2020.

[44] David Kaplan. AMD x86 memory encryption technolo-
gies. Austin, TX, August 2016. USENIX Association.

[45] David Kaplan, Jeremy Powell, and Tom Woller. Amd
memory encryption. White paper, 2016.

[46] Mustakimur Rahman Khandaker, Yueqiang Cheng, Zhi
Wang, and Tao Wei. Coin attacks: On insecurity of en-
clave untrusted interfaces in sgx. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 971–985, 2020.

[47] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and An-
thony Liguori. kvm: the linux virtual machine monitor.
In Proceedings of the Linux symposium, volume 1, pages
225–230. Dttawa, Dntorio, Canada, 2007.

450    2022 USENIX Annual Technical Conference USENIX Association

https://www.spec.org/cpu2017/
https://software.intel.com/content/dam/develop/external/us/en/documents/tdxwhitepaper-v4.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdxwhitepaper-v4.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdxwhitepaper-v4.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdxwhitepaper-v4.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/multi-key-total-memory-encryption-spec.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/multi-key-total-memory-encryption-spec.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/multi-key-total-memory-encryption-spec.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/multi-key-total-memory-encryption-spec.pdf


[48] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, et al. Spectre
attacks: Exploiting speculative execution. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 1–19.
IEEE, 2019.

[49] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste
Asanović, and Dawn Song. Keystone: An open frame-
work for architecting trusted execution environments. In
Proceedings of the Fifteenth European Conference on
Computer Systems, pages 1–16, 2020.

[50] Joshua Lind, Christian Priebe, Divya Muthukumaran,
Dan O’Keeffe, Pierre-Louis Aublin, Florian Kelbert,
Tobias Reiher, David Goltzsche, David Eyers, Rüdiger
Kapitza, et al. Glamdring: Automatic application parti-
tioning for intel SGX. In 2017 USENIX Annual Techni-
cal Conference (USENIXATC 17), pages 285–298, 2017.

[51] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and
Yubin Xia. Thwarting memory disclosure with efficient
hypervisor-enforced intra-domain isolation. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 1607–1619, 2015.

[52] Andrei Lutas, Daniel Ticle, and O. Creţ. Hypervisor
based memory introspection: Challenges, problems and
limitations. In ICISSP, 2017.

[53] Uwe F. Mayer. Linux/Unix nbench. https://www.
math.utah.edu/~mayer/linux/bmark.html, 2017.

[54] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei
Zhou, Anupam Datta, V. Gligor, and A. Perrig. Trustvi-
sor: Efficient tcb reduction and attestation. 2010 IEEE
Symposium on Security and Privacy, pages 143–158,
2010.

[55] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Car-
los V Rozas, Hisham Shafi, Vedvyas Shanbhogue, and
Uday R Savagaonkar. Innovative Instructions and Soft-
ware Model for Isolated Execution. Hasp, isca, 10(1),
2013.

[56] Larry McVoy and Carl Staelin. lmbench: Portable tools
for performance analysis. In USENIX 1996 Annual
Technical Conference (USENIX ATC 96), San Diego,
CA, January 1996. USENIX Association.

[57] Jämes Ménétrey, Marcelo Pasin, Pascal Felber, and Va-
lerio Schiavoni. Twine: An embedded trusted runtime
for webassembly. In 2021 IEEE 37th International Con-
ference on Data Engineering (ICDE), pages 205–216.
IEEE, 2021.

[58] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisen-
barth. Cachezoom: How sgx amplifies the power of
cache attacks. In International Conference on Crypto-
graphic Hardware and Embedded Systems, pages 69–90.
Springer, 2017.

[59] Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank
Piessens, and Berk Sunar. Copycat: Controlled
instruction-level attacks on enclaves. In 29th USENIX
Security Symposium (USENIX Security 20), pages 469–
486, 2020.

[60] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha
Mehta, Sebastian Nowozin, Kapil Vaswani, and Manuel
Costa. Oblivious multi-party machine learning on
trusted processors. In 25th USENIX Security Symposium
(USENIX Security 16), pages 619–636, 2016.

[61] Meni Orenbach, Pavel Lifshits, Marina Minkin, and
Mark Silberstein. Eleos: Exitless os services for sgx
enclaves. In Proceedings of the Twelfth European Con-
ference on Computer Systems, pages 238–253, 2017.

[62] Mark Russinovich. Introducing Azure confidential com-
puting. Seattle, WA: Microsoft, 2017.

[63] M. Schwarz, S. Weiser, and D. Gruss. Practical enclave
malware with intel sgx. In DIMVA 2019, pages 177–196,
2019.

[64] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen,
Runji Wang, Yi Xu, Yubin Xia, and Shoumeng Yan. Oc-
clum: Secure and efficient multitasking inside a single
enclave of Intel SGX. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems,
pages 955–970, 2020.

[65] Shweta Shinde, Shengyi Wang, Pinghai Yuan, Aquinas
Hobor, Abhik Roychoudhury, and Prateek Saxena.
Besfs: A POSIX filesystem for enclaves with a mecha-
nized safety proof. In 29th USENIX Security Symposium
(USENIX Security 20), pages 523–540, 2020.

[66] Hongliang Tian, Qiong Zhang, Shoumeng Yan, Alex
Rudnitsky, Liron Shacham, Ron Yariv, and Noam Mil-
shten. Switchless calls made practical in Intel SGX. In
Proceedings of the 3rd Workshop on System Software
for Trusted Execution, pages 22–27, 2018.

[67] Chia-Che Tsai, Donald E Porter, and Mona Vij.
Graphene-sgx: A practical library OS for unmodified ap-
plications on SGX. In 2017 USENIX Annual Technical
Conference (USENIXATC 17), pages 645–658, 2017.

[68] Chia-Che Tsai, Jeongseok Son, Bhushan Jain, John
McAvey, Raluca Ada Popa, and Donald E Porter. Civet:

USENIX Association 2022 USENIX Annual Technical Conference    451

https://www.math.utah.edu/~mayer/linux/bmark.html
https://www.math.utah.edu/~mayer/linux/bmark.html


An efficient java partitioning framework for hardware en-
claves. In 29th USENIX Security Symposium (USENIX
Security 20), pages 505–522, 2020.

[69] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla
Aldoseri, Flavio D Garcia, and Frank Piessens. A tale
of two worlds: Assessing the vulnerability of enclave
shielding runtimes. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications
Security, pages 1741–1758, 2019.

[70] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Neme-
sis: Studying microarchitectural timing leaks in rudi-
mentary cpu interrupt logic. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 178–195, 2018.

[71] Huibo Wang, Pei Wang, Yu Ding, Mingshen Sun, Yim-
ing Jing, Ran Duan, Long Li, Yulong Zhang, Tao Wei,
and Zhiqiang Lin. Towards memory safe enclave pro-
gramming with rust-sgx. Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications
Security, 2019.

[72] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian
Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu
Tang, and Carl A Gunter. Leaky cauldron on the dark
land: Understanding memory side-channel hazards in
sgx. In Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages
2421–2434, 2017.

[73] Ofir Weisse, Valeria Bertacco, and Todd Austin. Re-
gaining lost cycles with hotcalls: A fast interface for sgx
secure enclaves. In 2017 ACM/IEEE 44th Annual Inter-
national Symposium on Computer Architecture (ISCA),
pages 81–93. IEEE, 2017.

[74] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side channels
for untrusted operating systems. In 2015 IEEE Sympo-
sium on Security and Privacy, pages 640–656. IEEE,
2015.

[75] Minhong Yun and Lin Zhong. Ginseng: Keeping secrets
in registers when you distrust the operating system. In
NDSS, 2019.

[76] Shijun Zhao, Qianying Zhang, Yu Qin, Wei Feng, and
Dengguo Feng. Sectee: A software-based approach to
secure enclave architecture using TEE. Proceedings of
the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019.

A Supplementary Materials

A.1 Mapping Attacks

See Figure 9.

A.2 Virtualization Overhead

We’d like to evaluate the virtualization overhead on the normal
VM. We ran SPEC CPU 2017 INTSpeed benchmarks [31],
LMBench [56], and Linux kernel (v5.15) building when en-
abled and disabled RustMonitor. The result shows that the
virtualization overhead is less than 1% in most benchmarks
(see Figure 10 and Table 3). HyperEnclave avoids massive
VM-exits by pass-through most devices to the normal VM
and installs huge pages in NPT when possible to relieve the
TLB pressure.

LMbench (µs) Kernel
Build (s)null

call fork ctxsw mmap
Page
Fault

AF
UNIX

Native 0.1195 196.3 3.13 66,125 0.2433 5.73 1,410
Normal VM 0.1192 197.9 3.22 66,407 0.2461 5.69 1,417

Overhead -0.25% 0.82% 2.88% 0.43% 1.15% -0.70% 0.50%

Table 3: Virtualization overhead on LMBench (null syscall,
fork, context switches among 16 processes with 64KB work-
ing set, mmap, page fault, and unix socket) and building the
Linux kernel.

A.3 Memory Encryption Overhead

We evaluate the memory encryption overhead by measuring
the memory access latency with and without encryption in
sequential and random access patterns. The buffer size is
varied from 16 KB to 256 MB. Figure 11 illustrates the result
on HyperEnclave and SGX. When the buffer size is smaller
than the LLC size (8 MB), the overhead on both platforms
is negligible. When the buffer size is over the LLC size, the
overhead for sequential accesses and random accesses can
be over 2.4× and 25× respectively on HyperEnclave, while
on SGX is 3× and 30× respectively. When the buffer size
exceeds the EPC size (93 MB), the overhead for sequential
accesses and random accesses is 45× and 1000× slow on
SGX, due to the EPC page swapping, while on HyperEnclave
the overhead is still less than 30× since we reserve 24GB as
enclave memory in our test.

452    2022 USENIX Annual Technical Conference USENIX Association



Physical memoryVirtual memory view

Enclave-A

Enclave-B
Compromised

mapping

EPC

paddr

ELRANGE

vaddr

ELRANGE

vaddr'

(a) Alias mapping attack

Physical memoryEnclave virtual
memory view

write(vaddr, 'a');

Enclave's code

write(vaddr, 'a');

Enclave's code Compromised
mapping

Normal mapping

ELRANGE

vaddr

EPC

paddr

EPC

paddr'ELRANGE

vaddr

(b) Remapping attack

Figure 9: Mapping attacks. (a) Two guest virtual addresses within the enclaves are mapped to the same guest physical address;
(b) A non-enclave virtual address is mapped to the physical address belonging to the enclave.

per
lbe

nch
_s

gcc
_s

mcf_s

om
net

pp_
s

xala
ncb

mk_s
x26

4_s

dee
psje

ng_
s
leel

a_s

exc
han

ge2
_s xz_

s
200

400

600

800

Ex
ec

ut
io
n
tim

e
(s
)

0.4%

0.8%

0.2%

3.7%

1.2%

-0.1%
1.6%

-0.2%

-0.3%

0.2%

Native Normal VM

Figure 10: Virtualization overhead on SPEC CPU 2017.

16K 64K 256K 1M 4M 8M 16M 64M 256M

1

10

100

1000

LLC size

HyperEnclave

sequential reads (plaintext, baseline)
sequential reads (encrypted)

random reads (encrypted)

16K 64K 256K 1M 4M 8M 16M 64M 256M
1

10

100

1000

LLC size available EPC size

Intel SGXLa
te
nc

y
(n
or
m
al
iz
ed

)

Buffer size

Figure 11: Memory encryption overhead for sequential and
random memory accesses on HyperEnclave (with AMD SME)
and Intel SGX (with Intel MEE). The LLC size is 8 MB, and
the available EPC size on Intel SGX is about 93 MB.

B Artifact Appendix

Abstract

HyperEnclave can support existing SGX toolchains and run
SGX applications on AMD CPU with security guarantees.
This artifact contains the binaries of the RustMonitor, and doc-
umentations on how to setup the HyperEnclave environment.
We provide two containers to reduce the environment con-
figuration efforts. Specifically, the server container includes
the pre-installed enclave SDK, the Occlum LibOS, and the
benchmarks along with their dependencies5. The client con-
tainer includes pre-installed client side benchmark scripts for
Lighttpd and Redis.

Scope

The artifact includes benchmarks for edge calls (i.e., ECALLs
and OCALLs), and benchmarks for the real-world workloads,
including NBench, SQLite, Lighttpd and Redis. We provide
scripts to reproduce the results in the paper (summarized in
Table 4).

Contents

• README.md describes the artifact and provides a road map
for evaluation.

• host/ contains RustMonitor binary, the Linux kernel mod-
ule binary, and the scripts to install and enable HyperEn-
clave.

• server/ contains the source code (or patches) and scripts
of all experiments to run within the enclaves. We also pro-
vide a docker container with all dependencies installed.

5The artifact is based on SGX SDK v2.15, Occlum LibOS v0.27, and
GCC 9.4.0. The versions have little effect on the performance results.

USENIX Association 2022 USENIX Annual Technical Conference    453



Experiments Figure/Table Which container Estimated time Description

edge-calls Table 1 server 10s The latency of EENTER/EEXIT and ECALLs/OCALLs.

exception Table 2 server 20s Handling exceptions inside the enclaves.

NBench Figure 8a server 10m Performance scores of NBench inside the enclaves.

SQLite Figure 8b server 15m
Throughput of in-memory SQLite database with different

number of records, under YCSB A workload.

Lighttpd Figure 8c server/client 10m
Throughput of Lighttpd web server inside Occlum LibOS with

different request sizes.

Redis Figure 8d server/client 20m
Latency-throughput curve of Redis in-memory database server

inside Occlum LibOS with increasing request frequencies.
The client uses YCSB A workload.

Table 4: Summary of the benchmarks included in the artifact.

• client/ contains the benchmark scripts for network-based
experiments (Lighttpd and Redis) to run on the client side.
We also provide a docker container with all dependencies
installed.

• plots/ contains plotting scripts to generate figures from
the experiment results.

• paper-results/ contains the results shown in the paper.

Hosting
Check out https://github.com/HyperEnclave/atc22-ae (tag:
atc22-ae, commit ID: d1be8ab).

Requirements
Hardware requirements:
• A 64-bit AMD platform with SVM enabled. Optionally,

we recommend that the platform should support SME for
the protection against physical memory attacks.

• RAM ≥ 16 GB.
• Free disk space ≥ 30 GB.
We disabled TPM and IOMMU features in RustMonitor bi-
nary for artifact evaluation to minimize the hardware require-
ments. These features do not affect the performance results.
Software requirements:
• Linux with the specified kernel version (i.e.,
5.3.0-28-generic) to match our given kernel module
binary. We recommend Ubuntu 18.04.4 LTS which uses
this version of kernel as the default.

• Docker.
• Git.
• GCC and Linux kernel headers (for building the enable_
rdfsbase kernel module).

454    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/HyperEnclave/atc22-ae


PRIDWEN: Universally Hardening SGX Programs via Load-Time Synthesis

Fan Sang∗,1, Ming-Wei Shih∗,3, Sangho Lee4, Xiaokuan Zhang1,
Michael Steiner2, Mona Vij2 and Taesoo Kim1

1Georgia Institute of Technology, 2Intel Labs, 3Microsoft, 4Microsoft Research

Abstract
A growing class of threats to Intel Software Guard Exten-

sions (SGX) is Side-Channel Attacks (SCAs). As a response,
numerous countermeasures have been proposed. However, it
is hard to incorporate them to protect SGX programs against
multiple SCAs simultaneously. A naïve combination of dis-
tinct countermeasures does not work in practice because some
of them are 1) undeployable in target environments lacking
dependent hardware features, 2) redundant if there are already
defenses with similar functionalities, and 3) incompatible with
each other by design or implementation. Identifying all of
such conditions and preparing potential workarounds before
deployment are challenging, primarily when an SGX program
targets multiple platforms that abstract or manipulate their
configurations.

PRIDWEN is a framework that selectively applies essen-
tial SCA countermeasures when loading an SGX program
based on the configurations of the target execution platform.
PRIDWEN allows a developer to deploy a program in the
form of WebAssembly (Wasm). Upon receiving a Wasm bi-
nary, PRIDWEN probes the current hardware configuration,
synthesizes a program (i.e., a native binary) with an opti-
mal set of countermeasures, and validates the final binary.
PRIDWEN supports both software-only and hardware-assisted
countermeasures, and our evaluations show PRIDWEN effi-
ciently, faithfully synthesizes multiple benchmark programs
and real-world applications while securing them against mul-
tiple SCAs.

1 Introduction

Conducting confidential or private computing in a shared
computing environment (e.g., the public cloud) is challeng-
ing [1, 2]. Intel Software Guard Extensions (SGX) [3, 4] has
thus been proposed and adopted by leading cloud service
providers to help ensure even system software and hardware
cannot compromise the authenticity, confidentiality, and in-
tegrity of applications running inside SGX enclaves [5–7].
Nevertheless, Intel SGX is susceptible to Side-Channel At-
tacks (SCAs) [8], which are threats to shared cloud envi-
ronments in which it aims to be deployed. Researchers

∗The two lead authors contributed equally to this work.

Attack Known Countermeasures

Cache Cache flushing [21], cache eviction detection [23]
Page Page fault detection [24], frequent exception monitoring [26, 27]
HT HT disabling [21], co-location detection [25, 26]
Branch prediction Branch obfuscation [28]
Speculation Branch prediction control [29], lfence [30]
L1TF Cache flushing and HT disabling [21]
MDS HT disabling [22]

Table 1: Known side-channel attacks against SGX and counter-
measures. HT: Hyper-Threading; L1TF: L1 Terminal Fault; MDS:
Microarchitectural Data Sampling.

have shown that SGX is vulnerable to various SCAs utiliz-
ing cache [9–13], page table [14–18], and transient execu-
tion [19, 20], which can infer sensitive control flows or exfil-
trate secret data. To defend against individual SCAs, software-
and/or hardware-based countermeasures have been proposed,
such as cache flushing [21,22] or eviction detection [23], page
fault detection [24], and Hyper-Threading Technology (HT)
disabling [21, 22] or co-location detection [25, 26] (Table 1).

However, multiple side channels can co-exist in a vulnera-
ble program; protecting SGX programs from multiple known
SCAs is difficult, not to mention the existence of unknown
ones. One way is collectively applying existing countermea-
sures against individual SCAs, but naïvely doing so fails due
to the unawareness of diverse target execution platforms or co-
existing mitigation techniques, which may make such counter-
measures 1) undeployable due to different hardware settings,
2) redundant because of over-protection, and 3) incompatible
due to conflicts among different mitigations. Another way is
adopting a comprehensive countermeasure, i.e., oblivious exe-
cution [18,31], that is effective to many SCAs except for spec-
ulative execution. However, even the state-of-the-art oblivious
execution incurs average slowdown of 51× [31], largely down-
grading the cost-effectiveness of cloud computing. A practical
alternative, data-location (re-)randomization [32], incurs rela-
tively small slowdown (8×), but it is still heavy and does not
cover control-flow leakage.

One conventional approach to solve such issues is to create
a bloated application incorporating independently compiled
object files for each architecture and runtime detection code,
to selectively activate them according to different hardware
configurations [33]. This approach, however, is not suitable
for Intel SGX: First, checking hardware configurations is sup-

USENIX Association 2022 USENIX Annual Technical Conference    455



ported by system software outside the Trusted Computing
Base (TCB); malicious system software can provide misinfor-
mation about hardware configurations to SGX applications.
Second, the secure memory that enclaves share, Processor
Reserved Memory (PRM), is limited [4]; bloated SGX appli-
cations can easily occupy a huge portion of it.
PRIDWEN. To practically protect SGX programs from vari-
ous SCAs, we argue that the decision of the SCA mitigations
to be applied should be delayed as close to the final execu-
tion as possible to best fit the target SGX platform as well
as co-existing mitigation techniques. Therefore, instead of
adopting the static compilation approach, in this paper, we
propose PRIDWEN, a framework that uses load-time synthesis
to dynamically harden SGX programs by selectively applying
different mitigation techniques according to the configura-
tions on the target execution platform. While ensuring the
security, PRIDWEN maintains the cost-effectiveness of cloud
computing by minimizing the extra effort required for prepa-
ration on the tenant side, and the runtime overhead of program
synthesis on the cloud side.

PRIDWEN has a universal loader that securely loads and
hardens a given SGX program inside an enclave based on four
components: 1) Prober that identifies the target platform’s
hardware and system configurations using SGX exception
handling logic and remote attestation; 2) PassManager that
manages and determines an optimal set of feasible instru-
mentation passes based on the identified configurations; 3)
Synthesizer that hardens a given SGX program with the chosen
instrumentation passes before loading it in the target enclave;
and 4) Validator that verifies whether the final executable is
hardened as expected, and provides a functionality for devel-
opers to remotely verify both the process of synthesis and the
hardened binary before execution.

To make PRIDWEN 1) platform-independent, 2)
instrumentation-friendly, and 3) lightweight, we de-
velop a new instrumentation framework using WebAssembly
(Wasm) [34, 35] as the Intermediate Representation (IR). The
size of PRIDWEN in binary is only 1.26 MiB, which only
adds a slim footprint to the enclave TCB. Existing Wasm
runtimes for SGX [36–39] only interpret Wasm binaries
without any instrumentation support. Furthermore, unlike
existing Wasm instrumentation frameworks for non-SGX
programs [40, 41], PRIDWEN can comprehensively transform
Wasm binaries at both Wasm IR and native code levels.
PRIDWEN also supports multiple high-level languages; users
only need to compile their SGX programs once with a Wasm
compiler backend (e.g., Emscripten [42]).

To showcase the capability and practicality of PRIDWEN,
we integrate four mitigation passes into PRIDWEN: 1) T-
SGX [24] to prevent a page-fault SCA with a hardware
support; 2) Varys [26] to mitigate cache-timing, page-fault-,
and HT-based attacks in a software-only manner; 3) QSpec-
tre [30] to mitigate the Spectre attack; and 4) fine-grained
Address Space Layout Randomization (ASLR) [43] as a

general-purpose mitigation. We first detail the steps to in-
tegrate the four passes into PRIDWEN, then we demonstrate
how PRIDWEN produces the optimal set of passes based on
the runtime configurations with minimal manual effort.
Performance. PRIDWEN poses moderate performance over-
head on top of the original mitigation techniques and retains
faithfulness of execution semantics (§6). The average slow-
down of hardened real-world applications (Lighttpd, libjpeg,
and SQLite) was 2.1× with hardware-assisted non-redundant
mitigation techniques and 3.6× with software-only mitigation
techniques for outdated microcode (i.e., no hardware-level
mitigation), which closely conforms to the originally reported
performance overhead of the selected countermeasures. Also,
PRIDWEN faithfully compiled and ran all 73 programs from
the official Wasm specification test suite [44]. Program syn-
thesis completed within 0.5 s with a temporary usage of less
than 25 MiB of enclave memory across tests.

PRIDWEN is designed to be an easily-extensible universal
framework that respects the diversity of computing platforms.
PRIDWEN is publicly available as an open-source project 1,
allowing communities to test, use, and contribute. We envision
that the growing PRIDWEN framework should serve as a hub
for the SCA-resistant SGX ecosystem, and potentially other
mitigations as well.
Contributions. This paper makes the following contribu-
tions:

• The first platform-aware load-time synthesis frame-
work for SGX programs. To the best of our knowledge,
PRIDWEN is the first framework that dynamically syn-
thesizes and hardens SGX programs by applying optimal
hardware- and/or software-based mitigations according
to the target platform.

• Attestable in-enclave Wasm instrumentation and
compilation toolchain. A comprehensive instrumenta-
tion and compilation toolchain based on Wasm is im-
plemented inside the SGX enclave to enable dynamic
program synthesis with attestation. PRIDWEN can instru-
ment Wasm both at IR and native level.

• Extensive evaluation. We study the performance of
PRIDWEN extensively using benchmarks and real-world
applications. The results suggest that PRIDWEN only in-
troduces moderate runtime overhead while preserving
the execution semantics.

2 Background and Related Work

In this section, we present the background and related work.
Additional related work can be found at Appendix A.
Intel SGX. Intel SGX is a hardware-based Trusted Execution
Environment (TEE) that securely runs a userspace application
in an untrusted remote environment, such as the public cloud.
Through remote attestation [45], Intel SGX allows a user to

1https://github.com/sslab-gatech/Pridwen

456    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/sslab-gatech/Pridwen


load his/her signed program into a remote environment, while
helping ensure that the program binary has never been altered.
To help secure the code and data of SGX programs, Intel SGX
provides an enclave to each program, which is a dedicated
secure region of the main memory. The enclave is isolated
from any other software including an OS. The code and data
stored in the enclave are always encrypted by the Memory
Encryption Engine (MEE), and decrypted only when they are
loaded into a CPU package (i.e., the cache), to help prevent
physical attacks such as a cold boot attack [46].
Exceptions in SGX. Conventionally, exceptions are deliv-
ered to system software such as OS for further investigation.
However, Intel SGX cannot adopt traditional exception han-
dling because system software is untrusted. Instead, Intel SGX
defines two mechanisms, Asynchronous Enclave Exit (AEX)
and Custom Exception Handler (CEH) [47, 48]. Whenever
an exception is generated during an enclave execution, the
CPU exits from the enclave asynchronously. During AEX,
the original exception number and register context are stored
into the State Save Area (SSA) inside the enclave and then
overwritten by synthetic data. Further, SGX allows devel-
opers to define CEHs to process exceptions inside an en-
clave; These CEHs can retrieve the SSA to check the stored
exception number (GPRSGX.EXITINFO.VECTOR) and registers
(GPRSGX.<registers>), and update them (e.g., GPRSGX.RIP)
to resume the execution.
SGX side channels. SCAs against SGX have been ac-
tively studied. Traditional cache SCAs work against Intel
SGX with different configurations [9–13, 49]. Recent studies
show that page access patterns [14–18], interrupt execution
time [50, 51], branch prediction behaviors [28, 52], specula-
tive execution [19,20] and Intel’s internal buffers [53–55] can
all be used to infer sensitive information inside enclaves. In
response, countermeasures that cope with the fundamental
characteristics of the SCAs have been proposed. T-SGX [24]
and Cloak [23] use Transactional Synchronization Extensions
(TSX) to accurately recognize page faults and cache evictions
inside an enclave, respectively. Varys [26] and Déjà Vu [27]
aim to detect frequent interrupts or AEXs. Also, since HT
enables concurrent SCAs without interrupts, Varys [26] and
HyperRace [25] try to prevent an SGX hyperthread from be-
ing co-located with other hyperthreads. Disabling HT and/or
flushing the L1 cache are also necessary to mitigate recent
speculative or transient SCAs [21, 22]. In addition, SGX-
LAPD [56] leverages a huge page to degrade the accuracy of
the page-level SCA. Lastly, oblivious code execution and data
access techniques for Intel SGX [18, 31, 57–60] have been
proposed as a general countermeasure against SCAs, but they
incur overly high performance overhead. The state-of-the-art
ORAM-based system Klotski [61] improves the performance
significantly. However, it only defeats controlled-channel at-
tacks [14, 18]. In contrast, PRIDWEN focuses on universally
hardening SGX applications by automatically and selectively
applying multiple defenses against different SCAs together.

WebAssembly (Wasm). The World Wide Web Consortium
(W3C) proposes Wasm [34] as a platform-independent compi-
lation target for various high-level languages (e.g., C/C++ and
Rust). A Wasm binary has language-like syntax and structure
that are suitable for compilation and instrumentation. The ba-
sic executable unit of code in Wasm is a module that consists
of multiple sections, where each section contains specific def-
initions of the module such as global variables, functions and
a sequence of instructions of each function. Wasm instruc-
tions execute on a stack machine, and Wasm supports only
the structured control flow such as if-else and loop without
goto statements, enabling single-pass fast compilation.
Memory safety in Wasm. Wasm maintains a linear memory
with a configurable size dedicated to all the memory accesses
except for local and global variables. The linear memory is
disjoint from other memory regions such as the code section
and the call stack. As a result, given a buggy Wasm program
(e.g., originating from a C program with a memory corruption
bug), an attacker can only interfere with the data in the linear
memory, but cannot tamper with its control flow.
PRIDWEN and Wasm. Because the Wasm binary is
well-structured and friendly for efficient Just-In-Time (JIT)
compilation, PRIDWEN adopts Wasm as IR for supporting
load-time synthesis. PRIDWEN also benefits from Wasm’s
memory-safety feature, mitigating code-reuse attacks against
SGX [62, 63]. Moreover, the minimal footprint of Wasm fits
PRIDWEN’s demand for a compact yet flexible instrumenta-
tion and compilation toolchain inside an enclave. Although
existing compilers (e.g., LLVM) can fit into enclaves with
extended size in new scalable CPUs [64], the TCB size will
largely increase, and the migration effort would be significant
as well.

3 Overview

Scenario. In this paper, we consider the widely-used
confidential-computing scenario on the cloud, where the user
wants to utilize the Intel SGX on the cloud to protect his/her
data and applications. In this scenario, there are two entities:
the cloud and the user. The user runs his/her applications
inside enclaves, and wants to protect his/her data against side-
channel attacks using PRIDWEN.
Threat model. Our threat model is similar to the threat mod-
els in other SGX-related studies [14,24,26]. Our TCB consists
of an SGX enclave provided by an Intel CPU and everything
inside the enclave, including PRIDWEN, a target Wasm binary
prepared by the user, and the PRIDWEN pass selection policy.
We assume that the user uses remote attestation to verify the
validity of the CPU and PRIDWEN, and establish a secure
channel with PRIDWEN to securely transmit his/her binaries.
We assume that adversaries have already compromised the
underlying privileged system software (e.g., OS) to attack
PRIDWEN and the target binary. Any threats due to poten-

USENIX Association 2022 USENIX Annual Technical Conference    457



Prober PassManager Synthesizer

Wasm
binary

Hardened
binary

❷
❸

❹

❶

✕

Feature Available?
TSX
HT

IBRS ⋯
 

⋯
 

✔

✔

TSGX

Priority  Pass
1
2

ASLR

 QSPEC

 VARYS TSGX

 ASLR
⋯ 

PRIDWEN
Loader

Validator

❺

Report

Figure 1: Overview of PRIDWEN. 1 A user compiles a program
into a Wasm binary and transmits it to PRIDWEN via a secure chan-
nel. 2 PRIDWEN probes the hardware configurations. In this ex-
ample, the CPU enables TSX and IBRS while disabling HT. 3
PRIDWEN selects mitigation passes. Here, it chooses T-SGX and
ASLR because the CPU enables TSX (for mitigating page-fault at-
tacks) and IBRS (for mitigating Spectre variants). 4 PRIDWEN

synthesizes and hardens a native binary based on chosen passes. 5
PRIDWEN validates the final synthesized native binary. A report is
sent back to the user to attest the final binary.

tial vulnerabilities of the CPU and the code running insides
enclaves are out of scope.

Goals. PRIDWEN is designed to achieve the following goals:
1) Adaptivity. PRIDWEN selects mitigation techniques that
conform to the capabilities of the target execution platform
on demand. PRIDWEN needs to optimally combine multiple
mitigation techniques without causing conflicts or failures.

2) Attestability. The second goal of PRIDWEN is to support
the remote attestation of the dynamically generated binary in-
side SGX; Native SGX only supports attesting static binaries.
PRIDWEN should allow users to verify the integrity of the
final executable running inside an enclave, as well as obtain
the genuine information regarding whether the executable
is faithfully generated by PRIDWEN (e.g., the selection and
application of the mitigation schemes).

3) Extensibility. Another goal of PRIDWEN is to be extensi-
ble, so that it can support forthcoming mitigation techniques
against SCAs besides existing ones. Moreover, it should sup-
port multiple platforms due to the diversity of practical com-
puting platforms. The extensibility of PRIDWEN should also
allow for smooth integration of legacy mitigation techniques.

Architecture. Figure 1 shows an overview of PRIDWEN. The
core of PRIDWEN is an in-enclave loader that implements key
ideas with corresponding components: user-mode hardware
probing (Prober), optimal pass selection (PassManager), load-
time program synthesis (Synthesizer), and post-synthesis vali-
dation & final binary attestation (Validator). Given that each
countermeasure may depend on specific hardware features,
Prober interacts with the platform and dynamically determines
the availability of these features. Based on the probing results,
PassManager determines an optimal set of countermeasures
(i.e., instrumentation passes) and finalizes the order of apply-
ing them based on user policies. Next, PassManager informs
Synthesizer about the final selection. Synthesizer takes a Wasm
binary (provided by the user via a secure network channel) as
an input and compiles it into a native one. During the com-

1 #define UD 6 /* Invalid opcode exception */
2 bool tsx_support = false;
3 check_tsx_support:
4 _xbegin();
5 tsx_support = true;
6 _xend();
7 exception_handler:
8 if (SSA.GPRSGX.EXITINFO.VECTOR == UD &&
9 SSA.GPRSGX.RIP == check_tsx_support) {

10 GPRSGX.RIP = skip_tsx_check;
11 }

Figure 2: Exception-based probing code for TSX. If a CPU does
not support TSX, there will be a #UD exception that needs to be
handled by an in-enclave exception handler to proceed execution
(i.e., changing GPRSGX.RIP).

pilation, Synthesizer hardens the binary with the optimal pass
set provided by PassManager. Validator takes the synthesized
binary as an input, and verifies that 1) each countermeasure
is correctly enforced, and 2) no conflict exists among the
enforced countermeasures. Validator also provides the func-
tionality of attestation on the final binary.

4 PRIDWEN

4.1 Prober
The goal of Prober is to identify hardware capabilities of the
target execution platform, which is needed by PassManager
to determine the optimal set of mitigation schemes to en-
force. This hardware probing step typically requires interac-
tions with the system software, such as retrieving privileged
registers (i.e., Model-Specific Register (MSR) and control
registers) and executing the cpuid instruction. However, we
cannot rely on these approaches because the system software
is not trusted in our threat model. SGX provides an attribute
field called XSAVE-Feature Request Mask (XFRM) to de-
termine whether some hardware features are enabled at en-
clave creation, but it only covers a few instructions (e.g., AVX
and MPX [48]). To solve this, PRIDWEN leverages exception
handling and remote attestation to securely probe hardware
configurations while running inside an enclave.
Exception-based instruction probing. The instruction
probing identifies whether PRIDWEN can use hardware-
assisted mitigation techniques relying on specific instructions.
A CEH for SGX (§2) can be used to determine whether a
target system supports or enables the required instruction.
Specifically, the probing code executes the specific instruction
demanded (e.g., TSX) inside SGX, and then checks whether
it results in a #UD exception by inspecting the exception infor-
mation (Figure 2). If it does—i.e., the target platform does
not support the instruction, PRIDWEN adopts a software re-
placement of the hardware-assisted mitigation if available, or
omits it otherwise. The CEH then advances GPRSGX.RIP to
continue execution.

Attackers can disrupt this type of probing, but it only re-
sults in Denial-of-Service (DoS) that they can always trigger
without special attacks: 1) Attackers can simply resume the

458    2022 USENIX Annual Technical Conference USENIX Association



API Hooking point

onFunctionStart(CCTX *c) Beginning of a function
onFunctionEnd(CCTX *c) End of a function
onControlStart(CCTX *c) Beginning of a control statement
onControlEnd(CCTX *c) End of a control statement
onInstrStart(CCTX *c) Before a IR-level instruction
onInstrEnd(CCTX *c) After a IR-level instrcution
onMachineInstrStart(CCTX *c, MI *i) Before a native instruction
onMachineInstrEnd(CCTX *c, MI *i) After a native instrcution

Table 2: The APIs for the instrumentation. CCTX: CompilerContext.
MI: MachineInstr. MCTX: MachineContext. MB: MachineBasicBlock.

enclave execution right after the #UD exception without invok-
ing the CEH. However, GPRSGX.RIP still points to the invalid
instruction, and it is impossible to manipulate it or the excep-
tion number outside the enclave. Therefore, this only incurs
repeated #UD exceptions. 2) Attackers can selectively enable
a specific hardware instruction only during probing and dis-
able it during the actual execution. This trick can deceive the
probing, but it only introduces #UD exceptions during runtime,
resulting in another DoS.
Remote attestation for hardware configuration. The
remote attestation determines whether a target platform is
vulnerable to SCAs that utilize certain hardware features.
SGX remote attestation allows PRIDWEN to accurately de-
termine several hardware configurations, i.e., HT and Indirect
Branch Restricted Speculation (IBRS). If a remote device
turns on HT, an attestation verification report will contain
CONFIGURATION_NEEDED in the isvEnclaveQuoteStatus field
since API version 3 [65, 66]. PRIDWEN can leverage this
information to selectively adopt mitigations for preventing
hyperthread co-locations [25, 26]. Also, if a remote device
does not install the microcode update for indirect branch
control mechanisms, a remote attestation protocol will
indicate GROUP_OUT_OF_DATE [67]. If users still want to
securely run their code on such an outdated device, they can
adopt software-based approaches [30] against speculative
SCAs. Without learning such hardware information, unnec-
essary performance overhead might be paid for applying
redundant protections. It is worth mentioning that updating
microcode and changing HT configuration require system
reboot in general; As a result, malicious system software
cannot manipulate these hardware configurations during the
execution of hardened programs.

4.2 PassManager

PassManager is in charge of selecting and integrating multi-
ple mitigation schemes. PassManager provides a set of high-
level APIs that allows developers of side-channel mitiga-
tion schemes to implement their instrumentation passes and
plug them into the PRIDWEN loader. During the load time,
PassManager 1) maintains a list of plugged-in passes, 2) deter-
mines the optimal set of passes for Synthesizer to execute, and
3) resolves the correct application order of each selected pass
to avoid conflicts.

Pass APIs. Table 2 lists the high-level APIs for implement-
ing instrumentation passes. For instrumentation, we expose
all the hooks as APIs. To reflect the structure of a Wasm
module, we classify the IR-level hooks into the granularity of
functions, controls, and instructions. Each hook can obtain the
information about the hooking IR instruction and the current
states of compilation via the CompilerContext (CCTX) data
structure. For the native level, the hook should consult the in-
formation of the native instruction via the MachineInstr (MI)
data structure, as the CompilerContext data structure does
not track such information.
Pass selection and ordering. When being plugged into the
PRIDWEN loader, each pass is associated with a configuration
file that specifies the type of SCA to mitigate, hardware fea-
tures or other passes that it depends on, and a list of passes
incompatible with it. Each pass can also specify its weakly de-
pendent passes, which indicates that the pass depends on these
weakly-dependent passes only when they are available. Dur-
ing the initialization phase, PassManager adds all the plugged-
in passes into a pass queue. For better flexibility, PRIDWEN
also allows a user to customize the pass queue by providing
a pass selection policy (P), which contains descriptions of
all plugged-in passes and their dependencies. We detail our
implementation of a pass selection policy in §5.2.

To select the optimal set of passes, PassManager takes the
following steps: 1) It consults Prober about the current hard-
ware configuration. 2) It checks the dependency of each pass
in the queue, and drops a pass if the required hardware feature
is not available. 3) It checks the types of side channels that
each active pass mitigates; if PassManager identifies more than
one passes targeting the same SCA, it retains the one with the
highest priority value specified in P. If not specified, it will
first assign a priority value to each of them based on several
criteria including performance overhead. 4) To determine the
application procedure of active passes, PassManager builds a
dependency graph of all the passes given the dependencies
specified in P. Next, PassManager uses the topological order
of the graph as the application order. PassManager may drop
passes if their strong dependencies are not satisfied or incom-
patible passes are in the active pass set2. If all passes are
independent, PassManager uses the order in the pass queue as
the application order. Here we assume the graph contains no
circular dependencies; otherwise, PRIDWEN will terminate
the execution.

4.3 Synthesizer
Synthesizer uses load-time synthesis to dynamically generate
a final binary hardened with the optimal set of mitigation
passes (§4.2) for the current hardware configuration, and loads

2Note that we did not come across any SCA mitigations that are mutually
exclusive. If such cases emerge in the future, programmers can specify this
situation in the pass selection policy (P) and mark the involved mitigation
passes as mutually exclusive; the pass with higher priority will be applied by
default. Users may override the policy to choose a custom priority.

USENIX Association 2022 USENIX Annual Technical Conference    459



the binary into memory for execution. Synthesizer adopts a
Wasm binary as the input, and takes three steps, i.e., parsing,
compilation, and instrumentation, to achieve this goal. We
extend the compilation chain to support both IR- and native-
level instrumentation so that it is flexible enough to integrate
various types of SCA mitigation schemes with PRIDWEN.

Parsing. In the parsing step, Synthesizer performs standard
decoding on a Wasm binary and converts it into Wasm IR.
During decoding, Synthesizer also validates the format of the
binary with several checks (e.g., type checking of functions) to
guarantee that the binary follows the specification. Any modi-
fication to the binary before parsing can thus easily result in
an immediate rejection. For example, inserting an instruction
that causes the inconsistency on the stack machine renders
the binary invalid.

Compilation. To generate the native binary inside the en-
clave given Wasm IR, Synthesizer performs a single-pass com-
pilation over each function (similar to the baseline compila-
tion of SpiderMonkey [34] and V8 [68]). During the compila-
tion of a function, Synthesizer virtually executes each instruc-
tion based on the execution model of the Wasm stack machine
and generates the corresponding native code. Synthesizer also
keeps track of the metadata about each value (e.g., actual lo-
cation and data type) on the operand stack to help correctly
generate the native code and facilitate type-checking. In addi-
tion to the operand stack, Synthesizer maintains a control stack
that keeps track of the control flow of the function. Pushing
a value to the control stack indicates the function initiates a
new control statement (e.g., block, if, or loop instruction),
while popping a value from the control stack implies reaching
the end of the current statement (e.g., an end instruction). The
control stack provides sufficient information for Synthesizer to
resolve the target of a branch (e.g., a br instruction). After fin-
ishing the native code generation of all functions, Synthesizer
performs relocation. This process patches all the unresolved
address values in the native instructions, such as call and
those for memory accesses.

Instrumentation. To support flexible instrumentation, we
extend the design of the compilation to provide hooks at both
IR- and native-level. For IR-level hooks, we place them both
before and after the position that Synthesizer processes an IR
instruction to support code insertion, modification, and dele-
tion. For each hook, we provide sufficient information about
the corresponding instruction and the states of the compila-
tion at the given point, such as the operands and the control
stacks. Since Synthesizer may generate more than one native
instruction for a single IR instruction, we provide similar
hooks at the native level (i.e., surrounding the generation of
native instructions) to support mitigation schemes that require
the information about native instructions. To support the in-
sertion or the modification of native instructions that require
relocation, we provide the option to mark such instructions
with symbols. A symbol refers to a target location that allows

Synthesizer to recognize and resolve it during the relocation
phase.
Reproducible synthesis. Since both the compilation and
instrumentation are deterministic, Synthesizer has a nice prop-
erty: the synthesis process is reproducible. This property en-
sures that given the same Wasm code and hardware configura-
tion, the same version of PRIDWEN loader always generates
the same final binary.

4.4 Validator

The flexibility of instrumentation indicates that an instru-
mentation pass can arbitrarily modify the binary. Such mod-
ifications can potentially disturb the already applied instru-
mentation passes or break the binary itself. To avoid such
cases, Validator supports post-synthesis validation to validate
whether the synthesized executable is hardened as expected.
Also, since the runtime behavior of PRIDWEN cannot be deter-
mined beforehand, Validator provides final binary attestation
to allow users to remotely verify both the process of synthesis
and the hardened binary before execution. Both post-synthesis
validation and final binary attestation are necessary to ensure
the correctness of the final binary. In addition, they are con-
ducted only once before running the program, and thus will
not affect the runtime performance.
Post-synthesis validation. In post-synthesis validation,
Validator conducts static analysis over a synthesized binary.
Unlike typical binary analysis that assumes a stripped binary,
post-synthesis validation enables more sophisticated analyses
by taking advantage of the metadata (e.g., the control-flow
information) provided by Synthesizer. Post-synthesis valida-
tion takes in the form of validation passes coupled with each
instrumentation pass. Based on the control-flow information,
Validator executes validation passes at the basic-block level.
Validator iterates through all functions in the binary and in-
vokes a procedure implemented in each validation pass at
the beginning of each basic block, which performs a series
of checks based on the content of the basic block (i.e., raw
bytes). For example, a procedure can determine whether spe-
cific instrumentation is applied based on pattern matching. If
any of the validation passes fails, Validator rejects the binary.
Optionally, the procedure can utilize other metadata such as
the original IR instructions that map to the basic block to
facilitate the analysis beyond binary scanning.
Final binary attestation. In addition to using remote attesta-
tion for hardware probing (§4.1), PRIDWEN uses remote attes-
tation to attest the dynamically synthesized binary inside the
enclave. SGX does not natively support the attestation of dy-
namic enclave content; instead, traditional remote attestation
measures only the static code and data that are initially inside
an enclave, which is used as a piece of evidence throughout
the process of remote attestation. To attest dynamic content,
PRIDWEN incorporates a two-step scheme that extends the
attestation of static content.

460    2022 USENIX Annual Technical Conference USENIX Association



Attack surface SW-only Mitigation HW-assisted Mitigation

Cache timing Interrupt (Varys) Cache flushing (microcode)
Page fault Interrupt (Varys) T-SGX
HT Co-location (Varys) HT disabling (microcode)
Speculative execution QSpectre IBRS (microcode)

Static layout ASLR N/A

Table 3: Attack surfaces and software-only or hardware-assisted
mitigation schemes PRIDWEN implements. CPUs with recent mi-
crocode update do not have some of the attack surfaces.

In the first step, a user uses the SGX standard procedure
to attest the static part of PRIDWEN and establishes a
secure channel [45]. Then, the user sends a Wasm binary
p.wasm to PRIDWEN via the secure channel and PRIDWEN
starts to synthesize the final binary based on the hardware
configuration (hw_config) of the execution platform. In the
second step, PRIDWEN sends the user: 1) the measurement
of the synthesized binary p.code (i.e., the hash of native
code blocks hash(p.code)) and 2) the hw_config. The user
can then validate hash(p.code) thanks to a PRIDWEN’s
property: reproducible synthesis (§4.3). With the reproducible
synthesis, the user can validate the final binary based on both
p.wasm and hw_config.

5 Implementation

We implement a prototype of PRIDWEN with 25k lines of C
code on top of the Intel Linux SGX SDK 2.5.102. The size
of PRIDWEN in binary is only 1.26 MiB, maintaining a slim
footprint of trusted computing base (TCB). For native code
generation, we implement an x86 backend to support the full
Wasm instruction set.
Runtime support. Our prototype provides an Emscripten-
compatible runtime support that allows to run fairly large,
complex applications such as Lighttpd, as shown in §6. The
application is directly compiled from unmodified C source
code to a Wasm binary using the Emscripten compiler.
Attestation of synthesized binaries. Our prototype supports
final binary attestation mentioned in §4.4. Also, the proto-
type provides a tool that allows users to locally validate the
measurement of the synthesized binary.

5.1 Example Passes
To illustrate the capability and practicality of PRIDWEN, our
prototype implementation integrates four SCA mitigation
schemes (ASLR [43], Varys [26], T-SGX [24], and QSpec-
tre [30]) into PRIDWEN using provided APIs, and simultane-
ously cover five important SCA surfaces (cache timing, page
fault, HT, speculative execution, and static layout) (Table 3)
based on the probed hardware configuration (§4.1). Although
the four mitigation schemes were not originally introduced by
this work, they are selected to demonstrate how to integrate
existing mitigation techniques using PRIDWEN. Because the
control-flow information (including the definition of basic

blocks in the binary) is required by most of the passes, we im-
plement a control-flow analysis pass to share the information
with other passes, eliminating the overhead posed by repeti-
tive analyses. PRIDWEN helps to prioritize hardware-assisted
mitigations with lower overheads if the execution platform
supports them (e.g., TSX for T-SGX), and safely avoid re-
dundant countermeasures if the platform is free from the
corresponding SCAs thanks to recent microcode or hardware
updates [21, 22, 29, 69].

5.1.1 Example Pass #1: Fine-grained ASLR

Many SCAs rely on accurate memory layout information
to improve the granularity of leaked information. Thus,
PRIDWEN enables fine-grained ASLR by default, which ran-
domizes the location of every basic block, as a general miti-
gation scheme against SCAs.
Integration. We adopt the similar compiler-level scheme
from SGX-Shield [43] by inserting a jmp instruction at the end
of every basic block. First, the pass uses the onControlStart
and onControlEnd APIs (Table 2) to identify the structure
of a basic block. Next, the pass inserts a jmp with a sym-
bol that points to the succeeding basic block if it does not
end with a jmp. The pass also updates the targets of other
branches accordingly by using the onMachineInstrEnd API.
Later, Synthesizer shuffles the placement of each basic block
if the ASLR pass is enabled. During the relocation, the gen-
erated symbols allow Synthesizer to resolve the target of each
branch to a basic block at a randomized location.
Post-synthesis validation. We integrate a validation pass
that performs the following checks: 1) whether a basic block
terminates with a jmp and 2) whether each branch points to
the correct target based on the control-flow information.

5.1.2 Example Pass #2: T-SGX

SGX allows the OS to handle page faults. Page-fault
SCAs [14] exploit this design decision by intentionally mak-
ing enclave pages inaccessible and observing which pages
are accessed. To defeat this SCA, T-SGX [24] hides page
faults from the OS by running an enclave spitted as small
code blocks inside TSX transactions. As a result, all page
faults occurring during the execution are suppressed (i.e., not
delivered to the OS).
Integration. Our T-SGX pass has cache usage and ex-
ecution time analyzers for native instructions using the
onMachineInstrEnd API. Based on the analysis results, the
pass determines the scale of a code block. Next, the pass
replaces branch instructions at the end of the block with
the instructions redirecting to the springboard (i.e., a lea
for saving the address of the next code block and a jmp to
the springboard). Similar to the fine-grained ASLR pass, the
T-SGX pass identifies basic blocks in the binary by using
the onControlStart and onControlEnd APIs. To support the
springboard, the pass places the springboard code before

USENIX Association 2022 USENIX Annual Technical Conference    461



the entry function (e.g., main) of the binary by using the
onFunctionStart API.

Post-synthesis validation. The validation pass for T-SGX
checks 1) the presence of the springboard, 2) the presence of
the instructions to jump to the springboard at the end of every
code block, and 3) whether the target of the instructions in
step 2 correctly points to the springboard. Optionally, the pass
can re-analyze cache usage and execution time to ensure the
correctness of the code splitting.

5.1.3 Example Pass #3: Varys

SCAs usually require frequent interrupts or HT to accurately
identify the execution context (e.g., which pages are accessed)
or to attack in-core cache and speculation units. Varys [26] is
a software-based approach to detect such behaviors.

High-frequency AEX detection and cache eviction. Varys
identifies the occurrence and frequency of interrupts during
the enclave execution by analyzing AEXs. Specifically, when-
ever an AEX occurs, SGX updates the corresponding field in
the SSA. Thus, by counting the number of instructions exe-
cuted at every basic block and periodically polling the SSA,
Varys can estimate the frequency of AEXs. In addition, Varys
explicitly evicts cache lines upon detecting AEXs to mitigate
cache-based SCAs.

Co-location test. To prevent scheduling victim and attack
threads to the same HT core, Varys prepares a pair of SGX
threads and checks whether they are in the same core via an
L1-cache-based covert timing channel. Varys performs this
co-location test whenever it observes an AEX.

Integration. PRIDWEN’s Varys pass inserts the checking
code at the beginning of every basic block by using the
onControlStart and onControlEnd APIs. Unlike the original
Varys that counts the number the instructions at the LLVM IR
level, our pass counts the number of native instructions with
the help of the onMachineInstrEnd API. For the SSA polling
routine, the pass inserts the code before the entry function of
the binary via the onFunctionStart API. The pass also adds
the co-location test code to the SSA polling routine (i.e., after
detecting an AEX).

Post-synthesis validation. The validation pass verifies 1)
the presence of the checking code, 2) the correctness of the
instruction number added to the counter, 3) the presence of
the SSA polling code, and 4) whether the target of the call
in the checking code points to the SSA polling routine.

5.1.4 Example Pass #4: QSpectre

One software-based approach to mitigate the Spectre attack
is to use serializing instructions (e.g, lfence) to prevent the
CPU from speculatively executing instructions beyond the
intended placements. Following this idea, Microsoft Visual
Studio has adopted a compiler-based scheme, QSpectre [30],

1 [ { "name": "tsgx",
2 "sca": [ "page" ],
3 "dependency": { "hw": [ "tsx" ], "weak": [ "aslr" ] },
4 "priority": "high"
5 },
6 { "name": "cotest-tsgx",
7 "sca": [ "ht" ],
8 "dependency": { "hw": [ "ht" ], "strong": [ "tsgx" ] },
9 "priority": "high"

10 },
11 { "name": "qspectre",
12 "sca": [ "spectre" ],
13 "dependency": { "hw": [ "!ibrs", "ht" ] },
14 "priority": "high"
15 },
16 { "name": "varys",
17 "sca": [ "cache", "page" ],
18 "dependency": { "hw": [ "!cache" ] },
19 "priority": "medium"
20 },
21 { "name": "cotest-varys",
22 "sca": [ "ht" ],
23 "dependency": { "hw": [ "ht" ], "strong": [ "varys" ] },
24 "priority": "medium"
25 },
26 { "name": "aslr",
27 "priority": "high" } ]

Figure 3: Example pass selection policy P (a .json file). name:
name of the current pass; sca: the SCAs to mitigate; dependency:
the required hardware (hw) and dependent passes (can be weak or
strong); priority: the priority of the current pass.

which finds potentially vulnerable code patterns and inserts
lfence instructions During compilation.
Integration. Instead of inserting lfence instructions based
on pattern matching, which can be bypassed [70], PRIDWEN’s
instrumentation pass for QSpectre adopts a simple, yet ef-
fective strategy: inserting lfence instructions to all if-else
structures. More concretely, the pass inserts an lfence in-
struction right after the conditional branch in the code of
an if-else structure. This pass uses the onMachineInstrEnd
API and determines if a conditional branch is in an if-else
structure by consulting the CompilerContext data structure.
Post-synthesis validation. The validation pass simply
checks the presence of the lfence instruction in every
if-else structure.

5.2 Pass Coordination
PassManager selects the optimal set of passes and resolves

potential conflicts following the steps mentioned in §4.2. To
incorporate the four passes into PRIDWEN, we specify the
pass selection policy P (shown in Figure 3). Note that the pol-
icy P is just an example; PRIDWEN can transparently support
any developer-provided policies by design.
Pass selection. First, PassManager selects all feasible passes
according to hardware dependencies. For example, it selects
the QSpectre pass if IBRS is disabled and HT is enabled (Line
13). Next, it prunes passes that target overlapping SCAs based
on the priority. We prioritize T-SGX (hardware-based) over
Varys (software-based) in P such that if PassManager has se-
lected the T-SGX pass because TSX is available, it will omit
the Varys pass. Then, PassManager checks the unprocessed

462    2022 USENIX Annual Technical Conference USENIX Association



passes in P and includes those whose dependencies are all
satisfied (e.g., co-location test for T-SGX cotest-tsgx), or
without any dependency (e.g., ASLR).
Pass ordering. Based on the dependencies specified in P,
PassManager also determines the order of applying passes
to resolve potential conflicts among them. For example, the
ASLR and T-SGX passes can compete with each other to
instrument branches at the end of basic blocks. To avoid such
conflicts, a weak dependency between the two passes is indi-
cated in P (Line 3). Accordingly, PRIDWEN serves the ASLR
pass first and then applies the T-SGX pass with slight mod-
ification (e.g., instrument jmps inserted by the ASLR pass
to make it point to the T-SGX springboard). Also, PRIDWEN
must apply the T-SGX co-location test pass cotest-tsgx after
the T-SGX pass itself to correctly insert the testing code at the
springboard, which is indicated in P as a strong dependency
(Line 8). As passes without dependencies (e.g., QSpectre) can
be applied at anytime, PRIDWEN simply applies them after
serving passes with dependencies.

6 Evaluation

We evaluate PRIDWEN on successful mitigation of individual
targeted SCAs (§6.1), the semantic correctness of the input
Wasm program (§6.2), the performance characteristics of the
PRIDWEN loader (§6.3), and the performance overhead of
PRIDWEN-synthesized binaries (§6.4).
Experiment setup. We ran all the experiments on a machine
with a 4-core Intel i7-6700K CPU (Skylake microarchitec-
ture) operating at 4 GHz with 32 KiB L1 and 256 KiB L2 pri-
vate caches, an 8 MiB L3 shared cache, and 64 GiB of RAM.
The machine was running Linux kernel 4.15. The PRIDWEN
loader is compiled with gcc 5.4.0 and executed on top of the
Intel Linux SGX SDK 2.5.102.
Applications and test suites. We use three real-world appli-
cations or libraries (Lighttpd 1.4.48 [71], libjpeg 9a [72], and
SQLite 3.21.0 [73]) as a macro-benchmark suite representing
large, complex applications, as well as a micro-benchmark
suite, PolyBenchC [74]. The benchmark suite consists of 23
small C programs with only numerical computations (i.e., no
syscall) that are used to evaluate the runtime performance
of just-in-time compiled Wasm binaries against native C bi-
naries [34]. We compile the original source code of each
micro- or macro-benchmark program into Wasm using Em-
scripten [42], an LLVM-based compiler. We also directly port
all of the programs using SGX SDK to serve as baseline ver-
sions. We use the official Wasm specification test suite [44]
to test the correctness of the synthesis of PRIDWEN (§6.2).
Methodology. For each run of experiments, we take the
compiled Wasm binaries as input to PRIDWEN. To evaluate
PRIDWEN-synthesized binaries with distinct sets of defense
schemes enforced, we manually configure PRIDWEN before
each run. We use BASE to represent the configuration of base-

line compilation (i.e., synthesis without instrumentation) and
the name of defense schemes to represent the configuration of
enforcing the corresponding schemes. For example, TSGX
indicates the configuration with T-SGX enforced. For the ease
of comparing Varys and T-SGX, the rest of the section uses
VARYS, to represent its original design with the co-location
test, respectively. QSpectre or QS represent QSpectre. To
measure the execution time of each application, we use the
rdtsc instruction via an OCall inside an enclave. The reported
results are averaged over 10 runs.

6.1 Security Analysis
In addition to statically checking the enforcement of each
mitigation scheme via validation passes, we also manually
verify whether the integrated versions of example passes are
effective and compatible by running simplified SCAs against
them and building a test suite (§6.2). After hardening a test
binary over the SCA surfaces with different combinations,
we introduce frequent page faults and interrupts, manipulate
processor affinity, and run a simple Spectre attack [19]. We
confirm that the T-SGX pass suppresses page faults during
runtime, the Varys pass detects frequent interrupts and thread
co-location (if HT is enabled), and the QSpectre pass disrupts
speculation (if IBRS is disabled). In addition, combining the
ASLR pass and frequent interrupt detection (the Varys pass)
can effectively mitigate or slow down an attacker’s attempts
to infer the fine-grained memory layout.

6.2 Correctness
To validate whether the synthesized program behaves as ex-
pected, we use the official Wasm specification test suite [44],
which provides comprehensive test cases for all Wasm instruc-
tions. The test suite consists of 73 programs. Each program
includes a set of functions and test cases that specify the ex-
pected outputs with given inputs. We ran the test suite on
PRIDWEN with all hardening configurations and reported the
results in terms of pass or fail on each program. In addition to
the test suite, we also record intermediate values of all bench-
mark programs (by manually inserting printf) for both base-
line and PRIDWEN-synthesized version and compare them.
Results. The results show that programs with all hardening
configurations successfully pass all the test cases, which in-
dicates that 1) the baseline compilation of PRIDWEN (BASE)
faithfully follows the specification of Wasm, and 2) the en-
forcement of schemes does not modify the behavior of the pro-
gram. Moreover, there is no difference when comparing inter-
mediate values between BASE and the synthesized binaries.

6.3 Performance of PRIDWEN

To show both runtime and memory overheads of the
PRIDWEN loader, we measured the execution time that
PRIDWEN takes to generate native C binaries and the ad-
ditional memory that it allocates during the entire process (by

USENIX Association 2022 USENIX Annual Technical Conference    463



0

20

40

60
small program

0
100
200
300
400
500 large program

0

1

2

3

BASE
QS TSGX

TSGX+QS

VARYS

VARYS+QS

0
5

10
15
20
25

BASE
QS TSGX

TSGX+QS

VARYS

VARYS+QS

E
xe

c.
tim

e
(m

s)

Init Syn w/ ASLR

M
em

.o
ve

rh
ea

ds
(M

B
)

Figure 4: The top and bottom figures show runtime overheads and
memory overheads, respectively, of PRIDWEN on program synthesis.

hooking malloc). To demonstrate the impact on the size of in-
put, we used one small (2mm, 52 kB) and one large (lighttpd,
462 kB) Wasm binaries as inputs. We also ran experiments
with different configurations of PRIDWEN to show the impact
of enforcing different mitigations. As the co-location test de-
pends on either T-SGX or Varys and requires only adding a
piece of code to each scheme, we do not include it the test in
the selected configurations. Note that the overhead only needs
to be paid once during the first initialization and synthesis.

The results are shown in Figure 4. We divide each bar into
three parts: the initialization stage (blue), the synthesis stage
(green), and additional overhead when the ASLR is enforced
on top of the corresponding configuration (red). The initial-
ization stage includes the time spent on hardware probing,
PassManager initialization, and Wasm parsing. The synthesis
stage represents the time spent on compilation and instrumen-
tation in Synthesizer.
Runtime performance. For the runtime overhead (Figure 4),
it is clear that given the same program, the execution time of
the initialization stage is fixed regardless of the configurations.
For the large program, PRIDWEN spends more time during
the initialization stage, which is mostly due to the process of
parsing the Wasm binary; however, the proportion of the exe-
cution time spent in the initialization stage decreases, which
indicates that PRIDWEN spends more time on the synthesis
stage for the large program. Also, enabling ASLR for the large
program incurs higher overhead since it has more basic blocks.
In addition, enforcing more schemes incurs higher overheads
as expected. Overall, the one-time overhead of PRIDWEN is
acceptable (less than 500 ms for the large program).
Memory overhead. For the memory overhead (Figure 4),
the results show that PRIDWEN requires a fixed amount of
memory during the initialization stage for the same program.
PRIDWEN requires more memory for the large program, since
the majority of the required memory is used to store the IR
of the input program during the parsing process. We also
observe similar memory requirements for PRIDWEN with the
BASE configuration in the synthesis stage, since it needs more
memory to maintain the metadata during compilation for the
large program. Also, enabling ASLR on top of BASE incurs

0

0.4

0.8

1.2

2mm
3mm

adi
bicg

cholesky

correlation

covariance

doitgen

durbin
fdtd-2d

gemm
gemver

gesummv

gramschmidt

ludcmp

lu mvt
seidel-2d

symm
syr2k

syrk
trisolv

trmmR
un

tim
e

ov
er

he
ad

ra
tio

Figure 5: The runtime performance of PRIDWEN-synthesized Wasm
programs compared to native C binaries.

the highest overhead. The reason is that the instrumentation
passes of each scheme all depend on the pass that manages the
control-flow graph (CFG) information. As the ASLR pass can
share the CFG information with other passes and can directly
reuse such information during runtime, enabling ASLR on
top of them incurs less overhead; when enabling just ASLR
in BASE, it needs to generate the CFG information itself,
resulting in a large memory overhead. Note that the memory
overhead is only imposed once before the execution of the
synthesized binary; thus it does not affect the memory usage
of the binary in run-time.

6.4 Performance of Synthesized Binaries

We measure the runtime and memory overheads of PRIDWEN-
synthesized binaries. We compare the results with those of
native C binaries ported directly into SGX enclaves. In addi-
tion, we measure the performance overhead of the PRIDWEN-
synthesized version of the defense schemes by comparing
the results with those of the BASE configuration, and match
it to that of the original implementations (i.e., the overhead
indicated in the original papers). We confirm that the over-
heads are mainly inherited from the original design of the
countermeasures; PRIDWEN only imposes minimal amount
of overheads in the binaries.

Runtime performance. Figure 5 shows the results of run-
ning the PolybenchC with the BASE configuration, which are
normalized to the execution time of the native C programs.
Our results indicate that PRIDWEN-synthesized binaries have
negligible slowdown or are even faster than the native C bi-
naries, without any mitigation schemes enforced. The execu-
tion time of PRIDWEN-synthesized binaries are 0.7×–1.0× of
that of the native C binaries. Likewise, the very initial evalua-
tion [34] of the in-browser Wasm compiler reports similar exe-
cution overhead results on PolybenchC programs (0.5×–1.4×
of that of native C). The runtime performance of PRIDWEN-
synthesized Wasm programs is comparable to or even better
than that of C programs. This might be due to the small
size of PolybenchC programs, with only numerical computa-
tions. Therefore, the synthesized Wasm programs are fairly
compact and similar to native binaries. Furthermore, the dif-
ference between compilers (i.e., Emscripten and GCC) may
also contribute to the results. When programs get more com-
plex, performance overhead increases as their Wasm forms

464    2022 USENIX Annual Technical Conference USENIX Association



0

0.5

1

1.5

2

0
0.2
0.4
0.6
0.8

1
1.2

2mm
3mm

adi
bicg

cholesky

correlation

covariance

doitgen

durbin
fdtd-2d

gemm
gemver

gesummv

gramschmidt

ludcmp

lu mvt
seidel-2d

symm
syr2k

syrk
trisolv

trmm

R
un

tim
e

ov
er

he
ad

ra
tio

ASLR QSpectre TSGX VARYS
M

em
or

y
ov

er
he

ad
ra

tio

Figure 6: The top and bottom figures show the runtime performance and memory overheads, respectively, of PRIDWEN-synthesized programs
secured with different mitigation schemes, compared to BASE.

no longer maintain the similarity to native binaries (e.g., the
number of instructions with one-to-many mappings grows).

Figure 6 demonstrates the results of running PolybenchC
with defense schemes enforced. The bar on the figure repre-
sents the relative execution time of the program to the BASE
configuration. ASLR incurs various overheads due to dif-
ferent numbers of randomized basic blocks being executed,
which is not cache-friendly. Similarly, QSpectre also incurs
various but smaller overheads, which result from the number
of lfence instructions being executed.

Regarding T-SGX and VARYS, TSGX incurs less over-
head than VARYS does. Especially, VARYS suffers from
high overhead when it needs to check AEXs inside a loop
structure (see an example in Appendix B). VARYS cannot
avoid this issue without compromising its security guarantees.
In contrast, TSGX supports loop optimization, which puts an
entire loop into single transaction when possible.

Memory overhead. Figure 6 shows how much memory each
mitigation demands on top of the binaries with BASE. On
average, the memory overheads of the synthesized binaries
are about 1.2× compared to the baseline binaries, which is
moderate.

Real-world applications. We use three real-world applica-
tions as case studies to show that PRIDWEN provides suffi-
cient support for large, complex programs. In addition to the
Lighttpd (a web server), the other two applications are based
on libjpeg and SQLite libraries. The libjpeg application sup-
ports both compressing and decompressing a jpeg image and
the SQLite application supports basic database operations,
including insert, select, update, and delete. We use the
HTTP benchmarking tool, wrk, for evaluating the throughputs
of the Lighttpd. For the other two applications, we measure
the execution time of each supported operation and report the
average values over 10 runs.

Figure 7 shows the results of Lighttpd. The slowdown of
BASE is 1.5× to the native version. TSGX incurs less over-

0
1
2
3
4
5

0 5 10 15 20 25 30 35

L
at

en
cy

(m
s)

Throughputs (k req/s)

SGX-native
BASE
TSGX

TSGX+ASLR
VARYS

VARYS+QS+ASLR

Figure 7: The performance of Lighttpd; QS: QSpectre.

0
1
2
3
4
5

Comp. Decomp. Insert Select Update Delete

Libjpeg SQLite

R
un

tim
e

ov
er

he
ad

ra
tio

ASLR
TSGX

BASE
QSpectre

VARYS

Figure 8: The performance of synthesized libjpeg and SQLite; each
left bar illustrates hardware-assisted passes, while each right bar
illustrates software-only passes.

heads compared to VARYS (1.9× versus 2.6×), demonstrat-
ing the advantage of hardware-assisted mitigation schemes
over software-only ones. ASLR incurs significant overhead
because Lighttpd has a large number of small-sized basic
blocks; This shortens the gap between TSGX and VARYS
when they are enforced with ASLR. When enforcing multiple
mitigation schemes, the slowdown of Lighttpd is up to 4.6×
compared to the native binary.

Figure 8 presents the performance of libjpeg and SQLite
applications. We use stacked bars to represent the incurred
overheads when applying the optimal set of mitigations on
top of a viable hardware configuration. The runtime overhead
of BASE is 1.2×–1.7× compared to the native versions. The
overheads of individual mitigation schemes are similar to the
results of PolyBenchC presented in Figure 6 (e.g., TSGX in-

USENIX Association 2022 USENIX Annual Technical Conference    465



curs less overheads than VARYS). The average slowdown of
hardware-assisted mitigation schemes is 1.9× while that of
software-only mitigation schemes is 3.4×. Depending on hard-
ware configurations, hardware-assisted mitigation schemes
are 2.1×–5.4× faster than software-only ones.

Again, as PRIDWEN only aims to integrate multiple mit-
igation techniques, most of the performance overheads are
inherited from the original design of the countermeasures,
while PRIDWEN itself does not impose significant overheads.

7 Discussion

Adding new defenses to PRIDWEN. PRIDWEN is designed
with future scenarios in mind. Thanks to the high-level in-
strumentation APIs provided by PRIDWEN (Table 2), new
instrumentation-based defense techniques can be easily added
to PRIDWEN as a pass. PRIDWEN pass APIs offer different
instrumentation granularity with sufficient information about
the corresponding instruction on both IR- and native-level,
which should meet all instrumentation needs. We recommend
to develop new defenses directly with PRIDWEN to save the
hassle of replacing heterogeneous instrumentation APIs with
PRIDWEN versions during integration. The developer will
also need to provide the type of side-channel attack targeted
by the new defense, and the possible dependency on specific
hardware features or existing techniques in the pass selection
policy. This allows Prober and PassManager to resolve poten-
tial incompatibility issues and conflicts, and correctly enforce
the new defense. Compared to the effort needed to write a new
pass, writing a pass selection policy should be much simpler.
Upgrade PRIDWEN. Modern hardware is evolving quickly
with updated features useful for security purposes and
PRIDWEN is designed to keep up with the hardware evolution.
It is necessary for PRIDWEN to allow probing of new hard-
ware features for defense techniques built with such features.
The probing logic for the specific hardware feature will need
to be added by PRIDWEN developers using either exception-
based instruction probing or trusted remote attestation (§4.1)
to bypass untrusted privileged software. Novel and secure
techniques are also welcomed to probe the hardware capa-
bility of the platform. We hope that PRIDWEN can motivate
hardware manufacturers to provide official secure probing
helpers for hardware features. Upgrade of PRIDWEN is the
effort of both the hardware and the software communities.
The power of PRIDWEN is truly unleashed when equipped
with the most updated inclusion of hardware features and
mitigation schemes.
The recent SmashEx attack [75]. A recent paper presents
the SmashEx attack targeting the SGX SDKs; the targeted
SDKs do not properly handle re-entrancy in their asyn-
chronous exception handling logic, which allows the attacker
to compromise the integrity of the SSA region and modify
GPRSGX.RIP. PRIDWEN is built on top of the trusted Intel

SGX SDK. The vulnerability of asynchronous exception han-
dling in SGX (SmashEx) is rooted in the SGX SDK, and it
was already mitigated by recent patches [76, 77]. That is, the
enclave-specific SSA that hosts the GPRSGX.RIP cannot be
compromised with the attack in the latest SDK. PRIDWEN
should work with the latest SGX SDK because it does not
heavily rely on or modify a certain SDK version.
Program synthesis on the cloud side vs. the user side.
PRIDWEN makes the design decision of conducting program
synthesis on the cloud side to minimize the extra effort re-
quired for preparation on the user side. An alternative solution
would be deploying a dedicated program on the cloud to re-
port the hardware configuration back to the user, then the
user in return synthesizes and caches the hardened binary
themselves and sends the binary to the cloud for deployment.
Synthesizing and caching the binaries of different configura-
tions at the user side can save compilation cost on the cloud
side; however, this puts more burden on the user. In addition,
it would be difficult to update the binaries on the cloud side
when the configuration changes, since the server has to wait
for the user to compile and transmit the updated version. In
contrast, when the configuration on the server is changed (e.g.,
after reboot), PRIDWEN automatically re-synthesizes the ap-
plication and applies the change upon restarting. It is also
possible to optimize PRIDWEN in a similar way by caching
the synthesized programs of different configurations on the
cloud side to reduce the compilation overhead.

8 Conclusion

PRIDWEN is a framework to dynamically synthesize a se-
cure SGX program that is optimally hardened against various
SCAs simultaneously, while preventing any deployability,
redundancy, or incompatibility problem. To overcome the re-
strictions of the static deployment model of SGX, PRIDWEN
adopts Wasm as the IR, and supports smooth integrations of in-
strumentation passes for both hardware-assisted and software-
only mitigations. PRIDWEN selects an optimal set of miti-
gations to be applied at runtime according to the hardware
configurations of the target platform, and provides means for
the user to validate and attest the final synthesized binary. We
implement a prototype of PRIDWEN, which integrates four
SCA defenses. Through extensive evaluation, we show that
PRIDWEN efficiently hardens SGX programs with chosen
defenses, while incurring moderate performance overhead.

9 Acknowledgment

We would like to thank the anonymous reviewers and our
shepherd for their helpful feedback. We also would like to
thank Scott Constable and Yuan Xiao from Intel for construc-
tive discussions. This research was funded by Intel and the
NSF award NSF-1563848.

466    2022 USENIX Annual Technical Conference USENIX Association



References

[1] J. Mangalindan, “Is User Data Safe in the
Cloud?” http://tech.fortune.cnn.com/2010/09/24/
is-user-data-safe-in-the-cloud, September 2010.

[2] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage,
“Hey, you, get off of my cloud: Exploring information
leakage in third-party compute clouds,” in Proceedings
of the 16th ACM Conference on Computer and Commu-
nications Security (CCS), Chicago, IL, Nov. 2009.

[3] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and
J. Del Cuvillo, “Using Innovative Instructions to Cre-
ate Trustworthy Software Solutions,” in Proceedings
of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy (HASP),
Tel-Aviv, Israel, 2013, pp. 1–8.

[4] Intel, “SGX Tutorial, ISCA 2015,” http://sgxisca.weebly.
com/, Jun. 2015.

[5] N. Porter, “Introducing Asylo: an open-source
framework for confidential computing,” 2018,
https://cloud.google.com/blog/products/gcp/

introducing-asylo-an-open-source-framework-for-

confidential-computing.

[6] Microsoft, “Open Enclave SDK,” 2019,
https://openenclave.io/sdk/.

[7] Microsoft Azure, “Azure Confidential Computing,”
2019, https://azure.microsoft.com/en-us/solutions/
confidential-compute/.

[8] S. Johnson, “Intel SGX and Side-Channels,”
https://software.intel.com/en-us/articles/
intel-sgx-and-side-channels.

[9] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen,
S. Capkun, and A. Sadeghi, “Software Grand Exposure:
SGX Cache Attacks Are Practical,” in Proceedings of
the 11th USENIX Workshop on Offensive Technologies
(WOOT), Vancouver, BC, Canada, Aug. 2017.

[10] M. Hähnel, W. Cui, and M. Peinado, “High-Resolution
Side Channels for Untrusted Operating Systems,” in Pro-
ceedings of the 2017 USENIX Annual Technical Confer-
ence (ATC), Santa Clara, CA, Jul. 2017.

[11] F. Dall, G. D. Micheli, T. Eisenbarth, D. Genkin,
N. Heninger, A. Moghimi, and Y. Yarom, “CacheQuote:
Efficiently Recovering Long-term Secrets of SGX EPID
via Cache Attacks,” in Proceedings of the Conference
on Cryptographic Hardware and Embedded Systems
(CHES), 2018.

[12] A. Moghimi, T. Eisenbarth, and B. Sunar, “MemJam:
A false dependency attack against constant-time crypto
implementations in SGX,” in Cryptographers’ Track at
the RSA Conference. Springer, 2018.

[13] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bind-
schaedler, H. Tang, and C. A. Gunter, “Leaky cauldron
on the dark land: Understanding memory side-channel
hazards in SGX,” in Proceedings of the 24th ACM Con-
ference on Computer and Communications Security
(CCS), Vienna, Austria, Oct.–Nov. 2016.

[14] Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Op-
erating Systems,” in Proceedings of the 36th IEEE Sym-
posium on Security and Privacy (Oakland), San Jose,
CA, May 2015.

[15] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens,
and R. Strackx, “Telling your secrets without page faults:
Stealthy page table-based attacks on enclaved execution,”
in Proceedings of the 26th USENIX Security Symposium
(Security), Vancouver, Canada, Aug. 2017.

[16] S. Weiser, R. Spreitzer, and L. Bodner, “Single Trace
Attack Against RSA Key Generation in Intel SGX SSL,”
in Proceedings of the 13th ACM Symposium on Infor-
mation, Computer and Communications Security (ASI-
ACCS), Seoul, South Korea, Jun. 2018.

[17] J. Gyselinck, J. Van Bulck, F. Piessens, and R. Strackx,
“Off-Limits: Abusing Legacy x86 Memory Segmenta-
tion to Spy on Enclaved Execution,” in International
Symposium on Engineering Secure Software and Sys-
tems. Springer, 2018, pp. 44–60.

[18] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Pre-
venting Your Faults From Telling Your Secrets,” in Pro-
ceedings of the 11th ACM Symposium on Information,
Computer and Communications Security (ASIACCS),
Xi’an, China, May–Jun. 2016.

[19] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H.
Lai, “SgxPectre: Stealing Intel Secrets from SGX En-
claves Via Speculative Execution,” in 2019 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P).
IEEE, 2019, pp. 142–157.

[20] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-
Ghazaleh, “Spectre returns! speculation attacks using
the return stack buffer,” in Proceedings of the 12th
USENIX Workshop on Offensive Technologies (WOOT),
Baltimore, MD, Aug. 2018.

[21] Intel, “Q3 2018 Speculative Execution Side Channel
Update,” 2018, https://www.intel.com/content/www/us/
en/security-center/advisory/intel-sa-00161.html.

USENIX Association 2022 USENIX Annual Technical Conference    467

http://tech.fortune.cnn.com/2010/09/24/is-user-data-safe-in-the-cloud
http://tech.fortune.cnn.com/2010/09/24/is-user-data-safe-in-the-cloud
http://sgxisca.weebly.com/
http://sgxisca.weebly.com/
https://openenclave.io/sdk/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html


[22] ——, “Intel Side Channel Vulnerability MDS,”
2019, https://www.intel.com/content/www/us/en/
architecture-and-technology/mds.html.

[23] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller,
and M. Costa, “Strong and Efficient Cache Side-Channel
Protection using Hardware Transactional Memory,” in
Proceedings of the 26th USENIX Security Symposium
(Security), Vancouver, Canada, Aug. 2017.

[24] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX:
Eradicating Controlled-Channel Attacks Against En-
clave Programs,” in Proceedings of the 2017 Annual
Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb.–Mar. 2017.

[25] G. Chen, W. Wang, T. Chen, S. Chen, Y. Zhang, X. Wang,
T.-H. Lai, and D. Lin, “Racing in hyperspace: Closing
hyper-threading side channels on SGX with contrived
data races,” in Proceedings of the 39th IEEE Symposium
on Security and Privacy (Oakland), San Francisco, CA,
May 2018.

[26] O. Oleksenko, B. Trach, R. Krahn, M. Silberstein, and
C. Fetzer, “Varys: Protecting SGX Enclaves from Prac-
tical Side-Channel Attacks,” in Proceedings of the 2018
USENIX Annual Technical Conference (ATC), Boston,
MA, Jul. 2018.

[27] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detect-
ing privileged side-channel attacks in shielded execution
with Déjá Vu,” in Proceedings of the 12th ACM Sympo-
sium on Information, Computer and Communications
Security (ASIACCS), Abu Dhabi, UAE, Apr. 2017.

[28] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and
M. Peinado, “Inferring Fine-grained Control Flow Inside
SGX Enclaves with Branch Shadowing,” in Proceedings
of the 26th USENIX Security Symposium (Security), Van-
couver, Canada, Aug. 2017.

[29] Intel, “Branch Target Injection / CVE-2017-5715
/ INTEL-SA-00088,” 2018, https://software.intel.
com/security-software-guidance/software-guidance/
branch-target-injection.

[30] A. Pardoe, “Spectre mitigations in MSVC,”
2018, https://devblogs.microsoft.com/cppblog/
spectre-mitigations-in-msvc/.

[31] A. Ahmad, B. Joe, Y. Xiao, Y. Zhang, I. Shin, and B. Lee,
“Obfuscuro: A Commodity Obfuscation Engine on Intel
SGX,” in Proceedings of the 2019 Annual Network and
Distributed System Security Symposium (NDSS), San
Diego, CA, Feb. 2019.

[32] F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto,
K. Kostiainen, and A.-R. Sadeghi, “DR.SGX: Auto-
mated and Adjustable Side-Channel Protection for SGX
using Data Location Randomization,” in Proceedings of
the Annual Computer Security Applications Conference
(ACSAC), 2019.

[33] GCC team, “Using the GNU Compiler Collection
(GCC): x86 Built-in Functions,” 2019, https://gcc.gnu.
org/onlinedocs/gcc/x86-Built-in-Functions.html.

[34] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Hol-
man, D. Gohman, L. Wagner, A. Zakai, and J. Bastien,
“Bringing the Web up to Speed with WebAssembly,” in
Proceedings of the 2017 ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI), Barcelona, Spain, Jun. 2017.

[35] WebAssembly Community Group, “WebAssembly
Specification: Release 1.0,” Tech. Rep., May 2019.

[36] H. Wang, P. Wang, Y. Ding, M. Sun, Y. Jing, R. Duan,
L. Li, Y. Zhang, T. Wei, and Z. Lin, “Towards Memory
Safe Enclave Programming with Rust-SGX,” in Pro-
ceedings of the 26th ACM Conference on Computer
and Communications Security (CCS), London, UK, Nov.
2019.

[37] W. Qiang, Z. Dong, and H. Jin, “Se-Lambda: Secur-
ing Privacy-Sensitive Serverless Applications Using
SGX Enclave,” in International Conference on Security
and Privacy in Communication Systems (SecureComm),
2018.

[38] Red Hat, “Enarx,” 2019, https://enarx.io.

[39] Intel, “WebAssembly Micro Runtime,” 2019, https://
github.com/bytecodealliance/wasm-micro-runtime.

[40] W. Wang, B. Ferrell, X. Xu, K. W. Hamlen, and S. Hao,
“SEISMIC: SEcure in-lined script monitors for interrupt-
ing cryptojacks,” in European Symposium on Research
in Computer Security. Springer, 2018, pp. 122–142.

[41] D. Lehmann and M. Pradel, “Wasabi: A Framework for
Dynamically Analyzing WebAssembly,” in Proceedings
of the 24th ACM International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems (ASPLOS), Providence, RI, Apr. 2019.

[42] “emscripten,” 2015, https://emscripten.org/.

[43] J. Seo, B. Lee, S. Kim, M.-W. Shih, I. Shin, D. Han, and
T. Kim, “SGX-Shield: Enabling Address Space Layout
Randomization for SGX Programs,” in Proceedings of
the 2017 Annual Network and Distributed System Se-
curity Symposium (NDSS), San Diego, CA, Feb.–Mar.
2017.

468    2022 USENIX Annual Technical Conference USENIX Association

https://www.intel.com/content/www/us/en/architecture-and-technology/mds.html
https://www.intel.com/content/www/us/en/architecture-and-technology/mds.html
https://software.intel.com/security-software-guidance/software-guidance/branch-target-injection
https://software.intel.com/security-software-guidance/software-guidance/branch-target-injection
https://software.intel.com/security-software-guidance/software-guidance/branch-target-injection
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
https://gcc.gnu.org/onlinedocs/gcc/x86-Built-in-Functions.html
https://gcc.gnu.org/onlinedocs/gcc/x86-Built-in-Functions.html
https://enarx.io
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://emscripten.org/


[44] “Mirror of the spec testsuite,” 2019, https://github.com/
WebAssembly/testsuite.

[45] Intel, “Code Sample: Intel Software Guard Exten-
sions Remote Attestation End-to-End Example,” 2018,
https://software.intel.com/en-us/articles/code-

sample-intel-software-guard-extensions-remote-

attestation-end-to-end-example.

[46] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clark-
son, W. Paul, J. A. Calandrino, A. J. Feldman, J. Appel-
baum, and E. W. Felten, “Lest we remember: cold-boot
attacks on encryption keys,” Communications of the
ACM, vol. 52, no. 5, pp. 91–98, 2009.

[47] Intel, “Exception Handling in Intel Software Guard Ex-
tensions (Intel SGX) Applications,” 2019.

[48] ——, “Intel 64 and IA-32 Architectures Software De-
veloper’s Manual Combined Volumes: 1, 2A, 2B, 2C,
2D, 3A, 3B, 3C, 3D and 4,” May 2019.

[49] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx, “Foreshadow: Extracting the
Keys to the Intel SGX Kingdom with Transient Out-of-
Order Execution,” in Proceedings of the 27th USENIX
Security Symposium (Security), Baltimore, MD, Aug.
2018.

[50] J. Van Bulck, F. Piessens, and R. Strackx, “Nemesis:
Studying Microarchitectural Timing Leaks in Rudimen-
tary CPU Interrupt Logic,” in Proceedings of the 25th
ACM Conference on Computer and Communications
Security (CCS), Toronto, Canada, Oct. 2018.

[51] W. He, W. Zhang, S. Das, and Y. Liu, “Sgxlinger: A new
side-channel attack vector based on interrupt latency
against enclave execution,” in 2018 IEEE 36th Interna-
tional Conference on Computer Design (ICCD). IEEE,
2018, pp. 108–114.

[52] D. Evtyushkin, R. Riley, N. Abu-Ghazaleh, and D. Pono-
marev, “BranchScope: A New Side-Channel Attack on
Directional Branch Predictor,” in Proceedings of the
23st ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), Williamsburg, VA, Mar. 2018.

[53] S. van Schaik, A. Milburn, S. Österlund, P. Frigo,
G. Maisuradze, K. Razavi, H. Bos, and C. Giuffrida,
“RIDL: Rogue in-flight data load,” in Proceedings of the
40th IEEE Symposium on Security and Privacy (Oak-
land), San Jose, CA, May 2019.

[54] M. Schwarz, M. Lipp, D. Moghimi, J. V. Bulck, J. Steck-
lina, T. Prescher, and D. Gruss, “ZombieLoad: Cross-
Privilege-Boundary Data Sampling,” in Proceedings of

the 26th ACM Conference on Computer and Communi-
cations Security (CCS), London, UK, Nov. 2019.

[55] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp,
M. Minkin, D. Moghimi, F. Piessens, M. Schwarz,
B. Sunar, J. V. Bulck, and Y. Yarom, “Fallout: Leak-
ing Data on Meltdown-resistant CPUs,” in Proceedings
of the 26th ACM Conference on Computer and Commu-
nications Security (CCS), London, UK, Nov. 2019.

[56] Y. Fu, E. Bauman, R. Quinonez, and Z. Lin, “SGX-
LAPD: Thwarting Controlled Side Channel Attacks via
Enclave Verifiable Page Faults,” in International Sympo-
sium on Research in Attacks, Intrusions, and Defenses,
2017.

[57] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta,
S. Nowozin, K. Vaswani, and M. Costa, “Oblivious
Multi-Party Machine Learning on Trusted Processors,”
in Proceedings of the 25th USENIX Security Symposium
(Security), Austin, TX, Aug. 2016.

[58] O. Ohrimenko, C. F. Manuel Costa, S. Nowozin,
A. Mehta, F. Schuster, and K. Vaswani, “SGX-Enabled
Oblivious Machine Learning,” in Proceedings of the
25th USENIX Security Symposium (Security), Austin,
TX, Aug. 2016.

[59] S. Sasy, S. Gorbunov, and C. W. Fletcher, “ZeroTrace:
Oblivious Memory Primitives from Intel SGX,” in Pro-
ceedings of the 2018 Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA,
Feb. 2018.

[60] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, “Oblivi-
ate: A Data Oblivious File System for Intel SGX,”
in Proceedings of the 2018 Annual Network and Dis-
tributed System Security Symposium (NDSS), San Diego,
CA, Feb. 2018.

[61] P. Zhang, C. Song, H. Yin, D. Zou, E. Shi, and
H. Jin, “Klotski: Efficient Obfuscated Execution against
Controlled-Channel Attacks,” in Proceedings of the 25th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), Lausanne, Switzerland, Apr. 2020.

[62] J. Lee, J. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi,
T. Kim, M. Peinado, and B. B. Kang, “Hacking in Dark-
ness: Return-oriented Programming against Secure En-
claves,” in Proceedings of the 26th USENIX Security
Symposium (Security), Vancouver, Canada, Aug. 2017.

[63] A. Biondo, M. Conti, L. Davi, T. Frassetto, and A.-R.
Sadeghi, “The Guard’s Dilemma: Efficient Code-Reuse
Attacks against Intel SGX,” in Proceedings of the 27th
USENIX Security Symposium (Security), Baltimore, MD,
Aug. 2018.

USENIX Association 2022 USENIX Annual Technical Conference    469

https://github.com/WebAssembly/testsuite
https://github.com/WebAssembly/testsuite


[64] Intel, “3rd Gen Intel Xeon Scalable processors,”
https://www.connection.com/~/media/pdfs/brands/i/
intel/intel-icelake-ds.pdf?la=en.

[65] ——, “Attestation Service for Intel Software Guard Ex-
tensions (Intel SGX): API Documentation (Revision:
4.1),” 2018.

[66] Greg, “SGX Attestation results in CONFIGURATION_-
NEEDED,” 2018, https://software.intel.com/en-us/
forums/intel-software-guard-extensions-intel-sgx/
topic/798777.

[67] ——, “GROUP_OUT_OF_DATE - what
is the most recent microcode version?”
2018, https://software.intel.com/en-us/forums/
intel-software-guard-extensions-intel-sgx/topic/
755769.

[68] Clemens Hammacher, “Liftoff: a new baseline com-
piler for webassembly in v8,” 2018, https://v8.dev/blog/
liftoff.

[69] A. Shilov, “Intel’s New Core and Xeon W-3175X Pro-
cessors: Spectre and Meltdown Security Update,” 2018,
https://www.anandtech.com/show/13450/intels-

new-core-and-xeon-w-processors-fixes-for-

spectre-meltdown.

[70] P. Kocher, “Spectre Mitigations in Microsoft’s C/C++
Compiler,” 2018, https://www.paulkocher.com/doc/
MicrosoftCompilerSpectreMitigation.html.

[71] “Lighttpd,” 2003, https://www.lighttpd.net/.

[72] “libjpeg,” 1991, https://libjpeg.sourceforge.net/.

[73] “SQLite,” 2000, https://www.sqlite.org/index.html.

[74] “PolyBench,” 2015, http://web.cse.ohio-state.edu/
~pouchet.2/software/polybench/.

[75] J. Cui, J. Z. Yu, S. Shinde, P. Saxena, and Z. Cai,
“Smashex: Smashing sgx enclaves using exceptions,” in
Proceedings of the 28th ACM Conference on Computer
and Communications Security (CCS), Virtual Event, Re-
public of Korea, Nov. 2021.

[76] Intel, “The latest security information on Intel prod-
ucts,” 2021, https://www.intel.com/content/www/us/en/
security-center/advisory/intel-sa-00548.html.

[77] Open Enclave, “Open Enclave SDK El-
evation of Privilege Vulnerability,” 2021,
https://github.com/openenclave/openenclave/security/
advisories/GHSA-mj87-466f-jq42.

[78] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis,
M. Peinado, G. Mainar-Ruiz, and M. Russinovich,
“VC3: Trustworthy data analytics in the cloud using
SGX,” in Proceedings of the 36th IEEE Symposium on
Security and Privacy (Oakland), San Jose, CA, May
2015.

[79] E. Bauman, H. Wang, M. Zhang, and Z. Lin, “SGXElide:
Enabling Enclave Code Secrecy via Self-modification,”
in Proceedings of the 2018 International Symposium
on Code Generation and Optimization (CGO), Vienna,
Austria, Feb. 2018.

[80] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan:
A distributed sandbox for untrusted computation on se-
cret data,” in Proceedings of the 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), Savannah, GA, Nov. 2016.

[81] A. Baumann, M. Peinado, and G. Hunt, “Shielding ap-
plications from an untrusted cloud with Haven,” in Pro-
ceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Broom-
field, Colorado, Oct. 2014.

[82] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX:
A practical library OS for unmodified applications on
SGX,” in Proceedings of the 2017 USENIX Annual Tech-
nical Conference (ATC), Santa Clara, CA, Jul. 2017.

[83] C. Priebe, D. Muthukumaran, J. Lind, H. Zhu, S. Cui,
V. A. Sartakov, and P. R. Pietzuch, “SGX-LKL:
Securing the Host OS Interface for Trusted Execution,”
CoRR, vol. abs/1908.11143, 2020. [Online]. Available:
http://arxiv.org/abs/1908.11143

[84] S. Arnautox, B. Tarch, F. Gregor, T. Knauth, A. Martin,
C. Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe, M. L.
Stillwell, D. Goltzsche, D. Eyers, R. Kapitza, P. Pietzuch,
and C. Fetzer, “SCONE: Secure Linux containers with
Intel SGX,” in Proceedings of the 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), Savannah, GA, Nov. 2016.

[85] S. Shinde, D. L. Tien, S. Tople, and P. Saxena, “Panoply:
Low-TCB Linux applications with SGX enclaves,” in
Proceedings of the 2017 Annual Network and Dis-
tributed System Security Symposium (NDSS), San Diego,
CA, Feb.–Mar. 2017.

A Additional Related Work

In-enclave loader. Researchers study in-enclave loaders to
enhance the security and deployability of Intel SGX. For
the security, several loaders leverage randomization and en-
cryption. SGX-Shield [43] loads SGX applications while

470    2022 USENIX Annual Technical Conference USENIX Association

https://www.connection.com/~/media/pdfs/brands/i/intel/intel-icelake-ds.pdf?la=en
https://www.connection.com/~/media/pdfs/brands/i/intel/intel-icelake-ds.pdf?la=en
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/798777
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/798777
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/798777
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/755769
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/755769
https://software.intel.com/en-us/forums/intel-software-guard-extensions-intel-sgx/topic/755769
https://v8.dev/blog/liftoff
https://v8.dev/blog/liftoff
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html
https://www.lighttpd.net/
https://libjpeg.sourceforge.net/
https://www.sqlite.org/index.html
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00548.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00548.html
https://github.com/openenclave/openenclave/security/advisories/GHSA-mj87-466f-jq42
https://github.com/openenclave/openenclave/security/advisories/GHSA-mj87-466f-jq42
http://arxiv.org/abs/1908.11143


1 # Varys
2 BB:
3 ...
4 jmp loop.header
5 loop.body:
6 call varys_check
7 ...
8 incq %rcx
9 loop.header:

10 call varys_check
11 ...
12 cmpq $100, %rcx
13 jbe loop.body
14 loop.end:
15 call varys_check
16 ...

1 # T-SGX
2 BB:
3 ...
4 leaq loop.header(%rip), %r15
5 jmp springboard.next
6 loop.body:
7 ...
8 incq %rcx
9 loop.header:

10 ...
11 cmpq $100, %rcx
12 jbe loop.body
13 leaq loop.end(%rip), %r15
14 jmp springboard.next
15 loop.end:
16 ...

Figure 9: The comparison of Varys and T-SGX on a loop structure.

enforcing fine-grained ASLR. VC3 [78] and SGXElide [79]
deploy encrypted SGX code while decrypting it within an
enclave. Obfuscuro [31] obfuscates SGX code with Oblivi-
ous RAM. For the deployability, some loaders abstract the
interface between SGX code and the outside. Ryoan [80]
implements a two-way sandbox to securely execute untrusted
code inside an enclave. Haven [81], Graphene-SGX [82], and
SGX-LKL [83] run a library OS inside an enclave to exe-
cuted unmodified programs. Similarly, SCONE [84] abstracts
system call interfaces and Panoply [85] abstracts POSIX in-
terfaces to run unmodified programs with SGX. Unlike these
approaches, PRIDWEN focuses on how to instrument SGX
applications according to the hardware features to improve
their security.
SGX and Wasm. To the best of our knowledge, there are
a few initial efforts to execute Wasm interpreters inside an
enclave. Rust-SGX [36] can be configured to use Wasm as
a backend. Se-Lambda [37] executes serverless functions
written in Wasm inside an enclave. Also, Intel and Red Hat
are developing Wasm runtime for SGX [38, 39]. However,
unlike PRIDWEN, these approaches only run existing Wasm
interpreters without improving their functionalities.
Wasm instrumentation. Other studies also instrument
Wasm binaries to detect security attacks. SEISMIC [40] instru-
ments Wasm binaries to inject an inline monitor for detecting
cryptojacking. Wasabi [41] is a Dynamic Binary Instrumen-
tation (DBI) tool that statically instruments Wasm binaries
to inject hooks and dynamically runs JavaScript-based anal-
ysis code on them to find potential bugs. However, unlike
PRIDWEN, they do not consider instrumenting native binaries
compiled from Wasm binaries, which is necessary to adopt
low-level security mitigations sensitive to machine code.

B Loop Comparison: Varys vs. T-SGX

The comparison of Varys and T-SGX on a loop structure is
shown in Figure 9.

USENIX Association 2022 USENIX Annual Technical Conference    471





TETRIS: Memory-efficient Serverless Inference through Tensor Sharing

Jie Li
College of Intelligence & Computing (CIC), Tianjin University

Tianjin Key Lab of Advanced Networking (TANKLAB)

Laiping Zhao ∗

CIC, Tianjin University

TANKLAB

Yanan Yang
CIC, Tianjin University, TANKLAB

Kunlin Zhan
58.com

Keqiu Li
CIC, Tianjin University, TANKLAB

Abstract

Executing complex, memory-intensive deep learning infer-

ence services poses a major challenge for serverless comput-

ing frameworks, which would densely deploy and maintain

inference models at high throughput. We observe the exces-

sive memory consumption problem in serverless inference

systems, due to the large-sized models and high data redun-

dancy.

We present TETRIS, a serverless platform catered to in-

ference services with an order of magnitude lower memory

footprint. TETRIS’s design carefully considers the extensive

memory sharing of runtime and tensors. It supports minimiz-

ing the runtime redundancy through a combined optimization

of batching and concurrent execution and eliminates tensor

redundancy across instances from either the same or differ-

ent functions using a lightweight and safe tensor mapping

mechanism. Our comprehensive evaluation demonstrates that

TETRIS saves up to 93% memory footprint for inference ser-

vices, and increases the function density by 30× without

impairing the latency.

1 Introduction

Serverless computing has seen its popularity explode in re-

cent years, due to the ease of use, cost efficiency, resource

management-free, and autoscaling advantages. Serverless in-

ference, i.e., deploying deep learning (DL) inference services

atop a serverless platform, is continuously adopted in the

backend of the internet of things (IoT), mobile and web appli-

cations [1,6,11,65,74]. Some typical explorations include the

Amazon Alexa [5], Facebook Messenger bot [49], and Netflix

media transformation [38].

Inference services are commonly memory-intensive, con-

suming a substantial amount of memory throughout the com-

putation. If performing inference in a serverless environ-

ment, we find that the current serverless platforms (e.g., AWS

Lambda [2]) do not support inference computation well. First,

∗Corresponding author: laiping@tju.edu.cn.

Figure 1: Schematic overview of memory consumption in

serverless inference systems.

they cannot accommodate large inference models. For ex-

ample, AWS Lambda limits the memory footprint of func-

tions to ≤10GB [2], whereas the recent MT-NLG language

model [36] even needs 2TB memory to load its 530 billion

parameters. Second, these platforms cause a significant waste

of memory resources. The "one-to-one mapping policy" of

request to function instance by commercial platforms [2] intro-

duces significant memory redundancy. The memory footprint

of language runtime, libraries, and even tensors is repeated

across function instances. On the other hand, serverless func-

tions are usually short-lived. While the CPU processing of

inference requests takes only a short time (e.g., 75% execute

for less than 10 seconds in Microsoft Azure [60]), the memory

is kept occupied without working for long due to the early

reservation or keep-alive caching after completion (e.g., 15-60

minutes in AWS Lambda) [20,58,60]. Hence, how to improve

the memory efficiency of serverless inference has become a

crucial problem.

To reduce the memory footprint, prior works have proposed

the runtime sharing method [16] (Figure 1), i.e., multiple

requests share the same function instance runtime with in-

creased instance concurrency. In serverless inference, runtime

sharing can also be enabled through batching, which aggre-

gates multiple inputs into a single batch submission for more

efficient execution [1, 71, 74]. We study the memory footprint

of serverless inference and observe that the tensor redundancy

problem (i.e., tensors in the computational graphs of infer-

USENIX Association 2022 USENIX Annual Technical Conference    473



ence models are highly duplicated across function instances)

still severely degrades memory efficiency. Such duplication is

commonly caused by either replicated function instances or

identical parts generated by pervasive pre-trained models or

transfer learning [15, 52, 61, 62, 73]. We summarize 768 ma-

chine learning (ML) models utilized by 58.com, the China’s

largest local life service website, finding that tensor redun-

dancy exists in 67.5% of natural language processing models,

26.7% of image classification models, 30.1% of recommen-

dation models.

The tensor redundancy problem can be mitigated through

operating system kernel-level page merging methods (e.g.,

[3, 33, 47]), which scan for duplicate content in the memory

and merge the content into a single physical page. However,

they incur nonnegligible scanning overhead (e.g., 5 minutes

scanning time) and thereby work well only for deduplicating

fairly static memory pages, contradicting with short-lived na-

ture of serverless functions. Since the scanning process occurs

after applications are loaded, they can neither accelerate the

function startup nor solve the startup failure problem caused

by the out-of-memory (OOM) error. Moreover, their imple-

mentations require modifications to the operating system ker-

nel, which is heavy and may introduce risks of side-channel

attacks [42].

In this paper, we explore improving the memory efficiency

of serverless inference system through both runtime-level

sharing and tensor-level sharing. As illustrated in Figure 1,

the colocated function instances share tensor-memory pages

with identical content. Tensor sharing introduces several chal-

lenges that need to be addressed. (1) Non-harming perfor-

mance: The sharing method should not impair the inference

latency. (2) Safe sharing: The sharing process should not in-

troduce data leakage risks. (3) First-time sharing: The sharing

method should start working as long as the inference functions

are activated, to accelerate the function startup and reduce

the OOM errors. (4) Low overhead: The sharing method

should be lightweight for easy integration with serverless

frameworks, and transparent to tenants.

To overcome these challenges, we build TETRIS, a domain-

specific serverless platform that caters to DL inference as

backend-as-a-service (BaaS) offerings with high memory ef-

ficiency. For example, after using TETRIS, the memory foot-

print of the LaBSE model (a multilingual BERT embedding

model [18]) reduces from 1.97GB to merely 141.7MB, and

the instance density also increases from 64 to 911 per 128GB-

server without any modifications to the model. TETRIS pro-

vides a complete solution for the memory bottleneck problem

in serverless inference through automating runtime sharing,

tensor sharing, memory reclaiming, and instance scheduling.

It enables tensor sharing through a user-space page deduplica-

tion method, which has no pollution to the underlying systems

and is thus incredibly lightweight and easy to implement. It

is also highly efficient and supports to guarantee the Service

Level Objectives (SLOs). DL developers would significantly

benefit from TETRIS, as it can save tremendous memory as

well as monetary costs, or the freed memory can be reused

for other purposes like caching.

Our contributions can be summarized as follows:

• We observe the tensor redundancy problem in serverless

inference systems and propose the corresponding tensor

sharing idea for memory efficiency.

• We design a lightweight, user-space tensor mapping-

based sharing method, eliminating the tensor redundancy

problem in serverless inference systems.

• We implement a prototype system of TETRIS, which is

built with the open-source OpenFaaS [17] and Tensor-

Flow Serving [51], supporting memory sharing, memory

reclaiming, and instance scheduling.

• We extensively evaluate TETRIS using a comprehensive

set of benchmarks and production workloads. The exper-

imental results reveal that TETRIS can save up to 93%

of memory and increase the function density by 30×,

compared to the state-of-the-art approaches.

The rest of the paper is structured as follows. We study the

data redundancy problem in serverless inference (§2), and

use the findings to guide the design (§3) and implementation

(§4) of TETRIS. We then evaluate the performance of TETRIS

(§5), discuss related work (§6), and conclude (§7).

2 Background and Motivation

2.1 Inference on Serverless

The use of machine learning is divided into two phases: train-

ing and inference. While model parameters are continuously

updated throughout the training phase, they remain fixed dur-

ing the inference phase. In DL frameworks (e.g., TensorFlow),

models are organized as computational graphs, and data in

the graph are stored as tensors. The nodes represent oper-

ators or variables and edges denote the direction in which

the tensor flows. In particular, the variable nodes of param-

eters and intermediate tensors produced on edges consume

the most memory. The parameterized tensors may also be

identical across different models, due to the pervasive usage

of pretraining and transfer learning. As an example, we in-

vestigate the VGGish-based audio classification models that

assist the telephone customer service in the local life service

website, which are used for detecting various noises, non-

human voices, dialects, etc. We find that these models share

the bottom embedding layers, accounting for over 90% of the

model parameters.

In serverless inference, each deep learning model is typi-

cally deployed into a separate function instance (e.g., a Docker

container [45]). The function instances automatically scale in

or out according to the fluctuation of requests. In the case of

scaling out, an identical instance is created and its runtime,

library, and model parameters are loaded into the memory

repeatedly.

474    2022 USENIX Annual Technical Conference USENIX Association



2.2 Motivations

To improve memory efficiency, we study the memory foot-

print of typical serverless inference models. The benchmarks

are selected from TensorFlow Hub [22], with an average of

6.8k downloads. All of them are implemented and deployed

on an OpenFaaS [17] testbed (Table 3).

Observation #1: Memory-intensive startup: The loading of

massive model parameters dominates the inference function

instance startup.

(a) Request processing time (b) Memory breakdown

Figure 2: Request processing time and memory breakdown

for various inference models.

The DL inference functions require numerous model pa-

rameters to load at startup, typically saved in a serialized

model file. In particular, before the function can conduct the

inference, the model loading thread continuously reads the

parameter tensors from the disk and then deserializes and pop-

ulates them into the corresponding node in the computational

graph. With the memory page cache enabled to accelerate

the startup, we measure the time of the three phases during

request processing (Figure 2(a)): sandbox and runtime ini-

tialization, model loading, and inference computation. The

function startup time is significantly longer than the infer-

ence computation time. Especially in the Bert-QA model case

(with 1,300MB parameters), only 3.73% of the time is spent

on computation. Even for the small model of Resnet50 (with

102MB parameters), the inference computation time still only

accounts for 13.37%. If merely considering the startup, the

majority of time is further spent on loading model parame-

ters. For example, the ratios exceed 89% for both Electra and

Bert-QA.

Observation #2: Memory-intensive computing: The inference

computation requires a substantial amount of memory, with

the model parameters consuming the most.

Figure 3: Analysis of the compressed model size and down-

load times of deep learning models from TensorFlow Hub.

The memory footprint of an inference process can be di-

vided into the following sections: program code, libraries,

the model (for loading parameters in the form of tensors), the

function call stack, intermediate tensors (i.e., generated at

runtime) and the network buffers (i.e., allocated for receiving

function requests). The model itself consumes the majority of

memory.

We measure the memory consumption of different types

of inference models at runtime and present the results in

Figure 2(b). The model parameters occupy a major portion

of all memory consumption (e.g., for VGG19, storing the

parameter tensors accounts for more than 93% of the total

memory consumption). We also compile a list of 625 machine

learning models from TensorFlow Hub [22] and analyze their

compressed model file sizes (Figure 3). In addition, 42% of

the compressed model file sizes surpass 100MB, such as the

popular text-embedding model universal sentence encoder

(downloaded 1.4M times), which has a compressed model

size of 0.89GB and consumes 1.72GB memory at runtime.

Typically, the text processing models employing large embed-

ding layers are substantially larger than the image, audio, and

video processing models.

Observation #3: Runtime redundancy: The inference runtime

is replicated in memory due to the multilaunched instances.

While both concurrent execution and batching enable runtime

sharing, how to use them in combination is challenging.

Figure 4: Average inference latency increases over batch size

and concurrency.

Multilaunched instances lead to duplicated runtime mem-

ory consumption. The memory footprint can be reduced by

packing multiple requests into an instance for sharing the

runtime resources (e.g., ML model, framework, and network

buffers.). In serverless inference, runtime sharing can be im-

plemented in two ways: batching and concurrent execution.

Given the same benchmarks and resource configurations, we

evaluate the inference latency under both implementations.

Figure 4 illustrates that both implementations increase the

latency significantly: batching increases the latency due to

the increased computing load, whereas concurrent execution

increases latency due to the increased resource contention

among threads, i.e., as concurrent requests compete for the

computing threads in TensorFlow, the interleaved computa-

tion of operators increases the average latency.

We further measure memory consumption under various

combinations of batching and concurrency (Figure 5). In par-

USENIX Association 2022 USENIX Annual Technical Conference    475



ticular, we generate a constant 200 requests per second (RPS)

toward DenseNet169 [30] and Lstm [27] and specify their

latency SLOs at 200ms and 30ms, respectively. After omitting

combinations that do not guarantee the SLOs, we find that

solely increasing either the concurrency or batch size leads to

sub-optimal memory efficiency. For DenseNet169, increasing

only the batch size quickly causes SLO violations due to the

long waiting time in the batch queue, whereas increasing the

concurrency does not. For the Lstm model, a larger batch size

(batchsize = 6) achieves the least memory consumption un-

der the SLO guarantee. As various combinations of batch size

and concurrency may lead to completely different memory

efficiency, selecting the best among them is essential.

(a) DenseNet169 (b) Lstm

Figure 5: Normalized memory consumption of function in-

stances under various combinations of batch size and concur-

rency.

Observation #4: Tensor redundancy: The tensors of the con-

stants, model parameters, are extensively replicated across

function instances.

Besides the runtime redundancy, parameterized tensors

are also replicated across instances from the same function,

i.e., tensor redundancy. We summarize 768 DL models at

58.com, finding that tensor redundancy also commonly ex-

ists across distinct functions. There are presently 27 business

lines in 58.com, including jobs, housing, vehicles, cellphones,

home services, resumes, etc. These businesses have common

demands on DL inferences (e.g., image, text, video, and au-

dio processing) but with different datasets (e.g., pictures of

houses, cars, people, and smartphones). Primarily, there are

two scenarios that cause tensor redundancy across distinct

functions [15, 40, 52, 61, 62, 73]:

(1) Multi-versioned functions. In production scenarios, a DL

model is frequently reused directly in various business con-

texts. As online web services have strict latency requirements

(e.g., < 100 milliseconds), models with pipeline dependen-

cies are commonly deployed together within a function to

avoid the excessive network communications. In such cases,

although these pipelines vary across businesses, tensors within

the shared models stay identical. For example, the Optical

Character Recognition (OCR) pipeline and the image mod-

eration pipeline share the same text line identification and

recognition models (e.g., Resnet), whereas the image mod-

eration pipeline incorporates an extra model for keyword

detection. Moreover, DL models are also commonly deployed

with specific pre- and post-processing modules for process-

ing data in different formats, thus generating multi-versioned

model pipelines.

(2) Pretraining & transfer learning. It refers to training a

model with massive datasets for one task, where the learned

parameters could be reused in other related tasks. In such way,

new models could significantly benefit from prior knowledge

to accomplish new tasks rather than from scratch. At 58.com,

pre-trained models or transfer learning are widely used for re-

ducing development costs. For example, in the house leasing

business, webchats are recorded and different DL models are

called to identify the status of the landlord (e.g., whether the

house was leased) and tenant (e.g., a genuine renter or housing

agent) respectively. In the telephone customer services, there

are also distinct models to assess the recruitment, rental and

housekeeping intentions of users, respectively. These models

with similar tasks are all built from a pretrained Bert model.

Instead of fine-tuning all parameters of a model, it is common

to directly reuse partial parameters and only fine-tune a small

set of model layers for two reasons: (i) It is able to signifi-

cantly decrease the training overheads of similar downstream

tasks, enabling rapid development; (ii) Fine-tuning the whole

model may result in overfitting if the target dataset is small

and the number of parameters is huge [23, 28, 34, 44, 48]. It

even improves the accuracy in case of insufficient training

samples (e.g., sporadic noises). For example in the advertising

business, a Resnet50 model with only the top layers retrained

achieves an accuracy of > 98% in classifying QR codes.

It is highly empirical to determine which layers should

be reused in practice. For tasks like sentiment classification,

reusing the initial 12-16 layers of Bert even outperforms fine-

tuning all layers on the SST-2 dataset [39]. The VGGish-based

audio classification model for detecting noises with retained

bottom embedding layers also achieves an accuracy of > 93%.

Table 1 summarizes the representative deep learning models

used for image, text, and audio processing in our website,

as well as their applications, potential redundant parts and

redundancy ratios.

Table 1: Tensor redundancy at 58.com.
Application Domains Image Text Audio

Representative Models

Resnet50
EfficientNet
MobileNet

Bert
Roberta
Albert
GPT

VGGish

Applications

Advertising
Housing

Secondhand Trading

Reading
Extraction

Text Summary
Text Classification

Audio
Classification

Redundant Part Bottom Layers
Embeddings

Middle Layers
Embeddings

Redundancy Ratio >70% >31% >90%

Observation #5: Cache redundancy: Both the runtime and

tensor redundancy are exacerbated by the widespread usage

of in-memory caches in both the serverless platform and DL

library.

To alleviate the cold-start overhead, serverless platforms

[20,60] often keep function alive and warm after the execution

476    2022 USENIX Annual Technical Conference USENIX Association



is finished (a.k.a. caching). Caching exacerbates the runtime

and tensor redundancy problem.

Moreover, caching also exists in DL frameworks. For exam-

ple, TensorFlow makes use of high-performance computing

libraries, such as MKL-DNN [32] to accelerate the execution

of computational graphs. The internal tensor representation

of TensorFlow is not identical to MKL-DNN when perform-

ing operations such as convolutions; thus, the convolutional

kernel data in TensorFlow format must be converted into

MKL-DNN format. These converted parameters are usually

cached in memory for subsequent usage [4] (e.g., 87.7% of

parameters are cached for Resnet50). Hence, these caches

also increase tensor redundancy.

2.3 Implications

Due to the memory-intensive nature of startup and computing

in DL inference (Observation 1 and Observation 2), the

main memory can be easily and massively harvested in server-

less inference systems. Reducing the memory footprint of

serverless inference needs to be addressed immediately. We

study the in-memory data redundancy in serverless inference

systems, and observe that the redundancy problem primarily

derives from three aspects: runtime redundancy (Observation

3), tensor redundancy (Observation 4) and cache redundancy

(Observation 5).

Table 2: Comparision of existing systems.
KSM [33] Photons [16] INFless [71] TETRIS

Runtime sharing � concurrency batching �

Tensor sharing � � � �

Cache sharing � � � �

No-harming perf. � limited limited �
Func.

First-time sharing � � � �

Running level kernel container container container
N.F.

Imple. difficulty high low low low

Prior works [3, 16, 33, 47, 71] have proposed reducing the

in-memory data redundancy through page merging or run-

time sharing (Table 2). The page merging methods, such

as KSM [3, 33, 47], support memory-saving deduplication

through searching and merging equal physical pages of mem-

ory. However, it is a Linux kernel-level feature; therefore, its

implementation is relatively difficult. It also does not support

first-time sharing during the startup of function instances.

Runtime sharing can be enabled through either concurrent

execution (e.g., Photons [16]) or batching (e.g., INFless [71]).

However, they only partially solve the runtime redundancy

problem and their optimal combination is still worth further

exploration. Moreover, the tensor redundancy and cache re-

dundancy still exist and severely degrade the memory effi-

ciency.

3 System Design

In this section, we present the design of TETRIS.

3.1 System Overview

The insight of TETRIS is that memory efficiency can be

improved through the combined optimization of tensor

Figure 6: An overview of TETRIS.

sharing and runtime sharing. Figure 6 illustrates the over-

all architecture of TETRIS, which enables runtime sharing

through its scaling and scheduling engine and supports tensor

sharing through the agent in each container and the tensor

store in each server. When a developer submits a trained

DL model to the platform, TETRIS extracts the tensor infor-

mation (including tensor sizes and hash values) and profiles

the inference latency under various batch sizes and concur-

rency settings. The tensor information is used for directing

tensor sharing, and the profiles are used by the scaling and

scheduling module to determine the best runtime sharing

configuration.

When the user submits requests to the gateway, the scaling

and scheduling engine first decides whether to scale out new

instances or reuse existing ones according to the workloads.

First, in the case of scaling out instances, the engine derives

the batch size and concurrency configurations, minimizing

the memory footprint under the SLO guarantee. Then, the

new instances are launched on servers with maximum ten-

sor similarity. TETRIS supports first-time sharing of tensors

through a special agent in each sandbox. The agent parses the

computational graph of the model and reads the hash value of

the tensors. Then, the agent checks whether the tensor store

has already stored it. If so, the agent only maps the memory

address of the tensor to its local process using the syscall of

Mmap, and the reference number of the tensor is increased

by 1. Otherwise, the agent loads the tensor from the model

file into memory directly and creates a new item in the tensor

store. Each agent is only active during the startup of a new

instance. In contrast to DL training where tensors may be

updated every iteration, tensors in inference are fixed during

its service time. Hence, we set them to be only readable to

ensure safe memory access across functions. Second, in the

case of reusing existing instances, requests are forwarded to

instances following the load balancing principle.

When the workload decreases, the scaling and scheduling

engine also selectively releases the least-loaded instances

without violating the SLO. After release, the reference number

of its tensors decreases by 1. In each server, there is a memory

reclaimer periodically validates the reference number of each

USENIX Association 2022 USENIX Annual Technical Conference    477



tensor and reclaims the memory pages with reference = 0 so

that the released functions no longer occupy memory. A keep-

alive policy can be adopted to avoid reclaiming oscillation.

3.2 Scaling and Scheduling
The scaling and scheduling engine relies on the model profile

and requests per second (RPS) to make the scaling decision.

Profiling: We develop an automatic profiler that measures the

inference latency of each model under various configurations.

Specifically, we define the profile of each model as a 5-tuple

〈c,m,b, p, l〉, where c ∈ C denotes the number of allocated

CPUs, m ∈ M denotes the memory configuration for the infer-

ence, b∈B indicates the maximum batch size for that instance

to process requests, p∈P represents the number of concurrent

inference threads, and l represents the inference latency under

previous configurations. Since current serverless platforms

typically use CPUs for function computation and DL infer-

ence on CPUs typically uses small batches (e.g., B= {1,2,4})

and low concurrency (e.g., P = {1,2,3,4}) to achieve low la-

tency. Thus, we profile only these combinations to narrow

the profiling space. Since allocating excessive memory does

not lower inference latency, we assign each configuration the

bare minimum. Finally, we obtain n = |C||M||B||P| 5-tuples

characterizing the model, which are stored in the database.

In the profiling phase, TETRIS also computes and stores the

hashes of tensors using the cyclic redundancy check (CRC)

code, which is utilized in checking the memory status during

tensor sharing.

Runtime-shared scaling: The scaling engine monitors the

real-time RPS and judges whether the existing instances are

sufficient to serve these requests. If not, it dispatches parts of

requests to existing instances and launches new instances to

process the residual ones. Given the model profile and residual

RPS (denoted by R), the scaling engine explores the optimal

configurations of new instances, to minimize memory usage

while guaranteeing their latency SLO. We define an integer

variable xi, ∀i ∈ [1, ..,n], which indicates the configuration i is

adopted for xi new instances. Hence, the optimal configuration

can be found by solving the following integer programming

problem:
minimize :

n

∑
i=1

mixi (1)

li ≤ tslo, ∀i∧xi ≥ 1∧bi = 1 (2)

li ≤ tslo/2, ∀i∧xi ≥ 1∧bi > 1 (3)

∑
n

i=1
xibi pi/li ≥ R, ∀i (4)

xi ∈ N (5)

Objective (1) defines the memory occupied by the instances.

Constraints (2) and (3) ensure that the latency SLO is satisfied:

For bi = 1 (i.e., no batch queue exists for an inference thread),

the inference latency li should not exceed the SLO; For bi > 1

(i.e., requests must wait in a queue to saturate the batch), we

have ti
wait + li ≤ tslo, where ti

wait denotes the waiting time in

the batch queue. Suppose the RPS distributed to instance i

is ri, then we have ti
wait = bi pi/ri. Since ri ≤ bi pi/li must be

Algorithm 1: DTS Algorithm

Input:

Requests R; profile O = {< c,m,b, p, l >}; tslo;

Output:

S: the set of selected instance configurations;

1 S =∅;

2 sort O in descending order of (bi pi)/(limi),∀i ∈ [1..n];
3 while R > 0 do

4 for each configuration oi ∈ O do

5 if bi = 1∧ texec(ci,bi, pi)> tslo then

6 continue;

7 if bi > 1∧ texec(ci,bi, pi)> tslo/2 then

8 continue;

9 R ← R− (bi pi)/li;

10 S ← S∪{oi};

11 break;

established (otherwise, if the request arrival rate exceeds the

batch processing rate, requests will be dropped), we obtain

li ≤ tslo/2. Constraint (4) ensures that the residual RPS can

be fully processed by the new instances. Constraint (5) refers

to the domain constraint.

This problem can be reduced to the NP-Complete knap-

sack problem [54]. Hence, we design a heuristic algorithm,

called Decreased Throughput Selection (DTS) to determine

the instance configuration efficiently. Algorithm 1 presents

the details. In line 2, we sort the configurations in O in de-

scending order by normalized throughput. Then, we greedily

select the configuration with higher normalized throughput as

long as the latency SLO is satisfied (lines 3-11). The DTS al-

gorithm can also be easily extended to balance CPU usage by

normalizing the throughput with mi +αci, where α denotes

the equilibrium factor.

Scheduling: Once the scaling engine has determined the

configurations of new instances, the scheduler deploys them

to the appropriate servers. To reduce cluster-level memory

consumption through tensor sharing, TETRIS always tries

to dispatch them on servers with maximum tensor similarity

(denoted by θ). Specifically, for instance i, TETRIS first filters

out servers that do not meet resource requirements (e.g., CPU

and memory). Then, it derives the similarity value between a

model i and a server j using θi j = Mem(Ti ∩T
j

store)/Mem(Ti),

where Ti represents the set of tensors in instance i, T
j

store repre-

sents the set of tensors already stored in server j, and Mem(Ti)
represents the aggregated memory of tensors in Ti.

3.3 Tensor Sharing

After an instance is scheduled on a server, TETRIS first

launches a sandbox (e.g., container) on the target server to

accommodate it. Then, an agent is activated in the sandbox

to load the model into the main memory. For a tensor that has

478    2022 USENIX Annual Technical Conference USENIX Association



previously been loaded into the tensor store, the agent maps

its memory address to the instance. Otherwise, it creates a

new item for it in the tensor store.

1 Status LoadTensor(Tensor& tensor,TensorReader& reader) {

2 // Get tensor hash value.

3 std::string tensor_hash = GetHash(reader,tensor);

4 // Get or create tensor lock in

5 // Shared Tensor Store atomically.

6 TensorLock lock = CreateOrGetTensorLock(tensor_hash);

7 // Obtain ownership of a tensor lock.

8 lock.Lock();

9 // Check if the tensor in Shared

10 // Tensor Store already exists.

11 if(!TensorExists(tensor_hash)) {

12 // Allocate the tensor memory in

13 // Shared Tensor Store and load

14 // the model parameters.

15 CreateTensor(reader,tensor,tensor_hash);

16 } else {

17 // Mapping already existing tensor

18 // memory from the Shared Tensor Store.

19 MmapTensor(tensor,tensor_hash);

20 }

21 // Release the lock.

22 lock.Unlock();

23 return Status::OK();

24 }

Listing 1: Simplified code snippet for loading tensors.

Agent: The agent is a lightweight, user-space process for

sharing tensors across function instances. Whenever loading

a model into memory, the agent reads the computational graph

metadata stored in the model file and parses the tensors that

need to be loaded into memory. As illustrated in Listing 1,

the agent reads the hash value of a tensor using the interface

GetHash() and checks whether the tensor store has already

had the tensor. If the TensorExists() returns FALSE, the agent

allocates memory for the tensor and puts it in the tensor store.

Otherwise, it calls MmapTensor() to map the memory address

of the existing tensor to the model. The agent maintains a

loading queue for tensors. To ensure that the tensor store

correctly behaves when it is accessed by multiple concurrent

agents, we employ locks: an agent must acquire a lock be-

fore writing to the store (line 8) and release it after writing

completion (line 22).

The agent is only active during the startup of an instance.

It does not require modifications to the underlying operating

system or virtualization layer and does not degrade inference

performance.

Tensor store: The tensor store holds all tensor memory (pa-

rameters, constants, etc.) that need to be shared across all

function instances on a server. Every function instance on the

server can access tensors in the tensor store. Each tensor is

uniquely identified by a hash value, calculated from the tensor

content and dimensions. We use hash values because they

are independent of the models and underlying frameworks.

There is also a corresponding lock for each tensor to ensure

their safe operation of constructing, mapping, or reclaiming.

The tensor store is initially empty and does not hold any ten-

sors or locks. During the running of the system, the agent

continuously adds tensors into it. Each tensor is associated

with a reference number initialized with 1 after its creation.

Whenever the agent adds a new mapping to an existing tensor,

the reference number is increased by 1. Similarly, whenever

an instance is released after completion, the reference number

is decreased by 1. The tensor memory is reclaimed after the

reference number is set to 0.

While the tensor store is shared by all function instances

by default, TETRIS also supports building a dedicated ten-

sor store for a subset of functions at the local server (e.g.,

functions belonging to the same tenant). The tensors in a ded-

icated tensor store cannot be accessed by functions without

permission.

3.4 Memory Reclaiming

When a function instance is released, the tensor that it maps

from the tensor store is not instantly deleted, as it may still be

referenced by other instances. To appropriately reclaim the

memory of shared tensors, TETRIS runs a memory reclaimer

on each server, which periodically detects and reclaims the

memory of tensors with reference number = 0.

The reclaimer also supports tensor caching policies, which

keep tensors in the tensor store even after their reference num-

bers become 0. Currently, we have added two caching policies

in the reclaimer: (1) keep-alive window: it is a timeout thresh-

old to determine how long a tensor is kept alive; (2) Least

Recent Used (LRU): it only keeps the recently or often-used

tensors in the tensor store after the tensor store is full. The

cached tensors can accelerate the startup of function instances.

Although TETRIS only supports these two policies at this time,

other caching policies [20, 60] can be easily integrated into it.

When a tensor’s memory is reclaimed, the reclaimer is also

required to obtain its lock. To sum it up, Figure 7 depicts the

lifecycle of tensors in TETRIS.

Figure 7: Overview of the tensor lifecycle in TETRIS.

4 System Implementation and Discussion

TETRIS is implemented in the open-source serverless plat-

form OpenFaaS [17] with the DL inference framework Tensor-

Flow Serving [22]. In particular, the runtime sharing ability

is added to OpenFaaS by modifying its modules including

request dispatching, autoscaling, scheduling and instance cre-

ating; The tensor sharing ability is implemented by modifying

the TensorFlow Serving framework. We further implement

USENIX Association 2022 USENIX Annual Technical Conference    479



the reclaimer as a separate daemon. The entire system runs

on Kubernetes. Overall, TETRIS’s implementation introduces

negligible pollution to the existing software stack except for

the newly added module reclaimer.

Tensor store: Since maintaining a cluster-level global tensor

store is costly due to frequent tensor access during inference

and high network latency, TETRIS maintains a shared tensor

store on each server for performance guarantee while minimiz-

ing cluster memory consumption through instance scheduling.

The tensor store on each server is implemented as a shared

memory region, which can be accessed by all agents and the

reclaimer at the local server. Although shared memory can

be enabled by Docker through setting the –ipc=host option at

the container creation time, allowing all containers to share

the host ipc namespace, this introduces significant risks of

malicious activities or misoperations. Hence, we instead im-

plement the shared memory by mounting a memory-based

tmpfs [64], in which the tensor store is just a directory. Then,

it could be mounted to each container during its creation time

using command like docker -v. Tensors are stored as files

under the mounted tmpfs directory and their hash values are

set as the filenames. In this way, we can build multiple dedi-

cated tensor stores flexibly, just by creating different mounted

directories.

Agent: The agent is integrated into the existing loading pro-

cess of the TensorFlow Serving system. In particular, we

modify the RestoreOp interface and provide a new tensor

memory allocator to manage the shared memory mappings

using the open and Mmap syscalls. After a tensor is created

and initialized, its memory pages are tagged as read-only to

prevent modifications. File locks are leveraged to synchro-

nize agents, avoiding manipulating tensors simultaneously. In

the case of concurrently loading models, we pre-randomize

the list of loaded tensors to reduce lock conflicts. Besides,

we replace the malloc interface in the TensorFlow Serving

framework with tcmalloc [59] to reduce the memory waste.

Scaling & scheduling: The scaling and scheduling engine is

integrated into the faas-netes module of OpenFaaS. In par-

ticular, we modify its autoscaling module to implement the

DTS algorithm. While OpenFaaS originally uses the default

scheduler of Kubernetes, we also modify it using the ten-

sor similarity-based scheduling algorithm. To enable both

runtime sharing and tensor sharing, we directly create Kuber-

netes pods for instances and mount the tmpfs directory in the

instance creating process.

Reclaimer: The Reclaimer is implemented as a Kubernetes

DaemonSet. Although Linux provides fuser or lsof for identi-

fying whether or not a tensor has been referenced by processes,

these tools are highly inefficient. Instead, the Reclaimer re-

trieves the set of running functions on a server through Kuber-

netes’ API, then infers the set of referencing tensors (denoted

by Twarm) by querying the profile database. Then, the tensor

set to be reclaimed (denoted by Tcold) can be derived using

Tcold = Tall \Twarm, where Tall represents the set of tensors

residing in the Tensor Store. Such an implementation also en-

sures fault tolerance, i.e., unreferenced tensors can be detected

even when agents crash.

GPU Inference: Although the current serverless platforms

typically use CPUs for function computation, TETRIS is still

effective for GPU inference since frameworks like Tensor-

Flow usually keep a copy of tensors in CPU memory. TETRIS

is also suitable for large models which cannot fit into GPU

memory. As GPU memory could also be shared through cud-

aIpc [50] APIs, TETRIS can be extended to the GPU inference

scenario by developing a specialized manager for maintaining

GPU tensor mappings.

5 Evaluation

5.1 Methodology

Table 3: Experimental testbed configurations.
Machine Type Type 1 Type 2

CPU Device Intel(R) Xeon(R) CPU E7-4820 v4 Intel Xeon Silver-4215

Number of Sockets 4 2

Processor BaseFreq 2.0 GHz 2.50 GHz

CPU Threads 80 (40 physical cores) 32 (16 physical cores)

Memory Capacity 256 GB 128 GB

Shared LLC Size 25 MB 11 MB

Operating System Ubuntu 16.04 Ubuntu 16.04

Kubernetes Version v1.19.2 v1.20.0

Testbed: We evaluate TETRIS using an 8-server testbed con-

sisting of two types of machines: 2 machines are equipped

with 80 cores and 256GB of memory while 6 others are

equipped with 32 cores and 128GB memory. The machines

are interconnected via a 100 Gbps, full-bisection bandwidth

Ethernet. Table 3 lists the hardware and software details.

Figure 8: Production workload trace examples.

Workloads: We collect a comprehensive set of benchmark

DL models with high heterogeneity from both TensorFlow

Hub [22] and the real-world local life service website (Table

4). The benchmark suite is comprised of 21 inference mod-

els, ranging in model sizes from 11MB to 3.5GB, varying in

download times from 310 to 1.1M, and covering application

domains including text, image, audio, etc. Based on these

models, we further construct four real-life applications: A

second-hand vehicle trading (SVT) application adopts the

SSD model for object detection and two Resnet152 models

for classifying cars and motorcycles. An audio question &

answering (QA-Audio) application employs the Stt, Use-qa

and Fastspeech2 models for speech-to-text translation, QA

480    2022 USENIX Annual Technical Conference USENIX Association



(a) Memory reduction under different # of instances (b) Intra-model acceleration

Figure 9: (a) Memory reduction rate under tensor sharing over the number of instances from the same function. (b) Accelerating

the startup using tensors from existing instance of the same function.

Table 4: Inference benchmark suite.
DL Model Size Description Download times

Bit-M [37] 3.5GB Feature vector extraction 1.4k

LaBSE [19] 1.8GB Sentence Embedding 24.9K

Bert-qa [14] 1.3GB Question Answering 501

Electra [10] 1.3GB Discriminator 6.1K

Use [7] 980MB Sentence Encoder 1.4M

Centernet [75] 731MB Object Detection 12.8K

Use-qa [72] 568MB Question Answering 16.3K

Use-large [7] 563MB Sentence Encoder 1.1M

Vgg19 [63] 549MB Image Classification commercial

Bert [14] 392MB Text Processing 197.5K

EfficientNetB7 [68] 255MB Image Processing 2.2K

Resnet152 [26] 231MB Image Processing 1.6K

InceptionResnetV2 [66] 214MB Image Processing 6K

Stt [69] 176MB Speech-To-Text 398

Resnet101 [26] 171MB Image Processing 1.6K

Fastspeech2 [57] 119MB Text-To-Speech 310

InceptionV3 [67] 92MB Image Processing 11.6K

SSD [43] 29MB Object Detection commercial

Dssm [29] 25MB Text Processing commercial

Lstm [27] 23MB Text Processing commercial

Textcnn69 [9] 11MB Text Processing commercial

and text-to-speech translation, respectively; A semantic simi-

larity computation (SS) application uses the Use model for

semantic similarity computation; A text question & answering

(QA-Text) application uses Textcnn69, Lstm, and Dssm for

understanding user questions and finding matched answers.

These services are triggered by dynamic invocations simu-

lated using the production trace from the Azure Function [46],

where the invocations per hour illustrate diurnal and weekly

patterns. Figure 8 displays all the three typical types of pro-

duction traces used: stable, periodic, and bursty.

Competing approaches: We compare TETRIS with INF-

less [71], Photons [16], and the runtime sharing-only ver-

sion of TETRIS: Tetris-RO. INFless is a state-of-the-art

serverless inference system that natively supports batching

and fine-grained CPU-GPU allocation for low-latency, high-

throughput inference on serverless. Photons supports runtime

sharing through concurrent execution in each instance. Since

Photons is not serverless inference oriented and provide no

SLO guarantee, we redevelop it atop OpenFaaS and extend

it with function profiles while greedily selecting instance

configurations with the maximum concurrency under SLO

constraints. Tetris-RO is a variant of TETRIS that disables the

tensor sharing part.

5.2 Tensor Sharing Evaluation
We first evaluate the tensor sharing effectiveness by solely acti-

vating the TETRIS’s agent, and compare the memory footprint

to that in the native OpenFaaS system. In particular, the mem-

ory footprint under tensor sharing can be derived by Mts =
Mtensor+I×Mothers, where Mtensor denotes the memory for pa-

rameterized tensors, Mothers indicates the memory for runtime,

libraries and others that cannot be shared across instances,

and I represents the number of colocated instances in a server.

Likewise, the memory footprint under the native OpenFaaS

system can be derived by Mbaseline = I × (Mtensor +Mothers).
Memory footprint: Sharing tensors across instances of an

inference function saves memory by up to 93%. Figure 9(a)

depicts the memory reduction rate by various models under

various number of instances (from 2 to 32). Clearly, the mem-

ory reduction rate benefits more from increasing the number

of colocated instances. The reduction rate depends on the

percentage of memory that can be shared. Basically, the more

parameters a model contains (i.e., Mtensor) and the less other

memory (i.e., Mothers) a model requires lead to a higher mem-

ory reduction rate. For example, the memory reduction rate of

VGG19 (i.e., with Mtensor = 549MB and Mothers = 95.4MB)

reaches to 82% when colocating 32 instances. For models

with fewer parameters and relatively larger temporary mem-

ory footprints, Lstm for example, the memory reduction rate is

limited to 4.4% in the 2-instance co-locating scenario. When

deploying 32 function instances, the memory reduction rates

of large models like LaBSE and Use even exceed 91% and

93%, respectively. For the model of Bit-M, TETRIS reduces

its memory consumption by 108.5GB, because TETRIS only

keeps a single copy of the model parameters in memory. Even

with only two instances, the memory footprint can still be

reduced by an average of 28%.

Memory footprint: Sharing tensors across functions can

further reduce memory by up to 36.3%. We collect model

variants which are generated by transfer learning from the

InceptionV3, EfficientNetB7, Resnet101, Resnet152, Vgg19,

USENIX Association 2022 USENIX Annual Technical Conference    481



and InceptionResnetV2 models for applications in housing

rental, recruitment, second-hand products, travel, and catering

businesses. They are commonly only retrained the top dense

layers. Figure 11(a) reveals that, as the number of model vari-

ants increases, the system memory can be further reduced for

all models by up to 36.3%, and at least by 18.8%. Among

these models, the memory reduction rate for Vgg19 is rel-

atively limited since merely 77MB parameters are shared

among its variants, although it still achieves 13.8% under the

co-location of 32 variants.

Higher function density: Tensor sharing reduces the

memory consumption of functions, improving the func-

tion density by up to 30×. Figure 10 presents the increasing

rate of function density under various memory configurations.

For the LaBSE model with 1.8GB parameters that consume

1.9GB memory, the function density is improved by 20×.

In the case of the Use model, it even achieves an improve-

ment of 30×. For large models, such as Bit-M, a server with

64GB of memory is only capable of maintaining 14 instances.

After sharing tensors, the density increases to 74, i.e., more

than 60 instances can be accommodated in the same machine.

Tensor sharing still significantly improves function deploy-

ment density for models with small memory footprints. For

instance, 1161 and 1720 additional instances can be created

on a 256GB-memory server for Dssm and Textcnn69, respec-

tively.

Figure 10: Function density improvement under various ma-

chine memory capacities.

Accelerating startup: The first-time sharing of tensors re-

duces the startup overhead of inference functions, acceler-

ating the startup speed by 91.56%. The loading of tensors

dominates the startup process. Directly mapping an existing

tensor address to a new instance is much faster than loading

and decoding it from the file on disk; thus, the first-time ten-

sor sharing feature of TETRIS can significantly accelerate the

startup process. Figure 9(b) demonstrates that tensor sharing

from the same function’s previous instance can significantly

speed up the startup process. For example, the model loading

time of Bit-M exceeds 15 seconds in a native system whose

page cache is disabled, which remains to be 7.9s with page

cache acceleration, while tensor sharing can reduce its startup

time to 2.8 seconds. Even for models with fewer tensors, such

as SSD and Textcnn69, the speedup from tensor sharing still

achieves 17.3% and 32.8%, respectively.

Besides the acceleration from sharing tensors of the

same function, cross-function tensor sharing could accelerate

startup even when the model has never been loaded. Although

it may be slower than that from the same function’s instance

due to less redundancy across functions, the speedup still

achieves an average of 46.9% (Figure 11(b)). For Vgg19, the

startup process is still accelerated by 12.3% when compared

with the page cache.

(a) Memory reduction across functions (b) Inter-model acceleration

Figure 11: (a) Memory reduction rate under tensor shar-

ing over the number of model variants. (b) Accelerating the

startup using tensors from the existing instance of a different

function.

(a) Stable (b) Period (c) Burst

Figure 12: CPU consumption of the SS application under

varying workloads.

5.3 Overall Evaluation

We further evaluate the overall efficiency of TETRIS by de-

ploying four applications: SVT, QA-Audio, SS and QA-Text,

and requests towards them are generated using three types of

production traces in Figure 8.

Memory footprint: TETRIS outperforms both INFless

and Photons significantly in memory consumption. Figure

13 presents the normalized mean, median and peak memory

consumption by TETRIS, INFless and Photons. We find that

INFless consumes most of the memory in all experiments

for two reasons: (1) INFless can only reduce memory con-

sumption when the model supports batching. However, for

the applications QA-Audio and SS, there are models (i.e., Fast-

speech2 and Use) that do not support batching. (2) Batching

introduces additional queuing time. While the inference com-

putation on CPU is slow and the SLO is tight, we are not able

to configure a much larger batch size even for batch-enabled

models. (3) INFless prefers to use the fragmented resources

spanning over multiple servers for better accommodating the

residual load and improving the resource utilization, which

exacerbates memory consumption. For the four applications

SVT, QA-Audio, SS and QA-Text under a stable request load,

TETRIS can reduce the mean memory footprint by more than

86%, 64%, 69%, 65%, respectively, and reduce the peak mem-

ory consumption by more than 87%, 68%, 71% and 65%,

respectively. In particular, TETRIS achieves the best memory

482    2022 USENIX Annual Technical Conference USENIX Association



(a) SVT, Stable (b) SVT, Period (c) SVT, Burst (d) QA-Audio, Stable (e) QA-Audio, Period (f) QA-Audio, Burst

(g) SS, Stable (h) SS, Period (i) SS, Burst (j) QA-Text, Stable (k) QA-Text, Period (l) QA-Text, Burst

Figure 13: Normalized memory consumption by four applications under stable, period and bursty workloads.

efficiency in the SVT case because its Resnet152 models ben-

efit more from tensor sharing as they are built from the same

set of pretrained parameters. Resnet152 is also computation-

ally intensive and limits the chance for packing requests to

share runtimes. Photons consumes much less memory than

INFless since it executes requests concurrently within the

same instance without batch queuing time, however tensor

redundancy across function instances still exists. Because of

tensor sharing, TETRIS can further decrease the mean mem-

ory consumption by more than 68%, 33%, 37%, and 21%, and

the peak memory consumption by more than 67%,43%,39%,

and 22% for the applications, respectively.

Efficient runtime sharing: The combined optimization of

batching and concurrent execution in TETRIS outper-

forms either INFless’s batching or Photons’s concurrent

execution. As illustrated in Figure 13, Tetris-RO can reduce

more memory footprint than INFless and Photons in cases

of SVT, QA-Audio, and QA-Text: Tetris-RO can select con-

figurations flexibly by exploring the various combinations of

batch size, concurrency and CPUs. Taking SVT as an exam-

ple, Photons only chooses to execute at most 2 concurrent

requests within each instance due to its fixed mapping be-

tween concurrency and CPUs, while Tetris-RO can greedily

activate 3 concurrent threads. For the QA-Audio application,

although Photons greedily packs 4 requests into the same in-

stance, Tetris-RO could further decrease runtime redundancy

by concurrently executing 2 requests with a batch size of 6.

For the QA-Text application consisting only of small models,

the average memory consumption is still reduced by 21%

from the runtime sharing.

Although Tetris-RO consumes more memory than Photons

in the SS application case, Tetris-RO requires much fewer

CPU resources. Figure 12 illustrates that Tetris-RO and IN-

Fless allocate CPU resources averagely by 42% and 39%

less than Photons. This outcome is because each time Pho-

tons increases concurrency, it also requires a fixed amount of

additional CPUs, resulting in excessive CPU allocations.

SLO guarantee: TETRIS can guarantee the latency SLO

of inference workloads. Figure 14(a) demonstrates that both

TETRIS and INFless achieve a low SLO violation rate (< 4%)

for all applications. For SVT and SS, TETRIS outperforms

INFless since more CPUs are allocated for each instance

in TETRIS to support concurrent processing. For QA-Audio

and QA-Text, the SLO violation rate of TETRIS is slightly

higher than that of INFless since it uses a larger batch size in

runtime sharing, introducing additional batch queuing time.

Overall, TETRIS achieves significant improvement in memory

efficiency at the cost of a negligible increase in the SLO

violation rate.

Cost savings: The reduction of memory consumption by

TETRIS saves considerable monetary cost for inference

service providers. To further demonstrate the benefits of

TETRIS, we conduct a large-scale simulation with a combina-

tion of the mentioned applications, and gradually increase the

RPS from 100 to 5000. As illustrated in Figure 14(b), TETRIS

reduces memory of 61.5GB and 20.2GB per 100 requests,

compared to that of INFless and Photons, respectively. If fol-

lowing the pricing model of $0.0504 per hour according to the

r6g.medium service at AWS EC2, such memory reduction can

be transformed into $0.000861 and $0.000283 cost savings

per 100 requests. If considering the local life website, which

serves 1.9 billion requests per day, TETRIS could reduce the

monetary cost by $16,359 per day, about $5.97 million per

year.

5.4 Overhead

The implementation of TETRIS does not require modifications

to the ML model, the virtualization sandbox, or the underlying

operating system. Developers are simply required to submit

the model (instead of the function code) as the model itself

contains sufficient information for deployment.

Profiling overhead: TETRIS relies on the offline profiling

phase to estimate latency under various CPU, batch size, and

concurrency configurations. Since inference on CPU typically

incurs high latency, the exploration space of combinations of

batch size and concurrency is actually limited. The automatic

profiler can test each inference model under various config-

urations and generate profiles within several minutes. In a

real system, as inference services are invoked repeatedly, the

profiling only generates a one-time cost and the profiles can

USENIX Association 2022 USENIX Annual Technical Conference    483



(a) SLO violation rate (b) Cost savings (c) Profiling time (d) Inference time (e) Concurrent loading

Figure 14: (a) SLO violation rate. (b) Memory consumption and financial cost per 100 requests under varying workloads. (c)

Average profiling time for models used in the evaluation. (d) Inference latency distribution. (e) Average loading latency over the

number of concurrent loading function instances with models from Table 4.

be reused for later invocations. As depicted in Figure 14(c),

profiling an inference model takes an average of 12 minutes.

Inference latency: The memory address mapping method

in TETRIS does not introduce latency overhead. We mea-

sure the latency distribution of the models in Table 4. Figure

14(d) demonstrates that, compared to the latency yielded by

deploying on the TensorFlow Serving framework directly,

there is no performance degradation observed after using

TETRIS.

Lock contention: When multiple instances are created si-

multaneously, the contention on the tensor lock may cause

startup overhead. We measure the average model loading la-

tency without page cache and compare it with the baseline of

the TensorFlow Serving framework. Figure 14(e) indicates

that TETRIS still outperforms the baseline by employing ran-

domization in the tensor loading process, thereby reducing

much of the lock contentions. Once a tensor is loaded into

memory successfully, TETRIS need only to map the memory

address for newly launched instances, whereas the baseline

still requires expensive file reading and decoding.

6 Related Work

Memory deduplication: Prior works [3, 8, 21, 47, 70] have

proposed eliminating redundant data loaded in memory by

scanning, comparing, and merging duplicated pages. How-

ever, such page-level scanning methods could incur colossal

overhead and lag for large, high-density serverless inference

functions. As they are effective at the kernel level, TETRIS is

compatible with these methods and can be used in conjunction

to reduce memory consumption further.

Model compression: Large inference models can also be

substantially compressed through fine-grained model design,

pruning and quantization techniques (e.g., [24, 25, 31, 56]).

However, unlike TETRIS, these methods involve model modi-

fications. The compressing process may also reduce inference

accuracy, resulting in side effects for businesses [53]. TETRIS

and model compression can coexist.

Inference runtime optimizations: The memory footprint of

inference can also be reduced by optimizing memory alloca-

tion during inference runtime [13, 35, 40, 41, 55]. However,

these optimizations are either framework-specific or require

model conversion, whereas TETRIS is orthogonal to these

optimizations and can be employed together to further reduce

memory consumption. Moreover, they may require developers

to redesign or retrain the model, increasing the development

burden, whereas TETRIS requires no model modifications.

Serverless inference: The existing serverless inference sys-

tems [1, 6, 71, 74] generally focus on improving inference

throughput without violating the SLOs. Instead of improving

memory efficiency, they primarily optimize the allocation of

computational resources (e.g., CPU and GPU). TETRIS ex-

plores solving the memory efficiency problem in serverless

inference and can be integrated into such systems. Trims [12]

accelerates the data shipping between CPU and GPU through

sharing existing models in GPU memory, whereas TETRIS

explores sharing tensors among function instances.

7 Conclusion
Modern applications (such as IoT data processing, advertis-

ing recommendations, autonomous driving, and e-commerce)

continuously rely on inference services. It is expected that

serverless inference can reduce the maintenance cost for

service providers, however, memory resources can be eas-

ily and massively harvested in existing serverless infer-

ence systems. Our proposal, TETRIS, can significantly re-

duce the memory footprint of inference services through

runtime sharing and tensor sharing. TETRIS can be easily

integrated into serverless platforms as a user-space plug-

in. With TETRIS, cloud providers can deploy an order of

magnitude more instances in each server without violating

the SLOs, thus significantly decreasing the deployment and

maintenance costs. The prototype of TETRIS is available at

https://github.com/JelixLi/Tetris.

In the future, we would like to further optimize the GPU

memory efficiency of serverless inference systems.

Acknowledgments
We thank our shepherd and other anonymous ATC review-

ers for their extremely insightful comments and suggestions

that have significantly improved the quality of this paper. We

also thank Dr. Tao Li for his significant contribution to this

work. This work is supported by the National Natural Sci-

ence Foundation of China under grant 61872265, 62141218,

U1836214; the new Generation of Artificial Intelligence Sci-

ence and Technology Major Project of Tianjin under grant

19ZXZNGX00010 and the open project of Zhejiang Lab

(2021DA0AM01/003). It is also supported by Meituan.

484    2022 USENIX Annual Technical Conference USENIX Association



References

[1] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia

Smirni. Batch: machine learning inference serving on

serverless platforms with adaptive batching. In SC20:

International Conference for High Performance Com-

puting, Networking, Storage and Analysis, pages 1–15.

IEEE, 2020.

[2] Amazon. Aws lambda. https://aws.amazon.com/
lambda/.

[3] Andrea Arcangeli, Izik Eidus, and Chris Wright. In-

creasing memory density by using ksm. In Proceedings

of the linux symposium, pages 19–28. Citeseer, 2009.

[4] Mahmoud Abuzaina Ashraf Bhuiyan. Improving

tensorflow* inference performance on intel® xeon®

processors. https://www.intel.com/content/
www/us/en/artificial-intelligence/posts/

improving-tensorflow-inference-performance-

on-intel-xeon-processors.html.

[5] AWS. Serverless application lens: Alexa skills.

https://docs.aws.amazon.com/wellarchitected/
latest/serverless-applications-lens/alexa-

skills.html. Referenced 2022.

[6] Anirban Bhattacharjee, Ajay Dev Chhokra, Zhuangwei

Kang, Hongyang Sun, Aniruddha Gokhale, and Gabor

Karsai. Barista: Efficient and scalable serverless serving

system for deep learning prediction services. In 2019

IEEE International Conference on Cloud Engineering

(IC2E), pages 23–33. IEEE, 2019.

[7] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,

Nicole Limtiaco, Rhomni St John, Noah Constant, Mario

Guajardo-Céspedes, Steve Yuan, Chris Tar, et al. Univer-

sal sentence encoder. arXiv preprint arXiv:1803.11175,

2018.

[8] Licheng Chen, Zhipeng Wei, Zehan Cui, Mingyu Chen,

Haiyang Pan, and Yungang Bao. Cmd: Classification-

based memory deduplication through page access char-

acteristics. ACM SIGPLAN Notices, 49(7):65–76, 2014.

[9] Yahui Chen. Convolutional neural network for sentence

classification. Master’s thesis, University of Waterloo,

2015.

[10] Kevin Clark, Minh-Thang Luong, Quoc V Le, and

Christopher D Manning. Electra: Pre-training text en-

coders as discriminators rather than generators. arXiv

preprint arXiv:2003.10555, 2020.

[11] Clive Cox, Dan Sun, Ellis Tarn, Animesh Singh, Rakesh

Kelkar, and David Goodwin. Serverless inferencing on

kubernetes. arXiv preprint arXiv:2007.07366, 2020.

[12] Abdul Dakkak, Cheng Li, Simon Garcia De Gonzalo,

Jinjun Xiong, and Wen-mei Hwu. Trims: Transparent

and isolated model sharing for low latency deep learning

inference in function-as-a-service. In 2019 IEEE 12th In-

ternational Conference on Cloud Computing (CLOUD),

pages 372–382. IEEE, 2019.

[13] Robert David, Jared Duke, Advait Jain, Vijay

Janapa Reddi, Nat Jeffries, Jian Li, Nick Kreeger,

Ian Nappier, Meghna Natraj, Tiezhen Wang, et al.

Tensorflow lite micro: Embedded machine learning for

tinyml systems. Proceedings of Machine Learning and

Systems, 3:800–811, 2021.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. Bert: Pre-training of deep bidirec-

tional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018.

[15] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoff-

man, Ning Zhang, Eric Tzeng, and Trevor Darrell. De-

caf: A deep convolutional activation feature for generic

visual recognition. In Proceedings of The 31st Interna-

tional Conference on Machine Learning, pages 647–655,

2014.

[16] Vojislav Dukic, Rodrigo Bruno, Ankit Singla, and Gus-

tavo Alonso. Photons: Lambdas on a diet. In Proceed-

ings of the 11th ACM Symposium on Cloud Computing,

pages 45–59, 2020.

[17] Alex Ellis. Serverless functions, made simple. https:

//www.openfaas.com/.

[18] Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Ari-

vazhagan, and Wei Wang. Language-agnostic bert sen-

tence embedding, 2020.

[19] Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Ari-

vazhagan, and Wei Wang. Language-agnostic bert sen-

tence embedding. arXiv preprint arXiv:2007.01852,

2020.

[20] Alexander Fuerst and Prateek Sharma. Faascache: keep-

ing serverless computing alive with greedy-dual caching.

In Proceedings of the 26th ACM International Confer-

ence on Architectural Support for Programming Lan-

guages and Operating Systems, pages 386–400, 2021.

[21] Anshuj Garg, Debadatta Mishra, and Purushottam

Kulkarni. Catalyst: Gpu-assisted rapid memory dedupli-

cation in virtualization environments. In Proceedings of

the 13th ACM SIGPLAN/SIGOPS International Confer-

ence on Virtual Execution Environments, pages 44–59,

2017.

[22] Google. Tensorflow hub. https://

tensorflow.google.cn/hub/.

USENIX Association 2022 USENIX Annual Technical Conference    485



[23] Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen

Grauman, Tajana Rosing, and Rogerio Feris. Spottune:

transfer learning through adaptive fine-tuning. In Pro-

ceedings of the IEEE/CVF conference on computer vi-

sion and pattern recognition, pages 4805–4814, 2019.

[24] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with prun-

ing, trained quantization and huffman coding. arXiv

preprint arXiv:1510.00149, 2015.

[25] Song Han, Jeff Pool, John Tran, and William J Dally.

Learning both weights and connections for efficient neu-

ral networks. arXiv preprint arXiv:1506.02626, 2015.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[27] Sepp Hochreiter and Jürgen Schmidhuber. Long short-

term memory. Neural computation, 9(8):1735–1780,

1997.

[28] Jeremy Howard and Sebastian Ruder. Universal lan-

guage model fine-tuning for text classification. arXiv

preprint arXiv:1801.06146, 2018.

[29] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,

Alex Acero, and Larry Heck. Learning deep structured

semantic models for web search using clickthrough data.

In Proceedings of the 22nd ACM international confer-

ence on Information & Knowledge Management, pages

2333–2338, 2013.

[30] Forrest Iandola, Matt Moskewicz, Sergey Karayev, Ross

Girshick, Trevor Darrell, and Kurt Keutzer. Densenet:

Implementing efficient convnet descriptor pyramids.

arXiv preprint arXiv:1404.1869, 2014.

[31] Forrest N Iandola, Song Han, Matthew W Moskewicz,

Khalid Ashraf, William J Dally, and Kurt Keutzer.

Squeezenet: Alexnet-level accuracy with 50x fewer

parameters and< 0.5 mb model size. arXiv preprint

arXiv:1602.07360, 2016.

[32] Intel. Intel(r) math kernel library for deep neu-

ral networks (intel(r) mkl-dnn). https://oneapi-

src.github.io/oneDNN/v0/index.html.

[33] Hugh Dickins Izik Eidus. Kernel samepage merg-

ing. https://www.kernel.org/doc/html/latest/
admin-guide/mm/ksm.html.

[34] Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong

Liu, Jianfeng Gao, and Tuo Zhao. Smart: Robust and ef-

ficient fine-tuning for pre-trained natural language mod-

els through principled regularized optimization. arXiv

preprint arXiv:1911.03437, 2019.

[35] Xiaotang Jiang, Huan Wang, Yiliu Chen, Ziqi Wu,

Lichuan Wang, Bin Zou, Yafeng Yang, Zongyang Cui,

Yu Cai, Tianhang Yu, et al. Mnn: A universal and effi-

cient inference engine. Proceedings of Machine Learn-

ing and Systems, 2:1–13, 2020.

[36] Paresh Kharya and Ali Alvi. Using deepspeed and

megatron to train megatron-turing nlg 530b, the world’s

largest and most powerful generative language model.

https://developer.nvidia.com/blog/using-
deepspeed-and-megatron-to-train-megatron-

turing-nlg-530b-the-worlds-largest-and-

most-powerful-generative-language-model/.

Referenced 2022.

[37] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai,

Joan Puigcerver, Jessica Yung, Sylvain Gelly, and Neil

Houlsby. Big transfer (bit): General visual representa-

tion learning. In Computer Vision–ECCV 2020: 16th Eu-

ropean Conference, Glasgow, UK, August 23–28, 2020,

Proceedings, Part V 16, pages 491–507. Springer, 2020.

[38] AWS Lambda. Netflix & aws lambda case

study. https://aws.amazon.com/cn/solutions/
case-studies/netflix-and-aws-lambda/.

[39] Jaejun Lee, Raphael Tang, and Jimmy Lin. What would

elsa do? freezing layers during transformer fine-tuning.

arXiv preprint arXiv:1911.03090, 2019.

[40] Yunseong Lee, Alberto Scolari, Byung-Gon Chun,

Marco Domenico Santambrogio, Markus Weimer, and

Matteo Interlandi. {PRETZEL}: Opening the black

box of machine learning prediction serving systems. In

13th {USENIX} Symposium on Operating Systems De-

sign and Implementation ({OSDI} 18), pages 611–626,

2018.

[41] Shuangfeng Li. Tensorflow lite: On-device machine

learning framework. Journal of Computer Research and

Development, 57(9):1839, 2020.

[42] Jens Lindemann and Mathias Fischer. A memory-

deduplication side-channel attack to detect applications

in co-resident virtual machines. In Proceedings of the

33rd Annual ACM Symposium on Applied Computing,

pages 183–192, 2018.

[43] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In European

conference on computer vision, pages 21–37. Springer,

2016.

[44] Pedro Marcelino. Transfer learning from pre-trained

models. Towards Data Science, 10:23, 2018.

486    2022 USENIX Annual Technical Conference USENIX Association



[45] Dirk Merkel et al. Docker: lightweight linux contain-

ers for consistent development and deployment. Linux

journal, 2014(239):2, 2014.

[46] Microsoft. Azure functions. https:

//azure.microsoft.com/en-us/services/
functions/.

[47] Konrad Miller, Fabian Franz, Marc Rittinghaus, Marius

Hillenbrand, and Frank Bellosa. {XLH}: More effec-

tive memory deduplication scanners through cross-layer

hints. In 2013 {USENIX} Annual Technical Conference

({USENIX}{ATC} 13), pages 279–290, 2013.

[48] Sangwoo Mo, Minsu Cho, and Jinwoo Shin. Freeze

the discriminator: a simple baseline for fine-tuning gans.

arXiv preprint arXiv:2002.10964, 2020.

[49] Philipp Muens. Serverless facebook messenger

bot. https://github.com/pmuens/serverless-
facebook-messenger-bot. Referenced 2022.

[50] Nvidia. Cuda runtime application programming

interface. https://docs.nvidia.com/cuda/cuda-
runtime-api/group__CUDART__DEVICE.html.

[51] Christopher Olston, Noah Fiedel, Kiril Gorovoy,

Jeremiah Harmsen, Li Lao, Fangwei Li, Vinu

Rajashekhar, Sukriti Ramesh, and Jordan Soyke.

Tensorflow-serving: Flexible, high-performance ml

serving. arXiv preprint arXiv:1712.06139, 2017.

[52] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef

Sivic. Learning and transferring mid-level image rep-

resentations using convolutional neural networks. In

Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 1717–1724, 2014.

[53] Jongsoo Park, Maxim Naumov, Protonu Basu, Summer

Deng, Aravind Kalaiah, Daya Khudia, James Law, Parth

Malani, Andrey Malevich, Satish Nadathur, et al. Deep

learning inference in facebook data centers: Characteri-

zation, performance optimizations and hardware impli-

cations. arXiv preprint arXiv:1811.09886, 2018.

[54] David Pisinger and Paolo Toth. Knapsack problems.

In Handbook of combinatorial optimization, pages 299–

428. Springer, 1998.

[55] Geoff Pleiss, Danlu Chen, Gao Huang, Tongcheng Li,

Laurens van der Maaten, and Kilian Q Weinberger.

Memory-efficient implementation of densenets. arXiv

preprint arXiv:1707.06990, 2017.

[56] Mohammad Rastegari, Vicente Ordonez, Joseph Red-

mon, and Ali Farhadi. Xnor-net: Imagenet classification

using binary convolutional neural networks. In Euro-

pean conference on computer vision, pages 525–542.

Springer, 2016.

[57] Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao,

Zhou Zhao, and Tie-Yan Liu. Fastspeech 2: Fast and

high-quality end-to-end text to speech. arXiv preprint

arXiv:2006.04558, 2020.

[58] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. Ice-

breaker: warming serverless functions better with het-

erogeneity. In Proceedings of the 27th ACM Interna-

tional Conference on Architectural Support for Program-

ming Languages and Operating Systems, pages 753–

767, 2022.

[59] Paul Menage Sanjay Ghemawat. Tcmal-

loc : Thread-caching malloc. http://goog-

perftools.sourceforge.net/doc/tcmalloc.html.

[60] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Go-

har Chaudhry, Paul Batum, Jason Cooke, Eduardo Lau-

reano, Colby Tresness, Mark Russinovich, and Ricardo

Bianchini. Serverless in the wild: Characterizing and

optimizing the serverless workload at a large cloud

provider. In 2020 {USENIX} Annual Technical Confer-

ence ({USENIX}{ATC} 20), pages 205–218, 2020.

[61] Ali Sharif Razavian, Hossein Azizpour, Josephine Sul-

livan, and Stefan Carlsson. Cnn features off-the-shelf:

an astounding baseline for recognition. In Proceedings

of the IEEE conference on computer vision and pattern

recognition workshops, pages 806–813, 2014.

[62] Karen Simonyan and Andrew Zisserman. Two-stream

convolutional networks for action recognition in videos.

arXiv preprint arXiv:1406.2199, 2014.

[63] Karen Simonyan and Andrew Zisserman. Very deep con-

volutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556, 2014.

[64] Peter Snyder. tmpfs: A virtual memory file system. In

Proceedings of the autumn 1990 EUUG Conference,

pages 241–248, 1990.

[65] Vikram Sreekanti, Harikaran Subbaraj, Chenggang Wu,

Joseph E Gonzalez, and Joseph M Hellerstein. Op-

timizing prediction serving on low-latency serverless

dataflow. arXiv preprint arXiv:2007.05832, 2020.

[66] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke,

and Alexander A Alemi. Inception-v4, inception-resnet

and the impact of residual connections on learning. In

Thirty-first AAAI conference on artificial intelligence,

2017.

[67] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception

architecture for computer vision. In Proceedings of

the IEEE conference on computer vision and pattern

recognition, pages 2818–2826, 2016.

USENIX Association 2022 USENIX Annual Technical Conference    487



[68] Mingxing Tan and Quoc Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. In

International Conference on Machine Learning, pages

6105–6114. PMLR, 2019.

[69] Alexander Veysov. Towards an imagenet moment for

speech-to-text. The Gradient, 2020.

[70] Nai Xia, Chen Tian, Yan Luo, Hang Liu, and Xiaoliang

Wang. {UKSM}: Swift memory deduplication via hier-

archical and adaptive memory region distilling. In 16th

{USENIX} Conference on File and Storage Technolo-

gies ({FAST} 18), pages 325–340, 2018.

[71] Yanan Yang, Laiping Zhao, Huanyu Zhang, Jie Li,

Mingyang Zhao, Xingzhen Chen, and Keqiu Li. IN-

Fless: a native serverless system for low-latency, high-

throughput inference. In ASPLOS ’22: 27th ACM Inter-

national Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, Lausanne,

Switzerland, Feb 28- March 4, 2022, pages 1–14. ACM,

2022.

[72] Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy Guo, Jax

Law, Noah Constant, Gustavo Hernandez Abrego, Steve

Yuan, Chris Tar, Yun-Hsuan Sung, et al. Multilingual

universal sentence encoder for semantic retrieval. arXiv

preprint arXiv:1907.04307, 2019.

[73] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod

Lipson. How transferable are features in deep neural

networks? arXiv preprint arXiv:1411.1792, 2014.

[74] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng

Yan. Mark: Exploiting cloud services for cost-

effective, slo-aware machine learning inference serv-

ing. In 2019 {USENIX} Annual Technical Conference

({USENIX}{ATC} 19), pages 1049–1062, 2019.

[75] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl.

Objects as points. arXiv preprint arXiv:1904.07850,

2019.

488    2022 USENIX Annual Technical Conference USENIX Association



PetS: A Unified Framework for Parameter-Efficient Transformers Serving

Zhe Zhou †

Peking University
Xuechao Wei

Peking University
Alibaba Group

Jiejing Zhang
Alibaba Group

Guangyu Sun *

Peking University

Abstract
Deploying large-scale Transformer models under the con-
ventional pre-train-then-fine-tune paradigm is impractical
for multi-task serving, because a full model copy for each
downstream task must be maintained, quickly exhausting the
storage budget. Recent algorithmic advances in Parameter-
Efficient Transformers (PETs) have shown enormous poten-
tial to mitigate the storage overhead. They share the pre-
trained model among tasks and only fine-tune a small portion
of task-specific parameters. Unfortunately, existing serving
systems neither have flexible PET task management mecha-
nisms nor can efficiently serve queries to different tasks in
batches. Therefore, we propose PetS, the first unified frame-
work for multi-task PETs serving. Specifically, different PET
tasks are expressed by a unified representation in the same
framework, which enables flexible PET task management.
Based on the unified representation, we design a specialized
PET inference engine to batch different tasks’ queries to-
gether and execute them with task-agnostic shared operators
and task-specific PET operators. To further improve system
throughput, we propose a coordinated batching strategy to
deal with arbitrary input queries. We also develop a PET op-
erator scheduling strategy to exploit parallelism between PET
tasks. Comprehensive experiments on Edge/Desktop/Server
GPUs demonstrate that PetS supports up to 26× more con-
current tasks and improves the serving throughput by 1.53×
and 1.63× on Desktop and Server GPUs, respectively.

1 Introduction
Recently, large-scale pre-trained Transformer models have
revolutionized the field of artificial intelligence. Benefited
from the practical pre-train-then-fine-tune paradigm, Trans-
former models such as Bert [9], GPT-2/3 [3,45], Roberta [31],
XLNet [59], T5 [46], and some other variants [28, 29] have
achieved the leading-edge performance on various NLP
(Natural-Language-Processing) tasks, including question-
answering, sentiment-classification, text classification and ma-
chine translation, etc. Besides NLP tasks, some recent works
also apply transformers to computer vision tasks [4, 11, 25,
32, 55, 61], which demonstrate comparable or even superior

†Work done during Zhe Zhou’s internship at Alibaba DAMO Acadamy.
*Corresponding author.

performance against conventional Convolutional Neural Net-
works (CNNs). In brief, Transformers have been recognized
as a milestone of artificial intelligence.

To date, a standard workflow has been shaped to apply
Transformers to real-world applications. As is depicted in
Figure 1, big companies like Google first pre-train the Trans-
former models like Bert [9] and GPT [3, 45] with large-scale
datasets (Step 1©). The unsupervised pre-training usually lasts
for days to months, even trained on TPU clusters [3, 9]. The
pre-trained models with rich task-agnostic knowledge are
provided to application developers, who then fine-tune the
pre-trained models on their private datasets in a supervised
manner (Step 2©). The fine-tuned task-specific models are
finally deployed to cloud or edge servers (Step 4©) to process
different input queries. Such a workflow, however, is faced
with the poor scalability issue in the pervasive multi-task
serving scenarios [18, 19, 34, 40, 48, 53]. Since application
developers fine-tune and maintain a full model copy for each
downstream task, the storage overhead is proportional to the
number of deployed tasks. Considering the enormous pa-
rameters (e.g., several hundred millions to several thousand
millions of parameters) of Transformer models, the storage
overhead will be huge. What is worse, conventional serving
frameworks have to swap in and out models frequently if the
GPU memory cannot hold all the invoked tasks, resulting in
much lower serving throughput. Also, since the input queries
are associated with different models, we cannot inference
them in batches for higher serving throughput [7, 12, 16, 50].

Recent algorithmic advances in Parameter-Efficient Trans-
formers (PETs) have shown enormous potential to solve these
problems partially. They share the pre-trained model weights
among tasks and only fine-tune a small portion of task-specific
parameters for each downstream task [14,20,23,24,41,62,64].
By this means, the storage overhead is substantially mitigated,
while the model accuracy is still comparable or even superior
to the full-model fine-tuning counterparts. These methods,
however, cannot run efficiently with existing Transformers
serving frameworks [12, 37, 56]. On the one hand, due to the
lack of PET task management mechanism and PET-oriented
inference engine, we have to merge PET parameters into the
shared model and still send full model copies to the frame-

USENIX Association 2022 USENIX Annual Technical Conference    489



PIE 
Inference *

*

* *

⑤

Full-model 
Copies

Task-0

Task-1

Task-2

Conventional
Frameworks

②

PET
Parameters

Task-0

Task-1

Task-2

Model
Architecture

Unsupervised
Pre-training

Large-Scale
Dataset

① Pre-trained
Model

Full-Model 
Fine-tuning

Parameter-
Efficient

Fine-tuning

Task-Specific Datasets

Shared 
Weight

Model Base

Model Base

Query-0

Query-1

Query-2

Model 
Switching

PetS

*

*

+

*

Input
Queries

④

③

<5%

90%

30%

Figure 1: The conventional workflow VS. PetS workflow for developing and deploying Transformer-based applications. 1©:
Large-scale unsupervised pre-training. 2©: Full-model fine-tuning on customized datasets for different tasks. 3©: Parameter-
efficient fine-tuning. 4©: Serving the input queries with conventional frameworks. 5©: Serving the input queries with PetS.

works. Thus, the GPU memory footprint is not mitigated. On
the other hand, queries to different tasks cannot be processed
in batches due to both the inter-task weight differences and
inter-algorithm representation differences.

To take full advantage of parameter-efficient Transform-
ers, in this paper, we propose PetS, a unified framework for
multi-task PETs serving with extraordinary scalability and
performance. To this end, we first express the state-of-the-art
PET algorithms by a unified representation, which decou-
ples any PETs into task-agnostic shared operations and task-
specific PET operations. Based on the unified representation,
we design a PET tasks management mechanism, which en-
ables the service providers to register and load PET tasks
flexibly. We then develop a high-performance PET Inference
Engine (PIE) to batch different tasks’ queries and execute
them with shared operators and light-weighted PET operators,
substantially improving the serving throughput. We also pro-
pose several optimization strategies to improve the system’s
throughput further. To be specific, we propose a Coordinated
Batching strategy to deal with arbitrary input queries (i.e.,
queries with different sequence lengths and PET types). To
exploit parallelism between PET operators, we apply a PET
Operator Scheduling strategy to properly put concurrent PET
operators to different CUDA streams. We comprehensively
evaluate PetS on Edge/Desktop/Server GPU platforms. Com-
pared to conventional frameworks, PetS supports up to 26×
more concurrent Transformer tasks and improves the serv-
ing throughput by 1.53× and 1.63× on Desktop and Server
GPUs, respectively. Therefore, PetS shows great potential to
reduce the service deployment cost and improve the service
quality in multi-task Transformers serving scenarios.

2 Background & Motivations
2.1 Transformer Models
As illustrated in Figure 2, Transformer models are generally
built by stacking several homogeneous Transformer blocks. A
standard Transformer block consists of three key components:

Token Embeddings

“How”  “are”  “you” “?”

Multi-Head
Attention

…

Block 𝐿

Add & Norm

Add & Norm

FFN

𝑄, 𝐾, 𝑉 = 𝑋 ⋅ 𝑊𝑄,𝑊𝐾 ,𝑊𝑉 + 𝑏

𝑅𝑒𝑠ℎ𝑎𝑝𝑒 𝑄,𝐾, 𝑉

𝑋 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
𝑄 ⋅ 𝐾𝑇

𝑑
⋅ 𝑉

𝑋 = 𝑋 ⋅ 𝑊𝑂 + 𝑏

𝑅𝑒𝑠ℎ𝑎𝑝𝑒 𝑋

𝑋 = 𝐺𝐸𝐿𝑈(𝑋 ⋅ 𝑊1 + 𝑏1)

𝑋 = 𝑋 ⋅ 𝑊2 + 𝑏2

Tr
an

sf
o

rm
er

 B
lo

ck

①

②

③

④

⑤

⑥

⑦

Figure 2: Bert Architecture.

Multi-Head Attention (MHA), Feed-Forward Network (FFN)
and Normalization Layers (Norm). For each block, the input
is a sequence of n vectors (tokens), denoted as X ∈ Rn×din ,
where n and din are the sequence length and the input feature
dimension. Three linear projection weights {WQ,WK ,WV} ∈
Rdin×d project the input tensor X to Query, Key and Value
tensors, denoted as {Q, K, V} ∈ Rn×d (Step 1© in Figure 2),
where d represents the hidden feature dimension. The Q,K,V
tensors are split to multiple "Heads" (Step 2©) to perform
softmax-based self-attention respectively (Step 3©). The self-
attention results are then concatenated (Step 4©) and linear-
transformed (Step 5©) to generate the MHA results. After
skip-connection and layer-normalization, the hidden feature
X is then fed into the FFN layer, which computes with two
fully-connected layers (Step 6© and 7©). The GELU activation
function [22] is applied to the first layer’s output. One block’s
output serves as the input of the next block. On top of the last
block, there is usually a classification layer to generate the
final results for a given downstream task.

Traditional neural-networks like CNNs and LSTMs all in-
volve "prior" in their models to enhance the performance (i.e.,
a CNN model assumes the 2D images have spatial locality,
while an LSTM model assumes that the information should be
either remembered or forgotten). In comparison, Transform-
ers have no such priors and learn all the useful information

490    2022 USENIX Annual Technical Conference USENIX Association



Table 1: Comparisons of State-of-the-Art Parameter-Efficient Transformers.
Model Type Adapters [23] MaskBert [64] Diff-Pruning [20] Bitfit [62]

Main Computation.
Pre-trained Parameters

Are Marked Blue + *( )

*

… +

*

+

*

+

*

Formula Yt = Xt ·W +b,
Yt = Yt +σ(Yt ·Wdown) ·Wup

Yt = Xt ·(W�Mt)+b Yt = Xt ·(W +δt)+(b+bt) Yt = Xt ·W +bt

Additional Parameters 7.3% 3% 0.5% 3.8%
Leading Tasks in

GLUE Benchmark * STS-B, QQP SST-2 QNLI, MNLI,
CoLA,MRPC

RTE

*Comparisons are based on BERT-large. We reproduce MaskBert on BERT-large, while the other results are obtained from the reported numbers.

purely through unsupervised pre-training. To achieve this, not
only the pre-train datasets are large in scale, the models also
contain enormous parameters to guarantee a high knowledge
capacity. For instance, Bert-base and Bert-large have 110M
and 340M parameters, respectively, while some recent models
even have billions [3,51] or trillions of parameters [13]. The
explosion of such large-scale Transformer models brings both
opportunities and challenges. On the one hand, real-world
tasks get benefited from their superior performance compared
to traditional DNNs. On the other hand, it is challenging to
deploy Transformer models to resource-constrained scenarios
due to the storage/memory capacity limit, especially when
multiple tasks should be served simultaneously.

2.2 Multi-Task Transformers Serving
In real-world scenarios, a server usually runs multiple tasks
(here a task refers to a distinct DNN model) concurrently for
serving different queries [2, 48, 50] (each query invokes at
least one of the DNN models). According to the standard
workflow shown by steps 1©- 2©- 4© in Figure 1, for multi-task
transformers serving, every downstream task has its own fine-
tuned model. That is to say, the storage/memory overhead is
proportional to the number of tasks. In the figure, three tasks
occupy 3× storage. More importantly, all the models should
be buffered in GPU memory for quick response to different
queries. As the number of tasks increases, it will easily exceed
the GPU’s memory. Alternatively, we can swap in and out
models once some tasks are invoked. Such a method, however,
will downgrade the system’s performance due to the consider-
able model swapping overhead [19, 48, 53]. Also, if each task
only has limited input queries, the computation resources will
be under-utilized because of the small batch size.

Although previous serving systems/frameworks like IN-
FaaS [48], Nexus [50], Rafiqi [53], Triton [40], Tensorflow
Serving [18] and many DNN accelerators [2, 6, 17, 26, 27]
have emphasized the multi-task DNN serving ability, to im-
plement multi-task Transformers serving is still challenging.
Reasons are mainly two-folded. First, Transformers usually
contain enormous parameters to guarantee their sufficient
knowledge capacity. Thus, the storage and memory overhead
is much heavier than traditional DNNs, limiting the number
of served tasks. Second, previous multi-task inference frame-

works/accelerators assume that the computation/bandwidth re-
quirements vary among concurrent DNNs. Thus, they execute
computation-bounded and memory-bounded models (or lay-
ers) together to fully utilize the hardware resources. However,
since the Transformer blocks are homogeneous among differ-
ent tasks, there is little room for improving system throughput
by co-locating heterogeneous models.

2.3 Parameter-Efficient Transformers
A potential solution to the multi-task Transformers serv-
ing problem is directly training a multi-task model like
T5 [46]. However, such a method is infeasible in real scenar-
ios since all the application developers have to provide their
private datasets to train such a one-for-all model. Recently,
Parameter-Efficient Transformers (PETs) have emerged as
another promising way to deal with the problem. PETs are
based on the assumption that pre-trained models have learned
rich knowledge from large-scale pre-train datasets [44, 47].
Thus, we can adapt the pre-trained model to downstream tasks
by only fine-tuning a small portion of task-specific parame-
ters rather than the whole model. As illustrated in Figure 1,
through parameter-efficient fine-tuning (Step 2©), only the
PET parameters should be stored for each downstream task.
For example, four representative PETs, namely Adapters [23],
MaskBert [64], Diff-Pruning [20], and Bitfit [62] only use
0.5% to 7.3% additional parameters for each task. However,
they still achieve comparable or even higher accuracy against
the full-model fine-tuning counterparts. We summarize them
in Table 1 and introduce them as follows:
Adapters: Adapters [23] proposes to inject trainable, task-
specific "adapter" modules between some layers of the pre-
trained model, while the pre-trained weights are shared among
tasks. Formally, assume the linear layers in a pre-trained
model compute the hidden feature Yt with input feature Xt
and pre-trained parameters W (weight) and b (bias), namely
Yt = Xt ·W +b, then an adapter module manipulates the hid-
den features with two learnable weights Wdown ∈ Rd×dm and
Wup ∈ Rdm×d , namely Yt = Yt +σ(Yt ·Wdown) ·Wup, where σ

is the activation function. Since the bottleneck dimension
dm << d, the Adapter modules are small in size. Each task
only requires about 7.3% of new parameters (including a
task-specific classification layer).

USENIX Association 2022 USENIX Annual Technical Conference    491



MaskBert: Based on the lottery ticket hypothesis on Bert [5,
43], MaskBert [64] adapts the pre-trained model to down-
stream tasks by learning binary masks for each weight matrix.
As shown in Table 1, for each task, the pre-trained model
(including the classification layer) is frozen. Only the binary
masks with about 5% of zero elements are learned for each
weight matrix. Since the masks are binary, MaskBert only
incurs about a 3% per-task storage overhead. For each linear
layer, the computation is represented as Yt = Xt ·(Mt�W )+b,
where Mt denotes the task-specific mask.
Diff-Pruning: Diff-Pruning [20] also shares the pre-trained
model among tasks and only fine-tunes a small portion of
"difference" for each downstream task. As shown in Table 1,
the orange elements in both weight and bias represent the
fine-tuned "difference", which only incur about 0.5% of new
parameters for each task. During inference, these difference
parameters, denoted as δt and bt , are merged with the pre-
trained model to construct a task-specific model. Thus, the
main computation is Yt = Xt · (W +δt)+(b+bt).
Bitfit: Besides a task-specific classification layer, Bitfit [62]
only fine-tunes the linear and normalization layers’ bias-terms,
which also achieves competitive accuracy on some tasks in
the standard GLUE benchmark [54]. As shown in Table 1, the
linear layers in Bitfit compute with Yt = Xt ·W +bt where bt
is the only task-specific parameter.

There are still many other emerging PET algorithms [14,
24, 33, 41]. Their workflows are similar to at least one of
the above PETs. Therefore, in this paper, we conduct the
discussion mainly based on these four representative PETs.

2.4 Challenges of Multi-Task PETs Serving
When serving T different tasks, PETs reduce the storage over-
head from original T × γ to T ×η+ γ, where γ and η denote
the amount of full-model parameters and PET parameters, re-
spectively. Since η << γ, using PETs can significantly reduce
the storage overhead. However, we notice that the algorithmic
advantages of PETs can hardly translate to real speedup with
conventional Transformers serving frameworks, mainly due
to the following challenges:
Challenge #1: Current frameworks cannot support various
PET algorithms flexibly. We present the leading GLUE tasks
of each PET algorithm in Table 1. As we can see, all PETs
have their advantageous tasks. None of the four PETs can
serve as the one-for-all choice. That is to say, the application
developers tend to choose the best PETs for their downstream
tasks [33]. Therefore, the serving framework has to support
multiple types of PETs. However, current serving frameworks
are not optimized for diverse PETs. They lack the mechanism
to register and manage different PETs flexibly, considering
their distinct algorithmic representations.
Challenge #2: The GPU-memory footprint is still not mit-
igated. To serve PETs like MaskBert and Diff-Pruning us-
ing conventional inference frameworks, we have to merge
the task-specific PET parameters into the shared model. Af-

𝑌𝑡 = 𝜎((𝑋𝑡 ⋅ 𝑊 + 𝑏) ⋅ 𝑊𝑑𝑜𝑤𝑛) ⋅ 𝑊𝑢𝑝

𝑌𝑡 = 𝑋𝑡 ⋅ (𝑀𝑡 ⊙𝑊) + 𝑏

𝑌𝑡 = 𝑋𝑡 ⋅ 𝑊 + 𝛿𝑡 + 𝑏 + 𝑏𝑡

𝑌𝑡 = 𝑋𝑡 ⋅ 𝑊 + 𝑏𝑡

𝑌𝑡 = 𝑋𝑡 ⋅ 𝑊

𝑌𝑡 = 𝑋𝑡 ⋅ 𝑊

(a)Original Representations (b)Unified Representation

①:

Dense MVM

− 𝑋𝑡 ⋅ 𝑊 ⊙ ഥ𝑀𝑡

+ 𝑋𝑡 ⋅ 𝛿𝑡

Sparse MVM

②:

③:

④:

+ 𝑏

+ 𝑏

+ 𝑏𝑡

+ 𝑏𝑡

Vadd

𝑌𝑡 = 𝑋𝑡 ⋅ 𝑊

𝑌𝑡 = 𝑋𝑡 ⋅ 𝑊

𝜎(⋅ 𝑊𝑑𝑜𝑤𝑛)𝑊𝑢𝑝

Dense MVM

+

*
*

…

* *

④

② ③①

PET OperationsShared Operation

+−

𝑋𝑡

𝑊

𝑏

𝑏𝑡

Figure 3: Unified representation of PETs. 1©: Adapters 2©:
MaskBert 3©: Diff-pruning 4©:Bitfit.

ter that, we load the newly constructed models to inference
frameworks for serving. Thus, concurrent tasks still occupy
O(T × γ) GPU memory, limiting the system’s scalability. As
discussed before, we can swap in/out models among tasks to
deal with the GPU capacity issue, which will result in low
throughput due to the model swapping overhead [19, 48, 53].
Challenge #3: It is still hard to improve the system’s serv-
ing throughput, especially when each task only has limited
queries. It is well-known that batched inference is a practical
technique to improve a DNN serving system’s throughput
[7,12,16,50]. However, due to the differences in PET parame-
ters and PET algorithms, conventional frameworks can hardly
batch different tasks’ queries (even though the tasks may be-
long to the same PET algorithm) for higher throughput. Such
a problem will be more prominent when each concurrent task
only has a few queries to process.

3 PetS Framework
To address the challenges outlined above, we propose PetS, a
unified framework for efficient multi-task PETs serving. We
first propose a unified representation to put all PETs into one
framework. Based on this, we develop a flexible PET tasks
management mechanism and a specialized PET Inference
Engine (PIE) that enables both inter-task and inter-algorithm
query-batching. Details are introduced as follows.

3.1 Unified Representation of PETs
As Table 1 shows, state-of-the-art PETs have different algo-
rithmic representations, resulting in a "fragmentation" prob-
lem. We propose a unified representation, which expresses
PETs with task-agnostic and task-specific operations, to help
put them into one framework and enable batched inference.
As illustrated in Figure 3, for each PET, we decouple the
main computation (linear layers) into three operations: (1)
Dense Matrix-Vector-Multiplication (MVM) operation using
shared pre-trained weights. (2) Bias vector addition (Vadd)
using shared or task-specific bias. (3) Sparse/dense MVM op-
erations using task-specific PET parameters. Since all PETs
share the same pre-trained weight matrix W , the first opera-
tion, namely Xt ·W can be batched together. Though the task-

492    2022 USENIX Annual Technical Conference USENIX Association



specific computation with PET parameters cannot be batched
among PETs, it only involves light-weighted operations.

Adapters and Bitfit naturally fit into such a representa-
tion, since the PET operations are already decoupled from
the shareable operations. For Diff-Pruning and MaskBert,
we need to perform some equivalent transformations. As
Figure 3 shows, for Diff-Pruning, the computation concern-
ing the shared weight and "difference" are conducted sepa-
rately. Then the results are added up, namely Xt · (W +δt) =
Xt ·W +Xt · δt . For MaskBert, we use an equivalent trans-
formation: Mt �W = (1−Mt)�W , where Mt denotes the
bit-wise inversion of binary mask Mt . Thus, the original MVM
operation is converted to Xt ·W −Xt · (W �Mt). The W �Mt
term can be treated as the sparse weight differences similar to
Diff-Pruning’s. Since δt and W �Mt are sparse matrices with
high sparsity (typically 95% - 99.5%), these PET operations
can be efficiently computed with sparse kernels. Considering
that the Vadd operations concerning bias terms only have little
overhead, we mainly focus on operations (1) and (3), namely
the sparse and dense MVM operations.

The unified representation brings two main advantages.
First, the queries from different tasks can be batched together
at step (1), regardless of the PET types. Let us consider an
extreme case: assume we have T tasks, each having a single
query. The execution latency is changed from ∑

T−1
i=0 α(1) to

∑
T−1
i=0 βi +α(T ), where α(n) denotes the latency of running a

Transformer model (without PET) with a batch of n queries.
βi denotes the latency of PET operations for query i. The
throughout is improved if we have:

T−1

∑
i=0

βi +α(T )<
T−1

∑
i=0

α(1) (1)

The inequality always holds since βi << α(1) (the PET oper-
ations are light-weighted compared to the shared operations)
and α(T ) << ∑

T−1
i=0 α(1) (batched inference can greatly re-

duce the average latency [7, 12, 16, 50]).
Second, such a unified representation simplifies the PET

tasks management. Each task can be registered by identifying
its shared model tag, PET type, and PET parameters. The
inference engine can then load these PETs in a unified way.

3.2 Framework Overview
Based on the unified representation, we then present the
PetS serving framework to support the management and
serving of PET tasks. Figure 4 illustrates the proposed
PetS framework. PetS has three main components: a Task
Manager, a Parameter Repository, and a PET Inference
Pipeline. PetS works as follows: ¶: The framework first
registers the PET tasks submitted by developers. For each
PET task, the developers are required to provide the Pre-
trained Model Tag (such as bert-base-cased), PET Param-
eters (in compressed format) and PET Type (e.g., MaskBert).
·: Task Manager registers PET tasks, which assigns a unique
Task_id to each submitted task. The PET parameters and the

PET Serving
PET Inference Pipeline

Pre-train 
Model ID
Shadow 

Parameters

PET Type

Pre-train 
Model ID
Shadow 

Parameters

PET Type

Pre-trained 
Model Tag

PET 
Parameters

PET Type

PET Parameters

Shared Model
Parameters

Register Tasksu

Task Register

Task Loader

Task Manager

Parameter Repository

v
w

<Task_id> 
<Input Data>

…

Query 0:

Query 1:

Input Queriesx

Scheduling 
Policy

Batch Scheduler

Performance 
Model

Inference Engine

PET Task 
Scheduler

PET Operator 
Library

y

Input 
Analyzing

Input 
Reformatting

Preprocessing

<Task_id> 
<Input Data>

Figure 4: PetS System Overview.

pre-loaded shared model parameters are all stored in the Pa-
rameter Repository (¸). After registration, the PET Inference
Engine (PIE) is responsible for processing the input queries
(¹) through an optimized PET Inference Pipeline (º).

3.3 Managing PET Tasks
One of the key features of PetS is the flexible and efficient
PET task management mechanism, which is powered by the
Task Register and Task Loader modules.
Task Register: The Task Register module registers a PET
task according to the user-provided information denoting
its shared model, task-specific parameters, and PET type.
A triplet <Task_id, Shared_model_tag, PET_type> is
formed to bind each task with its corresponding pre-trained
model and the supported PET type, where the Task_id is
unique to identify each PET task. All these triplets are or-
ganized as a map structure, with the Task_id as the key
and the <Shared_model_tag, PET_type> pair as the value.
Therefore, we can index the metadata of each task given the
Task_id of a query. Once a PET task completes registration,
its PET parameters are stored in the Parameter Repository.
Note that for PETs like MaskBert and Diff-Pruning, the PET
parameters are stored in a compressed format to save storage.
Task Loader: Before a PET task is invoked by the inference
engine, the Task Loader module firstly loads the shared model
parameters if they have not been loaded yet. Otherwise, the
Task Loader indexes the Parameter Repository and accesses
the PET parameters according to the Task_id of each invoked
task. Considering that the PET parameters are small in size
and the shared model only has one copy, all the parameters
can be buffered into the GPU memory for quick invoking.

3.4 PET Inference Pipeline
At the core of PetS framework is the PET Inference Pipeline,
which processes queries with three pipelined steps including
Preprocessing, Batch Scheduling and PET Inference.
3.4.1 Preprocessing
The preprocessing module fetches queries from standard
HTTP/gRPC data plane similar to conventional inference
serving frameworks [18, 40]. Then it analyzes input data

USENIX Association 2022 USENIX Annual Technical Conference    493



enum PET_type {
MaskBert = 0, 
Diff_Pruning = 1, 
Bitfit = 2, 
Adapter = 3};

Batched
Inputs

×





PET_type
= 0

Selector

get_pet_op(pet_type)


get_pet_param(task_id)

𝑀0 𝛿2 𝛿4 𝑊9
…

…





PET_Op
0

PET_Op
1

PET_Op
3

Task_id = 0

Task_id = 2

Task_id = 4

Task_id = 6

Task_id = 6

Task_id = 9

Task_id = 9

Input Tensors

…

Shared
Weight

Lookup Table

PET_type

0

1

Task_id

0

2

……

slice_to()

Figure 5: Base PET inference engine workflow.

and reformats them for the next query-batching step. Firstly,
the input data is classified according to the shared model
(Shared_model_tag). The metadata of each query is ex-
tracted, such as the invoked task’s id, sequence length, PET
type, etc. Some preliminary data preprocessing operations
are then performed according to the extracted metadata, such
as grouping the queries of the same PET task. In order to
improve the performance of sparse PET operations, the input
tensors’ data layout is also reformatted according to the com-
pression format of the corresponding sparse PET parameters.
Finally, the preprocessed input queries together with the ex-
tracted metadata are dispatched to different queues for further
scheduling, according to their targeting shared models.
3.4.2 Batch Scheduler
As discussed before, batching is an effective way to improve
system throughput. Though PetS enables both inter-task and
inter-algorithm batching through the proposed unified repre-
sentation, the heterogeneity of queries in terms of PET type
and sequence length still prevents batching efficiently. The
batch scheduler module is used to overcome the challenge
posed by query heterogeneity. Taking preprocessed queries
as input, the batch scheduler tries to maximize the benefit of
batching PET operators and minimize the padding overhead
of batching shared operators with different sequence length at
the same time. It leverages an accurate performance model to
help make batching decisions. The details of the scheduling
policy will be described in Section 4.1.
3.4.3 PET Inference Engine
PIE Workflow: The batched queries are finally fed into the
PET Inference Engine (PIE). Figure 5 illustrates the base
workflow of PIE. In the Figure, we use different colors to
indicate the queries’ PET types in the batch. For example,
task 0 belongs to MaskBert, while tasks 2,4 belong to Diff-
Pruning. PIE starts the computation of each Transformer layer
as follows: ¶: PIE performs batched GEMM computation
using the input tensor and shared weights W . ·: PIE gets the
PET_type attributes of each query by searching in the lookup
table with its Task_id. The batched inputs are also sliced
into several mini-batches (intra-task batching) according to
the task id. Then PIE gets the PET operators (¸) and PET

Task 0 Task 1 Task 3Task 2 Task 4
Step 1: Intra-Task Batching

Step 2: Inter-Task Batching

M
in

i
B

at
ch

𝛽 − Model

𝛼 − Model

PET-OPs Profiling

Shared-OPs 
Profiling

Batch 1Batch 0

B=2, S=34

Batch 2

M
ac

ro
B

at
ch

B=4, S=34

Task 0 Task 1 Task 3Task 2 Task 4

Figure 6: Coordinated Batching Strategy

parameters (¹) according to the obtained PET types. º: PIE
executes the PET operators successively on each sliced mini-
batch. These PET operators are also responsible for adding
the PET results to the shared outputs if needed. Note that the
remaining operations like self-attention are also performed
by PIE but are not shown in the figure.
PET Operator Library: According to the unified rep-
resentation in Figure 3, the PET tasks rely on different
PET operations. MaskBert and Diff-Pruning involve sparse
matrix-matrix multiplication (SpMM) as their PET parame-
ters contain high sparsity. Adapters perform light-weighted
dense GEMM. While Bitfit only requires a Vadd operation.
Therefore, PIE provides an operator library containing high-
performance implementations of both dense and sparse op-
erators. The sparse operators are tuned specifically for the
sparse patterns and parameter sizes of the target models. We
can also implement new PET operators for other emerging
PET algorithms if they can fit into the unified representation.
PET Task Scheduler: During the inference of each layer, the
PET operations of different tasks have no data dependency
and can therefore run in parallel. Given the system allowed
parallelism, e.g., the number of CUDA streams on GPU, the
PET task scheduler schedules the PET operations to utilize the
parallelism as much as possible. The PET operator scheduling
strategy is introduced in Section 4.2.

4 Optimization Strategies

4.1 Coordinated Batching
In real scenarios, the input queries usually have variable se-
quence lengths. If we batch short queries and long queries,
the short ones have to be zero-padded, incurring useless com-
putation. Previous frameworks like TurboTransformers [12]
pay much attention to solve such a problem. However, for
PetS, we have to consider both the shared operations and PET
operations. Therefore, we propose a Coordinated Batching
(CB) strategy to coordinate these two parts during batching.
Problem Formulation: Assume there are R queries, namely
Q = {x0,x1, ...,xR−1} associated with T different tasks. We
divide queries into M batches. For each batch, we use α[N][L]
to denote the shared model latency when batching N queries
with a maximum length of L. In the meantime, a PET operator

494    2022 USENIX Annual Technical Conference USENIX Association



Algorithm 1: Coordinated Batching Strategy
1 Input: Number of tasks T , queries Q = {x0,x1, ...,xR−1}, Shared

Op latency model α, PET Op latency model β;
2 Step 0: Pre-processing
3 Cluster input queries to the same task and generate

Q = {X0,X1, ...,XT−1}, where Xi contains ni queries;
4 Step 1: Intra-task batching
5 for i← 0 until T do
6 Create DP state vector state[ni +1], state[0] = 0;
7 Sort queries in Xi according to the sequence length in an

ascending order;
8 Create split_idx_list[ni +1], pt = get_pet_type(i) ;
9 for j← 1 to ni; min_cost = INF do

10 for k← 1 to j do
11 tmp = state[k−1]+β[pt][ j− k+1][Xi[ j].len]);
12 if tmp < min_cost then
13 min_cost = tmp, split_idx = k−1;

14 state[ j] = min_cost, split_idx_list[ j] = split_idx;

15 Split queries into mini-batches MB using split_idx_list;

16 Step 2: Inter-task batching
17 Sort mini-batches according to their max sequence lengths;
18 Create DP state vector state[#mini_batch+1], state[0] = 0;
19 Create sum[#mini_batch+1], sum[i] records the total queries of the

first i mini-batches;
20 for i← 1 to #mini_batch; min_cost = INF do
21 for j← 1 to i do
22 batch_size = sum[i]-sum[j-1];
23 tmp = state[ j−1]+α[batch_size][MB[i].max_seq_len]);
24 if tmp < min_cost then
25 min_cost = tmp, split_idx = j−1;

26 state[i] = min_cost,split_idx_list[i] = split_idx;

27 Split mini-batches into macro batches using split_idx_list;
28 Return: The scheduled macro batches

takes β[pt][n][l] seconds to process the PET terms of n queries,
whose PET_type is shortened to pt, and l is the max length
of these n queries. Then, the estimated execution latency is:

Batch_Latency(Bi) = α[Ni][Li]+
ti−1

∑
j=0

β[pti j][ni j][li j]. (2)

In the formula, we use Bi to denote the i-th batch, and assume
there are ti different tasks in the batch. For the j-th task in
batch i, there are ni j queries that shape a mini-batch, which is
processed by a PET operator indexed by pti j. The longest se-
quence length of the ni j queries is li j. Since all the M batches,
namely B = {B0,B1, ...,BM−1} are executed successively, we
can further estimate the total latency as:

Total_Latency(B) =
M−1

∑
i=0

Batch_Latency(Bi)

=
M−1

∑
i=0

α[Ni][Li]+
M−1

∑
i=0

ti−1

∑
j=0

β[pti j][ni j][li j]

(3)

As we can see, the total latency is jointly determined by the
shared and PET operators. To coordinate these two parts, we
propose a two-step Coordinated Batching strategy. As illus-
trated in Figure 6, in the first step, we generate "mini-batches"
for each task (intra-task batching) , which only considers the
effect of batching PET operators using a profiled β-model. In
the second step, we generate "macro-batches" by combining
these mini-batches among tasks (inter-task batching), which

Algorithm 2: PET Operator Scheduling Strategy
1 Input: PET operator set O of a macro-batch, stream set S,

latency model β and bandwidth model ω

2 Output: O to streams assignment Φ(O→ S)
3 I← /0 . operational intensity of O;
4 for o ∈O do
5 op_intensity← ( o.FLOPs

β(o) )/ω(o);
6 I.append(op_intensity);

7 Sort O in an ascending order according to I;
8 for o ∈O do
9 stream_idx← bo.idx/|S|c;

10 Φ(O[o.idx])← S[stream_idx];

only considers the effect of batching shared operators using
a profiled α-model. In both steps, we sort the queries and
use dynamic programming (DP) to find the optimal splitting
positions with low time-complexity.

Algorithm 1 details this strategy. The queries with the
same task id are firstly clustered and sorted according to the
sequence length. At the first step, we use state[i] to record
the minimum latency of PET operations when batching the
first i queries. We use split_idx_list to record the splitting
positions. Equation 4 shows the Bellman equation:

state[i] = min
0< j≤i

(state[ j−1]+β[pti j][i− j+1][li j]) (4)

With the DP algorithm, we divide the queries of each task into
mini-batches. At the second stage, the Bellman equation only
considers the shared operators, whose latency is estimated
by the α model. Instead of scheduling each single query, the
second step schedules the mini-batches:

state[i] = min
0< j≤i

(state[ j−1]+α[batch_size][L j]) (5)

Where state[i] records the minimum latency of batching the
first i mini-batches. L j denotes the max sequence length of
the j-th mini-batch. batch_size denotes the number of total
queries from mini-batches i to j. After dynamic programming,
the mini-batches are assigned to multiple macro-batches.

4.2 PET Operator Scheduling
In addition to the coordinated batch scheduling, PET operators
can be executed in parallel to further improve hardware uti-
lization and performance. To achieve the PET-task-level par-
allelism on GPU, PET operators in a macro-batch (as shown
in Figure 6) can be assigned to multiple CUDA streams. How-
ever, naïvely assigning a unique stream to each PET task may
not get the ideal speedup, because if we assign computation-
intensive operators to different streams (or memory-intensive
operators), they can hardly be executed in parallel, since they
are bounded by the same resources. Therefore, we propose
a light-weighted online scheduling strategy to dynamically
assign PET tasks to streams. The scheduling algorithm is
shown in Algorithm 2. The input includes the set of PET
operators to be scheduled, and the set of streams on which the
PET operators execute. The algorithm also requires the PET
latency model β used in Algorithm 1, as well as a bandwidth

USENIX Association 2022 USENIX Annual Technical Conference    495



Table 2: PET data structures and interfaces
Data Structure Interface

PETModel
load_shared_model(model_url)

load_pet_task(pet_type,param_url)

PETLayer load_pet_params(pet_type, pet_layer_param)

model ω generated together with β. The algorithm outputs the
assignment from the PET operator set to the stream set. The
first step (lines 3–6) of Algorithm 2 computes the operational
intensities of all the PET operators. Operational intensity is
a metric to measure the compute to memory access ratio of
an operator [57]. The achieved intensity of an operator is
computed by its FLOPs divided by the utilized bandwidth.
The second step (lines 7–10) then assigns a stream for each
PET operator. The rationale is to put operators with differen-
tiated operational intensities to different streams, in order to
minimize resource conflict between streams.

Though the PET operator level parallelism contradicts the
assumption that the PET operators are executed sequentially
in Coordinated Batching. Experiments in Section 6 demon-
strates that the coordinated batching still works well with
parallel PET execution. Involving a more accurate perfor-
mance model for parallel PET execution can help generate
better scheduling results. We leave this as our future work.

5 Implementation
We implement PetS with a Python front-end to describe
shared model and PET tasks management, and a C++ backend
to perform query scheduling and inference serving.

5.1 PET Description
The description of PET tasks is based on the Hugging-
Face Transformers framework [58]. We extend HuggingFace
Transformers library mainly with two data structures and
three interfaces to manage PET tasks, as shown in Table 2.
PETModel is the base structure to implement a model with
PET tasks. PETLayer is defined in PETModel to describe
PET operations, apart from the shared operations. The first in-
terface of PETModel in Table 2, load_shared_model, loads
the shared parameters as traditional Hugging Face tasks do.
The load_pet_task interface is used to load PET parame-
ters, given PET type and PET parameters URL. It will call
load_pet_params defined in PETLayer to finish the under-
lying load operations for each layer. Users can inherit and
implement these interfaces according to specific tasks.

5.2 Inference Serving
The three modules of the PetS’s PET Inference Pipeline in
Figure 4 are deployed in individual processes to process input
queries in a pipelined manner.
Inference Engine: Inference frameworks compatible with
HuggingFace Transformers library can be plugged into
PetS as its backend engine, such as TurboTransformers [12],
LightSeq [56], FastTransformers [37], etc. Modifications
should be done to support PET operators and the PET Task

Code Listing 1: User Interface
server = PetS() # create a PET server
# Register PET tasks
server . register_task ("Adapter", " bert−base", pet_param_url_0)
server . register_task ("MaskBert", " bert−base", pet_param_url_1)
# Register other PET tasks ...
# Load shared model parameters and PET tasks
server . load_shared_model("bert−base")
server . load_pet_tasks(pet_task_ids)
# Fetch queries from input query queue and run inference .
queries = server . fetch (input_query_queue)
results = server . inference (queries)

Table 3: Shared Model Configurations
Bert Type #Layer #Head Hidden Size Inter-Size # Params
DistillBert 6 12 768 3072 66 M
Bert-base 12 12 768 3072 110 M
Bert-large 24 16 1024 4096 340 M

Scheduler. Without loss of generality, PetS implements the
backend inference engine based on TurboTransformers *. It
leverages cuBLAS to compute the shared dense MVM oper-
ators. We leverage a high-performance SpMM implementa-
tion [15] to implement the sparse PET operators.

5.3 User Interfaces
We use a code sample as shown in Code 1 to demonstrate
how users can launch PetS, load models and process queries
with only a few lines of Python code.

After creating a PetS server, it firstly registers PET tasks
through the register_task interface. It will write the user-
provided PET parameters to Parameter Repository and get the
assigned task ids. Then the server loads the shared models by
calling standard HuggingFace Transformers API and loads
PET tasks using the assigned task ids to index the Parameter
Repository. Once fetching a group of queries from the input
query queue, the PetS server runs the PET inference pipeline
and returns the inference results.

Currently, we only implement the four aforementioned PET
algorithms in the PetS framework. A new PET algorithm can
work with PetS as long as it meets two requirements: (1)
The PET operations are separable (with necessary equivalent
transformations) from the shared operations. (2) The sepa-
rated PET operations are light-weighted. Then, to support a
new algorithm, the developers should first identify its PET op-
erations. Then the related functions introduced in this section
should be extended accordingly.

6 Evaluation
6.1 Experimental Setup
Shared Models: We choose Bert-base, Bert-large [9], and
DistillBert [49] as the shared pre-trained models, whose con-
figurations are listed in Table 3. We do not include generative
Transformer models such as GPT-2 [45] because GPT-like
models have not been well-studied by the PET algorithms
discussed above. We leave the evaluation on GPT-like mod-
els as our future work and focus on Bert-like models in this

*https://github.com/Tencent/TurboTransformers

496    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/Tencent/TurboTransformers


0

0.5

1

1.5

2

2.5
Single Task Task=16 Task=32 Task=64

0

0.5

1

1.5

2

2.5
Single Task Task=32 Task=64 Task=128

DistillBert Bert-base Bert-large DistillBert Bert-base Bert-large

GTX-1080 Ti Tesla-V100

{Per-task batch size, sequence length}

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Single Task Task=4 Task=16 Task=32

DistillBert Bert-base Bert-large

Jetson-TX2

N
o

rm
al

iz
ed

Q
P

S

{Per-task batch size, sequence length} {Per-task batch size, sequence length}

2
6

5
3

1
0

4

1
3

2
6

5
3

4 8 1
6

3
1

7

6
4

5

1
2

9
3

1
6

6

3
2

0

7
2

8

6
5

1
3

6

2
7

5

4
8

2

9
8

3

1
9

5
8

2
4

6

5
0

1

1
0

0
5

9
0

1
7

6

3
5

5

Figure 7: Throughput Improvement Evaluation on Multiple Platforms.

Table 4: PET Configurations
PET Type Configuration Main PET Params

Adapter Bottleneck = 64
Wdown and Wup at the
BertOutput, SelfAttenOutput layers.

MaskBert 95% Sparsity∗ Binary masks for all the linear weights.

Diff-Pruning 99.5% Sparsity
Sparse difference concerning linear weights,
bias terms, and the classification layer.

Bitfit N/A
Bias terms of linear / layernorm layers
and a classification layer.

∗ Obtained through equivalent transformation

Table 5: Profiling of Total Supported Tasks
Platform Device

Memory
Shared
Models

DistillBert
SeqS / PetS

Bert-base
SeqS / PetS

Bert-large
SeqS / PetS

Jetson TX2 8GB∗ Supported
Tasks

34 / 504 17 / 180 3 / 12
GTX-1080Ti 11GB 56 / 1336 28 / 588 7 / 126
Tesla-V100 32GB 170 / 4344 85 / 2164 25 / 560
∗ Shared by CPU and GPU

paper. Note that although in Section 2 we mainly use a single
layer for illustration, the evaluations in this section are all
conducted on entire models.
PET Tasks: The configurations of four PET algorithms are
summarized in Table 4. For Adapter, we set the hidden size
(dm) of the adapter modules to 64. For MaskBert and Diff-
Pruning the PET parameters’ sparsity is set to 95% and 99.5%,
respectively (we use the equivalent transformation proposed
in Section 3.1 to obtain the 95% sparsity for MaskBert). For
all PETs, we reproduce the algorithm on HuggingFace Trans-
formers to obtain the trained PET parameters.
Platforms: We evaluate PetS on Edge/Desktop/Server plat-
forms, namely Jetson TX2 (8GB memory, shared by CPU
and GPU), GTX-1080Ti-11GB (Intel Xeon E5-2690 CPU),
and Tesla-V100-32GB (Intel Xeon Golden 5220 CPU, two
sockets). The V100 platform installs CUDA-10.1. The 1080
Ti platform installs CUDA-11.3. The TX2 platform is flashed
with Jetpack 4.4.1 containing CUDA-10.2.

6.2 Main Results
6.2.1 Maximum Number of Supported Tasks
We first demonstrate PetS’s scalability by comparing the max-
imum number of supported tasks with conventional Sequential
Serving Systems (SeqS) [1, 7, 12]. Without loss of generality,
here we use the unmodified TurboTransformers framework
as a representative for SeqS. SeqS loads full-model copy for
each task, while PetS works on light-weighted PET tasks. For
each platform, we load T tasks (for PetS, each task belongs
to a random PET type). If the system can process a batch of

32 randomly-generated queries (each query has a length of
128) without the out-of-memory (OOM) issue, we assume
the system can support at least T tasks. We increase T re-
peatedly to test the limit. The maximum supported tasks are
listed in Table 5. Compared to conventional SeqS systems,
PetS supports 4× (Bert-large on TX2) to 26× (DistillBert
on V100) more concurrent tasks, thanks to the proposed uni-
fied representation and efficient PET tasks managing mech-
anism. Therefore, PetS can substantially save the hardware
cost when deploying multiple Transformer-based applications
to scenarios from edge computing to cloud computing. Also,
it avoids the notoriously slow model swapping [19, 48, 53]
even when hundreds to thousands of tasks are invoked.
6.2.2 Throughput Improvement
As stated before, PetS achieves both inter-task and inter-
algorithm batching through the unified representation and a
specialized PET Inference Engine (PIE). Therefore, we eval-
uate PetS’s throughput (measured in Queries-Per-Second,
QPS) under different situations. As shown in Figure 7, we
load 4~32,16~64 and 32~128 random tasks on TX2, 1080 Ti
and V100 platforms, respectively. For each task, we generate
queries with three fixed shapes. All queries with the same
shape are executed in one batch. We adopt SeqS running a
single task as the baseline. Note that here we do not include
the two optimizations introduced in Section 4 and adopt a
simple fixed-batch policy in the batch scheduling step. We
assume that there are no dependencies between tasks.

As we can see, on the 1080 Ti and V100 platforms,
PetS achieves up to 1.87× and 1.86× higher throughput,
1.53× and 1.63× on average, compared to the single-task
serving baseline. We notice that PetS fail to achieve meaning-
ful speedup than single-task serving on TX2. This is because
TX2 only has limited computation resources (256 CUDA
cores) and therefore can hardly get benefited from batched
inference. Similarly, on 1080 Ti and V100, we observe lower
speedup on Bert-large models than Bert-base/DistillBert. This
is because Bert-large has a larger layer size (see Table 3),
which saturates the GPUs’ computation resources more eas-
ily, diminishing the benefits of batched inference.
6.2.3 Comparison with ParS
Apart from Sequential Serving Systems (SeqS), several previ-
ous serving systems are built to support concurrent execution
of multiple tasks in parallel [18, 40, 48], which belong to the

USENIX Association 2022 USENIX Annual Technical Conference    497



0

0.5

1

1.5

2

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

SeqS ParS PetS

N
o

rm
al

iz
ed

 Q
P

S

# of Tasks

O
O

M

O
O

M

O
O

M

O
O

M

{BS,SL}={4,16} {BS,SL}={2,32} {BS,SL}={1,64} {BS,SL}={1,128}

Figure 8: Throughput Comparison with SEQS and PARS.

Parallel Serving System (ParS). We compare PetS’s through-
put over conventional ParS to examine the performance. To
implement ParS, we modify the original TurboTransform-
ers framework and put each task-specific model to a unique
CUDA stream to run all models in parallel. Note that in this
experiment, we adopt Bert-base as the shared model and do
not consider model swapping. All results are collected on the
GTX-1080 Ti platform.

As shown in Figure 8, we evaluate multiple query con-
figurations represented by a pair of per-task batch size and
sequence length ({BS,SL}) to illustrate the PetS’s generality.
We run each query configuration on a different number of
tasks for SeqS, ParS, and PetS. All results are normalized to
the SeqS baseline. When the number of tasks is small (1~4),
PetS cannot outperform ParS. For one thing, PetS has extra
PET operations, as illustrated in Figure 3. For the other, tasks
of ParS run in parallel. Although the shared weight part of
PetS can also utilize parallel hardware, the overhead of PET
operations cannot be offset by the limited parallelism. As the
number of tasks increases, the benefit of PetS begins to mani-
fest. PetS has an average 17.7% speedup over ParS when the
number of tasks reaches 16 on all four configurations. Neither
SeqS nor ParS could run too many concurrent tasks due to
OOM, while PetS is still able to scale to 32 tasks and even
more (refer to Table 5). As we can find in the figure, benefited
from the higher hardware utilization, the QPS of PetS im-
proves with the increased total batch size (i.e., #tasks× BS).
As the number of tasks further increases to 256 or more (not
shown in the figure), the QPS improvement curve will reach
a plateau since a large batch saturates the GPU resources.

6.3 Performance Analysis
6.3.1 Execution Time Breakdown
To figure out why PetS outperforms the baseline systems in
serving throughput, we break down the execution time of both
PetS and SeqS on GTX-1080 Ti. We set two workloads (i.e.,
per-task batch size = 1, sequence length = 64 and per-task
batch = 2, sequence length = 32) and evaluate eight random
tasks with Bert-base and Bert-large models. Therefore, the
two workloads issue 8 and 16 queries each time. As we can
see in Figure 9, PetS speeds up the Non-PET operators (in-
cluding the attention operations and the computation of shared
linear layers) by 2.17× to 3.28×, thanks to the batched ex-
ecution of shared operators. Due to the adoption of SpMM
library, the PET operators only take up 27.4% to 41.3% of
the total execution time. Therefore, the end-to-end execution

0

20

40

60

80

100

SeqS
{1,64}

PetS
{1, 64}

SeqS
{2,32}

PetS
{2,32}

Non-PET Op PET Op

0

10

20

30

40

50

SeqS
{1,64}

PetS
{1, 64}

SeqS
{2,32}

PetS
{2,32}

Non-PET Op PET Op

3.28× 3.20×
41.3%

41.7%

2.21×
2.17×
33.9%

27.4%

Bert-base Bert-large

Pe
r-
qu

er
y
Ti
m
e
(m

s)

Pe
r-
qu

er
y
Ti
m
e
(m

s)

Figure 9: Execution Time Breakdown.

0

2

4

6

8

1 2 4 8 16 32 64

PetS SeqS

OO
M

OO
M

M
em

or
y
Fo
ot
pr
in
t(
GB

)

0

0.5

1

1.5

2

1 2 4 8 16 32 64

PetS SeqS

OO
M

OO
M

M
em

or
y
Fo
ot
pr
in
t(
GB

)

# of Tasks # of Tasks

Weight Footprint Data Footprint

Figure 10: GPU Memory Footprint Comparison.

time is still much less than SeqS.
6.3.2 Memory Footprint Breakdown
We also profile the memory footprint of PetS and SeqS on
1080 Ti to understand why PetS has outstanding scalabil-
ity. Taking the configuration of {BS,SL} = {1,128} as an
example, we plot the consumed GPU memory by both model
weights and data under different task numbers in Figure 10.

We can see that a single task has about 0.35GB weight
parameters. The memory consumption of SeqS grows lin-
early with the number of tasks. The weight parameters exceed
11GB for 32 tasks on SeqS, causing OOM on GTX-1080 Ti.
On the contrary, for PetS, only the memory footprint of the
PET parameters, which normally occupies less than 5% of
the shared weight, increases with the number of tasks. As a
result, the total memory footprints of 64 tasks occupy less
than 40% of total GPU memory, demonstrating that PetS can
support much more tasks. Note that the memory footprints
of 16 and 32 tasks are the same, but 64 tasks consume three
times more data memory than 32 tasks. This is because we
use NVIDIA CUB device memory allocator [36] for dynamic
data memory management, and the allocated device memory
is not strictly proportional to data size, but aligned according
to some rounding rules.
6.3.3 Effect of PET Operator Scheduling
In Section 4.2, we introduce a PET Operator Scheduling strat-
egy to properly schedule PET operators to multiple CUDA
streams. To demonstrate the benefits of such a strategy, we
also profile the speedup using Bert-base on GTX-1080 Ti
GPU. We set the sequence length from 4 to 64. For each test
case, we put the same 1024 random queries in the pool and
process them with a batch of 128. As shown in Figure 11,
when 32 tasks are served, increasing the number of streams to
32 brings the optimal performance for all input configurations
and reduces up to 15% of execution latency. However, we
observe that as the number of tasks keeps growing to 64 and
128, using more than two streams even downgrades the per-
formance under the Seq = 4 configuration. The main inferred

498    2022 USENIX Annual Technical Conference USENIX Association



0.9

0.95

1

1.05

1.1

1.15

1.2

1 2 4 8 16 32

Seq = 64 Seq = 32 Seq = 16 Seq = 8 Seq = 4

0.9

0.95

1

1.05

1.1

1.15

1.2

1 2 4 8 16 32
0.95

1

1.05

1.1

1.15

1.2

1 2 4 8 16 32

# of Streams # of Streams # of Streams

No
rm

.S
pe

ed
up

#Task = 64#Task = 128 #Task = 32

Figure 11: PET Operator Scheduling Performance.

reason is that, as the number of tasks increases, each task’s
batch size gets smaller. When the input queries also have
limited sequence lengths (i.e., seq = 4), the execution time
is too short for the GPU’s scheduler to overlap concurrent
streams. Thus, launching too many streams will only incur
non-negligible synchronization overhead.

For PIE, the number of CUDA streams can be dynamically
set before each batch’s inference. Therefore, we can add a rule
to the PET operator scheduler: for tasks with short sequence
lengths and small per-task batch size, we set a small stream
number such as one or two. For tasks with a long sequence
length, we set a large stream number such as 32. We obtain
the threshold on each GPU platform by profiling in advance.

6.4 Performance on Arbitrary Inputs
As stated before, in real-world multi-task serving scenarios,
the input queries usually have variable sequence lengths and
PET types. Naïvely batching these queries may not bring the
ideal throughput. Our proposed Coordinated Batching (CB)
strategy is aimed to improve PetS’s performance on arbitrary
inputs by coordinating shared operations and PET operations
during batching. To evaluate the effect of CB, we test on
workloads with variable sequence lengths and PET types, and
then compare CB with three baseline batching strategies:
Fixed-Sized Batching: We put queries in the pool to fix-sized
batches, regardless of their PET types and sequence lengths.
α-only Batching: We dynamically batch the queries only
using the α model. This strategy is similar to TurboTrans-
formers’ smart batching. To implement the α-only Batching,
we treat every single query as a mini-batch and only conduct
the inter-task batching (step 2) in Figure 6.
β-only Batching: We dynamically batch the queries only
using the β model. That is to say, in Figure 6, only the first
step will be performed. The obtained mini-batches will be
directly sent to PIE for execution.

To simulate real-world cases, we assume that the queries’
lengths obey the Gaussian Distribution. Without loss of gen-
erality, we set the mean value to 32 and set the standard
deviation from 1 to 8. The concurrent tasks are set from 32
to 128. Each task is assigned to a random PET type. For each
case, we put 1024 queries in the query pool. For each query
in the pool, we randomly assign it to a registered task.

As shown in Figure 12, the proposed CB strategy achieves
on average 1.52× and 1.27× speedup over Fixed-Sized Batch-
ing and β-only Batching, respectively. When the std values

7
1

2

7
1

6

7
3

0

6
8

5

6
8

8

7
0

2

5
9

9

6
0

0

6
0

7

5
3

9

5
4

0

5
4

3

0.5

1

1.5

2

128 64 32 128 64 32 128 64 32 128 64 32

Fixed β-Only ɑ-Only CB

Std = 1 Std = 2 Std = 4 Std = 8

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

# of Tasks

Figure 12: Comparison of Batching Strategies

are set from 1 to 4, CB also achieves up to 1.14× (1.06×
on average) speedup over α-only Batching. For input queries
with large variance, Coordinated Batching achieves lower
QPS than α-only Batching. We infer that the first step guided
by the β model may put some queries with certain length
difference into one batch, which is acceptable by Step 1. Such
a difference, however, may be amplified in Step 2, since the
shared operators usually take up the majority of total execu-
tion time (see Figure 9). On the contrary, if the input queries
have middle or small variances, the batching of both the two
steps is near-optimal. Therefore, to get the highest perfor-
mance on arbitrary inputs, we can measure the std value of the
queries in the pool and choose to use Coordinated Batching
(for low-std inputs) or α-only Batching (for high-std inputs).

7 Limitations & Future Work
As revealed by the evaluation results, PetS favors the scenar-
ios where the number of tasks is large, while each task has few
input queries. If there are only a few tasks, but each task has
a large batch, using a traditional SeqS framework may also
achieve good throughput. Also, as shown in Figures 8 and 9,
when there are only a few tasks, the overhead of PetS (i.e,
computing PET operators and shared dense operators sepa-
rately) will outweigh the benefits, since the shared operators
cannot achieve enough speedup in these cases to cover the
overhead of PET operators.

Currently, the proof-of-concept PetS implementation only
supports downstream tasks sharing the same pre-trained
model. However, with the increasing of tasks adopting trans-
formers as their backbones, there will be more and more
shared models registered in PetS. The ability to simultane-
ously serve multiple pre-trained models from various task
fields is needed. On the other hand, giant pre-trained mod-
els with trillions of parameters exceeding the capability of
a single GPU have emerged to achieve significant accuracy
gain, such as [13, 52, 63]. Partitioning a single giant model
with PET tasks and different shared models on multiple GPUs
is challenging for PetS. Moreover, for online queries with
latency and cost constraints, how to balance PetS ’s perfor-
mance and QoS should also be taken into consideration. We
leave the model partitioning and QoS-aware query scheduling
as PetS’s future work.

8 Related Work
Parameter-Efficient Transformers: Apart from the four
representative PETs discussed in the paper, there are many

USENIX Association 2022 USENIX Annual Technical Conference    499



other PET variants like AdapterFusion [41], LoRA [24],
LeTs [14] and Prefix-tuning [30], etc. As stated in Section
5.3, these PETs can also work with PetS with some neces-
sary extensions. We also notice that there are some works
trying to put PETs into one framework such as UniPELT [33]
and MAM-Adapter [21]. However, they belong to training
frameworks designed from the user’s angle. Their main goal
is to combine multiple PET techniques into one model to
achieve better accuracy. On the contrary, PetS is designed
from a service provider’s angle. It batches different fine-tuned
tasks provided by users regardless of their PET algorithms
and parameters. Therefore, these techniques are orthogonal to
PetS. Besides, we also notice that Adapter-Hub [42] shares
many ideas with PetS. It provides an easy way to train and
share adapters for different downstream tasks based on Hug-
gingface Transformers. A recent work named OpenDelta [10]
further supports fine-tuning more types of PETs. However,
the two frameworks are mainly designed for algorithm de-
velopers and not optimized for model serving. PetS mainly
focuses on improving the multi-task serving efficiency from
the system implementation and optimization perspectives. We
believe that it will be promising to adopt PetS as the inference
serving backend of these training frameworks.

Inference Serving Systems: As illustrated in Section 6, pre-
vious inference serving systems can be classified as SeqS and
ParS. Rafiqi [53] and Clipper [7] deploy a model in an exclu-
sive container, and introduce caching, batching, and model
selection techniques to reduce model swapping overhead.
Clockwork [19] reduces GPU inference latency variability by
ordering queries based on their service level objectives (SLOs)
and only running one query at a time, while TurboTransform-
ers [12] batches queries to a single model to improve system
throughput. Compared to the SeqS running each model se-
quentially, ParS systems enable concurrent execution of mul-
tiple models. INFaaS [48] proposes to automatically select
models for multiple queries in order to maximize throughput.
NVIDIA’s MPS [39] and recent MIG [38] techniques enable
efficient GPU resource sharing through hardware partition or
full isolation. There exist other systems [8, 40, 60] featured
with GPU sharing techniques.

Transformers Inference Engines: With the prevailing of
Transformers, some inference engines are designed specif-
ically for efficient Transformer inference. FastTransform-
ers [37] and DeepSpeed [35] are two frameworks featured
with multi-GPU inference. LightSeq [56] is a light-weighted
inference engine performing some input-aware optimization
techniques, such as smart batching and padding minimization,
so does the inference engine of TurboTransformers [12].

Leveraging parameter-efficient Transformers, PetS saves
storage, mitigates model swapping overhead and also im-
proves system throughput by co-design and co-optimization
between inference serving system and inference engine.

9 Conclusion
This paper presents PetS, a unified framework for efficient
multi-task Parameter-Efficient Transformers (PETs) serving.
To enable flexible PET task management and high-throughput
serving, we first propose a unified representation to put differ-
ent PETs into the same framework. Then we design a special-
ized PET inference engine to execute different tasks’ queries
in batches. We also propose a coordinated batching strategy
to deal with arbitrary input queries and develop a PET oper-
ator scheduling strategy to exploit parallelism between PET
tasks. Experiments on Edge/Desktop/Server GPUs demon-
strate that PetS can support up to 26× more concurrent tasks
and improves the serving throughput by 1.53× and 1.63× on
Desktop and Server GPUs, respectively.

Acknowledgment
We thank all the reviewers and the shepherd for their valu-
able suggestions. This work is supported by NSF of China
(61832020, 62032001, 92064006), Beijing Academy of Arti-
ficial Intelligence (BAAI), and 111 Project (B18001)

References
[1] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia

Smirni. BATCH: Machine Learning Inference Serving
on Serverless Platforms with Adaptive Batching. In
SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
1–15, 2020.

[2] Eunjin Baek, Dongup Kwon, and Jangwoo Kim. A
Multi-neural Network Acceleration Architecture. In
2020 ACM/IEEE 47th Annual International Sympo-
sium on Computer Architecture (ISCA), pages 940–953.
IEEE, 2020.

[3] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language Models are Few-shot Learners. arXiv
preprint arXiv:2005.14165, 2020.

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-End Object Detection with Trans-
formers. arXiv preprint arXiv:2005.12872, 2020.

[5] Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia
Liu, Yang Zhang, Zhangyang Wang, and Michael Carbin.
The Lottery Ticket Hypothesis for Pre-trained Bert Net-
works. arXiv preprint arXiv:2007.12223, 2020.

[6] Yujeong Choi and Minsoo Rhu. Prema: A Predictive
Multi-task Scheduling Algorithm for Preemptible Neu-
ral Processing Units. In 2020 IEEE International Sym-
posium on High Performance Computer Architecture
(HPCA), pages 220–233. IEEE, 2020.

500    2022 USENIX Annual Technical Conference USENIX Association



[7] Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J.
Franklin, Joseph E. Gonzalez, and Ion Stoica. Clipper:
A Low-Latency Online Prediction Serving System. In
Aditya Akella and Jon Howell, editors, 14th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI 2017, Boston, MA, USA, March 27-29,
2017, pages 613–627. USENIX Association, 2017.

[8] Abdul Dakkak, Cheng Li, Simon Garcia De Gonzalo,
Jinjun Xiong, and Wen-Mei W. Hwu. TrIMS: Transpar-
ent and Isolated Model Sharing for Low Latency Deep
LearningInference in Function as a Service Environ-
ments. CoRR, abs/1811.09732, 2018.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding. arXiv
preprint arXiv:1810.04805, 2018.

[10] Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, et al. Delta tuning:
A comprehensive study of parameter efficient meth-
ods for pre-trained language models. arXiv preprint
arXiv:2203.06904, 2022.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. An
Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. arXiv preprint arXiv:2010.11929,
2020.

[12] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou.
TurboTransformers: An Efficient GPU Serving System
for Transformer Models. In Proceedings of the 26th
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 389–402, 2021.

[13] William Fedus, Barret Zoph, and Noam Shazeer. Switch
Transformers: Scaling to Trillion Parameter Models with
Simple and Efficient Sparsity. CoRR, abs/2101.03961,
2021.

[14] Cheng Fu, Hanxian Huang, Xinyun Chen, Yuandong
Tian, and Jishen Zhao. Learn-to-Share: A Hardware-
friendly Transfer Learning Framework Exploiting Com-
putation and Parameter Sharing. In International Con-
ference on Machine Learning, pages 3469–3479. PMLR,
2021.

[15] Trevor Gale, Matei Zaharia, Cliff Young, and Erich
Elsen. Sparse GPU Kernels for Deep Learning. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis, pages 1–14, 2020.

[16] Pin Gao, Lingfan Yu, Yongwei Wu, and Jinyang Li. Low
Latency RNN Inference with Cellular Batching. In
Proceedings of the Thirteenth EuroSys Conference, Eu-
roSys, pages 1–15, 2018.

[17] Soroush Ghodrati, Byung Hoon Ahn, Joon Kyung Kim,
Sean Kinzer, Brahmendra Reddy Yatham, Navateja Alla,
Hardik Sharma, Mohammad Alian, Eiman Ebrahimi,
Nam Sung Kim, et al. Planaria: Dynamic Architecture
Fission for Spatial Multi-tenant Acceleration of Deep
Neural Networks. In 2020 53rd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO),
pages 681–697, 2020.

[18] Google. TensorFlow Serving. https://github.com/
tensorflow/serving, 2021.

[19] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao,
Antoine Kaufmann, Ymir Vigfusson, and Jonathan
Mace. Serving DNNs like Clockwork: Performance
Predictability from the Bottom Up. In Proceedings of
the 14th USENIX Conference on Operating Systems
Design and Implementation, pages 443–462, 2020.

[20] Demi Guo, Alexander M Rush, and Yoon Kim.
Parameter-Efficient Transfer Learning with Diff Pruning.
arXiv preprint arXiv:2012.07463, 2020.

[21] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. Towards a Unified
View of Parameter-Efficient Transfer Learning. CoRR,
abs/2110.04366, 2021.

[22] Dan Hendrycks and Kevin Gimpel. Gaussian Error Lin-
ear Units (GELUs). arXiv preprint arXiv:1606.08415,
2016.

[23] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. Parameter-
efficient transfer learning for NLP. In International
Conference on Machine Learning, pages 2790–2799.
PMLR, 2019.

[24] Edward Hu, Yelong Shen, Phil Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Lu Wang, and Weizhu Chen. LoRA:
Low-Rank Adaptation of Large Language Models,
2021.

[25] Yifan Jiang, Shiyu Chang, and Zhangyang Wang. Trans-
gan: Two Transformers can Make One Strong Gan.
arXiv preprint arXiv:2102.07074, 1(3), 2021.

[26] Norman P Jouppi, Doe Hyun Yoon, Matthew Ashcraft,
Mark Gottscho, Thomas B Jablin, George Kurian, James
Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, et al. Ten
Lessons from Three Generations Shaped Google’s
TPUv4i: Industrial Product. In 2021 ACM/IEEE 48th

USENIX Association 2022 USENIX Annual Technical Conference    501

 https://github.com/tensorflow/serving
 https://github.com/tensorflow/serving


Annual International Symposium on Computer Architec-
ture (ISCA), pages 1–14. IEEE, 2021.

[27] Hyoukjun Kwon, Liangzhen Lai, Michael Pellauer,
Tushar Krishna, Yu-Hsin Chen, and Vikas Chandra.
Heterogeneous Dataflow Accelerators for Multi-DNN
Workloads. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA),
pages 71–83, 2021.

[28] Zhenzhong Lan, Mingda Chen, Sebastian Good-
man, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A Lite Bert for Self-supervised Learn-
ing of Language Representations. arXiv preprint
arXiv:1909.11942, 2019.

[29] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. BART: De-
noising Sequence-to-Sequence Pre-training for Natural
Language Generation, Translation, and Comprehension.
In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R.
Tetreault, editors, Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7871–7880.
Association for Computational Linguistics, 2020.

[30] Xiang Lisa Li and Percy Liang. Prefix-Tuning: Optimiz-
ing Continuous Prompts for Generation. In Chengqing
Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors,
Proceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Pro-
cessing, ACL/IJCNLP 2021, (Volume 1: Long Papers),
Virtual Event, August 1-6, 2021, pages 4582–4597. As-
sociation for Computational Linguistics, 2021.

[31] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A Robustly
Optimized Bert Pretraining Approach. arXiv preprint
arXiv:1907.11692, 2019.

[32] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin
Transformer: Hierarchical Vision Transformer Using
Shifted Windows. arXiv preprint arXiv:2103.14030,
2021.

[33] Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma-
hairi, Hao Ma, Jiawei Han, Wen-tau Yih, and Ma-
dian Khabsa. UniPELT: A Unified Framework for
Parameter-Efficient Language Model Tuning. CoRR,
abs/2110.07577, 2021.

[34] Daniel Mendoza, Francisco Romero, Qian Li, Neeraja J.
Yadwadkar, and Christos Kozyrakis. Interference-Aware

Scheduling for Inference Serving. In Proceedings of the
1st Workshop on Machine Learning and Systems, page
80–88, 2021.

[35] Microsoft. DeepSpeed for Inferencing Trans-
former based Models. https://www.deepspeed.ai/
tutorials/inference-tutorial/, 2021.

[36] NVIDIA. CUB. https://nvlabs.github.io/
cub/structcub_1_1_caching_device_allocator.
html.

[37] NVIDIA. Fast Transformer. https://github.com/
NVIDIA/FasterTransformer.

[38] NVIDIA. MIG. https://docs.nvidia.com/
datacenter/tesla/mig-user-guide/, 2021.

[39] NVIDIA. MPS. https://docs.nvidia.com/
deploy/mps/index.html, 2021.

[40] NVIDIA. Triton Inference Server.
https://developer.nvidia.com/
nvidia-triton-inference-server, 2021.

[41] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. Adapterfusion:
Non-destructive Task Composition for Transfer Learn-
ing. arXiv preprint arXiv:2005.00247, 2020.

[42] Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya
Kamath, Ivan Vulić, Sebastian Ruder, Kyunghyun Cho,
and Iryna Gurevych. AdapterHub: A framework for
adapting transformers. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pages 46–54, Online,
October 2020. Association for Computational Linguis-
tics.

[43] Sai Prasanna, Anna Rogers, and Anna Rumshisky.
When Bert Plays the Lottery, All Tickets are Winning.
arXiv preprint arXiv:2005.00561, 2020.

[44] Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao,
Ning Dai, and Xuanjing Huang. Pre-trained Models
for Natural Language Processing: A Survey. Science
China Technological Sciences, pages 1–26, 2020.

[45] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. Language Models
are Unsupervised Multitask Learners. OpenAI blog,
1(8):9, 2019.

[46] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J Liu. Exploring the Limits of Transfer
Learning with a Unified Text-to-Text Transformer. arXiv
preprint arXiv:1910.10683, 2019.

502    2022 USENIX Annual Technical Conference USENIX Association

https://www.deepspeed.ai/tutorials/inference-tutorial/
https://www.deepspeed.ai/tutorials/inference-tutorial/
https://nvlabs.github.io/cub/structcub_1_1_caching_device_allocator.html
https://nvlabs.github.io/cub/structcub_1_1_caching_device_allocator.html
https://nvlabs.github.io/cub/structcub_1_1_caching_device_allocator.html
https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
 https://developer.nvidia.com/nvidia-triton-inference-server
 https://developer.nvidia.com/nvidia-triton-inference-server


[47] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A
Primer in Bertology: What We Know about How Bert
Works. Transactions of the Association for Computa-
tional Linguistics, 8:842–866, 2020.

[48] Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and
Christos Kozyrakis. INFaaS: Automated Model-less
Inference Serving. In Proceedings of the 2021 USENIX
Annual Technical Conference, pages 397–411, 2021.

[49] Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. DistilBERT, a Distilled Version of BERT:
Smaller, Faster, Cheaper and Lighter. arXiv preprint
arXiv:1910.01108, 2019.

[50] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao,
Bingyu Kong, Matthai Philipose, Arvind Krishnamurthy,
and Ravi Sundaram. Nexus: A GPU Cluster Engine
for Accelerating DNN-based Video Analysis. In Tim
Brecht and Carey Williamson, editors, Proceedings of
the 27th ACM Symposium on Operating Systems Prin-
ciples, SOSP 2019, Huntsville, ON, Canada, October
27-30, 2019, pages 322–337. ACM, 2019.

[51] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter lan-
guage models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[52] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-LM: Training Multi-billion Parameter Lan-
guage Models using Model Parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[53] Sammy Sidhu, Jordon Wing, and Aakash Japi. Rafiqi:
A GPU-Based Deep Learning Model Serving System.
Technical report, University of California, Berkeley,
2020.

[54] Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. GLUE:
A Multi-task Benchmark and Analysis Platform for
Natural Language Understanding. arXiv preprint
arXiv:1804.07461, 2018.

[55] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan,
Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and Ling
Shao. Pyramid Vision Transformer: A Versatile Back-
bone for Dense Prediction without Convolutions. arXiv
preprint arXiv:2102.12122, 2021.

[56] Xiaohui Wang, Ying Xiong, Yang Wei, Mingxuan
Wang, and Lei Li. LightSeq: A High Performance
Inference Library for Transformers. arXiv preprint
arXiv:2010.13887, 2020.

[57] Samuel Williams, Andrew Waterman, and David Pat-
terson. Roofline: An Insightful Visual Performance
Model for Multicore Architectures. Commun. ACM,
52(4):65–76, 2009.

[58] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,
Sylvain Gugger, Mariama Drame, Quentin Lhoest, and
Alexander M. Rush. Transformers: State-of-the-Art Nat-
ural Language Processing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 38–45, On-
line, October 2020. Association for Computational Lin-
guistics.

[59] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell,
Russ R Salakhutdinov, and Quoc V Le. Xlnet: Gener-
alized Autoregressive Pretraining for Language Under-
standing. In Advances in neural information processing
systems, pages 5753–5763, 2019.

[60] Peifeng Yu and Mosharaf Chowdhury. Salus: Fine-
Grained GPU Sharing Primitives for Deep Learning
Applications. CoRR, abs/1902.04610, 2019.

[61] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun
Shi, Zihang Jiang, Francis EH Tay, Jiashi Feng, and
Shuicheng Yan. Tokens-to-token vit: Training Vision
Transformers from Scratch on Imagenet. arXiv preprint
arXiv:2101.11986, 2021.

[62] Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. BitFit: Simple Parameter-efficient Fine-tuning for
Transformer-based Masked Language-models. arXiv
preprint arXiv:2106.10199, 2021.

[63] Wei Zeng, Xiaozhe Ren, Teng Su, Hui Wang, Yi Liao,
Zhiwei Wang, Xin Jiang, ZhenZhang Yang, Kaisheng
Wang, Xiaoda Zhang, Chen Li, Ziyan Gong, Yifan Yao,
Xinjing Huang, Jun Wang, Jianfeng Yu, Qi Guo, Yue
Yu, Yan Zhang, Jin Wang, Hengtao Tao, Dasen Yan,
Zexuan Yi, Fang Peng, Fangqing Jiang, Han Zhang,
Lingfeng Deng, Yehong Zhang, Zhe Lin, Chao Zhang,
Shaojie Zhang, Mingyue Guo, Shanzhi Gu, Gaojun Fan,
Yaowei Wang, Xuefeng Jin, Qun Liu, and Yonghong
Tian. PanGu-α: Large-scale Autoregressive Pretrained
Chinese Language Models with Auto-parallel Computa-
tion. CoRR, abs/2104.12369, 2021.

[64] Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and Hin-
rich Schütze. Masking as an Efficient Alternative to
Finetuning for Pretrained Language Models. arXiv
preprint arXiv:2004.12406, 2020.

USENIX Association 2022 USENIX Annual Technical Conference    503



A Artifact Appendix

Abstract
The artifact contains PetS’s code and its setup&running

descriptions. We provide instructions and click-to-run scripts
for reproducing the main results in this paper.

Scope
This artifact is used for reproducing the main results in

Section 6. Specifically, we produce click-to-run scripts to
reproduce the results of Figures 7,8,9,11,12 and Table 4.

Contents
• Code Base: The code base of the artifact includes the
PetS inference framework. It contains the coordinated
batching and PET operator scheduling components to
demonstrate PetS’s performance optimization strategies.

• Benchmarking Scripts: We provide click-to-run bench-
marking scripts to evaluate PetS’s performance.
The script run_pets_main_results.sh can con-
duct all the main experiments, while you can also
run each experiment individually using other pro-
vided scripts like eval_batching_strategies.sh,
eval_multi_stream.sh, etc.

• Instructions: We provide a detailed README to guide
the environment setup, evaluation and code reuse, etc.

• Reference Results: We provide the experiment results
on two GPU platforms for reference use.

Hosting

The †artifact is archived in Zenodo.

Requirements
• Hardware: The artifact can run on a server or embedded

platform equipped with at least one NVIDIA GPU. We
tested NVIDIA Jetson TX2, GeForce GTX 1080 Ti, and
NVIDIA Tesla V100.

• Compilation and Runtime: The experiments are per-
formed on three platforms with GPUs mentioned above.
The compilers and operating systems on the platforms
are: on platform with 1080 Ti GPU, g++ 7.5.0 and nvcc
11.3, Ubuntu 20.04; Tx2: Jetpack 4.4.1 with CUDA-10.2.
V100: Ubuntu 18.04, CUDA-10.1. g++ 7.5.0.

Many other GPU platforms (e.g., 2080Ti, P100, K80,
etc.) may also be compatible with this artifact. How-
ever, the Ampere architecture (e.g., A100, A6000) is not
currently supported by the sputnik library.

†https://doi.org/10.5281/zenodo.6534753

Evaluation and Expected Results
After setting up the environment, you can run the two-

step evaluation procedure: experiments running and results
validating. The first step generates the performance num-
bers, and the second step draws figures. Please refer to
README.md for detailed evaluation flow. The full evaluation
lasts for about one hour. You can find the plotted results in
the research/reproduced_figures folder.

Known Issues: Some AE reviewers have reported that in
their running environments with V100 GPUs, they failed to
get the same curve as Figure 11 (though Figure 11 is based
on the 1080-ti GPU). We tested two machines with V100
GPUs. One can get even better results (a local machine, driver
version = 510), but the other (an AliCloud instance, driver
version = 460) got worse results than 1080-ti. We infer that
this is due to the hardware and driver differences. The exact
cause is still under investigation.

How to Reuse Beyond Paper
A PET algorithm can work with PetS as long as it meets

two requirements:

• Its PET operations are separable (with necessary
equivalent-transformations) from the shared operations.

• The separated PET operations are light-weighted.

To support a new algorithm, we should first identify its PET
operations. Then three steps are required to add the new PET
algorithm to PetS:

• Step-1. Register a new PET type and implement
the PET operations using Pytorch APIs in python/
turbo_transformers/layers/modeling_pets.py.

• Step-2. Deal with the PET parameters loading. Add new
loading functions in modeling_shared_bert.py and
pet_manager.h, respectively.

• Step-3. Implement the new PET operators in
shadow_op.cpp/shadow_op.h

• Step-4. If the new PET operators should be called at
places that are different from the four PETs in the paper,
you should also modify the bert layers backends, e.g.,
bert_output.cpp

504    2022 USENIX Annual Technical Conference USENIX Association

https://doi.org/10.5281/zenodo.6534753


Campo: Cost-Aware Performance Optimization for Mixed-Precision Neural
Network Training

Xin He
CSEE, Hunan University & Xidian University

Jianhua Sun
CSEE, Hunan University

Hao Chen
CSEE, Hunan University

Dong Li
University of California, Merced

Abstract
Mixed precision training uses a mixture of full and lower
precisions for neural network (NN) training. Applying mixed
precision must cast tensors in NN from float32 (FP32) to
float16 (FP16) or vice versa. The existing strategy greedily
applies FP16 to performance-critical operations without quan-
tifying and considering the casting cost. However, we reveal
that the casting cost can take more than 21% of NN operation
execution time, and in some cases surpasses the performance
benefit of using low precision. In this paper, we introduce
Campo, a tool that improves performance of mixed-precision
NN training with the awareness of casting costs. Campo is
built upon performance modeling that predicts the casting
cost and operation performance with low precision, and in-
troduces a cost-aware graph rewriting strategy. Campo is
user-transparent, and enables high performance NN training
using mixed precision without training accuracy loss. Evalu-
ating Campo with six NN models, we show that compared to
TensorFlow using TF_AMP (a state-of-the-art performance
optimizer for mixed precision training from Nvidia), Campo
improves training throughput by 20.8% on average (up to
24.5%) on RTX 2080 Ti GPU and by 20.9% on average
(up to 23.4%) on V100 GPU, without training accuracy loss.
Because of using the cost-aware mixed precision training,
Campo also improves energy efficiency by 21.4% on average
(up to 24.2%), compared to TensorFlow using TF_AMP.

1 Introduction

Training Neural network (NN) can be resource-demanding: it
consumes many compute cycles and requires high memory
bandwidth and capacity. One promising approach to lower
the resource requirements is to use mixed precision train-
ing [1]. Mixed precision is a computational method using
a mixture of full and lower precisions. Mixed precision can
deliver significant computational speedup by executing oper-
ations in a lower precision format as much as possible, while
storing critical information in the full-precision format to pre-
serve task-specific accuracy. The mixed precision training

has shown significant speedup over the single (full) precision
training on a variety of NN [2–4], especially with tensor cores
(TC) available on some GPU architectures.

In NN training frameworks like TensorFlow and PyTorch,
the mixed precision training is implemented via a graph
rewrite process [5]. This process casts tensors referenced
in certain operations in NN from float32 (FP32) to float16
(FP16), or vice versa. This process adopts a greedy strategy
that applies FP16 execution to performance-critical opera-
tions, most of which are matrix multiplication and convolu-
tion, based on an implicit assumption that using low precision
always leads to performance improvement, and hence the
casting cost can be always justified.

However, our detailed performance analysis reveals that the
above common assumption is not true. We observe that the
casting cost can take more than 21% of operation execution
time, depending on the input tensor size of the operation
using mixed precision. In some cases (e.g., the operation
MatMul with an input data size of (64, 1001, 1001, 2048)),
the casting cost surpasses the performance benefit of using
low precision. As a result, using mixed precision training
(even with TC) may not be performance-beneficial and even
leads to performance loss (22.7% in the example of MatMul).
Hence, the casting cost must be considered and quantified
when deciding precision for operations.

Deciding whether using low precision for an operation is
performance-beneficial is challenging, because the operation
time and casting cost are affected by input data size, whether
TC is used, and performance characterization of operation
(e.g., memory access pattern and compute intensity). Also,
using low precision should not impact NN model accuracy.
Hence, making the decision of using low precision is a multi-
dimensional problem.

In this paper, we introduce a cost-aware performance opti-
mization tool, named Campo, aiming to improve performance
of mixed-precision NN training with the awareness of casting
costs. Campo assigns the low or full computation precision
to each operation in NN to maximize performance while pre-
serving the NN model accuracy. Campo is built upon perfor-

USENIX Association 2022 USENIX Annual Technical Conference    505



mance modeling that predicts the casting cost and operation
performance with low precision. The performance modeling
is operation-specific and captures events (such as L2 cache
misses and global loads/stores on GPU) critical to the per-
formance of low precision and collected through dynamic
profiling in full precision. Using dynamic profiling, the per-
formance modeling is also able to capture the impact of input
data size on performance.

Leveraging the performance modeling, Campo introduces
a cost-aware graph rewriting strategy. This strategy avoids
applying low precision to those operations that cannot get
performance benefit, and minimizes the casting cost when
applying low precision to a group of operations. Furthermore,
Campo does not impact NN model accuracy, because it only
applies low precision to those operations identified as nu-
merical safe by the traditional algorithm for low precision
assignment. In addition, some operations can benefit from
low precision but cannot run on TC because their input data
sizes cannot meet the requirement of TC. For those operations,
Campo pads the input tensors without programmer participa-
tion to maximize the utilization of TC for high performance.

We summarize major contributions as follows.
• We conduct a comprehensive performance characterization

on operations in NN training and quantify casting costs.
In contrast to the traditional methods that decide precision
assignment without considering the casting cost, we reveal
that the casting cost can outweigh the performance benefit
of using low precision. This observation is unprecedented.

• We develop novel and practical performance modeling to
predict casting cost and the performance of operations in
low precision.

• We propose Campo, a performance optimization tool that
enables high-performance mixed precision training without
losing training accuracy. Campo uses a graph traverse al-
gorithm and performance modeling to assign low or high
precision to each operation.

• We implement Campo within TensorFlow, and evaluate
it with six NN models on Nvidia GeForce RTX 2080 Ti
and V100 GPUs. Our evaluation shows that compared to
TensorFlow using TF_AMP (a state-of-the-art performance
optimizer for mixed precision training from Nvidia), Campo
improves training throughput by 20.8% on average (up to
24.5%) on RTX 2080 Ti and by 20.9% on average (up
to 23.4%) on V100, without losing training accuracy. Be-
cause of using cost-aware mixed precision training, Campo
improves energy efficiency by 21.4% on average (up to
24.2%), compared with TensorFlow using TF_AMP.

2 Background

2.1 Mixed Precision Training
A dominant programming paradigm, commonly adopted by
machine learning frameworks such as TensorFlow and Py-

 onent Online Component

 mance         

 mance 

  ations 

Per-node Precision 
Decision 

Insertion of Cast Nodes

Input Transformation

FP32 Model Graph 
Profiling 

Graph Rewriting

Start of Training Steps

Online Prediction

 lysis

Mixed Precision 
Graph Optimizer

Automatic Loss-
scale Optimizer

FP32 
Model

FP16
Capable 
Model

Model with
the Same 
Accuracy

Figure 1: The workflow of mixed precision training.

Torch, is to represent an NN model as a static dataflow graph,
where computation functions (e.g., Conv2D, and MatMul) in
the NN model are associated with nodes in the graph, and
input and output tensors of the computation map to edges.
The architecture of the NN model (i.e., the dataflow graph) is
defined using symbolic expressions by the programmer; The
common computation functions are defined as operations by
the machine learning framework.

The mixed precision training makes precision assignment
decisions per node. Some nodes (i.e., operations) in the
dataflow graph use full precision (i.e., FP32), and those nodes
are essential to maintain training accuracy. Other nodes use
lower precision, which is useful to save memory capacity and
bandwidth and enable faster math operations (especially on
GPUs with TC support). As a result, the mixed precision train-
ing can harvest the best of both worlds: maintaining training
accuracy and having fast execution.

In TensorFlow and PyTorch, only FP16 is considered as
lower precision for the mixed precision training because of
FP16’s commonality in various GPU architectures, although
some GPU architectures (such as Turing and Amphere) sup-
port other lower precisions, such as INT8 and INT4. Like
TensorFlow and PyTorch, we only consider FP16 as lower
precision in this paper, because of FP16’s commonality.

Figure 1 depicts the workflow of using the mixed precision
training in TensorFlow and PyTorch. In general, it includes
two steps: (1) identifying which nodes should be changed
to FP16 and inserting casts between FP32 nodes and FP16
nodes by a mixed precision graph optimizer, and (2) adding
loss scaling to preserve small gradient values by an automatic
loss-scale optimizer. We focus on (1) in this paper.

The mixed precision graph optimizer decides the assign-
ment of low precision to operations by classifying operations
into multiple lists based on operation’s numerical safety. The
numerical safety refers to how an NN model’s quality is af-
fected by the use of low precision. An operation is numerical
unsafe, if using low precision during the operation execution
leads to worse training accuracy, compared with using FP32.
In TensorFlow, there are four lists, discussed as followed.

• Allowlist: operations (e.g., MatMul and Conv2D) in this list
are considered numerically-safe for execution in FP16, and
also performance-critical. These operations are always con-
verted to use FP16.

• Denylist: operations (e.g., Exp and SoftMax) in this list
are considered numerically-dangerous in FP16 and their
effects may also be observed in a downstream operation
node. For example, using FP16 in the operation sequence
of Exp ->Add, the Add is unsafe due to the unsafe Exp.

506    2022 USENIX Annual Technical Conference USENIX Association



Add
FP32

Cast
FP32 to FP16

MatMul
FP16

BiasAdd
FP16

BatchNorm
FP32

Cast
FP32 to FP16

Cast
FP16 to FP32

SoftMax
FP32

64×1024 64×1024

1024×4096 1024×4096

64×4096 64×4096

Add
FP32

Cast
FP32 to FP16

MatMul
FP16

BiasAdd
FP16

BatchNorm
FP32

Cast
FP32 to FP16

Cast
FP16 to FP32

SoftMax
FP32

(64, 1024) (64, 1024)

(1024, 4096) (1024, 4096)

(64, 4096) (64, 4096)

FP32 Model Graph

Mixed-precision 
Model Graph

Operation Nodes
(FP32)

Operation Nodes
(FP32 / FP16)

Casting-aware 
Graph Rewriting

Performance 
Models Tradeoff 

Analysis

Mixed-precision Graph Optimizer

Figure 2: A snippet of the dataflow graph from BERT using mixed precision. The tuple on each edge represents a tensor with its
shape (i.e., the size of each dimension).

• Inferlist: operations (e.g., BiasAdd) in this list are consid-
ered numerically-safe in FP16, which may be, however,
made unsafe by an upstream denylist operation.

• Clearlist: operations (e.g., Max and Min) in this list do not
have numerically-significant effects in the sense that they
can be executed either in FP16 or in FP32.

Compared with TensorFlow, PyTorch use three lists because
the operations in the clearlist and the inferlist are classified
into a single list.

Using the above lists, the mixed precision graph optimizer
uses low precision for an operation, if any of the following
three conditions is true: (1) The operation is in the allowlist;
(2) the operation is in the clearlist, and its immediate ances-
tor(s) and immediate descendent(s) are using low precision;
(3) the operation is in the inferlist and there is no upstream
denylist operation. The mixed precision graph optimization
works online by re-writing the dataflow graph via inserting
casts before the iterative training of NN model happens.

Figure 2 shows a mixed-precision graph snippet taken from
BERT [6] (a transformer-based model). To enable FP16 for
MatMul and BiasAdd while ensuring numerical safety, two
FP32-to-FP16 cast operation nodes and one FP16-to-FP32
cast operation node are inserted into the graph. Take the FP32-
to-FP16 cast operation node with the input data size (64, 1024)
as an example. The number of scalar elements in the input
data (tensor) is 65536 (i.e., 64×1024) in this example.

2.2 Tensor Core Acceleration
Since Volta architecture, Nvidia introduces specialized
hardware arithmetic units into its GPU products, called
Tensor Cores (TC). Compared to regular CUDA cores,
TC is more performant and energy-efficient. TC is used
to accelerate FP16 matrix multiplication and convolu-
tion operations. In TensorFlow, these operations refer to
MatMul, Conv2DBackpropFilter, Conv2DBackpropInput
and Conv2D, which are usually the most fundamental and
time-consuming operations in NN models.

TC is automatically activated to run an operation when two
conditions are met: (1) the operation is either matrix multipli-
cation or convolution using FP16, and (2) the input tensors
of the operation satisfy the shape requirements. For (2), TC
requires certain dimensions of the tensor to be a multiple of
8. If the condition (1) is met, we say the operation is a TC
candidate. Such an operation can run on regular CUDA cores

with low precision when the condition (2) is not met.
Besides the above discussion on the mixed precision train-

ing and TC, we target on those NN models whose dataflow
graphs are static, which indicates that the dataflow graph does
not change its structure across training samples and hence
each training step goes through the exactly same computa-
tion graph. This implies that once the training batch size is
determined, the input data size and shape (i.e., the size of
each dimension) of operations are known before the training
happens. Such NN models are very common and have been a
research target in many recent efforts [7–13].

3 Observation and Motivation

To motivate the design of Campo, we characterize the per-
formance of operations under full precision and low preci-
sion, and study the casting cost. Table 1 shows the perfor-
mance results for six operations. These operations can be
commonly found in NN models. The first four operations
in the table (MatMul, Conv2D, Conv2DBackpropFilter, and
Conv2DBackpropInput) are candidates to run on TC. These
four operations can easily account for most of the NN training
time. For example, in ResNet50, the four operations take more
than 90% of the total training time. The four operations fall
into the allowlist, and hence are always converted for FP16
execution. The last two operations in the table (i.e., BiasAdd
and MaxPool) fall into the inferlist and clearlist, respectively,
of which the numerical precision chosen for the operations
is usually context-dependent. We do not study the operations
in the denylist because they are always executed in FP32. Be-
sides the six operations in Table 1, we study other operations
in the three lists, but do not show them in Table 1 for brevity.

We develop two microbenchmarks for each operation to
run it with FP16 and FP32 respectively. The input data sizes
for each operation are collected from Resnet-50, Inception3
and DCGAN by dlprof [14]. Among those input data sizes,
some of them meet the TC requirement on tensor shape, and
hence the corresponding operations run on TC. In our study,
we use TensorFlow 1.15 and Nvidia RTX 2080 Ti GPU. We
run each operation with each input data size 100 times and
report the average result. In Table 1, “FP16 Exe. time” and
“FP32 Exe. time” do not include casting cost.

Overall, we study the impact of data precision, TC, casting
cost, and input data size on operation performance.

USENIX Association 2022 USENIX Annual Technical Conference    507



Table 1: Performance comparison of some of the representative operations in NN training.

NN Operations Input Data Size FP16 Exe. Time (ms) FP16+Cast Exe. Time (ms) FP32 Exe. Time (ms) Using TC

MatMul
(2048, 8, 8, 1024) 0.312 0.353 0.323 yes

(64, 1001, 1001, 2048) 0.412 0.524 0.427 no
(2048, 1024, 1024, 1024) 0.414 0.584 0.888 yes

Conv2D
(64, 35, 35, 48) 2.707 2.795 3.664 yes

(64, 147, 147, 32) 28.965 29.249 29.487 no
(64, 299, 299, 3) 57.879 58.944 60.098 no

Conv2DBackpropFilter
(64, 299, 299, 3) 8.690 9.773 10.246 no

(64, 149, 149, 32) 6.013 7.988 7.011 no
(64, 35, 35, 192) 0.786 0.948 0.871 yes

Conv2DBackpropInput
(64, 37, 37, 96) 3.954 4.049 6.943 yes

(64, 149, 149, 32) 15.561 16.828 15.696 no
(64, 35, 35, 192) 5.234 5.939 10.060 yes

BiasAdd
(64, 1001, 1001) 0.252 0.317 0.255 no
(64, 4096, 4096) 0.294 0.323 0.298 no
(64, 9216, 9216) 0.299 0.342 0.311 no

MaxPool
(64, 35, 35, 288) 1.849 2.072 1.793 no
(64, 17, 17, 768) 1.399 1.542 1.402 no
(64, 8, 8, 2048) 0.825 1.128 0.981 no

1) Performance variance with different data precisions.
Table 1 shows that across operations, FP16 consistently out-
performs F32, regardless of using TC or not (and without
consideration of casting cost). For example, despite not using
TC, MatMul with FP16 performs slightly better (3.5%) than
with FP32 for the input data size (64, 1001, 1001, 2048).

Furthermore, when the input shape meets the requirement
of using TC, the performance gain of using FP16 over FP32 is
more significant. For example, Conv2DBackpropInput with
FP16 performs significantly better (48%) than with FP32 for
the input data size (64, 35, 35, 192).

Observation 1. Without TC, using F16 leads to slightly bet-
ter performance than using F32. Using TC for FP16 magnifies
the performance benefit of F16.

2) Impact of input data size on performance gains from
FP16. Training an NN model can invoke many instances of
an operation in a training step. Different instances of the oper-
ation can use different input data sizes. Table 1 shows that as
we change the input data size of an operation, the performance
gain of using FP16 over using FP32 varies significantly. For
example, for MatMul with FP16, the performance gain is 3.6%
and 114.5% for the input data sizes (64, 1001, 1001, 2048)
and (2048, 1024, 1024, 1024) respectively. In this example,
such a large performance variance comes from whether TC
is utilized. Even if TC is not utilized for TC candidate opera-
tions, we observe large performance variance across different
input data sizes. For example, Conv2DBackpropInput with
input data sizes (64, 149, 149, 32) and (64, 37, 37, 96) have
75.6% and 0.9% performance gains when using FP16.

The above observation holds true for the non-TC candidate
operations as well. For example, BiasAdd with input data
sizes (64, 9216, 9216) and (64, 1001, 1001) have 40.1% and
11.9% performance gain when using FP16.

The reason for the above result is because of smaller mem-
ory bandwidth consumption and smaller number of FP opera-
tions with smaller input data size, which offers less opportu-
nity for FP16 to tap and improve performance.

Observation 2. The performance gain of using FP16 varies
largely across input data sizes.

3) Impact of casting cost. Comparing “FP16+Cast Exe.
Time” and “FP16 Exe. Time” in Table 1, we see that the cast
operation introduces 3% - 29% overhead, diminishing the
performance benefit of FP16. As a result, using FP16 can per-
form worse than FP32. For example, considering the casting
cost, MatMul using a TC-satisfied input data size (2048, 8, 8,
1024) and a TC-unsatisfied input data size (64, 1001, 1001,
2048) with FP16 performs worse than with FP32 by 9.3%
and 22.7% respectively, and the casting cost takes 11.6% and
21.4% of the operation execution time, which is large.

The casting cost stems from (1) the time to initialize the
cast operation node in the dataflow graph, and (2) the time
to do bitcast and numerical truncation for each scalar
element in the input tensor as well as construct the output.

Observation 3. The cast operation introduces non-
negligible overhead. Considering the casting cost, it is not
always performance-profitable to convert FP32 to FP16 re-
gardless of using TC or not.

In addition to the NVIDIA GeForce RTX 2080 Ti, we get
the same three observations on Nvidia V100.

Implications of observations. The effectiveness of using
low precision for an operation is impacted by input data size,
casting cost, and the usage of TC. Optimizing the assignment
of low precision to operations is a multi-dimensional problem,
not just one dimensional problem as assumed in the existing
solutions.

508    2022 USENIX Annual Technical Conference USENIX Association



Offline Component Online Component

Operation Performance         
Modeling

Candidate Hardware
Events

NN Training Operations 
Profiling

Per-node Precision 
Decision 

Insertion of Cast Nodes

Input Transformation

FP32 Model Graph 
Profiling 

Graph Rewriting

Start of Training Steps

Online Prediction

Correlation Analysis

Figure 3: Overview of Campo.

4 Design

4.1 Overview

Campo includes an offline component and an online compo-
nent, as illustrated in Figure 3. The offline component is used
to build performance modeling to predict performance of op-
erations in FP16. The performance modeling is used by the
online component, and makes performance prediction using
performance events (e.g., L2 cache misses and global memory
load/store throughput) collected from operation execution in
FP32. The performance modeling uses correlation analysis
to decide which events are the most important for accurate
performance prediction. The performance modeling is based
on statistical regression modeling, which is built only once
by the offline component but repeatedly used by the online
component.

The online component includes graph profiling, graph tra-
verse to make per-node precision decision, insertion of cast
operation, and input transformation. The graph profiling uses
one iteration to run operation nodes in FP32 and collect events
needed by performance modeling. The graph traverse makes
four passes on the dataflow graph of the NN model and uses
performance modeling to decide if each operation should use
FP16 or not based on the estimation of performance benefit
and cost of using FP16. The input transformation pads the
input tensors to make TC candidates meet the requirement of
TC on input shape and thus improves the utilization of TC.
The online component is lightweight and enables cost-aware
mixed precision optimization with guarantee on performance
improvement without training accuracy loss.

4.2 Performance Modeling

We build performance modeling to decide whether low or full
precision should be employed for a given operation with a
given input data size. The performance modeling predicts (1)
the casting cost based on the input data size, and (2) execution
time of the operation with low precision.

4.2.1 Predicting Casting Cost

The casting cost for a cast operation includes two parts: (1)
the time to initialize the cast operation node in the dataflow
graph, denoted by CI , and (2) the time to do the conversion
(i.e., the cost to do bitcast and numerical truncation for
each scalar element in the input tensor as well as construct
the output tensor), denoted by CC.

CI is modeled as a constant, because CI comes from a
couple of memory allocations and variable assignments for the
object initialization of the cast operation node in the dataflow
graph. CC is proportional to the number of scalar elements in
the input tensor of the cast operation node. This proportion
is represented as a ratio, r. Given the same number of scalar
elements, we observe that there is no performance difference
between converting from FP16 to FP32 and from FP32 to
FP16.

Hence, the casting cost is modeled in Equation 1, where
tensor_size is the input data size of the cast operation node.
Taking the operation Add with an input data size (64, 1024)
for conversion as an example, tensor_size is 65536 (i.e., 64 ×
1024).

casting_cost = r ∗ tensor_size +CI (1)

To use the above model, we must know r and CI . They
are obtained using linear regression where r and CI are the
slop coefficient and intercept. In particular, by profiling 500
FP32-to-FP16 cast cases and 500 FP16-to-FP32 cast cases, we
collect a total of 1000 training samples, each of which includes
a pair of measured casting_cost and tensor_size from a cast
operation. We use the method of least squares to find the
values of r and CI that minimize the sum of the squared errors.

4.2.2 Predicting Execution Time of Operation

We adopt an operation-specific modeling method, which
means that we build a performance model for each individ-
ual operation. We do not build a general model for all the
operations to predict performance, because the operations
exhibit a variety of performance characteristics in terms of
memory access patterns and computation intensity. Building
a single, general model does not give good prediction accu-
racy. In our experience, we build a general model using the
similar method as building operation-specific models, but can
achieve only 43% prediction accuracy, which leads to 21%
longer execution time, compared with using operation-specific
models. Furthermore, although the total number of operations
in the allowlist, inferlist, and clearlist is 143, which is large,
the operation-specific performance models are built offline
for once, and then can be reused for all NN models. Hence,
operation-specific modeling is practical.

Why not using dynamic profiling to measure perfor-
mance in low precision? Our performance modeling predicts

USENIX Association 2022 USENIX Annual Technical Conference    509



the execution time of an operation using low precision on reg-
ular CUDA cores and TC (if the operation is an TC candidate).
We could use dynamic profiling to measure the execution time.
In particular, we use three training iterations of the NN model:
one iteration running all operation nodes in FP32, one running
all operation nodes in FP16 on regular CUDA cores, and one
iteration running TC candidate nodes in FP16 on TC.

However, the dynamic profiling using training iterations
has limitations. In particular, the dynamic profiling uses FP16
for many operations to measure execution time, regardless of
the impact of those operations on training convergence. To
avoid slow convergence of the training process after dynamic
profiling, one has to discard the three training iterations and
restart the training process. This complicates the training
pipeline. Even worse, for those downstream training tasks
that use a pre-trained model, the number of training iterations
is limited. Using dynamic profiling can lead to a large increase
in training time. For example, training (fine-tuning) a small
NN model Audio2Vec [15] can take about ten iterations, and
losing three iterations for dynamic profiling leads to more
than 20% increase in training time.

Modeling intuition. The performance of an operation in
FP32 and FP16 has correlation. For example, using FP16 re-
duces the working set size, compared with using FP32, which
can lead to less cache misses and in turn decrease execution
time. Our intuition is that using execution time in FP32 and
a handful of performance-critical events measured in FP32,
we can predict execution time in FP16. The parameters (co-
efficients) in our performance modeling should capture the
performance correlation between FP32 and FP16.

Performance modeling. Based on the above intuition, we
build the performance model as follows.

OPLP = OPFP32 · (
N

∑
i=1

wi ·PCi)+σ (2)

where OPLP is the execution time on either regular CUDA
cores or TC using FP16, OPFP32 is the execution time on
regular CUDA cores using FP32, PCi is a performance-critical
event measured during the execution of FP32, N is the number
of performance critical events, and wi and σ are coefficients.
Each operation has up to two performance models: one for
regular CUDA cores and the other for TC.

A performance-critical event is a model feature. We use
hardware performance counters on GPU to collect those
events. There are about 100-200 events collectable on GPU.
We choose those events that are the most correlated to the
operation performance in FP16, using the following method.

Selection of model features. We use the Spearman’s rank
correlation coefficient [16] (or Spearman’s ρ) to select events.
The Spearman’s ρ is a method to quantify how well the re-
lationship between two variables can be described using a
monotonic function [16]. The Spearman correlation between
two variables is high when observations have a similar rank

between the two variables, and low when observations have a
dissimilar rank between the two variables.

In our case, an event is a variable and the operation per-
formance using FP16 is the other variable. We make many
observations by running tests. If the observations on the event
and the observations on the F16 performance have the similar
rank (i.e., relative position label of the observations within the
event or F16 performance), then the event is monotonically
correlated (either monotonically increasing or monotonically
decreasing) with the FP16 performance. In our case, we use a
threshold of 0.75 for ρ. When |ρ| for an event is larger than
0.75, then we choose it as a model feature.

In particular, given an operation OP, we use the following
method to select features to build the performance model for
FP16 on TC. Using 1000 different TC-satisfied inputs, we
run OP in FP32 1000 times to collect execution time and each
collectable event. Then, using the same 1000 inputs, we run
OP in FP16 1000 times to collect execution time. As such, we
construct 1000 samples, each of which consists of measured
FP32 execution time, the value of each collectable event, and
FP16 execution time. For each event, we use the 1000 samples
to run the Spearman’s rank correlation analysis and calculate
ρ. If ρ is larger than the threshold, then the event is selected.

To select the features to build the performance model for
FP16 on regular CUDA cores, we use the same method as
above but the operation inputs do not necessarily meet the TC
requirement.

We select events for each operation using the above ap-
proach. We discuss the most common events across opera-
tions as follows.
• Global memory load/store throughput indicates inten-

siveness of global memory access. If an operation has
higher throughput in global memory load/store, the opera-
tion may get larger performance benefit by using FP16.

• Instruction executed per cycle indicates compute inten-
sity. Using FP16 can be helpful for those floating point
intensive operations, because of higher throughput of FP16
instructions.

• GPU occupancy indicates how many warps are able to
be active during operation execution. An operation with
low GPU occupancy will be sensitive to whether FP16 or
FP32 is used, because using FP16 or not causes difference
in global memory accesses and the operation with low GPU
occupancy has lower thread-level parallelism to hide long
global-memory access latency.

• L2 cache accesses and misses and L1 cache accesses in-
dicate memory access locality in the operation. Compared
with an operation with bad reference locality, an operation
with good reference locality can take advantage of the cache
hierarchy and is not sensitive to global memory bandwidth,
hence less sensitive to the global memory bandwidth sav-
ings due to the use of FP16.
Getting model coefficients wi and σ. For each operation-

specific performance model, we run the operation 1000 times

510    2022 USENIX Annual Technical Conference USENIX Association



with 1000 inputs with different sizes, using FP32 and FP16
respectively. That generates 1000 samples, each of which in-
cludes FP32 execution time, the values of events collected in
FP32, and FP16 execution time. Using the 1000 samples, we
use the method of least squares to find the values of coeffi-
cients wi and σ that minimize the sum of the squared errors.
To generate 1000 inputs with different sizes, we profile the
input data size of the operations from 11 NN models (includ-
ing GoogLeNet, UNet-3D, DLRM, DCIGN, BiLSTM, SSD-
MobileNet-v1, ShuffleNet, SSD, DenseNet, Mask R-CNN,
RNN-T) from the MLPerf benchmark suite [17] using 100
training steps with various batch sizes.

Building performance models for an operation is not time-
consuming. For example, building the two models for the
operation Conv2D (including generating samples to get the
model coefficients) takes about 1.5 hours. Building perfor-
mance models for 143 operations takes about 112.5 hours.

Justification of modeling method. In essence, our model-
ing method is linear regression. Before we used it, we asked
if other modeling methods (such as using a machine learning
model) can work. We built a multilayer perceptron model
(MLP) taking the same input and output as our linear regres-
sion model. The MLP has four layers (one input, one output
and two hidden layers) and has 800 neurons in total. However,
we do not see any benefit of using such a model in terms of
prediction accuracy: the prediction accuracy for the MLP is
71%, while it is 94.2% for the linear regression model. The
low prediction accuracy of using MLP is largely due to the
fact that our problem nature exhibits near-linear correlation
between features and MLP seems to be prone to get stuck in a
local optimum for this problem. Furthermore, the MLP takes
10x more training samples than the linear regression model.
Hence, we do not use MLP.

Furthermore, we asked if basic heuristics can work. In fact,
compared with using dynamic profiling (a basic heuristic),
using performance modeling reduces training time by 20%
for Audio2Vec. Compared with using the same precision
for all instances of each operation (another basic heuristic),
using performance modeling reduces training time by 35%
for BERT-large. Our performance models are repeatedly used
for NN models, which amortizes the construction cost.

Our modeling method considers the impact of operation
input on operation performance, because it uses dynamic
profiling in FP32 to measure performance with the given
operation input, based on which to make prediction for FP16
performance with the same operation input.

Furthermore, our modeling method is operation-specific,
which greatly simplifies model construction, because the op-
eration type itself provides much of implicit information on
operation characteristics. For example, the operation name
MatMul indicates strided memory accesses, and hence the
operation-specific performance model does not need to ex-
plicitly model such a memory access pattern to make perfor-
mance prediction. As a result, our performance model can

focus on capturing the correlation between the performance
of FP32 and FP16.

4.3 Runtime Graph Rewriting
The runtime graph rewriting decides (1) data precision for
each operation, and (2) which operations to be converted
together to reduce the number of cast operation nodes. By
graph rewriting, Campo aims to reach the following goals: (1)
minimizing the training time; (2) minimizing the casting cost;
and (3) no adverse impact on the numerical safety (compared
with the traditional mixed-precision training).

The graph rewriting in Campo includes graph profiling,
graph traverse to determine the precision assignments, and
insertion of cast operation nodes, discussed as follows.

Graph profiling. Given an NN model, Campo uses a sin-
gle training step (or iteration) running in FP32 to collect
execution time and events needed by performance modeling
for those operations in allowlist, inferlist, and clearlist. The
graph profiling is triggered right after the first few training
steps used by TensorFlow for warmup (i.e., determining sys-
tem configurations).

Graph traverse happens after graph profiling, and per-
forms four times on the dataflow graph. Each graph traverse
follows the data flow in the NN training to analyze opera-
tion nodes in the dataflow graph. During the graph traverses,
Campo uses two lists, allow_nodes and deny_nodes, to record
those operation nodes determined to run in FP16 and in FP32
respectively. We depict the four-time traverse as follows.

Traverse #1. During the traverse, when an operation node
is encountered, Campo checks if it is in allowlist. If yes, then
Campo uses performance modeling to decide if the casting
cost plus FP16 execution time of the operation (on regular
CUDA cores or TC) is smaller than the counterpart FP32
execution time. If yes, then the operation node is put into
allow_nodes; If no, then it is put into deny_nodes. During
the traverse, only those operations that are numerical safe in
FP16 (i.e., in allowlist) are considered, in order to maintain
the training accuracy of the NN model.

Traverse #2. During this traverse, Campo checks the re-
maining operation nodes. For each node, Campo checks if
it is either numerically-unsafe (i.e., in denylist) or on a path
from a node in denylist to another node in denylist or inferlist
through some operation nodes in inferlist or clearlist. If yes,
then the checking node is added to deny_nodes. This traverse
aims to prevent numerically-unsafe operation nodes and their
downstream operation nodes from being changed to FP16, in
order to maintain the training accuracy.

Traverse #3. During this traverse, Campo checks each re-
maining operation node. If the node (called the target node
in the remaining discussion) is in inferlist or clearlist, then
Campo put the target node into allow_nodes. After Traverse
2, such a node should be safe to use FP16. It is possible that
the immediate upstream or downstream node(s) of the target

USENIX Association 2022 USENIX Annual Technical Conference    511



node is in allow_nodes. For such a case, the cast operation
to convert target node for FP16 or FP32 is saved for higher
performance.

Traverse #4. During this traverse, Campo checks each re-
maining operation node. If the node (called the target node
in the remaining discussion) is in clearlist and connected to
a node in the allow_nodes via other nodes in clearlist, then
Campo uses performance modeling to decide whether the
casting cost is smaller than the performance benefit of using
FP16 (on regular CUDA cores or TC) for the target node and
other connecting nodes. If yes, then the target node is put into
allow_nodes.

Insertion of cast operation nodes. After the four-time
graph traverse, Campo changes the type attribute of operation
nodes according to their FP16 or F32 assignments, and then
inserts a cast operation node at the boundary between any
FP16 node and its neighbour FP32 node (or vice versa) by
using the API ChangeTypeAttrsAndAddCasts provided by
TensorFlow.

4.4 Usage of Tensor Cores

For any operation node in FP16 decided in the graph rewriting
process, Campo is able to use performance modeling to decide
if using regular CUDA cores or TC is more performance
beneficial. If using TC is better, then Campo makes the best
efforts to run the operation on TC.

In particular, in each training step, Campo checks the input
shape of each TC candidate. If the input shape of a TC candi-
date cannot meet the TC requirements, Campo pads the input
tensor by adding zero-filled rows or columns. For example,
for Conv2D, Campo pads its input to make the dimension size
of each channel a multiple of 8. Compared to the traditional
padding method recommended by dlprof, our method is im-
plemented inside the training framework, and thus transparent
to the users and does not need to modify NN models.

Overhead analysis. Zero padding adds overhead to com-
putation and memory consumption. For an operation decided
to use FP16 on TC by performance modeling, the computa-
tion overhead (with casing cost) is easily surpassed by the
performance benefit: in our evaluation, an operation decided
to use FP16 on TC by performance modeling can typically
gain about 2x performance improvement (compared with us-
ing FP32 on regular CUDA cores), while padding usually
leads to less than 20% performance overhead. To consider
the performance overhead of zero padding in performance
modeling, we can introduce a threshold, which is an empirical
estimation on the padding overhead. Only when the casting
cost plus this threshold is smaller than performance benefit,
we use FP16 on TC.

The memory overhead of padding is usually less than 1%,
which is very small. This is because in practice, the number of
zero-filled rows or columns via padding is less than 8 and the
number of dimensions requiring padding is typically at most

2, while the total number of rows or columns is hundreds.

5 Implementation

Campo extends the mixed precision graph optimizer and
runtime system in TensorFlow v1.15. Such an extension
includes 235 C++ LOC. The extension is used to de-
cide if an operation should use FP16 based on perfor-
mance modeling. We add APIs CheckAllowListOps and
CheckIfAllowThroughClear to implement the first and
fourth graph traverses. The other two traverses extend the
existing implementation for assigning precision to operations
in TensorFlow. In TensorFlow’s op_kernel module, we add
an API InputShapeTranform to implement input padding
and meet the TC requirements on the input shape. Besides the
above extension, Campo includes graph profiling and perfor-
mance modeling (including offline tools to build performance
models). In total, Campo is written in 2570 LOC.

6 Discussions

Differences between using performance modeling and
static profiling. The static profiling is an alternative approach
to get performance of operations in low precision. Using
static profiling, the user must collect the information on tensor
shapes from operators, and then use the collected information
to run operators in low precision offline. We discuss the dif-
ferences between performance modeling and static profiling
as follows.

There are two differences. First, the static profiling has to
be done for each NN model and is not scalable, while the per-
formance modeling, once built, can generally work for most
NN models. Second, when the number of tensor shapes and
operations in an NN model for profiling is small, the static
profiling is a better solution to get operation performance
in low precision. However, the profiling cost must be small
enough to enable practical deployment of static profiling. In
contrast, the performance modeling does not incur deploy-
ment cost for most of NN models. The performance models
can be repeatedly used for NN models, which amortizes the
model construction cost.

Portable performance modeling. Our performance model-
ing is architecture-dependent, because it collects architecture-
dependent performance events as the model features. This
means that we must build different performance models for
different GPU architectures. How to reduce human efforts to
build performance models remains to be studied. In addition,
it would be interesting to extend Campo to lower precisions
(e.g., INT8 and BF16) using the same methodology in Campo.
We leave them as our future work.

512    2022 USENIX Annual Technical Conference USENIX Association



0

1500

3000

4500

6000

FP32 TF_AMP Campo

sa
m

pl
es

/s

1.28x
1.52x

(a) AlexNet

0

200

400

600

800

FP32 TF_AMP Campo

1.88x
2.34x

(b) ResNet50

0

125

250

375

500

FP32 TF_AMP Campo

(c) Inception3

1.89x
2.30x

0

75

150

225

300

FP32 TF_AMP Campo
(d) Vgg16

1.28x 1.49x

0

1600

3200

4800

6400

FP32 TF_AMP Campo
(f) DCGAN

1.73x
2.12x

be
tt

e 1x
1x 1x

1x
1x

Figure 4: Training throughput with FP32, TF_AMP and Campo on RTX 2080 Ti.

0

3000

6000

9000

12000

FP32 TF_AMP Campo

sa
m

pl
es

/s

0

300

600

900

1200

FP32 TF_AMP Campo

1.87x

2.25x

2.00x

2.47x

(a) AlexNet (b) ResNet50

0

160

320

480

640

FP32 TF_AMP Campo

(c) Inception3

1.91x
2.28x

0

160

320

480

640

FP32 TF_AMP Campo

(d) Vgg16

2.13x
2.50x

0

2100

4200

6300

8400

FP32 TF AMP Campo
(f) DCGAN

1.84x

2.23x

be
t

0

3000

6000

9000

12000

FP32 TF_AMP Campo

sa
m

pl
es

/s

0

300

600

900

1200

FP32 TF_AMP Campo

1.87x
2.25x

2.00x
2.47x

(a) AlexNet (b) ResNet50

0

160

320

480

640

FP32 TF_AMP Campo
(c) Inception3

1.91x
2.28x

0

160

320

480

640

FP32 TF_AMP Campo
(d) Vgg16

2.13x
2.50x

0

2100

4200

6300

8400

FP32 TF_AMP Campo
(f) DCGAN

1.84x
2.23x

be
tt

e

0

16

32

48

64

FP32 TF_AMP Campo
(e) BERT-large

2.47x
3.05x

1x 1x 1x 1x 1x 1x

Figure 5: Training throughput with FP32, TF_AMP and Campo on V100.

Table 2: Hardware configurations

CPU Intel Xeon CPU E5-2648L v4@ 1.80GHz

Main Memory 64 GB DDR4
CPU Cores 2 sockets, 14 cores per socket

GPU NVIDIA GeForce RTX 2080 Ti (Turing)

CUDA Cores 4352 CUDA cores (68 SMs, 1.54GHz)
Tensor Cores 544 tensor cores

L1 Cache 64 KB (per SM)
L2 Cache 5.767 MB

GPU Device Memory 11 GB GDDR6

GPU NVIDIA Tesla V100 (Volta)

CUDA Cores 5376 CUDA cores (84 SMs, 1.53GHz)
Tensor Cores 672 tensor cores

L1 Cache 128 KB (per SM)
L2 Cache 6.144 MB

GPU Device Memory 32 GB HBM2

7 Evaluation

7.1 Experimental Setup
Experimental Platforms and Tools. We use a multicore ma-
chine equipped with two TC-supported GPUs (i.e., Nvidia
GeForce RTX 2080 Ti and V100) and Intel Xeon CPU listed
in Table 2. The two GPUs are attached to the server by PCIe
3.0. We use CUDA 9.0 [18], NVIDIA cuDNN 8.0, and Ubuntu
18.04. We use dlprof [14] and Nvidia Nsight Compute [19]
to collect performance statistics. We measure system power
for GPU, CPU and DRAM by using a collection of industry-
standard tools including NVIDIA System Management Inter-
face [20] and Intel Running Average Power Limit (RAPL)
Interface [21]. We use the number of samples processed per
second and training throughput per Watt as metrics to quan-
tify training throughput and energy efficiency respectively.
Unless indicated otherwise, the reported results are collected
on V100 and all tests use the default GPU setting.

Benchmarking Methodology. We evaluate six NN mod-

0
60

120
180
240

AlexNet ResNet50 Inception3 Vgg16 DCGAN BERT-largeno
. o

f c
as

t n
od

es TF_AMP Campo

0
9

18
27
36

AlexNet ResNet50 Inception3 Vgg16 DCGAN BERT-largeTC
 u

til
iz

at
io

n 
(%

) TF_AMP Campo

(a)
Figure 6: The number of cast nodes of NN models trained
with TF_AMP and Campo, respectively.

els including AlexNet [22], Inception3 [23], Vgg16 [24],
ResNet50 [25], DCGAN [26], and BERT-large [6]. We only
evaluate BERT-large on V100 because of the out-of-memory
error on RTX 2080 Ti. For the first four models, Imagenet
is used as the training dataset [27]. For DCGAN and BERT-
large, we use CelebA [28] and SQuAD [29] as the training
dataset, respectively. The training batch size for AlexNet and
other models on GeForce RTX 2080 Ti GPU is 256 and 64
respectively, according to the model configurations in related
work [30]. The training batch size for BERT-large and other
models on V100 is 10 and 256 respectively, according to the
model configurations in related work [31].

We run each NN model training experiment ten times and
then report the average results. We use TensorFlow v1.15 and
its performance optimizer “TF_AMP” for mixed precision
training. TF_AMP is our baseline for performance compar-
ison. TF_AMP in TensorFlow v1.15 is the state-of-the-art
solution and the most recent performance optimizer for mixed
precision training. To preserve small gradient values, we adopt
the automatic loss-scale optimizer in TF_AMP. To evaluate
model accuracy, We test both the Top-1 and Top-5 accuracy
on the ImageNet-1k validation set for AlexNet, ResNet50,
Inception3 and Vgg16, and the celebA validation set for DC-
GAN. For BERT, we test the F1 score on the SQuAD v1.1
validation set.

USENIX Association 2022 USENIX Annual Technical Conference    513



0
60

120
180
240

AlexNet ResNet50 Inception3 Vgg16 DCGAN BERT-largeno
. o

f c
as

t n
od

es TF_AMP Campo

0
9

18
27
36

AlexNet ResNet50 Inception3 Vgg16 DCGAN BERT-largeTC
 u

til
iz

at
io

n 
(%

) TF_AMP Campo

(a)

Figure 7: TC utilization of NN models trained with TF_AMP
and Campo, respectively.

7.2 Training Throughput

Figures 4 and 5 show the training throughput of Campo,
TF_AMP, and single precision training (using FP32). To cal-
culate speedup, the throughput of using the single precision
training is used as the baseline.

Using mixed precision training, TF_AMP and Campo
achieve large speedup (1.28x - 3.05x) over FP32 on both
GPUs. Furthermore, Campo outperforms TF_AMP by 20.8%
on average (up to 24.5%) on RTX 2080 Ti, as well as by 20.9%
on average (up to 23.4%) on V100. The performance benefit
of Campo over TF_AMP comes from two perspectives: re-
ducing the number of cast operation nodes in the dataflow
graph and using TC more often, discussed as follows.

7.3 Performance Breakdown

Number of cast operation nodes. Figure 6 quantifies the
number of cast operation nodes. Campo reduces the number
of cast operations nodes for higher performance. Campo uses
27.7% less cast operation nodes on average (up to 31.3%)
than TF_AMP.

TC utilization is defined as the percentage of training time
when TC is busy. Figure 7 shows TC utilization. Campo
increases the utilization of TC by 29.4% on average (up to
37.9%), which indicates that Campo uses TC more often.

Contribution quantification of the graph rewriting and
improving TC utilization. We disable our method of improv-
ing TC utilization but keep the graph rewriting to quantify
its contribution to the performance improvement (compared
with TF_AMP). Then we enable our method of improving
TC utilization along with the graph rewriting to quantify the
contribution of improving TC utilization. Figure 8(a) and Fig-
ure 8(b) show the results on two GPUs. The two figures reveal
that the graph rewriting contributes more than improving TC
utilization: 84.5% of the overall performance improvement
(on average) comes from the graph rewriting.

We also notice that V100 benefits 38.1% more (on average)
from TC, compared with RTX 2080 Ti. This is because of
two reasons. (1) V100 has more computation resource: V100
has 23.5% more tensor cores than RTX 2080 Ti; (2) training
on V100 is able to run 10.4% more operations on TC than
training on RTX 2080 Ti, because higher performance benefits
of using TC on V100 offset casting cost in more operations.

Table 3: Model accuracy of NN models trained with FP32,
TF_AMP and Campo, respectively.

NN models Top-1 Accuracy (%) Top-5 Accuracy (%)
FP32 TF_AMP Campo FP32 TF_AMP Campo

AlexNet 63.39 64.41 64.38 81.24 81.21 81.19
ResNet50 78.77 78.74 78.75 94.86 94.82 94.85
Inception3 78.42 78.45 78.43 90.15 90.16 90.15
Vgg16 71.58 71.6 71.57 88.28 88.25 88.27
DCGAN 80.12 80.16 80.13 92.47 92.46 92.44
BERT-large 91.35 91.36 91.33 N/A

7.4 Training Accuracy
Table 3 reports the model accuracy of six NN models trained
with FP32, TF_AMP and Campo, respectively. We can see
that across NN models, the model training with Campo leads
to no loss in model accuracy compared to TF_AMP, which
closely matches the FP32 training accuracy (the subtle dif-
ferences across FP32, TF_AMP and Campo in accuracy are
within typical bounds of run-to-run variations).

Campo preserves training accuracy, because of two reasons.
(1) Those operations that are numerical unsafe still use FP32.
(2) Campo uses the same effective loss-scaling optimizer as
TF_AMP to preserve small gradients in FP16.

7.5 Prediction Accuracy of Performance Mod-
els

To evaluate the accuracy of the performance models, we use
a metric denoted by M_A as follows.

M_A = 1− 1
n

n

∑
i=1

∣∣∣∣ ŷi − yi

yi

∣∣∣∣ (3)

where n is the number of test cases, and ŷi and yi are the
predicted and measured execution time for the test case i.

We test 150 performance models for 143 operations re-
spectively. For each model, we use 100 different input sizes
as test cases. In total, there are 15000 tests. We report the
modeling accuracy for five common operations, i.e., Cast,
MatMul, Conv2DBackpropFilter, Conv2DBackpropInput
and Conv2D in Figure 9.

In general, the average prediction errors for the five opera-
tions are less than 5%, which demonstrates high prediction
accuracy. Overall, the prediction error for 143 operations is
5.8% on average (and less than 6%).

Handling mis-prediction of performance modeling.
When a mis-prediction happens, there are two possible out-
comes. (1) Based on performance modeling, the operation
is not scheduled to run in FP16, although it should be for
better performance. (2) Based on performance modeling, the
operation is scheduled to run in FP16, although it should not,
because of high casting cost.

For the case (1), mis-prediction does not cause any per-
formance loss, compared with using full precision (i.e., the

514    2022 USENIX Annual Technical Conference USENIX Association



FP32 TF_AMP Campo Speedup (tf) speedup (campo) improv over tf-amp verification speedup of campo
AlexNet 3625.08 4656.31 5527.04 1.284470963 1.524667034 1.524667034 0.187 5527.04 1.524667034
ResNet50 294.97 554.94 690.90 1.881343865 2.342273113 2.342273113 0.245 690.9003 2.342273113
Inception3 192.59 363.94 443.28 1.8897139 2.30167153 2.30167153 0.218 443.2789 2.30167153
Vgg16 179.26 230.18 267.93 1.284056677 1.494641973 1.494641973 0.164 267.9295 1.494641973
DCGAN 3617.63 6256.14 7676.28 1.729345793 2.121907287 2.121907287 0.227 7676.279 2.121907287

2780.65 4808.71 5900.29 0.2082
FP32 TF_AMP Campo Speedup (tf) speedup (campo)

AlexNet 3625.08 4656.31 5527.03997 1.28 1.52
DCGAN 2780.65 4808.71 5900.29 1.73 2.12

FP32 TF_AMP Campo Speedup (tf) speedup (campo)
ResNet50 294.97 554.94 690.9003 1.88 2.34
Inception3 192.59 363.94 443.27892 1.89 2.30
Vgg16 179.26 230.18 267.92952 1.28 1.49

#DIV/0! 2.49
ResNet152 109.46 201.87 248.59 1.84 2.27 0.231436073

FP16
1.319172414 8922 improv over tf-amp

6269 0.187
782 0.227
478 0.245
437 0.218
281 0.164

0.206

FP32 TF_AMP Campo Speedup (tf) speedup (campo) improv over tf-amp verification speedup of campo
AlexNet 4782 8922 10769 1.87 2.25 0.207
DCGAN 3399.43 6269 7585 1.84 2.23 0.21
ResNet50 405 811 998 2.00 2.47 0.231
Inception3 259 494 592 1.91 2.28 0.198
Vgg16 240 511 600 2.13 2.50 0.174
ResNet152 155 305 368 1.97 2.37 0.206

0.204333333

10768.854
7585.49
998.341
591.812
599.914
367.83

Graph rewritingmproving TC utilization speedup graph_op (%) TC_op (%)
AlexNet 0.171 0.016 0.187 1 0.914 0.086 0.170918 0.016082
DCGAN 0.192 0.035 0.227 1 0.847 0.153 0.192269 0.034731

ResNet50 0.220 0.025 0.245 1 0.896 0.104 0.21952 0.02548
Inception3 0.192 0.026 0.218 1 0.882 0.118 0.192276 0.025724

Vgg16 0.151 0.013 0.164 1 0.921 0.079 0.151044 0.012956
ResNet152 0.209 0.022 0.231436 1 0.903 0.097 0.208987 0.022449

avg. 0.023

graph rewriting Improve speedup graph_op (%) TC_op (%)
AlexNet 0.181 0.026 0.874 0.207 1 0.874 0.126 0.180918 0.026082
DCGAN 0.174 0.036 0.828 0.21 1 0.828 0.172 0.17388 0.03612

ResNet50 0.194 0.037 0.841 0.231 1 0.841 0.159 0.194271 0.036729
Inception3 0.164 0.034 0.827 0.198 1 0.827 0.173 0.163746 0.034254

Vgg16 0.151 0.023 0.869 0.174 1 0.869 0.131 0.151206 0.022794
BERT-large 0.171 0.035 0.832 0.206 1 0.832 0.168 0.171392 0.034608

avg. 0.032 0.84516667

0.381389544

0.235294118

Below are the experimental results on V100

rtx 2080 ti

V100

0.00
2000.00
4000.00
6000.00
8000.00

FP32 TF_AMP Campo

im
ag

es
/s

DCGAN

1.73x 2.12x

0%
8%

16%
24%
32%

AlexNet DCGAN ResNet50 Inception3 Vgg16

pe
rf

. i
m

pr
ov

em
en

t Graph rewriting Improving TC utilization

0%
7%

14%
21%
28%

AlexNet DCGAN ResNet50 Inception3 Vgg16 BERT-large

Graph rewriting Improving TC utilization

(a) RTX 2080 Ti (b) V100

Figure 8: Breakdown of the overall performance improvement from graph rewriting and improving TC utilization.

MatMul Conv2D Conv2DBackpropFilter Conv2DBackpropInput
MA (%) 98.53 96.82 97.52 95.48 97.0875

Cast MatMul Conv2DBackpropFilter Conv2D Conv2DBackpropInput
MA (%) 95.27 98.53 97.52 96.82 95.48 96.724

90

92

94

96

98

100

Cast MatMul Conv2DBackpropFilter Conv2D Conv2DBackpropInput

M
_A

 (%
)

Figure 9: Performance prediction accuracy for five operations
based on the operation-specific performance models

Table 4: Average system power consumption of NN models
trained with FP32, TF_AMP and Campo on RTX 2080 Ti and
V100, respectively.

NN Models
Average System Power (W)

RTX 2080 Ti V100
FP32 TF_AMP Campo FP32 TF_AMP Campo

AlexNet 274 268 267 325 319 316
ResNet50 272 265 263 324 313 311
Inception3 273 264 263 326 316 315
Vgg16 273 267 267 324 316 316
DCGAN 275 268 267 327 320 319
BERT-large N/A N/A N/A 332 320 318

original execution). For the case (2), mis-prediction causes
performance loss in that operation. But since the performance
prediction accuracy is high, the performance loss is easily out-
weighed by the performance benefit of correctly using FP16
in other operations. In our evaluation, for each NN model, the
case (2) happens at most 7 times, taking less than 1.5% of all
prediction cases.

No matter whether the case (1) or (2) happens, neither of
them causes any loss in training accuracy of the NN model,
because the performance modeling is never applied to any
numerical-unsafe operation and hence the mis-prediction
never happens to any of them.

7.6 Power Consumption and Energy Efficiency

Power consumption. Table 4 summarizes system power con-
sumption. Using TF_AMP and Campo, the system consumes
less power than using FP32 across NN models by 6 - 13 Watts,
because of the use of power-efficient TC in mixed precision
training. Table 4 also shows that using Campo, the system
consumes less power than using TF_AMP, due to better uti-
lization of TC in Campo.

Energy efficiency. Figure 10 shows the energy efficiency

of NN models trained with FP32, TF_AMP and Campo.
TF_AMP and Campo outperform FP32 by 109.5% and
154.6% on average, respectively, because of the use of reduced
precision and power efficient TC. Compared to TF_AMP,
Campo outperforms TF_AMP by 21.4% on average (up to
24.2%). This improvement comes from the fact that Campo
leads to better performance (see Figure 5) without causing
extra power consumption (see Table 4).

8 Related Work

Mixed precision for NN training. Many research efforts
have been dedicated to achieve more efficient NN training
with mixed precision. Mixed precision training was first in-
troduced by Micikevicius et al [1]. Since then, Nvidia depicts
how to use it with TC [3]. Jia et al. [2] use mixed precision
to improve scalability of synchronized stochastic gradient de-
scent (SGD) optimizers in NN models without losing model
generability. Kuchaiev et al. [32] presents a TensorFlow-based
toolkit for mixed precision training of sequence-to-sequence
models, with an implementation of a wrapper around the stan-
dard TensorFlow performance optimization facility for mixed
precision training. Besides the floating-point based mixed
precision training, Das et al. [4] are the first to propose mixed
precision training of convolutional neural networks using in-
teger operations on ImageNet-1K dataset. Svyatkovskiy et
al. [33] introduce a learning rate schedule for training dis-
tributed deep recurrent neural networks with mixed precision
on GPU clusters. Their schedule facilitates neural network
convergence at up to O(100) workers.

Different from the above efforts, our work reveals the over-
looked performance issues related to casting cost in mixed
precision graph optimization.

Mixed precision for other GPU applications. Mixed pre-
cision has been explored to speed up dense linear system
solvers [34, 35] and WZ factorization [36] in the context of
HPC. Kotipalli et al. [37] present AMPT-GA, an automatic
mixed precision optimization system that automatically se-
lects the optimal data precision to maximize performance
while meeting accuracy constraints for GPU Applications.
However, its evaluation is only limited to an NVIDIA Tesla
P100 GPU machine without TC. Haidar et al. [38] apply
mixed-precision FP16–FP32/FP64 to a high-performance it-
erative refinement solvers and take advantage of TC. Gallo et
al. [39] propose the concept of mixed-precision in-memory

USENIX Association 2022 USENIX Annual Technical Conference    515



0
12
24
36
48

AlexNet DCGAN

FP32 TF_AMP Campo

0.0
0.9
1.8
2.7
3.6

ResNet50 Inception3 Vgg16

sa
m

pl
es

/s
/W

be
tt

er

0
0.05

0.1
0.15

0.2

BERT-large

Figure 10: Energy efficiency of NN models trained with FP32, TF_AMP and Campo.

computing with a combination of a von Neumann machine
and a computational memory unit. Baboulin et al. [40] lever-
age mixed precision to accelerate computations in many dense
and sparse linear algebra algorithms. Lam et al. [41] introduce
a framework that employs binary instrumentation and mod-
ification to build mixed-precision configurations of existing
binaries originally developed for the use of double precision.
In contrast, our work focuses on applying mixed precision to
NN training.

Investigation on the usage of TC. Nvidia TC follows
the IEEE 754 standard [42] and utilizes mixed precision with
matrix multiplication input in FP16 and accumulation in FP32.
Motivated by the benefits of TC, Yan et al. [43] demystify
how TC on Turing GPUs works and implement TC-based
HGEMM on NVIDIA Turing GPUs. Markidis et al. [44]
perform a performance evaluation of TC in mixed precision
as well as three different approaches of programming matrix-
multiply-and-accumulate on TC on V100. Brennan et al. [45]
perform a thorough analysis of the effects of low precision
operations and TC on graph convolutional neural networks.
Abdelfattah et al. [46] explore leveraging TC to implement a
optimized batched Matrix multiplication (HGEMM) in half-
precision arithmetic. Our work is different from these efforts,
as we explore the use of TC in NN training.

9 Conclusions

This paper introduces Campo, a cost-aware performance op-
timization tool for mixed-precision NN training that assigns
the optimal precision (either FP32 or FP16) to training opera-
tions while minimizing the unnecessary casts to maximize the
training performance. Campo is based on our unique observa-
tion that the casting cost to achieve mixed precision training
may offset the performance benefit of using low precision in
mixed precision training. This observation is ignored in the
existing approaches of using mixed precision, which leads to
smaller performance improvement or even performance loss.
We build operation-specific performance models to predict
and quantify the impact of casting cost on the performance
of using low precision. With the performance models, at run-
time Campo employs a cost-aware graph rewriting strategy to
make decisions on which precision should be used for each
operation without losing NN training accuracy. We evalu-
ate Campo with six NN models on Nvidia Turing and Volta
architecture-based GPUs, and show that Campo largely out-
performs TensorFlow.

10 Acknowledgements

We thank anonymous reviewers and our shepherd for their
valuable feedback. This work is partially supported by the
National Science Foundation of China under grants 61972137
and 61772183.

References

[1] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-
gory Diamos, Erich Elsen, David Garcia, Boris Ginsburg,
Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh,
et al. Mixed precision training. arXiv preprint
arXiv:1710.03740, 2017.

[2] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang,
Haidong Rong, Feihu Zhou, Liqiang Xie, Zhenyu Guo,
Yuanzhou Yang, Liwei Yu, et al. Highly scalable
deep learning training system with mixed-precision:
Training imagenet in four minutes. arXiv preprint
arXiv:1807.11205, 2018.

[3] Nvidia. Nvida’s mixed-precision train-
ing - tensorflow example. https://docs.
nvidia.com/deeplearning/performance/
mixed-precision-training, 2018.

[4] Dipankar Das, Naveen Mellempudi, Dheevatsa Mudi-
gere, Dhiraj Kalamkar, Sasikanth Avancha, Kunal Baner-
jee, Srinivas Sridharan, Karthik Vaidyanathan, Bharat
Kaul, Evangelos Georganas, et al. Mixed precision train-
ing of convolutional neural networks using integer oper-
ations. arXiv preprint arXiv:1802.00930, 2018.

[5] Google. Tensorflow - enable mixed precision
graph rewrite. https://www.tensorflow.org/
versions/r1.15/api_docs/python/tf/train/
experimental/enable_mixed_precision_graph_
rewrite, 2018.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[7] Muthian Sivathanu, Tapan Chugh, Sanjay S Singapuram,
and Lidong Zhou. Astra: Exploiting predictability to

516    2022 USENIX Annual Technical Conference USENIX Association

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/train/experimental/enable_mixed_precision_graph_rewrite
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/train/experimental/enable_mixed_precision_graph_rewrite
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/train/experimental/enable_mixed_precision_graph_rewrite
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/train/experimental/enable_mixed_precision_graph_rewrite


optimize deep learning. In Proceedings of the Twenty-
Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pages 909–923, 2019.

[8] Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason
Lowe-Power, and Venkatesh Akella. Autotm: Automatic
tensor movement in heterogeneous memory systems
using integer linear programming. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 875–890, 2020.

[9] Xufan Zhang, Ziyue Yin, Yang Feng, Qingkai Shi, Jia
Liu, and Zhenyu Chen. Neuralvis: Visualizing and inter-
preting deep learning models. In 2019 34th IEEE/ACM
International Conference on Automated Software Engi-
neering (ASE), pages 1106–1109. IEEE, 2019.

[10] Jiawen Liu, Dong Li, Gokcen Kestor, and Jeffrey Vetter.
Runtime concurrency control and operation scheduling
for high performance neural network training. In 2019
IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 188–199. IEEE, 2019.

[11] Xin He, Jiawen Liu, Zhen Xie, Hao Chen, Guoyang
Chen, Weifeng Zhang, and Dong Li. Enabling energy-
efficient dnn training on hybrid gpu-fpga accelerators.
In Proceedings of the ACM International Conference on
Supercomputing, pages 227–241, 2021.

[12] Jiawen Liu, Hengyu Zhao, Matheus A Ogleari, Dong
Li, and Jishen Zhao. Processing-in-memory for energy-
efficient neural network training: A heterogeneous ap-
proach. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 655–
668. IEEE, 2018.

[13] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang
Ma, Qian Xiong, Fan Yang, and Xuehai Qian. Ca-
puchin: Tensor-based gpu memory management for
deep learning. In Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
891–905, 2020.

[14] Dlprof - nvidia deep learning frameworks documen-
tation. https://docs.nvidia.com/deeplearning/
frameworks/dlprof-user-guide/, 2021.

[15] Marco Tagliasacchi, Beat Gfeller, Félix de Chaumont
Quitry, and Dominik Roblek. Self-supervised audio rep-
resentation learning for mobile devices. arXiv preprint
arXiv:1905.11796, 2019.

[16] Thomas W MacFarland and Jan M Yates. Spearman’s
rank-difference coefficient of correlation. In Introduc-
tion to nonparametric statistics for the biological sci-
ences using R, pages 249–297. Springer, 2016.

[17] Peter Mattson, Christine Cheng, Cody Coleman, Greg
Diamos, Paulius Micikevicius, David Patterson, Han-
lin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf,
et al. Mlperf training benchmark. arXiv preprint
arXiv:1910.01500, 2019.

[18] Cuda toolkit documentation v9.0. https://
developer.nvidia.com/cuda-toolkit-archive,
2019.

[19] Nvidia nsight compute - nvidia developer doc-
umentation. https://developer.nvidia.com/
nsight-compute, 2021.

[20] Nvidia. Nvidia system management inter-
face. https://developer.nvidia.com/
nvidia-system-management-interface, 2018.

[21] Intel’s runningaverage power limit (rapl) interface.
https://01.org/rapl-power-meter, 2019.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[23] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception
architecture for computer vision. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 2818–2826, 2016.

[24] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[26] Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[27] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. IEEE,
2009.

USENIX Association 2022 USENIX Annual Technical Conference    517

https://docs.nvidia.com/deeplearning/frameworks/dlprof-user-guide/
https://docs.nvidia.com/deeplearning/frameworks/dlprof-user-guide/
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/cuda-toolkit-archive
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://01.org/rapl-power-meter


[28] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In Proceedings
of International Conference on Computer Vision (ICCV),
December 2015.

[29] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. SQuAD: 100,000+ questions for machine
comprehension of text. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language
Processing, pages 2383–2392, Austin, Texas, November
2016. Association for Computational Linguistics.

[30] Chuan Li. Rtx 2080 ti deep learning benchmarks
with tensorflow. https://lambdalabs.com/blog/
2080-ti-deep-learning-benchmarks/, 2019.

[31] Nvidia data center deep learning product per-
formance. https://developer.nvidia.com/
deep-learning-performance-training-inference,
2020.

[32] Oleksii Kuchaiev, Boris Ginsburg, Igor Gitman, Vitaly
Lavrukhin, Jason Li, Huyen Nguyen, Carl Case, and
Paulius Micikevicius. Mixed-precision training for
nlp and speech recognition with openseq2seq. arXiv
preprint arXiv:1805.10387, 2018.

[33] Alexey Svyatkovskiy, Julian Kates-Harbeck, and
William Tang. Training distributed deep recurrent
neural networks with mixed precision on gpu clusters.
In Proceedings of the Machine Learning on HPC
Environments, pages 1–8. 2017.

[34] Alfredo Buttari, Jack Dongarra, Julie Langou, Julien
Langou, Piotr Luszczek, and Jakub Kurzak. Mixed pre-
cision iterative refinement techniques for the solution of
dense linear systems. The International Journal of High
Performance Computing Applications, 21(4):457–466,
2007.

[35] Azzam Haidar, Panruo Wu, Stanimire Tomov, and Jack
Dongarra. Investigating half precision arithmetic to
accelerate dense linear system solvers. In Proceedings
of the 8th Workshop on Latest Advances in Scalable
Algorithms for Large-Scale Systems, pages 1–8, 2017.

[36] Beata Bylina and Jarosław Bylina. Mixed precision
iterative refinement techniques for the wz factorization.
In 2013 Federated Conference on Computer Science
and Information Systems, pages 425–431. IEEE, 2013.

[37] Pradeep V Kotipalli, Ranvijay Singh, Paul Wood, Igna-
cio Laguna, and Saurabh Bagchi. Ampt-ga: automatic
mixed precision floating point tuning for gpu applica-
tions. In Proceedings of the ACM International Confer-
ence on Supercomputing, pages 160–170, 2019.

[38] Azzam Haidar, Stanimire Tomov, Jack Dongarra, and
Nicholas J Higham. Harnessing gpu tensor cores for fast
fp16 arithmetic to speed up mixed-precision iterative
refinement solvers. In SC18: International Conference
for High Performance Computing, Networking, Storage
and Analysis, pages 603–613. IEEE, 2018.

[39] Manuel Le Gallo, Abu Sebastian, Roland Mathis, Matteo
Manica, Heiner Giefers, Tomas Tuma, Costas Bekas,
Alessandro Curioni, and Evangelos Eleftheriou. Mixed-
precision in-memory computing. Nature Electronics,
1(4):246–253, 2018.

[40] Marc Baboulin, Alfredo Buttari, Jack Dongarra, Jakub
Kurzak, Julie Langou, Julien Langou, Piotr Luszczek,
and Stanimire Tomov. Accelerating scientific compu-
tations with mixed precision algorithms. Computer
Physics Communications, 180(12):2526–2533, 2009.

[41] Michael O Lam, Jeffrey K Hollingsworth, Bronis R
de Supinski, and Matthew P LeGendre. Automatically
adapting programs for mixed-precision floating-point
computation. In Proceedings of the 27th international
ACM conference on International conference on super-
computing, pages 369–378, 2013.

[42] Nathan Whitehead and Alex Fit-Florea. Precision &
performance: Floating point and ieee 754 compliance
for nvidia gpus. rn (A+ B), 21(1):18749–19424, 2011.

[43] Da Yan, Wei Wang, and Xiaowen Chu. Demystifying
tensor cores to optimize half-precision matrix multiply.
In 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 634–643. IEEE,
2020.

[44] Stefano Markidis, Steven Wei Der Chien, Erwin Laure,
Ivy Bo Peng, and Jeffrey S Vetter. Nvidia tensor core
programmability, performance & precision. In 2018
IEEE International Parallel and Distributed Process-
ing Symposium Workshops (IPDPSW), pages 522–531.
IEEE, 2018.

[45] John Brennan, Stephen Bonner, Amir Atapour-
Abarghouei, Philip T Jackson, Boguslaw Obara, and
Andrew Stephen McGough. Not half bad: Exploring
half-precision in graph convolutional neural networks.
In 2020 IEEE International Conference on Big Data
(Big Data), pages 2725–2734. IEEE, 2020.

[46] Ahmad Abdelfattah, Stanimire Tomov, and Jack Don-
garra. Fast batched matrix multiplication for small sizes
using half-precision arithmetic on gpus. In 2019 IEEE
International Parallel and Distributed Processing Sym-
posium (IPDPS), pages 111–122. IEEE, 2019.

518    2022 USENIX Annual Technical Conference USENIX Association

https://lambdalabs.com/blog/2080-ti-deep-learning-benchmarks/
https://lambdalabs.com/blog/2080-ti-deep-learning-benchmarks/
https://developer.nvidia.com/deep-learning-performance-training-inference
https://developer.nvidia.com/deep-learning-performance-training-inference


PRIMO: Practical Learning-Augmented Systems with Interpretable Models

Qinghao Hu1,2 Harsha Nori3 Peng Sun4 Yonggang Wen1 Tianwei Zhang1

1Nanyang Technological University 2S-Lab, NTU 3Microsoft 4SenseTime Research

Abstract
While machine learning has demonstrated remarkable perfor-
mance in various computer systems, some substantial flaws
can prohibit its deployment in practice, including opaque
decision processes, poor generalization and robustness, as
well as exorbitant training and inference overhead. Motivated
by these deficiencies, we introduce PRIMO, a unified frame-
work for developers to design practical learning-augmented
systems. Specifically, (1) PRIMO provides two interpretable
models (PrAM and PrDT), as well as a Distill Engine, to sup-
port different system scenarios and deployment requirements.
(2) It adopts Bayes Optimization to automatically identify the
optimal model pruning strategy and hyperparameter configu-
ration. (3) It also implements two tools, Monotonic Constraint
and Counterfactual Explanation, to achieve transparent de-
bugging and guided model adjustment. PRIMO can be applied
to different types of learning-augmented systems. Evaluations
on three state-of-the-art systems show that PRIMO can pro-
vide clear model interpretations, better system performance,
and lower deployment costs.

1 Introduction
Over the years, machine learning (ML) has been widely
adopted to optimize systems across many fields, e.g., stor-
age [29,82,85], network [66,77,95], security [24,28,74], com-
piler optimization [8,93,94] and cluster scheduling [65,89,92].
These learning-augmented systems demonstrate marvelous
performance compared with conventional heuristic or mathe-
matical optimized systems.

However, most of these applied models are very complex
and treated as black-boxes to developers, which brings sig-
nificant gaps in deploying them in practice. First, building
a production-level learning-augmented system can incur
huge costs. From the experience at Microsoft [42], the model
training process could take days to weeks with massive data.
Some systems require frequent model updates to adapt to
dynamic environment changes, whose cost often exceeds en-
terprise expectations. For some scenarios with limited data
samples, developers have to use techniques to synthesize
training samples [12, 45, 96], which inevitably introduce bias
to the model and cause performance deterioration in prac-
tice [8, 10, 66]. Moreover, the inference process of these com-
plicated models can pose heavy computational pressure to

systems which have high real-time requirements [43, 81, 82],
which can significantly restrict parallel capabilities and affect
scalability in practice.

Second, the prediction process of these black-box mod-
els are unintelligible to humans. Developers lack under-
standing and trust of the model’s behavior [19, 53, 91], which
makes it difficult for them to perform model adjustments and
ad hoc debugging in practical scenarios. Some efforts have
been made to improve system transparency through interpret-
ing black-box models [26, 27, 55]. They typically build surro-
gate models to obtain explanations for individual predictions,
thus validating model behaviors and diagnosing system mis-
takes. However, they cannot provide an interpretation fidelity
guarantee, and therefore the corresponding explanations are
unreliable and potentially misleading [58, 70]. In addition,
they cannot address the aforementioned system cost issue.

In this paper, we aim to resolve the above challenges and
facilitate transparent, accurate and lightweight system de-
ployment in practice. We introduce PRIMO (Prior-based
interpretable model optimization), the first unified frame-
work that assists developers to design and optimize learning-
augmented systems with interpretable models. The design
of PRIMO is based on two key insights. First, simple inter-
pretable models have the capability of handling complex sys-
tem problems. Interpretable models do not sacrifice prediction
accuracy [35,62,72], and simple model structures with low re-
source overhead are very suitable for real-time systems. Their
effectiveness is often underestimated [70]. Second, prior expe-
rience and domain knowledge can be leveraged by developers
to further optimize the interpretable models [20, 76], which is
hard to achieve for black-box models.

PRIMO makes several innovations to enhance learning-
augmented systems. First, to provide comprehensive support
for different systems, PRIMO introduces two interpretable
model algorithms: PrAM is designed for better prediction accu-
racy and PrDT applies to systems with strict latency or compu-
tation constraints. PRIMO can help developers select a suitable
model automatically based on their system requirements, in-
cluding latency, accuracy, and resource budget. In addition
to training models directly, PRIMO also supports distilling
existing complex models, which applies to exploration-based
systems with reinforcement learning (RL) [23, 49, 56, 59].

Second, to fully exploit the potential of interpretable mod-

USENIX Association 2022 USENIX Annual Technical Conference    519



els, we design several built-in mechanisms to optimize model
performance leveraging prior information. (1) PRIMO imple-
ments Bayes Optimization to find the optimal model pruning
strategy and hyperparameter configurations for higher pre-
diction accuracy and lower computation overhead. It fully
takes advantage of prior search information to minimize
the search space and training cost. (2) PRIMO also facili-
tates model post-processing for developers with their domain
knowledge. Specifically, it provides two tools for model ad-
justment through adding Monotonic Constraints and transpar-
ent debugging with Counterfactual Explanations.

Based on these innovations, PRIMO provides not only pre-
cise and comprehensive interpretations for developers to un-
derstand and adjust models, but also better prediction accuracy
and smaller overhead. To extensively evaluate these benefits
in real scenarios, we apply PRIMO to three state-of-the-art
learning-augmented systems, including two online systems
(LinnOS for flash storage [29] and Pensieve for video steam-
ing [51]), and an offline system (Clara for SmartNIC offload-
ing [66]). For LinnOS, PRIMO provides a 2.8× system perfor-
mance improvement, and reduces model training time by over
100×, as well as inference latency by over 20×. For Clara,
PRIMO beats a series of black-box models in prediction accu-
racy and saves over 10× training cost. For Pensieve, PRIMO
achieves better generalization ability and a 79× inference la-
tency reduction. We believe PRIMO can bring similar benefits
to other learning-augmented systems as well.

To summarize, we make the following contributions:

• To the best of our knowledge, PRIMO is the first framework
to provide inherent interpretability for learning-augmented
systems development.

• We design built-in mechanisms and adjustment tools for
developers to achieve transparent, accurate and lightweight
system deployment in practice.

• For the first time, we demonstrate that simple interpretable
models can outperform complex black-box techniques in
various real systems.

2 Background and Motivation

2.1 Learning-Augmented Systems
Learning-augmented systems apply machine learning tech-
niques to optimize system performance [42]. They typically
build various ML models to obtain preeminent system poli-
cies from historical execution data, such as Support Vec-
tor Machines (SVM) [65, 66], Random Forest (RF) [5, 86],
Gradient Boosting Decision Tree (GBDT) [32, 92]. With
the popularity of deep learning (DL) algorithms, they were
also introduced to further enhance systems, e.g., Deep Neu-
ral Network (DNN) [29, 82], Convolutional Neural Network
(CNN) [43, 53], Recurrent Neural Network (RNN) [66, 90]
and Reinforcement Learning (RL) [41, 51]. We classify them
into the following categories.

Taxonomy. Learning-augmented systems typically follow
similar design workflows to integrate ML models into system
operations. Based on the optimization type, they can be classi-
fied into two categories. (1) Prediction-based systems utilize
the supervised learning paradigm (e.g., classification, regres-
sion) to optimize system problems. (2) Exploration-based
systems usually adopt reinforcement learning to learn optimal
policies in an explore-exploit way. Since there are relatively
fewer unsupervised learning-based systems in practice, we
consider them as our future work (§8).

Based on system requirements and application scenarios,
learning-augmented systems can be divided into the following
two types. (1) Online systems require the ML model to make
prompt predictions for real-time data. Developers need to
consider model inference latency and computation overhead,
in addition to prediction accuracy. (2) Offline systems usually
do not need to deploy ML models for real-time serving and
have no latency or computation requirements. These systems
are performance-critical and the objective of ML models is to
improve prediction accuracy.

PRIMO is designed as a unified framework, providing
respective optimization mechanisms for different types of
learning-augmented systems.

2.2 Challenges and Motivation
While plenty of work has demonstrated the potential of ML
techniques in improving system performance, there exist
several challenges in the development and deployment of
learning-augmented systems in practice.
Model development. First, building a qualified ML model
for the target system has the following two challenges:
• C1: high training and tuning cost. As stated by Microsoft

AutoSys [42], costs of ML model training often exceeds en-
terprise expectations. Real system environments are dynam-
ically changing and stale models will cause performance de-
terioration. Therefore, frequent model fine-tuning or retrain-
ing is necessary, which could take days to weeks [42, 52]
in order to outperform heuristic algorithms. If there are not
enough GPU resources, the update time will become even
more intolerable for DL models.

• C2: susceptible to the quantity and quality of data. A
large amount of high-quality training data are essential to
produce satisfactory ML models. However, in some cases,
insufficient data [8, 10, 66] or excessive data collection
cost [52,88] hinder developers from training qualified mod-
els. Possible solutions include data augmentation and syn-
thesis [12, 45, 96]. Nevertheless, owing to the sophisticated
distribution of real-world data, the generated data inevitably
introduce bias and shift to the learning model [66], which
could compromise the system performance in practice.

Model deployment. Second, deploying ML models in prac-
tice has interpretability and inference overhead issues:
• C3: opaque decision making process. Developers mainly

520    2022 USENIX Annual Technical Conference USENIX Association



Strategies Interpretation
Fidelity

Local
Interpretation

Global
Interpretation

Transparent
Adjustment

Deployment
Cost

Accuracy
Ú

Roustness
Ú

Latency
Ø

Black-box models (e.g., DNN, RL, GBDT) 8 8 8 8 $$$ H H H

Interpreting black-box models [26, 67] 8 4 8 8 $$$ H H H

Building interpretable models (PRIMO) 4 4 4 4 $ HI HI HI

Table 1: Comparisons of different strategies for learning-augmented systems (I: Performance improvement).

focus on improving key system metrics (e.g., I/O latency
[29], user experience [51]) when designing and evaluat-
ing ML models, while ignoring their interpretability. As
a result, most of these learning models are black-boxes
whose prediction processes are unintelligible to humans
[26, 40, 70]. Due to such opacity, system operators cannot
guarantee model predictions are risk-free and have insuffi-
cient confidence to deploy them.

• C4: difficulty in troubleshooting and adjustment. In or-
der to achieve expected performance in production environ-
ments, system operators typically need to adjust the learning
models according to the actual scenarios [19,53,55], includ-
ing input features alteration, model structure modification,
data augmentation, etc. All these actions require the oper-
ators to have a profound understanding of the system and
the corresponding ML technique [26, 42], which is difficult
when the model is complex. In addition, ad hoc debugging
is another substantial challenge to learning-augmented sys-
tems for black-box models. Improper modifications may
cause severe performance degradation.

• C5: exorbitant deployment overhead. The model deploy-
ment overhead is another key factor for system operators’
consideration [53]. The latency and computation require-
ments of some systems [43, 81, 82] are far more strict than
conventional AI tasks. High inference overhead can cause
side effects to production workloads and limit their paral-
lelism capability [29], which can further restrict deployment
scalability.

2.3 Model Interpretation as a Solution
One possible solution to address the above challenges is
model interpretation. There are two primary directions to
apply model interpretation for learning-augmented systems.

2.3.1 Interpreting Black-box Models.

The essential idea is to leverage existing interpretation
methodologies to interpret the black-box models, making
them more intelligible and transparent. A variety of interpre-
tation tools (e.g., Lime [67], Captum [39], Shap [48]) were
designed to explain the mechanisms of DNN models for CV
and NLP tasks. Similar studies were also performed for other
domains. For instance, Lemna [26] employs a mixture regres-
sion model [36] to interpret RNN models in DL-based security
applications. Metis [55] proposes to interpret networking sys-
tems with the decision tree or hypergraph. However, we argue
that the idea of interpreting black-box models is not sufficient

for learning-augmented systems for the following reasons.
(1) No fidelity guarantee. These tools typically interpret

black-box models in a post hoc way, where another local
surrogate model is created to explain the original model. They
cannot have a fidelity guarantee with respect to the original
model. Therefore, the corresponding explanations are often
unreliable, and can be misleading [58, 70]. The fidelity of
some widely applied interpretation methods (e.g., attention-
based explain [84]) are still in dispute [34, 83]. Appendix B.1
presents an example of contradictory XGBoost explanations.

(2) Limited interpretation. Most existing tools (e.g., Lime,
Lemna) focus on explaining individual predictions (local in-
terpretation) instead of the entire model behavior (global in-
terpretation). Thus, the interpretation results typically cannot
yield enough information for system troubleshooting. Ap-
pendix B.2 shows their insufficiency for global understanding
and model surrogate.

(3) Requiring domain knowledge. Different systems may
employ different models and algorithms. There is no unified
tool that can provide comprehensive support for interpret-
ing arbitrary models. Consequently, domain knowledge and
manual efforts are required to implement the tools and under-
stand the explanation results. This poses a huge challenge for
developers to design a learning-augmented system.

(4) Incapability of handling other challenges. Those tools
only focus on model interpretation and understanding (C3 &
C4), but ignore other challenges discussed in §2.2.

2.3.2 Building Interpretable Models

A more promising direction, which is adopted in PRIMO, is
to train interpretable models directly for learning-augmented
systems. Interpretable models refer to the models that are in-
herently intelligible, where their explanations provided by
themselves are faithful to what the models actually com-
pute [58, 70]. Common interpretable models include linear
regression, logistic regression, decision tree, decision list,
etc. They have great potential to enhance different types of
learning-augmented systems.

According to our observation from recent state-of-the-art
learning-augmented systems [1], the scale of models in these
systems tend to be relatively smaller than popular production-
level AI models (although they are still too complex for hu-
mans to understand). For instance, the number of neurons in
a RL-based system is typically less than 10K [19]. This is
because most data samples in learning-augmented systems
are well structured, with good representations in terms of
naturally meaningful features. In such scenarios, a much sim-

USENIX Association 2022 USENIX Annual Technical Conference    521



System States

Workload Features

User Configurations

···

Data

Counterfactual
Explanation

Prior-based Adjustment

Automatic Pruning

Input Feature Optimization

Transparent Debugging

Intelligible Decision Making

Monotonic
Constraint

Post-Processing Optimization

Transparent

Accurate

Lightweight

Deploy

Interpretable Models Training

Distill
Engine

Bayes
Optimization

Auto

Model

Selector

PrDT

PrAM

yes

no

yes

yes

yes

no

no

no

Constraints

Latency

Performance

Resource

···

Figure 1: The workflow of learning-augmented system development using PRIMO.

pler interpretable model can give comparable performance to
complex black-box models [70]. Therefore, developers can
employ interpretable models for their systems, which require
less data, training and tuning cost (C1 & C2). The models
give more information for system operators to understand
(C3), troubleshoot and adjust (C4), and the inference speed
is much faster than the original black-box model (C5).

Summary. The benefits of PRIMO compared with other meth-
ods are summarized in Table 1. It can provide not only highly
precise and comprehensive interpretations for developers to
understand and adjust models, but also higher accuracy and ro-
bustness, and smaller training and inference overhead. These
greatly facilitate model deployment in practice.

3 PRIMO Design
We introduce PRIMO, a unified framework that assists devel-
opers to design practical learning-augmented systems. Par-
ticularly, (1) we employ transparent and deterministic in-
terpretable models to circumvent the uncertainty issues of
black-box model inference. (2) We integrate new tools for de-
velopers to leverage prior knowledge to optimize interpretable
models automatically. (3) We design a built-in mechanism
to search optimal hyperparameters in a fast and convenient
way, without extra effort from the developers. Based on these
designs, PRIMO can address all the challenges in §2.2.

3.1 Framework Overview
PRIMO optimizes both the training and post-processing stages
of building learning-augmented systems. Figure 1 illustrates
the development workflow with PRIMO. In the model training
stage, PRIMO provides two interpretable model algorithms
(PrAM and PrDT) designed for different system scenarios1.
PRIMO helps developers automatically select suitable algo-
rithms based on their system requirements including latency,
accuracy, and resource budget. It supports training the inter-
pretable model directly, or converting an existing complex
black-box model into a simple interpretable model through
the Distill Engine. We also leverage Bayes Optimization to
find the optimal model pruning strategy and hyperparame-
ter configurations for higher prediction accuracy and lower

1Other interpretable models can also be conveniently integrated into this
framework, which will be considered in our future work.

computation overhead. After the model is trained, PRIMO
offers several optimization tools in the post-processing stage,
e.g., prior-based model adjustment through adding monotonic
constraints, transparent debugging with counterfactual expla-
nations. Below we detail the mechanism of each component.

3.2 Interpretable Models
As introduced in §2.1, different system scenarios have differ-
ent requirements for the learning models. To this end, PRIMO
employs two types of interpretable model algorithms: PrAM is
designed for better prediction accuracy and PrDT applies to
systems with strict latency constraint or computation sensitiv-
ity. PRIMO supports automatic model selection based on the
demands specified by the developers.

3.2.1 PrAM: Addictive Model based Method

Our first interpretable model, PrAM, is based on the Standard
Generalized Additive Models (GAMs) [30]. GAMs consist of
a series of shape functions fi(·) and an intercept µ0 (Equation
1). Since each shape function considers only one univariate
term (the ith feature xxxi) and their combination is additive,
GAMs are interpretable: we can clearly understand the con-
tribution of each single feature to the final prediction.

Compared with linear interpretable models (e.g., logis-
tic regression), GAMs can cope with more complex predic-
tion tasks because shape functions are typically nonlinear
and have better fitting capability. To further increase model
performance, we adopt the state-of-the-art GAM algorithm:
GA2M [47], which additionally considers the interactions of
two features and maintains the interpretability (more details
are in Appendix A.1). GA2M has the following form:

g(E[y | xxx]) = µ0 +∑ fi
(
xxxi)︸ ︷︷ ︸

GAM

+∑ fi j
(
xxxi,xxx j)︸ ︷︷ ︸

Interactions

(1)

where g(·) is a link function that adapts GA2M to different
tasks, e.g., regression (identity), classification (logistic func-
tion); fi j(·) represents the interaction effect of features i and
j, which can be visualized as a two-dimensional heatmap.

In our implementation, PrAM extends the open-source li-
brary EBM [63] to obtain the optimal model with high com-
pactness and accuracy. Compared to the complex DL models,
PrAM can not only provide interpretability, but also takes less

522    2022 USENIX Annual Technical Conference USENIX Association



training resources (without the need of GPUs) and training
data samples, significantly reducing the training time and cost.

3.2.2 PrDT: Decision Tree based Method

Our second interpretable model PrDT is constructed from
Decision Trees (DTs). DTs are binary tree-structured models
where each branch node tests a condition and each leaf node
makes a prediction [71]. Because DTs are non-parametric
and can be essentially expressed as an equivalent rule list,
they are transparent and simple to interpret how a prediction
is obtained. Besides, the decision-making processes of DTs
can be visualized so developers can easily adjust the trees
according to the system requirements. They present powerful
prediction capability for both classification and regression
tasks, even compared with complex black-box models.

In addition to the excellent interpretability and accuracy,
DTs have extremely low computation overhead and inference
latency. Consequently, they are applicable to many scenarios
with strict latency and resource constraints [29, 61]. Besides,
DTs also exhibit other benefits, including robust performance
under dynamic system environments, requiring less training
data and no data preprocessing overhead during inference.

It is necessary to optimize the complexity of a DT to avoid
the overfitting issue, which can affect the model generaliza-
tion, accuracy and computation overhead. Instead of adding
constraints (e.g., maximum depth, minimum number of sam-
ples for a leaf node) during DT training, PrDT trains a full de-
cision tree without any limitation to capture more information
from the training dataset. We adopt minimal cost-complexity
pruning [14] to prune the full tree in the post-processing stage,
which is elaborated in Appendix A.2.

3.3 Model Training
PRIMO supports two training modes. (1) Direct: the developer
can train an interpretable model from scratch. This applies
for most prediction-based systems. (2) Distill: the developer
can generate an interpretable model from the original black-
box model through the Distill Engine. This is mainly for
exploration-based systems. To obtain high-quality models,
both modes support the integration of Bayes Optimization for
efficient model structure and hyperparameter search.

3.3.1 Bayes Optimization

There exists a trade-off between the model complexity and ac-
curacy for both interpretable models. In order to find accurate
and succinct models, PRIMO leverages Bayes Optimization
(BO) [76], an iterative algorithm to automatically search for
the optimal model configurations.
Objective function. For both PrAM and PrDT, we build a uni-
versal model scoring function S(θ) to quantify the model
performance and complexity as the search objective:

S(θ) = P(θ)+λ ·C(θ)γ (2)

where P(θ) represents the model performance (e.g., classifi-
cation accuracy) under hyperparameters θ during validation;

Decision Boundary

CF1 (Feature X: 2 3)

CF2 (Feature X: 2 4,
Feature Y: 8 6)

Instance A

Figure 2: Illustration for the counterfactual explanation.

λ is a knob that controls the model complexity according to
users’ preference; C(θ) is a metric for model complexity. For
PrDT, C(θPrDT) =Nleaves×Ndepth, where we consider both the
number of tree leaves and tree depth since unbalanced-deeper
trees typically cost longer condition inference time. For PrAM,
C(θPrAM) = Ninteractions×Nmaxbins, where both the number of
feature interaction terms and maximum number of bins in the
feature histogram are included. Besides, the normalization
factor γ regulates the effect of the model complexity.

Prior-based hyperparameter search. Specifically, PRIMO
employs Gaussian Process (GP) as the probabilistic surro-
gate model of the objective function S(θ) in Equation 2. The
prediction of GP follows a normal distribution: p(S | θ,Θ) =
N
(
S | µ̂, σ̂2

)
, where Θ indicates the hyperparameter search

space. To determine which point should be evaluated next,
PRIMO adopts expected improvement (EI) as the acquisition
function to trade-off exploration and exploitation [20]. In
each iteration, PRIMO generates a set of hyperparameters and
evaluates them on the interpretable model to obtain new re-
sults which are used to update the surrogate model. Compared
with Grid Search (GS) and Random Search (RS) [13], BO is
more efficient since it fully utilizes the prior information to
minimize the search space. For instance, as shown in Figure
17 in Appendix A.2, BO can rapidly reduce the search space
to a smaller size (10−5~10−2) for a better focus.

3.3.2 Distill Engine

In some scenarios, the learning models require special opti-
mization. For instance, LinnOS [29] leverages biased train-
ing to reduce the false submit rate while causing the higher
false revoke rate. PRIMO introduces the Distill Engine, which
can build an interpretable surrogate model to approximate
the behavior of the original black-box learning model using
knowledge distillation [7, 31].

Another application of the Distill Engine is RL policy ex-
traction. Both PrAM and PrDT work well for prediction-based
systems using supervised learning, but are less supportive for
exploration-based systems due to their incompatibility with
RL. A series of works [11, 69, 75] have demonstrated the
feasibility of converting NN-based learning policies to an
interpretable models. PRIMO adopts Viper [11] to perform
RL policy extraction. Specifically, we collect the trajectories
of {sssi,ai} pairs (i.e., system states sssi and actions ai of learned
policy π(sssi,ai)) generated by the original RL model and per-
form supervised learning to build the interpretable models.

USENIX Association 2022 USENIX Annual Technical Conference    523



System Scenario ML Algorithm Type Primo

LinnOS [29] Flash Storage I/O DNN Online PrDT (Direct)

Clara [66] SmartNIC Offloading
Mixture (LSTM,

GBDT, SVM)
Offline PrAM (Direct)

Pensieve [51] Video Streaming RL Online PrDT (Distill)

Table 2: Summary of case studies for PRIMO evaluation.

To obtain a robust policy, we augment the poor-performing
pairs and train the model iteratively until it is converged.

3.4 Post-Processing Optimization
After the interpretable model is built, developers can use their
prior knowledge to further optimize the model and enhance
the system performance. PRIMO designs two tools to assist
developers in model post-processing. Note that these oper-
ations are optional since generally the trained interpretable
models already achieve satisfactory performance.

3.4.1 Monotonic Constraint

In many learning-augmented systems, the input features ex-
hibit a monotonic relationship with the output values (e.g.,
higher video bitrate selection with better bandwidth). But the
corresponding model often presents a non-monotonic pattern
due to the sub-optimal construction strategy or noisy training
data (e.g., outlier data points, biased synthetic data). This can
lead to unstable performance and intelligibility degradation
in practice. To this end, PRIMO leverages a method from DP-
EBM [62], which adds monotonic constraints to boosted trees
via post-processing. Specifically, we model this task as an
isotonic regression problem [15] with respect to a complete
order. The objective is to minimize ∑i wi (yi− ŷi)

2 subject to
ŷi ≤ ŷ j and weights wi are strictly positive. We adopt the Pool
Adjacent Violators (PAV) [6] algorithm to obtain an optimal
solution maintaining monotonicity, and use it to replace the
original shape function of PrAM. Our tool only needs develop-
ers to provide the feature name or index and the subsequent
model adjustment process is transparent and automatic.

3.4.2 Counterfactual Explanation

To make modifications to the models, developers need to an-
swer some challenging questions, e.g., which feature related
shape function should be adjusted? how to determine the mod-
ification degree? To help them make reasonable decisions,
we design the Counterfactual Explanation tool in PRIMO to
generate additional insights for model adjustment. As illus-
trated in Figure 2, this tool aims to find smaller change (green
arrow) to the feature values that can alter the prediction to
a predefined output within the dataset. It typically uses the
k-nearest neighbors (kNN) algorithm to find k training in-
stances with the minimum L2 distances [80]. To address the
inefficiency of the brute-force kNN approach, we propose to
use Ball Tree [22] to partition data in a series of nesting hyper-
spheres, thus the distance between a prediction point and the
centroid is sufficient to determine a lower and upper bound on
the distance to all points within the hyper-sphere node. This

Fast

Slow

yes no

yes no yes no

yes nonoyes

noyes
Current queue length

Queue length of the third recent I/O

Latency of the first recent I/O

Input Feature Optimization

LinnOS (31 Input Features)

3 neurons

3×4 neurons

4×4 neurons

Primo (3 Input Features)

Figure 3: (Left) Learned PrDT model for an SSD. The thicker
arrow line denotes the higher frequency. (Right) PRIMO opti-
mizes the input features of LinnOS. Each feature represents a
digit in LinnOS while a complete number in PRIMO.

approach considerably reduces the query time when dealing
with large-scale and high-dimensional datasets. And develop-
ers could perform guided model adjustment easily.

PRIMO Experiments. In the following three sections, we will
present three case studies to demonstrate how PRIMO can
optimize state-of-the-art learning-augmented systems. Table
2 describes these three scenarios. The key observation for
each case is summarized in Appendix C. We believe PRIMO
can be applied to other learning-augmented systems as well.

4 Case Study 1: LinnOS
As the first case, we consider LinnOS [29], a learning-based
operating system that accelerates storage applications. Lin-
nOS adopts a 3-layer neural network (31-256-2, in total of
8706 parameters) for each SSD to precisely predict its perfor-
mance. To achieve this, it collects the traces of real workloads
running on the SSD and obtains fine-grained information (per
I/O), including recent queue lengths and latency. Instead of
predicting the concrete latency values, LinnOS simplifies it
as a binary (fast / slow) classification task through setting
an inflection point (IP). More details about LinnOS and our
implementation can be found in Appendix D.1.

PRIMO automatically selects the PrDT model for LinnOS,
since it has comparable accuracy and lower inference la-
tency than PrAM. For comprehensive evaluation, we consider
two models with different optimization objectives: efficiency-
oriented (PRIMO-E) and performance-oriented (PRIMO-P).
We compare PRIMO with two baselines. (1) Base: the vanilla
Linux I/O mechanism. (2) LinnOS: we set the inflection point
of LinnOS as a constant percentile (at p85 latency) and apply
the biased loss to the model training (all keep the same).

4.1 System Interpretation
The primary goal of PRIMO is to provide interpretation for the
target system. Figure 3 (left) presents the learned decision tree
(PRIMO-E) for one SSD. The explanation of each notation
can be found on the right side. From this tree, we can clearly
understand how PRIMO makes decisions for each prediction

524    2022 USENIX Annual Technical Conference USENIX Association



0 5 10 15
Latency (ms)

60

80

100

Fr
ac

tio
n 

(%
)

(a)

Primo-E
Primo-P
LinnOS
Base

Prim
o-E
Prim

o-P
LinnOS

Base
0

500

1000

Av
er

ag
e 

La
te

nc
y 

(
s)

303.0 267.1

746.1

1010.7

(b)

Figure 4: Overall performance comparisons. (a) CDF of I/O
latency. (b) Average I/O latency.

p90 p95 p99 p99.9 p99.99
0

10

20

30

La
te

nc
y 

(m
s)

Primo-E
Primo-P
LinnOS
Base

Figure 5: Tail percentiles of I/O latency.

(Local interpretation). We can also obtain intuitive cognition
of the overall model behavior (Global interpretation) through
observing the thickness of each decision path (arrow lines).

Specifically, the top-2 layers of the DT show PRIMO first
classifies I/O requests from the current queue length (Lc),
indicating this feature can significantly affect the prediction
results. Developers can perform adjustments to Lc thresholds
to optimize system behavior. Because the 4-layer DT only
contains 7 leaves (terminal nodes), each prediction needs to
take at most 4 condition tests at the branch nodes and the
majority of test instances only need to execute 2 condition
tests. This inference overhead is much smaller than the origi-
nal DNN model with 8706 parameters in LinnOS. Moreover,
as shown in Figure 3 (right), PRIMO only takes 3 input fea-
tures without any preprocessing, which further reduces the
model complexity and deployment overhead. On the contrary,
LinnOS needs to perform input data preprocessing for all 9
metrics to form a 31-dimensional input feature (e.g., Lc = 15
needs to be converted into a {0, 1, 5} vector). This opera-
tion is necessary for every I/O read operation, remarkably
exacerbating the inference overhead.

4.2 Performance Analysis
We evaluate the performance of PRIMO in the LinnOS flash
storage I/O scenario from the following two perspectives:

Overall performance. Figure 4 shows the Cumulative Dis-
tribution Function (CDF) and average I/O latency (with the
standard deviation) of each method over three independent
experiments. It is obvious that both PRIMO-E and PRIMO-P
significantly outperform LinnOS. Compared with the base I/O
mechanism, LinnOS reduces 26.2% I/O latency on average,
while PRIMO decreases the I/O latency by 70.0~73.6%. It in-
dicates PRIMO can achieve an additional 2.5~2.8× (PRIMO-E

0 5 10 15 20 25 30 35
Latency ( s)

Minimum
(Idle)

Median
(Busy)

Primo-E
Primo-P

LinnOS

Primo-E

Primo-P
LinnOS

SSD Access

Figure 6: Model inference latency. Empty circles represent
the minimum inference latency when the system is idle. Solid
circles represent the inference latency of the median I/O oper-
ation when the system is busy. The vertical line indicates the
basic SSD access latency (reading 4KB data in the idle state).

Primo LinnOS
Inaccuracy

0.0

2.5

5.0

7.5

10.0

Fr
ac

tio
n 

(%
)

(a)

Original
Quantized

Primo LinnOS Primo LinnOS
False Submit                False Revoke

0

10

20

30

(b)

Original
Perturbed

Figure 7: (a) Quantization impact. (b) Robustness test.

/ PRIMO-P) improvement over LinnOS.
Tail performance. The tail behavior is critical to system per-
formance. Figure 5 presents the average I/O latency and the
range at tail percentiles (from p90 to p99.99). We find Lin-
nOS fails to reduce tail latency on the tail, and the curve
almost overlaps with the Base case. On the contrary, PRIMO-
P achieves 7.9×, 4.3× and 2.3× performance improvement
over the vanilla I/O mechanism at p99, p99.9 and p99.99 re-
spectively. Additionally, PRIMO-P also performs much better
at p90 (2.2×) and p95 (7.5×) compared to LinnOS.

4.3 Effectiveness Analysis
We perform the effectiveness analysis from the following per-
spectives to investigate why PRIMO can outperform LinnOS.
Inference overhead. In Figure 6, we measure the extra in-
ference latency of PRIMO and LinnOS. (1) When the system
is idle, we measure the minimum inference latency. We ob-
serve that LinnOS takes 8µs, while the overhead of PRIMO-E
is almost negligible (≤ 1µs), making the deployment more
lightweight. (2) When the system is busy with heavy I/O op-
erations, LinnOS requires a median inference latency of 33µs
due to the high frequency of preprocessing and inference.
This is even higher than the basic SSD access latency (25µs).
In contrast, PRIMO remains relatively lower inference latency
with smaller overhead.
Quantization. Since floating points are not well supported
in the Linux kernel, the model weights of LinnOS and the
thresholds of PRIMO are converted to integers by quantiza-
tion. This can achieve smaller inference latency at the cost
of accuracy degradation. Figure 7 (a) shows the quantization

USENIX Association 2022 USENIX Annual Technical Conference    525



0.0 0.5 1.0 1.5
Average Absolute Score

Re x Rsum

Rstate x Ic
Ic
Rec

Re

Ae
Rsum

Ai
Rstate

Ric

Rres

Ri

2 1 0 1 2
Feature Score

Ic

Ric

Rsum

Rres

Ai

Re

Ae

Rstate

Ri

Rec

Intercept 
 = 47.11

0 10 20 30
Rec Bins

2

1

0

1

2

Sc
or

e

Origin
Monotonic

Figure 8: Interpretation and visualization of the PrAM model in Clara-MS. (Left): Global interpretation of overall feature
importance. (Middle): Local interpretation of each feature’s contribution to individual predictions. (Right): Visualization of the
learned shape function of Rec (blue line), and with the monotonic constraint post-processing optimization (orange line).

Prim
o
Prim

o+
Clara DNN DT

SVM
0

1

2

3

4

M
AE

2.46 2.45 2.45

3.08
3.36

3.98

MazuNAT
DNSProxy

UDPCount
WebGen

30

35

40

45

50

55

N
um

be
r o

f C
or

es

Optimal
Primo+ (MAE=0.85)
Clara (MAE=1.19)

Figure 9: Evaluation on Clara-MS. (Left): Mean Absolute
Error (MAE) of testset. (Right): Prediction of 4 real NFs.

impact on the prediction accuracy. It is evident that the ac-
curacy drop of LinnOS is over 2% and varies significantly
among different SSD models. In comparison, PRIMO-E has
negligible accuracy degradation, as the node threshold values
are naturally integers or the decimal part is 0.5.

Robustness. A good model should exhibit high robustness
against system state drifting. To measure the robustness of
those methods, we synthesize some perturbed samples by
adding Gaussian noise to the test dataset. The noise is added
to all 4 recent I/O queue lengths (σ = 5) and I/O latency
(σ = 100)2. Figure 7 (b) illustrates the false submit and false
revoke rates of LinnOS and PRIMO-E under the original and
perturbed test datasets. Reducing the false submit rate is far
more important since the failover overhead of false revoke
is negligible. It is obvious that PRIMO keeps stable accuracy
under perturbed input while LinnOS presents severe perfor-
mance degradation. The robustness of the interpretable model
in PRIMO derives from fewer input features and the inherent
stability of the tree structure compared with the DNN model.

5 Case Study 2: Clara
Clara [66] is an offline tool that generates offloading insights
for network functions (NFs) on SmartNICs. It can analyze
a legacy NF in its unported form and suggest the optimal
offloading strategies. The main challenge of adopting those
ML techniques in Clara is that insufficient SmartNIC pro-

2Since the current queue length Lc is the most significant feature, we do
not modify its value to avoid changing the real label.

Precision Recall
70

80

90

100

Fr
ac

tio
n 

(%
)

Primo
Primo+
Clara
AutoML

KNN
DT
GBDT
DNN

Figure 10: Model precision and recall rates in Clara-AI.

grams can be served to produce training data. Clara has to
utilize YarpGen [45] to generate abundant synthesized pro-
grams. Clara contains several components for the generation
of different offloading insights. Each component adopts a ML
algorithm as described below:
• Multicore Scale-out analysis (Clara-MS). SmartNICs

use multicore parallelism to improve packet processing per-
formance. Clara adopts GBDT [17] to predict the optimal
number of cores for each NF.

• Algorithm Identification (Clara-AI). Certain packet pro-
cessing algorithms in the host NF can benefit from ASIC
accelerators in the SmartNIC. Clara adopts SVM [73] to
identify such code blocks.

• Cross-platform Prediction (Clara-CP). Clara trains an
LSTM network [9] to predict the number of compute and
memory instructions that a NF can be compiled to.

We employ the PrAM model to replace all the three ML models
in Clara, as it has better accuracy than PrDT. To analyze the
effectiveness of transparent model adjustment in PRIMO, we
also evaluate the model performance with post adjustment
(denote as PRIMO+). We compare PRIMO with the original
models in Clara (LSTM, GBDT and SVM), as well as some al-
ternative baseline algorithms (CNN, DT, TPOT [64] (namely
AutoML), K-Nearest Neighbor (kNN)). More details about
Clara and our implementation can be found in Appendix D.2.

5.1 System Interpretation
As shown in Figure 8, PRIMO provides comprehensive inter-
pretation for the Clara-MS task, including global and local

526    2022 USENIX Annual Technical Conference USENIX Association



aggcounter anonipaddr forcetcp tcp_gen tcpack tcpresp timefilter udpipencap Average
0

20

40

W
M

AP
E 

(%
)

Primo Clara DNN AutoML CNN

Figure 11: Weighted mean-absolute percentage error (WMAPE) over 8 types of NFs in Clara-CP.

interpretation, as well as transparent shape functions. We list
the notation descriptions in Appendix D.2. From the left fig-
ure, we find Ri, Rres and Ric are the most important features
that contribute most to model prediction. Developers should
pay more attention to shape function optimizations for these
features. We also notice the impact of feature interactions is
relatively less important, indicating that we can reduce their
priority in model optimization. The middle figure presents the
interpretation of the individual prediction for UDPCount NF.
The final prediction equals the sum of every feature score and
the intercept constant (Equation 1). Through the local inter-
pretation, developers can clearly check the model behavior for
each prediction to make the corresponding adjustment. More-
over, the right figure (blue line) illustrates the learned shape
function for Rec, which allows developers to dive deeper into
fine-grained model adjustment (such as the orange line).

5.2 Performance Analysis
Since Clara is an offline system, for each task, we mainly
evaluate the model accuracy rather than the inference cost.

Clara-MS. As shown in Figure 9 (left), our interpretable
model in PRIMO achieves similar accuracy as the GBDT
(XGBoost [17]) model in Clara, and outperforms other ML
models over the synthesized test dataset. Figure 9 (right) fur-
ther presents the accuracy of PRIMO for 4 real NFs. Compared
to Clara, PRIMO achieves 1.4× less prediction errors and at
most 5% error to the optimal configurations.

Clara-AI. In Figure 10, PRIMO achieves the equivalent pre-
cision and recall rates as the SVM model in Clara, and beats
other ML algorithms. Through successfully identifying CRC-
based NFs, PRIMO could improve peak throughput by 1.6×
and decrease latency by 25% [66].

Clara-CP. Clara uses the LSTM model to predict the number
of instructions for unported codes. Figure 11 shows the accu-
racy of the Clara-CP task over 8 representative real NFs and
the Average column represents the WMAPE results across
all the NFs. We observe PRIMO (14.4%) delivers better perfor-
mance than Clara (15.1%). This demonstrates the capability
of PRIMO to cope with complex program embeddings.

5.3 Model Adjustment
To overcome the training data insufficiency issue, Clara uses
YarpGen [45] to generate synthesized programs. This in-
evitably introduces certain data distribution drifts from the

yes

···

···

300 750 1200 1850 2850 4300

Bitrate Selection (kbps)

···

·········

no

yes no yes no

yes no

no

yes no yes no

yes no

yes no

noyes yesyes no

Pensieve
Actor Network

······
Distill
Engine

Primo

Figure 12: Visualization of the interpretable model distilled
from the Pensieve policy. For simplicity, we only present the
top 5 layers, and the ellipsis indicates subsequent nodes.

actual scenario. Specifically, there exist instruction distribu-
tion differences (0.0303 of Jensen-Shannon divergence and
0.0354 of Bhattacharyya distance) between real-world and
synthesized click programs [66]. Such drifts could compro-
mise the model performance. The transparency of the PRIMO
model allows developers to discover and fix undesirable be-
haviors caused by the synthesized data. In addition, PRIMO
designs two post-processing tools to help developers adjust
the models based on their domain knowledge:

Monotonic Constraint. As introduced in §3.4.1, developers
can leverage PRIMO to generate a new shape function with
monotonic constraint and rectify the incorrect behaviors of
the models automatically. For instance, in Figure 8 (right),
the developers know the desired number of cores should
be proportional to the memory/compute intensity, i.e., Rec
(EMEM/Compute Ratio). Then they can replace the original
shape function (blue line) with the monotonic shape function
(orange line). They can check each shape function and decide
whether it is necessary to apply such adjustment based on
their prior knowledge. To evaluate the effectiveness of this
strategy, we apply the Monotonic Constraint tool to two shape
functions (Ai & Rec) and yield the adjusted model PRIMO+.
As shown in Figures 9, PRIMO+ achieves better prediction
accuracy. This shows the monotonicity of the PRIMO model
can be achieved via simple post-processing and appropriate
adjustment can bring better performance.

USENIX Association 2022 USENIX Annual Technical Conference    527



0 1 2
Average QoE

0

25

50

75

100

Fr
ac

tio
n 

(%
)

Primo
Pensieve
Metis
MPC
BOLA
BB

Prim
o

Pensieve
Metis MPC

BOLA BB
0.00

0.25

0.50

0.75

1.00

Av
er

ag
e 

Q
oE

0.948
0.934

0.889
0.860

0.787

0.639

(a) Norway HSDPA

0 1 2 3
Average QoE

0

25

50

75

100

Fr
ac

tio
n 

(%
)

Primo
Pensieve
Metis
MPC
BOLA
BB

Prim
o

Pensieve
Metis MPC

BOLA BB
0.00

0.25

0.50

0.75

1.00

Av
er

ag
e 

Q
oE

0.955

0.776
0.746

0.949

0.806

0.672

(b) FCC Broadband

Figure 13: Overall performance of PRIMO compared with other methods on the Norway HSDPA and FCC Broadband traces.

0 20 40 60 80 100 120 140 160 180
Time (s)

300
750

1200

1850

2850

4300

Bi
tr

at
e 

Se
le

ct
io

n 
(k

bp
s)

Primo: 1.545
Pensieve: 1.451

Metis: 1.527
MPC: 0.907

BB: 1.194

Figure 14: Profiling the bitrate selections of ABR algorithms
over one typical Norway HSDPA trace. Legend presents the
average QoE of each algorithm.

Counterfactual Explanation. This tool aims to provide sim-
ple and intuitive explanations for model troubleshooting.
More concretely, it helps developers to understand why this
prediction is wrong and how to adjust the model to fix it. We
use Clara-AI as an example to describe its usage and evalua-
tion. Clara employs Sequential Pattern Extraction (SPE) [21]
to extract code features as boolean sequences (each contain-
ing 102 features) to indicate whether the NF program contains
code blocks for acceleration. Our PRIMO model allocates a
contribution score for each feature. To fix False Negative (FN)
predictions, we utilize this tool to find the closest k instances
from the data set with the opposite label. Through the com-
parison of these instances, we can easily discover the feature
with inadvisable learned scores and adjust the score. In this
case, we increase the contribution weight of the 84th feature
appropriately. We can also perform transparent debugging
for False Positive (FP) predictions similarly. In Figure 10,
PRIMO+ further enhances the F1 score from 89.6% to 92.5%.

6 Case Study 3: Pensieve
Our third case study is Pensieve [51], a system that uses RL for
online video streaming. It learns the adaptive bitrate (ABR)
algorithms automatically to optimize the user quality of expe-
rience (QoE) defined in Equation 4 in Appendix D.3.

We obtain an interpretable PrDT model through distilling
from the original RL actor model. Then we implement the
PrDT model into the ABRController of dash.js [2]. More de-
tails can be found in Appendix D.3. For baselines, we compare
PRIMO with the following algorithms: (1) The RL model in
Pensieve. (2) Buffer-Based(BB) [33]: selecting bitrates with
the goal of keeping the buffer occupancy above 5 seconds.

Model Scale
102

103

104

105

69

547

111622
Primo
Metis
Pensieve

Inference Latency (ms)

100

101

0.24
0.35

19.03

Training Time (s)

103

104

226

4812

14400

Figure 15: Comparing three learning-based ABR methods.

(3) BOLA [78]: selecting bitrates with Lyapunov optimiza-
tion on buffer occupancy observations. (4) MPC [87]: select-
ing bitrates with a control-theoretic model. We evaluate ro-
bustMPC variant which can better handle errors in throughput
prediction. (5) Metis [55]: using a decision tree to explain the
Pensieve RL model, which represents the handcrafted DT ap-
proach. Evaluations are performed on the simulator provided
by Pensieve, except the deployment experiment (latency).

6.1 System Interpretation
Figure 12 illustrates the learning process with the Distill En-
gine, as well as the decision making process of the inter-
pretable policy. Related notations are described in Appendix
D.3. This DT contains 8 layers and 35 leaves in total, which
is compact and simple enough for developers to understand
its complete operation logic.

Similar to the PRIMO model in LinnOS (Figure 3), the first
2 layers divide decision flows based on the feature L (Last
chunk bitrate) which is in line with our perception. In the
third layer, PRIMO proceeds to classify environment states
(inputs) according to the feature B (Current buffer size). These
observations indicate both L and B are the key features that
affect the final bitrate decision, inspiring developers to pay
more attention to them when designing ABR algorithms.

6.2 Performance Analysis

Overall performance. Since the ABR algorithm could en-
counter unprecedented network conditions by different clients,
it is important to evaluate its generalization ability. So in ad-
dition to the Norway HSDPA trace used for model training,
we also evaluate another trace FCC Broadband that is never
applied for training. Figure 13 presents the QoE distribution
and average QoE of each method on the two traces. For Nor-

528    2022 USENIX Annual Technical Conference USENIX Association



0.1 1 10 100
LinnOS Data Fraction (%)

0

25

50

75

100

Pe
rf

or
m

ac
e 

(%
)

Primo(PrDT)
Primo(PrAM)
LinnOS(NN)

0.1 1 10 100
Clara Data Fraction (%)

0

25

50

75

100
Primo(PrDT)
Primo(PrAM)
Clara(LSTM)

Figure 16: Model performance with less training data. (Left):
Recall rate in LinnOS (the higher the better). (Right):
WMAPE in Clara-CP (the lower the better).

way HSDPA, the CDF curve of PRIMO almost overlaps with
Pensieve’s curve, and the average QoE is even 1.5% higher
than Pensieve. This demonstrates PRIMO has successfully
learned the Pensieve policy with a simple decision tree and
outperforms other ABR algorithms. Furthermore, for FCC
Broadband, PRIMO presents better generalization than other
two learning-based algorithms. Such advantages are attributed
to the adaptive pruning strategy in Bayes Optimization, and
the imitation process in the Distill Engine. In contrast, al-
though Metis also uses a decision tree to get a surrogate
model from Pensieve, it has some performance degradation
as its inflexible pruning strategy.

Example analysis. Figure 14 profiles the bitrate selection
actions of different ABR algorithms over a single network
trace. We find two heuristic algorithms (BB and MPC) keep
fluctuating during the video streaming, which could cause
a terrible user experience. The other three learning-based
algorithms have more stable decisions. Pensieve decides to
decrease the bitrate at 120s and Metis chooses to reduce
the video resolution at 170s. This can cause an unsmooth
experience (as the penalty term in Equation 4) even though
they adjust back the bitrate quickly. In contrast, PRIMO gives
a much more smooth experience.

Training and inference overhead. The PRIMO model is
more compact and simpler. Figure 15 (left) compares the
model complexity3 of different methods. We observe that
PRIMO reduces the model scale by 1617× compared to the
original Pensieve actor model. Even for Metis which also
uses a decision tree, PRIMO can reduce the tree complexity by
7.9×. For inference, PRIMO only needs to perform 3~7 con-
dition tests to make a bitrate decision. It can reduce 70× and
1.5× inference latency compared with Pensieve and Metis
respectively, as shown in Figure 15 (middle). To generate
a model, in Figure 15 (right), PRIMO only needs less than
4 minutes for model distillation, which is 21.3× faster than
Metis (under the same setting). Compare with Pensieve 4
hours training time, less than 4 minutes distill time is ignor-
able. In summary, PRIMO can greatly reduce overall operating
costs in the video streaming scenario.

3Model complexity refers to the number of parameters for Pensieve model,
or number of nodes for PRIMO and Metis.

Task DL Model Origin PRIMO Improvement

LinnOS 3 × DNN (50 epoch) 564s 5s 112.8×
Clara-CP LSTM (30 epoch) 1,081s 79s 13.7×

Table 3: Training time comparison with original DL models.

Task Metric PRIMO w/o BO PRIMO w/ BO Improvement

LinnOS F1 Score 0.8089 0.8518 5.3%
Clara-CP WMAPE 0.1728 0.1442 16.6%
Clara-MS MAE 1.0155 0.8660 14.7%

Table 4: Ablation study for Bayes Optimization.

7 More Evaluation
We run some experiments to further evaluate the benefits of
PRIMO more comprehensively.

Requiring less training data. Due to the simpler model
structure and fewer parameters, PRIMO can have better per-
formance in some scenarios without enough training data
like Clara. In Figure 16, we compare the performance of two
PRIMO models with the original DL models in LinnOS and
Clara-CP using less training data. We use a smaller dataset
(10%) in LinnOS as the baseline. Because LinnOS provides
abundant data for DNN model training, 10% of original data
can provide equivalent performance. It is clear that PRIMO
models maintain better performance with limited training data,
especially for the PrDT model. Conversely, the original DL
models only work with abundant data. This shows PRIMO has
broader applicability for various scenarios.

Short training time. Table 3 presents the training time of
PRIMO and original DL models in LinnOS and Clara-CP,
which adopt the default numbers of training epochs in their
papers. PRIMO is able to reduce 2-3 orders of magnitude of
training time. Even considering the hyperparameter search
process, the significant time conservation could maintain since
multiple trails can be executed concurrently. Note that GPUs
can only provide very limited acceleration (<1.2×) for these
two DL models. Additionally, LinnOS requires training a
DNN model for each SSD and the prototype only considers
three SSDs. In a production-level distributed storage system
with thousands of SSDs, LinnOS could have a severe scala-
bility issue. In contrast, PRIMO remarkably saves the training
cost, making the deployment more feasible in practice.

Impact of BO. We further perform an ablation study on
Bayes Optimization in PRIMO. Table 4 summaries the perfor-
mance of the PRIMO model with and without BO in LinnOS
and Clara. We observe 5.3%~16.6% accuracy improvement
brought by BO. Besides, BO typically simplifies the model
scale while obtaining better performance. For LinnOS, BO
reduces over 15× tree nodes compared with PRIMO without
BO. This verifies the importance of the BO component in
making interpretable models more practical. For search time
aspect, BO obtains over 1.2× acceleration compared with
naive random search algorithm in Clara-MS task by reducing
search trails to reach equivalent performance.

USENIX Association 2022 USENIX Annual Technical Conference    529



8 Discussion
Is the interpretation always correct? Yes. PRIMO pro-
vides the interpretation correctness guarantee for each gen-
erated model and each prediction. Existing interpretation
tools [39, 48, 67] aim to offer explanations for understanding
black-box models, whereas the generated interpretations are
sometimes contradictory or even mislead users. In contrast,
PRIMO models are inherently interpretable and developers
can totally trust the interpretation.
Can PRIMO be applied to all systems? PRIMO has its lim-
itations in some system scenarios. For instance, it does not
yet support unsupervised learning scenarios (e.g., anomaly
detection in security applications [16]). It cannot outperform
black-box models in systems with extremely complex fea-
tures, e.g., images, speeches. These will be our future work.
Is the post-processing step necessary? These operations are
optional because the trained models without post-processing
usually have excellent performance. In order to take full ad-
vantage of the interpretable models, the post-processing tools
help developers leverage their expertise and domain knowl-
edge to further optimize system performance. In a black-box
model, it is hard to perform such optimization.
Can PRIMO work on a larger model? Yes. We have demon-
strated PRIMO can outperform DNN models in various sce-
narios, including LinnOS (MLP with 8× 103 parameters),
Clara-CP (LSTM+FC with 4×104 parameters) and Pensieve
(CNN+MLP with 1×105 parameters). They represent most
model scale of learning augmented systems listed in [1]. For
larger models, we evaluate Habitat [88] as an example. It lever-
ages 8-layer MLP models, containing over 8×106 parameters,
to prediction DL operation execution time on heterogeneous
GPUs. PRIMO can provide comparable prediction accuracy
as Habitat across conv2d, linear, lstm and bmm operations.
How to interpret high-dimensional data? Admittedly,
when handling high-dimensional datasets, PRIMO models
may become more complicated for users to understand the
whole model. However, PRIMO provides ordered feature im-
portance for interpretation. Generally, users can focus on the
top several tree layers of PrDT or several significant shape
functions according to the global interpretation of PrAM.
Future work. There are four possible directions as our fu-
ture work. (1) We can extend PRIMO to support learning-
augmented systems with unsupervised learning. (2) To obtain
a more accurate interpretable model, we can optimize the
model training algorithm. Currently, we use CART [14], the
most popular and widely applied approach, for decision tree
learning in PrDT. This is based on the heuristic greedy algo-
rithm where locally optimal decisions are made in each node.
In the future, we plan to employ novel decision tree training al-
gorithms (e.g., GOSDT [44], based on dynamic programming
method) to solve the sub-optimal problem. (3) For practical
deployment, comprehensive programming language support
is needed because different systems have their own coding

requirements. PrDT has a tool for converting Python-based
models to other formats. But PrAM only supports the conver-
sion to the ONNX [4] format currently. We aim to provide
more model format conversion in the future. (4) Integration
with existing RL-based system development frameworks (e.g.,
Park [50]) to facilitate more practical system deployment.

9 Related Work
Interpretability of learning-augmented systems. To our
best knowledge, there is no prior work that develops a unified
framework for providing inherent interpretability for systems
like PRIMO. Besides, interpretability is often overlooked dur-
ing the development of learning-augmented systems, and only
a few works consider it. Bao [53] is a learning-based sys-
tem that adopts TreeCNN [60] for query optimization and
the decision process can be inspected by developers. Tang
et al. [79] proposed an interpretable method that extracts a
Finite State Machine from a RL policy for storage resource
allocation in Huawei. Grüner et al. [25] generated concise
and interpretable rule-sets for unknown proprietary streaming
algorithms (e.g. ABR approaches in Youtube, Twitch), which
is similar to the Pensieve case study with PRIMO (§6).

Some efforts were also made on building tools for inter-
preting black-box models [26, 27, 55], as discussed in §2.3.1.
Different from these methods, PRIMO does not seek for in-
terpreting black-box models but directly building transparent
models, with higher fidelity and efficiency.
Machine learning and system co-design. It is non-trivial
to apply ML techniques for system design and deployment
in practice. Autosys [42] introduces a framework to address
common design considerations (e.g., learning-induced sys-
tem failures, extensibility), and reported years of experiences
in designing and operating learning-augmented systems at
Microsoft. WhiRL [19] facilitates the safe deployment of
RL-based systems through verifying whether the learned pol-
icy meets the designer’s requirements. Some components in
PRIMO are inspired from these works.

10 Conclusion
This work introduces PRIMO, a unified framework that assists
developers to design practical learning-augmented systems
with interpretable models. For different scenarios, PRIMO
provides respective models and optimization solutions to
meet the system requirements. Based on our case studies,
we demonstrate that PRIMO can achieve transparent, accurate
and lightweight system deployment in practice.

Acknowledgments
We thank the anonymous reviewers and our shepherd for their
valuable comments and suggestions. This study is supported
under the RIE2020 Industry Alignment Fund–Industry Col-
laboration Projects (IAF-ICP) Funding Initiative, as well as
cash and in-kind contributions from the industry partner(s).

530    2022 USENIX Annual Technical Conference USENIX Association



References
[1] Awesome-ml-for-system. https://github.com/S-L

ab-System-Group/Awesome-ML-for-System, 2022.

[2] Dash.js: Javascript player. https://github.com/Das
h-Industry-Forum/dash.js, 2022.

[3] Federal communications commission. https://www.
fcc.gov/reports-research/reports/measuring
-broadband-america, 2022.

[4] Onnx: Open neural network exchange. https://gith
ub.com/onnx/onnx, 2022.

[5] Pradeep Ambati, Inigo Goiri, Felipe Frujeri, Alper Gun,
Ke Wang, Brian Dolan, Brian Corell, Sekhar Pasupuleti,
Thomas Moscibroda, Sameh Elnikety, Marcus Fontoura,
and Ricardo Bianchini. Providing slos for resource-
harvesting vms in cloud platforms. OSDI ’20.

[6] Miriam Ayer, H. D. Brunk, G. M. Ewing, W. T. Reid, and
Edward Silverman. An empirical distribution function
for sampling with incomplete information. The Annals
of Mathematical Statistics, 1955.

[7] Jimmy Ba and Rich Caruana. Do deep nets really need
to be deep? NeurIPS ’14.

[8] Riyadh Baghdadi, Massinissa Merouani, Mohamed-
Hicham Leghettas, Kamel Abdous, Taha Arbaoui,
Karima Benatchba, and Saman Amarasinghe. A deep
learning based cost model for automatic code optimiza-
tion. MLSys ’21.

[9] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. Neural machine translation by jointly learning to
align and translate. ICLR ’15.

[10] Erick Carvajal Barboza, Sara Jacob, Mahesh Ketkar,
Michael Kishinevsky, Paul Gratz, and Jiang Hu. Au-
tomatic microprocessor performance bug detection.
HPCA ’21.

[11] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama.
Verifiable reinforcement learning via policy extraction.
NeurIPS ’18.

[12] Shane Bergsma, Timothy Zeyl, Arik Senderovich, and
J. Christopher Beck. Generating complex, realistic cloud
workloads using recurrent neural networks. SOSP ’21.

[13] James Bergstra and Yoshua Bengio. Random search
for hyper-parameter optimization. Journal of Machine
Learning Research, 2012.

[14] Leo Breiman, Jerome H Friedman, Richard A Olshen,
and Charles J Stone. Classification and regression trees.
1984.

[15] Nilotpal Chakravarti. Isotonic median regression: A lin-
ear programming approach. Mathematics of Operations
Research, 1989.

[16] Varun Chandola, Arindam Banerjee, and Vipin Kumar.
Anomaly detection: A survey. ACM Computing Surveys,
2009.

[17] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable
tree boosting system. KDD ’16.

[18] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design
and operation of cloudlab. USENIX ATC ’19.

[19] Tomer Eliyahu, Yafim Kazak, Guy Katz, and Michael
Schapira. Verifying learning-augmented systems. SIG-
COMM ’21.

[20] Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB:
Robust and efficient hyperparameter optimization at
scale. ICML ’18.

[21] Yujie Fan, Yanfang Ye, and Lifei Chen. Malicious se-
quential pattern mining for automatic malware detection.
Expert Systems with Applications, 2016.

[22] Keinosuke Fukunaga and Patrenahalli M. Narendra. A
branch and bound algorithms for computing k-nearest
neighbors. IEEE Transactions on Computers, 1975.

[23] Yuanxiang Gao, Li Chen, and Baochun Li. Spotlight:
Optimizing device placement for training deep neural
networks. ICML ’18.

[24] Liangyi Gong, Zhenhua Li, Feng Qian, Zifan Zhang,
Qi Alfred Chen, Zhiyun Qian, Hao Lin, and Yunhao Liu.
Experiences of landing machine learning onto market-
scale mobile malware detection. EuroSys ’20.

[25] Maximilian Grüner, Melissa Licciardello, and Ankit
Singla. Reconstructing proprietary video streaming al-
gorithms. USENIX ATC ’20.

[26] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang
Wang, and Xinyu Xing. Lemna: Explaining deep learn-
ing based security applications. CCS ’18.

[27] Dongqi Han, Zhiliang Wang, Wenqi Chen, Ying Zhong,
Su Wang, Han Zhang, Jiahai Yang, Xingang Shi, and Xia
Yin. Deepaid: Interpreting and improving deep learning-
based anomaly detection in security applications. CCS
’21.

USENIX Association 2022 USENIX Annual Technical Conference    531

https://github.com/S-Lab-System-Group/Awesome-ML-for-System
https://github.com/S-Lab-System-Group/Awesome-ML-for-System
https://github.com/Dash-Industry-Forum/dash.js
https://github.com/Dash-Industry-Forum/dash.js
https://www.fcc.gov/reports-research/reports/measuring-broadband-america
https://www.fcc.gov/reports-research/reports/measuring-broadband-america
https://www.fcc.gov/reports-research/reports/measuring-broadband-america
https://github.com/onnx/onnx
https://github.com/onnx/onnx


[28] Xueyuan Han, Xiao Yu, Thomas Pasquier, Ding Li,
Junghwan Rhee, James Mickens, Margo Seltzer, and
Haifeng Chen. SIGL: Securing software installations
through deep graph learning. USENIX Security ’21.

[29] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Ed-
berg Halim, Henry Hoffmann, and Haryadi S. Gunawi.
Linnos: Predictability on unpredictable flash storage
with a light neural network. OSDI ’20.

[30] Trevor Hastie and Robert Tibshirani. Generalized addi-
tive models: Some applications. Journal of the American
Statistical Association, 1987.

[31] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling
the knowledge in a neural network. CoRR, 2015.

[32] Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen,
and Tianwei Zhang. Characterization and prediction of
deep learning workloads in large-scale gpu datacenters.
SC ’21.

[33] Te-Yuan Huang, Ramesh Johari, Nick McKeown,
Matthew Trunnell, and Mark Watson. A buffer-based
approach to rate adaptation: evidence from a large video
streaming service. SIGCOMM ’14.

[34] Sarthak Jain and Byron C. Wallace. Attention is not
explanation. NAACL ’19.

[35] José Jiménez-Luna, Francesca Grisoni, and Gisbert
Schneider. Drug discovery with explainable artificial
intelligence. Nature Machine Intelligence, 2020.

[36] Michael I. Jordan and Robert A. Jacobs. Hierarchical
mixtures of experts and the em algorithm. IJCNN ’93.

[37] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
Lightgbm: A highly efficient gradient boosting decision
tree. NeurIPS ’17.

[38] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau,
Paul Ruth, Dan Stanzione, Mert Cevik, Jacob Colleran,
Haryadi S. Gunawi, Cody Hammock, Joe Mambretti,
Alexander Barnes, François Halbah, Alex Rocha, and
Joe Stubbs. Lessons learned from the chameleon testbed.
USENIX ATC ’20.

[39] Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Ed-
ward Wang, Bilal Alsallakh, Jonathan Reynolds, Alexan-
der Melnikov, Natalia Kliushkina, Carlos Araya, Siqi
Yan, and Orion Reblitz-Richardson. Captum: A unified
and generic model interpretability library for pytorch.
CoRR, 2020.

[40] Mikel Landajuela, Brenden K Petersen, Sookyung Kim,
Claudio P Santiago, Ruben Glatt, Nathan Mundhenk,

Jacob F Pettit, and Daniel Faissol. Discovering symbolic
policies with deep reinforcement learning. ICML ’21.

[41] Xu Li, Feilong Tang, Jiacheng Liu, Laurence T. Yang,
Luoyi Fu, and Long Chen. AUTO: Adaptive congestion
control based on multi-objective reinforcement learning
for the satellite-ground integrated network. USENIX
ATC ’21.

[42] Chieh-Jan Mike Liang, Hui Xue, Mao Yang, Lidong
Zhou, Lifei Zhu, Zhao Lucis Li, Zibo Wang, Qi Chen,
Quanlu Zhang, Chuanjie Liu, and Wenjun Dai. Autosys:
The design and operation of learning-augmented sys-
tems. USENIX ATC ’20.

[43] Shengwen Liang, Ying Wang, Youyou Lu, Zhe Yang,
Huawei Li, and Xiaowei Li. Cognitive SSD: A deep
learning engine for in-storage data retrieval. USENIX
ATC ’19.

[44] Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin,
and Margo Seltzer. Generalized and scalable optimal
sparse decision trees. ICML ’20.

[45] Vsevolod Livinskii, Dmitry Babokin, and John Regehr.
Random testing for c and c++ compilers with yarpgen.
Proceedings of the ACM on Programming Languages,
2020.

[46] Yin Lou, Rich Caruana, and Johannes Gehrke. Intel-
ligible models for classification and regression. KDD
’12.

[47] Yin Lou, Rich Caruana, Johannes Gehrke, and Giles
Hooker. Accurate intelligible models with pairwise
interactions. KDD ’13.

[48] Scott M Lundberg and Su-In Lee. A unified approach
to interpreting model predictions. NeurIPS ’17.

[49] Nguyen Cong Luong, Dinh Thai Hoang, Shimin Gong,
Dusit Niyato, Ping Wang, Ying-Chang Liang, and
Dong In Kim. Applications of deep reinforcement learn-
ing in communications and networking: A survey. IEEE
Communications Surveys Tutorials, 2019.

[50] Hongzi Mao, Parimarjan Negi, Akshay Narayan, Han-
rui Wang, Jiacheng Yang, Haonan Wang, Ryan Marcus,
Ravichandra Addanki, Mehrdad Khani Shirkoohi, Song-
tao He, Vikram Nathan, Frank Cangialosi, Shaileshh Bo-
jja Venkatakrishnan, Wei-Hung Weng, Song Han, Tim
Kraska, and Mohammad Alizadeh. Park: An open
platform for learning-augmented computer systems.
NeurIPS ’19.

[51] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.
Neural adaptive video streaming with pensieve. SIG-
COMM ’17.

532    2022 USENIX Annual Technical Conference USENIX Association



[52] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja
Venkatakrishnan, Zili Meng, and Mohammad Alizadeh.
Learning scheduling algorithms for data processing clus-
ters. SIGCOMM ’19.

[53] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime
Tatbul, Mohammad Alizadeh, and Tim Kraska. Bao:
Making learned query optimization practical. SIGMOD
’21.

[54] Zili Meng, Yaning Guo, Yixin Shen, Jing Chen, Chao
Zhou, Minhu Wang, Jia Zhang, Mingwei Xu, Chen Sun,
and Hongxin Hu. Practically deploying heavyweight
adaptive bitrate algorithms with teacher-student learning.
IEEE/ACM Transactions on Networking, 2021.

[55] Zili Meng, Minhu Wang, Jiasong Bai, Mingwei Xu,
Hongzi Mao, and Hongxin Hu. Interpreting deep
learning-based networking systems. SIGCOMM ’20.

[56] Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit
Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen Kumar,
Mohammad Norouzi, Samy Bengio, and Jeff Dean. De-
vice placement optimization with reinforcement learn-
ing. ICML’17.

[57] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. ICML ’16.

[58] Christoph Molnar. Interpretable Machine Learning.
2019.

[59] Shanka Subhra Mondal, Nikhil Sheoran, and Subrata
Mitra. Scheduling of time-varying workloads using
reinforcement learning. AAAI ’21.

[60] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin.
Convolutional neural networks over tree structures for
programming language processing. AAAI ’16.

[61] Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang,
Lucien Ngale, Stéphane Pouget, Josiane Kouam, Renaud
Lachaize, Jinho Hwang, Tim Wood, Daniel Hagimont,
Noël De Palma, Bernabé Batchakui, and Alain Tchana.
Ofc: An opportunistic caching system for faas platforms.
EuroSys ’21.

[62] Harsha Nori, Rich Caruana, Zhiqi Bu, Judy Hanwen
Shen, and Janardhan Kulkarni. Accuracy, interpretabil-
ity, and differential privacy via explainable boosting.
ICML ’21.

[63] Harsha Nori, Samuel Jenkins, Paul Koch, and Rich Caru-
ana. Interpretml: A unified framework for machine
learning interpretability. CoRR, 2019.

[64] Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz,
and Jason H. Moore. Evaluation of a tree-based pipeline
optimization tool for automating data science. GECCO
’16.

[65] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbig-
niew T. Kalbarczyk, and Ravishankar K. Iyer. FIRM:
An intelligent fine-grained resource management frame-
work for slo-oriented microservices. OSDI ’20.

[66] Yiming Qiu, Jiarong Xing, Kuo-Feng Hsu, Qiao Kang,
Ming Liu, Srinivas Narayana, and Ang Chen. Auto-
mated smartnic offloading insights for network func-
tions. SOSP ’21.

[67] Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. "why should i trust you?": Explaining the
predictions of any classifier. KDD ’16.

[68] Haakon Riiser, Paul Vigmostad, Carsten Griwodz, and
Pål Halvorsen. Commute path bandwidth traces from
3g networks: analysis and applications. MMSys ’13.

[69] Aaron M. Roth, Nicholay Topin, Pooyan Jamshidi, and
Manuela Veloso. Conservative q-improvement: Rein-
forcement learning for an interpretable decision-tree
policy. CoRR, 2019.

[70] Cynthia Rudin. Stop explaining black box machine
learning models for high stakes decisions and use inter-
pretable models instead. Nature Machine Intelligence,
2019.

[71] Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang
Huang, Lesia Semenova, and Chudi Zhong. Inter-
pretable machine learning: Fundamental principles and
10 grand challenges. CoRR, 2021.

[72] Cynthia Rudin and Berk Ustun. Optimized scoring
systems: Toward trust in machine learning for healthcare
and criminal justice. INFORMS Journal on Applied
Analytics, 2018.

[73] Bernhard Schölkopf, Alex J. Smola, Robert C.
Williamson, and Peter L. Bartlett. New Support Vector
Algorithms. Neural Computation, 2000.

[74] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi.
Recognizing functions in binaries with neural networks.
USENIX Security ’15.

[75] Andrew Silva, Matthew Gombolay, Taylor Killian, Ivan
Jimenez, and Sung-Hyun Son. Optimization methods
for interpretable differentiable decision trees applied to
reinforcement learning. AISTATS ’20.

[76] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams.
Practical bayesian optimization of machine learning al-
gorithms. NeurIPS ’12.

USENIX Association 2022 USENIX Annual Technical Conference    533



[77] Zhenyu Song, Daniel S. Berger, Kai Li, and Wyatt Lloyd.
Learning relaxed belady for content distribution network
caching. NSDI ’20.

[78] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K. Sitara-
man. Bola: Near-optimal bitrate adaptation for online
videos. INFOCOM ’16.

[79] Yingtian Tang, Han Lu, Xijun Li, Lei Chen, Mingxuan
Yuan, and Jia Zeng. Learning-aided heuristics design
for storage system. SIGMOD ’21.

[80] Arnaud Van Looveren and Janis Klaise. Inter-
pretable counterfactual explanations guided by proto-
types. ECML-PKDD ’21.

[81] Jiachen Wang, Ding Ding, Huan Wang, Conrad Chris-
tensen, Zhaoguo Wang, Haibo Chen, and Jinyang Li.
Polyjuice: High-performance transactions via learned
concurrency control. OSDI ’21.

[82] Xingda Wei, Rong Chen, and Haibo Chen. Fast rdma-
based ordered key-value store using remote learned
cache. OSDI ’20.

[83] Sarah Wiegreffe and Yuval Pinter. Attention is not not
explanation. EMNLP ’19.

[84] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel, and
Yoshua Bengio. Show, attend and tell: Neural image
caption generation with visual attention. ICML ’15.

[85] Yong Xu, Kaixin Sui, Randolph Yao, Hongyu Zhang,
Qingwei Lin, Yingnong Dang, Peng Li, Keceng Jiang,
Wenchi Zhang, Jian-Guang Lou, Murali Chintalapati,
and Dongmei Zhang. Improving service availability of
cloud systems by predicting disk error. USENIX ATC
’18.

[86] Neeraja J. Yadwadkar, Bharath Hariharan, Joseph E.
Gonzalez, Burton Smith, and Randy H. Katz. Selecting
the best vm across multiple public clouds: A data-driven
performance modeling approach. SoCC ’17.

[87] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno
Sinopoli. A control-theoretic approach for dynamic
adaptive video streaming over http. SIGCOMM ’15.

[88] Geoffrey X. Yu, Yubo Gao, Pavel Golikov, and Gennady
Pekhimenko. Habitat: A runtime-based computational
performance predictor for deep neural network training.
USENIX ATC ’21.

[89] Di Zhang, Dong Dai, Youbiao He, Forrest Sheng Bao,
and Bing Xie. Rlscheduler: An automated hpc batch job
scheduler using reinforcement learning. SC ’20.

[90] Ji Zhang, Ping Huang, Ke Zhou, Ming Xie, and Sebas-
tian Schelter. Hddse: Enabling high-dimensional disk
state embedding for generic failure detection system
of heterogeneous disks in large data centers. USENIX
ATC ’20.

[91] Xinyang Zhang, Ningfei Wang, Hua Shen, Shouling Ji,
Xiapu Luo, and Ting Wang. Interpretable deep learning
under fire. USENIX Security ’20.

[92] Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Ed-
ward Suh, and Christina Delimitrou. Sinan: Ml-based
and qos-aware resource management for cloud microser-
vices. ASPLOS ’21.

[93] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez, and
Ion Stoica. Ansor: Generating high-performance tensor
programs for deep learning. OSDI ’20.

[94] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and
Kaiwen Sheng. Flextensor: An automatic schedule ex-
ploration and optimization framework for tensor com-
putation on heterogeneous system. ASPLOS ’20.

[95] Hang Zhu, Varun Gupta, Satyajeet Singh Ahuja, Yuan-
dong Tian, Ying Zhang, and Xin Jin. Network planning
with deep reinforcement learning. SIGCOMM ’21.

[96] Kostas Zoumpatianos, Yin Lou, Ioana Ileana, Themis
Palpanas, and Johannes Gehrke. Generating data series
query workloads. The VLDB Journal, 2018.

534    2022 USENIX Annual Technical Conference USENIX Association



A Supplementary Elaborations
In this section, we provide some supplementary elaborations
about PRIMO algorithms, including algorithm detailed illus-
trations of PrAM and PrDT.

A.1 PrAM: Explainable Boosting Machine
Explainable Boosting Machine (EBM) [63] is a open-source
implementation of Generalized Additive Models plus Inter-
actions (GA2M) [47] written in C++ and Python. Similar to
popular GBDT algorithms (e.g. LightGBM [37]), the EBM
training procedure begins by bucketing data from continu-
ous features into discrete bins of histogram [62], which can
significantly accelerate model training. Then EBM starts to
learn shape function fi(·) for each feature. Common choices
for shape functions are regression splines, step functions and
binary trees. For better prediction accuracy, it chooses the
boosted trees, where each successive tree tries to predict the
overall residual from all the preceding trees [46]. Further-
more, EBM optimizes the traditional boosting (greedy search)
approach by leveraging cyclic gradient boosting, which learns
a shallow tree for each feature in a round-robin fashion [62].
PrAM is heavily based on the implementation of EBM.

For simplicity and accuracy, PrAM leverages BO to automat-
ically adjust model configurations, including the number of
histogram bins, the number of considered interactions, learn-
ing rate, etc. It helps developers easily obtain the optimal
model which is compact and accurate.

A.2 PrDT: Minimal Cost-Complexity Pruning
We adopt Minimal Cost-Complexity Pruning (CCP) [14] to
prune the full tree in the post-processing stage. This algorithm
aims to minimize a cost-complexity metric Rα(T ) which is
defined as

Rα(T ) = R(T )+α ·N(T ) (3)

where R(T ) and N(T ) denote the misclassification cost (error
rate) and complexity penalty (the number of leaves) of the
decision tree T respectively. The trade-off between accuracy
and sparsity of the tree is controlled by the complexity param-
eter α: as α increases, more leaves are pruned and the total
impurity increases.

Figure 17 presents the impact of the complexity parameter
α on the model performance and complexity for the LinnOS
system (§4). When α is too small (before the red dashed line),
PrDT has poor performance because of the severe overfitting.
With a bigger α, developers could trade-off the model accu-
racy and complexity based on their system requirements. The
optimal pruning factor can differ by many orders of magnitude
for different systems according to our experiments. It is hard
for system developers to identify an appropriate value of α

intuitively. To address this, PRIMO adopts bayes optimization
to perform post pruning automatically (§3.3.1).

1e-06 1e-05 0.0001 0.001 0.01
α

75

80

85

90

95

100

F1
 S

co
re

 (%
)

Overfitting

F1 Score (Train)
F1 Score (Test)
Tree Depth

0

8

16

24

32

40

Tr
ee

 D
ep

th

Figure 17: Performance (F1 Score) and complexity (Tree
Depth) of the PrDT model under different α in LinnOS.

B Insufficiency of Existing Methods
To demonstrate the argument in §2.3, we provide some ex-
amples and perform analysis. These experiments reveal the
insufficiency of both existing machine learning frameworks
and interpretation tools.

B.1 Contradictory Interpretation
Clara adopts XGBoost to predict the optimal core counts for
different NFs in Clara-MS. XGBoost contains a built-in api
get_score to get the feature importance value of each feature
and it can be regarded as the model interpretation. However,
we argue that the interpretation has low fidelity. As evident
from the Figure 18, interpretations based on different metrics
present contrasting patterns, where both gain and cover are
important intermediate metrics during model generation. For
instance, Rsum is the second important feature according to
cover-based explanation while seems ignorable from gain’s
perspective. This makes developers feel confused which in-
terpretation should trust. More seriously, this could mislead
them to make wrong decisions, such as incorrectly omitting
important input features while feature engineering.

B.2 Incapability for Global Surrogate
We have demonstrated the remarkable performance of PRIMO
in this work. A common question is that If using the existing
interpretation tools for the model surrogate, can they also
deliver equivalent effects? Our answer is no. We evaluate
two popular black-box interpretation methods: Lime [67] and
Lemna [26]. Lime performs local interpretation through lin-
ear regression of data subset and Lemna adopts a mixture
regression model to obtain interpretation in a similar way.
Both of them are designed for local interpretation of several
instances. However, we further explore whether they have
the potential for the global model surrogate. Hence, we train
the Lime and Lemna model on the LinnOS dataset, and com-
pare the performance with PRIMO. As shown in Figure 19,
Lime and Lemna cause much higher (7.3%~9.0%) false sub-
mit rates, which is the most significant metric for the system
performance. As stated in §4, the overhead of failover (false
revoke) is relatively negligible and all three methods perform
well pertaining to this metric. Overall, existing interpretation
tools are insufficient for the global model surrogate.

USENIX Association 2022 USENIX Annual Technical Conference    535



0.00 0.25 0.50 0.75
Gain-based Explanation

Rstate

Ai
Rec

Rsum

Re

Ae
Ic
Ric

Ri

Rres

0.00 0.05 0.10 0.15
Cover-based Explanation

Ae
Rstate

Ai
Ic
Rec

Ric

Ri

Re

Rsum

Rres

Figure 18: Interpretations of XGBoost model for Clara-MS
task based on different metrics. Higher value indicates the
feature is more important.

C Lessons Learned From the Case Studies
In order to draw high level conclusions from the three case
studies discussed in §4, §5 and §6, we list the key observation
of the PRIMO benefits for each system scenario as below. To
summarize, in addition to model transparency, PRIMO pro-
vides higher prediction accuracy, smaller inference overhead
and better model generalization ability. These greatly facili-
tate model deployment in practice.
1. LinnOS

Key Observation 1

The high inference overhead of the DNN model can
hinder its deployment in practice, meanwhile seriously
damaging the effect of system performance improve-
ment. PRIMO successfully overcomes this bottleneck.

2. Clara
Key Observation 2

Instead of using various black-box models for differ-
ent tasks, PRIMO uses a unified interpretable model
achieving equivalent even better accuracy and endows
capability of model adjustment to remedy the problem
caused by drifted synthesis data.

3. Pensive
Key Observation 3

With PRIMO, we obtain an interpretable model that has
better performance and generalization ability than the
RL policy. Moreover, it achieves much less inference
overhead and low distill cost for practical deployment.

D More Details about the Evaluated Systems
D.1 LinnOS
LinnOS infers the SSD speed using a lightweight neural net-
work. The motivation behind LinnOS is that SSD read latency
is unstable because some SSD internal operations (e.g., write-
triggered garbage collection, buffer flushing) are contending
with user read I/Os. In addition, there are the same replicas

Lime Lemna Primo
10

15

20

25

30

35

Fa
ls

e 
Su

bm
it 

(%
)

28.1
29.8

20.8

Lime Lemna Primo
1.0

1.5

2.0

2.5

Fa
ls

e 
Re

vo
ke

 (%
)

2.0 2.0
2.1

Figure 19: Comparison of Primo global surrogate perfor-
mance with Lime and Lemna in the LinnOS scenario.

in other SSDs within the storage array (e.g., flash RAID) and
we can utilize the built-in failover logic to circumvent slow
read I/Os. The overhead of switching the read operation to a
redundant SSD (namely failover) is ignorable compared with
I/O pending time.

Implementation. We implemented PrDT models into the
Linux kernel v5.4.8 (same version with LinnOS) within the
block layer (written in C). We use the same SSD I/O traces
in LinnOS, which were collected from Microsoft Bing Index
servers and have been preprocessed by the authors.

Although the LinnOS workflow files are open-sourced on
the Chameleon Cloud [38], the experiment results are un-
reliable due to the unstable and random SSD I/O accesses
(also argued by the authors). Consequently, we shift our im-
plementation and evaluation on a bare-metal server from
CloudLab [18]. It contains four homogeneous enterprise-level
1.6TB SSDs. One of them serves as the system drive and the
rest three SSDs are used for performance evaluation. Addi-
tionally, due to the rapid development of the SSD technology
in recent years, the Microsoft traces collected in 2016 cannot
give sufficient load pressure for evaluation. So we execute a
constant writing task in the background for each SSD (Lin-
nOS only records read I/Os). According to our numerous
tests, the additional load will not cause fluctuations in the
evaluation results.

For the PrDT interpretation results, PRIMO can provide a
more precise visualized file of the PrDT which covers the
number of samples at each flow and the Gini impurity value
of each node rather than Figure 3.

D.2 Clara
Clara is a system that generates the optimal offloading strate-
gies for NFs in SmartNIC. Since the performance charac-
teristics of offloaded programs are opaque prior to porting
and offloading strategies are difficult to reason about, devel-
opers need to first cross-port NFs to the SmartNIC, perform
workload-specific benchmarks, and then iteratively tune the
ported programs to achieve higher performance. Clara can
analyze a legacy NF in its unported form and suggest porting
strategies for the given NF to achieve higher performance.

Implementation. We follow the author-provided data prepro-
cessing pipeline to deal with synthesized and real traces for
training and evaluation. We conduct Clara evaluation on a

536    2022 USENIX Annual Technical Conference USENIX Association



Notation Description

Ai IMEM Access
Ae EMEM Access
Ic Compute Intensity
Ri IMEM / Overall Intensity Ratio
Re EMEM / Overall Intensity Ratio
Ric IMEM / Compute Ratio
Rec EMEM / Compute Ratio

Rsum (IMEM + EMEM) / Compute Ratio
Rres (IMEM − EMEM) / Compute Ratio

Rstate Non-Stateful / Stateful Compute Ratio

Table 5: Notation descriptions of Clara-MS.

Ubuntu 20.04 server with one Intel Core i9-10900 CPU, 64
GB memory and an NVIDIA RTX 2080Ti GPU. Note that be-
cause it is an offline system and we focus on model accuracy,
Netronome SmartNIC is not required in our experiment.

Notation. We clarify the notations used in system interpre-
tations (Figure 8). Table 5 shows processed features used
in Clara-MS, where IMEM indicates SRAM-based internal
memory and EMEM indicates DRAM-based external mem-
ory on SmartNICs. Instructions can be classified into Stateful
(e.g., loads and stores to global variables in memory) and Non-
Stateful (e.g., compute instructions, or accesses to function-
local variables). Moreover, Overall Intensity represents the
sum of IMEM, EMEM and Compute Intensity.

D.3 Pensieve
Pensieve [51] is a system that learns adaptive bitrate (ABR)
algorithms automatically using RL technique. The online
videos are stored on servers as multiple chunks (a few seconds
of the video) and each chunk is encoded at several discrete
bitrates (resolutions). Specifically, Pensieve adopts A3C [57]
to perform RL training. Both the actor and critic networks use
the same NN structure which contains a 1D-CNN layer and a
fully connected layer. The actor takes recent network observa-
tions as input and suggests the bitrate for the next video chunk
as the output. Content providers employ ABR algorithms to
optimize user quality of experiment (QoE) which is defined
as:

QoE =
N

∑
n=1

q(Rn)−µ
N

∑
n=1

Tn−
N−1

∑
n=1
|q(Rn+1)−q(Rn)| (4)

where Rn represents the bitrate of the nth chunk and q(Rn)
maps that bitrate to the quality perceived by a user. Tn repre-
sents the rebuffering time and the last term penalizes changes
in video quality to favor smoothness.

Implementation. We employ the same server used in Clara
for the Pensieve experiment. The video server is based on
Apache httpd (Version 2.4.41) and uses Google Chrome (Ver-
sion 96) as the client video player. We use 142 Norway HS-
DPA [68] network traces (provided by the authors) for evalu-
ation, in addition, we process another 249 FCC [3, 54] traces

Notation Description

Xt Past chunk throughput
Tt Past chunk download time
Nk Next chunk sizes
B Current buffer size
C Number of chunks left
L Last chunk bitrate

Table 6: Notation descriptions of Pensieve.

(2018 version, follow the same preprocessing pipeline) for
model generalization evaluation. Because the original FCC-
18 network speed is much faster than HSDPA and we cannot
distinguish the performance difference among algorithms, we
scale down the network speed by 4 times to keep consistent
with FCC-16 with regards to the median values.

We obtain PrDT model through distilling from the trained
RL actor model (pre-trained model that Pensieve authors pro-
vided). After that, we implement PrDT (written in JavaScript)
into ABRController of dash.js [2] (Version 2.4). For the test
videos, we use the same video in Pensieve at bitrates in {300,
750, 1200, 1850, 2850, 4300} kbps (which pertain to video
modes in {240, 360, 480, 720, 1080, 1440}p). This video
is divided into 48 chunks and each chunk represented ap-
proximately 4 seconds. Furthermore, we adopt q(Rn) = Rn in
Equation 4 to set linear QoE as the our evaluation metric.
Notations. We clarify notations used in system interpreta-
tions (Figure 12). Table 6 shows environment state variables
used in Pensieve to generate bitrate decision, where Xt and
Tt denotes past sequences of throughput and download time
respectively (t = 1, · · · ,8). Moreover, Nk represents sequence
of next chunk sizes (k = 1, · · · ,6).

E Artifact
PRIMO and case study scripts are available as below. To repro-
duce the main results of this work, we also provide detailed
documentation and instructions in the artifact repository.

Artifact Links

GitHub: https://github.com/S-Lab-System-Gr
oup/Primo
DOI: https://doi.org/10.5281/zenodo.65298
92

USENIX Association 2022 USENIX Annual Technical Conference    537

https://github.com/S-Lab-System-Group/Primo
https://github.com/S-Lab-System-Group/Primo
https://doi.org/10.5281/zenodo.6529892
https://doi.org/10.5281/zenodo.6529892




Meces: Latency-efficient Rescaling via Prioritized State Migration
for Stateful Distributed Stream Processing Systems

Rong Gu Han Yin Weichang Zhong Chunfeng Yuan Yihua Huang
State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

Abstract
Stateful distributed stream processing engines (SPEs) usually
call for dynamic rescaling due to varying workloads. How-
ever, existing state migration approaches suffer from latency
spikes, or high resource usage, or major disruptions as they ig-
nore the order of state migration during rescaling. This paper
reveals the importance of state migration order to the latency
performance in SPEs. Based on that, we propose Meces, an
on-the-fly state migration mechanism which prioritizes the
state migration of hot keys (those being processed or about
to be processed by downstream operator tasks) to achieve
smooth rescaling. Meces leverages a fetch-on-demand design
which migrates operator states at record-granularity for state
consistency. We further devise a hierarchical state data struc-
ture and gradual strategy for migration efficiency. Meces is
implemented on Apache Flink and evaluated with diversified
benchmarks and scenarios. Compared to state-of-the-art ap-
proaches, Meces improves stream processing performance in
terms of latency and throughput during rescaling by orders
of magnitude, with negligible overhead and no disruption to
non-rescaling periods.

1 Introduction

In recent years, stateful Stream Processing Engines
(SPEs) [16, 19, 33, 44, 53] have been widely adopted because
of the increasing demands for complicated analytics over
real-time data, e.g. fraud detection, log monitoring, sentiment
analysis, and IoT applications [11, 13, 51, 60].

SPEs are expected to be long-running and always have
low latency performance [21,22]. It commonly requires SPEs
to perform dynamic rescaling in the face of unpredictable
circumstances (e.g. data rate fluctuations, machine failures,
processing stragglers). However, as the processing operators
in SPE are usually stateful and partitioned across workers,
rescaling them calls for state migration, which means moving
state data between workers, even across networks [26].

The problem of state migration in SPEs is fundamental and
challenging. Prior major advances made in the last decades

Migrated States

Input Records

Processing Results

...1 2 3

Processing result of record with key x
Processing latency is y unit time
Processing result of record with key x
Processing latency is y unit time

x y
Processing result of record with key x
Processing latency is y unit time

x y

22 22 21 21 23 23 32 32 31 31 33 33 12 12 11 11 13 13

... ... ...312 ... ... ...312 ... ... ...312 ... ... ...312 ... ... ...312 ... ... ...312

... ... ...3 1 2 ... ... 2 1 3 ... ... ...

Incoming record with key xxx
Migrated states of key xxx
Incoming record with key xx
Migrated states of key xx

(a) In order (b) Worst (c) Prioritized

Figure 1: Impact of migration order on processing latency.
The Y-axis indicates event-time latency, i.e., interval between
a record’s event-time and its emission-time from the output
operator [30]. Point (X ,Y ) means the average processing la-
tency of the records generated at Xms is Y ms.

can be classified into four categories: (1) Full-Restart ap-
proach [16,33,53] pauses and resumes the whole task when re-
distributing states. (2) Partial-Pause approach [14, 52] restarts
a subgraph instead of the whole job topology to reduce exe-
cution blocking. (3) Replicated-Dataflow approach [47, 61]
executes a new dataflow in parallel with the old one until
finishing the state migration. (4) Proactive approach [26, 43]
adds extra behaviour to non-rescaling stream processing peri-
ods to relieve the pressure during state migration.

Unfortunately, prior approaches suffer from processing la-
tency spikes, or high resource usage [26], or major disruption
(see Section 5.6). Their common limitation lies in order-
unaware state migration, i.e., not taking into account the or-
der in which operator state migrates. Figure 1 illustrates how
the migration order affects SPE latency performance during
rescaling. We take a representative stateful stream processing
job, key-count, as an example, where records with random
keys come from upstream and are processed by the SPE in
a FIFO manner. In this case, streaming operators store the

USENIX Association 2022 USENIX Annual Technical Conference    539



count value of each key as their corresponding states. During
rescaling, an affected operator needs to receive the migrated
state (the global count values of keys) before it can process
the corresponding incoming records.

If the states are migrated in an order-unaware manner as in
Figure 1(a), the first coming record may not be processed in
time, because it needs to wait for the arrival of its correspond-
ing state. This also blocks subsequent records in the queue
due to FIFO processing, eventually accumulating the process-
ing latency for all records over a period of time. In the worst
case as shown in Figure 1(b), the state of the first record is the
last one to be migrated, making all record processing blocked
before the state migration is finished. Ideally, as shown in Fig-
ure 1(c), states are migrated in exactly the same order as the
records arrive, therefore minimal time is spent in the waiting
queue and the latency can be greatly reduced.

Based on this observation, we find that the state of hot
keys (those being processed or about to be processed by
downstream operator tasks) needs to be prioritized so that
the stream processing proceeds without blocking. In this pa-
per, we propose Meces, an on-the-fly rescaling mechanism
which enables prioritized state migration for SPEs. In fact,
it is challenging to dynamically adjust the state migration
order according to the incoming records during SPE rescal-
ing. To achieve this, Meces leverages a fetch-on-demand state
accessing model, based on the fact that modern SPEs [16, 53]
co-partition data records with stream operators to the same
key space. During rescaling, the states can be actively fetched
by the SPE operator instances when receiving a data record
whose state is not local. In this way, the operators prioritize
the transmission of those currently needed states to generate
processing results with low latency.

Another challenge is to handle the state consistency during
the prioritized state migration process. In Meces, the state
consistency in the above process is maintained by a control
messaging based coordination protocol, inspired by [7,40,43].
In addition, as the fetch-on-demand model used in priori-
tized state migration calls for light-weight state accessing, we
devise a hierarchical data organization and adopt a gradual
migration strategy for finer-grained state transfer like [26].
Meces is designed as a pluggable rescaling module without
affecting non-rescaling periods. As far as we know, Meces
is the first stateful SPE rescaling approach that enables pri-
oritized state migration, which can reduce the latency spikes
without high resource usage or incurring major disruption.

To sum up, this paper makes the following contributions:
• We propose an on-the-fly rescaling mechanism, called

Meces, for stateful distributed stream processing engines.
It prioritizes the migration of hot states to achieve low-
latency and resource-efficient rescaling.

• In addition, we adopt a control messaging based coor-
dination protocol to maintain state consistency during
prioritized state migration. We further devise a hierarchi-
cal state data organization and a gradual state migration

Src Count Sink

part-1
state

part-2
part-3

(a) Streaming operators

S1
C2

C3

S

S2
part-2

part-3

C1
part-1

(b) Parallel instances

Figure 2: A key-count job example in stream processing

strategy, which lowers data transmission granularity.
• Meces is implemented on the widely-used SPE Apache

Flink, requiring minimal user code modification and no
disruption to non-rescaling periods.

• We validate our design with various workloads. Com-
pared with state-of-the-art approaches, Meces reduces
nearly 95% of processing latency peak during rescaling.

2 Background

In this section, we first introduce basic concepts and termi-
nology of stateful stream processing in Section 2.1, and then
review and analyze the design and shortcomings of existing
rescaling approaches in Section 2.2.

2.1 Stateful Stream Processing
Stream Processing Topology: In scale-out distributed SPEs,
the computation tasks are expressed as directed graphs (Fig-
ure 2(a)), where vertices represent stream processing opera-
tors. Each operator receives data from its upstream operators,
processes data, and sends output to its downstream operators.
Operators without upstream are called source operators, and
those without downstream are called sink operators.

SPEs process input data in a data-parallel style by mapping
the streaming operators to multiple parallel instances. The
number of an operator’s instances is called its degree of paral-
lelism. In Figure 2(b), the vertices represent parallel instances
and the directed edges represent data channels.

Stateful Operator: In practice, many analysis tasks require
operators to compute their output based on both current and
previously received data. Examples of such tasks include data
aggregation, window computation, ML models, etc. To realize
this, stateful operators maintain internal and mutable states.
Operator states remember information about past input and
can be used for processing of future input [18]. For example,
a counting operator of a WordCount job stores the current
occurrences of each word as its states.

A stateful operator receives input data as a stream of keyed
records. Each record can be denoted as a pair (k,v) repre-
senting the key and the payload value. Correspondingly, the
stateful operator also holds its state S as a set of key-value
pairs and divides the set into several disjoint partitions. During

540    2022 USENIX Annual Technical Conference USENIX Association



processing, the partition SI is assigned to an operator instance
I. When I receives a record with key k, it processes the record
by reading or updating the value v corresponding to k in SI .
In modern SPEs [16, 53], states of the stateful operators are
co-partitioned with the parallel instances. For example, in Fig-
ure 2(b) the state of the keys mapped to C1 operator instance
is only stored in part-1.

Checkpoints: SPEs usually achieve fault-tolerance via
checkpoints. A checkpoint marks the persistent state for each
operator at a specific time point. SPEs can resume from failure
by restoring the operator states with a recent checkpoint and
replaying the records since the generation of the checkpoint.

A common way to realize consistent state snapshots of
distributed streaming operators is Chandy-Lamport algo-
rithm [10] or its variants. The checkpoint algorithm in
Flink [7] works by injecting special streaming records called
barriers into the pipeline. Each operator instance will persist
its state when receiving a barrier. This workflow makes a
globally consistent operator state snapshot on the basis of
reliable FIFO data channels.

2.2 Prior Rescaling Mechanisms
The critical difficulty in on-the-fly rescaling distributed stream
operators is efficiently migrating states among instances while
keeping the exactly-once semantics. Prior approaches can
mainly be categorized into the following strategies [6, 26].

Full-Restart: This approach halts the SPE execution, takes
a state snapshot of all operators, redistributes the state among
operator instances, and restarts the job execution until the
state redistribution is complete. Since it is simple and natu-
rally guarantees consistency using existing checkpoint mech-
anisms, it is adopted by many SPEs including Spark Stream-
ing [53], Structured Streaming [5], Apache Flink [16], etc.
However, this mechanism halts the whole pipeline and causes
serious latency spikes during rescaling.

Partial-Pause: This approach only stalls the streaming op-
erators that need state migration during rescaling. It mitigates
the latency spikes by narrowing the interruption from the
job-granularity to the operator-granularity. This mechanism
is first introduced by Flux [52], and adopted by SEEP [14],
FUGU [25], Chi [40], etc. However, if the affected operator is
a critical component in the topology, this approach still pauses
the entire pipeline during rescaling.

Replicated-Dataflow: This approach replicates the af-
fected operators and executes the old and new configurations
simultaneously until the migration completes. It minimizes
processing latency and realizes on-the-fly state migration, but
requires redundant computing resources for replication [26].
It also calls for additional de-duplication mechanisms as the
concurrent execution generates duplicated data. This mecha-
nism is adopted by ChronoStream [61], Gloss [47], etc.

Proactive: Proactive approach adds extra behaviour to
non-rescaling periods to relieve the pressure when migrat-

ing states. Megaphone [26] works by splitting operators and
embedding the migration flows into data flows. However, it in-
troduces partitioning overhead inside the original processing
operators during non-rescaling periods. Besides, in system
design it calls for extra coordination and progress tracking
mechanisms [26,43] which are not directly supported by many
modern SPEs [16,53]. Rhino [43] periodically replicates oper-
ator states among all workers. It facilitates both fault-tolerance
and state migration of extremely large states, but incurs extra
network overhead to regular stream processing.

As far as we know, none of the existing approaches con-
sider the state migration problem from the aspect of the state
migration order. They rescale with latency spikes or high
resource usage [26], or major disruption (see Section 5.6).

3 System Design

In this section, we first introduce the main idea of Meces in
Section 3.1. Then, in Section 3.2 we describe the design in
detail. Finally, we elaborate the optimization for finer-grained
state transfer in Section 3.3 and Section 3.4.

3.1 Prioritized State Migration

If not introducing huge redundant resources [47, 61] or dis-
rupting regular processing [26, 43], prior works [5, 14, 16, 25,
40, 52, 53] fail to achieve low latency when rescaling. They
are mainly limited by "order-unaware" state migration. As
Figure 1 in Section 1 shows, the migration for hot keys should
be prioritized, so as to generate timely results and reduce
queuing latency when rescaling.

In order to achieve prioritized state migration, we review
the nature of states in streaming operators. We denote a record
with key k as rk, and a state value with key k as vk. An im-
portant fact about recent scale-out stateful SPEs is that the
operator states are partitioned across the operator instances
in exactly the same way as data records according to their
keys. That is to say, when an operator instance I processes a
record rk, the only state that it needs to access is vk. It is also
guaranteed that no common states need to be accessed when
processing records with different data keys.

Given this property, we propose the prioritized state mi-
gration mechanism, which enables the system rescaling and
data processing of SPEs to efficiently run at the same time.
Specifically, when the SPE triggers an online state repartition,
the previously responsible instances send states in batches
to the newly responsible instances. In our design, as for the
newly responsible instances, instead of only passively wait-
ing for the arrival of migrated state batches, they can also
actively fetch states from previously responsible instances,
to get the individual states corresponding to the data records
for timely processing. For example, as no more records with
key in {k1,k2,k3} will be sent to Ia due to rescaling, the SPE
decides to migrate a set of state values Sm = {vk1 ,vk2 ,vk3}

USENIX Association 2022 USENIX Annual Technical Conference    541



from operator instance Ia to Ib. Then Sm is sent by Ia. Before
Ib receives the entire state set, if Ib encounters a record rk2 , it
immediately performs a single-value fetch for vk2 . This light-
weight operation helps Ib to generate processing results in
time, instead of getting blocked until receiving the entire Sm
from Ia.

In this way, we can keep the stream processing operators
working during SPE rescaling. The batched "send" aims at
quick state migration, while the active "fetch" ensures in-time
processing for the records that requires a remote state. The
processing latency performance will be affected only when
an active "fetch" is triggered. In that case, only the processing
of that single record is delayed a bit because of one extra state
fetch operation, but the queuing cost of subsequent records
can be greatly reduced. In other words, the performance in-
terference caused by the state migration comes down to the
record-granularity, so that we can keep the stream processing
performance as high as possible during the rescaling period.

To achieve this, two obstacles need to be carefully dealt
with: First, how to ensure state consistency when transferring
states among operator instances in a dynamic order (Sec-
tion 3.2). Second, how to minimize the performance impact
brought by fetch operations (Section 3.3 and 3.4).

3.2 Fetch-on-demand State Accessing Protocol

To support prioritized state migration with dynamic order
during rescaling, Meces leverages a fetch-on-demand state
accessing protocol. The state consistency of the fetch-on-
demand model is based on a control messaging coordination
protocol, inspired by [7, 40, 43]. In the following, we first
briefly describe how the protocol works, then use an example
to further explain its process.

Migration Process: We call the time period from the
beginning to the end of a state redistribution as a Migration
stage. The global controller of an SPE starts a Migration
stage by injecting a special data record called control message
into the source operators. The message then travels through
the whole pipeline in the same way as a regular data record.
Once an instance I receives a control message from its input
data channels, it performs the following steps:
(1) I sends the control message downstream.
(2) If the downstream operator needs to migrate states, I

updates its routing strategy.
(3) If I itself needs to migrate states, according to whether it

has received messages from all input channels, it succes-
sively goes through two phases: Aligning and Aligned.

(4) I sends a confirming signal to the global controller. A
Migration stage ends when the global controller receives
confirming signals from all parallel instances.

Figure 3 and Figure 4 show the Migration stage during a
scale-out operation of a streaming key-count job. The degree
of parallelism of the count operator increases from 2 to 3,
represented by A,B,C (see Figure 3(a)). The upstream source

A

B

S1

S2

C

Source Count

(a) Instances rescaling

1
2
3
4
5
6
7
8
9
10
11
12

AA

BB

1
2
3
4
5
6
7
8
9
10
11
12

AA

BB

CC

Current
Key Space

Future
Key Space

(b) Key space redistribution

Figure 3: Example of a rescaling stream processing job

operator has two parallel instances S1,S2. For simplicity, we
assume the keys are between 1 and 12. Therefore, based on
the uniform distribution, the distribution of the key space
before and after the rescaling is as shown in Figure 3(b).

When S1 or S2 receives the control messages, it updates the
routing strategy and outputs the subsequent data records in
accordance with the new topology. As its downstream opera-
tor’s degree of parallelism will increase by 1, its new strategy
divides the key space into three parts equally. As shown in
Figure 4(a), the records mapped to "9" were previously sent
to B, but will be shipped to the new instance C from now on.
Meanwhile, the records with key "6", which were consumed
by A, should then be in the charge of B.

As for the count operator, in general, the states are sent
from the previously responsible instances, but the newly re-
sponsible instances also actively fetch states in response to the
incoming data records. We denote an instance’s current key
space before migration as Ck, and its future key space after
migration as Fk. Specifically, the count operator successively
goes through two phases. Taking B as an example:

1. Aligning (Figure 4(b)): When B first receives a control
message, such as from S2, it can foresee the arrival of
keys that did not belong to it before. After that, when B
encounters a record whose key is not in its Ck, such as key
"6", instead of considering it as an error, B first checks
its Fk. If the key is found, B "borrows" the corresponding
state of this key from other count operator instances to
complete the processing. Note that in this phase, the
message from S1 has not reached B, which means A may
still have to deal with records with the "6" key. Because
of that, B should also be prepared that its state of "6" can
still be borrowed back by others.

2. Aligned (Figure 4(c)): The Migration for B is aligned
once it receives control messages from all of its input
channels. In this situation, it is guaranteed that all fu-
ture records with the "5, 6" key are shipped only to B,
and B will no longer receive records with keys from
9 to 12. Therefore, B can start its state migration. It
checks Ck and Fk, sends the states between 9 and 12
to other instances, and fetches all the states in 5 and 6
asynchronously. When finishing sending and fetching, B
sends the completion signal of its Migration stage.

542    2022 USENIX Annual Technical Conference USENIX Association



New Data ChannelNew Data Channel 6 Data Record with Key6 Data Record with Key Migration MessageMigration MessageData ChannelData ChannelC New Operator InstanceC New Operator InstanceA Operator InstanceA Operator Instance

A

B

S1

S2

C

9

9

6

6

6

A

B

S1

S2

C

9

9

6

6

6
A

B

S1

S2

C

9

6
6

(a) Triggering controlling messages

A

B

S1

S2

C

6

6

State 
of 6

A

B

S1

S2

C

6

6

State 
of 6

A

B

S1

S2

C

6

6

(b) Aligning phase

A

B

S1

S2

C

6

1
2
3
4
5
6
7
8
9

10
11
12

1
2
3
4
5
6
7
8
9

10
11
12

External 
KV Store

9

1 A

B

S1

S2

C

6

1
2
3
4
5
6
7
8
9

10
11
12

External 
KV Store

9

1

(c) Aligned phase

Figure 4: Migration stage in a rescaling operation

In the above process, the stream processing operators keep
functioning without explicitly blocking the input channels.
The impact of state migration on the task is only perceived
when an instance requires a remote state. The processing
latency of this single record is then only increased by the
fetching cost of a single state. For subsequent records, if the
corresponding state has already been fetched, the processing
of these records suffers from neither migration cost nor huge
queuing cost. In this way, the influence of rescaling can be sig-
nificantly reduced, therefore the system can avoid sudden and
severe performance degradation in latency and throughput.
For implementation details of the active state fetch process,
please refer to Section 4.2.

State Consistency: In stream processing, the global state
consistency usually refers to the exactly-once semantics. In
Meces, at a Migration stage where the state k is migrated from
I1 to I2, each incoming record affects the final results exactly
once. Let t1 be the timestamp when I1 or I2 receives the first
control message of Migration, and t2 be the timestamp when
both of I1 and I2 have received control messages from all the
input channels. Therefore, the Aligning phase begins at t1. In
this phase, the data records of k can be sent to both I1 and
I2, but actually only one instance holds the state of k locally
at a time. That is to say, only one instance can modify this
state at a time. As the data record must be processed exactly
once, and the state can only be flushed and "borrowed" after
the processing of the current record is finished, the semantic
is kept in [t1, t2]. After t2, subsequent data records are sent to
I2 only. I2 only needs to borrow at most once to transfer the
state to the local and process each data record exactly once
until its Aligned phase is complete.

3.3 Hierarchical State Data Organization

This subsection proposes an adaptive state data organization,
which keeps regular stream running at a coarse granularity
to avoid extra overhead, and performs prioritized state mi-
gration at a fine granularity to reduce the impact on latency
performance of streaming operators.

Since the states in SPEs are key-value data and it is

KG-1

KG-2

…… ……

Key-Groups Sub-Groups

KG-2

SubGroup-1
SubGroup-2

……
SubGroup-M

KG-2

SubGroup-1
SubGroup-2

……
SubGroup-M

KG-1

SubGroup-1
SubGroup-2

……
SubGroup-M

KG-1

SubGroup-1
SubGroup-2

……
SubGroup-M

Figure 5: Split key-groups into sub-groups

common to have billions of keys in a real-world streaming
dataflow services, managing each key individually can be
unrealistic. Many existing SPEs divide the states into key-
groups [17], which are disjoint subsets of the entire key space.

However, the shortcoming of this flat index structure is
that the state migration is also conducted on the key-group
granularity. As the number of the operator states accumulates,
the size of one single key-group could grow large. This can
make the active "fetch" become time-consuming, bringing
long delays to the record processing at the Migration stage.
A naive solution is to increase the number of key-groups, but
this is not practical in many SPEs. A vast number of key-
groups will bring a lot of additional metadata management
overhead and fragmented read/write of checkpoints, thereby
reducing the performance of non-rescaling stream processing.

To address this issue, we introduce the nested layer of
state data organization in Meces. Instead of using a single-
layer map, we further divide each key-group into multiple
sub-groups as illustrated in Figure 5. When encountering a
record that requires a remote state, an instance tries to fetch
the corresponding sub-group of the record key instead of the
entire key-group. This reduces the time overhead used to
obtain data that is not needed immediately.

Note that, key-groups are distributed among different oper-
ator instances and the metadata should be stored, indicating
which instances are responsible for each key-group. When
the number of key-groups increases, it incurs much more
metadata management cost and record distribution cost. Dif-
ferently, sub-groups of the same key-group must belong to
the same operator instance when the system is not rescal-

USENIX Association 2022 USENIX Annual Technical Conference    543



1

2

1

2

3

Before
Migration

Gradual
 Migration - 1

Gradual
Migration - 2

Gradual
 Migration - 3

Gradual
Migration - 4

Figure 6: An example of gradual state migration

ing. Therefore, increasing the number of sub-groups does not
bring significant extra overhead to a steady dataflow. Users
can choose an appropriate number of sub-groups to achieve
smooth state migration. The appropriate settings are usually
based on the maximum size of states and the expected maxi-
mum latency during rescaling.

3.4 Gradual State Migration
During a rescaling operation, a large part of the overall states
may need transferring, even if the degree of parallelism does
not change much. For example, to divide the states evenly
across all operator instances in Figure 3, changing the degree
of the parallelism from 2 to 3 causes half of the keys to be
redistributed. For example, if we have an operator with 128
key-groups and change the degree of parallelism from 25 to
30, a nearly full state migration (115 out of 128 key-groups)
has to be triggered. Migrating all of these states in a single
batch can dramatically slow down the overall performance,
because most of the records processed by the task in the next
period may be affected by the fetch operations. As the data
streams continue to flood in, lots of minor processing delays
may accumulate into large latency spikes.

To resolve this issue, inspired by [26], we also achieve finer-
grained migration via a gradual migration strategy in Meces,
which splits the update into several micro-batches of state
migration as shown in Figure 6. The Migration stage in one
rescaling operation is then composed of multiple Gradual-
Migration steps. At each step, the global controller decides
which states should be relocated based on the user-defined
size of micro-batches (batch_size). For example, in Figure 6,
batch_size is set to 1, which means that an instance can only
dispose at most one key-group of states at a time. This splits
the single Migration stage into four Gradual-Fetch steps.

At Gradual-Fetch steps, the information of migrated keys is
included in the control messages and each upstream instance
creates a temporary routing table indicating which down-
stream instance it should send records to. In this way, we
affect only a tiny portion of the whole states at each Gradual-
Fetch step, while most of the records can be processed nor-
mally. By changing batch_size, users can trade-off the lower
latency spikes against higher migration throughput.

Note that during rescaling, the total number of migrated
keys can be reduced by dividing the states differently. For
example, in Figure 6, if the middle four keys are assigned to
instance 3 and the last four keys are assigned to instance 2,

Map Window Agg

Flink State Meces State

……

Stream API

State API

Join

Called by
User Code

Memory Store Migration Design

SPE Runtime

DFS Store

Transparent to
User Code

State Transition
Message Queue

 Key-value Store

Figure 7: Meces Architecture

only 4 of 12 keys need relocating. Meces uses the uniform
re-partition by default, but also supports custom partitioning,
so that users can apply it to SPEs with sophisticated parti-
tioning approaches [2, 29] such as consistent hashing. A brief
evaluation of custom partitioning can be found in Section 5.3.

4 State Migration Implementation

This section describes the implementation of Meces. We
demonstrate the overall system architecture of Meces in Sec-
tion 4.1 and then introduce the details of state transition work-
flow among operator instances in Section 4.2. Finally, we dis-
cuss the fault tolerance mechanisms of Meces in Section 4.3.

4.1 System Architecture and Usage
The overall system architecture of Meces is shown in Figure 7,
which consists of three layers:

1. Stream API: It provides basic operator functions for
users to implement stream processing tasks.

2. State API: Meces provides Apache Flink-compatible
APIs for operator functions to access their states. This
enables the users to easily migrate the existing stream
tasks from Flink to Meces.

3. SPE Runtime: This is where the system-level code is
located. Meces basically reuses Flink’s state backend
module to store the key-value pairs in memory/DFS.
Additionally, Meces implements the design in Section 3.

The underlying state management and migration in SPE
Runtime are completely transparent to user codes. Therefore,
it takes minimal effort to switch between Flink’s and Meces’s
state implementations.

4.2 State Transition
The state transition among operator instances is of great im-
portance to the performance of SPEs during rescaling. How-
ever, if the transfer of states happens directly between parallel
instances, a mesh communication network has to be estab-
lished among the worker machines. This would significantly
increase the runtime overhead and make the maintenance of

544    2022 USENIX Annual Technical Conference USENIX Association



1 2 3 4 5 6 7 8 9 10 11 121 2 3 4 5 6 7 8 9 10 11 12

(b)

3 A: send the state3 A: send the state

2 A: poll the request2 A: poll the request

B-6

A BA B

(a)

1 2 3 4 5 6 7 8 9 10 11 121 2 3 4 5 6 7 8 9 10 11 12

1 B: push a request1 B: push a request

B-6

4 A: push a response4 A: push a response

B-6
(c)

A B
4

1 2 3 4 5 6 7 8 9 10 11 121 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 121 2 3 4 5 6 7 8 9 10 11 12

6 B: fetch the state6 B: fetch the state

5 B: poll the response5 B: poll the response

B-6
(d)

6
A B

1 2

3

5

Steps Operator Instance
Response Message QueueRequest Message Queue

Request / Response Message External Key-value Store123…123…

Steps Operator Instance
Response Message QueueRequest Message Queue

Request / Response Message External Key-value Store123…

Figure 8: State transition process based on the pub-sub model

SPEs more complex. That is why SPEs like Flink [16] are de-
signed to avoid direct inter-instance communication within an
operator, i.e. adopting a shared-nothing architecture [17, 24]
for low-cost, high-extensibility and high-availability.

To make it non-disruptive to SPEs, in implementation of
Meces, we design a pub-sub model based approach to trans-
fer states between parallel instances during record process-
ing. The model leverages two message queues(RequestMQ
and ResponseMQ), and an external key-value store (EKS)
to provide a state transition service at Migration stage. At
Migration stage, each instance performs light-weighted oper-
ations to read from these two message queues continuously.

Figure 8 demonstrates the state transfer process from op-
erator instance A to B. When B needs to fetch the state with
key "6", it simply pushes a message "B-6" to the RequestMQ,
meaning "B is requesting 6". Later, A gets the message, finds
"6" in its Ck, and then pushes the state value into the EKS and
considers its local "6" state as borrowed. After that, A pushes
a message into the ResponseMQ, indicating the completion
of the request. Eventually, the message will be consumed by
B, making B fetch the corresponding data from EKS. Thus
far, the workflow of the state transition is complete.

In the above process, when the request message comes to A,
if A happens to be processing a record with a key of 6, A will
not start pushing until it finishes processing the current record.
Meanwhile, if "6" has already been pushed into EKS and then
A receives a record requiring this state, A should trigger a
similar process to fetch the state, as "6" is now considered not
held by A. These two situations do not bring much degradation
to the rescaling performance, because they only happen in the
Aligning phase, which only lasts for a short time if the system
is not running under severe load imbalance.

For decoupling the components, many scalable message
queue techniques [27, 46, 49] can be utilized to implement
the pub-sub model. These are common components in real-
world stream processing tasks, because they suit the stream
processing paradigm as data sources and sinks. For EKS, a
high-speed key-value store with fault-tolerance guarantees
can be integrated to ensure real-time computation.

4.3 Fault Tolerance
Meces inherits fault-tolerance guarantees from the hosting
SPEs, and relies on high-available message-queue/EKS ser-
vice. Specifically, fault-tolerance is supported in both rescal-
ing and non-rescaling scenarios.

During rescaling: If some of the message-queue/EKS
nodes fail, the rescaling in Meces can keep going without
data corruption. This is because message-queue/EKS service
adopted by Meces is equipped with built-in fault-tolerance
mechanisms [12,48], such as replication. If the entire message-
queue/EKS or any Flink node fails to respond (simple/cas-
cading failures), Meces considers this rescaling to have failed
and invalidates the temporary data in message-queue/EKS.
Then Flink’s own failover mechanism is activated to recover
the job from a checkpoint. Therefore, a failed rescaling does
not break exactly-once semantics.

During non-rescaling: As Meces is designed to be non-
disruptive when rescaling is not executed, it introduces no
extra fault-tolerance issues. Any exception is handled by the
hosting SPEs’ failover mechanism.

Finally, Meces temporarily disables checkpoint generation
only at Migration stages, and suspends new rescaling during
an ongoing rescaling to avoid interference. Therefore, data
consistency is kept throughout the job lifecycle.

5 Evaluation

This section presents an empirical evaluation of our prototype
Meces. We focus on the following three questions:

1. What is the performance of Meces during rescaling with
state migration? (Section 5.2 to 5.4)

2. How much overhead does Meces incur? (Section 5.5)
3. How does Meces compare to other state-of-the-art on-

the-fly state migration approaches? (Section 5.6)

5.1 Experimental Setup
Hardware and Software: All experiments presented in this
paper are conducted on a cluster of six computing nodes, each
with two Intel Xeon E5-2620 v2 @2.10 GHz CPUs and 64
GB memory, running CentOS 7.9.2009.

The Meces prototype is implemented based on Apache
Flink 1.12.0. The same version of Apache Flink is used as
a baseline in our evaluation, referred to as "Native Flink" in
the following. Meces and Native Flink run with Oracle JVM

USENIX Association 2022 USENIX Annual Technical Conference    545



11.0.10 to enable the low-latency garbage collector ZGC [63].
We pair Apache Kafka 2.7.0 with Apache ZooKeeper 3.6.0
as reliable message brokers with 25 partitions. Redis 3.2.0
is deployed to provide the external key-value store service
globally. For persistent checkpoint storage, we deploy Apache
Hadoop 2.9.2 to provide HDFS.

For SPE configurations, we configure Native Flink and
Meces to use at most 25 GB heap memory. Each computing
node can host at most 5 parallel instances of an operator. The
total number of key-groups is set to 128, as it is the default
value in Flink and different settings of this value do not differ
the performance much in our cases.
Workloads and Metrics: We choose the NEXMark bench-
mark suite [55] and the key-count job as workloads. Nexmark
models an online auction system and provides real-world
streaming queries. The key-count job takes a stream of ran-
domly generated keys as input and accumulates the number
of times each key has occurred.

To provide input data for stream processing jobs, we im-
plement open-loop stream generators which continuously and
concurrently push random records into Kafka topics. Unless
otherwise specified, all these open-loop generators produce
data at a steady rate of 800K records/s. This input rate is near
the saturation point of processing and large enough to show
the performance difference between the various approaches.

We focus on two metrics in measurement during rescaling:
Latency: To evaluate the end-to-end latency of SPEs, we

configure the stream generators to periodically insert marker
events into Kafka. We denote latency as the time difference
between these markers entering and leaving the SPE. For win-
dowed operators, the markers simply bypass them to exclude
the time spent in window buffers. The latency still grows
when the system’s processing rate cannot keep up with the
production speed of upstream data, as the latency markers
are queuing up. That is to say, the marker can still reflect the
latency performance of the system with windowed operators.

Throughput: We define throughput of SPEs as the number
of records output by the source operators per second. As the
source operators are responsible for fetching records from
Kafka, this reflects the capability of the system to read and
process data from external data sources.

5.2 Latency Performance during Rescaling
We first evaluate the latency performance of the SPEs during
rescaling. The SPEs are initially configured with global par-
allelism of 25. Each job runs steadily for 600 seconds and
rescales by increasing the parallelism of critical operators
(e.g., join or window operators in NEXMark queries, count-
ing operator in the key-count job) to 30. This causes 115 out
of 128 key-groups to be relocated during rescaling.

We compare Meces with Native Flink (stopping the whole
job when rescaling) and Order-Unaware (online block-based
state migration without order prioritization). Figure 9~12

(a) Native Flink (b) Order-Unaware (c) Meces

Figure 9: End-to-end latency of NEXMark Q1

(a) Native Flink (b) Order-Unaware (c) Meces

Figure 10: End-to-end latency of NEXMark Q7

illustrate the end-to-end latency change of the representative
queries in this process. For the performance evaluation results
of all NEXMark queries, please refer to Appendix B.

NEXMark Q1 performs currency conversion on a bid
stream. This simple task maintains no states and the behav-
ior is demonstrated as a basic case for our evaluation. As
shown in Figure 9, both Meces and Order-Unaware reveal
no latency peak but only system noise, because they incur no
state migration cost during rescaling and operations can be
done asynchronously. In contrast, Native Flink still needs to
stop and restart the job even if there is no state to migrate.

NEXMark Q7 and Q8 tests window operators. They per-
form tumbling window join of two streams, to find out the
items with the highest price and the new users who just regis-
tered in the last period of time. They can maintain large states
when the window size grows. We set the window sizes to be
10 seconds and 100 seconds. The performance comparison is
illustrated in Figure 10 and Figure 11, where the latency peak
of Meces during rescaling is an order of magnitude smaller
than others. When the rescaling begins, Order-Unaware needs
to block the currently processed records while migrating a
considerable amount of states. As a result, Order-Unaware
goes through a performance degradation near to Native Flink
(Full-Restart), and reaches a latency peak of dozens of sec-
onds. For comparison, Meces can give state migration priority
to the hot keys being processed and smoothen latency.

Key-count takes a stream of randomly generated keys as
input and reports the cumulative counts of each key continu-

(a) Native Flink (b) Order-Unaware (c) Meces

Figure 11: End-to-end latency of NEXMark Q8

546    2022 USENIX Annual Technical Conference USENIX Association



(a) Native Flink (b) Order-Unaware (c) Meces

Figure 12: End-to-end latency of key-count

ously. The state size of the counting operator can also grow
large when the key range is big enough. Besides, this query
requires reading and updating the states when processing ev-
ery single record. We run the job with 108 unique keys. As
reported in Figure 12, both Native Flink and Order-Unaware
show a latency peak which is three orders of magnitude higher
than usual. The latency decreases gradually after the restart-
ing or migration completes. As for Meces, it keeps the latency
under 600 ms during the prioritized state migration stages.

In conclusion, during rescaling, Native Flink and SPEs with
Order-Unaware can suddenly become out-of-service when
migrating states, while Meces significantly lowers the maxi-
mum latency. The impact of prioritized migration of Meces is
further evaluated in Section 5.3. Note that in some cases with
a rather large size of states, Meces also have increased latency.
This is mainly caused by the Garbage Collection behaviour
of JVM, which is further analyzed in Section 5.5.

5.3 Impact of State Migration on Latency Per-
formance during Rescaling

In this subsection, we evaluate how state migration affects
the processing latency of SPEs, especially how the prioritized
migration improves the performance.

During a rescaling period involving state migration, the
overall processing latency of SPEs can be generally divided
into three parts: (1) Job-Cost: time to execute the processing
logic. This is inevitable in both rescaling and non-rescaling
periods; (2) Migration-Cost: when encountering a record
whose state is not local, the task waits for the target states to
arrive and then proceeds processing; (3) Queuing-Cost: If a
record r is blocked due to migration cost, subsequent records
may also be blocked in the queue as they cannot be processed
until the processing of r is finished. Therefore the processing
latency of these subsequent records is increased.

Figure 13 illustrates the various parts of the average pro-
cessing latency of a certain operator instance per second dur-
ing the rescaling of the key-count job. Note that in order to
show the comparison between different parts, here we use
linear axes instead of logarithmic axes and draw with different
y-axis ranges in the upper two sub-figures.

As in Figure 13(a), Order-Unaware incurs high latency up
to thousands of milliseconds, and the increased latency is com-
posed of huge Migration-Cost and Queuing-Cost. Because
Order-Unaware does not migrate the currently needed states

(a) Order-Unaware (b) Meces

(c) Distribution of Migration-Cost for all operator instances

Figure 13: Latency composition of during rescaling

Figure 14: Rescaling performance of Meces using different
repartition strategies

with priority, some of records have to wait for a long time be-
fore the arrival of their corresponding states. The waiting time
can be up to several seconds as indicated by the Migration-
Cost bar in the figure. As for the subsequent records, their
states have been previously transferred and they need not wait
for data migration. However, they suffer from huge Queuing-
Cost due to the previous records being blocked. When no
further migration is required, the Queuing-Cost decreases to
0 almost linearly.

Figure 13(b) reports the latency breakdown of Meces. Com-
pared with Order-Unaware, the latency peak is greatly re-
duced to less than 400 ms. This is because when migrating
states, Meces uses its fetch-on-demand model to give priority
to the records which are currently being processed. When
a record calls for a remote state, the operator instance im-
mediately fetches the single state for the key of this record.
Since the amount of data in a single state is very small, a
fetch request can be quickly responded to. Consequently, as
shown in Figure 13(c), the several long-duration execution
blocks caused by Migration-Cost are converted into thou-
sands of short-duration fetch operations. Although the sum
of Migration-Cost does not differ much for two strategies,
each record does not wait long time for its state to be mi-
grated in the prioritized migration of Meces. More impor-
tantly, as the Migration-Cost of every single record is reduced,
the Queuing-Cost for subsequent records is also significantly
reduced. Eventually, the overall latency curve is flattened.

From another angle, Figure 14 compares the rescaling per-

USENIX Association 2022 USENIX Annual Technical Conference    547



formance of Meces using different state repartition strategies:
the default uniform repartition and consistent hashing, which
have different migration cost during rescaling. For a total of
128 key-groups, consistent hashing decreases the number of
migrated key-groups from 115 to 15. Eventually up to 70%
rescaling duration and 90% max latency are reduced. This
indicates that we can equip Meces with existing re-balance
technology to improve the rescaling performance. For a fair
comparison, in all other experiments in this paper, we use the
same repartition strategy in all SPEs including Meces.

Note that the above experiments are all conducted without
any node failure or connection loss. As for the unusual scenar-
ios including failing nodes with different roles, we observe
that: (1) If any Flink node or Kafka/Redis leader fails, the la-
tency curve is similar to Native Flink, because Meces restarts
the job since the underlying service becomes unresponsive.
(2) If Kafka/Redis loses some of the follower nodes but still
provides timely service when job is rescaling, there is no ob-
servable fluctuation in the average latency of fetch operations,
because of the relatively low traffic of messages sent by fetch
operations. In both cases there is no data inconsistency in the
stream processing results.

5.4 Performance under Backpressure

In practice, the rescaling of an SPE is usually triggered when
it sends a backpressure signal, indicating that it cannot process
data fast enough to keep up with the data generation rate. This
happens when there is a sudden surge in data traffic or when
the system is not configured properly with enough parallel
instances. To validate our design in this situation, we evaluate
the performance of Meces under backpressure scenarios.

A costly version of key-count query is chosen as the work-
load. We first configure the counter operator parallelism to 15
and run input generators at a speed of 300K records/s for 600
seconds. After that the input rate is increased to 600K record-
s/s for 150 seconds, and then gets back to 300K records/s.
This simulates a temporary surge in data traffic. The rescaling
operation takes place at the 620th second, which increases the
counter operator to 30 parallel instances.

Figure 15(a) shows how quickly the SPE recovers its real-
time performance from backpressure. As soon as the data
traffic surge comes, the latency increases suddenly, because
the input is beyond the capability of the system and the fol-
lowing records are queuing up. Then, after the scale-out op-
eration is completed and all the queuing records have been
fully consumed, the processing latency can go back to a nor-
mal low level. Here we record the time interval from the
arrival of the data surge until the system latency drops below
100 ms. As can be seen, Meces is the first one to get back to
the previous processing rate, while it takes Native Flink and
Order-Unaware much more time to consume the queuing data
and recover because of the block of operator execution.

We then compare the system throughput within 2 min-

(a) Recovery Time (b) Throughput

Figure 15: Rescaling performance under backpressure

Figure 16: Latency comparison with Native Flink

utes after triggering the rescaling operation, as shown in Fig-
ure 15(b). As Native Flink first triggers a global state snapshot
and then restarts the job, its throughput immediately decreases
to 0 and gradually increases after it restarts. As for Meces
and Order-Unaware, they both keep the throughput at a non-
zero level, but as Order-Unaware incurs long-duration block-
ing periods, it first goes through a decrease in throughput.
Meanwhile, as Meces brings little degradation to the perfor-
mance during the state migration, its throughput reaches the
maximum much faster and higher than the others. This vali-
dates that the fetch-on-demand state migration mechanism of
Meces outperforms the other approaches under backpressure.

5.5 Overhead Analysis

This subsection discusses the overhead introduced by Meces.
Latency Overhead: The latency performance is illustrated

in Figure 16. On one hand, Meces does not incur extra la-
tency when not migrating states, as reported in the "Meces
(Normal)" bar. Under normal circumstances, the processing
logic of Meces and Native Flink is substantially the same. The
only difference is that Native Flink uses a normal HashMap to
manage operator states, while Meces uses a nested HashMap
with little overhead. Consequently, the difference in latency
between the two SPEs is determined by system noise. This
conclusion can also be drawn from Figure 9~12.

On the other hand, the processing latency increases when
Meces is performing a rescaling operation. In this experiment,
each route table contains 128 keys and increases the latency by
35%. During these periods, when deciding which downstream
operator to send records to, the simple modulo operation is
replaced by a more costly map query operation. In Meces,
this mechanism is combined with the nested data structure,
to reduce the migration granularity to an acceptable level
without the need for an extremely high number of key groups.
That means the route tables are kept in a reasonably small
size, thus reducing the latency peak with negligible overhead.

548    2022 USENIX Annual Technical Conference USENIX Association



Figure 17: Memory consumption of Meces

Memory Overhead: Figure 17 demonstrates the mem-
ory consumption of one single machine. To clearly show the
changes in memory usage, we configure the JVM to utilize
g1gc as the garbage collector and do not trigger GC behavior
for objects in old generation. The memory usage fluctuates up
and down because JVM periodically reclaims the temporary
objects in the continuously arriving data stream. In the mean-
time, the total memory usage shows an upward trend due to
the gradual increase in the operator states.

When the state migration starts at 600 s, the curve rises
rapidly, because the operator starts fetching states from others,
allocating lots of new objects quickly. This can potentially
decrease the processing performance if the system is imple-
mented in programming languages like Java, as the garbage
collector works under heavy pressure and can block the exe-
cution of user functions. To ensure the quick response of the
system, we recommend a low-latency collector like ZGC [63],
or a pre-allocated object pool to be utilized to reduce the
overhead of Garbage Collection behavior.

5.6 Comparison with Other State Migration
Approaches

In this subsection, we compare Meces with two representative
state-of-the-art work Rhino [43] and Megaphone [26]. We
choose the key-count job due to its simplicity so that we
can minimize interference from associated computation and
highlight the differences between rescaling approaches.

5.6.1 Comparison with Rhino

Rhino [43] proposes a state management approach which han-
dles large states very well by periodically replicating operator
states among all worker machines. Because the source code
of Rhino from the original authors is not publicly available,
we implement the mechanism of Rhino based on Flink for a
fair comparison. During a stateful rescaling, Rhino generally
follows the Partial-Pause approach, but only reads/writes the
incremental parts of states since the last global replication.
The replication interval is set to 60 seconds.

As in Figure 18, Rhino on Flink shows a similar latency
peak to Order-Unaware, whose peak is near 10,000 ms. As a
comparison, the per-record latency of Meces never reaches
1000 ms during the whole process. Rhino’s replication fails
to improve the system performance for two reasons:

(a) Rhino on Flink (b) Order-Unaware (c) Meces

Figure 18: Latency comparison with Rhino during rescaling

Figure 19: Network overhead of Rhino

1. In such a scale-out scenario where new workers join the
job, a global state migration is still necessary for these
new workers because they lack the previous states.

2. Such read-modify-write jobs update the operator states
very frequently. As lots of states are modified between
two state replications, the incremental parts still occupy
large proportions of the global state.

Eventually Rhino degrades to the Partial-Pause approach
with latency spikes. In contrast, Meces uses a fetch-on-
demand state accessing model for efficient state sharing
among operator instances and less processing latency.

In addition, we compare Rhino and Meces in terms of the
disruption to non-rescaling stream processing, by measuring
the extra network bandwidth introduced by both systems com-
pared to Native Flink. In Rhino, when replication interval
decreases from 10 minutes to 1 minute, the extra network
bandwidth ratio grows from 35% to 56% (Figure 19). This
is consistent with the conclusion reported in the Rhino pa-
per [43], where Rhino uses 30% network bandwidth during a
replication. As Rhino periodically replicates operator states
among all workers, it helps fault-tolerance in the face of very
large states, but incurs extra communication across the net-
work even if the system performs no state migration at all. In
contrast, Meces incurs no network overhead to non-rescaling
stream processing, because it performs no additional opera-
tions during non-rescaling periods.

5.6.2 Comparison with Megaphone

Megaphone [26] is a state migration approach that splits the
state load into batches and embeds the migration flows into
data flows for lower latency. It relies on two specific SPE
features [26]: (1) state extraction from upstream operators
(2) dataflow frontiers. However, both are still not natively
supported in many widely-used SPEs, including Flink [16],
Heron [33], Spark Streaming [53], Samza [50], etc. There-
fore, to run Megaphone in a widely-used SPE, we meet the
above requirements of Megaphone in Flink with naive imple-
mentations for state extraction and splitting the data stream

USENIX Association 2022 USENIX Annual Technical Conference    549



(a) Megaphone on Flink (b) Meces

Figure 20: Latency comparison with Megaphone

into micro batches underhook. Based on that, we implement
Megaphone’s state migration mechanism on Flink.

We then run the key-count job in both Meces and Mega-
phone with 108 unique keys. Megaphone is configured to
use 214 bins, according to the original suggestions [26]. The
latency comparison is demonstrated in Figure 20.

When not rescaling, Megaphone on Flink shows an order of
magnitude higher latency than Meces. There are two reasons
for this phenomenon: (1) Megaphone’s strong pre-requisite
of SPE features calls for extra synchronization and commu-
nication techniques to fulfill the requirements, thus bringing
dramatic overhead to the system performance [43]. (2) To
prepare for state migration, Megaphone splits the original
operators into two operators before the streaming job is sub-
mitted. However, this incurs extra partition overhead between
the two new operators, resulting in increased processing la-
tency for the regular execution of the job. As for Meces, it can
work without expensive system requirements or logic modifi-
cation to a non-rescaling SPE, and thus brings no overhead
when the system is not rescaling.

During rescaling, both systems show a limited amount of
latency increase. However, the latency of Megaphone stays at
the level of around 8000 ms, while Meces never reaches the
bar of 1000 ms. This verifies that compared with Megaphone,
Meces’s prioritized state migration can efficiently reduce the
processing latency during rescaling with low overhead.

6 Related Work

Stateful stream processing has been an active research field
in the past years, both in single-machine [1, 9, 44] and dis-
tributed settings [3, 8, 16, 50, 53, 62]. To meet diversified re-
quirements of real-time computing in different scenarios, re-
search works focus on various aspects of stream processing,
including performance [32, 36, 37, 58, 59], reliability [45, 64],
scalability [14,15,56], flexibility [23], programmability [5,40],
etc. In addition, some researchers propose SPEs with enriched
semantics [38, 42, 57, 65, 66] to support more sophisticated
analysis of streaming data.

Elasticity in batch processing systems has also been
studied [34, 35], but they mainly deal with scenarios with
rather higher processing latency. As for the field of elastic
stream processing, the past decade also witnessed many ad-
vances [14–16, 25, 26, 33, 40, 43, 47, 52, 53, 61].

The most recent works related to ours are Megaphone [26]
and Rhino [43]. Megaphone [26] provides efficient on-the-fly

state migration for SPEs. This is achieved by transferring the
operator states in a small granularity upon dataflow recon-
figuration. It also supports trading off low latency against
high throughput of state migration. Rhino [43] periodically
replicates operator states among all worker machines. It can
speed up the process of state migration by asking the operator
instances to read/write from an incremental checkpoint in-
stead of a global state snapshot. They both reduce processing
latency during state migration at the expense of SPE per-
formance during non-rescaling periods, as neither of them
considers the migration order of states. In contrast, Meces
uses a fetch-on-demand state accessing mechanism to enable
prioritized state migration during rescaling, without extra re-
source usage in non-rescaling periods.

Another critical issue about the elasticity of stream pro-
cessing is to decide when and how to rescale. Many SPE
controllers [4,19,20,28,31,39,41,54] have been proposed for
adaptive rescaling to meet the QoS targets in various scenar-
ios. These works are orthogonal to ours and can be combined
with Meces’s on-the-fly rescaling mechanism to provide self-
regulating streaming systems.

7 Conclusion

This paper presents Meces, a latency-efficient on-the-fly
rescaling mechanism using prioritized state migration for
stateful distributed SPEs. Meces uses a fetch-on-demand
model with hierarchical state data structure and gradual strat-
egy, to achieve prioritized state migration with global con-
sistency and high efficiency. This design puts all the opera-
tions in rescaling periods and requires no work during non-
rescaling periods. We implement Meces in Apache Flink and
evaluate our design on diversified workloads. The experimen-
tal results show that compared to state-of-the-art approaches,
Meces improves the latency and throughput performance dur-
ing rescaling by orders of magnitude without disrupting non-
rescaling periods or using huge amounts of resources.

In the future, we plan to integrate Meces with stream per-
formance monitoring tools and further study more adaptive
rescaling policies for diversified scenarios on Meces.

Acknowledgements

We thank the anonymous reviewers for their valuable com-
ments. We sincerely thank our shepherd for her/his guidance
and time. This work is funded in part by the National Nat-
ural Science Foundation of China (No. 62072230), Alibaba
Group through Alibaba Innovative Research Program, the Na-
tional Natural Science Foundation of China (No. U1811461),
Jiangsu Province Science and Technology Key Program (No.
BE2021729), the Collaborative Innovation Center of Novel
Software Technology and Industrialization. Rong Gu is the
corresponding author of this paper.

550    2022 USENIX Annual Technical Conference USENIX Association



References

[1] Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch
Cherniack, Christian Convey, Sangdon Lee, Michael
Stonebraker, Nesime Tatbul, and Stanley B. Zdonik. Au-
rora: A new model and architecture for data stream man-
agement. VLDB Journal ’03, 12(2):120–139, November
2003.

[2] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson,
Colin Meek, Vishesh Khemani, Stefan Fulger, Pan Gu,
Lakshminath Bhuvanagiri, Jason Hunter, Roberto Peon,
Larry Kai, Alexander Shraer, Arif Merchant, and Kfir
Lev-Ari. Slicer: Auto-sharding for datacenter applica-
tions. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
’16), pages 739–753, November 2016.

[3] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava
Chernyak, Reuven Lax, Sam McVeety, Daniel Mills,
Frances Perry, Eric Schmidt, and Sam Whittle. The
dataflow model: A practical approach to balancing cor-
rectness, latency, and cost in massive-scale, unbounded,
out-of-order data processing. In Proceedings of the
VLDB Endowment (PVLDB ’15), volume 8, pages 1792–
1803, April 2015.

[4] Lisa Amini, Navendu Jain, Anshul Sehgal, Jeremy Sil-
ber, and Olivier Verscheure. Adaptive control of
extreme-scale stream processing systems. In Proceed-
ings of the 26th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS ’06), pages 71–71,
July 2006.

[5] Michael Armbrust, Tathagata Das, Joseph Torres, Bu-
rak Yavuz, Shixiong Zhu, Reynold Xin, Ali Ghodsi, Ion
Stoica, and Matei Zaharia. Structured streaming: A
declarative API for real-time applications in Apache
Spark. In Proceedings of the 37th ACM International
Conference on Management of Data (SIGMOD ’18),
pages 601–613, June 2018.

[6] Paris Carbone, Marios Fragkoulis, Vasiliki Kalavri, and
Asterios Katsifodimos. Beyond analytics: The evolution
of stream processing systems. In Proceedings of the
39th ACM International Conference on Management of
Data (SIGMOD ’20), pages 2651–2658, June 2020.

[7] Paris Carbone, Gyula Fóra, Stephan Ewen, Seif Haridi,
and Kostas Tzoumas. Lightweight asynchronous
snapshots for distributed dataflows. arXiv preprint
arXiv:1506.08603, 2015.

[8] Craig Chambers, Ashish Raniwala, Frances Perry,
Stephen Adams, Robert R. Henry, Robert Bradshaw,
and Nathan Weizenbaum. Flumejava: Easy, efficient
data-parallel pipelines. In Proceedings of the 31st ACM

Conference on Programming Language Design and Im-
plementation (PLDI ’10), pages 363–375, June 2010.

[9] Badrish Chandramouli, Jonathan Goldstein, Mike Bar-
nett, Robert DeLine, John C. Platt, James F. Terwilliger,
and John Wernsing. Trill: A high-performance incre-
mental query processor for diverse analytics. In Proceed-
ings of the VLDB Endowment (PVLDB ’14), volume 8,
pages 401–412, April 2014.

[10] K. Mani Chandy and Leslie Lamport. Distributed snap-
shots: Determining global states of distributed systems.
ACM Transactions on Computer Systems (TOCS ’85),
3(1):63–75, March 1985.

[11] Debezium. Building audit logs with change data
capture and stream processing. https://debezium
.io/blog/2019/10/01/audit-logs-with-chang
e-data-capture-and-stream-processing/, 2019.

[12] Philippe Dobbelaere and Kyumars Sheykh Esmaili.
Kafka versus rabbitmq: A comparative study of two
industry reference publish/subscribe implementations.
In Proceedings of the 11st ACM International Confer-
ence on Distributed and Event-based Systems (DEBS

’17), pages 227–238. ACM, June 2017.

[13] Exastax. Real-time stream processing for internet of
things. https://medium.com/@exastax/real-tim
e-stream-processing-for-internet-of-thing
s-24ac529f75a3/, 2017.

[14] Raul Castro Fernandez, Matteo Migliavacca, Evangelia
Kalyvianaki, and Peter R. Pietzuch. Integrating scale
out and fault tolerance in stream processing using op-
erator state management. In Proceedings of the 32nd
ACM International Conference on Management of Data
(SIGMOD ’13), pages 725–736, June 2013.

[15] Raul Castro Fernandez, Matteo Migliavacca, Evangelia
Kalyvianaki, and Peter R. Pietzuch. Making state ex-
plicit for imperative big data processing. In Proceedings
of 2014 USENIX Annual Technical Conference (ATC

’14), pages 49–60, June 2014.

[16] Apache Flink. https://flink.apache.org/, 2015.

[17] A deep dive into rescalable state in Apache
Flink. https://flink.apache.org/features/
2017/07/04/flink-rescalable-state.html/.

[18] flink-rescalable-state. https://flink.apache.org
/features/2017/07/04/flink-rescalable-sta
te.html/, 2021.

[19] Avrilia Floratou, Ashvin Agrawal, Bill Graham, Sriram
Rao, and Karthik Ramasamy. Dhalion: Self-regulating
stream processing in heron. In Proceedings of the VLDB

USENIX Association 2022 USENIX Annual Technical Conference    551

https://debezium.io/blog/2019/10/01/audit-logs-with-change-data-capture-and-stream-processing/
https://debezium.io/blog/2019/10/01/audit-logs-with-change-data-capture-and-stream-processing/
https://debezium.io/blog/2019/10/01/audit-logs-with-change-data-capture-and-stream-processing/
https://medium.com/@exastax/real-time-stream-processing-for-internet-of-things-24ac529f75a3/
https://medium.com/@exastax/real-time-stream-processing-for-internet-of-things-24ac529f75a3/
https://medium.com/@exastax/real-time-stream-processing-for-internet-of-things-24ac529f75a3/
https://flink.apache.org/
https://flink.apache.org/features/2017/07/04/flink-rescalable-state.html/
https://flink.apache.org/features/2017/07/04/flink-rescalable-state.html/
https://flink.apache.org/features/2017/07/04/flink-rescalable-state.html/
https://flink.apache.org/features/2017/07/04/flink-rescalable-state.html/
https://flink.apache.org/features/2017/07/04/flink-rescalable-state.html/


Endowment (PVLDB ’17), volume 10, pages 1825–1836,
April 2017.

[20] Tom Z. J. Fu, Jianbing Ding, Richard T. B. Ma, Mar-
ianne Winslett, Yin Yang, and Zhenjie Zhang. DRS:
Auto-Scaling for real-time stream analytics. IEEE/ACM
Transactions on Networking (TON ’17), 25(6):3338–
3352, June 2017.

[21] Yupeng Fu and Chinmay Soman. Real-time data in-
frastructure at uber. In Proceedings of the 40th ACM
International Conference on Management of Data (SIG-
MOD ’21), pages 2503–2516, June 2021.

[22] Can Gencer, Marko Topolnik, Viliam Durina, Emin
Demirci, Ensar B. Kahveci, Ali Gürbüz, József Bartók,
Grzegorz Gierlach, Frantisek Hartman, Ufuk Yilmaz,
Ondrej Lukás, Mehmet Dogan, Mohamed Mandouh,
Marios Fragkoulis, and Asterios Katsifodimos. Hazel-
cast jet: Low-latency stream processing at the 99.99th
percentile. In Proceedings of the VLDB Endowment
(PVLDB ’21), volume 14, pages 3110–3121, 2021.

[23] Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens,
Lara Timbó Araújo, Martin Ek, Eddie Kohler, M. Frans
Kaashoek, and Robert Tappan Morris. Noria: dynamic,
partially-stateful data-flow for high-performance web
applications. In Proceedings of the 13rd USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI ’18), pages 213–231, October 2018.

[24] Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta
Patino-Martinez, Claudio Soriente, and Patrick Val-
duriez. Streamcloud: An elastic and scalable data
streaming system. IEEE Transactions on Parallel and
Distributed Systems (TPDS ’12), 23(12):2351–2365,
2012.

[25] Thomas Heinze, Zbigniew Jerzak, Gregor Hackenbroich,
and Christof Fetzer. Latency-aware elastic scaling for
distributed data stream processing systems. In Proceed-
ings of the 8th ACM International Conference on Dis-
tributed Event-Based Systems (DEBS ’14), pages 13–22,
May 2014.

[26] Moritz Hoffmann, Andrea Lattuada, Frank McSherry,
Vasiliki Kalavri, John Liagouris, and Timothy Roscoe.
Megaphone: Latency-conscious state migration for dis-
tributed streaming dataflows. In Proceedings of the
VLDB Endowment (PVLDB ’19), volume 12, pages
1002–1015, April 2019.

[27] Apache Kafka. http://kafka.apache.org/, 2011.

[28] Vasiliki Kalavri, John Liagouris, Moritz Hoffmann, De-
sislava C. Dimitrova, Matthew Forshaw, and Timothy
Roscoe. Three steps is all you need: Fast, accurate,

automatic scaling decisions for distributed streaming
dataflows. In Proceedings of the 13rd USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI ’18), pages 783–798, October 2018.

[29] David R. Karger, Eric Lehman, Frank Thomson
Leighton, Rina Panigrahy, Matthew S. Levine, and
Daniel Lewin. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on
the world wide web. In Proceedings of the 29th ACM
Symposium on the Theory of Computing (STOC ’97),
pages 654–663, May 1997.

[30] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos,
Roman Samarev, Henri Heiskanen, and Volker Markl.
Benchmarking distributed stream data processing sys-
tems. In Proceedings of the 34th IEEE International
Conference on Data Engineering (ICDE ’18), pages
1507–1518, August 2018.

[31] Alireza Khoshkbarforoushha, Alireza Khosravian, and
Rajiv Ranjan. Elasticity management of streaming data
analytics flows on clouds. Journal of Computer and
System Sciences (JCSS ’17), 89:24–40, October 2017.

[32] Alexandros Koliousis, Matthias Weidlich, Raul Castro
Fernandez, Alexander L. Wolf, Paolo Costa, and Peter R.
Pietzuch. SABER: Window-Based hybrid stream pro-
cessing for heterogeneous architectures. In Proceedings
of the 35th ACM International Conference on Manage-
ment of Data (SIGMOD ’16), pages 555–569, July 2016.

[33] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas
Kedigehalli, Christopher Kellogg, Sailesh Mittal, Jig-
nesh M. Patel, Karthik Ramasamy, and Siddarth Taneja.
Twitter heron: Stream processing at scale. In Proceed-
ings of the 34th ACM International Conference on Man-
agement of Data (SIGMOD ’15), pages 239–250, May
2015.

[34] Alok Kumbhare, Marc Frincu, Yogesh Simmhan, and
Viktor K. Prasanna. Fault-tolerant and elastic streaming
mapreduce with decentralized coordination. In Proceed-
ings of the 35th International Conference on Distributed
Computing Systems, pages 328–338, June 2015.

[35] YongChul Kwon, Magdalena Balazinska, Bill Howe,
and Jerome Rolia. A study of skew in mapreduce ap-
plications. In Proceedings the 5th Open Cirrus Summit,
pages 1–5, June 2011.

[36] Gyewon Lee, Jeongyoon Eo, Jangho Seo, Taegeon Um,
and Byung-Gon Chun. High-performance stateful
stream processing on solid-state drives. In Proceed-
ings of the 9th ACM Asia-Pacific Workshop on Systems
(APSys ’18), pages 9:1–9:7, August 2018.

552    2022 USENIX Annual Technical Conference USENIX Association

http://kafka.apache.org/


[37] Yongkun Li, Zhen Liu, Patrick PC Lee, Jiayu Wu, Yin-
long Xu, Yi Wu, Liu Tang, Qi Liu, and Qiu Cui. Differ-
entiated Key-Value storage management for balanced
I/O performance. In Proceedings of 2021 USENIX An-
nual Technical Conference (ATC ’21), pages 673–687,
July 2021.

[38] Thomas Lindemann, Jonas Kauke, and Jens Teubner.
Efficient stream processing of scientific data. In Pro-
ceedings of the 34th IEEE International Conference on
Data Engineering Workshops (ICDEW ’18), pages 140–
145, April 2018.

[39] Björn Lohrmann, Peter Janacik, and Odej Kao. Elas-
tic stream processing with latency guarantees. In Pro-
ceedings of the 35th IEEE International Conference
on Distributed Computing Systems (ICDCS ’15), pages
399–410, June 2015.

[40] Luo Mai, Kai Zeng, Rahul Potharaju, Le Xu, Steve Suh,
Shivaram Venkataraman, Paolo Costa, Terry Kim, Sar-
avanam Muthukrishnan, Vamsi Kuppa, Sudheer Dhuli-
palla, and Sriram Rao. Chi: A scalable and pro-
grammable control plane for distributed stream process-
ing systems. In Proceedings of the VLDB Endowment
(PVLDB ’18), volume 11, pages 1303–1316, April 2018.

[41] Tiziano De Matteis and Gabriele Mencagli. Elastic
scaling for distributed latency-sensitive data stream op-
erators. In Proceedings of the 25th IEEE Euromicro
International Conference on Parallel, Distributed and
Network-based Processing (PDP ’17), pages 61–68,
March 2017.

[42] Frank McSherry, Andrea Lattuada, Malte Schwarzkopf,
and Timothy Roscoe. Shared arrangements: practical
inter-query sharing for streaming dataflows. In Proceed-
ings of the VLDB Endowment (PVLDB ’20), volume 13,
pages 1793–1806, March 2020.

[43] Bonaventura Del Monte, Steffen Zeuch, Tilmann Rabl,
and Volker Markl. Rhino: Efficient management of very
large distributed state for stream processing engines. In
Proceedings of the 39th ACM International Conference
on Management of Data (SIGMOD ’20), pages 2471–
2486, June 2020.

[44] Derek Gordon Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martín Abadi. Na-
iad: A timely dataflow system. In Proceedings of the
24th ACM Symposium on Operating Systems Principles
(SOSP ’13), pages 439–455, November 2013.

[45] Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu,
Hongyu Zhu, Taizhi Zhang, Lidong Zhou, Yuan Yu, and
Zheng Zhang. Timestream: Reliable stream compu-
tation in the cloud. In Proceedings of the 8th ACM

European Conference on Computer Systems (EuroSys
’13), pages 1–14, April 2013.

[46] Rabbitmq. https://www.rabbitmq.com/, 2007.

[47] Sumanaruban Rajadurai, Jeffrey Bosboom, Weng-Fai
Wong, and Saman P. Amarasinghe. Gloss: Seamless
live reconfiguration and reoptimization of stream pro-
grams. In Proceedings of the 23rd ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’18), pages
98–112, March 2018.

[48] Redis Sentinel. https://redis.io/topics/sent
inel/, 2021.

[49] Apache RocketMQ. http://rocketmq.apache.or
g/, 2012.

[50] Apache samza. http://samza.apache.org/, 2013.

[51] Twitter sentiment analysis: A tale of stream processing.
https://towardsdatascience.com/twitter-s
entiment-analysis-a-tale-of-stream-process
ing-8fd92e19a6e6/, 2020.

[52] Mehul A. Shah, Joseph M. Hellerstein, Sirish Chan-
drasekaran, and Michael J. Franklin. Flux: An adaptive
partitioning operator for continuous query systems. In
Proceedings of the 19th IEEE International Conference
on Data Engineering (ICDE ’03), pages 25–36, March
2003.

[53] Apache Spark Streaming. https://spark.apache
.org/streaming/, 2013.

[54] Rafael Tolosana-Calasanz, Javier Diaz Montes, Omer F.
Rana, and Manish Parashar. Feedback-control & queue-
ing theory-based resource management for streaming
applications. IEEE Transactions on Parallel and Dis-
tributed Systems (TPDS ’17), 28(4):1061–1075, October
2017.

[55] Pete Tucker, Kristin Tufte, Vassilis Papadimos, and
David Maier. Nexmark - a benchmark for queries over
data streams draft. Technical report, School of Science
and Engineering at OHSU, March 2008.

[56] Taegeon Um, Gyewon Lee, Sanha Lee, Kyungtae Kim,
and Byung-Gon Chun. Scaling up IoT stream process-
ing. In Proceedings of the 8th ACM Asia-Pacific Work-
shop on Systems (APSys ’17), pages 25:1–25:7, Septem-
ber 2017.

[57] Pourya Vaziri and Keval Vora. Controlling memory
footprint of stateful streaming graph processing. In Pro-
ceedings of 2021 USENIX Annual Technical Conference
(ATC’21), pages 269–283, July 2021.

USENIX Association 2022 USENIX Annual Technical Conference    553

https://www.rabbitmq.com/
https://redis.io/topics/sentinel/
https://redis.io/topics/sentinel/
http://rocketmq.apache.org/
http://rocketmq.apache.org/
http://samza.apache.org/
https://towardsdatascience.com/twitter-sentiment-analysis-a-tale-of-stream-processing-8fd92e19a6e6/
https://towardsdatascience.com/twitter-sentiment-analysis-a-tale-of-stream-processing-8fd92e19a6e6/
https://towardsdatascience.com/twitter-sentiment-analysis-a-tale-of-stream-processing-8fd92e19a6e6/
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/


[58] Uri Verner, Assaf Schuster, and Mark Silberstein. Pro-
cessing data streams with hard real-time constraints on
heterogeneous systems. In Proceedings of the 25th ACM
International Conference on Supercomputing (ICS ’11),
pages 120–129, May 2011.

[59] Uri Verner, Assaf Schuster, Mark Silberstein, and Avi
Mendelson. Scheduling processing of real-time data
streams on heterogeneous multi-gpu systems. In Pro-
ceedings of the 5th ACM International Systems and Stor-
age Conference (SYSTOR ’12), pages 1–12, June 2012.

[60] Virtuslab. Preventing fraud and fighting ac-
count takeovers with kafka streams. https:
//www.confluent.io/blog/fraud-prevention-a
nd-threat-detection-with-kafka-streams/,
2020.

[61] Yingjun Wu and Kian-Lee Tan. Chronostream: Elastic
stateful stream computation in the cloud. In Proceed-
ings of the 31st IEEE International Conference on Data
Engineering (ICDE ’15), pages 723–734, April 2015.

[62] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy
Hunter, Scott Shenker, and Ion Stoica. Discretized
streams: Fault-tolerant streaming computation at scale.
In Proceedings of the 24th ACM Symposium on Oper-
ating Systems Principles (SOSP ’13), pages 423–438,
November 2013.

[63] The Z Garbage Collector. https://wiki.openjdk
.java.net/display/zgc/Main/, 2021.

[64] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Se-
bastian Angel, and Vincent Liu. Fault-tolerant and trans-
actional stateful serverless workflows. In Proceedings of
the 14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI ’20), pages 1187–1204,
November 2020.

[65] Yunhao Zhang, Rong Chen, and Haibo Chen. Sub-
millisecond stateful stream querying over fast-evolving
linked data. In Proceedings of the 26th ACM Symposium
on Operating Systems Principles (SOSP ’17), pages 614–
630, November 2017.

[66] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu,
Xiaoming Li, and Steve Uhlig. Cold filter: A meta-
framework for faster and more accurate stream process-
ing. In Proceedings of the 37th ACM International
Conference on Management of Data (SIGMOD ’18),
pages 741–756, June 2018.

A Artifact Appendix

Abstract
Meces is implemented on Apache Flink. It also relies on
Kafka and Redis to function properly. We prepare the pro-
grams, assemble a workflow of Meces and package the artifact
into a Docker image.

Scope
The artifact rescales a key-count job with different state mi-
gration mechanisms. It verifies the basic functions of Meces
and validates the performance improvement brought by the
prioritized state migration strategy proposed in this paper.

Contents
The artifact includes a compiled version of Meces, along
with dependencies such as Kafka, Redis, Java and Python,
etc. A "README.md" file can be also found in the image. It
contains detailed description of the artifact and a step-by-step
instruction for the rescaling workflow.

Hosting
The artifact is hosted on Docker Hub. It can be installed
by downloading the pre-built Docker image from the public
dockerhub repository and initiating a container from it:

• docker pull njupasalab/meces:latest
• docker run -it njupasalab/meces:latest

Artifact Check-list:
• Run-time Environment: Linux OS with Docker installed.
• Experiments: Workflow of rescaling a key-count job.
• Expected Experiment Running Time: About half an hour.
• Output: Data plots of latency comparison.

Expected Running Result
There are scripts that help pre-check the testing environment:

• source scripts/install.sh
• scripts/start_background_environment.sh
• scripts/check_environment.sh
Then, an experiment script evaluates the rescaling perfor-

mance of Meces using the key-count job on your environment:
• scripts/rescale_exp.sh
It generally goes through three stages in series, namely

Meces, Order-Unaware, Native-Flink. In each stage, the sys-
tem submits the key-count job, runs for a while and then
rescales the operator with its corresponding mechanism. For
further details, please refer to "README.md" in the artifact.

After the process finishes, the experimental data is collected
in the data folder. Each experiment should generate a plot of
the latency curve, similar to what is reported in Section 5.2.

554    2022 USENIX Annual Technical Conference USENIX Association

https://www.confluent.io/blog/fraud-prevention-and-threat-detection-with-kafka-streams/
https://www.confluent.io/blog/fraud-prevention-and-threat-detection-with-kafka-streams/
https://www.confluent.io/blog/fraud-prevention-and-threat-detection-with-kafka-streams/
https://wiki.openjdk.java.net/display/zgc/Main/
https://wiki.openjdk.java.net/display/zgc/Main/


B Appendix: Latency Performance Evaluation
on full NEXMark suite during Rescaling

We evaluate the latency performance of the SPEs during
rescaling. The SPEs are initially configured with global oper-
ator parallelism of 25. Then, each job runs at a steady input
rate of 800K records/s for 600 seconds. After that a rescaling
operation is triggered. It increases the parallelism of criti-
cal operators (e.g., join or window operators in NEXMark
queries, counting operator in the key-count job) to 30. This
causes 115 out of 128 key-groups to be relocated during the
scale-out.

Figure 21~28 illustrate the end-to-end latency change of
each query in this process. We compare Meces with Native
Flink (stopping the whole job when rescaling) and Order-
Unaware (online block-based state migration without order
prioritization).

NEXMark Q1 and Q2 do currency conversion or filtering
operations on a bid stream. These simple transformation tasks
do not maintain states and the behavior is demonstrated as a
basic case for our evaluation. As shown in Figure 21 and 22,
both Meces and Order-Unaware reveal no latency peak but
only system noise, because they incur no state migration cost
during rescaling and operations can be done asynchronously.
In contrast, Native Flink still needs to stop and restart the job
even if there is no state to migrate.

(a) Native Flink (b) Order-Unaware (c) Meces

Figure 21: End-to-end latency of NEXMark Q1

(a) Native Flink (b) Order-Unaware (c) Meces

Figure 22: End-to-end latency of NEXMark Q2

NEXMark Q3 and Q4 test join functionality. Q3 joins the
stream of open auctions and the stream of people to local item
suggestions for users. Q4 joins the stream of closed auctions
and the stream of items to output the average deal price of
items for a category. Both queries have to store information
of records in the data stream as states of join operators. The
per-record latency is demonstrated in Figure 23 and Figure 24.
In our settings, Q3 maintains a rather small size of states.
Meanwhile, operator states in Q4 grow large when millions
of items have been sold. As a result, for Native Flink and

Order-Unaware, a sharp and short-lasting rise of latency can
be seen in Figure 23, because the task executions are globally
or partially blocked until the state migration is completely
done. As a comparison, there is no obvious latency change in
Meces as it reduces the disturbance caused by state migration
to a lower granularity. A similar conclusion can also be drawn
from the results in Figure 24 for Q4. The degradation of real-
time performance becomes more significant for Native Flink
and Order-Unaware with a larger size of states, while Meces
only incurs a small range of latency fluctuations. The latency
peak of Meces is an order of magnitude smaller than the other
two mechanisms, due to its fetch-on-demand accessing and
gradual migration strategy.

(a) Native Flink (b) Order-Unaware (c) Meces

Figure 23: End-to-end latency of NEXMark Q3

(a) Native Flink (b) Order-Unaware (c) Meces

Figure 24: End-to-end latency of NEXMark Q4

NEXMark Q5 tests window operator with small states. It
repeatedly selects the hottest item in the past period of time,
which is the item with the most number of bids. The stateful
operator maintains item counts in each time window. In our
experiments, the job reports every second the hottest item over
the last 60 seconds. As this query does not accumulate large
states, it exposes similar behavior with Q1 and Q2, as shown
in Figure 25. While the latency of Native Flink increases
significantly due to a full restart, the record processing of
Meces and Order-Unaware is hardly affected because the
state migration cost is minor.

(a) Native Flink (b) Order-Unaware (c) Meces

Figure 25: End-to-end latency of NEXMark Q5

NEXMark Q6, Q7 and Q8 test window operator with
bigger states. Q6 includes a sliding window over a single

USENIX Association 2022 USENIX Annual Technical Conference    555



stream to calculate the average of items recently sold by a
seller. Q7 and Q8 perform tumbling window join of two
streams, to find out the items with the highest price and the
new users who just registered in the last period of time. These
queries maintain large states when the window size grows. We
set the window sizes to be 10 seconds, 10 seconds, and 100
seconds for the three queries respectively. The performance
comparison is illustrated in Figure 26~28, where the latency
peak of Meces during rescaling is an order of magnitude
smaller than the others. When the rescaling begins, Order-
Unaware needs to block the currently processed records while
migrating a considerable amount of states. As a result, Order-
Unaware goes through a performance degradation near to
Native Flink (Full-Restart), and reaches a latency peak of
dozens of seconds. For comparison, Meces can give priority
to the hot keys being processed and smoothen the latency
peaks.

(a) Native Flink (b) Order-Unaware (c) Meces

Figure 26: End-to-end latency of NEXMark Q6

(a) Native Flink (b) Order-Unaware (c) Meces

Figure 27: End-to-end latency of NEXMark Q7

(a) Native Flink (b) Order-Unaware (c) Meces

Figure 28: End-to-end latency of NEXMark Q8

In conclusion, Meces achieves better performance than ex-
isting approaches during rescaling. Native Flink and SPEs
with Order-Unaware can suddenly become out-of-service
when migrating states, while Meces relieves the impact of
rescaling to a lower granularity and reduces the maximum
latency.

556    2022 USENIX Annual Technical Conference USENIX Association



DepFast: Orchestrating Code of Quorum Systems
Xuhao Luo†, Weihai Shen‡, Shuai Mu‡, Tianyin Xu†

†University of Illinois at Urbana-Champaign ‡Stony Brook University

Abstract
Quorum systems (e.g., replicated state machines) are criti-

cal distributed systems. Building correct, high-performance
quorum systems is known to be hard. A major reason is that
the protocols in quorum systems lead to non-deterministic
state changes and complex branching conditions based on
different events (e.g., timeouts). Traditionally, these systems
are built with an asynchronous coding style with event-driven
callbacks, but often lead to “callback hell” that makes code
hard to follow and maintain. Converting to synchronous cod-
ing styles (e.g., using coroutines) is challenging because of
the complex branching conditions. In this paper, we present
Dependably Fast (DepFast), an effective, expressive frame-
work for developing quorum systems. DepFast provides a
unique QuorumEvent abstraction to enable building quorum
systems in a synchronous style. It also supports composition
of multiple events, e.g., timeouts, different quorums. To eval-
uate DepFast, we use it to implement two quorum systems,
Raft and Copilot. We show that complex quorum systems im-
plemented by DepFast are easy to write and have high perfor-
mance. Specifically, it takes 25%–35% fewer lines of code to
implement Raft and Copilot using DepFast, and the DepFast-
based implementations have comparable performance with
the state-of-the-art systems.

1 Introduction

Quorum systems are critical distributed systems. In a quo-
rum system, a node sends a request to a group of nodes, and
proceeds on receiving a quorum of acknowledgements. The
quorum size depends on the system design; it usually varies
between a majority, a super-majority, or the whole group. The
most common quorum systems are replicated state machines—
a linearizable and fault-tolerant group of distributed nodes
coordinating through a consensus protocol such as Paxos [39]
and Raft [48]. Such quorum systems are widely deployed in
practice, especially as critical infrastructures of large-scale
cloud and Internet services [17, 20, 23, 34, 60].

Building a quorum system is hard. Quorum systems often
have a complex consensus protocol. A node in these protocols
have a complex state space. An event, e.g., a reply to a mes-
sage, or a timeout, will trigger a state transition of the node.
At each state, the node has multiple possible branches to go
into based on the event and its current state. Though the state
transition itself could be deterministic, the entire node behav-

ior is not. This is mainly because of: 1) non-determinism in
some event types, e.g., timeout, 2) the inter- and intra-node
parallelism, and 3) network asynchrony, e.g., message delays
and out-of-order delivery.

The traditional way to code these complex state transition
conditions is through an event-driven or asynchronous coding
style. For each event, the developer defines an event handler,
or a callback function, to drive the program to the next state.
On the one hand, writing code in this style could have its
benefits, mainly two-folded: 1) it could match the style of a
more formal description, e.g., a TLA+ [38] specification; 2) it
could have a high performance as even-driven programming
is often considered to be fast in concurrent programs.

On the other hand, coding in an asynchronous style has
drawbacks, mainly making the code harder to write and fol-
low, more error-prone, and harder to debug. Since the main
workflow of handling a request from begin to end is expressed
in many (callback) functions as opposed to a single function,
the developer needs to manually maintain the shared control,
data, and debug variables across these functions. The devel-
oper also needs to manually map each function execution
properly to the request’s lifetime, for example, dropping a
reply if the system has moved with a quorum without the
reply. Overall, this asynchronous code style could increase
difficulty to develop and maintain the system. This problem
is also known as stack ripping [15] or callback hell [28]).

A natural way of resolve the above issue is turning the
asynchronous code into synchronous style, using lightweight
solutions like coroutines. This is a well studied idea in sys-
tems research [15, 37, 52] and has been adopted widely in
practice [13, 14]. However, the past study of using coroutines
to inline callbacks mainly considers supporting a single asyn-
chronous call [15, 52], e.g., inlining a single RPC callback.
This is insufficient for a quorum system, which often has
many concurrent callbacks and timeouts, and branches based
on these concurrent event composition. Take the following
behavior of a classic consensus system for example, a node
sends requests to a group, then it needs to proceed to different
branches based on the replies when it receives 1) a majority
of acknowledgements, 2) a majority of rejects, 3) a majority
of replies, mixed acknowledgements and rejects, and 4) fewer
than a majority of replies. Each of these conditions have their
own timeouts, and the program can only enter one branch. It
is prohibitively difficult to express these conditions with a
single coroutine. To make matters worse, the behavior could
be even more complex with advanced protocols which have

USENIX Association 2022 USENIX Annual Technical Conference    557



multiple quorum sizes. For example, in fast-path enabled pro-
tocols such as Copilot [47], a super-majority quorum and a
majority quorum apply at the same step in the protocol, which
further complicates the situation.

In this paper, we present DepFast (Dependably Fast), a
coroutine-based distributed programming framework to ad-
dress the aforementioned challenges. Like prior works [15,
52], DepFast promotes synchronous code style with cooper-
ative task scheduling and provides an Event abstraction to
wrap the waiting points. The unique part of DepFast is that
it provides a QuorumEvent abstraction that enables the con-
struction of straightforward protocol descriptions, even for
quorum systems with complicated timeout rules and multiple
quorums (which was previously only expressible in bug-prone
callback style). A QuroumEvent represents the system state
of a quorum and any event that affects the state (e.g., arrival
of a reply, a timeout) is funneled through the QuorumEvent.
The program thus can synchronously express the conditions
and branches using the QuorumEvent in a plain if-else style.
Furthermore, the events are composable in DepFast, making it
easier to deal with cases such as waiting for multiple quorums
of different sizes at the same step.

Using DepFast to build quorum systems, the main control
flow of the protocol can be written in a single function with an
unripped stack. The code written in this style is easy to follow
and to debug. As a case study, and as a motivation, we studied
the fail-slow behavior of quorum systems, where a node in
the system can be much slower than a non-faulty node but
still functioning [55]. Debugging fail-slow behavior requires
carefully identifying the line of code to add log statements for
tracing the lifetime of a request. Writing code in the DepFast
style simplifies debugging.

To evaluate DepFast, we use DepFast to implement two
quorum systems based on Raft [48] and Copilot [47] respec-
tively. We report our programming experience with DepFast.
We demonstrate examples illustrating that DepFast leads to
better implementations compared to the common practice of
asynchronous, callback-style code; in particular, DepFast en-
ables direct translation of the protocol algorithms and allows
precise expressions of complex wait conditions, resulting in
25–35% fewer lines of code. We evaluate the performance
of DepFast-based Raft and Copilot implementations against
state-of-the-art versions to show our approach imposes no per-
formance penalty. Moreover, the DepFast-based implementa-
tions have better tolerance against various types of fail-slow
faults by construction, than the state-of-the-art versions.

The paper makes the following contributions:

• We design QuorumEvent to enable the construction of
protocol descriptions even for quorum systems with com-
plicated timeout rules and multiple quorum sizes.

• We develop DepFast, an effective, expressive framework
that enables developers to implement complex quorum
systems with a synchronous programming style.

• We show how DepFast benefits the implementation of quo-
rum systems by illustrating DepFast-based Raft and Copilot
implementations compared to state-of-the-art versions.

• We evaluate the performance of DepFast-based Raft and
Copilot and show that the DepFast design for the ease of
programming does not come with a performance penalty.

2 Background and Motivation

2.1 Quorum systems and async. programming

This paper uses quorum systems to refer to distributed systems
with a communication pattern that requires replies from a
quorum in a group of nodes. One typical type of quorum
systems is a replicated state machine which uses consensus
protocols (e.g., Paxos [39] and Raft [48]) to let nodes agree
on the next state transition.

Consensus protocols are known to be hard to implement.
Take the following behavior in Paxos and Raft for example, a
node broadcasts a replication request (Accept in Paxos, or Ap-
pendEntries in Raft) to a group; then the node needs to react
to events including replies and timeout. A reply can be either
an acknowledgement or a reject. Based on different events,
this node needs to enter different branches when it receives:
1) a majority of acknowledgements before the timeout, 2) a
majority of rejects before the timeout, 3) a majority of replies,
mixed acknowledgements and rejects at the timeout, and 4)
fewer than a majority of replies at the timeout. After the node
chooses a branch, any future event needs to be dropped. The
inter- and intra-node concurrency and the non-deterministic
event triggering lead to a very complex program state space.

Many formal and informal protocol descriptions of quo-
rum systems are written in an asynchronous style: “upon
receiving a (reply to a) message, the system acts as follows.”
It is intuitive to construct the code in the same way (e.g.,
writing a message handler in the message loop, a callback in
event-driven model, or an actor in the actor model to process
a particular message). Coding in the asynchronous style has
the benefit of matching a formal description of the protocol
(e.g., a TLA+ [38] specification). However, it could cause
the control flow to be shredded into many sub-functions like
callbacks. This leads to spaghetti code, also known as stack
ripping [15] or callback hell [28]. Take a Paxos system for
example. For each request that goes through the 3 phases (Pre-
pare/Accept/Commit), the main control flow will at least be
shredded into 3 types of callbacks. If this is a 5-replica system,
the callbacks will be executed 3×5 times. If we further count
callbacks caused by disk logging (asynchronous I/O), there
will be even more (at least doubled) callbacks.

It does not take long before a developer loses track of
how callbacks affect each other. It also imposes significant
challenges to manage the waiting process, especially in cases
where the callbacks are written by different developers (which
is often the case in practice). A natural way to address this

558    2022 USENIX Annual Technical Conference USENIX Association



problem is to turn the code to a synchronous style by inlin-
ing the callback into the calling function. This could greatly
improve understandability and maintainability. In fact, some
papers describe the main control flow in this style. For exam-
ple, in the Paxos paper [39], after a proposer sends out the
proposal, “if the proposer receives a response from a majority
of acceptors...” In practice, many projects started with the
asynchronous callback style, but the growing size of codebase
and the accompanying cognitive load of callbacks made the
developers change to a synchronous code style [15, 18].

In the past, asynchronous versus synchronous program-
ming styles (or event versus thread) have drawn many discus-
sions [15, 19, 25, 26, 37, 44, 49]. The asynchronous or event-
driven style is often preferred for performance reasons. For
example, it can avoid the overhead of many OS threads, and
the epoll/kqueue model of processing network interrupts
can efficiently utilize the interrupt-based OSes and devices.
Past works have proposed solutions to turn asynchronous code
into synchronous and preserve its high performance, e.g., by
using lightweight threads like stackful coroutines [15, 52].
However, existing solutions mainly consider inlining a single
callback like a single RPC. It does not address the challenges
of implementing quorum systems, where a broadcast request
triggers a group of callbacks, and the system needs to proceed
with a quorum.

2.2 Experience in debugging fail-slow behavior

We recently studied fail-slow behavior of real-world quorum
systems [55]. Our journey started from observing that quo-
rum systems of product-grade databases cannot meet fault-
tolerance properties of the consensus protocols—a fail-slow
follower affects system-wide performance. Such behavior
contradicts the theory—a quorum system should proceed
when there is a majority of non-faulty nodes. Specifically, a
fail-slow follower should not have visible impact by design.

To reveal the root causes of the fail-slow behavior, we spent
two person-years to analyze the three implementations. In our
experience, debugging fail-slow fault tolerance is challenging
and time-consuming. At a high level, the debugging process
is a binary search for small fragments of code that caused the
slowness using time stamping. The process sounds easy (as
we imagined it to be), but is painful in practice. The asyn-
chronous code often looks like spaghetti: the main control of
a request is spread in different code fragments. Understanding
where those code fragments are located and how they interact
is non-trivial. In fact, working with developers of two of the
databases, we find that even they have the same experience.

We also find that asynchronous code often lacks a clear
abstraction between the quorum logic (e.g., the Raft protocol)
and common, low-level utilities (e.g., RPC, disk I/O) in the
spoken implementations. In addition to the challenge of ex-
pressing complex state transitions, lacking a clear abstraction
has two more problems in implementation.

First, when a buggy fail-slow behavior occurs, it is hard
to know whether the bug is caused by the protocol code or
the utility code. A bug in the utility code is typically easier to
identify and fix than a logic bug. It would be very helpful if
the code can be constructed in a way that the logic code and
utility code are isolated and separately profiled for debugging.

Second, a lack of abstractions also indicates lacking knowl-
edge across the two parts. The utility code has to blindly
execute the requests passed by the logic code and cannot per-
form optimizations to tolerate fail-slow behavior, but push
the burden back to protocol logic. For example, the Raft logic
broadcasts AppendEntries to all replicas and waits for a quo-
rum of replies to proceed. In many existing implementations,
the Raft logic sends the same message to each replica and the
utility faithfully puts the message to the buffer of each replica.
If one replica is slow, the connection would be slow and the
buffer would keep increasing, leading to the backlog issue
reported by recent work [27, 29]. If the utility is aware that
this is a broadcast that can succeed with a quorum of replies,
it can safely discard the messages for the slow connection.

2.3 Goal

Our experience in building and investigating complex quorum
systems has driven us to rethink the programming practice
and seek a more foundational solution that can make it eas-
ier to build and maintain quorum systems. We propose a
synchronous programming framework for this purpose. In
particular, we will propose abstractions that allow developers
to implement complex quorum state transitions that can only
be implemented with an asynchronous programming style
before. We will show by our experiences that this framework
can help programmers efficiently express complex quorum
conditions in a way that is easy to follow and maintain.

3 The DepFast Framework

This section introduces the Dependably Fast (DepFast) frame-
work. DepFast aims to provide an effective, expressive pro-
gramming framework for building quorum systems. We first
go through the interface of DepFast (§3.1), including an im-
portant abstraction we propose for quorum systems (§3.1.2).
Then we go into internals of the framework, describing how
it is implemented (§3.2).

3.1 DepFast from a programmer’s perspective
3.1.1 Coroutines and events

DepFast provides programmers with two main interfaces:

• a coroutine interface for launching tasks,
• an event interface which wraps the waiting points, or any

potential fail-slow points, in the code.

USENIX Association 2022 USENIX Annual Technical Conference    559



The idea of using coroutine is to keep the code in one
piece—avoiding callbacks, while maintaining the perfor-
mance when dealing with an operation that needs to wait. For
example, the code snippet below is triggering an RPC with a
callback. Traditionally, it is considered the high-performance
way of writing concurrent programs as it avoids the cost of
creating and switching between threads. On the other hand, it
comes with the cost of breaking the control flow, leading to
many side effects besides increasing code complexity. For one,
the programmer needs to manually maintain a shared stack
from callbacks to callbacks, which is also known as stack
ripping [15]. For a quorum-based system, the case could be
more complex. For example, a reply is not always “valid”; an
outdated reply needs to be ignored. The programmer needs to
manually manage those, as exemplified in the code below:
void DoAppendEntries() {
for (auto rpc_proxy : servers) {
auto entries = ...;
// the next line bears possible slowness
auto rpc_event = rpc_proxy.AppendEntries(entries,

AppendEntriesCallback);
}

}
void AppendEntriesCallback(Id id, Result result) {
// manually manage shared data
auto reply_ok_cnt = reply_map_g[id];
// manually manage lifetime
auto status_ = status_map_g[id];
if (status_ == undecided) {
... // only process when the log is still alive

} // else ignore
}

Using coroutine, the above code can be expressed as:
Coroutine::Create([] () {
vector<RpcEvent> events;
for (auto rpc_proxy : servers) {
auto entries = ...;
// the rpc call is asynchronous and non-blocking
auto rpc_event = rpc_proxy.AppendEntries(entries);

}
for (auto& rpc_event: events) {
// block coroutine until the rpc returns
rpc_event.Wait(); // possible slowness
Process(rpc_event.Result());

}
})

In the above code, what was split in callbacks is glued
together in a single function, where the programmer can con-
tinue using the stack to share system states with a unified
control flow. The code using coroutine can provide similar
performance to the code with callbacks, because coroutines
do not incur the heavy overhead of OS threads [15].

Note that the above code uses RpcEvent: calling Wait()
on this object would suspend the current coroutine until the
RPC has the return value ready. DepFast uses such event ab-
straction to wrap all the waiting conditions. With the events,
a programmer can suspend/resume the coroutines. DepFast
implements many built-in event types to support various oper-
ations (RPC, file I/O, etc.). With all waiting points moderated
by the framework, DepFast naturally empowers more analysis
(§A.2). DepFast also provides novel event types to better deal
with distributed, quorum-based systems. We next introduce
an important event in DepFast, QuorumEvent.

3.1.2 QuorumEvent

The coroutine-style code above is less efficient than the
callback-style code. The coroutine-style code waits for the re-
ply from each server sequentially with a fixed order, while in
the callback-style code the callback for each server’s response
can be triggered out of order. This gives the callback-style
code a major benefit in performance, because it only needs to
wait for the first quorum of messages to arrive. In particular,
it is not affected by a fail-slow remote server. On the contrary,
the coroutine-style code will be slower in performance and
be affected by a fail-slow server.

To address this issue, DepFast has a special event type,
termed QuorumEvent. The key idea is to prevent any indi-
vidual fail-slow event from straggling a coroutine by com-
bining many events together into a compound event. As the
name suggests, QuorumEvent does not need all responses
from each individual event. The usage of a QuorumEvent is
demonstrated by the following example.
Coroutine::Create([]() {
auto quorum_event = QuorumEvent();
for (auto rpc_proxy : servers) {
auto entries = ...;
auto rpc_event = rpc_proxy.AppendEntries(entries);
quorum_event.add(rpc_event);
// no longer wait for any single event

}
quorum_event.Wait(MAJORITY); // wait for a majority
...
// after 10s, release resources to avoid backlog
quorum_event.Release(10000 /*ms*/);

})

Using the above QuorumEvent has two benefits. First, the
replies can be received out of order and the program can
proceed as soon as receiving a majority of replies. Second,
the abstraction helps programmers avoid writing any code
that would be blocked by any single-point fail-slow remote
server. A key idea that DepFast deploys to help avoid fail-slow
fault propagation is to encourage programmers to not wait on
any event individually but always wait on a quorum of events
when possible.
QuorumEvent also provides a better abstraction for re-

source management to help avoid the backlog issue constantly
observed with fail-slow faults [27, 29]. In the code snippet
above, calling Release() will tell DepFast to release all re-
sources related to this event after a timeout. This is particular
useful for a quorum system. It gives a deferment period for the
slower response to arrive, after which the system will forcibly
free all the resources related, e.g., the buffer in the RPC. Al-
lowing a deferment period is very useful in implementing
many protocols, because they often need to distinguish be-
tween the two cases: 1) the response is only a bit slow, or not
at all slow but just ordered after other responses, but the host
can still react to those responses which benefits the system
liveness 2) the response is too slow, and the receiver should
react differently (e.g., a failure recovery).

To see why using QuorumEvent is a better approach for
resource management, consider the following alternative:

560    2022 USENIX Annual Technical Conference USENIX Association



// Create a separate coroutine for each RPC
for (auto rpc_proxy : servers) {
Coroutine::Create([]() {
auto entries = ...;
auto rpc_event = rpc_proxy.AppendEntries(entries);
rpc_event.Wait();
Process(rpc_event.Result());

})
}

This alternative approach is both synchronous in program-
ming style and avoids sequentially waiting on each RPC call.
Actually, such a-coroutine-per-task approach is very popu-
lar in modern practices, especially in writing services with
Go-lang [22]. However, in our experience this may cause
problems under fail-slow behavior. If the target of the RPC
is slow and cannot respond in time, the coroutine will hang
in the system, waiting for the response. With new requests
coming in, the hanging coroutines will accumulate, eventually
exhausting system resources, as each coroutine consumes at
least a memory space for its stack.

3.1.3 Other event types

In general, DepFast provides two types of events: basic events
and compound events. Basic events are waiting on a task to
finish, such as an RPC, a disk access, or a flag to be set, etc. A
compound event is a combination of basic or other compound
events. Table 1 summarizes common event types in DepFast
and their trigger conditions.

Basic events. One common basic event is ValueEvent. This
is a holder for a value to be set. If the value is set to match the
target value, the event will be triggered. We find this event
abstraction very useful because we often find statements in
algorithms written like “wait for X to become Y.” For example,
in Copilot [47], to decide the execution order of a command,
the system needs to wait until the status of a selected group of
commands to become “committed”. Traditionally, this could
be hard to implement as it would involve complex callbacks
or thread synchronization. With DepFast, statements of this
type can be directly translated to one line of code.

Another basic event type is IOEvent. We use it to wrap all
synchronous I/O operations, mainly disk-related operations.
An IOEvent corresponds to a task executed in an I/O thread.
For example, the program initiates a disk write through Dep-
Fast’s interface, the actual disk operations involving fwrite
and fsync will be executed in the I/O thread. The program
then waits on a DiskEvent returned by DepFast. When the
disk operation finishes, the I/O thread will notify the sched-
uler that the event is ready. The synchronization between I/O
threads and scheduler is the only part in a DepFast program
that has multi-thread synchronization. We believe that this
small footprint of multi-thread synchronization can minimize
the possible fail-slow issues caused by multi-threading.

Compound events. For compound events, an example is
QuorumEvent (§3.1.2). It takes many events (e.g., RPCEvent)
as its subevents, and wait for at least a defined quorum of

Event Trigger Condition

ValueEvent If the value is set and matches the target (it sup-
ports customized comparators).

DiskEvent If the disk access operation (e.g., fread, fwrite,
and fsync) is finished.

RpcEvent If the RPC call has returned.
QuorumEvent If a quorum has reached (typically used together

with RpcEvent).
AndEvent If all subevents have been triggered.
OrEvent If any subevent is triggered.

Table 1: The built-in events in DepFast

them to be triggered. Other compound events in DepFast
includes AndEvent and OrEvent. As the name suggests, an
AndEvent is triggered when all of its subevents are triggered;
an OrEvent is triggered as soon as one of its subevents is
triggered. Note that events can be nested: for instance, an
AndEvent can contain many QuorumEvents as its subevents.

Nesting events can express complex waiting conditions.
For example, one can use an OrEvent to combine these 3
events: 1) a QuorumEvent that waits for a majority of okays.
2) A QuorumEvent that waits for a minority-plus-one rejects.
3) A TimeoutEvent. This compound event can be used to
effectively catch conditions in classic consensus protocols. In
fact, as we find that the abstraction is very commonly used,
we have merged these three conditions into QuorumEvent so
it has three outcomes: Ready(), Fail(), Timeout(),

3.1.4 A showcase of DepFast’s expressiveness

DepFast can effectively express many complex behaviors of
quorum systems, organize the main control flow in a clean
way, and process the complex state transitions automatically
in the background. We demonstrate the expressiveness of
DepFast using the code snippet of our Copilot implementa-
tion built with DepFast in Figure 1. Copilot is one of the
protocols that leverages a “fast-path quorum” [40, 45, 57]. In
these protocols, after broadcasting a round of (FastAccept)
messages, there are at least three concurrent conditions to
decide how the system proceeds: 1) to a fast path if receiving
a super-majority of acknowledgments with identical specu-
lative information, 2) to a slow path if receiving a majority
of acknowledgments, and 3) to failure recovery if neither the
above is possible (e.g., when receiving a majority of rejects,
or not enough messages after a timeout). Figures 1(a) and (b)
show the code and control flow chart of Copilot built on top of
DepFast. As demonstrated, the code implements the protocol
in a clean manner. What DepFast handles in the background
is shown in Figure 1(c). Upon every event (message arrival
and timeout), DepFast processes the subtle state transitions
and drives the main control flow forward to the proper next
state. Without DepFast, one needs to carefully implement all
state transitions and error handling manually, a complex and
error-prone process. With DepFast, one can build the system
cleanly, with code easy to follow.

USENIX Association 2022 USENIX Annual Technical Conference    561



1 BcastFastAccept(...);

2 QuorumEvent fastpath = ...;
3 QuorumEvent slowpath = ...;
4 fastpath.SetTimeout(FASTPATH_TIMEOUT);
5 slowpath.SetTimeout(SLOWPATH_TIMEOUT);

6 fastpath.Wait();

7 if (fastpath.Ready()) {
8 ... // process fast path

9 } else if (fastpath.Fail() || 
10 fastpath.Timeout()) {

11 slowpath.Wait();

12 if (slowpath.Ready()) {
13 ... // proceed slow path
14 } else {
15 ... // retry & error handling
16 }
17 }

BcastFast
Accept()

fastpath.
Wait()

slowpath.
Wait()

// process 
fast path

// process 
slow path

// retry 
& error 
handling

On reply of 
FastAccept

On timeout of 
the fast path

On timeout of 
the slow path

If this 
quorum is 

expired

If still 
wait for this 

fast path

If still 
wait for this 
slow path

If fast 
accepted? 

OK_cnt ++

If wait on 
fast path and 

OK_cnt>=Q_f

Rej_cnt ++

If wait on 
fast path and 

OK_cnt>N-Q_f

If wait on 
slow path and 

OK_cnt>=
Q_s

If wait on 
slow path and 

OK_cnt>
N-Q_s

(a) Copilot code written using DepFast (b) Control flow of DepFast-based code (c) Events and state transitions handled by DepFast

1:

6:

8: 11:

13:

15:

Clean RPC 
related 

resource

Figure 1: Expressiveness of DepFast demonstrated by DepFast-based Copilot implementation: (a) code, (b) control flow, and (c)
events and state transitions. The code logic is explained in Figure 3.

3.2 DepFast internals
3.2.1 Architecture

Figure 2 shows the architecture of DepFast. A DepFast pro-
cess has two major types of threads: worker threads and sys-
tem threads. The former run user code and the latter run
background activities.

All user-defined tasks run in worker threads as stackful
coroutines; we use Boost::coroutine2 [13] as a building block.
A worker thread runs an epoll [6] (or kqueue [10] for BSD-
based systems) loop that wakes up on network interrupts or
timeouts. The system has a built-in high-performance RPC
module that uses the epoll for incoming and outgoing mes-
sages similar to other high-performance networking library
like libev [11]. The RPC module provides automatic client
code and server handler header generation from an RPC dec-
laration file (like gRPC [9]). The RPC works asynchronously
and provides synchronous event binding (RpcEvent).

Having the RPC working asynchronously allows us to
avoid launching a separate coroutine for each RPC (§3.1.2).
Take the QuorumEvent for example. The system only has
one global epoll loop that receives replies for all RPCs.
Once the system receives a reply, it is matched to the
belonged QuorumEvent, and a counter is updated in that
QuorumEvent. Once that counter reaches the quorum num-
ber, the QuorumEvent is ready, and then the system resumes
the coroutine waiting on it. There is no coroutine creation
during handing a message that might contribute to a quorum.

In the same worker thread runs the scheduler functions. The
scheduler is in charge of managing user coroutines. All corou-
tine lifetime related functions, including coroutine creation,
deletion, pause, and resume, are provided by the scheduler.
The scheduler performs a check at each epoll wakeup. It
checks whether the event a coroutine is waiting on is triggered

System ThreadWorker Thread

A DepFast Process

Worker Thread
Worker Thread

System Thread
System Thread

Hardware & OS

epoll/kqueue loop

SchedulerRPC

User-defined coroutines

Res. monitoring 
(CPU, mem, 

network, disk)

Fail-slow analysis

Blocking calls (IO)

Figure 2: The architecture of DepFast

(or timed out), and then resume the paused coroutine.
While the worker threads handle most of the system func-

tions on the critical path, the system threads deal with the
additional features of the framework. Among these, a signifi-
cant function is to support blocking calls. Examples include
disk flush calls (fsync) and support for third-party libraries.
DepFast supports these by wrapping them in system threads.
Other features that run in system threads include the resources
usage monitoring (CPU, memory, network, disk) and fail-slow
analysis, which we will discuss later.

3.2.2 Lazy and cooperative scheduling

The base class of an Event is implemented as follows:
class Event {
// timeout defines the maximum duration of waiting
// on the event. -1 means waiting forever.
void Wait(int timeout = -1) {
if (IsReady()) return;
if (timeout >= 0) {
sched_s.sorted_timeouts.insert(now()+timeout);

}
// sched_s is a thread_local static variable
sched_s.yield_current_coroutine(this);

}

562    2022 USENIX Annual Technical Conference USENIX Association



void Test() {
if (IsReady()) {
// the scheduler will put the suspended coroutine
// back to the ready_coroutine queue.
sched_s.notify_ready(this);

}
}
// To implement by specific event type to define when
// this event is ready to resume suspended coroutine.
virtual bool IsReady();

}

The coroutine management operates in a lazy and cooper-
ative approach. It does not preemptively suspend or resume
a coroutine. When a coroutine is running, it fully occupies
the worker thread. A key structure in the scheduler is a queue
that records pending events and the corresponding suspended
coroutines. When a coroutine runs, it may change the status of
other events (e.g., changing the value of ValueEvent). When
this happens, the scheduler will not yield the current running
coroutine and switch to the resumable coroutine immediately,
but mark the event ready and put it in a ready queue. Only
when the running coroutine calls Wait on an event, the sched-
uler is triggered to do scheduling work.

The scheduler will first check if the event is ready (i.e., no
wait is necessary). If so, the Wait call returns directly without
yielding out the coroutine; the caller coroutine continues run-
ning. If not, the scheduler will put a reference of the event and
the caller into a pending queue, and then looks for the next
coroutine to run. The scheduler first checks the queue of ready
events and resumes them one at a time. Note that the queue
of ready events may grow during this process, as the resumed
coroutine may turn more events ready. After the ready queue
is empty, the scheduler searches the pending queue for events
that are timed out, and resumes the suspended coroutines cor-
respondingly. To make the search faster, the pending queue is
sorted based on the timeout timestamps.

Reversed backlog. In our development of DepFast, we en-
countered an interesting issue termed “reversed backlog.”
When a system has a slow node, RPCs to this slow node will
be delayed. However, the delays are not necessarily uniform
over time. The responses often arrive in a burst pattern—the
RPC sender will not hear back from the slow node for a while,
and then suddenly receive many responses from it. In our
early implementation, the epoll loop would process every-
thing available from a connection before moving on to the
next. This caused the system to occasionally hang on process-
ing the outdated RPC responses. To deal with this issue, the
system is improved to process data from connections with a
round-robin approach; it will pause processing a connection
after reaching a threshold to avoid starving other connections.

3.2.3 Concurrency and multi-threading

Through the coroutine model, DepFast allows multi-task con-
currency inside a single worker thread. Similar to many other
asynchronous event or coroutine frameworks, DepFast encour-
ages programmers to exploit concurrency in a single worker

thread before moving to multi-threading. The advantage of
running tasks in a single thread is to avoid thread-safety issues.
To DepFast, an extra benefit is to eliminate the possibility of
fail-slow faults caused by thread locks, a known suspect of
performance issues. In reality, running tasks concurrently with
a single thread can give high enough performance in most
cases, as shown in our evaluation (see §6.2 and §6.3).

Moving to multiple threads, to write thread-safe code the
users need to either shard the system into different threads
and regulate inter-thread communication, or write memory-
sharing code and use mutexes for mutual exclusion. DepFast
encourages the former as it minimizes the chances of perfor-
mance issues caused by waiting on mutexes.

4 Discussion

We discuss the software engineering benefits of using DepFast
to build quorum systems. We exemplify the challenges in
implementing complex quorum conditions and discuss how
DepFast can address the challenges. As an concrete example,
the following code snippet processing a fast path is taken (and
simplified) from the EPaxos implementation [3], a popular
academic prototype of advanced consensus protocols.
func handlePreAcceptReply(reply) {
inst := ... // find consensus instance
... // return if this is a delayed request
if reply.OK {
inst.preAcceptOKs++

} else {
inst.preAcceptRejects++
if inst.preAcceptRejects >= r.N/2 {
// TODO

}
}
fastpathSatisfied = ... // test fastpath conditions
if inst.preAcceptOKs >= N/2 && fastpathSatisfied {
// proceed to fast path

} else if inst.preAcceptOKs >= N/2 {
// proceed to slow path

}
//TODO: take the slow path if msgs are slow to arrive

}

We can see two TODOs in the code. The first TODO is on count-
ing rejects. If a node receives too many rejects to proceed, it
should enter error handling to retry this request. In DepFast,
this maps to the branch where slowpath.Fail() happens.
The second TODO is when messages are slow to arrive, this
case maps to DepFast’s branch where fastpath.Timeout()
and/or slowpath.Timeout() happen.

Implementing the two TODOs would require heavy revisions
on the code logic and change the control flow, as it cannot
be done by naturally replacing the TODO comments with two
function calls. In contrast, with DepFast, one can implement
both TODOs in place. For the first TODO, a retry function can
be synchronously called in the reject branch. For the second
TODO, if messages are slow to arrive, a function calling the
slow path can be put right in the timeout branch.

In fact, TODOs are not the only problem in the code. The
fast-path condition is also simplified and suboptimal. The

USENIX Association 2022 USENIX Annual Technical Conference    563



condition is important, because it decides whether to enter a
fast path or a slow path. In the code, once it sees a majority of
OK replies, it makes the decision based on the current calcula-
tion of the conditions (fastpathSatisifed). However, this
decision could be suboptimal, because the conditions could
change if more replies arrive. As a consequence, a node loses
the opportunity to enter a fast path if it waits a little longer,
but directly enters the slow path. The simplification, despite
being suboptimal, is understandable, because it is very hard
to express the conditions accurately in the asynchronous code
style. With DepFast, this can be expressed easily with the
timeout scheme on a QuorumEvent.

Lastly, the conditions assume that the fast- and slow-path
quorums have equal size, which indicates that it only works
for at most 5 replicas. If the replication group size is bigger [4],
the code needs heavy revisions. Simply replacing N/2 in the
if branch with a larger super-majority value is incorrect: the
code will always choose a slow path because the else if
branch will always be taken.

Although this discussion is based on EPaxos, we find that
the conditions are error-prone in other quorum system im-
plementations, especially regarding timeout handling. For
example, CockroachDB had a bug caused by having no time-
out on lease acquisition [5], which may lead to system stalling.
In DepFast, because timeout can be easily added to an event,
such problems can be prevented. In fact, we often use this
practice for debugging: for cases that cause the system to stall,
we add a global default timeout to all events, and then we can
easily find the stall point of the problematic code.

5 Building Quorum Systems with DepFast

To demonstrate the usefulness and effectiveness of DepFast,
we use DepFast to build two quorum-based systems: Raft
[48] and Copilot [47], named as DepFast-Raft and DepFast-
Copilot respectively. In this section, we discuss our experi-
ences in using DepFast to build these systems, with a focus
on how to “translate” the protocol algorithms into system
implementations effectively.

5.1 DepFast-Raft

Raft’s protocol largely consists of two parts: 1) leader election:
a candidate broadcasts RequestVote RPCs to all the other
servers; it becomes a leader once votes from a majority of
servers are received. and 2) data replication: for each follower,
the leader keeps a mark (nextIndex) of the next log position
to send to that follower; if the follower is lagging (due to out-
of-order messages, network issues, etc.), the leader repeatedly
sends the log entries needed by the follower.

Leader election can be effectively expressed with DepFast’s
QuorumEvent design: a server broadcasts requests to other
servers and can proceed after it receives a quorum of acknowl-
edgments. Data replication, though described in a different

style in the Raft paper [48]— from a follower’s view, not a
quorum’s view—can also be expressed to the same pattern
above. Our implementation uses one coroutine to initiate the
broadcast of the AppendEntries requests and wait for a quo-
rum of responses. As DepFast handles most of the complexity
in the network, disk, and event processing, a Master student
was able to translate Raft’s pseudocode directly into a stable
C++ implementation (used in §6.2) in ten days. The imple-
mentation has ∼1,200 lines of code. As a rough comparison,
the Raft logic in etcd [8] is implemented in ∼1,600 lines of
code in Go; braft [2], an open-source Raft implementation in
C++, has ∼3,500 lines of code.

An interesting case we found in implementing DepFast-
Raft relates to the way Raft describes its protocol. In the de-
sign of Raft’s data replication protocol (its AppendEntries
RPC), if the follower is lagging, the leader repeatedly sends
log entries that are missing on the follower. This design is
optimized for lagging servers and for new servers trying to
catch. However, the way the algorithm is described may nat-
urally lead to an implementation with separate threads syn-
chronizing with different followers. A natural implementation
could split the code responsible for committing a request into
different functions in different threads. This style of imple-
mentation works well when there are no failures, but could
take more time to debug when there are unexpected fail-slow
behaviors, because it requires more work to trace the progress
of each request. Our implementation, instead, uses a single
coroutine to initiate the broadcast of the AppendEntries
requests and wait for a quorum of responses. In case of an
occasional reject due to the follower being lagging, the leader
will launch a background coroutine, which is off the criti-
cal path of client requests, to synchronize with the lagging
follower with additional AppendEntries.

5.2 DepFast-Copilot

Copilot is a consensus protocol that tolerates any single fail-
slow node including the leader. It has two leaders, a pilot and
a copilot, each is the backup of the other in case one fails.
Copilot’s complexities mainly rise from following designs:

• Commands ordering. Each leader maintains two separate
logs, one for itself and one as the backup of the other leader.
Copilot’s ordering protocol coordinates between pilot and
copilot to determine the dependencies of log entries, which
specifies the prefix of the other log that should be executed
before a given log entry.

• Commands execution. Unlike Raft that uses an index to or-
der command execution, Copilot’s execution order is more
complex: (1) Copilot has a protocol that calculates the right
order of a command based on its dependencies. The calcula-
tion process is restricted by the status of these dependencies,
e.g., the execution must happen after all the dependencies
satisfy a rule; (2) The execution of the command is also con-
strained by the dependencies, i.e., a command’s execution

564    2022 USENIX Annual Technical Conference USENIX Association



It then proposes command and 
initial dependency for this entry to 
the other replicas by sending them 
FastAccept messages.

A pilot tries to gather a fast 
quorum of FastAcceptOk replies.

If a pilot gathers a fast quorum, 
..., it is safe for the pilot to commit 
this entry on the fast path and 
continue to execution.

Otherwise, the pilot waits till it 
receives at least f+1 FastAcceptOks
and FastAcceptReplys and then 
continues to the Accept phase.

(a) Algorithm Description (b) DepFast-Copilot (c) Original Copilot Implementation

• The original implementation needs to manually manage control flow, e.g., tracking if 
the reply is outdated (L8   ). DepFast automatically handles this.

• DepFast handles timeout elegantly (L10   ). The original code must count timeout
after receiving a reply, or it needs another callback to explicitly handle timeout.

• DepFast can effectively express complex conditions more naturally. It first waits for
the fast path (L7   ), then the slow path (L9   ). The original code does it in a reversed
way, first waits for the regular quorum (L16   ), then the fast quorum (L21   ).

1 BcastFastAccept(...);
2 QuorumEvent fastpath = ...;
3 QuorumEvent slowpath = ...;
4 fastpath.SetTimeout(FASTPATH_TIMEOUT);
5 slowpath.SetTimeout(SLOWPATH_TIMEOUT);

6 fastpath.Wait();

7 if (fastpath.Ready()) {
8 ... // process fast path
9 } else if (fastpath.Fail() || 

10 fastpath.Timeout()) {
11 slowpath.Wait();
12 if (slowpath.Ready()) {
13 ... // proceed slow path
14 } else {
15 ... // retry or error handling
16 }
17 }

1 func FastAccept() {
2 entry := ...
3 BcastFastAccept(entry)
4 entry.startTime = Now()
5 }
6 func OnFastAcceptReply(r *Reply) {
7 entry := logs[r.p][r.i]
8 if entry.ballot != r.ballot
9 return

11 if r.fastAcceptOK
12 entry.nOK++
13 else if r.fastAcceptReply
14 entry.nReply++
15 elapsed := Now().Since(entry.startTime)
16 if elapsed >= SLOWPATH_TIMEOUT && 
17 entry.nOK + entry.nReply < QuorumSize()
18 ... // retry or error handling
19 if entry.nOK+entry.nReply >= QuorumSize() {
20       if elapsed < FASTPATH_TIMEOUT {
21         if entry.nOK >= FastQuorumSize()
22 ... // proceed fast path
23         else if entry.nReply >N-FastQuorumSize()
24 ... // proceed slow path
25 } else {
26 ... // proceed slow path
27 } 
28   }}

Figure 3: Comparison of the Copilot implementation using DepFast and the original implementation (both are simplified)

must wait until all the predecessors are executed.
• Fast takeover. When one pilot becomes slow or fails, the

other pilot needs to take over entries in the slow pilot’s log
to prevent waiting for its commit for too long. It broad-
casts Prepare to all other replicas to collect the entries
and their status on other replicas at that position. Depend-
ing on the replies collected, Copilot distinguishes between
many different cases to choose an entry properly, including
whether there are committed entries, how many entries are
fast-accepted, how many entries are accepted, etc.

As we have discussed in Section 3.1.4, DepFast can effec-
tively express Copilot’s complex behaviors. Figure 3 shows a
comparison of the DepFast version and the original version
of Copilot. As shown, the DepFast version is closer to the
algorithm in flow, and is easier to follow.

The commands execution algorithm contains statements
like “waiting for the commit/execution of”, which is common
in other protocols that use dependency for commands order-
ing (e.g., EPaxos [45]). However, such kind of behavior is not
straightforward to express in an asynchronous programming
style. In fact, the original Copilot implementation adopts this
asynchronous programming style. It uses a separate Gorou-
tine to keep scanning through the log and breaks the loop to
start from the beginning when the above waiting condition
is not satisfied. Instead, DepFast’s Wait API captures such
behavior effectively. What we do is to represent the com-
mit/execution of a log entry as an event and call Wait if there
is a dependency on it as shown in Figure 4.

We find that the Copilot implementation using DepFast is
more concise and readable than the original asynchronous,

callback-style implementation. To give a rough, unsolicited
idea, the original implementation of the core protocol (ex-
cluding the utility code) has ∼2,500 lines of Go code [12].
DepFast-Copilot only has ∼1,600 lines of C++ code, despite
that C++ is less expressive than Go.

Anecdotally, we started a Copilot implementation without
DepFast, using an asynchronous callback style. In the process
we ran into a bug that sometimes froze the system, which was
caused by a wait condition being not triggered properly. We
find bugs of this type are very hard to debug (we spent two
weeks debugging it) because there is not a simple way to track
each wait condition. We re-implemented the wait conditions
using DepFast’s Wait API. The new implementation was
done in roughly two days and we never encountered the same
problem. Thanks to DepFast’s coroutine and event model, it
is very easy to find out which event the system is waiting on,
and print all the stack frames of the suspended coroutine.

6 Evaluation

We have shown the software engineering benefit of DepFast
is its expressiveness and programmability (§3.1.4, §4 and §5).
In evaluation, we mainly focus on answering two questions:
1) Does the expressiveness come at a cost of performance, or,
can systems implemented in DepFast achieve the same level
of performance as heavily optimized production and academic
systems? 2) Can DepFast help system implementations guar-
antee their fault tolerance? This section answers the two ques-
tions by comparing Raft and Copilot implemented in DepFast
to etcd and the original Copilot implementation. Specifically,

USENIX Association 2022 USENIX Annual Technical Conference    565



(a) Algorithm Description (b) DepFast-Copilot (c) Original Copilot Implementation

The DepFast implementation 
is almost a line-to-line 
translation to the algorithm.

1 void OnCommit(pilot p, slot i) {
2 // Commit entry
3 auto entry = logs[p][i];
4 entry.status = COMMITTED;
5 ValueEvent pred_execed = 

logs[p][i-1].exec_event;

6 ValueEvent dep_execed =
logs[!p][entry.dep].exec_event;

7 ValueEvent cycle_dep_satisfied(
isPilot(p) && inCycle(p, i));

8 AndEvent exec_ready(pred_execed,
9 OrEvent(dep_execed,

cycle_dep_satisfied));
10 exec_ready.Wait();
11 executeCmd(entry);
12 entry.exec_event.Set(true);
13 }

1 func run() {
2 go executeCommands()
3 ... // command ordering Goroutine
4 }
5 func executeCommands() {
6 // command execution Goroutine
7 while true {
8 for i = executeUpTo[p] + 1;
9 i < latestIdx[p]; i++ {

10 entry = logs[p][i]
11 depEntry = logs[!p][entry.dep]

12 if entry.status < COMMITTED {break}

13 if depEntry.status == EXECUTED {
14 executeCmd(entry)
15 continue
16 }
17 if isPilot(p) && inCycle(p, i) {
18 executeCmd(entry)
19 continue
20 }
21 break
22 }
23 p = !p
24 }
25 }

The original implementation is an indirect realization of the algorithm. The 
conditions (e.g., for      ) are complex, with sophisticated control flows.

The original implementation keeps scanning through the pending. Achieving 
high performance is nontrivial, but needs many extra efforts, e.g., where to 
start the scan, how to avoid redundant scans, how to pause/resume. 

Specifically, a replica can execute 
a command in entry P.i with
dependency P’.j if:

P.i is committed, and.
It has executed P.(i-1), and then 
one of the following two 
conditions holds:
It has executed P’.j, or
P is the pilot log, and
cycles exist between P.i and 
all P’ log entries ≤ P’j.

Figure 4: Comparison of the Copilot implementations using DepFast and the original impl. (both are simplified), cont’d

for fault tolerance, we evaluate DepFast-based systems on
fail-slow fault tolerance using fail-slow faults [27, 31].

6.1 Experiment Methodology

We ran all the experiments on Azure Cloud. For each system,
we evaluated it on a 3- and 5-replica cluster: each node runs
on a Standard_D4s_v3 virtual machine (VM), with 4 vCPUs,
16GB RAM, and 64GB SSD. The server process is bind to
one CPU core for all the systems evaluated. We ran the clients
in a Standard_D16s_v3 VM, with 16 vCPUs and 64GB RAM.

Workloads and metrics. For all the evaluated systems, in-
cluding our Raft and Copilot implementations, and the ref-
erence implementations (etcd [8] for Raft and the original
Copilot implementation [12]), we use a single K-V, 100%
write workload. We measure performance metrics, including
throughput and latency distribution. Each trial runs for 120s
and is repeated for 3 times. We display the results with the
median throughput of the 3 trials, with the error bars showing
the deviation.

Configurations. We use quorum reads and writes in our eval-
uation. We use the load that reaches the max CPU utilization
on leader for the fault-injection experiments, marked with red
stars in Figures 5(a) and 6(a). For DepFast-Raft, the server
replies to the client after the log entry has been persisted on
disk. For DepFast-Copilot, we set the fast-takeover timeout
to 10ms and the command batching timeout to 1ms (same as
the original Copilot implementation).

Fault Injection. We build a fail-slow fault injection testing
tool to inject different types of fail-slow faults on system
components (including CPU, memory, SSD, and network in-

terface) into the target systems and measure their impact in
terms of the end-to-end performance. The fail-slow faults
are simulated based on prior studies on fail-slow faults and
represent common fail-slow modes [27,31]. Table 2 describes
those faults and the corresponding injection methods. For
DepFast-Copilot, we do not inject faults on the disk, because
the implementation is memory-based.

We inject fail-slow faults in the way that is expected to be
tolerated without losing throughput by the consensus proto-
cols of the target quorum systems. For DepFast-Raft, we inject
faults to a minority of followers [55]. For DepFast-Copilot,
we inject faults to a minority of nodes that can include one of
the leaders [47].

6.2 DepFast-Raft

Figure 5(a) shows the latency and throughput of DepFast-Raft
and etcd with both 3- and 5-replica setups. When binding
the server process to one core, our DepFast-Raft achieves a
maximum throughput of over 20K and 18K RPS (requests
per second) with 3- and 5-replica setups, respectively; etcd
has a peak throughput of 8K RPS. Claiming DepFast-Raft
is better than etcd would be perhaps unfair as etcd is a pro-
duction system with many features. However, this test at least
proves that DepFast can be used to implement systems of
production-level performance, with a class-project level of
building difficulty.

Figures 5(b)–(d) show the fail-slow fault tolerance of
DepFast-Raft in terms of throughput, median and P99 tail
latency (in CDF) in both 3- and 5-replica setups. For the 3-
replica setup, we inject fail-slow faults to one follower; for the
5-replica setup, we inject fail-slow faults to two followers (the

566    2022 USENIX Annual Technical Conference USENIX Association



Fail-slow Type Injection Method Follower Leader

Slow CPU Use cgroup to limit DB process to utilize only p of CPU period p=5% p=50%
CPU Contention Custom program (to consume cpu) assigned t× cpu share as the DB process t=15 t=1
Slow Disk Use cgroup to limit the disk I/O bandwidth available for DB to bw bw=128KB/s N/A
Disk Contention Use program(dd) to do write operation on disk while DB is running no parameter N/A
Slow Network Add a delay of d to the network interface using tc d=40ms d=40ms
Memory contention Use cgroup to set the maximum amount of user memory for DB process to s s=50MB s=250MB

Table 2: Fail-slow faults used in the measurement study and our evaluation

0 5000 10000 15000 20000
Throughput (op/s)

0

20

40

60

M
ed

 la
te

nc
y 

(m
s)

(a) Latency-Throughput

DepFast-Raft 3-rep
DepFast-Raft 5-rep

etcd 3-rep
etcd 5-rep

3 Nodes 5 Nodes
0

5000

10000

15000

Th
ro

ug
hp

ut
 (o

p/
s)

(b) Throughput with slowness

0 10 20 30 40
Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D

F

(c) CDF (3 Nodes)

0 10 20 30 40
Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D

F

(d) CDF (5 Nodes)

No Slowness CPU Slowness CPU Contention Disk Slowness Disk Contention Network Slowness Memory Contention

Figure 5: Performance of DepFast-Raft with various fail-slow faults on follower(s) in the 3- and 5-replica deployments.

minority). We choose to only inject faults on the followers,
because slow followers in Raft should not affect performance,
while the slow leaders do.

We can see that DepFast-Raft consistently tolerates the in-
jected fail-slow faults. The throughput differences are within
6% and 10% for 3- and 5-replica setup, respectively. The
differences in both median and P99 latency are within 15%
range. The results are comparable to etcd under the same test
(see Figure 8, §B).

We attribute DepFast-Raft’s fault tolerance to the use of
the DepFast framework to manage potential fail-slow points
with the event interface. Specifically, we wrap every set of
RPCs with QuorumEvent to avoid blocking on a single slow
follower, preventing slowness propagation. Besides, blocking
operations (e.g., disk I/O) are wrapped and put on a separate
thread to avoid blocking the main worker thread.

Note that fail-slow followers inevitably have an impact,
as the system is more susceptible to network and disk I/O
spikes. In a 3-replica quorum, when one follower fails slow,
the quorum reads and writes can be affected by the spikes of
the other follower, affecting the tail latency.

6.3 DepFast-Copilot

Figure 6(a) shows the latency and throughput of DepFast-
Copilot and the original Copilot implementation [12] in a
3-replica setup. (the 5-replica results can be found in B). The
peak throughput of DepFast-Copilot is 33K RPS with a 3-
replica setup. The performance is comparable to the original
Copilot, which is just 9.3% higher at 36K RPS. The through-
put is much higher than Raft, mainly because there is an op-
timization in Copilot called ping-pong batching that batches
many requests into one command.

We inject fail-slow faults to both a leader and a follower, as
Copilot is designed to tolerate any one of the fail-slow nodes.

Fail-slow follower. Figure 6(b) and 6(c) show the throughput
and latency CDF of DepFast-Copilot with a fail-slow follower.
Similar to the results of DepFast-Raft (§6.2), the faults do not
have a significant impact on system-wide performance. The
differences in throughput are with 10%, and the differences
in median latency and P99 latency are within 9% and 30%,
respectively. We observe that DepFast-Copilot’s tail latency is
more susceptible to fail-slow faults than that of DepFast-Raft.
Apart from the spikes discussed in §6.2, we attribute that to
Copilot’s property of having two leaders. With a maximum
number of minority followers being slow, a reply from another
leader must be obtained to form a quorum, while with fewer
slow followers a leader can form a quorum just with replies
from non-slow followers. However, the load on a leader is
much higher than a follower, causing the tail latency of replies
from a leader node to be higher than replies from a follower
node. That in turn results in longer tail latency to form a
quorum, rendering the tail latency higher.

Fail-slow leader. Figure 6(b) and 6(d) shows the throughput
and latency CDF of DepFast-Copilot with a fail-slow leader
in a 3-replica setup. With Copilot’s multiple-leader design,
there is no significant impact on throughput (the differences
are within 25%) and the increase in median and P99 latency
are within a reasonable range under the existence of one
slow leader. For DepFast-Copilot, the CPU contention has the
most significant impact on tail latency, in which case the P99
latency increased by 10ms.

The original Copilot implementation. We did the same fault-
injection experiments on the original Copilot implementation
(results are in Figure 9, §B). We can successfully duplicate the
results in its paper that Copilot can tolerate a node slowdown
in a slow network simulation. In some other cases (CPU,
memory), we find that the original Copilot implementation
cannot tolerate the failures as well as DepFast-Copilot. On one

USENIX Association 2022 USENIX Annual Technical Conference    567



0 10000 20000 30000
Throughput (op/s)

0

1

2

M
ed

 la
te

nc
y 

(m
s)

(a) Latency-Throughput

DepFast-Copilot 3-rep
Copilot 3-rep

follower leader
0

10000

20000

30000

Th
ro

ug
hp

ut
 (o

p/
s)

(b) Throughput with slowness

0 1 2 3 4
Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D

F

(c) CDF (follower slow)

0 2 4 6 8 10
Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D

F

(d) CDF (leader slow)

No Slowness CPU Slowness CPU Contention Network Slowness Memory Contention

Figure 6: Performance of DepFast-Copilot with various fail-slow faults on follower(s) and leader in the 3-replica deployment.

hand, this is justifiable as the original Copilot implementation
is an academic prototype that focuses on verifying the design,
rather than the implementation problems. On the other hand,
it proves that fault tolerance is not only a design problem but
also an implementation problem. It further proves the value
of having another layer like DepFast in the system.

7 Related Work
Synchronous versus asynchronous programming. The
discussion on synchronous and asynchronous programming
styles started decades ago [41]. As common wisdom, syn-
chronous programming (using threads instead of callbacks) is
easy to follow, but tends to have unstable performance due to
the overhead of OS threads [15,25,26,37,42,43,52,53]. Prior
work on synchronous programming focuses on reducing its
overhead using cooperative task scheduling with lightweight
user-space threads (e.g., coroutines or fibres) [15, 43, 52, 53].
Today, coroutines and cooperative task scheduling have been
widely accepted, with built-in support in modern languages
such as Go and C++. Our work follows the same principles,
and extends the literature by considering distributed systems
code (prior work focuses on I/O operations on a single node).
An orthogonal direction is to improve the understandability of
callback-style code, making it synchronous code alike [25,37].
The approach needs compiler support and extra tooling.

Distributed programming patterns and frameworks. The
actor model is a common model to construct distributed pro-
grams, e.g., Erlang/OTP [7] and Scala/Akka [1], Orleans [21]
and ActOp [46]. Our target is not actor systems, as we focus
on the imperative coding style with RPC for communication
that is still a common practice in building C/C++ system soft-
ware. But our results can be complimentary to the actor world,
because the actor systems are mostly asynchronous, and may
be subject to the same callback hell problem [56].

Rex [32], Eve [35], and Crane [24] target fault tolerance at
the OS process level. Ambrosia [30] extends the actor model
with built-in fault tolerance support. These frameworks are
potential users of DepFast—they can use DepFast to build
fault-tolerance mechanisms and services.

A few frameworks help programmers to match their im-
plementations to the specifications rigorously and thoroughly.

Mace [36] translates specification into a C++ implementation
and provides a model checker to verify correctness. Rules-
based programming [50] promotes programming in an event-
based state machine, which helps specify concurrent and non-
deterministic conditions. Verdi [54] and Ironfleet [33] help
build formally verified systems. DepFast has a different goal:
making distributed system code easier to write, maintain, and
debug. It also addresses different issues, e.g., fail-slow fault
propagation and backlogs (reported in formally verified quo-
rum implementations [29]). DepFast also imposes much fewer
restrictions on how distributed systems are programmed.

8 Concluding Remarks

We have presented DepFast, a programming framework to
build quorum systems. Our experience of using DepFast is
encouraging. DepFast helped us to effectively develop high-
performance, fault-tolerant quorum systems with complex
consensus protocols. With DepFast, we can write quorum
systems code that is easy to follow and maintain. Our future
work includes using DepFast to build different types of dis-
tributed systems, such as sharded datastores with distributed
transaction protocols which also have complicated waiting
conditions. We will investigate adopting DepFast’s abstrac-
tion with other frameworks and interfaces, e.g., C++ 20’s
coroutine interface, and the actor model in Erlang/Scala.

Acknowledgments

We would like to express our deep appreciation to our shep-
herd, Jon Howell, who was very responsive during our inter-
actions with him and provided us with invaluable suggestions,
which have fundamentally improved this paper and strength-
ened our work. We also thank the anonymous reviewers for
their feedback. We thank the authors of Copilot, especially
Khiem Ngo, for the discussions and reviews. We thank Dan
Plyukhin for discussions that helped us understand the actor
programming model deeper. We thank our industry collabo-
rations for the discussions, especially Ye Ji (CockroachDB)
and Siyuan Zhou (MongoDB). This work was supported in
part by NSF CNS-2130590 and CNS-2130560, and Microsoft
Azure credits.

568    2022 USENIX Annual Technical Conference USENIX Association



References

[1] Akka. https://www.akka.io/.

[2] braft. https://github.com/baidu/braft.

[3] CMU-efficient/EPaxos, func handlePreAcceptReply.
https://github.com/efficient/epaxos/blob/
791b115669fca472d3136f6a2eda46c00b3f8251/src/
epaxos/epaxos.go#L1000.

[4] CMU-efficient/EPaxos, issue 10. https://github.com/
efficient/epaxos/issues/10.

[5] CockroachDB/cockroach pull request 81136. https://
github.com/cockroachdb/cockroach/pull/81136.

[6] epoll(7) — linux manual page. https://man7.org/linux/
man-pages/man7/epoll.7.html.

[7] Erlang/OTP. https://www.erlang.com/.

[8] etcd. https://etcd.io/.

[9] gRPC. https://grpc.io/.

[10] kqueue(2) - openbsd manual pages. https://man.openbsd.
org/kqueue.2.

[11] libev. http://software.schmorp.de/pkg/libev.html.

[12] Princeton-sns/Copilot. https://github.com/
princeton-sns/copilot/blob/main/src/copilot/
copilot.go.

[13] The Boost Library: Coroutine2. https://github.com/
boostorg/coroutine2.

[14] The Go Programming Language. https://go.dev.

[15] ADYA, A., HOWELL, J., THEIMER, M., BOLOSKY, W. J.,
AND DOUCEUR, J. R. Cooperative Task Management with-
out Manual Stack Management. In Proceedings of the 2019
USENIX Annual Technical Conference (USENIX ATC’02)
(June 2002).

[16] ARZANI, B., CIRACI, S., CHAMON, L., ZHU, Y., LIU, H. H.,
PADHYE, J., LOO, B. T., AND OUTHRED, G. 007: Democrat-
ically Finding the Cause of Packet Drops. In Proceedings of
the 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’18) (April 2018).

[17] BALAKRISHNAN, M., FLINN, J., SHEN, C., DHARAMSHI,
M., JAFRI, A., SHI, X., GHOSH, S., HASSAN, H., SAGAR,
A., SHI, R., ET AL. Virtual Consensus in Delos. In Proceed-
ings of the 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’20) (October 2020).

[18] BOLOSKY, W. J., DOUCEUR, J. R., ELY, D., AND THEIMER,
M. Feasibility of a Serverless Distributed File System De-
ployed on an Existing Set of Desktop PCs. In Proceedings
of the 2000 ACM International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS’00) (June
2000).

[19] BOUCHER, S., KALIA, A., ANDERSEN, D. G., AND KAMIN-
SKY, M. Lightweight Preemptible Functions. In Proceedings
of the 2019 USENIX Annual Technical Conference (USENIX
ATC’20) (July 2020).

[20] BURROWS, M. The Chubby lock service for loosely-coupled
distributed systems. In Proceedings of the 7th USENIX Con-
ference on Operating Systems Design and Implementation
(OSDI’06) (Seattle, WA, USA, November 2006).

[21] BYKOV, S., GELLER, A., KLIOT, G., LARUS, J. R., PANDYA,
R., AND THELIN, J. Orleans: Cloud Computing for Every-
one. In Proceedings of the 2nd ACM Symposium on Cloud
Computing (SOCC’11) (October 2011).

[22] CHANG, S. S. Leveraging Go Concurrency. Go Web Program-
ming, Chapter 9, Manning Publications Co. (July 2016).

[23] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST,
C., FURMAN, J. J., GHEMAWAT, S., GUBAREV, A., HEISER,
C., HOCHSCHILD, P., HSIEH, W., KANTHAK, S., KOGAN,
E., LI, H., LLOYD, A., MELNIK, S., MWAURA, D., NAGLE,
D., QUINLAN, S., RAO, R., ROLIG, L., SAITO, Y., SZYMA-
NIAK, M., TAYLOR, C., WANG, R., AND WOODFORD, D.
Spanner: Google’s Globally-Distributed Database. In Proceed-
ings of the 10th USENIX Conference on Operating Systems
Design and Implementation (OSDI’12) (Hollywood, CA, USA,
2012).

[24] CUI, H., GU, R., LIU, C., CHEN, T., AND YANG, J. Paxos
Made Transparent. In Proceedings of the 23rd ACM Sympo-
sium on Operating Systems Principles (SOSP’15) (October
2015).

[25] CUNNINGHAM, R., AND KOHLER, E. Making Events Less
Slippery with eel. In Proceedings of the 8th Workshop on Hot
Topics in Operating Systems (HotOS’05) (June 2005).

[26] DABEK, F., ZELDOVICH, N., KAASHOEK, F., MAZIERES, D.,
AND MORRIS, R. Event-driven Programming for Robust Soft-
ware. In Proceedings of the 10th workshop on ACM SIGOPS
European workshop (EW 10) (July 2002).

[27] DO, T., HAO, M., LEESATAPORNWONGSA, T., PATANA-
ANAKE, T., AND GUNAWI, H. S. Limplock: Understanding
the Impact of Limpware on Scale-out Cloud Systems. In Pro-
ceedings of the 4th ACM Symposium on Cloud Computing
(SOCC’13) (October 2013).

[28] EDWARDS, J. Coherent Reaction. Tech. Rep. MIT-CSAIL-
TR-2009-024, Computer Science and Artificial Intelligence
Laboratory, June 2009.

[29] FONSECA, P., ZHANG, K., WANG, X., AND KRISHNA-
MURTHY, A. An Empirical Study on the Correctness of For-
mally Verified Distributed Systems. In Proceedings of the 11th
ACM European Conference on Computer Systems (EuroSys’17)
(April 2017).

[30] GOLDSTEIN, J., ABDELHAMID, A., BARNETT, M., BURCK-
HARDT, S., CHANDRAMOULI, B., GEHRING, D., LEBECK,
N., MEIKLEJOHN, C., FAROOQ, U., NEWTON, R., GHOSH,
R., ZACCAI, T., ZHANG, I., GOLDSTEIN, J., ABDELHAMID,
A., BARNETT, M., CHANDRAMOULI, B., GEHRING, D.,
LEBECK, N., MEIKLEJOHN, C., MINHAS, U. F., NEW-
TON, R., PESHAWARIA, R. G., ZACCAI, T., AND ZHANG, I.
A.M.B.R.O.S.I.A: Providing Performant Virtual Resiliency for
Distributed Applications. Proceedings of the VLDB Endow-
ment 13, 5 (January 2020).

[31] GUNAWI, H. S., SUMINTO, R. O., SEARS, R., GOLLIHER,
C., SUNDARARAMAN, S., LIN, X., EMAMI, T., SHENG, W.,

USENIX Association 2022 USENIX Annual Technical Conference    569

https://www.akka.io/
https://github.com/baidu/braft
https://github.com/efficient/epaxos/blob/791b115669fca472d3136f6a2eda46c00b3f8251/src/epaxos/epaxos.go#L1000
https://github.com/efficient/epaxos/blob/791b115669fca472d3136f6a2eda46c00b3f8251/src/epaxos/epaxos.go#L1000
https://github.com/efficient/epaxos/blob/791b115669fca472d3136f6a2eda46c00b3f8251/src/epaxos/epaxos.go#L1000
https://github.com/efficient/epaxos/issues/10
https://github.com/efficient/epaxos/issues/10
https://github.com/cockroachdb/cockroach/pull/81136
https://github.com/cockroachdb/cockroach/pull/81136
https://man7.org/linux/man-pages/man7/epoll.7.html
https://man7.org/linux/man-pages/man7/epoll.7.html
https://www.erlang.com/
https://etcd.io/
https://grpc.io/
https://man.openbsd.org/kqueue.2
https://man.openbsd.org/kqueue.2
http://software.schmorp.de/pkg/libev.html
https://github.com/princeton-sns/copilot/blob/main/src/copilot/copilot.go
https://github.com/princeton-sns/copilot/blob/main/src/copilot/copilot.go
https://github.com/princeton-sns/copilot/blob/main/src/copilot/copilot.go
https://github.com/boostorg/coroutine2
https://github.com/boostorg/coroutine2
https://go.dev


BIDOKHTI, N., MCCAFFREY, C., SRINIVASAN, D., PANDA,
B., BAPTIST, A., GRIDER, G., FIELDS, P. M., HARMS, K.,
ROSS, R. B., JACOBSON, A., RICCI, R., WEBB, K., ALVARO,
P., RUNESHA, H. B., HAO, M., AND LI, H. Fail-Slow at Scale:
Evidence of Hardware Performance Faults in Large Production
Systems. In Proceedings of the 16th USENIX Conference on
File and Storage Technologies (FAST’18) (February 2018).

[32] GUO, Z., HONG, C., YANG, M., ZHOU, D., ZHOU, L., AND

ZHUANG, L. Rex: Replication at the Speed of Multi-Core. In
Proceedings of the 9th ACM European Conference in Com-
puter Systems (EuroSys’14) (April 2014).

[33] HAWBLITZEL, C., HOWELL, J., KAPRITSOS, M., LORCH,
J. R., PARNO, B., ROBERTS, M. L., SETTY, S., AND ZILL,
B. IronFleet: Proving Practical Distributed Systems Correct.
In Proceedings of the 25th ACM Symposium on Operating
Systems Principles (SOSP’15) (October 2015).

[34] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED, B.
ZooKeeper: Wait-free Coordination for Internet-scale Systems.
In Proceedings of the 2010 USENIX Conference on USENIX
Annual Technical Conference (USENIX ATC’10) (Boston, MA,
June 2010).

[35] KAPRITSOS, M., WANG, Y., QUEMA, V., CLEMENT, A.,
ALVISI, L., AND DAHLIN, M. All about Eve: Execute-Verify
Replication for Multi-Core Servers. In Proceedings of the
10th USENIX Conference on Operating Systems Design and
Implementation (OSDI’12) (October 2012).

[36] KILLIAN, C. E., ANDERSON, J. W., BRAUD, R., JHALA, R.,
AND VAHDAT, A. M. Mace: Language Support for Build-
ing Distributed Systems. In Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’07) (June 2007).

[37] KROHN, M., KOHLER, E., AND KAASHOEK, M. F. Events
Can Make Sense. In Proceedings of the 2007 USENIX Annual
Technical Conference (USENIX ATC’07) (June 2007).

[38] LAMPORT, L. The Temporal Logic of Actions. ACM Transac-
tions on Programming Languages and Systems (TOPLAS) 16,
3 (May 1994).

[39] LAMPORT, L. Paxos Made Simple. SIGACT News 32, 4
(December 2001), 18–25.

[40] LAMPORT, L. Fast Paxos. Tech. Rep. MSR-TR-2005-112,
Microsoft Research, July 2005.

[41] LAUER, H. C., AND NEEDHAM, R. M. On the Duality of Op-
erating System Structures. ACM SIGOPS Operating Systems
Review (OSR) 13, 2 (April 1979).

[42] LEE, E. A. The Problem With Threads. IEEE Computer 39, 5
(May 2006).

[43] LI, P., AND ZDANCEWIC, S. Combining Events and Threads
for Scalable Network Services Implementation and Evaluation
of Monadic, Application-Level Concurrency Primitives. In
Proceedings of the 28th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI’07)
(June 2007).

[44] LIU, B., LIU, P., LI, Y., TSAI, C.-C., DA SILVA, D., AND

HUANG, J. When Threads Meet Events: Efficient and Precise
Static Race Detection with Origins. In Proceedings of the

42nd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation (PLDI’21) (June
2021).

[45] MORARU, I., ANDERSEN, D. G., AND KAMINSKY, M. There
is More Consensus in Egalitarian Parliaments. In Proceedings
of the 23rd ACM Symposium on Operating Systems Principles
(SOSP’13) (November 2013).

[46] NEWELL, A., KLIOT, G., MENACHE, I., GOPALAN, A.,
AKIYAMA, S., AND SILBERSTEIN, M. Optimizing distributed
actor systems for dynamic interactive services. In Proceed-
ings of the 11th European Conference on Computer Systems
(EuroSys’16) (2016).

[47] NGO, K., SEN, S., AND LLOYD, W. Tolerating Slowdowns
in Replicated State Machines using Copilots. In Proceedings
of the 14th USENIX Conference on Operating Systems Design
and Implementation (OSDI’20) (November 2020).

[48] ONGARO, D., AND OUSTERHOUT, J. In Search of an Un-
derstandable Consensus Algorithm. In Proceedings of the
2014 USENIX Annual Technical Conference (USENIX ATC’14)
(June 2014).

[49] OUSTERHOUT, J. Why Threads Are A Bad Idea (for most
purposes). In Presentation given at the 1996 USENIX Annual
Technical Conference (USENIX ATC’96) (January 1996).

[50] STUTSMAN, R., LEE, C., AND OUSTERHOUT, J. Experience
with Rules-Based Programming for Distributed, Concurrent,
Fault-Tolerant Code. In Proceedings of the 2015 USENIX
Annual Technical Conference (USENIX ATC’15) (July 2015).

[51] TAN, C., JIN, Z., GUO, C., ZHANG, T., WU, H., DENG, K.,
BI, D., AND XIANG, D. NetBouncer: Active Device and Link
Failure Localization in Data Center Networks. In Proceedings
of the 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’19) (February 2019).

[52] VON BEHREN, R., CONDIT, J., ZHOU, F., NECULA, G. C.,
AND BREWER, E. Capriccio: Scalable Threads for Internet
Services. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP’03) (October 2003).

[53] WELSH, M., CULLER, D., AND BREWER, E. SEDA: An
Architecture for Well-Conditioned, Scalable Internet Services.
In Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP’01) (October 2001).

[54] WILCOX, J. R., WOOS, D., PANCHEKHA, P., TATLOCK, Z.,
WANG, X., ERNST, M. D., AND ANDERSON, T. Verdi: A
Framework for Implementing and Formally Verifying Dis-
tributed Systems. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implemen-
tation (PLDI’15) (June 2015).

[55] YOO, A., WANG, Y., SINHA, R., MU, S., AND XU, T. Fail-
slow fault tolerance needs programming support. In Proceed-
ings of the 18th Workshop on Hot Topics in Operating Systems
(HotOS’21) (June 2021).

[56] ZAMORA-GÓMEZ, E., GARCÍA-LÓPEZ, P., AND MONDÉJAR,
R. Continuation Complexity: A Callback Hell for Distributed
Systems. In Proceedings of the 21st International Conference
on Parallel and Distributed Computing (EuroPar’15) (August
2015).

570    2022 USENIX Annual Technical Conference USENIX Association



[57] ZHANG, I., SHARMA, N. K., SZEKERES, A., KRISHNA-
MURTHY, A., AND PORTS, D. R. K. Building consistent
transactions with inconsistent replication. In Proceedings of
the 23rd ACM Symposium on Operating Systems Principles
(SOSP’15) (October 2015).

[58] ZHANG, Q., LIU, V., ZENG, H., AND KRISHNAMURTHY, A.
High-Resolution Measurement of Data Center Microbursts. In
Proceedings of the 2017 Internet Measurement Conference
(IMC’17) (November 2017).

[59] ZHANG, Q., YU, G., GUO, C., DANG, Y., SWANSON, N.,
YANG, X., YAO, R., , CHINTALAPATI, M., KRISHNAMURTHY,
A., AND ANDERSON, T. Deepview: Virtual Disk Failure Di-
agnosis and Pattern Detection for Azure. In Proceedings of the
15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’18) (April 2018).

[60] ZHOU, S., AND MU, S. Fault-Tolerant Replication with Pull-
Based Consensus in MongoDB. In Proceedings of the 18th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI’21) (April 2021).

USENIX Association 2022 USENIX Annual Technical Conference    571



A Appendix

A.1 Artifact evaluation

Abstract

A Docker image is provided which contains required depen-
dencies and source code to run the system. Instructions are
provided in the README.md to reproduce the major results.

Contents

The artifact evaluation includes experiments in Figures 5 and
Figures 6. This artifact does not include (1) experiments for
comparisons: etcd and ref-copilot, and (2) experiments in B.

Hosting

You can find the publicly available source code at
https://github.com/stonysystems/depfast-ae/tree/atc_ae.

Requirements

At least one client plus five servers are used to reproduce
the experimental results. Five servers must have an extra
disk mounted for slowness experiments. We run all our code
on Debian-10, which mainly depends on common Linux
libraries (i.e., python, gcc and libyaml-cpp-dev). You can
install all dependencies by bash ./dep.sh.

A.2 Empowered analysis

DepFast empowers a number of analysis to help programmers
understand the fault-tolerance properties of their systems and
to detect faults at the run time.

Monitoring with linked coroutines Through the event in-
terface, the DepFast framework can link coroutines together
and analyze fail-slow fault propagation. For example, the
RpcEvent could link the caller and the callee coroutines. The
framework will propagate the wait-for information and aggre-
gate them at configured granularity. Figure 7 presents an ex-
ample of a fail-slow fault propagation graph which shows the
wait-for relationship at the node granularity in our DepFast-
Raft implementation (§5.1). Each vertex represents a node in
a quorum. Each edge is directed and weighted: the direction
suggests the wait-for relationship; the weight is the count
of the waiting. Each edge is colored. A wait on a potential
fail-slow event (e.g., an RpcEvent) leads to a red edge. A
wait on a QuorumEvent leads to a green edge. This graph
is generated and refreshed periodically at runtime. It can be
used with graph analysis to detect execution paths which are
vulnerable to fail-slow fault, that is, the execution path that
contains a red edge. Ideally, this graph should not contain
any red edges except for those representing a client issuing
requests to a server.

1/1

2/3

2/3

2/3

1/1

2/3

2/3

1/1

2/3
2/3

2/3

1/1

2/3
2/32/3

1/1

2/3

1/1

2/3

2/3

1/1

2/3

2/3

1/1

1/1

2/3

1/1 2/3

2/3
2/3

2/3

2/3
2/3

1/1

2/3

1/1
1/1

1/1
2/3

1/1
1/1

1/1

2/3

2/3

2/3
2/3

2/3

2/3
2/3

1/1
1/1

2/3

2/3

2/3

2/3

2/3

2/3

2/3
2/3

s4*

s6

s5
c1

s7*

s9

s8

c2

c3

s1*

s3

s2

Figure 7: The fail-slow fault propagation graph of DepFast-
Raft with three quorums (§5.1). The labels on the edge repre-
sents the quorum of the event. “2/3” refers to QuorumEvent
where 2 responses are needed out of 3 RPCs; “1/1” refers to
waiting on a single RPC (clients wait for the leader nodes).

Fault detection. DepFast has a few built-in fail-slow fault de-
tection mechanisms. First, DepFast measures the CPU usage
of the worker thread. When the worker thread is awake from
epoll sleep, it should take up all the CPU core it is running
on, because the worker thread does not have thread-blocking
calls. The measurement excludes all the epoll sleep time
and only measures the code executed in the worker thread.
If it observes that the worker thread occupies less CPU time
than it should, it alerts: either a fault occurs or other programs
compete for CPU. Note that this is not perfect detection: the
competition could be healthy if it is a shared host; a fail-
slow fault could also make the epoll sleep longer rather than
reducing the CPU utilization.

Second, DepFast measures the time of waiting on each
event. If there is a spike for the same event, DepFast will report
it. Or, if the wait time repeatedly breaks a user-configured
threshold, DepFast will report fail-slow as well.

Third, DepFast exposes the runtime information of resource
utilization by allowing applications to register a user-defined
detector function. The user-defined detector will be called
periodically (taking the monitoring information as inputs)
and then make its own decision to notify the application.

B Supplemental evaluation

Figure 8 shows the results of etcd under various fail-slow
faults. Our results show that etcd can tolerate these failures
well as a production system.

Figure 9(b) and 9(d) shows the throughput and latency CDF
of the original Copilot implementation with a fail-slow leader
in a 3-replica setup. The experiment verifies that the original
Copilot implementation can tolerate a fail-slow node in the
cases tested in the Copilot paper. We find that largely due
to its immature implementation, in some fail-slow follower
cases that are not tested in the original paper, the performance
is lower than expected. For example, our experiment of in-
jecting CPU slowness to the original Copilot frequently fails.
After some diagnosing, we found that when the follower fails

572    2022 USENIX Annual Technical Conference USENIX Association



0 2000 4000 6000 8000
Throughput (op/s)

0

20

40

60

M
ed

 la
te

nc
y 

(m
s)

(a) Latency-Throughput

etcd 3-rep
etcd 5-rep

3 Nodes 5 Nodes
0

2000

4000

6000

Th
ro

ug
hp

ut
 (o

p/
s)

(b) Throughput with slowness

20 40 60
Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D

F

(c) CDF (3 Nodes)

20 40 60
Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D

F

(d) CDF (5 Nodes)

No Slowness CPU Slowness CPU Contention Disk Slowness Disk Contention Network Slowness Memory Contention

Figure 8: Performance of etcd with various fail-slow faults on follower(s) in the 3- and 5-replica deployments.

0 10000 20000 30000
Throughput (op/s)

0.0

0.5

1.0

1.5

M
ed

 la
te

nc
y 

(m
s)

(a) Latency-Throughput

Copilot 5-rep

follower leader
0

20000

40000

Th
ro

ug
hp

ut
 (o

p/
s)

(b) Throughput with slowness

0 1 2 3 4
Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D

F
(c) CDF (follower slow)

0 2 4 6 8 10
Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D

F

(d) CDF (leader slow)

No Slowness CPU Slowness CPU Contention Network Slowness Memory Contention

Figure 9: Performance of original Copilot with various fail-slow faults on follower(s) and leader in the 3-replica deployment.

0 10000 20000
Throughput (op/s)

0

1

2

M
ed

 la
te

nc
y 

(m
s)

(a) Latency-Throughput

DepFast-Copilot 5-rep

follower leader
0

10000

20000

Th
ro

ug
hp

ut
 (o

p/
s)

(b) Throughput with slowness

0 1 2 3 4
Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D

F

(c) CDF (follower slow)

0 2 4 6 8 10
Latency (ms)

0.00

0.25

0.50

0.75

1.00

C
D

F
(d) CDF (leader slow)

No Slowness CPU Slowness CPU Contention Network Slowness Memory Contention

Figure 10: Performance of DepFast-Copilot with various fail-slow faults on follower(s) and leader in a 5-replica setup

slow, it could detect the leader as dead as it cannot process the
heartbeats from the leader in time and starts a view change.
The leader then steps down and crashes due to what is sus-
pected to be a memory bug. The fail-slow follower will next
become the new leader. This results in two live nodes, with
one of them failing slow, rendering the cluster into a slow or
even stalled state.

Figure 10 shows the evaluation results of DepFast-Copilot
in a 5-replica setup, in a similar vein as Figure 6. Figure 10(a)
shows the latency-throughput of DepFast-Copilot and the orig-
inal Copilot implementation. The peak throughput of DepFast-
Copilot is 18% higher than the original Copilot.

Figure 10(b)-(d) show the throughput as well as latency
CDF of DepFast-Copilot with fail-slow faults injected to fol-
lower and leader nodes. Recall from §6.1 that we inject faults
on two followers (denoted as “follower” in Figure 10) and
on one leader and one follow (denoted as “leader” in Fig-
ure 10). Similar to the results of 3-replica setup, there is no
significant downgrade on throughput and latency in terms of
both fail-slow follower and leader. For follower slowness, the

decrease in throughput is within 12%. The increase in median
and P99 latency are within 10% and 35%, respectively. For
leader slowness, the decrease in throughput is within 26%.
The latency results are similar to those in a 3-replica setup.

Compared with the 3-replica setup (Figure 6), we find that
the 5-replica setup is affected by network and disk I/O spikes
more. We discussed the impact of the spikes in §6.2; we
elaborate more here. Since we inject one fail-slow node in the
3-replica setup and two fail-slow nodes in the 5-replica setup,
the probability of one of the remaining replicas experiencing
network or I/O spike is higher in the 5-replica setup than in
the 3-replica setup. As every request leads to a quorum read
or write, the 5-replica setup is more susceptible to network
or I/O spikes. The spikes, in our experience, are common in
Azure Cloud (also reported by other studies [16, 51, 58, 59]).
Note that Azure uses virtual hard drives that are accessed
remotely over the network [59]. As a result, disk writes can
also be impacted by network spikes.

USENIX Association 2022 USENIX Annual Technical Conference    573





High Throughput Replication with Integrated Membership Management ∗

Pedro Fouto, Nuno Preguiça, João Leitão
NOVA LINCS & NOVA University Lisbon

Abstract
This paper introduces ChainPaxos, a new distributed consen-
sus algorithm for high throughput replication. ChainPaxos
organizes nodes in a chain, allowing for a pipeline commu-
nication pattern that maximizes throughput, by minimizing
the number of messages transmitted. While other proposals
have explored such patterns, ChainPaxos is the first that can
execute linearizable reads in any replica with no communi-
cation overhead, relying only on information used to process
updates. These techniques build on a fully specified integrated
membership management solution, allowing ChainPaxos’s
fault-tolerance to be independent of an external coordination
service, often used in other solutions, which can lead to possi-
ble safety violations in the presence of network partitions.

Our evaluation shows that, when compared with alterna-
tive Paxos variants, ChainPaxos exhibits significantly higher
throughput and scalability with negligible latency impact.
Compared to other solutions with similar communication pat-
terns, besides avoiding the costs of an external coordination
service, ChainPaxos’s high throughput tends to increase with
the ratio of read-only operations.

1 Introduction
Fault-tolerance is a key property for distributed systems, being
fundamental to guarantee that they continue to operate despite
failures of individual components. To achieve this, the state
of the system needs to be replicated over multiple nodes.

A particularly interesting way of providing fault-tolerance
is the state machine replication (SMR) [20, 30] approach,
which allows to replicate any service providing strong consis-
tency. SMR is achieved by executing the same sequence of
deterministic operations on all replicas, making them transi-
tion through the same sequence of states.
∗This work was partially supported by Fundação para a Ciência e Tecnolo-

gia (FCT) under the projects NG-STORAGE (PTDC/CCI-INF/32038/2017)
and NOVA LINCS (grant UIDB/04516/2020).

Experiments presented in this paper were carried out using the Grid’5000
testbed, supported by a scientific interest group hosted by Inria and including
CNRS, RENATER and several Universities as well as other organizations
(see https://www.grid5000.fr/).

The Paxos [15, 32] consensus protocol and its variants
[6, 21, 24, 26–28] have been used as a fundamental building
block for implementing SMR, by enabling replicas to agree
on the order in which operations are executed. Many practical
systems, such as coordination systems, scale-out, in-memory
lock services and in-memory databases rely on the perfor-
mance of their underlying SMR implementation, making it
extremely relevant to improve the performance of consensus
(or agreement) protocols.

This paper describes the design and implementation of
ChainPaxos, a new consensus algorithm for high throughput
replication of (deterministic) services. Our goal is to minimize
the communication cost of the protocol to achieve the highest
possible throughput, both for read and write operations. We
achieve this by using a set of complementary techniques. For
write performance, we rely on an efficient pipelined communi-
cation pattern between replicas, which has been explored and
shown effective by previous approaches, notably ChainRepli-
cation [33]. This pattern allows to minimize and distribute
the number of messages propagated (and therefore processed)
by each node to achieve consensus, which highly contributes
to maximizing the throughput of write operations. For read
operations, we propose a novel scheme for linearizable reads
served by a single replica, without incurring in additional
communication cost (albeit at the cost of a small increase in
latency), which further minimizes the communication over-
head of ChainPaxos and increase its throughput.

Contrary to many recent proposals, ChainPaxos does not
outsource membership management to an external coordi-
nation service (e.g., Zookeeper [12]). Instead, our system
features its own integrated membership management solu-
tion that allows for the continuous execution of operations
during reconfigurations, while uncoupling our system’s fault-
tolerance from that of an external service. As such, increasing
the number of replicas in ChainPaxos effectively increases
the maximum number of faults that are tolerated. On the other
hand, when leveraging an external coordination service, the
fault-tolerance of the replicated systems depends on the fault-
tolerance of that coordination service. Additionally, as shown

USENIX Association 2022 USENIX Annual Technical Conference    575



recently [2], relying on an external coordination service is far
from trivial as it makes a system more vulnerable to network
partitions, requiring additional logic to ensure correctness.

Our design builds on the insight that it is possible to com-
bine multiple Multi-Paxos messages and exploit a pipeline
communication pattern. While this insight is not novel [19],
ChainPaxos is, to the best of our knowledge, the first protocol
that not only takes advantage of this insight, but also specifies
an integrated membership management solution, allowing for
lightweight linearizable reads to be served by any replica.

We conduct an extensive experimental evaluation of Chain-
Paxos where we evaluate its performance against several state-
of-the-art variants of Paxos, in particular Multi-Paxos, Egal-
itarian Paxos, (U)-Ring Paxos, and Chain Replication. The
results show that our algorithm provides higher throughput
and scalability when compared with other Paxos variants, with
even higher gains as both the number of the replicas of the sys-
tem and the size of operations increase. When compared with
other solutions that employ pipeline communication, Chain-
Paxos shows similar performance for writes, but improved
scalability as the ratio of reads increases.

In summary, this paper makes the following main contri-
butions: i) a new consensus algorithm that provides high
throughput, with integrated membership management that
makes it independent from external coordination services
(Section 3); ii) a novel approach to provide linearizable read
operations that distribute the load among all replicas with-
out incurring additional communication costs (Section 4);
and iii) an extensive experimental evaluation, showing that
ChainPaxos provides better performance than state-of-the-art
alternatives (Section 5).

2 Related Work
Paxos [15,32] and its variants [6,21,24,26–28] have been used
in the design of replicated systems, employing diverse tech-
niques to optimize performance aspects, such as minimizing
latency, reducing communication cost, distributing the load,
and supporting linearizable reads. We now discuss the most
popular variants of Paxos, along with Chain Replication [33],
an alternative SMR algorithm.

2.1 Minimizing latency
Multiple Paxos variants try to optimize latency. In Fast-
Paxos [18], clients send Accept messages directly to accep-
tors, skipping the leader. Generalized Paxos [17] extends
FastPaxos by allowing non-interfering requests to execute in
different orders. In both cases, collisions in client requests
result in additional round trips, hindering performance. Flex-
ible Paxos [11] uses different quorum sizes for executing
operations (akin to read-write quorum systems [34]), reduc-
ing the size of accept quorums and decreasing the latency
of accepting operations in the fast path. While ChainPaxos
only matches the fast path latency of these protocols when
configured to tolerate a single fault, it requires each replica to

handle only one message per operation. In contrast, the O(n)
message complexity of Paxos leader and learners in these
solutions results in lower throughput.

2.2 Communication cost
Some variants employ chain (or ring) topologies to decrease
communication cost. Ring Paxos [28] sends Accept messages
to all replicas using IP-multicast, with responses being prop-
agated through a ring. IP-multicast limits the operation of
the protocol across data centers and negatively impacts the
performance under high load when messages are lost. Chain
Replication [33] is an SMR algorithm, developed for syn-
chronous systems, where replicas are organized in a chain and
write operations are forwarded from the head to the tail, with
acknowledge messages travelling the opposite way. This ap-
proach has the advantage that all replicas send and receive the
same number of messages for executing an update. Similarly,
U-Ring Paxos [13] propagates messages in a ring topology,
with acknowledge messages being forwarded from the tail
to the head. These solutions require an external coordination
service (e.g., Zookeeper [12]) to reconfigure the system when
faults occur, leading to higher operational cost, slower fault-
handling, potentially lower fault-tolerance (dependent on that
of the external service), and vulnerability to network parti-
tions [2]. ChainPaxos, while having a similar communication
pattern, further reduces the number of messages processed by
each replica, while handling reconfigurations and faults in an
integrated and efficient way.

2.3 Distributing the load
Other variants of Paxos try to distribute the load across repli-
cas. Mencius [22] pre-assigns the leader of each instance to a
different node. While providing better throughput, the overall
availability suffers since the failure of any replica will cause
the system to stop until another replica takes over. In Egalitar-
ian Paxos (EPaxos) [26], any replica can commit operations
and non-conflicting operations execute in different orders.
When there is no conflict, operations commit in a single com-
munication round. Multi-Ring Paxos [24] (based on Ring
Paxos) uses a similar approach, while taking advantage of the
ring topology to minimize communication. When concurrent
operations conflict (which is often the case in SMR), these
protocols require extra rounds of communication. Atlas [8]
improves on this by allowing some conflicting operations to
execute in a single round. Despite trying to distribute the load
across all replicas, these protocols still require nodes to send
and receive O(n) messages. In contrast, ChainPaxos mini-
mizes the overall load imposed by the protocol, having O(1)
message complexity, while also distributing the load across
replicas.

2.4 Linearizable reads
In replicated systems, where reads are more frequent than
writes, it is important to reduce the cost of read operations to
improve overall performance.

576    2022 USENIX Annual Technical Conference USENIX Association



Synchronous systems. Chain Replication [33] proposes
to execute linearizable reads by contacting a single node: the
tail of the chain. When the tail fails, as detected by an external
coordination service, clients fallback to the previous node
in the chain to continue reading the system state. This solu-
tion, however, was designed for a synchronous model model
where failures can be reliably detected. In an asynchronous
system, linearizability can be violated, as the tail can become
isolated and be excluded from the chain without knowing,
while still serving (outdated) reads. To avoid this, for each
read, either the tail or the client would need to contact the ex-
ternal coordination service to verify the current configuration
of the chain, which is too expensive. In [33], the authors men-
tion that the coordination mechanism needs to stop clients
during reconfigurations, which is unfeasible under network
partitions.

Asynchronous systems. Due to a similar reason, solutions
based on Paxos cannot execute read operations by contacting
only the leader, usually requiring to run a consensus instance
for ordering read operations or, in special cases, to contact a
quorum of replicas. However, some alternative read schemes
to improve replication performance have been proposed. In
Smarter [4], reads execute on a single replica, but require a
special whats_my_view message to be sent to all replicas to
gather a majority of replies confirming that no reconfiguration
took place concurrently with the read operation. In [10], reads
are executed on a single replica, however at the cost of requir-
ing writes to execute in two phases. CRAQ [31] improves
reads in Chain Replication by allowing to read from any
replica in an asynchronous model, however it only provides
per-object linearizability, and for SMR it would require all
reads to contact the tail whenever there is a write executing.

In contrast with all these solutions, ChainPaxos includes
a novel technique to execute linearizable reads on a single
replica, in an asynchronous environment, without ever re-
quiring any additional communication costs. Furthermore, it
allows any replica to process reads, thus distributing the read
load across all replicas.

3 ChainPaxos
We assume an asynchronous distributed system with n nodes,
connected by a network that can lose, duplicate, and deliver
messages out of order. Nodes communicate by exchanging
messages over a network with a fair loss model that allows the
creation of FIFO channels between any pair of nodes. Nodes
can fail by crashing, where they stop sending messages.

We follow the SMR model [30], in which each replica
holds a copy of the system state and there exists a set of de-
terministic operations that may output a reply. Replicas start
in the same initial state and apply the same sequence of oper-
ations, thus guaranteeing that all replicas transition through
the same sequence of states and output the same results. We
defer the processing of read operations to Section 4.

ChainPaxos is used to order the execution of operations.

The system state includes the application state and the mem-
bership of the system, with AddNode(n) and RemoveNode(n)
operations, respectively, adding and removing node n to the
replica-set. These operations execute in the state machine, as
other application operations, potentially impacting the quo-
rum size of following operations. For correctness, a node can
only decide a given instance strictly after knowing the deci-
sion of all previous instances (and the current membership).

3.1 Overview
This section introduces ChainPaxos, revisiting Multi-Paxos
and Chain Replication to better contextualize our design.

In Multi-Paxos [15, 32], a distinguished proposer, known
as leader, prepares multiple Paxos instances in a single step
(Phase 1), followed by multiple sequential executions of Phase
2 of Paxos. In a fault-free run (Figure 1), the leader sends
an accept message to all replicas, with each replying to all
replicas with an accept ack message. Any replica that receives
accept ack messages from a majority of replicas can decide
and execute the request (with the replica that received the
operation replying back to the client). With n replicas, the
message complexity of the protocol is O(n2): each replica
incurs in O(n) message overhead (the leader sends/receives
2n messages). The reply to the client is produced after 2 com-
munication steps between replicas. Alternatively, a replica
could send the accept ack message only to the leader, which
would then forward the decision to all replicas. In that case,
the overhead of non-leader replicas decreases to O(1) at the
cost of an additional communication step.

Chain Replication [33] leverages a chain topology, for-
warding operations from the head to the tail (Figure 2). The
tail replies to clients after executing an operation, and sends
ack messages backwards, to allow replicas to perform garbage
collection. In a fault-free run, each replica incurs in O(1)
message overhead, with a reply being produced after O(n)
communication steps.

The main goals of ChainPaxos’s design are: (i) minimize
the number of messages each node processes in fault-free
runs and make the load uniform, maximizing throughput; and
(ii) integrate an efficient fault handling scheme into the algo-
rithm, by taking advantage of Paxos messages, avoiding the
need to rely on an external service. To achieve these goals,
we leverage the chain topology to combine and forward mul-
tiple Multi-Paxos messages in a single ChainPaxos message.
As ChainPaxos builds on Multi-Paxos, leader faults can be
handled simply by falling back to the first phase of Paxos.

In ChainPaxos, in a fault-free run (Figure 3), the leader
sends the accept message, including its accept ack, to the
following replica in the chain. Upon receiving an accept mes-
sage, a replica forwards the message modified to include its
own accept ack. When the accept message reaches the tail
of the chain, it sends a message directly to the head with the
accept ack of all replicas, guaranteeing that the head learns
about the decided value. Additionally, it is necessary to in-

USENIX Association 2022 USENIX Annual Technical Conference    577



Figure 1: Multi-Paxos message flow
on a fault-free run.

Rep 1 
(leader)

Rep 2

Rep 3

Client

Op Reply

Op

Op Ack

Ack

Figure 2: Chain Replication message
flow on a fault-free run.

Rep 1 
(leader)

Rep 2

Rep 3

Client

Op Reply

Accept + 
Accept Ack 1-2

Accept Ack 1-3

Accept + 
Accept Ack 1

Figure 3: ChainPaxos message flow on
a fault-free run.

form the replicas that have not received enough accept ack
messages to decide the value of the instance – ChainPaxos
piggybacks this information in the next accept message.

When an accept reaches the replica at the middle of the
chain, it includes accept ack from a majority quorum. Thus,
the replica knows that the received request has been decided,
and can execute the request and return the result to the client.
In the example of Figure 3, with three replicas, the leader and
replica 2 form a quorum, with replica 2 replying to the client.

The message flow for fault-free runs achieves the first
goal of minimizing the number of messages handled by each
replica and keeping the load uniform: a single message is sent
and received by every replica. As ChainPaxos is just using
a different communication pattern to convey the messages
of Multi-Paxos, it can fall back to the regular two phases of
Paxos to handle faults. This is the base for achieving the
second goal of integrating fault handling in the protocol.

ChainPaxos builds on these ideas to provide high through-
put replication by addressing the following challenges: i)
optimize fault-handling and integrate membership manage-
ment by leveraging information about the chain topology,
thus avoiding the common vulnerabilities/complexity encoun-
tered in systems that rely on external coordination services
in the presence of network partitions [2]; ii) support efficient
garbage collection of the information about decided values,
which is a common challenge in many variants of Paxos,
rarely addressed in the specification of algorithms; and iii)
integrate a novel mechanism that leverages the chain topology
to enable efficient linearizable read operations handled by a
single replica without additional communication.

Next, we detail the operation of ChainPaxos, describing
the state maintained by each replica and the operation of the
protocol in fault-free runs and during reconfigurations. We
present correctness arguments for our solution in Annex A.

3.2 Protocol State
Algorithm 1 presents the state of each replica. The first
variable group is related with the organization of the sys-
tem and includes: the members and their order in the chain
(chain); the identity of the local node (self); the next node
in the chain that is not marked for removal (cnextok); the cur-
rently supported leader (csleader); and the replicas for which a
RemoveNode has been received but not yet decided (marked).

Algorithm 1 State of ChainPaxos nodes.
chain : array of nodes
self : node ▷ local node identifier
cnextok : node ▷ next (unmarked) node in the chain
csleader : node ▷ supported chain leader
marked : set of node ▷ nodes marked for removal (init : /0)

npleader : int ▷ special prepare number of the leader
inst : map int × PaxosInst ▷ PaxosInst : (na,val,nacpts,decided)

submitted : set of requests ▷ requests submitted by the client
pending : set of requests ▷ requests waiting to execute (leader only)

maxack : int ▷ highest instance acknowledged
maxacpt : int ▷ highest leader initiated instance (leader only)
amLeader : bool ▷ true if current leader

The second group maintains the information to run Paxos
instances. This includes the prepare number (npleader) that
the leader can use for bypassing the first phase of Paxos. Each
replica also maintains a map (inst) with the information
of Paxos instances including, for each instance, the highest
prepare number (na) used by a leader to accept a value (val),
the number of nodes that accepted val with na (nacepts), and
a boolean indicating if the instance was decided (decided).

The third group is used for managing client requests. It con-
sists of two sets: submitted stores requests received from
clients and not yet decided, and pending contains the re-
quests received by the leader (redirected from itself or other
replicas) but not yet submitted for ordering.

The final group of variables is used for clarity of presenta-
tion and stores information that could be derived from other
variables, including the highest instance started by the leader
(maxacpt), and the highest instance known to have a decided
value accepted by all nodes (maxack). Each node also keeps
track of whether it is the current leader in amLeader.

3.3 Fault-free execution
Algorithm 2 presents the ChainPaxos algorithm, with auxil-
iary functions detailed in Algorithm 3. The highlighted lines
represent the logic used in faulty scenarios that require recon-
figuration, which are detailed in the next section.

Requests from clients can be received by any replica, and
are redirected to the leader (Alg. 2, line 1), which stores them
in a set of pending requests (Alg. 2, line 5). The leader, upon
receiving a new request, starts a new instance by increasing

578    2022 USENIX Annual Technical Conference USENIX Association



Algorithm 2 ChainPaxos algorithm: message flow.
1: upon receive <NEW_REQUEST,req> from client do:
2: submitted← submitted∪{req}
3: SEND(csleader,<REDIRECT_REQUEST,req>)
4:
5: upon receive <REDIRECT_REQUEST,req> from r do:
6: if self= csleader then ▷ Even if there is no quorum yet
7: pending← pending∪{req}
8:
9: function STARTINSTANCE

10: maxacpt← maxacpt+1
11: SEND(self,<ACCEPT,maxacpt,self,npleader,pending,0,maxack>)
12: pending← /0

13: upon receive <ACCEPT,ni,ldr,na,val,nacpts,mack> from r do:
14: if npleader ≤ na then ▷ Has not seen higher prepare
15: UPDATELEADERINFO(ldr,na) ▷ If a prepare was missed
16: if ̸ ∃inst[ni]∨inst[ni].na < na then
17: inst[ni]← (na,val,nacpts+1,false)
18: else ▷ Repeated accept
19: inst[ni].nacpts← MAX(nacpts+1,inst[ni].nacpts)
20: if inst[ni].val= RemoveNode(node) then
21: MARKFORREMOVAL(ni,node)
22: if ISQUORUM(nacpts)∧¬inst[ni].decided then
23: DECIDE(ni)
24: DECIDEANDGCUPTO(mack)
25: FORWARD(ni)
26:
27: upon receive <ACCEPT_ACK,ni> from r do:
28: DECIDEANDGCUPTO(ni)
29:

the instance number and generating a new accept message
(Alg. 2, line 9). The accept message contains the following
information: (i) the instance number, which the leader tracks
in maxacpt; (ii) the id of the leader; (iii) the prepare number,
npleader, used by the leader in its previous prepare message;
(iv) the client request (i.e., operation); (v) the number of nodes
which have accepted the value (nacepts), initialized to 0; and
(vi) the highest instance for which the decided value is known
to have been accepted by all replicas (maxack).

The leader is the first to handle the accept message of each
instance, as it starts a new instance by sending the accept to
itself (Alg. 2, line 11). Upon receiving an accept message for
an instance (Alg. 2, line 13), a node stores the information
for the instance, increasing the value of nacpts to indicate the
node itself is accepting the value. If nacpts is greater than n/2,
the message has already been accepted by a majority of nodes,
and its value can be decided (Alg. 2, line 22). Otherwise, the
value will be decided (and garbage-collected) when an accept
message is received with mack greater or equal to its instance
number. This is performed in function DecideAndGCUpTo

(called in Alg. 2, line 24 and defined in Alg. 3, line 35). This
function traverses every (non-garbage-collected) instance up
to instance maxack, marking them as decided (if they were not
yet), and garbage-collecting the information about them after
their execution. This is safe since all instances up to maxack
have been accepted by every node in the chain.

Finally, the node forwards the accept message (with the in-
cremented nacpts) to the next node in the chain. If the replica

is the last node in the chain, it sends an accept ack mes-
sage to the leader, signalling that every node in the chain
has seen and accepted the instance. Upon receiving this mes-
sage, the leader executes DecideAndGCUpTo, increasing its
maxack which leads subsequent accept messages to trigger
DecideAndGCUpTo in every node across the chain.

The nodes in the second half of the chain (starting from the
n/2th node) can decide instances as soon as they receive the
accept message, while the first n/2 nodes only decide (and ex-
ecute an operation) after receiving an acknowledgement (the
leader via an accept ack message, and the other nodes via the
maxack value piggybacked in subsequent accept messages).

In a fault-free run, our protocol simply encodes the mes-
sages of Multi-Paxos in ChainPaxos messages. A ChainPaxos
accept message sent by node n encodes the Multi-Paxos ac-
cept message and the accept ack messages of n and all nodes
that precede it in the chain. It also encodes the accept ack
messages of all nodes in the chain for all instances up to mack.
A ChainPaxos accept ack message encodes the Multi-Paxos
accept ack messages of all nodes in the chain.

3.4 Dealing With Faults and Reconfigurations
To describe how faults and membership reconfigurations are
handled in ChainPaxos, we begin by describing the mech-
anisms used by replicas to suspect other nodes (i.e., fault
detection) and then discuss the steps taken by ChainPaxos to
reconfigure the system, either keeping the current leader or
when the leader is suspected. The main challenge faced by
ChainPaxos is that, when using a chain topology, the failure
of a single node leads the chain to break, making it impossible
for messages to keep flowing along the chain, resulting in a
system halt.

Fault Detection: We have implemented two mechanisms
for fault suspicion. To pinpoint faults in the chain, each replica
expects to receive periodic keep-alive messages from the fol-
lowing node in the chain. If a node does not receive the
keep-alive for a configurable period of time, it suspects the
node, and requests the leader to remove it, triggering a Recon-
figuration not involving the leader. In case the tail suspects
the failure of the leader (which is its next node), it starts the
process of taking leadership (Phase 1 of Paxos), and then
starts the process of removing it. This effectively triggers a
Reconfiguration involving the leader.

We note that, as we assume an asynchronous system, sus-
pecting a node does not necessarily mean that it failed, but
rather that there is a chance it might have, as it can just be
temporarily slow [29]. However, since a single failed (or just
slow) node can block progress in the whole chain, the keep-
alive mechanism is important to allow quick removal of sus-
pected nodes, minimizing their negative impact on the overall
throughput of the chain. Incorrectly removed replicas can
later rejoin the system.

The second mechanism is based on the continuous flow
of accept messages. If a replica does not receive an accept

USENIX Association 2022 USENIX Annual Technical Conference    579



Algorithm 3 ChainPaxos algorithm: auxiliary functions.
1: function MARKFORREMOVAL(ni,node)
2: marked← marked∪{node}
3: if node= cnextok then ▷ We marked the closest unmarked node
4: cnextok = NEXTNODENOTMARKED(self, marked)
5: for n← maxack+1,ni−1 do ▷ Re-propagate accepts
6: FORWARD(n)
7: function FORWARD(ni)
8: if cnextok = leader then
9: SEND(cnextok,<ACCEPT_ACK,ni>)

10: else
11: SEND(cnextok,<ACCEPT,leader,ni,inst[ni].na,

inst[ni].val,inst[ni].nacpts,maxack>)
12: function UPDATELEADERINFO(leader,np)
13: if npleader < np then
14: amLeader← false

15: pending← /0

16: csleader← leader ▷ Set new leader
17: npleader← np ▷ Set the prepare number for the leader
18: for req ∈ submitted do ▷ Redirect requests to new leader
19: SEND(csleader,<REDIRECT_REQUEST,req>)
20: marked←{}
21: cnextok = NEXTNODENOTMARKED(self, marked)
22: function DECIDE(ni)
23: inst[ni].decided← true
24: if inst[ni].val= RemoveNode(node) then
25: marked← marked\{node}
26: chain← chain\{node}
27: else if inst[ni].val= AddNode(node) then
28: chain← chain∪{node}
29: cnextok = NEXTNODENOTMARKED(self, marked)
30: if cnextok = node then ▷ Was added right next to me
31: STATETRANSFER(cnextok,ni)
32: else
33: SMREXECUTE(inst[ni].val)
34: pending← pending\{inst[ni].val}
35: function DECIDEANDGCUPTO(ni)
36: for i ∈ inst∧ i≤ ni do ▷ sequential iteration up to ni
37: if ¬i.decided then
38: DECIDE(ni)
39: inst← inst\{i}
40: maxack← ni

for a configurable period of time, it assumes that the leader is
faulty and attempts to take leadership. If, during this process,
the new leader could not establish a connection to some other
node (to send them the prepare message), it suspects and starts
the process of removing them. To make sure this mechanism
operates correctly even if the system is subjected to a low
load, the leader issues periodic accept messages for a special
NoOP operation if there are no client requests.

Reconfiguration not involving the leader: We now ex-
plain how ChainPaxos reconfigures the chain by removing a
suspected node that is not the leader.

When the leader is notified that node n is suspected, it
starts an instance with RemoveNode(n) operation to remove
node n from the chain. When the instance is decided, n is
removed from the chain, updating the variables with the local
configuration of the chain (chain and marked).

When a RemoveNode operation is being propagated, two
actions need to be taken to guarantee correctness and progress:

i) guarantee that all previous accept messages that might have
been lost due to the failure of the node are forwarded to the
next correct node (to reestablish the flow of those accept mes-
sages); and ii) guarantee that all subsequent accept messages
are forwarded through the chain despite faulty nodes, until
the RemoveNode operation is decided, removing the faulty
node, and repairing the chain.

The former is implemented in MarkForRemoval, executed
when processing an accept message for a RemoveNode opera-
tion (Alg. 2, line 21). The node to be removed is added to the
set of marked nodes (Alg. 3, line 2). If the node to be removed
is the next node that was not previously marked, it is possible
that it failed to propagate previous messages through the chain.
Thus, the node sends to the next non-marked node any accept
messages (or accept ack for the leader) for instances that have
not yet been garbage collected (i.e., instances from mack to
ni−1 (Alg. 3, line 5). This guarantees that, when healing the
chain by bypassing faulty nodes, all accept messages will be
received by all nodes that will not be removed from the chain,
somewhat falling back to the pattern of Multi-Paxos1.

The latter guarantee is provided by the Forward function
(Alg. 3, line 7). This function forwards the accept message
for a given instance to the next node. When one or more
of the following nodes are marked to be removed (because
a RemoveNode operation has been received, but has not yet
been decided), the function forwards the accept message to
the next non-marked node. This guarantees that a node that is
to be removed in instance ni will not vote for instances n > ni.

When a leader change occurs while a RemoveNode opera-
tion for a node r is being propagated through the chain, it is
possible that the operation, while observed by a minority of
replicas (that add r to their marked set), is not decided. Fol-
lowing the regular behaviour of Multi-Paxos, the new leader
might issue a different operation for that instance. Such opera-
tions should be sent to r to ensure correctness. To do so, when
a replica learns about the new leader it removes all nodes from
the marked set and updates the cnextok variable, ensuring that
messages flow across all nodes. (Alg. 3, line 12).

Reconfiguration involving the leader: ChainPaxos sup-
ports changing the leader by having a node become the leader
at a given instance for that and all following instances by
executing the first phase of Paxos.

This process is initiated in function TryToBecomeLeader

(Alg. 4, line 1). The node selects a prepare number higher
than any prepare number already seen in any instance, and
sends a prepare message for instance maxack+1 directly to
all nodes. Although this prepare is for a given instance, it
will make the node leader of all instances from that point
onward – thus, the prepare number must be larger than any

1Note that this might lead to nodes receiving multiple accept messages for
the same instance with the same prepare number from different nodes. This
is addressed by considering the highest observed number of acks reported in
these messages. This is safe because the forward process employed during
recovery never generates cycles.

580    2022 USENIX Annual Technical Conference USENIX Association



Algorithm 4 ChainPaxos algorithm: leader election.
1: function TRYTOBECOMELEADER
2: np = NEXTPREPARENUM(npleader)
3: SEND(∀n ∈ chain, <PREPARE,maxack+1,np>)
4: upon receive <PREPARE,ni,np> from r do:
5: if npleader ≤ np then ▷ Has not seen higher prepare
6: UPDATELEADERINFO(leader,na) ▷ New accepted leader
7: instsaccepted = GETACCEPTEDINSTSFROM(ni)
8: SEND(node,<PREPARE_OK,ni,np,instsaccepted>)
9:

10: upon receive <PREPARE_OK,ni,np,instsaccepted> from rep do:
11: if npleader ≤ np then ▷ Has not seen higher prepare
12: REGISTERPREPAREOK(ni,np,instsaccepted)
13: if HASPREPAREOKQUORUM(ni) then ▷ Became leader
14: amLeader← true ▷ Can now start new instances
15: for (ani,ana,aval) ∈ACCEPTEDINSTSFROM(ni,np) do
16: SEND(self,<ACCEPT,ani,self,np,req,0,maxack>)
17: maxacpt← ani

18:

previously used by any replica. We use maxack+1, since it
guarantees that previous instances have already been accepted
by every node, and all messages regarding those instances can
be discarded. As such, nodes only need to maintain the single
highest prepare number npleader ever received (instead of
keeping a prepare for each instance). Since prepare messages
need to have unique prepare numbers, this number includes
an identifier of the node which is used to make sure that no
two prepare messages from different nodes have the same np.

A prepare message for a given instance is rejected if the
node has already seen a higher prepare number for any in-
stance (either on prepare or accept messages). Otherwise,
the usual Paxos logic is executed for this and all higher in-
stances, with the corresponding prepare ok message being
returned, which includes all previously accepted values (and
corresponding prepare numbers) for the instance indicated
in the prepare message and all following instances (Alg. 4,
line 8). This is necessary as a successful prepare also makes
the node the leader of all future instances. From this point
until a prepare with an higher prepare number is received, the
sender of the prepare message will be set as the supported
leader csleader and all pending and future client requests will
be redirected to it (Alg. 3, line 12).

Upon reception of a quorum of prepare ok messages
(Alg. 4, line 13), the node considers itself the new leader.
It then executes the regular Paxos logic, but for multiple in-
stances: for all instances for which accepted values exist, it
uses the value with the highest associated prepare number as
its proposal for that instance, and forwards the corresponding
accept message over the chain. The regular protocol execu-
tion then resumes. In Annex A, we discuss in more detail the
correctness of leader election and reconfigurations.

Adding a new replica: For adding a node n to the chain,
n sends a request to a replica with AddNode(n) operation as
its value. The leader processes this request by starting an
instance that is executed as any other instance of ChainPaxos.

When the instance is decided, the node is added to the

tail of the chain updating the local chain configuration (vari-
ables chain and cnextok). Once the new node is added, it
requests the current state (history of operations or snapshot)
from another node at the instance in which the operation to
add the node was decided. While this state transfers in the
background, the new node can already participate in the fol-
lowing instances actively forwarding messages (although it
can only locally execute and garbage collect operations after
the completion of the state transfer).

4 Local Linearizable Read Operations
In this section, we discuss our proposal to execute read opera-
tions. As we mentioned previously, in Chain Replication, due
to the use of an external coordination service, reading from
the tail does not provide linearizable reads in the presence
of network partitions, as the tail might become partitioned
and not be aware that it was removed from the system. Guar-
anteeing linearizable reads requires contacting the external
configuration service, which defeats the purpose of the low
overhead achieved by only contacting the tail. Due to similar
issues, most SMR protocols only support linearizable reads
by executing them as normal consensus operations or, in some
cases [5], by contacting a quorum of replicas (and falling back
to executing the read as a normal operation when conflicts
occur). We now discuss how we leverage on the chain topol-
ogy and our integrated membership management to provide
linearizable reads without any added communication cost.

To provide linearizable reads, it is necessary to guarantee
that the result of a read reflects a state that, at the moment the
read is received, is at least as recent as the most recent state
for which any node has returned a result (either for a read or
for a write). The base intuition of our proposal is that a node
can guarantee this property by waiting for a message to loop
around the entire chain, making sure that the local node is as
up-to-date as any node was at the moment the message started
looping around the chain.

Based on this intuition, our solution for linearizable reads
works as follows. Clients issue read operations to any replica
in the chain. Upon receiving the operation, the replica locally
registers that the operation depends on the lowest unseen con-
sensus instance (but no information is sent to other nodes).
For instance, if the highest instance that the replica has seen
so far is 6 (regardless of it being decided or not), the read
operation will depend on instance 7. Upon receiving the ac-
cept ack message to the consensus instance for which the
operation depends on, the read operation is performed locally
in the local committed state and the reply is sent to the client.

This protocol implements linearizable reads by enforcing
the following properties: i) a read r returns a value that is at
least as recent as any value outputted by the protocol at the
moment the read was received. By waiting that the following
consensus instance is acknowledged and executing the read
in the current local state, a replica is assured that the result of
any read that was returned at any replica before the reception

USENIX Association 2022 USENIX Annual Technical Conference    581



of r cannot be more recent than the result that will be returned
for r – this follows from the properties of ChainPaxos, which
guarantee that as messages loop the chain they make the
state of replicas advance, so that the following replica in the
chain is in a state that is at least as recent as the previous
replica. As such, if some replica has already returned a value
for state si, by waiting that the following consensus message
is acknowledged, which requires a full loop of an operation
through the chain, the local replica state will be at least as
recent as si. Due to the same reason, the result of a read will
also reflect the result of any committed write operations, at
the moment the read was received; ii), upon a reconfiguration,
a node that is partitioned from the chain will not return stale
values: when a replica loses connection to the others, either it
is eventually removed from the chain, preventing it from ever
replying to client read operations or it eventually reconnects
to the other nodes, allowing it to continue responding to read
requests. In the latter case, since the replica was not removed
from the chain, no progress was made while it was partitioned,
thus linearizability is not lost.

Our proposal trades a potentially higher latency (compared
to executing a read as a normal operation) for the possibility
of processing a read locally at any node, without additional
consensus instances or communication steps. This leads to
lower communication and processing overhead, and allows to
balance the load of read operations across all replicas, leading
to better overall performance. Under low load, write opera-
tions may be less frequent, which could delay read operations.
We note however, that the head of the chain issues periodic
NoOP operations if no write is received, as to show to the
other replicas that the head is still correct, hence the maxi-
mum latency of reads in scenarios with a low load will be
controlled by the frequency of these NoOP operations. Alter-
natively, to ensure faster read processing, a replica processing
a read which has not received the message for the next con-
sensus instance after some configurable timeout can forward
the read to the leader to be executed as a normal operation
(which in turn will allow other pending reads to complete).

5 Evaluation
This section reports the experimental evaluation of Chain-
Paxos in a broad range of scenarios. We start by assessing
the performance and scalability in CPU-bound and network-
bound settings (Section 5.2), and the impact of our novel
read protocol (Section 5.3), using a replicated key-value store
application under the YCSB workload [7], when compared
with other consensus protocols. Then, we report the results
of integrating ChainPaxos with ZooKeeper [12], by replacing
the Zab [14] replication protocol (Section 5.4). Finally, we
study how ChainPaxos behaves in a geo-replicated setting
(Section 5.5) and the impact of reconfigurations in our in-
tegrated membership when compared to using an external
coordination service (Section 5.6).

We have implemented a prototype of ChainPaxos in Java,

using a framework for building distributed protocols, Ba-
bel [9], which relies on the Netty [1] framework for the
communications module. Similarly to other authors [8, 26],
to guarantee fairness in our comparisons, the other consen-
sus protocols were implemented using the same codebase
as ChainPaxos. This guarantees that the results are not influ-
enced by specific implementation aspects, such as the pro-
gramming language, client communication patterns or dif-
ferences in optimizations (such as batching). Each protocol
was implemented following the description presented in their
respective publications as well as available code bases for
EPaxos [25] and Ring Paxos [23]. For the latter, as proposed
by the authors, we limit the number of concurrent instances
the leader can start as a form of flow control to mitigate the
loss of multicast messages and include a mechanism for re-
covering from lost messages.

Each replica includes: an application (either the replicated
key-value store or Zookeeper), which receives client requests,
submits them for ordering, and replies to the client when the
operation is executed; a proxy, serving as the intermediary
between the application and the consensus protocol, also redi-
recting operations to the consensus leader when applicable
and; the consensus solution itself, which receives operations
from the proxy and notifies it once their ordering is decided.

5.1 Experimental Setup and Parameters
The experiments were conducted on the Grid5000 testbed
[3], using a cluster of machines with an Intel Xeon Gold
5220 CPU with 18 cores and 96 GiB DDR4 RAM. Machines
are connected through a 25 Gbps Ethernet switched network.
Each replica executes in its own machine, and clients (running
YCSB [7]) execute on 3 independent machines (with multiple
client threads per machine). Each client thread connects to a
replica for executing operations in a closed-loop.

Every protocol is executed in similar conditions, with the
exception of Chain Replication that uses Zookeeper as the ex-
ternal management service (following [33]). For all protocols,
the leader is elected at the start of the experiment and the pro-
tocols run multiple consensus instances in parallel. All results
are the average of 5 independent runs, discarding the start and
end periods of each experiment. In all results presented, the
standard deviation between runs is always below 10%.

In addition to ChainPaxos, Chain Replication [33], and
Ring Paxos [28], we report as: EPaxos, the execution of
EPaxos [26] in a workload where all operations conflict
(which is the same case of other baselines); and EPaxos-
NoDep, the execution of EPaxos in a workload where no
two operations conflict, which is equivalent to running multi-
ple independent Paxos instance in parallel. We note that this
is an unrealistic workload, as it would require all operations
to be independent from each other, being presented only to
provide the best (theoretical) results for a protocol following
the strategy of EPaxos. MultiPaxos refers to the variant of
Multi-Paxos [16] where acceptors forward their accept ack

582    2022 USENIX Annual Technical Conference USENIX Association



0 20 40 60 80 100 120 140 160
Throughput (1000 ops/s) - 3 Replicas

0

2

4

6

8

10
Av

er
ag

e 
la

te
nc

y 
(m

s)
ChainPaxos
ChainReplication
U-RingPaxos
MultiPaxos
Multi-1Learn
EPaxos
EPaxos-NoDeps
RingPaxos

0 20 40 60 80 100 120 140 160
Throughput (1000 ops/s) - 7 Replicas

0

5

10

15

Av
er

ag
e 

la
te

nc
y 

(m
s)

Figure 4: Performance for operations with 128 bytes (CPU
bottleneck).

messages to all replicas, whereas Multi-1Learn represents the
variant where acceptors only send the accept ack to the leader
that, upon collecting a quorum of replies, issues a decided
to all replicas - this protocol has a message flow equal to
Raft [27] in the normal case. U-Ring Paxos [13] is a varia-
tion of Ring Paxos, using unicast instead of multicast, with a
message flow similar to our solution and Chain Replication.

5.2 Performance in a Single Data Center
This section reports the results obtained in a single data center,
running the YCSB benchmark with a replicated key-value
store application. We study scenarios that attempt to saturate
the CPU and the available bandwidth, by varying the size of
the data stored in the key-value store.

CPU Bound. Figure 4 shows the performance of each pro-
tocol in a CPU-bound scenario. For this experiment, clients
execute small (128 bytes) operations and no batching is em-
ployed (i.e., each operation is executed in an individual con-
sensus instance). Clients connect uniformly at random to a
replica, and receive a reply after the operation is executed in
that replica. While this does not provide optimal latency for
some solutions, it maximizes throughput by distributing the
load of handling client requests as much as possible.

These results show that, by pipelining a single message per
each operation through all replicas, ChainPaxos minimizes
CPU usage, achieving the best performance and scalability.
Chain Replication and U-RingPaxos perform worse, as they
propagate some extra messages: acknowledge messages in the
former, and proposals being propagated to the leader through
the chain in the latter. These messages could be batched or
piggybacked with a small penalty to latency. We note that the
throughput of ChainPaxos with 7 replicas, which tolerates 3

0 10 20 30 40 50
Throughput (1000 ops/s) - 3 Replicas

0

1

2

3

4

5

6

Av
er

ag
e 

la
te

nc
y 

(m
s)

ChainPaxos
ChainReplication
U-RingPaxos
MultiPaxos
Multi-1Learn
EPaxos
EPaxos-NoDeps
RingPaxos

0 10 20 30 40 50
Throughput (1000 ops/s) - 7 Replicas

0.0

2.5

5.0

7.5

10.0

12.5

Av
er

ag
e 

la
te

nc
y 

(m
s)

Figure 5: Performance with network bottleneck.

faults, is higher than that of Chain Replication with both 3
and 7 replicas, which tolerate 2 and 6 faults, respectively.

For both versions of MultiPaxos, the leader (and all replicas
in regular MultiPaxos) transmits and receives messages from,
at least, a majority of replicas, resulting in higher CPU usage
and lower performance. The impact of this effect increases
with the number of replicas. For EPaxos, when all operations
need to be ordered, the algorithm requires two rounds of
communication, leading to an higher number of messages
and lower throughput. The execution of EPaxos-NoDeps is
similar to executing multiple parallel MultiPaxos instances,
distributing the load among replicas. This leads to an higher
throughput than MultiPaxos and EPaxos that, unlike Chain-
Paxos, also decreases with the number of replicas, as more
messages need to be processed. Furthermore, we note that
EPaxos-NoDeps is not totally ordering all operations, as other
protocols do. RingPaxos is tricky to tune, as a single lost mul-
ticast message can stall the entire system. Even for our best
configuration (with 150 simultaneous consensus instances),
RingPaxos performance is worse than U-RingPaxos.

Overall, these results show that lowering the number of
messages processed by each replica allows to achieve higher
throughput with a negligible latency overhead. Furthermore,
the throughput of chain-based protocols degrades very slowly
when increasing the number of replicas, while the through-
put of other protocols degrades quickly, as the number of
messages processed by each node depends on the number of
replicas in the system. This is relevant for supporting critical
systems with high availability requirements.

Network Bound. Figure 5 presents the performance in a
network-bound scenario. For this experiment, the bandwidth
of replicas is limited to 1Gbps, with clients issuing 2048 byte
operations, saturating the bandwidth of the replicas without

USENIX Association 2022 USENIX Annual Technical Conference    583



3 5 7
Number of replicas

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

la
te

nc
y 

(m
s)

ChainPaxos
ChainReplication
U-RingPaxos
MultiPaxos
Multi-1Learn
EPaxos
EPaxos-NoDeps
RingPaxos

Figure 6: Latency under low load.

saturating their CPU. For saving the bandwidth consumed in
redirects and maximizing the bandwidth available for the con-
sensus protocol, all clients connect directly to the leader/head
(uniformly distributed in both EPaxos variants).

Results show that ChainPaxos, ChainReplication, and U-
RingPaxos, by only receiving and transmitting each operation
once, achieve maximum use of available bandwidth. For these
solutions, the replicas were consuming approximately 900
Mb/s of both inbound and outbound bandwidth. This allows
the system to maintain its performance with an increasing
number of replicas. For MultiPaxos, since the leader needs
to transmit each operation to all other replicas, its bandwidth
usage is disproportionately higher than that of other replicas,
limiting their throughput. Furthermore, the throughput de-
creases with the number of replicas. EPaxos versions suffer
from the same issue, but since EPaxos uses multiple leaders,
it distributes the load of the leader across all nodes, leading to
better scalability than MultiPaxos. EPaxos-NoDeps requires
less communication steps, having higher throughput, but still
far from ChainPaxos. For RingPaxos, the higher message size
results in more frequent message losses. Even configuring
the number of concurrent instances to 20 as to achieve the
best results, the performance is substantially lower than that
of ChainPaxos and Chain Replication.

Latency with a fixed throughput. Figure 6 shows the
latency with a fixed load – clients execute 9000 operations
per second, using payloads of 128 bytes. In this experiment,
clients are setup to minimize latency: in RingPaxos and Multi-
Paxos clients connect directly to the leader; in EPaxos clients
connect to all replicas uniformly; in Chain Replication and
U-RingPaxos clients connect to the tail; and in ChainPaxos
to the replica in the position n/2+1. Error bars present the
standard deviation of the results.

The results show that, with 3 replicas, ChainPaxos and
MultiPaxos variants exhibit the lowest latency, since they can
respond to client requests after a single communication step.
With increasing numbers of replicas, the latency of Chain-
Paxos increases, while the latency of both MultiPaxos vari-
ants remains mostly unaffected. Since both U-Ring Paxos and

0 200 400 600 800 1000 1200 1400 1600
Throughput (1000 ops/s) - 3 Replicas

0

1

2

3

4

5

Av
er

ag
e 

la
te

nc
y 

(m
s)

Chain Reads 0-100%
Local Reads 50%
Local Reads 95%
EPaxos-NoDeps 100%

0 200 400 600 800 1000 1200 1400 1600
Throughput (1000 ops/s) - 7 Replicas

0

2

4

6

8

Av
er

ag
e 

la
te

nc
y 

(m
s)

Figure 7: Performance with read operations.

Chain Replication require more communication steps until a
reply is generated, their latency is always higher than Chain-
Paxos. We note that ChainPaxos with 5 replicas presents a sim-
ilar latency to Chain Replication with 3 replicas, in which case
both tolerate the failure of 2 replicas. In EPaxos, since con-
flicts lead to extra communication rounds, the variant where
all operations conflict (EPaxos) naturally shows higher latency.
For RingPaxos, multicast message drops (which happen even
without saturation) and retransmissions lead to higher latency.

5.3 Performance of Read Operations
Figure 7 shows the impact of ChainPaxos’s novel linealizable
read approach in workloads with different read ratios and
payloads of 128 bytes. The throughput of executing reads as
normal (consensus) operations (Chain Reads) is constant, re-
gardless of the ratio of read operations. For our novel approach
(Local Read), the throughput is much higher than executing
reads as normal operations, and the throughput scales both
with the ratio of read operations and with the number of repli-
cas. This is explained by the fact that as reads impose no
overhead to the consensus protocol and the load is distributed
evenly among replicas, more replicas can process more reads.
The high throughput of ChainPaxos’s local linearizable reads
comes at the cost of a small additional latency under low load.

For comparison, we include the results of EPaxos-NoDeps,
the Paxos-based protocol with best performance in the pre-
vious results. The results show that ChainPaxos achieves a
significantly higher throughput than EPaxos-NoDeps.

5.4 Zookeeper case-study
To evaluate the performance of our protocol in a more realistic
scenario, we adapted ZooKeeper [12] to use ChainPaxos as its
consensus protocol, instead of Zab [14]. While some features
were not implemented, such as ephemeral nodes, our imple-
mentation fully supports creating, updating, and retrieving

584    2022 USENIX Annual Technical Conference USENIX Association



0 20 40 60 80 100 120
Throughput (1000 ops/s)

0

2

4

6

8

10

12

14
Av

er
ag

e 
la

te
nc

y 
(m

s)
Zk-Zab 3 Reps
Zk-Zab 5 Rep
Zk-Zab 7 Rep
Zk-Chain 3 Reps
Zk-Chain 5 Rep
Zk-Chain 7 Rep

(a) Write-only workload

0 100 200 300 400 500
Throughput (1000 ops/s)

0

1

2

3

4

Av
er

ag
e 

la
te

nc
y 

(m
s)

50% Weak Zk-Zab
50% Weak Zk-Chain
50% Strong Zk-Zab
50% Strong Zk-Chain

95% Weak Zk-Zab
95% Weak Zk-Chain
95% Strong Zk-Zab
95% Strong Zk-Chain

(b) Mixed workload with 3 replicas

0 100 200 300 400 500
Throughput (1000 ops/s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e 

la
te

nc
y 

(m
s)

50% Weak Zk-Zab
50% Weak Zk-Chain
50% Strong Zk-Zab
50% Strong Zk-Chain

95% Weak Zk-Zab
95% Weak Zk-Chain
95% Strong Zk-Zab
95% Strong Zk-Chain

(c) Mixed workload with 7 replicas

Figure 8: Performance of Chain-based Zookeeper vs original
Zookeeper.

znodes. We evaluated the performance of our implementa-
tion (ZK-Chain) against the original ZooKeeper using Zab
(ZK-Zab), in a setup similar to the CPU bound scenario of
Section 5.2. The results are presented in Figure 8.

For a write-only workload (Fig. 8a), the results show that
ChainPaxos achieves higher throughput than the original
Zookeper, with the difference increasing with the number of

replicas. This is due to the lower number of messages of our
protocol (Zab’s message pattern is similar to Multi-1Learn).

Figures 8b and 8c present mixed workloads (50% and
95% of read operations), with both weak and strong reads.
Weak reads represent the regular reads of ZooKeeper, where
a replica replies with its current state, allowing for stale data
to be served (e.g., with late replicas and under network parti-
tions). Strong reads, in our solution, are executed using lin-
earizable local reads. While ZooKeeper does not support lin-
earizable reads, the authors suggest issuing a sync operation
before a read as a close approximation of linearizability in
most cases. The results show that, unlike with Zab, the strong
reads with ChainPaxos scale to a throughput similar to execut-
ing weak reads. Overall, the throughput with ChainPaxos is
higher than with Zab for the same setting, and the difference
increases with the number of replicas.

5.5 Performance in a Geo-Replicated Setting
We evaluated our protocol in a geo-replicated setting by
emulating an environment with 5 sites. Using the Linux
tc command, we limited the bandwidth to 1Gbps, and in-
creased latency to the following values, extracted from https:
//cloudping.co, related to AWS EC2 data centers.

Sites A B C D E
North Virginia (A) - 92 127 204 186

Frankfurt (B) 88 - 210 288 279
São Paulo (C) 122 207 - 338 359

Sydney (D) 211 292 325 - 161
Seoul (E) 188 287 309 156 -

In these experiments, we did not use Ring Paxos, since
IP multicast is typically unavailable across data centers. The
replica in site A is always the leader/head. Experiments with
3 replicas use sites A, B, and C. Clients connect to the replica
that leads to the best performance: the leader for MultiPaxos;
evenly distributed for EPaxos, and; the tail for chain-based
solutions.

Figure 9 presents the throughput and latency when using
all available bandwidth. As within a single data center, Chain-
Paxos, Chain Replication, and U-Ring Paxos are able to make
optimal use of available bandwidth, providing higher through-
put than other protocols that order all operations. The EPaxos
variant without inter-operation dependencies is able to main-
tain its throughput with a varying number of replicas, since
the cost of transmitting each operation to all nodes is divided
among the multiple leaders. However, we remind the reader
that this configuration of EPaxos provides weaker guarantees
than the other alternatives. As for latency, the latency of the
chain-based solutions degrades as the number of replicas in-
creases, as it takes longer for the messages to traverse the
chain. For a high number of replicas, MultiPaxos variants
provide lower latency, as communication between the leader
and other replicas proceeds in parallel, although with, at most,
half the throughput of ChainPaxos.

USENIX Association 2022 USENIX Annual Technical Conference    585

https://cloudping.co
https://cloudping.co


0 10 20 30 40 50
Throughput (1000 ops/s)

0

200

400

600

800

Av
er

ag
e 

la
te

nc
y 

(m
s)

ChainPaxos-Perf
ChainReplication
U-RingPaxos
MultiPaxos
Multi-1Learn
EPaxos
EPaxos-NoDeps

(a) 3 Replicas

0 5 10 15 20 25 30 35 40
Throughput (1000 ops/s)

0

200

400

600

800

1000

1200

1400

1600

Av
er

ag
e 

la
te

nc
y 

(m
s)

(b) 5 Replicas

Figure 9: Performance in geo-replicated setting.

5.6 Impact of Reconfiguration
In our final experiment we evaluate the impact of reconfig-
uration, comparing ChainPaxos that uses its own integrated
management mechanism and Chain Replication that uses an
external management scheme based on Zookeeper (execut-
ing on dedicated machines). We conduct these experiments
in the geo-replicated scenario with independent Zookeeper
instances at sites A, B, and D. This distribution minimizes
latency for replicas without a local Zookeeper replica. We
used 1s timeouts to suspect the failure of another node (both
in ChainPaxos and in ZooKeeper).

Experiments run for 90 seconds. Every 10 seconds the fol-
lowing reconfiguration events occur (denoted by vertical red
lines for replica failures and green lines for replica additions):
10s) the tail node fails; 30s) the middle node fails; 50s) the
head/leader fails; 70s) the head and middle replicas fail simul-
taneously. Replicas are added at 20s, 40s, 60s, 80s, in sites
where a replica had previously failed. Clients issue operations
to a random active replica to distribute the load.

Figure 10 shows the throughput observed during the exper-
iments. Despite Chain Replication using additional resources
(3 extra machines executing Zookeeper), it takes more time to
perform a reconfiguration than ChainPaxos, particularly when

 0

 2

 4

 6

 8

 10

 12

 14

 10  20  30  40  50  60  70  80  90

T
h

ro
u
g

p
u

t 
(1

0
0

0
 o

p
s
/s

)

Experience time (s)

ChainPaxos
ChainReplication

Figure 10: Reconfiguration

adding replicas to the set (green vertical lines). This happens
because any reconfiguration has to be coordinated through
Zookeeper. However, ChainPaxos takes longer to perform the
reconfiguration when the leader fails because it resorts to the
regular communication pattern of Paxos, whereas Chain Repli-
cation only fetches the new leader from Zookeeper. When
the leader and middle nodes fail simultaneously (70s), both
solutions take the same time to perform reconfiguration be-
cause ChainPaxos can handle both reconfigurations in parallel
(albeit using two operations), whereas Chain Replication per-
forms two sequential reconfiguration steps with Zookeeper.
In general, ChainPaxos handles reconfiguration faster than
Chain Replication without the cost of requiring additional ma-
chines to run the external management system, while avoiding
the vulnerabilities to network partitions that can compromise
the safety of the system [2].

6 Final Remarks
This paper presented ChainPaxos, a distributed consensus
algorithm for high throughput replication of deterministic ser-
vices. ChainPaxos exploits a pipeline communication pattern
which allows to reduce the number of messages that each
replica needs to send and process, while leveraging the foun-
dations of Paxos to allow leader exchanges. Unlike previous
solutions that exploit this communication pattern, ChainPaxos
relies on a novel approach to execute linearizable read op-
erations without incurring in any additional communication
cost. Finally, ChainPaxos integrates membership manage-
ment within the protocol. The fully specified algorithm fills
an empty space in the literature and, unlike many recent pro-
posal, decouples the fault-tolerance of ChainPaxos from that
of the external coordination service. Our extensive evaluation
shows that ChainPaxos achieves higher throughput and better
scalability when compared to state-of-the-art solutions. Fur-
thermore, our approach for executing linearizable reads has a
huge impact on scalability. The results illustrate the benefits
of our solution in the context of a key value store and the
Zookeeper coordination services (where ChainPaxos leads to
better performance than Zab).

586    2022 USENIX Annual Technical Conference USENIX Association



References

[1] Netty framework. https://netty.io/.

[2] Mohammed Alfatafta, Basil Alkhatib, Ahmed Alquraan,
and Samer Al-Kiswany. Toward a generic fault toler-
ance technique for partial network partitioning. In 14th
{USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 20), pages 351–368, 2020.

[3] Daniel Balouek, Alexandra Carpen Amarie, Ghislain
Charrier, Frédéric Desprez, Emmanuel Jeannot, Em-
manuel Jeanvoine, Adrien Lèbre, David Margery, Nico-
las Niclausse, Lucas Nussbaum, Olivier Richard, Chris-
tian Pérez, Flavien Quesnel, Cyril Rohr, and Luc
Sarzyniec. Adding virtualization capabilities to the
Grid’5000 testbed. In Ivan I. Ivanov, Marten van Sin-
deren, Frank Leymann, and Tony Shan, editors, Cloud
Computing and Services Science, volume 367 of Com-
munications in Computer and Information Science,
pages 3–20. Springer International Publishing, 2013.

[4] William J Bolosky, Dexter Bradshaw, Randolph B Haa-
gens, Norbert P Kusters, and Peng Li. Paxos replicated
state machines as the basis of a high-performance data
store. In Proc. NSDI’11, USENIX Conference on Net-
worked Systems Design and Implementation, pages 141–
154, 2011.

[5] Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance. In Proceedings of the Third Sympo-
sium on Operating Systems Design and Implementation,
OSDI ’99, page 173–186, USA, 1999. USENIX Associ-
ation.

[6] Tushar D Chandra, Robert Griesemer, and Joshua Red-
stone. Paxos made live: an engineering perspective. In
Proceedings of the twenty-sixth annual ACM symposium
on Principles of distributed computing, pages 398–407.
ACM, 2007.

[7] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154.
ACM, 2010.

[8] Vitor Enes, Carlos Baquero, Tuanir França Rezende,
Alexey Gotsman, Matthieu Perrin, and Pierre Sutra.
State-machine replication for planet-scale systems. In
Proceedings of the Fifteenth European Conference on
Computer Systems, EuroSys ’20, New York, NY, USA,
2020. Association for Computing Machinery.

[9] Pedro Fouto, Pedro Ákos Costa, Nuno Preguiça, and
Joao Leitao. Babel: A framework for developing per-
formant and dependable distributed protocols. arXiv
preprint arXiv:2205.02106, 2022.

[10] Rachid Guerraoui, Dejan Kostic, Ron R Levy, and
Vivien Quema. A high throughput atomic storage algo-
rithm. In 27th International Conference on Distributed
Computing Systems (ICDCS’07), pages 19–19. IEEE,
2007.

[11] Heidi Howard, Dahlia Malkhi, and Alexander Spiegel-
man. Flexible paxos: Quorum intersection revisited.
arXiv preprint arXiv:1608.06696, 2016.

[12] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira,
and Benjamin Reed. Zookeeper: Wait-free coordination
for internet-scale systems. In USENIX annual technical
conference, volume 8. Boston, MA, USA, 2010.

[13] Parisa Jalili Marandi, Marco Primi, Nicolas Schiper, and
Fernando Pedone. Ring paxos: High-throughput atomic
broadcast. The Computer Journal, 60(6):866–882, 2017.

[14] Flavio P Junqueira, Benjamin C Reed, and Marco Ser-
afini. Zab: High-performance broadcast for primary-
backup systems. In 2011 IEEE/IFIP 41st International
Conference on Dependable Systems & Networks (DSN),
pages 245–256. IEEE, 2011.

[15] Leslie Lamport. The Part-time Parliament. ACM Trans.
Comput. Syst., 16(2):133–169, May 1998.

[16] Leslie Lamport. Paxos made simple. ACM SIGACT
News (Distributed Computing Column) 32, 4 (Whole
Number 121, December 2001), pages 51–58, December
2001.

[17] Leslie Lamport. Generalized consensus and paxos.
Technical report, Technical Report MSR-TR-2005-33,
Microsoft Research, March 2005.

[18] Leslie Lamport. Fast paxos. Distributed Computing,
19(2):79–103, 2006.

[19] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Ver-
tical paxos and primary-backup replication. Technical
report, 2009.

[20] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Re-
configuring a state machine. SIGACT News, 41(1):63–
73, 2010.

[21] Leslie Lamport and Mike Massa. Cheap paxos. In
International Conference on Dependable Systems and
Networks, 2004, pages 307–314. IEEE, 2004.

[22] Yanhua Mao, Flavio P Junqueira, and Keith Marzullo.
Mencius: building efficient replicated state machines for
wans. In Proceedings of the 8th USENIX conference on
Operating systems design and implementation, pages
369–384. USENIX Association, 2008.

USENIX Association 2022 USENIX Annual Technical Conference    587

https://netty.io/


[23] Parisa Jalili Marandi. U-Ring paxos code.
https://github.com/sambenz/URingPaxos. (Accessed
Oct 2019.).

[24] Parisa Jalili Marandi, Marco Primi, and Fernando Pe-
done. Multi-ring paxos. In Proceedings of the 2012
42Nd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), DSN ’12,
pages 1–12, Washington, DC, USA, 2012. IEEE Com-
puter Society.

[25] Iulian Moraru, David G. Andersen, and Michael Kamin-
sky. Epaxos code. https://github.com/efficient/epaxos.
(Accessed Mar-2019.).

[26] Iulian Moraru, David G. Andersen, and Michael Kamin-
sky. There is More Consensus in Egalitarian Parliaments.
In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, SOSP ’13, pages 358–
372, New York, NY, USA, 2013. ACM.

[27] Diego Ongaro and John Ousterhout. In search of an un-
derstandable consensus algorithm. In 2014 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 14),
pages 305–319, 2014.

[28] Parisa Jalili Marandi, M. Primi, N. Schiper, and F. Pe-
done. Ring paxos: A high-throughput atomic broadcast
protocol. In 2010 IEEE/IFIP International Conference
on Dependable Systems Networks (DSN), pages 527–
536, June 2010.

[29] Daniel Porto, João Leitão, Cheng Li, Allen Clement,
Aniket Kate, Flavio Junqueira, and Rodrigo Rodrigues.
Visigoth fault tolerance. In Proceedings of the Tenth
European Conference on Computer Systems, pages 1–
14, 2015.

[30] Fred B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Comput. Surv., 22(4):299–319, December 1990.

[31] Jeff Terrace and Michael J Freedman. Object storage on
craq: High-throughput chain replication for read-mostly
workloads. In USENIX Annual Technical Conference,
2009.

[32] Robbert Van Renesse and Deniz Altinbuken. Paxos
made moderately complex. ACM Comput. Surv.,
47(3):42–1, 2015.

[33] Robbert van Renesse and Fred B. Schneider. Chain
replication for supporting high throughput and availabil-
ity. In Proceedings of the 6th Conference on Symposium
on Opearting Systems Design & Implementation - Vol-
ume 6, OSDI’04, pages 7–7, Berkeley, CA, USA, 2004.
USENIX Association.

[34] Avishai Wool. Quorum systems in replicated databases:
Science or fiction? IEEE Data Eng. Bull., 21(4):3–11,
1998.

588    2022 USENIX Annual Technical Conference USENIX Association



A Correctness

In this section, we present the correctness argument for Chain-
Paxos, by showing that the execution of an instance of Chain-
Paxos is equivalent to an execution in Multi-Paxos. We con-
sider the following cases: (i) an instance where all nodes agree
on the leader; (ii) an instance that elects a new leader; (iii) in-
stances following a new leader election; and (iv) instances
where a replica is removed or added.

A.1 All nodes agree on the leader
This case is the one described in Section 3.3. In Multi-Paxos,
an equivalent run would consist in: (i) the leader sending the
accept message to all replicas; (ii) each node replying with
an accept ack message to the leader that learns the decided
value; (iii) the leader informing all other nodes of the learned
value.

In ChainPaxos, the accept message is also sent to all nodes,
but instead of being sent directly it is sent indirectly as the
accept message is forwarded across all nodes of the chain.

The accept message also encodes the accept ack messages
of the nodes through which it passes. When the leader re-
ceives the accept ack message from the tail of the chain, this
message is equivalent to having all nodes sending the accept
ack message to the leader in Multi-Paxos.

Piggybacked in the following accept messages (even for
the NOOP request), the leader sends to all other nodes in-
formation that it has received the accept ack from all nodes
of the chain (mack in accept message), which is equivalent to
forwarding the learned value to all replicas in Multi-Paxos.

As messages are used to update the local state using the
same logic in both ChainPaxos and Multi-Paxos, the execution
of an instance in ChainPaxos is equivalent to the execution of
an instance in Multi-Paxos.

A.2 Instance with a leader election (two-
phases)

We start by considering the effects of an instance executed
with the two phases of the Paxos protocol. In this case, the
first phase of both protocols is identical – ChainPaxos uses
the same message flow as Paxos, since prepare and prepare
ok messages are sent directly between the node starting the
prepare and all other replicas. The logic to process the pre-
pare message in ChainPaxos differs from Multi-Paxos in the
following aspect: ChainPaxos only acknowledges prepare
messages for a given instance with prepare numbers higher
than any prepare number used by any other leader in any
other instance. The only implication of this is that the replica
executing the prepare, might time-out several times. This is
not different from Multi-Paxos, where the replica will com-
plete the prepare in the current instance, and then, if any other
following instance had already been executed by a different

leader (potentially using the special prepare number zero), it
would have to repeat the prepare phase for each such instance.
This is true because in ChainPaxos the prepare number is
continually used by a leader in all subsequent instances after
the one in which it complete the prepare phase successfully.

The second phase of ChainPaxos consists in sending the
accept message to all nodes. As explained in the previous
case, ChainPaxos flow of messages is equivalent to the Multi-
Paxos flow of messages. As the logic employed to process the
messages is the same as in Multi-Paxos, also in this case, the
execution is equivalent to that of an instance of Multi-Paxos.

A.3 Instances following a new leader election
When a new leader is elected, by running the first phase of
Multi-Paxos for instance ni, it becomes the leader of all in-
stances n j such that nj ≥ ni, for which it will subsequently
issue accept messages through the chain (in order). To prove
the correctness of ChainPaxos, we show that this execution
is equivalent to running the two phases of the Paxos protocol
for all instances nj, such that nj ≥ ni.

The processing of the prepare message ignores the prepare
if the node has seen an higher prepare number employed by
another leader (for any instance). If the prepare is not ignored,
it runs the Paxos logic for all instances nj, such that nj ≥
ni, with the prepare ok message including the information
relative to all these instances. This information includes any
accepted value for each of those instances and the prepare
number associated with that accepted value. The processing
of the prepare ok message also executes the Paxos logic for
all instance nj ≥ ni, such that the new leader will send new
accept messages for all those instances (in order) where, if
there was already a value accepted by any replica for that
instance, the new leader will propose that value and, similar
to Multi-Paxos, if more than one value had been accepted
by different replicas, the leader proposes the value with the
highest associated prepare number. This ensures that for every
instance nj ≥ ni, if some value had already been accepted by
a majority of replicas, then the new leader will propose that
value with his current propose value.

Thus, executing the first phase of the Multi-Paxos in Chain-
Paxos for instance ni and issuing the accept for all instances
nj, such that nj ≥ ni as described above is equivalent to exe-
cuting the two phases of the Paxos protocol for all instances
nj, such that nj ≥ ni, thus ensuring the correctness of Chain-
Paxos.

A.4 Leader Conflicts
As in Paxos, it is possible that two nodes receive a quorum
of prepare ok messages for different prepare numbers con-
currently. In this case, accept messages from the node with
the lowest prepare number will be dropped during their prop-
agation and will never be accepted by a majority of replicas.

USENIX Association 2022 USENIX Annual Technical Conference    589



The processing of accept messages also sets the leader and
prepare number being used by the leader in all replicas. This
is needed because a minority of replicas might have missed
the prepare message.

If a previous leader is incorrectly suspected of being faulty,
it might send accept messages for instances ni ≥ n while
a new node becomes leader in instance n. In this case, just
like in regular Multi-Paxos, there are two possible scenarios
for each instance ni: i) the accept message of the previous
leader reached a majority of nodes (i.e., has been decided)
before the prepare message of the new leader, in which case at
least one prepareOk message received by the new leader will
contain the value proposed by that accept message, and the
new leader will simply propose that same value; ii) the accept
has been “cut-off” by the prepare message of the new leader
(i.e., a node in the chain rejected the accept after receiving
the prepare with an higher sequence number). In this case,
the new leader may or may not receive the value proposed
by that accept in a prepareOk message. Regardless, since the
instance had not been decided, both alternatives are correct.

A.5 Removal and addition of a replica

We now discuss the correctness of ChainPaxos when reconfig-
uring the system to either remove or add a replica, which has
been presented in Section 3.4. Such reconfigurations resort to
special SMR operations which have to be ordered by Chain-
Paxos and executed by replicas. A challenge that is present
in such reconfigurations is that the number of replicas that
constitute a majority of the system might change due to the
execution of these operations.

In ChainPaxos, we define a minimum quorum size, and
then vary the size of the quorum required to decide operations
to always be a majority quorum. For instance, assuming a
configuration with 5 initial replicas (where a majority quorum
is 3), and a minimum quorum size of 3, adding 2 replicas
(to a total of 7), would increase the majority quorum to 4.
If 2 replicas are then removed, the majority quorum will
be back to 3. However, due to the minimum quorum size,
removal of further replicas would not decrease the quorum
size below 3, which also ensures that the number of replicas
in the system can never be below 3. The minimum quorum
size is independent from the initial configuration, serving as a
threshold below which we do not wish the system to continue
functioning.

Note that in ChainPaxos no replica considers an instance as
decided before knowing the operations that have been ordered
in all previous instances, hence a replica will never use the
incorrect quorum size to decide (and execute) an operation.

We start with the addition of a replica. To ensure correct-
ness we need to show that the replica that is added in an
instance ni will be considered towards forming the major-
ity of accept ack messages necessary to decide any instance
n j > ni. This derives from the agreement property of Chain-

Paxos, which ensures that all (correct) replicas will agree on
the instance in which the new replica is added to the sys-
tem. Since replicas only consider an operation as decided
after learning the decided values for all previous instances, no
replica will ignore the participation of the new replica when
deciding the value of any instance n j, since the replica has
already been added on instance ni (i.e., the instance where the
new replica is added), affecting the size of the quorums.

Regarding removal of nodes, to ensure correctness we need
to show that the removal of a replica in instance ni, makes
it impossible for that replica to affect the decided value in
any instance n j > ni (i.e., the accept ack messages of that
replica are never considered to achieve a majority in such
instances). As discussed previously, the accept message that
is forwarded along the chain, in round ni, to remove a replica
r is forwarded by the node directly before r to both r and its
successor replica in the chain. Any node that receives such a
message, adds r to its marked set. This makes that any accept
message for a subsequent instance is never sent to r, hence r
is not able to increment the the counter for accept ack within
those messages.

This happens, even if nodes have not yet locally decided
the outcome of instance ni. This could be problematic if a
new leader is meanwhile elected before the outcome of this
instance is locally decided (and executed) by every node, since
that node could be continuously skipped despite the fact that
he was never removed from the system. However, if a leader
change happens, the contents of the marked set of replicas
are removed. This is performed either when the node replies
to the prepare of the new leader, or when it receives an accept
message from the new leader (which can be identified locally
since the accept message will carry a prepare number higher
than the last prepare number observed by that replica). This
ensures that r receives subsequent accept messages for the
re-executions of instances n j > ni until the leader proposes
the removeNode(r) in some instance (assuming r remains
suspected).

Finally, in the case of concurrent addition or removal of
replicas to the system, we note that ChainPaxos executes each
addition or removal as an independent operation. We note that
the fault detection mechanism may lead replicas to incorrectly
suspect other replicas (e.g. due to temporary network failures).
In this case, if a replica is incorrectly removed, it can ask to
rejoin the system (note that ChainPaxos tries to propagate the
remove operation to the node to be removed, as it is still part
of the system in that instance). Finally, we note that it is easy
to minimize scenarios where replicas ask for the removal of
correct replicas by having the leader avoid to either remove
replicas that he perceives as active, or removing replicas that
were suspected by replicas being currently removed.

590    2022 USENIX Annual Technical Conference USENIX Association



B Artifact Appendix

Abstract
The artifact includes the implementation of ChainPaxos, along
with the other consensus algorithms that are studied in the
evaluation, with intructions on how to launch and test them.
These implementations include a simple replicated key-value
store that was used to benchmark the algorithms. Additionally,
we include our implementation of ChainPaxos in ZooKeeper,
which replaces Zab.

For reproducibility, our artifact includes the client-side code
that was used in the paper to measure the various performance
metrics of the algorithms, along with instructions on how to
run it and how to parse and interpret its results.

Scope
The artifact allows executing our consensus algorithm, Chain-
Paxos, which supports different read execution techniques.
Our prototype fully supports the operations related with the
integrated membership. The artifact includes everything that
was used in the paper: source-code of all solutions; client
source-code; scripts to execute the experiments; scripts to
generate the plots from the experiment logs and; instructions
on how to reproduce all plots.

Contents
The artifact is divided in four parts, which are distributed
across four repositories:

ChainPaxos: This repository contains the code for our full
implementation of ChainPaxos. Additionally, it includes
the key-value store application and the different consen-
sus algorithms that we used to compare against Chain-
Paxos (in the Figures 4 to 7, 9 and 10). The repository
also includes information on how to compile and deploy
ChainPaxos.

The source-code in the repository is divided in multiple
Java packages, with the following structure: the pack-
age chainpaxos contains our implementation of Chain-
Paxos; the code for the key-value store application is on
package app; packages frontend and common contain
some generic interfaces and classes to uniformize the
interaction between the application and all consensus
algorithms and; all other packages are named after the
consensus algorithms that we used to compare against
our solution in the paper.

ZooKeeper with ChainPaxos: This part contains our modi-
fied version of ZooKeeper that replaces Zab by Chain-
Paxos, that was used for the results of Figure 8. The
majority of code modifications are contained in the pack-
age chain that is on the zookeeper-server module.

Client-side benchmark: This part contains all the client
code that was used in the entire experimental evaluation,
both to benchmark the various algorithms using the key-
value store, and to benchmark the original ZooKeeper
against our version with ChainPaxos. The source-code
itself consists of YCSB drivers, one for the key-value
store and another for ZooKeeper. The repository also in-
cludes the scripts used to perform our experiments, and
instructions on how to use them in order to reproduce
the results in the paper.

Results parser: Finally, our artifact includes a series of
Python scripts that were used to parse the results of
each experiment and generate the plots presented in this
paper. The client-side benchmark repository contains
instructions on how to use these scripts.

Hosting
The artifacts can be found in the following locations:

• ChainPaxos

– https://github.com/pfouto/chain

– master branch
– commit 72cebf2

• ZooKeeper with ChainPaxos

– https://github.com/pfouto/chain-zoo

– master branch
– commit 65a9690

• Client-side benchmark

– https://github.com/pfouto/chain-client

– master branch
– commit ed28200

• Results parser

– https://github.com/pfouto/
chain-results

– master branch
– commit e716e4a

Requirements
While the artifact does not have special hardware require-
ments, all experiments were conducted in the Grid5000
testbed, using the Gros cluster. The client-side benchmark
repository includes instructions on how to reproduce the ex-
periments on this cluster. Furthermore, the same repository
provides instructions on how to deploy and run the experi-
ments in any other cluster platform (e.g. on a cloud infrastruc-
ture), which requires some additional setup, but should still
allow to reproduce all the results in the paper.

USENIX Association 2022 USENIX Annual Technical Conference    591

https://github.com/pfouto/chain
https://github.com/pfouto/chain/tree/73ef5fa68ba751f02dd837cb57fff2aac080338b
https://github.com/pfouto/chain-zoo
https://github.com/pfouto/chain-zoo/tree/65a9690a2956415aedd4234dd39d244704660f1e
https://github.com/pfouto/chain-client
https://github.com/pfouto/chain-client/tree/ed2820020a56a0aca634f249eedc85ae73d9f4f2
https://github.com/pfouto/chain-results
https://github.com/pfouto/chain-results
https://github.com/pfouto/chain-results/tree/e716e4ad7f7a664dea5dacd55e2f9fbbf97a0b75
https://www.grid5000.fr/w/Grid5000:Home
https://www.grid5000.fr/w/Nancy:Hardware#gros




CBMM: Financial Advice for Kernel Memory Managers

Mark Mansi
markm@cs.wisc.edu

University of Wisconsin - Madison

Bijan Tabatabai
btabatabai@wisc.edu

University of Wisconsin - Madison

Michael M. Swift
swift@cs.wisc.edu

University of Wisconsin - Madison

Abstract
First-party datacenter workloads present new challenges to
kernel memory management (MM), which allocates and maps
memory and must balance competing performance concerns
in an increasingly complex environment. In a datacenter, per-
formance must be both good and consistent to satisfy service-
level objectives. Unfortunately, current MM designs often
exhibit inconsistent, opaque behavior that is difficult to repro-
duce, decipher, or fix, stemming from (1) a lack of high-quality
information for policymaking, (2) the cost-unawareness of
many current MM policies, and (3) opaque and distributed
policy implementations that are hard to debug. For example,
the Linux huge page implementation is distributed across 8
files and can lead to page fault latencies in the 100s of ms.

In search of a MM design that has consistent behavior, we
designed Cost-Benefit MM (CBMM), which uses empirically
based cost-benefit models and pre-aggregated profiling in-
formation to make MM policy decisions. In CBMM, policy
decisions follow the guiding principle that userspace bene-
fits must outweigh userspace costs. This approach balances
the performance benefits obtained by a kernel policy against
the cost of applying it. CBMM has competitive performance
with Linux and HawkEye, a recent research system, for all
the workloads we ran, and in the presence of fragmentation,
CBMM is 35% faster than Linux on average. Meanwhile,
CBMM nearly always has better tail latency than Linux or
HawkEye, particularly on fragmented systems. It reduces the
cost of the most expensive soft page faults by 2-3 orders of
magnitude for most of our workloads, and reduces the frequen-
cy of 10-1000µs-long faults by around 2 orders of magnitude
for multiple workloads.

1 Introduction

Datacenter workloads present new challenges to kernel mem-
ory management (MM). MM encompasses a large collection
of kernel mechanisms and policies to allocate and map phys-
ical memory. Cumulatively, they comprise a complex set of

tradeoffs that, when poorly navigated, lead to poor perfor-
mance or unexpected behavior. For example, we found that
for some workloads on Linux, a soft page fault lasting 25ms
occurs every 100ms. This drastic tail latency is due to mem-
ory compaction or reclamation when attempting to allocate
a huge page – a misnavigated tradeoff. Many applications
would violate response latency objectives if one request per
100ms takes 25ms due to a page fault. As a result, Redis, Mon-
goDB, and others advise users to disable Linux’s Transparent
Huge Page (THP) feature [2, 3, 4, 7, 50]. Table 1 lists other
examples of MM policies and their potential pathologies.

The hardware and software in modern datacenters differ
vastly from those in use when MM techniques were first de-
signed. Increased memory capacities allow more workloads to
run but bring challenges too: huge page management becomes
more critical due to increased reliance on TLB performance,
but memory fragmentation and huge page management over-
heads also increase with memory capacity [36]. Datacenters
also prioritize tail latency as a key service-level metric, in
addition to median latency and throughput [19]. Datacen-
ter behavior must be consistent, i.e., low variance, without
compromising performance metrics to satisfy service-level
objectives and efficiency goals.

Unfortunately, current MM designs often fall short of mod-
ern computing needs by exhibiting inconsistent, opaque be-
havior that is difficult to reproduce, decipher, or fix. These
issues come from three key limitations.

First, kernel MM must predict workload behavior in
an information-poor environment. Current MM design-
s rely on online measurements, particularly page table ac-
cess/dirty bits and the frequency and location of page faults.
Unfortunately, this information is expensive to collect and low
bandwidth. For example, Google uses access bits to detect
idle memory [15], but other work finds them insufficient to
predict TLB miss overheads accurately [38], even though they
can cost up to 11% of CPU cycles to collect [15]. Other data
collection mechanisms induce additional page faults [16, 24].
Recent work uses performance counters in kernelspace [38],
but currently available counters are hardware-thread-oriented

USENIX Association 2022 USENIX Annual Technical Conference    593



Policy Goal Pathology
Huge Page Allocation Reduce TLB misses and page faults Bloat memory usage if not all memory is used; increase page

fault latency if compaction is required
Eager Paging [29] Move page fault latency to allocation time, sav-

ing time later
Bloat memory usage if not all memory is used

Background Compaction Reduce memory fragmentation and huge page
fault latency

Increase CPU overhead

Background Zeroing Reduce page fault latency Increase CPU overhead
Idle Page Reclamation [32, 47] Improve memory utilization Increase overhead to fault reclaimed pages back in; increase CPU

overhead to choose pages to reclaim

Table 1: Different MM policies and their goals and pathologies

and do not provided the detailed spatial information useful
for most MM policies.

Second, current MM designs often ignore the cost of
various MM operations, leading to inappropriate policy
decisions. For example, Linux allocates a huge page when a
memory region is first touched; however, we find that allocat-
ing and zeroing a huge page costs 106 cycles in the best case.
Thus, promoting a page that averts ≤ 106 cycles worth of
TLB misses and page faults actually regresses performance,
but the kernel does not account for this cost.

Third, current MM designs are implemented as dis-
jointly acting policies distributed throughout the kernel
that are hard to debug. For example, code implementing
Linux’s huge page policies is scattered across more than eight
files (and numerous functions), mixed with unrelated code.
Users and developers observe erratic slowdowns without indi-
cation of what causes them or how to address them. They
often resort to suboptimal coarse-grain solutions, such as
disabling huge pages [2, 3, 4, 7, 50]. By distributing and
obscuring policy-implementing code, current kernel MM im-
plementations make it difficult for both kernel and userspace
developers to decipher system behavior. This opaque sys-
tem implementation and its consequent opaque behavior is
a primary obstacle to improving kernel MM performance,
consistency, and debuggability.

In search of a MM design that has consistent behavior,
we designed Cost-Benefit MM (CBMM). CBMM reflects
that all kernel MM operations have a cost and a benefit to
userspace, and it estimates them using empirically based cost-
benefit models to guide MM policy decisions. By explicitly
modeling cost and benefit, CBMM is more cost-aware than
current designs, so it makes fewer pathologically bad policy
choices. Also, CBMM augments online statistics with offline-
aggregated profiles to improve the quality of information
available to the kernel. CBMM simplifies policy debugging
and enables incremental performance improvement by cen-
tralizing models in a new kernel component: the estimator.
To understand and fix anomalies, one must only understand
the model inputs to determine the cause of a policy decision.

Our prototype implements models for huge page promo-
tion, asynchronous page prezeroing, and eager paging [29],
based on an in-depth analysis of huge page behavior and soft
page faults. At runtime, they may make use of in-built em-

pirically based assumptions (e.g., about average TLB miss
latency), online information (e.g., the current number of free
pages), or offline-aggregated profile information (e.g., fine-
grained information about huge page benefits). We focus on
first-party datacenter workloads – software run by service
providers in their own datacenters – as they are highly con-
trolled and relatively stable over time, allowing better profiling
and modeling [1, 6, 10, 12, 27, 42, 44, 45].

CBMM improves system consistency; it nearly always has
better tail latency than Linux or HawkEye, particularly on
fragmented systems. It reduces the cost of the most expen-
sive soft page faults by 2-3 orders of magnitude for most of
our workloads, and reduces the frequency of 10-1000µs-long
faults by around 2 orders of magnitude for multiple workload-
s. Meanwhile, it has competitive performance with Linux and
HawkEye, a recent research system [38], for all the workloads
we ran, and in the presence of fragmentation, CBMM is up to
35% faster than Linux on average – all while using no more
huge pages than Linux or HawkEye in most cases.

2 Motivation: Evaluating Current Behavior

To quantify the extent of these challenges and inform our
design, we do an in-depth analysis of two important kernel
MM code paths, huge page management and page fault han-
dling. Our experimental setup is described in Section 5.1. Full
results are available in our artifact.

2.1 Measuring Huge Page Benefits

Huge pages speed up many workloads, but nobody has quan-
tified the impact of workload behavior on the amount of
speedup it receives from huge pages. Thus, we measure the
fine-grained benefit of huge pages as described in Section 4.1.
To avoid invasive instrumentation and a detailed survey of
workload implementations, we measure huge page benefits
from the perspective of the kernel: for each workload, we
divide the address space into 100 equally sized ranges, ex-
cluding unmapped regions, and repeatedly run the workload
backing one range at a time with huge pages.

Figure 1 shows the results. Each point on the x-axis rep-
resents one range, such that the x-axis represents the virtual

594    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/multifacet/cbmm-artifact/tree/main/figures


0.98

1.00

1.02

No
rm

.
Ru

nt
im

e
0 25 50 75 100

Address Range

0.98

1.00

No
rm

. P
ag

e
W

al
k 

Cy
cle

s

(a) xz

0.95

1.00

No
rm

.
Ru

nt
im

e

0 25 50 75 100
Address Range

0.96

0.98

1.00

No
rm

. P
ag

e
W

al
k 

Cy
cle

s

(b) canneal

0.9

1.0

1.1

No
rm

.
Ru

nt
im

e

0 25 50 75 100
Address Range

0.99

1.00

No
rm

. P
ag

e
W

al
k 

Cy
cle

s

(c) memcached

1.0

1.1

No
rm

.
Ru

nt
im

e

0 25 50 75 100
Address Range

0.998

1.000

1.002

No
rm

. P
ag

e
W

al
k 

Cy
cle

s
(d) mongodb

Figure 1: Runtime and usermode cycles spent in page walks
for each address range, normalized to no huge pages (lower
is better). Note the varying y-axes.

address space. The top y-axis shows the normalized perfor-
mance compared to no huge pages. The bottom y-axis shows
the normalized percentage of time spent in usermode page
walks (i.e., TLB misses) for loads and stores.

The impact of huge pages varies extensively between work-
loads. xz and canneal primarily see improvements in load
page walk cycles from backing particular regions of the ad-
dress space corresponding to hot data structures. memcached
and mongodb produce noisy results because of randomness in
the workload. The magnitude of impact ranges from about
0.25% in mongodb to almost 7% in canneal.

Another benefit of huge page usage is fewer page faults. We
found that they have only a minor contribution to performance
(e.g., less than 1.2% of execution time for canneal).

Also, the relationship between runtime improvement and
reduction in page walk cycles is not straightforward. For all
workloads, runtime improvement is loosely correlated with
either load or store page walk cycles. Strong effects on ei-
ther load or store page walk cycles tended to be reflected in
runtime, as seen in xz and canneal, but the magnitude of that
effect varies. Small changes in page walk cycles often have
no apparent effect on runtime.

Discussion Huge page impact varies greatly by workload,
including the type and location of impacted memory accesses
and the magnitude of impact. Additionally, the relationship
between page walk cycles and runtime is complex, illustrating
the challenge of huge page management given the limited,
low-quality information available to the kernel at runtime
such as CPU performance counters and page referenced bits.
For example, dc-mix (not depicted) benefits from backing

CLR
HAFAIL, CLR, FLBK, RCLM, CMPT
HUGE
HUGE, FLBK
HUGE, FLBK, CMPT
HUGE, FLBK, RCLM, CMPT
HUGE, WP
HUGE, WP, FLBK, CMPT

HUGE, WP, HAFAIL, FLBK, RCLM, CMPT
HUGE, ZERO
none
OTHER
WP
WP, CLR
ZERO

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Latency (usec)

0

20

40

60

80

100

Pe
rc

en
til

e

(a) canneal

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Latency (usec)

0

20

40

60

80

100

Pe
rc

en
til

e

(b) memcached

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Latency (usec)

0

20

40

60

80

100

Pe
rc

en
til

e

(c) mongodb

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Latency (usec)

0

20

40

60

80

100

Pe
rc

en
til

e

(d) dc-mix

Flag Description
CLR Memory was zeroed (usually during allocation).
CMPT Allocator used memory compaction.
FLBK Allocator used a fallback path during the page fault.
HAFAIL Attempted to allocate a huge page and failed.
HUGE A huge page was mapped.
PREZ Allocator allocated a prezeroed page (CBMM only).
RCLM Allocator used direct reclamation.
WP Page fault due to write to a write-protected page.
ZERO A (shared) zero page was mapped.

(e) Subset of bitflags for page fault tracing.

Figure 2: CDF of Linux soft page fault latency by type of
page fault. Not all page fault types occur in all workloads.

individual regions with huge pages, but when THP is turned
on, it sees a net regression in performance due to the overhead
of compaction. CBMM aims to mitigate this problem by
supplying the kernel with higher-quality information.

2.2 Soft Page Fault Latency Breakdown

We instrument Linux’s page fault handler to trace sources of
page fault latency. Page fault tracing allows us to characterize
system-wide costs, such as the cost of zeroing memory. We
identified a set of events that occur during page faults and
associate each with a bitflag (Figure 2e). Our instrumentation
records the total time of the page fault, the time to allocate
memory, and the time to clear/copy memory contents.

We record the flags and timing of all events longer than 104

USENIX Association 2022 USENIX Annual Technical Conference    595



cycles, and a count of shorter events, allowing us to compute
the proportion of all page faults with each set of flags. We
exclude hard page faults from our results, as they incorporate
other kernel subsystems (e.g., block I/O, file systems). Our
tracing records the total time to handle a page fault, but on x86
the handler can be interrupted in favor of another task, which
inflates the latency of the page fault. This is rare in most work-
loads except mongodb, which uses a userspace asynchronous
I/O framework and thread pool; even though a page fault
handler may be descheduled for a while, userspace requests
continue to make progress because of userspace threading.

Figure 2 shows the soft page fault latency breakdown for
multiple workloads. For each distinct set of flags, the CDF
of page faults with those flags is plotted. Note that the x-axis
uses a log scale. The plot includes samples lower than the
threshold by treating them as if they all took 104 cycles (in
reality, most are faster than that). The figure shows results on
a freshly booted, unfragmented system, which represents best-
case performance; we also recorded results on fragmented
system, and found them significantly worse for all workloads.

The results indicate three challenges current MM designs
face. First, applications trigger a wide variety of kernel be-
haviors. Each of the 15 flag-sets of Figure 2 is a different
combination of code paths. Second, different paths have very
different latencies but are relatively consistent across work-
loads. For example, even in this best case, a huge page consis-
tently takes hundreds of microseconds to be allocated (HUGE
in the figure) due to zeroing overhead. Third, many patho-
logical code paths execute that do not benefit applications.
Most notably, a huge page allocation may invoke a fallback
path (FLBK), which transitively invokes compaction (CMPT) or
reclamation (RCLM). Worse, the fallback may fail (HAFAIL),
resulting in a base page allocation after all. In canneal (Fig-
ure 2a) and dc-mix (Figure 2d), these fallback paths can take
dozens or hundreds of milliseconds. In contrast, an Amazon
search for “DRAM” completes in only 900ms from our office.

Discussion Linux’s fallback algorithms are severely cost-
unaware and make system behavior inconsistent: invoking
compaction or reclamation almost certainly outweighs any
benefits of using a huge page. Also, the high cost of zeroing
suggests that memory prezeroing (Section 4.2) may be a use-
ful optimization to make huge pages more useful. Currently,
if an average TLB miss costs around 30 cycles, then a huge
page must avert over 33,000 TLB misses to pay for itself.
These results highlight the need for cost-aware MM policies.

3 Cost-Benefit Memory Management

We created the Cost-Benefit Memory Manager (CBMM),
which has several goals:

• Improve kernel MM behavioral consistency,
• Match existing systems’ performance,
• Improve the debuggability of policy decisions,

• Allow incremental improvement of individual policies.

Our key insight is that all MM decisions incur a cost against
and provide a benefit to userspace. For example, huge page
promotion averts TLB misses but may require zeroing or com-
pacting memory. In CBMM, policy decisions follow the guid-
ing principle that userspace benefits must outweigh userspace
costs. By applying this principle uniformly, CBMM signifi-
cantly improves consistency over Linux and HawkEye [38],
while matching their performance. We design models for
three important kernel MM policies: huge page promotion,
asynchronous page prezeroing, and eager paging [29].

CBMM introduces a new component, the estimator, to
the kernel. It estimates the cost and benefit of a given MM
operation whenever a policy decision is needed. If cost <
bene f it, the kernel decides to execute the operation.

The estimator makes estimates based on empirically de-
rived cost and benefit models. Models can optionally use live
metrics and/or pre-aggregated profiling information. Such pre-
aggregated information can mitigate the lack of high-quality
online information. Meanwhile, CBMM explicitly estimates
MM operation costs, improving cost-awareness.

In current MM implementations, policy decisions are scat-
tered across the kernel, making it difficult to coordinate their
actions and difficult to debug anomalous behavior. In contrast,
CBMM invokes the estimator at decision points, which pre-
dicts the cost and benefit of taking an action. This centralizes
decision making and explicitly marks policy decisions points.
It also makes coordination between policies easier.

A key requirement of CBMM is that the system behavior
can be modeled and/or profiled. This requirement holds for
many first-party datacenter workloads, which often run with
high redundancy for long amounts of time [1, 6, 10, 12, 27, 42,
44, 45], giving ample opportunity to observe and instrument
a workload before applying policies to them.

3.1 The Estimator
In CBMM, the MM subsystem invokes the estimator at places
in the code where policy decisions need to be made. We call
these places in the code decision points. It uses models to
estimate the cost and benefit of a particular MM operation and
returns the estimates to the decision point, which executes the
operation if cost < benefit.

When a decision point invokes the estimator, it passes in-
formation to the estimator about the type and parameters of
the operations. For example, the decision point would pass
the address to consider promoting or a number of pages to
attempt to prezero. The estimator acts as a black box that re-
turns a cost and benefit estimate for the given MM operation
and parameters. In CBMM, costs and benefits are computed
in units of time saved or lost by userspace, which usually
corresponds closely to user objectives. In particular, CBMM
uses the rate of time saving/loss over some horizon, as many
datacenter workloads run continuously.

596    2022 USENIX Annual Technical Conference USENIX Association



MM operation
type and params

(e.g., promote 0xABC000) 
Cost, Benefit

(cycles) 
Model

Kernel State 
(e.g., # free pages) 

Preloaded Profiles 
(e.g., fine-grained
huge page benefit) 

Figure 3: CBMM model inputs and outputs.

3.2 Cost and Benefit Models
Internally, the estimator comprises a collection of cost models
and benefit models for different MM operations. Each model
is built out of simpler submodels that estimate one cost and/or
benefit well; the submodel results are added to produce the
overall result. This allows reuse of submodels for different
decision points, simplifying implementation and leading to
more consistent behavior across decision points. For example,
our huge page cost-benefit models were useful in both the
page fault handler and khugepaged, the background promotion
daemon, and our model for estimating the cost of running a
daemon could be used for multiple daemons in the future.

Concretely, models manifest as C code in the estimator
(in the kernel); in Listings 1 - 3 (discussed further in Sec-
tion 4), we show the models in our prototype of CBMM.
Each (sub)model is a self-contained black box that takes in-
formation from the decision point, combines it with infor-
mation from the ambient kernel state and preloaded profiles
– files loaded into the kernel that supply information about
application-specific behavior – and outputs an estimate, as
shown in Figure 3. The additional input from the kernel state
and preloaded profiles allows the models to be more context-
aware and to make use of higher-quality information about
workload behavior.
Performance Debugging Unlike current heuristics, CBM-
M isolates policies to specific cost and benefit models; their
inputs and outputs can be observed, and they can be improved
in a single place, easing performance debugging in CBMM
compared to Linux. A central idea behind CBMM’s de-
buggability is the ability to observe and control the inputs to
models. Thus, while models can make use of any kernel or
hardware state, they should use only state that has an intuitive
interpretation, rather than internal implementation metrics.
For example, our huge page promotion model takes into ac-
count whether any prezeroed huge pages are available and
uses a profile to determine the worth of promoting a page. In
contrast, internal implementation metrics give limited infor-
mation about the origin of their values and how to cause them
to change, making bug fixing difficult; for example, Linux’s
page reclamation algorithm uses an obscure combination of
page table bits, bit flags in the struct page, and what list a
page happens to be on [9].

Model Development in CBMM can be done iteratively by
beginning with a simple model and refining it as needed. For
example, Listing 2 shows our asynchronous prezeroing model.
Initially, we only accounted for the zeroing time of the dae-
mon, but we found that this led to high lock contention on the
allocator, so we refined the model to account for contention.

In designing our models, we found that benefits tend to be
application-specific, whereas costs tend to be system-specific.
For example, each application tends to benefit differently from
huge pages, but the cost to allocate a huge page is application-
independent and depends more on the state of the system
allocator. As a result, our benefit models tend to use preloaded
profiles, whereas our cost models tend to query kernel state.

Models necessarily make assumptions to simplify imple-
mentation and to make their execution cheaper than the actual
MM operations. We based our assumptions on our empirical
measurements, unlike many existing heuristics, which rely
on intuitive simplicity or common-case optimization. For ex-
ample, unlike Linux, CBMM does not blindly assume huge
pages improve performance; rather, it incorporates the cost
of promotion as measured by our experimental analysis and
uses empirically derived profiles to estimate the benefit of
promoting a particular memory region. Notably, CBMM im-
proves system behavior even with imprecise profiles, as we
will show in Section 5.5, making it practical to start with a
simple model and refine it over time.

3.3 Preloaded Profiles

Different applications respond differently to MM policies, and
kernels currently lack high-quality information with which to
predict workload behavior. Preloaded profiles are files loaded
into the kernel when starting a process (e.g., by a cluster man-
ager) to provide models with information about a process’s
behavior. They allow the estimator to benefit from offline
processing for particular policy decisions. In contrast, prior
methodologies resort to measuring inaccurate and expensive
proxy statistics such as page fault counts or page access bits.

In CBMM, preloaded profiles specifically provide spatial,
per-process information; that is, they provide information
about regions of a single address space at arbitrary granu-
larity as small as a 4KB page. For example, a profile may
specify per-region reduction in page walk cycles from use
of huge pages, or a bit indicating whether a page is likely to
be touched or not. Models can query this information when
making cost and benefit estimates. For example, to estimate
the benefit of using a huge page, a model may incorporate the
number of averted page walk cycles, or to determine whether
to eagerly allocate memory or use copy-on-write, a model
may incorporate information about the likelihood of memory
accesses. This structure for preloaded profiles, while simple,
is quite useful because many MM policies make spatial deci-
sions, such as whether/how to map/unmap/remap a memory
region. However, CBMM’s design is flexible enough to admit

USENIX Association 2022 USENIX Annual Technical Conference    597



future extensions to profiles. For example, it may be desirable
to account for phases of workload activity or to apply profiles
at different granularities, such as per-thread or system-wide.

Profile Management. While CBMM still has benefits even
when profiles are imprecise (see Section 5.5), changes to data
structures or algorithms could result in changing memory
reference patterns. Thus, a natural future extension of CBMM
is automating profile generation and management.

First-party datacenter workloads often run continuously
and redundantly, so profiling could be automated and cen-
tralized at the cluster level. Recent work from industry sug-
gests a trend of large-scale profiling and centralized plan-
ning [32, 35, 42] and demonstrates the feasbility of such an
approach. We have ve done preliminary exploration and be-
lieve that the huge page methodology of Section 4.1 can be
run in a distributed, automated manner by cluster managers.

3.4 System Management
We implemented models directly in the kernel source, but in
principle, they could be implemented via another mechanism,
such as kernel modules. Our models are application-agnostic
(but can be customized if needed, like existing code), so ap-
plication developers do not need kernel access. Many service
providers have kernel teams that could maintain this code.
Meanwhile, profiles are application-specific, and application
developers can use existing configuration/deployment sys-
tems to schedule/manage/store/secure/deploy profiles with-
out special privileges. The kernel memory overhead of pro-
files depends on profile resolution/detailedness. In Section 5,
our largest profile is ∼ 170KB/process and most profiles are
< 50KB/process.

Our implementation uses procfs files to load profiles, but
any user-kernel communication mechanism could be used.
Also, in principle one could load models through boot time
configuration, similar to Facebook’s SoftSKU system [42].

3.5 Discussion
CBMM addresses the (1) information-poverty, (2) cost-
obliviousness, and (3) disjointed implementation of existing
MM policy implementations, while other alternatives only par-
tially address them. For example, interfaces such as madvise

are coarse-grained, whereas workload memory access pattern-
s can vary significantly within a region, as shown in Section
2.1. Merely disabling overly-aggressive policies, such as Lin-
ux’s THP or defragmentation policies, harms workloads that
require many huge pages, as we will see in Section 5. Ad-
ditionally, it is difficult to modify existing policies to target
different performance goals because their implementation is
often distributed across many files, such as Linux’s huge page
policies. CBMM mitigates all three challenges by making
costs and benefits explicit and centralizing policy decision-
s. Finally, more research is also needed to determine how

far CBMM’s design can be generalized to other areas of the
kernel, such as scheduling, filesystems, or I/O management.

4 Implementation

We implement CBMM based on Linux 5.5.8 for three k-
ernel MM policies: huge page management, asynchronous
prezeroing, and eager paging [29]. We implement the esti-
mator and its models, along with related debugging inter-
faces, code for parsing profiles, and other infrastructure in
1159 lines of C in the kernel in a new and self-contained
file. Additionally, we add 87 lines of instrumentation through-
out the page fault handler and page allocator for page fault
tracing (see Section 2.2). We add 10 calls to the estima-
tor throughout the MM subsystem; each is self-contained
and consists of about 10 lines of code to initialize a struct,
make a function call, and respond to estimates. Asynchronous
prezeroing is implemented in a kernel module from Hawk-
Eye. We modify the module to run in a kernel thread and
to query the estimator before running. Our version of the
module is 196 lines of C. Our implementation is available at
https://github.com/multifacet/cbmm-artifact.

4.1 Huge Page Management
Background Huge page support in current kernels can be
either manual and automatic. A primary challenge is choosing
memory regions to promote: the kernel must determine which
memory regions would see enough benefit from huge pages.

Manual management allows applications to directly request
huge pages for certain memory regions, but it requires modify-
ing the applications, which is often impractical (e.g., Java does
not expose a way to easily control memory allocation). More-
over, modern datacenter workloads are multi-programmed
and diverse in behavior, requiring centralized coordination
during resource allocation [31]. In contrast, automatic huge
page management is a kernel feature that promotes application
memory transparently to applications. This allows unmodified
applications to benefit from huge pages but cannot make use
of application-specific domain knowledge.

CBMM combines both the generality of automatic man-
agement and the application-specific knowledge of manual
management. In contrast, current kernels either have only a
manual system (e.g., Windows) or use simplistic heuristics to
power an automatic system. For example, Linux’s THP ag-
gressively tries to promote on the first page fault to the huge
page, potentially leading to memory bloat and increased page
fault latency. FreeBSD waits for a specific percentage of the
huge page to be touched before promoting. Various research
systems use a mix of page access bits, performance counters,
LRU lists, and trial-and-error [31, 38, 49] with mixed success.
Model Listing 1 shows CBMM’s model for huge page
promotion. It is used in both the page fault handler and
khugepaged to decided whether to promote a page. We built

598    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/multifacet/cbmm-artifact


this model based on our analysis of huge page promotion
overheads. It makes a number of simplifying assumptions
when estimating both the cost and benefit, most notably that
the cost is dominated by the allocation and zeroing time and
that compaction and reclamation have a large fixed cost. We
choose to ignore other costs in our model, such as caching,
mapping changes, or potential memory bloat, but CBMM
allows models to be iteratively improved over time.

void hpage_promo_model(u64 addr , mm_cost_delta *cost)
{ // COST. Simplify using assumptions.

// - Alloc is free if have free zeroed pages.
// - Alloc cost is zeroing if have free unzeroed.
// - Alloc cost is 2^32 if need to free mem.
// - We don’t care what node it is on.
// - Constant prep costs (zeroing or copying), ~100us

// ‘have_free_hpage ‘ checks the allocator free list.
const u64 EXPENSIVE = 1ul << 32; // cycles
enum free_hpage_status fhps = have_free_hpage();
u64 alloc_cost = fhps > fhps_none ? 0 : EXPENSIVE;
u64 prep_cost = fhps > fhps_free ? 0 : 100*FREQ_MHZ;
cost ->cost = alloc_cost + prep_cost;

// BENEFIT = averted TLB miss cycles from profile.
cost ->benefit = compute_hpage_benefit(addr); }

Listing 1: CBMM huge page cost-benefit model.

Profiling Our methodology generates for each workload a
mapping from virtual memory regions (i.e., ranges of virtual
addresses) to the number of averted usermode page walk cy-
cles when the region is backed by huge pages. We modify the
Linux kernel to give precise control over promotions. We then
repeatedly run a given workload varying the set of promoted
pages. We additionally run the workload with no huge pages
as a baseline. We use hardware performance counters to mea-
sure the number of TLB misses, the number of cycles spent in
pages walks, and the overall cycle count for kernelspace and
userspace execution. We then take the difference in overhead
and overall runtime between any given set of pages and the
baseline. The size of the sets of promoted pages can be varied
to tradeoff profiling time with precision. Our prototype uses
the offset into allocation zones instead of virtual addresses, so
that profiles tolerate Address Space Layout Randomization.

Broadly, we found that our workloads could be categorized
as high-processing or low-processing. High-processing work-
loads, such as xz, canneal, or mcf, heavily process their input
data to produce internal data structures; their memory access
patterns are driven by computation over these data structures.
Low-processing workloads, such as memcached, mongodb, and
dc-mix (see Section 5.1), often do little more than data s-
torage and retrieval, so their access patterns are driven by
client request patterns. We found that we can reliably dis-
tinguish between high- and low-processing workloads using
the skewness 1 of the distribution of averted page walk cy-
cles. High-processing workloads often have a small number of
highly-impactful memory regions, so they have a high positive
skew (skew > 2 seems to work empirically). When generating

1skewness is a statistical measure of distribution asymmetry.

profiles for low-processing workloads, we assigned all region-
s a benefit equal to the mean benefit measured empirically.
For high-processing workloads, we assigned each region the
benefit it individually demonstrated.

At runtime, we can supply a profile to the kernel in the form
of a CSV file that lists virtual address ranges and their benefit
from huge pages. Our implementation aims to demonstrate
the potential of our approach while remaining simple to im-
plement. We do not attempt to account for phases in workload
behavior, but our design is amenable to such an upgrade in
the future by repeating the profiling process at multiple points
during the workload’s execution. We assume the workload
size is stable but can handle other input changes; in Section 5,
we use randomized inputs for most workloads.

4.2 Asynchronous Prezeroing
Background We examine asynchronous prezeroing as a
means of improving the latency of large physical memory
allocations. Asynchronous prezeroing clears free pages using
a background daemon to save time during a page fault when it
would slow down userspace programs. Our analysis indicates
that prezeroing would reduce the cost of a huge page by
almost two orders of magnitude.

Prezeroing has fallen out of favor because the primary cost
of zeroing 4KB pages is cache misses, but prezeroing pages
leaves them cold when users access them, so latency is merely
shifted to userspace [8, 46]. Recently, Panwar et al. find preze-
roing is beneficial for huge pages and use non-temporal store
instructions to avoid cache pollution [38]. However, their ap-
proach requires hand-tuning to avoid excessive CPU usage
or lock contention on the page allocator. CBMM adapts their
prezeroing implementation with a model to determine when
and how long to run, eliminating the need for hand-tuning.

Model Listing 2 shows CBMM’s model for running the
asynchronous prezeroing daemon. The model makes numer-
ous assumptions; most importantly, it assumes that CPU time
is free unless taken away from userspace (i.e., the system is
not idle) and that the chief costs of prezeroing are the exe-
cution time of zeroing and contention on the allocator lock,
rather than cache pollution. This matches our own analysis
and observations while working on CBMM. The chief benefit
of prezeroing is to move zeroing overhead out of the critical
path of huge page promotion. For simplicity, we assume a
constant processor frequency over short time windows, even
though the frequency varies.

Also, this model exemplifies CBMM’s iterative approach to
building models. We started with a model that only accounted
for CPU time and potential huge page allocations. As we ran
experiments, we discovered the lock contention and improved
the model to account for it by adding the lines labeled as COST
of lock contention in Listing 2, resolving the performance
issue. The entire process took less than a day of debugging,
measurement, and implementation.

USENIX Association 2022 USENIX Annual Technical Conference    599



void prezeroing_model(mm_action *action ,
mm_cost_delta *cost)

{ // COST of the runtime itself... Assume:
// - Don’t care about NUMA nodes.
// - Zeroing costs ~10^6 cycles.
__kernel_ulong_t cpu_load = get_avenrun();
int ncpus = num_online_cpus();
const u64 HPAGE_ZERO_COST = 1000000;

// ncpus > cpu load average => idle cpu, free to run.
if (ncpus > cpu_load) {

cost ->cost = 0;
} else {

cost ->cost = HPAGE_ZERO_COST * action ->prezero_n;
}

// COST of lock contention. Assume:
// - Cost of lock acquisition = ~150cyc, do it 2x.
// - Lock is unheld for ~1ms/horizon => free locking
const u64 UNHELD = FREQ_MHZ * 1000; // cycles
const u64 SINGLE_CS = 150; // cycles
const u64 crit_sect_cost = SINGLE_CS * 2; // cycles
const u64 nfree = UNHELD / crit_sect_cost;
cost ->cost += (action ->prezero_n > nfree

? action ->prezero_n - nfree : 0) *
critical_section_cost;

// BENEFIT. Assume past usage predicts future usage.
u64 recent_used = mm_estimated_prezeroed_used();
cost ->benefit = min(action ->prezero_n , recent_used)

* HPAGE_ZERO_COST; }

Listing 2: CBMM async prezeroing cost-benefit model

4.3 Eager paging
Background Eager paging allocates physical memory up-
on user request, rather than lazily on a page fault (the de-
fault) [29]. It enables large contiguous physical memory allo-
cations, which are easier to back with huge pages and enable
useful hardware optimizations [29, 37, 40, 43, 49]. However,
a drawback to eager paging is memory bloat if the workload
does not use all the allocated memory [29]. Preloaded profiles
unlock this optimization while avoiding memory bloat.
Model Listing 3 shows CBMM’s model for eager paging,
which is invoked by mmap or brk system calls. It uses a preload-
ed profile to determine which subregions will be touched and
assumes that the model has perfect knowledge, allowing it to
ignore the cost of potential bloat. If more than one page is
being eagerly allocated, we create opportunity for contiguous
allocation.

void eager_paging_model(vm_area_struct *mmap_region ,
mm_cost_delta *cost)

// ASSUME: past usage predicts future; use profile.
// COST: time to create new page.
const u64 PF_NEW_PAGE = FREQ_MHZ * 10; // cycles
struct range *ranges = prev_touched(mmap_region);
cost ->cost = len(ranges) * PF_NEW_PAGE;

// BENEFIT: time to create new page , coalesced faults
const u64 PF_CS = 300; // cycles
cost ->benefit = len(ranges) * PF_NEW_PAGE

+ (len(ranges) - 1) * PF_CS; }

Listing 3: CBMM eager paging cost-benefit model

Profiling We profile eager paging behavior by periodically
reading the /proc/<pid>/pagemap file while the workload is

running. This file contains information about memory map-
pings for the given process and allows us to detect which
virtual memory regions have been faulted in. Pages that were
faulted in during the execution are noted in the profile, and
the model assumes they will be faulted in again in the future.

5 Evaluation

CBMM seeks to improve consistency while matching or ex-
ceeding the performance and efficiency of existing systems.
We evaluate CBMM along multiple axes. First, we evaluate
the page fault latency of CBMM to understand its consistency
compared to Linux and HawkEye. Second, we measure the
end-to-end performance of CBMM. Third, we look at the ef-
ficiency of CBMM’s use of huge pages. Finally, we evaluate
the generality of our approach by looking at the sensitivity of
performance to profile changes.

5.1 Methodology

Table 2 describes our workloads. They represent a variety
of software behaviors and exercise the kernel in different
ways. mongodb, memcached, and dc-mix are memory-intensive
workloads common in datacenters. mongodb and memcached

are data stores, and mongodb is I/O heavy and makes use of
the page cache. dc-mix induces memory pressure and tries to
simulate a real system in which a server, device driver, and
batch job are using system resources. We drive the data stores
in these workloads using YCSB [17] with different read-write
ratios to increase the variety of MM behavior. mcf, xz, and
canneal are computational workloads. We scale up the inputs
of xz and canneal to use more memory. In all experiments
with server applications (e.g., memcached, redis, mongodb),
we run the client program on the same machine as the server,
so as not to measure network effects. We run each workload
with its default number of threads and pin all workloads to one
NUMA node to reduce variation caused by NUMA effects.
To reduce noise, we run each experiment 5 times and report
the median results. For all workloads except mcf and xz, the
input is randomized and changes between executions of the
workload. For xz, we use the native input to generate a profile
and use a custom input when evaluating performance.

All experiments run on CloudLab [41] c220g5 machines
with two Intel Xeon Silver 4114 (10C/20T, 2.2 GHz, Skylake
2017), 192GB 2666MHz DDR4 ECC DRAM, and a 480GB
SAS SSD. We set the CPU scaling governor to performance.
Unless otherwise noted, we do not tune our systems at all; the
results represent CBMM’s “out of the box” behavior.

We replace the system allocator with jemalloc, which is
better in a datacenter setting and is used by Facebook [23]. All
experiments run on CentOS 7.8.2003 with the relevant kernel.
We disable Meltdown and Spectre [30, 34] mitigations, which
cause severe performance degradation. We use unmodified

600    2022 USENIX Annual Technical Conference USENIX Association



Workload Description Input Peak Mem
xz data compression [5] profiling: native input, eval: custom scaled up input 150GB
mcf combinatorial optimization, scheduling [5] native input 3GB
canneal simulated annealing, chip routing [13] custom input, randomly generated each time 150GB
mongodb KV store YCSB driver [17], 75%W-25%R 150GB
memcached in-memory KV store YCSB driver [17], 1%W-99%R 150GB
dc-mix redis (KV store), memhog (microbench., creates fragmen-

tation), metis (in-memory map-reduce) [28]
redis: YCSB driver [17], 50%W-50%R; memhog:
N/A; metis: built-in

165GB

Table 2: Description of Workloads – their behavior, inputs, and peak memory usage.

Linux 5.5.8 with Transparent Huge Pages enabled as our base-
line. We configure CBMM similarly to Linux but we preload
a profile of huge page benefits and eager paging, as derived
in Sections 4.1 and 4.3. We also compare against HawkEye
[38], a state-of-the-art research huge page management sys-
tem based on Linux 4.3. We configure HawkEye as in its
paper, including its prezeroing daemon. We ran experiments
against stock Linux 4.3 and found that it performs within 15%
of Linux 5.5.8 on average (see Figure 5). To measure page
fault latency in HawkEye, which runs on a different kernel
without our instrumentation, we use eBPF to instrument the
handle_mm_fault function, which represents the main portion
of the page fault handler. We found that canneal crashes with
a segfault on HawkEye when the system is unfragmented, so
we omit that experiment from results.
Fragmentation We run each workload on a freshly reboot-
ed system and on a preconditioned system. Preconditioning
aims to simulate a long-running datacenter environment by
inducing external fragmentation, which hinders large physical
memory allocations, such as huge pages.

We had difficulty identifying a reproducible fragmentation
methodology. We attempted to reuse techniques from prior
work [38, 49, 51] and also made several attempts at our own
methodologies with little success; on Linux, deferred freeing
of physical memory and kernel daemons such as kcompactd
and kswapd cause variable results. Also, each methodology
preconditions machines in a different way, none of which is
obviously more realistic than the others.

For our evaluation, we choose a simple methodolo-
gy derived from prior work [18, 49, 51]. We enable
CONFIG_SLAB_FREELIST_RANDOM and CONFIG_SHUFFLE_PAGE_

ALLOCATOR when compiling the kernel and add a sysfs file
that triggers shuffling of the kernel physical memory free lists.
To precondition the system, we reboot and then trigger free
list shuffling. Then we run a program that allocates all system
memory (with mmap(MAP_POPULATE)) and frees all but the first
page of each 2MB region before sleeping for the duration of
the workload. This methodology is simple and yields com-
parable results to other methodologies. We measure the Free
Memory Fragmentation Index [25, 31, 38, 51] after precon-
ditioning but before the workload begins. On CBMM and
HawkEye, preconditioning consistently leaves around 183GB
of free memory with 99% fragmentation. On Linux, half of
runs experience similar results, but in the other half, deferred
page freeing causes < 2GB of memory to be considered free,

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h

Av
g 

tim
e 

be
tw

ee
n 

ev
en

ts
(a) mcf

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h

Av
g 

tim
e 

be
tw

ee
n 

ev
en

ts

(b) xz

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h
Av

g 
tim

e 
be

tw
ee

n 
ev

en
ts

(c) canneal

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h

Av
g 

tim
e 

be
tw

ee
n 

ev
en

ts

(d) memcached

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h

Av
g 

tim
e 

be
tw

ee
n 

ev
en

ts

(e) mongodb

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h
Av

g 
tim

e 
be

tw
ee

n 
ev

en
ts

(f) dc-mix

Figure 4: Soft page fault tail latency distribution on each
system, weighted by page fault rate. A point (x,y) on the plot
indicates that a fault of latency ≥ x happens at an interval of
≥ y on average.

making it difficult to measure fragmentation.

5.2 System Behavioral Consistency

Figure 4 shows tail latency on each kernel without fragmen-
tation (when latency should be lowest); note the log x- and
y-scales. To account for differences in the frequency of page
faults due to differing MM decisions, we show the average in-

USENIX Association 2022 USENIX Annual Technical Conference    601



mcf xz

can
ne

al

mem
cac

he
d

mon
go

db
dc-

mix

ge
om

ea
n

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d 
Ru

nt
im

e 2.2 5.2

Linux
Linux4.3

HawkEye
CBMM

CBMM-tuned
Fragmented

Figure 5: Runtime of workloads on each kernel, normalized
to Linux with THP without fragmentation (lower is better).

terval between events, rather than the percentile on the y-axis.
Unlike Linux (Figure 2d), CBMM rarely attempts an ex-

pensive fallback path (e.g., compaction or reclamation) during
huge page promotion, even under fragmentation; allocation
failures usually result in the allocation of base pages. CBMM
often experiences more page faults than Linux or HawkEye,
but as Figure 4 shows, CBMM still sees a lower rate of long
page faults than they do because its cost-awareness leads to
fewer pathological cases, falling back to 4KB pages instead.

Even without fragmentation, CBMM always matches or
improves on the tail latency of Linux and HawkEye, often
by wide margins. In xz, canneal, and memcached, CBMM re-
duces the frequency of page faults taking 10-1000µs by two
to three orders of magnitude compared to Linux or HawkEye.
In canneal and memcached, CBMM reduces the frequency of
(or eliminates) all page faults slower than 10µs by two or
more orders of magnitude compared to Linux. In memcached,
page faults taking over 1ms are nearly eliminated, while in
dc-mix, they are reduced in frequency from nearly constant
in Linux to every 10s or longer in CBMM. mongodb uses a
userspace asynchronous I/O framework, as previously dis-
cussed, so its page fault latencies are dominated by context
switches and other userspace threads; thus, our improvements
are not visible in the figure. However, the figure does show
that CBMM does not regress page fault latency, and as we will
see in the next section, CBMM achieves significantly better
performance than Linux or HawkEye for this workload.

Under fragmentation, CBMM usually achieves even larger
tail latency improvements, particularly compared to Linux.
For all workloads except mongodb, CBMM reduces the fre-
quency of all page faults taking ≥ 50µs by 1-3 orders of
magnitude compared to Linux and up to one order of magni-
tude compared to HawkEye. mongodb performs similarly to
the unfragmented case, as discussed above.

Summary CBMM improves tail latency compared to Lin-
ux or HawkEye. For multiple workloads, CBMM reduces
the frequency of slow page faults by one or more orders of
magnitude, especially under fragmentation.

5.3 End-to-End Performance

CBMM’s major goal is to improve consistency and the debug-
gability of MM-related performance issues without degrading
performance. Figure 5 shows the performance of each kernel
with and without fragmentation. All results are normalized to
Linux without fragmentation. Note that some of the perfor-
mance difference of HawkEye compared to the other systems
is due to Linux 4.3 (the black bar in the figure). On average,
without fragmentation, CBMM has performance comparable
to Linux and better than HawkEye. On average, with frag-
mentation, CBMM is 7% and 30% faster than HawkEye and
Linux; in fact, it is only 12% slower than without fragmenta-
tion. With minimal tuning, on average, CBMM is 13% and
35% faster than HawkEye and Linux under fragmentation.

Without fragmentation, CBMM matches or exceeds the
performance of Linux or HawkEye for all workloads except
canneal. For canneal, CBMM is 15% slower than Linux be-
cause our profiles underestimate the benefit of huge pages.
For mongodb, CBMM is 9% faster than Linux because it uses
significantly more huge pages.

With fragmentation, CBMM outperforms Linux and/or
HawkEye for all workloads except mcf. mcf uses too little
memory to induce memory pressure; thus, CBMM overesti-
mates the cost of huge pages and uses significantly fewer huge
pages than Linux. In all other workloads, CBMM matches or
outperforms at least one of Linux or HawkEye, often by wide
margins. In dc-mix, canneal, and memcached, CBMM outper-
forms Linux by 34%, 34% and 81%, respectively, because
its cost models allow it to adapt to a fragmented context, re-
flecting CBMM’s focus on consistent behavior. Notably, this
includes all of our datacenter workloads.

To demonstrate CBMM’s benefit to performance debug-
ging, we tune the performance of mcf, canneal, and dc-mix

beyond the above results. In mcf and dc-mix, CBMM under-
estimates the benefit of huge pages, so we adjust the benefit
upward in the respective profiles. We found that canneal ex-
hibits a strong tradeoff between performance and page fault
tail latency. As canneal is a non-interactive computational
workload, we optimize for end-to-end performance by ad-
justing the profile to more aggressively allocate huge pages
for the most import memory regions. After tuning, dc-mix
without fragmentation runs 2% faster, and mcf with fragmen-
tation runs 19% faster, than without tuning, but neither has
a regression in tail latencies. canneal runs 18% faster than
without tuning (46% faster than Linux) at the expense of some
degradation in tail page fault latencies. In total, the tuning
effort took less than a week, most of which was spent waiting
for workloads to run.

Summary CBMM’s has competitive performance with Lin-
ux/THP and HawkEye and better tail latency and more inter-
pretable behavior. In most cases, CBMM matches or exceeds
Linux’s performance. Under fragmentation, CBMM often
performs vastly better than Linux or HawkEye because of its

602    2022 USENIX Annual Technical Conference USENIX Association



mcf xz

can
ne

al

mem
cac

he
d

mon
go

db
dc-

mix

ge
om

ea
n

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d 
Ru

nt
im

e 2.2 5.2

Linux
CBMM

CBMM-perapp
CBMM-shared

Fragmented

Figure 6: Runtime of CBMM workloads with generalized pro-
files, normalized to Linux with THP without fragmentations
(lower is better).

focus on consistent behavior. Also, CBMM is easily debug-
gable and tunable by adjusting profiles and/or models.

5.4 Efficiency

Allocating huge pages to memory regions that do not need
them wastes contiguous memory and promotion overheads
and possibly bloats memory usage. Figure ?? shows the per-
centage of anonymous memory used by each workload that
is backed by a huge page in CBMM, HawkEye, and Linux
(with THP) with and without fragmentation preconditioning.

Generally, preloaded profiles drive CBMM’s huge page us-
age, while HawkEye and Linux are more indiscriminate with
huge page promotion. Usually, Linux attempts to use more
huge pages than CBMM or HawkEye, often backing almost
all memory with huge pages. HawkEye uses huge pages more
efficiently than Linux, often achieving similar performance
with much fewer huge pages. For most workloads, Linux still
attempts to use huge pages under fragmentation, whereas CB-
MM and HawkEye do not, leading to significantly better tail
latencies, and often better performance.

For xz, CBMM’s profile allows it to promote only a small
but important part of the address space, so it matches Lin-
ux’s performance (and outperforms HawkEye) while using
almost 80% fewer huge pages. For mongodb, CBMM outper-
forms Linux and HawkEye by using more huge pages in the
absence of fragmentation and fewer in its presence, exempli-
fying CBMM’s cost-awareness.

Summary Despite having the most consistent behavior and
sometimes better performance, CBMM often uses significant-
ly fewer huge pages than Linux or HawkEye. By being cost-
and context-aware, CBMM is more targeted in its use of huge
pages, though in some cases, our profiles underestimate the
benefit of huge pages.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h

Av
g 

tim
e 

be
tw

ee
n 

ev
en

ts

(a) mcf

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h

Av
g 

tim
e 

be
tw

ee
n 

ev
en

ts

(b) xz

Figure 7: Soft page fault tail latency distribution weighted by
page fault rate for different profiles. Compare to Figure 4.

5.5 Generality

CBMM has benefits even when a profile is highly imprecise,
primarily by avoiding the pathological behavior of Linux. We
compare three versions of profiles: the standard CBMM pro-
file is as in Section 4.1, perapp assigns a single value to all
memory regions in the workload equal to the average benefit
of enabling THP for the workload, and shared is shared be-
tween all workloads and assigns a single value to all memory
regions equal to the mean benefit of the perapp profiles.

Figure 7 shows how the different profiles affect page fault
tail latency in mcf and xz. The perapp and shared profiles
have minor regressions in page fault tail latencies compared
to the standard profiles but still improve over Linux.

Figure 6 shows the how the different profiles affect per-
formance. In most cases, CBMM with the simpler profiles
outperformed Linux with fragmentation, and the performance
differences between the three profiles are within 5%. The
perapp and shared profiles outperform the standard profiles
slightly in some workloads. One exception is mcf under frag-
mentation, where both the perapp and shared profiles outper-
form the standard profile by 20%, similar to the tuned profile
in Section 5.3, by being more liberal with huge pages.

Summary More precise profiles improve CBMM’s perfor-
mance and tail latency, but imprecise profiles still have good
results. Furthermore, profiles can be used to trade off perfor-
mance and page fault latency.

5.6 CBMM Models

We evaluate the contribution of each model in Section 4 via
three configurations of CBMM: huge enables only the huge
page model, async additionally enables prezeroing, and stan-
dard CBMM enables all three models. Figure 8 shows the
performance of these configurations, while Figure 9 shows
tail latency for mcf and xz.

USENIX Association 2022 USENIX Annual Technical Conference    603



mcf xz

can
ne

al

mem
cac

he
d

mon
go

db
dc-

mix

ge
om

ea
n

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d 
Ru

nt
im

e 2.2 5.2

Linux
CBMM

CBMM-async
CBMM-huge

Fragmented

Figure 8: Runtime of CBMM workloads when enabling more
models, normalized to Linux with THP without fragmenta-
tions (lower is better).

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h

Av
g 

tim
e 

be
tw

ee
n 

ev
en

ts

(a) mcf

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Latency (usec)

1.0 μs

100.0 μs

10.0 ms

1.0 s

1.7 m

2.8 h

Av
g 

tim
e 

be
tw

ee
n 

ev
en

ts

(b) xz

Figure 9: Soft page fault tail latency impact of different mod-
els. Compare to Figure 4.

Each policy provides benefits in different settings. The huge
page model alone (huge) captures most of the performance
benefit of CBMM because it prevents costly huge page alloca-
tions.Asynchronous prezeroing (async) decreases page fault
tail latency by making huge pages cheaper. It also reduces
performance slightly on an unfragmented system, where free
pages abound, because prezeroing is wasted work. With frag-
mentation, prezeroing has little effect on performance.

Eager paging does not directly benefit performance but en-
ables larger contiguous allocations where hardware supports
it [29, 37, 40, 43, 49]. To evaluate how well CBMM can make
large allocations, we compare the number of eagerly allocated
regions and peak memory usage of CBMM with eager paging
against Linux with MAP_POPULATE, the mmap flag that eagerly
maps memory. In all workloads, regardless of fragmentation,
CBMM uses eager paging for nearly the entire working set of
the workload. Thanks to profiles, CBMM has < 1% memory
bloat – 3%-48% less memory than MAP_POPULATE would use.

Summary CBMM’s huge page model provides significant
tail latency (and often performance) improvements. Asyn-
chronous prezeroing enables more huge page usage under

fragmentation, but has a modest cost on unfragmented sys-
tems. Eager paging has a modest performance cost but enables
more contiguous memory allocation.

6 Related Work

Performance consistency at scale is a well-known prob-
lem [19] afflicting, among other systems, cluster computa-
tions [20] and distributed caching [11]. Redundancy is a com-
mon workaround [20]. MittOS uses deadline-aware kernel
APIs to improve tail latency [26]. Like MittOS, we seek to fix
consistency issues rather than mitigate their impact.

Kwon et al. observe that current huge page support is “a
hodge-podge of best-effort algorithms and spot fixes” [31].
They and others identify real concerns and improve perfor-
mance but often at the expense of increasing kernel heuristic
complexity [14, 31, 38, 39, 49]. CBMM tames the increasing
complexity of MM policy decisions by consolidating it in one
place and reducing anomalous behavior.

VMware ESX Server explores MM techniques based on
economic models by quantifying the value of idle memory
and “taxing” processes for it [47]. Google and Meta both track
and reclaim cold memory from processes, too [15, 32, 48].
Google’s system centrally and empirically coordinates con-
tent migration to far-memory tiers (e.g., compressed memory)
[32], while Meta’s system relies on better metrics and acts
locally on each machine. Google also profiles the lifetime of
allocations to decrease memory fragmentation [35]. These ap-
proaches inspired our work; they use empirical measurements
and MM-wide guiding principles to make MM decisions. Our
work extends and generalizes this idea. Sriraman et al. take
a step in this direction by comprehensively profiling Meta’s
workloads and using the profiles to guide coarse-grained boot-
time system tuning [42].

There is much prior work on asynchronous prezeroing of
pages [8, 21, 22, 33, 38, 46]. Recent work observes that larger
page sizes and non-temporal store instructions make preze-
roing useful again [38]. We demonstrate the usefulness of
our approach by quantifying zeroing costs and the prezeroing
implementation, and integrating them into our prototype.

7 Conclusion

Modern computing needs are placing new demands on kernel
MM. To meet these demands, kernel MM must begin to prior-
itize behavioral consistency and debuggability. We propose
CBMM, a MM system that uses cost-benefit analysis to make
policy decisions. Despite using relatively simple models in its
cost-benefit estimation, CBMM’s principled approach to MM
allows matching the performance of existing systems while
also improving system behavioral consistency. CBMM paves
a way for kernel MM behavior to become less opaque, un-
locking further performance and optimizations in the future.

604    2022 USENIX Annual Technical Conference USENIX Association



Acknowledgements

We thank the anonymous reviewers, Sujay Yadalam, and Yu-
vraj Patel for their time and insightful feedback on our pa-
per. We thank the anonymous artifact reviewers and Anthony
Rebello for their time spent testing our artifact. We thank
Ashish Panwar for the help getting HawkEye set up. We thank
Michael Marty who gave feedback on early versions of the
project that became CBMM.

This work was funded by NSF grants CNS 1815656 and
CNS 1900758.

Availability

Our artifact is open-source and available at https://github.
com/multifacet/cbmm-artifact. See Appendix A for fur-
ther details.

References

[1] Borg Cluster Traces from Google. https://github.
com/google/cluster-data.

[2] Database Installation Guide. https://docs.oracle.
com/cd/E11882_01/install.112/e47689/pre_
install.htm#LADBI1152.

[3] Disable Transparent Huge Pages (THP).
https://docs.mongodb.com/manual/tutorial/
transparent-huge-pages.

[4] Disabling Transparent Huge Pages (THP).
https://docs.couchbase.com/server/current/
install/thp-disable.html.

[5] SPEC CPU 2017 Benchmark Suite. https://www.
spec.org/cpu2017/.

[6] Microsoft Azure Traces. https://github.com/
Azure/AzurePublicDataset.

[7] Redis Latency Problems Troubleshooting. https://
redis.io/topics/latency.

[8] Remove PG_ZERO and zeroidle (page-zeroing) en-
tirely. https://news.ycombinator.com/item?id=
12227874, August 2016.

[9] Vlastimil Babka. Overview of memory reclaim in the
current upstream kernel. In Linux Plumbers Conference
2021, September 2021.

[10] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle.
The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines, Second Edition.
Morgan & Claypool Publishers, 2013.

[11] Daniel S. Berger, Benjamin Berg, Timothy Zhu, Mor
Harchol-Balter, and Siddhartha Sen. RobinHood: Tail
Latency-aware Caching – Dynamic Reallocating from
Cache-rich to Cache-poor. In Proceedings of the Thir-
teenth Conference on Operating Systems Design and
Implementation, OSDI, 2018.

[12] Betsy Beyer, Chris Jones, Jennifer Petoff, and Nial-
l Richard Murphy. Site Reliability Engineering: How
Google Runs Production Systems. O’Reilly Media, Inc.,
1st edition, 2016.

[13] Christian Bienia. Benchmarking Modern Multiproces-
sors. PhD thesis, Princeton University, January 2011.

[14] Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin
Zhong. Theseus: an Experiment in Operating System
Structure and State Management. In Proceedings of the
Fourteenth Symposium on Operating Systems Design
and Implementation, OSDI, 2020.

[15] Shakeel Butt, Suren Baghdasaryan, and Yu Zhao. Find-
ing more DRAM. In Linux Plumbers Conference 2019,
2019.

[16] Richard W. Carr and John L. Hennessy. WSCLOCK –
a Simple and Effective Algorithm for Virtual Memory
Management. In Proceedings of the Eighth ACM Sym-
posium on Operating Systems Principles, SOSP, 1981.

[17] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the First
ACM Symposium on Cloud Computing, SoCC, 2010.

[18] Dan Williams. Randomize free memory. https://lwn.
net/Articles/767614/.

[19] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Communications of the ACM, 56(2), February 2013.

[20] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-
plified Data Processing on Large Clusters. In Proceed-
ings of the Sixth Conference on Symposium on Operat-
ing Systems Design & Implementation, OSDI, 2004.

[21] Cort Dougan, Paul Mackerras, and Victor Yodaiken. Op-
timizing the idle task and other MMU tricks. In Pro-
ceedings of the Third Symposium on Operating Systems
Design and Implementation, OSDI, 1999.

[22] Lars Eggert, Alan Cox, Cort Dougan, and
Matt Dillon. Clearing Pages in the Idle
Loop. https://www.mail-archive.com/
freebsd-hackers@freebsd.org/msg13993.html,
July 2000.

[23] Jason Evans. Scalable memory allocation using jemal-
loc, January 2011.

USENIX Association 2022 USENIX Annual Technical Conference    605

https://github.com/multifacet/cbmm-artifact
https://github.com/multifacet/cbmm-artifact
https://github.com/google/cluster-data
https://github.com/google/cluster-data
https://docs.oracle.com/cd/E11882_01/install.112/e47689/pre_install.htm#LADBI1152
https://docs.oracle.com/cd/E11882_01/install.112/e47689/pre_install.htm#LADBI1152
https://docs.oracle.com/cd/E11882_01/install.112/e47689/pre_install.htm#LADBI1152
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages
https://docs.couchbase.com/server/current/install/thp-disable.html
https://docs.couchbase.com/server/current/install/thp-disable.html
https://www.spec.org/cpu2017/
https://www.spec.org/cpu2017/
https://www.spec.org/cpu2017/
https://github.com/Azure/AzurePublicDataset
https://github.com/Azure/AzurePublicDataset
https://redis.io/topics/latency
https://redis.io/topics/latency
https://news.ycombinator.com/item?id=12227874
https://news.ycombinator.com/item?id=12227874
https://lpc.events/event/11/contributions/896/
https://lpc.events/event/11/contributions/896/
http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024
http://dx.doi.org/10.2200/S00516ED2V01Y201306CAC024
https://www.usenix.org/system/files/osdi18-berger.pdf
https://www.usenix.org/system/files/osdi18-berger.pdf
https://www.usenix.org/system/files/osdi18-berger.pdf
https://sre.google/sre-book/table-of-contents/
https://sre.google/sre-book/table-of-contents/
https://parsec.cs.princeton.edu/publications/bienia11benchmarking.pdf
https://parsec.cs.princeton.edu/publications/bienia11benchmarking.pdf
https://www.usenix.org/conference/osdi20/presentation/boos
https://www.usenix.org/conference/osdi20/presentation/boos
https://www.linuxplumbersconf.org/event/4/contributions/282/
https://www.linuxplumbersconf.org/event/4/contributions/282/
https://doi.org/10.1145/800216.806596
https://doi.org/10.1145/800216.806596
https://doi.org/10.1145/800216.806596
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://lwn.net/Articles/767614/
https://lwn.net/Articles/767614/
https://doi.org/10.1145/2408776.2408794
https://www.usenix.org/legacy/publications/library/proceedings/osdi04/tech/full_papers/dean/dean.pdf
https://www.usenix.org/legacy/publications/library/proceedings/osdi04/tech/full_papers/dean/dean.pdf
https://www.usenix.org/legacy/events/osdi99/full_papers/dougan/dougan.pdf
https://www.usenix.org/legacy/events/osdi99/full_papers/dougan/dougan.pdf
https://www.mail-archive.com/freebsd-hackers@freebsd.org/msg13993.html
https://www.mail-archive.com/freebsd-hackers@freebsd.org/msg13993.html
https://engineering.fb.com/2011/01/03/core-data/scalable-memory-allocation-using-jemalloc/
https://engineering.fb.com/2011/01/03/core-data/scalable-memory-allocation-using-jemalloc/


[24] Jayneel Gandhi, Arkaprava Basu, Mark D. Hill, and
Michael M. Swift. BadgerTrap: a Tool to Instrument
x86-64 TLB Misses. ACM SIGARCH Computer Archi-
tecture News, 42(2), 2014.

[25] Mel Gorman and Andy Whitcroft. The What, the Why
and the Where to of Anti-fragmentation. In Proceedings
of the Linux Symposium, volume 1, January 2006.

[26] Mingzhe Hao, Huaicheng Li, Michael Hao Tong, Chris-
ma Pakha, Riza O. Suminto, Cesar A. Stuardo, An-
drew A. Chien, and Haryadi S. Gunawi. MittOS: Sup-
porting Millisecond Tail Tolerance with Fast Reject-
ing SLO-Aware OS Interface. In Proceedings of the
Twenty-Sixth Symposium on Operating Systems Princi-
ples, SOSP, 2017.

[27] John Wilkes. More Google Cluster Da-
ta. http://ai.googleblog.com/2011/11/
more-google-cluster-data.html.

[28] Frans Kaashoek, Robert Morris, and Yandong Mao.
Optimizing MapReduce for Multicore Architectures.
Technical Report MIT-CSAIL-TR-2010-020, Comput-
er Science and Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, May 2010.

[29] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar,
Adrián Cristal, Mark D. Hill, Kathryn S. McKinley,
Mario Nemirovsky, Michael M. Swift, and Osman Ün-
sal. Redundant Memory Mappings for Fast Access to
Large Memories. In Proceedings of the Forty-Second
Annual International Symposium on Computer Architec-
ture, ISCA, 2015.

[30] Paul Kocher, Jann Horn, Anders Fogh, and Daniel
Genkin, Daniel Gruss, Werner Haas, Mike Ham-
burg, Moritz Lipp, Stefan Mangard, Thomas Prescher,
Michael Schwarz, and Yuval Yarom. Spectre attack-
s: Exploiting speculative execution. In Fortieth IEEE
Symposium on Security and Privacy, S&P, 2019.

[31] Youngjin Kwon, Hangchen Yu, Simon Peter, Christo-
pher J. Rossbach, and Emmett Witchel. Coordinated
and Efficient Huge Page Management with Ingens. In
Proceedings of the Twelfth Conference on Operating
Systems Design and Implementation, OSDI, 2016.

[32] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal,
Neha Agarwal, Radoslaw Burny, Shakeel Butt, Jichuan
Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid,
Greg Thelen, Kamil Adam Yurtsever, Yu Zhao, and
Parthasarathy Ranganathan. Software-Defined Far Mem-
ory in Warehouse-Scale Computers. In Proceedings
of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS, 2019.

[33] Christopher Lameter. Increase page fault rate by preze-
roing V1 [0/3]: Overview. https://lkml.org/lkml/
2004/12/21/142, December 2004.

[34] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel memory
from user space. In Twenty-Seventh USENIX Security
Symposium, USENIX Security, 2018.

[35] Martin Maas, David G. Andersen, Michael Isard, Mo-
hammad Mahdi Javanmard, Kathryn S. McKinley, and
Colin Raffel. Learning-based Memory Allocation for
C++ Server Workloads. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS, 2020.

[36] Mark Mansi and Michael M. Swift. 0sim: Preparing
System Software for a World with Terabyte-scale Mem-
ories. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS, 2020.

[37] Michal Nazarewicz. A deep dive into CMA. https:
//lwn.net/Articles/486301/.

[38] Ashish Panwar, Sorav Bansal, and K. Gopinath. Hawk-
Eye: Efficient Fine-grained OS Support for Huge Pages.
In Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS, 2019.

[39] Ashish Panwar, Aravinda Prasad, and K. Gopinath. Mak-
ing Huge Pages Actually Useful. In Proceedings of the
Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS, 2018.

[40] Binh Pham, Ján Veselý, Gabriel H. Loh, and Abhishek
Bhattacharjee. Large pages and lightweight memory
management in virtualized environments: can you have
it both ways? In Proceedings of the Forty-Eighth Inter-
national Symposium on Microarchitecture, MICRO-48,
2015.

[41] Robert Ricci, Eric Eide, and CloudLab Team. Introduc-
ing CloudLab: Scientific Infrastructure for Advancing
Cloud Architectures and Applications. ;login:, 39(6),
December 2014.

[42] A. Sriraman, A. Dhanotia, and T. F. Wenisch. SoftSKU:
Optimizing Server Architectures for Microservice Diver-
sity @Scale. In Proceedings of the Forty-Sixth Annual
International Symposium on Computer Architecture, IS-
CA, 2019.

606    2022 USENIX Annual Technical Conference USENIX Association

https://doi.org/10.1145/2669594.2669599
https://doi.org/10.1145/2669594.2669599
https://www.kernel.org/doc/ols/2006/ols2006v1-pages-369-384.pdf
https://www.kernel.org/doc/ols/2006/ols2006v1-pages-369-384.pdf
https://doi.org/10.1145/3132747.3132774
https://doi.org/10.1145/3132747.3132774
https://doi.org/10.1145/3132747.3132774
http://ai.googleblog.com/2011/11/more-google-cluster-data.html
http://ai.googleblog.com/2011/11/more-google-cluster-data.html
https://dspace.mit.edu/bitstream/handle/1721.1/54692/MIT-CSAIL-TR-2010-020.pdf
https://doi.org/10.1145/2749469.2749471
https://doi.org/10.1145/2749469.2749471
https://ieeexplore.ieee.org/document/8835233
https://ieeexplore.ieee.org/document/8835233
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
https://doi.org/10.1145/3297858.3304053
https://doi.org/10.1145/3297858.3304053
https://lkml.org/lkml/2004/12/21/142
https://lkml.org/lkml/2004/12/21/142
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1145/3373376.3378525
https://doi.org/10.1145/3373376.3378525
https://doi.org/10.1145/3373376.3378451
https://doi.org/10.1145/3373376.3378451
https://doi.org/10.1145/3373376.3378451
https://lwn.net/Articles/486301/
https://lwn.net/Articles/486301/
http://doi.acm.org/10.1145/3297858.3304064
http://doi.acm.org/10.1145/3297858.3304064
http://doi.acm.org/10.1145/3173162.3173203
http://doi.acm.org/10.1145/3173162.3173203
https://doi.org/10.1145/2830772.2830773
https://doi.org/10.1145/2830772.2830773
https://doi.org/10.1145/2830772.2830773
https://www.usenix.org/publications/login/dec14/ricci
https://www.usenix.org/publications/login/dec14/ricci
https://www.usenix.org/publications/login/dec14/ricci
https://ieeexplore.ieee.org/abstract/document/8980331
https://ieeexplore.ieee.org/abstract/document/8980331
https://ieeexplore.ieee.org/abstract/document/8980331


[43] Madhusudhan Talluri and Mark D. Hill. Surpassing
the TLB performance of superpages with less operat-
ing system support. ACM SIGPLAN Notices, 29(11),
November 1994.

[44] Huangshi Tian, Yunchuan Zheng, and Wei Wang. Char-
acterizing and Synthesizing Task Dependencies of Data-
Parallel Jobs in Alibaba Cloud. In Proceedings of the
ACM Symposium on Cloud Computing, SoCC, 2019.

[45] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E.
Haque, Zhijing Gene Qin, Steven Hand, Mor Harchol-
Balter, and John Wilkes. Borg: the Next Generation. In
Proceedings of the Fifteenth European Conference on
Computer Systems, EuroSys, 2020.

[46] Linus Torvalds. Page zeroing strategy.
https://yarchive.net/comp/linux/page_
zeroing_strategy.html, December 2000.

[47] Carl A. Waldspurger. Memory Resource Management
in VMware ESX Server. In Proceedings of the Fifth
Symposium on Operating Systems Design and Imple-
mentation, OSDI, 2002.

[48] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon
Yang, Hao Wang, Blaise Sanouillet, Bikash Sharma,
Tejun Heo, Mayank Jain, Chunqiang Tang, and Dim-
itrios Skarlatos. TMO: transparent memory offloading
in datacenters. In Proceedings of the 27th ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS,
2022.

[49] Zi Yan, Daniel Lustig, David Nellans, and Abhishek
Bhattacharjee. Translation Ranger: Operating System
Support for Contiguity-aware TLBs. In Proceedings of
the Forty-Sixth International Symposium on Computer
Architecture, ISCA, 2019.

[50] Wenbo Zhang. Why We Disable Linux’s THP
Feature for Databases. https://pingcap.com/blog/
why-we-disable-linux-thp-feature-for-databases,
December 2020.

[51] Weixi Zhu, Alan L. Cox, and Scott Rixner. A Com-
prehensive Analysis of Superpage Management Mecha-
nisms and Policies. In 2020 USENIX Annual Technical
Conference, ATC, 2020.

USENIX Association 2022 USENIX Annual Technical Conference    607

https://doi.org/10.1145/195470.195531
https://doi.org/10.1145/195470.195531
https://doi.org/10.1145/195470.195531
https://doi.org/10.1145/3357223.3362710
https://doi.org/10.1145/3357223.3362710
https://doi.org/10.1145/3357223.3362710
https://doi.org/10.1145/3342195.3387517
https://yarchive.net/comp/linux/page_zeroing_strategy.html
https://yarchive.net/comp/linux/page_zeroing_strategy.html
http://dl.acm.org/citation.cfm?id=1060289.1060307
http://dl.acm.org/citation.cfm?id=1060289.1060307
https://doi.org/10.1145/3503222.3507731
https://doi.org/10.1145/3503222.3507731
http://doi.acm.org/10.1145/3307650.3322223
http://doi.acm.org/10.1145/3307650.3322223
https://pingcap.com/blog/why-we-disable-linux-thp-feature-for-databases
https://pingcap.com/blog/why-we-disable-linux-thp-feature-for-databases
https://www.usenix.org/conference/atc20/presentation/zhu-weixi
https://www.usenix.org/conference/atc20/presentation/zhu-weixi
https://www.usenix.org/conference/atc20/presentation/zhu-weixi


A Artifact Appendix

Abstract
In order to aid future research and facilitate the re-
production of our work, we open-sourced our artifact,
which is available at https://github.com/multifacet/
cbmm-artifact. Our artifact includes both the CBMM ker-
nel, which is a modification of the 5.5.8 Linux kernel, and
our tooling for running the experiments discussed in the pa-
per. The README.md file in the artifact contains detailed
instructions for running each experiment in the paper and
reproducing the results and plots therein.

Scope
Running the experiments as specified in the README on
similar hardware to our own setup (described in Section 5.1)
should allow the reviewer to generate comparable results to
those in the accepted version of the paper.

Specifically, our paper’s key claims are:

• CBMM improves page fault tail latency, our measure of
MM system behavioral consistency, compared to Linux
and HawkEye (Figures 2 and 4).

• CBMM does not regress application runtime, and under
fragmentation can often significantly improve runtime
compared to Linux and/or HawkEye (Figure 5).

• CBMM often uses huge pages more frugally than Lin-
ux or HawkEye despite getting better tail latency and
comparable (or better) performance (Figure 6).

• CBMM has benefits even when profiles are imprecise
(Section 5.5, 5.6).

Because running all experiments is time and resource inten-
sive, we provide a screencast and intermediate results for the
reviewers. This should allow generation of checkable partial
results in a reasonable amount of time.

Contents
This artifact contains:

• README.md: contains instructions for how to use the arti-
fact.

• paper.pdf: the accepted version of the paper, without
any modifications responding to reviewer requests.

• cbmm/: a git submodule containing our primary artifact,
the CBMM kernel, which is a modified version of Linux
5.5.8.

• cbmm-runner/: a git submodule of our runner tool, which
runs our experiments.

• profiles/: a set of profiles we used in our evaluation.
More info is available in the README.

• scripts/:

– Convenience scripts for running experiments (more
in "Detailed Instructions"),

– Scripts for processing experimental output into a
consumable/plottable form,

– Scripts for plotting experimental results to generate
the figures from the paper.

• figures/: copies of the figures from the paper.

Hosting
Our artifact is hosted on GitHub at https://github.com/
multifacet/cbmm-artifact. Git tag atc22ae specifies the
version submitted for review, but more recent versions of
the main branch contain helpful additions, such as additional
figures not included in the paper for lack of space.

Requirements
Reviewers will need a machine with specs similar to Section
5.1:

• 192GB DRAM

• Multiple cores

• ≥ 50GB free disk space

• Running Centos 7

• Can install the CBMM kernel in place of the existing
Linux kernel

• Internet connection

They will also need any other Linux machine that can con-
nect to the first machine via passwordless SSH. This machine
drives the experiments to run on the first machine.

They will also need access to SPEC 2017 ISO, which we
cannot provide due to licensing constraints.

Full details are in the README.

608    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/multifacet/cbmm-artifact
https://github.com/multifacet/cbmm-artifact
https://github.com/multifacet/cbmm-artifact/blob/main/README.md
https://github.com/multifacet/cbmm-artifact/blob/main/README.md
https://github.com/multifacet/cbmm-artifact/blob/main/README.md
https://github.com/multifacet/cbmm-artifact/blob/main/paper.pdf
https://github.com/multifacet/cbmm/tree/ffc5a23759fcbf862ed68eaad460eeb06d79431d
https://github.com/multifacet/cbmm-runner/tree/fe900a21e1701658b73019cafab5d54340c626d2
https://github.com/multifacet/cbmm-artifact/tree/main/profiles
https://github.com/multifacet/cbmm-artifact/blob/main/README.md
https://github.com/multifacet/cbmm-artifact/tree/main/scripts
https://github.com/multifacet/cbmm-artifact/tree/main/figures
https://github.com/multifacet/cbmm-artifact
https://github.com/multifacet/cbmm-artifact
https://github.com/multifacet/cbmm-artifact/tree/atc22ae
https://github.com/multifacet/cbmm-artifact/tree/main
https://github.com/multifacet/cbmm-artifact/blob/main/README.md#hardware-and-software-requirements


EPK: Scalable and Efficient Memory Protection Keys

Jinyu Gu, Hao Li, Wentai Li, Yubin Xia, Haibo Chen
Engineering Research Center for Domain-specific Operating Systems, Ministry of Education, China

Institute of Parallel and Distributed Systems (IPADS), SEIEE, Shanghai Jiao Tong University

Abstract
As a hardware mechanism for facilitating intra-process

memory isolation, Intel Memory Protection Keys (MPK) has
been leveraged to efficiently improve the isolation, security,
or performance of the software. However, it can only support
16 isolated memory domains, which significantly limits its
applicability in many scenarios.

In this paper, we present EPK which leverages off-the-
shelf virtualization hardware features to extend the number
of available protection domains in MPK. To demonstrate the
effectiveness of EPK, we apply it in three scenarios, including
better memory isolation for server applications as well as
Non-Volatile Memory (NVM) applications, and a fast Inter-
Process Communication (IPC) mechanism for microkernels.
The evaluation results show that EPK can scale to provide
hundreds of isolated domains. It can outperform the state-
of-the-art (libmpk) by up to two orders of magnitude and
usually achieve 95% of the performance of the system with
no memory isolation.

1 Introduction

Intel MPK [7] has attracted many researchers since intro-
duced in 2019 because it offers highly-efficient intra-process
memory isolation by supporting memory domains inside one
application. An application can switch between different do-
mains with a new instruction, WRPKRU, which can execute in
the user mode directly and takes only about 28 cycles. Com-
pared with traditional software isolation or page table based
isolation, MPK can achieve much lower performance over-
head, and has been adopted in many scenarios, including: 1)
enhancing the isolation between different threads of the same
process by giving them different domain views [13, 55, 57];
2) hardening the security of an application by separating dif-
ferent components, such as untrusted third-party libraries, into
different domains [24, 40, 44, 46, 50]; and 3) improving the
performance of software that uses multiple page tables for
isolation by substituting domains for page tables [22, 29].

However, the small number (16) of isolated memory do-
mains supported by MPK severely undermines its usability.
First, typical server applications usually serve for more than
16 clients concurrently, and it is preferable to store clients’
private data in isolated domains to prevent sensitive data leak-
age due to vulnerabilities like Heartbleed [5]. Second, there
is a growing interest in protecting persistent memory [6] data
from accidental or malicious accesses [56, 57]. Long-lived
persistent data is usually directly mapped into processes and
then accessed via load/store instructions. Isolating the data in
more domains can reduce the data exposure time and benefit
stray access protection. Third, both applications and system
software may contain more than 16 components that need to
be isolated. For example, popular applications use scores of
third-party libraries [2]; an OS consists of tens or hundreds
of modules like device drivers. Besides, prior studies also
indicate the performance of NVM applications (which desire
isolation) [57] and microkernel OSes [22] can boost by more
than 10× with more MPK domains.

To scale MPK beyond 16 memory domains, recent re-
searchers propose either software or hardware approaches
to support more MPK domains [38, 41, 57]. However, the
software approach suffers from a large overhead while the
hardware approaches are infeasible on commodity machines.

In this paper, we propose EPK, which extends the maxi-
mum number of memory domains supported by MPK on com-
modity hardware efficiently. MPK’s performance advantage
stems from the decoupling of domain configuration (in priv-
ilege mode) and domain switching (in non-privilege mode).
Our observation is that another hardware feature, named fast
EPT-switching (Extended Page Table switching, with VM-
FUNC), has a similar pattern, which decouples EPT config-
uration (in host mode) from EPT switching (in guest mode).
Thus, we propose extended protection keys by combining
MPK with fast EPT-switching, i.e., reusing the same MPK
protection keys in different extended page tables (EPT). Thus,
with 512 EPTs, EPK can support up to 7,680 domains.

However, there are two major challenges to the new system.
The first challenge is to provide a unified abstraction for appli-

USENIX Association 2022 USENIX Annual Technical Conference    609



cations although combing two orthogonal hardware features.
EPK still retains the abstractions of memory domain and do-
main switching inherited from MPK while hiding the EPTs
from applications, by elaborately managing domain mappings
in multiple EPTs and developing a library to provide easy-
to-use APIs. The second challenge is to enable one thread
to simultaneously access memory domains across different
EPTs, as the original MPK allows to access multiple domains
together. To this end, EPK leverages another existing hard-
ware feature named virtualization exception (VE) to switch
the EPTs for the thread transparently when a domain access
causes EPT violations.

We implement EPK prototype and apply it in the above sce-
narios. On the one hand, EPK can work like the original MPK
for mitigating the memory errors and thus facilitates efficient
intra-process memory isolation (Section 5). On the other hand,
it can also isolate untrusted software components [46, 57]
(Section 4 and Section 6) by further preventing illegal domain
switching.

Experiments on server applications and persistent memory
applications show that EPK’s overhead is usually around or
below 5%. Compared with the state-of-the-art (libmpk) [38],
the performance improvement can be up to two orders of
magnitude. Furthermore, we incorporate EPK in a microker-
nel OS, a representative of large software. A microkernel OS
runs system components like file systems and device drivers
in user processes for embracing better isolation [20, 26, 30].
Nevertheless, costly inter-process communication (IPC) is
required for the interaction between different OS compo-
nents [22, 31, 37, 45]. EPK can provide enough isolated
domains for running different OS components and the fast
domain switch for IPCs. Thus, we propose a high-efficient
IPC mechanism named HyBridge that can improve the perfor-
mance of three well-known microkernels, seL4 [10], Google
Zircon [4], and Fiasco.OC [3], and outperform two state-of-
the-art IPC designs, SkyBridge [37] and UnderBridge [22].

In summary, this paper makes the following contributions:
1) a scalable and efficient intra-process memory isolation
mechanism named EPK; 2) a real implementation and eval-
uation on Linux; 3) a new IPC design based on EPK for
microkernel OSes with better performance.

2 Background and Motivation

2.1 Hardware Background
MPK. Intel MPK [7] can divide the virtual memory space of
one process into 16 memory domains. By leveraging previ-
ously unused bits of the page table entry, each memory page
is tagged with a four-bit protection key as the domain ID and
exclusively belongs to one of the 16 domains. A new 32-bit
register, PKRU, is introduced to specify the access permis-
sions (read-only, read-write, none) on the 16 domains (two
bits for one domain). Because the register is per-core, con-

current threads in the same process can have different access
permissions on different domains. During runtime, MMU
transparently checks the permissions. A non-privileged in-
struction called WRPKRU can update this register to change
the access permissions.

MPK in the VM. The hardware feature of MPK is also
usable in a VM. Protection keys are still tagged in the page
tables of applications instead of EPTs. From the perspective
of applications and the OS, the usage of of MPK is just the
same no matter in the VM or not.

Extended Page Table (EPT) and VMFUNC. Intel hard-
ware virtualization technology employs EPT for memory vir-
tualization. For a guest virtual machine (VM), the guest page
table maps guest virtual addresses (GVA) to guest physical
addresses (GPA) while the EPT maps GPAs to host physical
addresses (HPA) and thus aids in the seamless translation of
GVAs to HPAs. The guest VM’s OS (runs in non-root mode
ring zero) controls the guest page table, while the hypervisor
(runs in root mode) manages the VM’s EPT. VMFUNC is a
hardware virtualization extension that provides VM functions
for VMs. EPT pointer (EPTP) switching is currently the only
VM function provided, allowing the guest VM (both Ring-0
and Ring-3) to directly load a new EPTP. The loadable EPTP
can only be chosen from a list of EPTPs (up to 512) con-
figured by the hypervisor. Note that TLB entries are tagged
with the EPT base addresses to avoid flushing the TLB when
switching the EPT.

Virtualization Exceptions (VE). EPT violations usually
trigger VMExits, after which the hypervisor can fill the EPT
mappings. Yet, Intel virtualization technology also supports
converting EPT violations into VE without VMExits. With
VE enabled, the hypervisor can configure bit 63 of certain
EPT paging-structure entries to make EPT violations on some
GPAs to cause VE and others to cause VMExits as before.

2.2 Motivation
Software fault isolation (SFI) can enhance memory isolation
for applications [15, 19, 27, 36, 48, 58] by instrumenting and
restricting memory accesses. Nonetheless, it may result in
non-negligible runtime performance overhead and is inflex-
ible (e.g., hard to be fine-grained). Many studies can avoid
such disadvantages [25, 27, 32, 35, 39] using the MMU. They
isolate different memory partitions of a process in different
page tables or extended page tables and thus utilize MMU to
check memory accesses at the page granularity.

Instruction Cost (cycles)

Write CR3 (no TLB flush) 226
VMFUNC (switch EPT) 146
WRPKRU 28

(a)

Solution Overhead

LwC-simulate 70%
EPT-based 12%
ERIM 3%

(b)

Table 1: (a) Instruction cost. (b) The overhead of isolating
session keys in one isolated domain.

610    2022 USENIX Annual Technical Conference USENIX Association



However, constructing different memory domains with
page tables is not free. Switching between different domains
requires changing the page table through specialized hard-
ware instructions. Table 1(a) presents the direct cost of the
related instructions. We design an experiment to isolate each
client’s session key in separate domains in the NGINX web
server [9] to show the corresponding performance overhead.
ApacheBench (ab) [1] generates the workload: 300 concurrent
clients send requests to the server for a file. As presented in
Table 1(b), light-weight contexts (lwC) [32], as a representa-
tive of page-table-based solutions, will lead to approximately
70% overhead if we isolate all the session keys in a separate
context (i.e., a new page table) and switch to that context when
accessing those keys. Similarly, for the EPT-based solution,
we create a new EPT for isolating all the session keys and use
VMFUNC instruction to switch to that EPT when accessing
them. Although noticeably better than the page-table-based
solution, such an EPT-based solution still introduces around
12% performance overhead. In contrast, ERIM [46] only adds
about 3% overhead by utilizing MPK to construct an iso-
lated memory domain for storing the session keys, which can
demonstrate the efficiency of MPK.

Yet, MPK can only support at most 16 memory domains,
limiting its usage. Take the web server for example: it is prefer-
able to separate clients’ data in different memory domains,
guaranteeing the isolation between multiple clients. Recent
work [38, 41, 57] also identifies and addresses this limitation
of MPK. Two studies [41, 57] propose non-trivial hardware
extensions for efficiently supporting scalable domains, which
are not achievable on current platforms.

libmpk [38] gives the illusion of multiple memory domains
by exposing virtual keys to applications and maintaining the
mapping between virtual keys and the 16 real keys (one key
for one domain). When all 16 real keys are exhausted and a
new virtual key is required, libmpk will evict a mapped real
key and remap it to the new virtual key. But the key evic-
tion may incur a large overhead. For instance, if we protect
each client’s session key in a different memory domain (300
domains in total) provided by libmpk in the above NGINX
experiment (rather than storing all keys in one domain), the
overhead becomes about 20%. The overhead consists of both
direct costs, i.e., the expensive key eviction procedure involv-
ing modifying page table entries, flushing TLBs, etc., and
indirect costs, e.g., TLB misses due to flushing.

More seriously, libmpk’s domain switch cost increases as
domain memory gets larger, as shown in Table 2. The micro-
benchmark keeps switching to one domain randomly. When
the domain number increases from 32 to 64, more key eviction
occurs, resulting in higher overhead. As one domain contains
more memory pages, the switch cost gets more expensive
due to flushing more TLBs and updating more page table
entries. The cost turning point (from 33 to 34) is because
Linux flushes all TLBs together instead of one at a time when
the number of TLBs to flush exceeds 33.

Domains
Pages 16 33 34 64 1K 128K

15 185 184 188 188 187 185
32 6,576 11,173 4,090 5,270 42,912 5.1×106

64 9,959 16,573 6,308 8,068 79,012 9.6×106

Table 2: The CPU cycles of domain switches in libmpk. The
page size is 4k.

Memory

Access

Cost

Domain

Switch

Memory

Domain

Number

Multi

-domain

Access

Multi

-thread

Support

Hardware

Changes

SFI High Fast Many No Yes Zero

lwC Low Slow Many No Yes Zero

Donkey Low Fast 1,024 Yes Yes Heavy

libmpk Low Slow Many No No Zero

MPK Low Fast 16 Yes Yes Zero

EPK Low Fast 7,680 Yes Yes Zero

Table 3: Comparison of different approaches.

In brief, MPK-based intra-process memory isolation shows
attractive performance advantages but can only support a
limited number of isolated domains. Therefore, we intend
to overcome this limitation while retaining MPK’s perfor-
mance and flexibility advantages. As described in Table 3,
SFI-based and page-table-based approaches (e.g., lwC) have
performance issues and do not allow one thread to simultane-
ously access different domains. Existing hardware approaches
(e.g., Donkey [41]) are hard to be implemented on commercial
x86/ARM architectures due to intrusive hardware modifica-
tions. For example, to support 1024 domains, Donkey takes
10 bits in the page table entry as the domain ID, which is
at least incompatible with the upcoming 5-level page table.
libmpk makes several contributions like implementing fast
mprotect by using MPK. But, its extension on the MPK do-
main number has both performance and flexibility issues. It
cannot support multi-threading well, in particular, because it
is difficult to maintain a consistent view of active domains
across different threads.

3 The EPK Mechanism

According to prior studies on MPK-based intra-process iso-
lation, the common usage model of MPK is as follows. An
application (process) creates memory domains by binding dif-
ferent protection keys (pkey) to them as the domain IDs and
separates the memory data into different domains. An appli-
cation thread acquires/releases the access permission of one
specific domain before/after accessing the data in it, which
reduces the chances of the isolated memory being affected
by vulnerabilities (e.g., leakage caused by buffer overflow) or
faults (e.g., wild writes). Acquiring the domain access permis-

USENIX Association 2022 USENIX Annual Technical Conference    611



sion is efficiently achieved by executing WRPKRU instruction,
which is referred to as switching to that domain. Releasing
the permission is a reverse procedure that also makes use
of WRPKRU. EPK still inherits such a usage model while
supporting more memory domains.
Extended Protection Keys. The root cause of why MPK can
only support 16 memory domains for one application is that
each domain needs to exclusively take one pkey while the
hardware only supports 16 pkeys. So, to extend the number
of memory domains, the high-level idea of EPK is allowing
multiple memory domains to use the same pkey at the same
time. However, simply reusing the same pkey for different do-
mains does not guarantee memory isolation. Therefore, EPK
proposes extended protection key, which extends a pkey with
different EPT indexes (get more keys), and then assigns dif-
ferent extended protection keys to different memory domains.

GPA-0: HPA-0

G
P

A
-0

G
P

A
-1

G
P

A
-2

G
P

A
-3

GPA-1: NULL

GPA-2: HPA-2

GPA-3: NULL

GPA-0: NULL

GPA-1: HPA-1

GPA-2: NULL

GPA-3: HPA-3Domain-31
pkey: 1 EPT: 2

Domain-16
pkey: 1 EPT: 1

Domain-2
pkey: 2 EPT: 0

Domain-1
pkey: 1 EPT: 0

GPA-0: NULL

GPA-1: NULL

GPA-2: NULL

GPA-3: NULL

EPT-0 EPT-1 EPT-2

An Application’s Virtual Address Space

Guest Physical 
Address Space

Domain-16
pkey: 1 EPT: 1

Figure 1: The memory mapping overview for an application.

As depicted in Figure 1, EPK allows an application to
partition its virtual address space into different memory do-
mains, with each domain containing discrete memory pages.
A domain exclusively takes one extended protection key as
its domain ID, which is composed of a pkey (1-15) and an
EPT index (0-N, 06N<512)1. EPK requires an application to
run within a VM where cloud applications usually run in, and
multiple EPTs need to be created for the VM. Each EPT can
hold 15 domains for an application (domain-0 is used as the
shared domain), and the 15 domain IDs (extended protection
keys) have the same EPT index but different pkeys. For exam-
ple, domain-1 and domain-2 are both in EPT-0 and use pkey-1
and pkey-2, respectively. The same pkey can be shared by do-
mains in different EPTs concurrently, e.g., domain-1, domain-
16, and domain-31 can all use pkey-1 because they will be
mapped in EPT-0, EPT-1, and EPT-2, separately. Memory
isolation between domains within the same EPT is achieved
through the use of distinct pkeys. To achieve memory isola-
tion between domains in different EPTs, EPK ensures that
each domain’s mappings only exist in one EPT. Specifically,
the memory pages belonging to one isolated memory domain

1Domain-ID (extended protection key) = EPT-index × 15 + pkey.

are tagged with the domain’s pkey in the application’s page
table and are only mapped in the domain’s EPT. Other mem-
ory pages, i.e., the global code and data of an application, are
tagged with pkey-0 and mapped in all the EPTs (domain-0).

Although all the 512 EPTs are shared among different
applications, it is worth mentioning that each application can
construct 7,680 domains (15 × 512) since it has an individual
guest page table.
Domain Switching. When an application thread needs to ac-
cess some domain, it retrieves the permission by setting the
PKRU value and choosing the corresponding EPT (switching
to the domain). Switching between domains within the same
EPT can be finished by executing one WRPKRU instruction.
Switching between domains in different EPTs involves one
additional VMFUNC instruction for EPT switching. Since
both these two instructions are non-privileged, the domain
switches are efficiently finished in user mode (one exception
case will be explained in Section 3.2). From the perspec-
tive of programming, EPK provides easy-to-use interfaces
(Section 3.3) through a user-level library for applications to
create/delete domains, add/remove memory pages to/from
domains, and switch domains. Applications can simply use
the interfaces similar as programming on the original MPK.
Challenges. Although the idea sounds simple, there are two
implementation challenges for combining the hardware fea-
tures. First, how to make a VM seamlessly run with different
EPTs, and how to differentiate a legal EPT violation caused
by on-demand domain paging with an illegal one due to an
unauthorized access? (Section 3.1). Second, given that MPK
allows one thread to access multiple domains simultaneously,
how to support such a flexible feature when multiple EPTs
are in use (access domains mapped in different EPTs simulta-
neously)? (Section 3.2).
Threat Model. We assume the guest OS, hypervisor, and
hardware are trusted, and EPK is correctly implemented. For
the case of reducing the memory exposure time (Section 4),
we assume the unreliable code may contain memory corrup-
tion bugs, which is similar to the existing work [38, 57]. For
the case of isolating mutual-distrusted software components
(Section 5 and (Section 6)), we assume the untrusted code
or mutual-distrusted code may contain exploitable vulnera-
bilities like memory corruption and even use ROP to abuse
WRPKRU/VMFUNC for illegal domain switches. So, EPK
further integrates the mechanism of secure switching from
previous systems [22, 46] (Section 6.1 explains how to avoid
illegal domain switches). Other attacks, like side-channel at-
tacks and rowhammer attacks, are not considered.

3.1 Extended Page Table Management

Traditionally, a VM has a single EPT that maps the GPAs of
both the guest OS and applications to HPAs. Differently, EPK
necessitates the creation of multiple EPTs for a VM based on
two principles. Principle-1: GPAs that are not allocated for

612    2022 USENIX Annual Technical Conference USENIX Association



memory domains should be mapped uniformly across EPTs.
Thus, the VM can always run normally in any EPT. Principle-
2: Each memory domain’s GPAs should be mapped in only
one EPT. As previously stated, this is for domain isolation.
GPA to Domain Association. Since the hypervisor is in
charge of constructing EPTs, the first problem is how it can
tell whether one GPA belongs to some memory domain or not.
A straightforward solution is letting the guest OS, the GPA
manager, share the information about which GPAs are allo-
cated for memory domains with the hypervisor. Nevertheless,
this entails non-trivial modifications to both the hypervisor
and the guest OS. An alternative solution is to divide the
whole GPA space into two halves and allocate GPAs for do-
main memory from one half, allowing the hypervisor to easily
determine whether a GPA belongs to a domain. This solu-
tion still adds a significant amount of complexity to GPA
allocation in the guest OS.

EPT-0 PML4

#0

#1

#511

EPT-1 PML4

#0

#1

#511

… …

Shared PDPTEPT-0 PDPT EPT-1 PDPT

Maps

Domain

16-30

Maps

Domain

1-15

Common

Mappings

Guest Physical Address Space Shadow Address Space 

SHADOW REGION OFFSET 

Figure 2: The EPT structures. PML4 is the top-level EPT
page, and PDPT is the second top-level page.

To address this problem, EPK proposes the following de-
sign. Instead of partitioning the GPA space, EPK creates the
illusion that there is a shadow address space (GPA) in the VM
by simply adding a fixed offset (SHADOW REGION OFF-
SET) to the GPAs allocated to memory domains, as illustrated
in the top half of Figure 2. As a result, the fixed offset be-
comes the boundary between the GPAs for memory domains
and other GPAs. Based on this boundary, EPK constructs
the EPTs, as shown in Figure 2. It sets the offset to 512 GB
since an EPT PML4 entry can point to 512 GB GPA range.
The entire GPA space is pointed by the first entry of each
EPT PML42, and the shadow address space is pointed by the
second entry of each EPT PML4. The first PML4 entry of
different EPTs points to a shared PDPT, implying that the
non-domain GPA mappings are always the same in different
EPTs and thus satisfies Principle-1. By sharing this PDPT, the
hypervisor can reduce the space overhead of multiple EPTs.
More importantly, it does not need to explicitly synchronize
an EPT update (e.g., adding a new mapping for the guest OS)
across all EPTs, which is expensive. The second PML4 entry

2For simplicity, we assume the size of the GPA space is smaller than 512
GB. The fixed offset can be adjusted to support larger GPA space.

of different EPTs points to different PDPTs for adding the
GPA mappings for memory domains, which is a prerequisite
of Principle-2.
Illegal EPT Violations. The second problem is the hypervi-
sor cannot determine if an EPT violation (EPT fault) within
the shadow address space is legal or not. Assume an applica-
tion thread executes in EPT-1 while accessing Domain-1 in
EPT-0, resulting in an EPT violation. The hypervisor cannot
decide whether to add the mapping because it does not know
which domain the faulting address belongs to, i.e., whether
the GPA should be mapped in the current EPT. Simply adding
the mapping regardless of semantics will violate Principle-2.
Instead, EPK chooses to avoid any legal EPT violation within
the shadow address space (except accessing domains across
EPTs which will be explained in Section 3.2). Specifically,
the guest OS is required to invoke one new hypercall (a hyper-
visor interface provided to the VM) to fill the EPT mapping
when a legal domain page fault happens, which eliminates
the following EPT violation. The guest OS can check the
legality of a domain page fault because applications tell it
the semantics of domain mappings via the corresponding in-
terfaces (explained in Section 3.3). As such, the hypervisor
only needs to add a simple hypercall to add the EPT map-
ping, and EPT violations within the shadow address space
must be illegal. Together with the carefully designed EPT
structure, Principle-2 can be met now. Furthermore, because
it avoids original VMExits caused by EPT violations, this
hypercall-based solution incurs no additional overhead.
EPT-ID Access. When a domain page fault occurs, the guest
OS needs to check whether the faulting thread has the access
permission according to the current PKRU value and EPT-ID.
However, because the domain switches are performed in user
mode, the guest OS is unaware of the changes of PKRU and
EPT-ID. The guest OS can directly read the PKRU register but
cannot get EPT-ID (the third problem). EPK enables the guest
OS to efficiently retrieve the EPT-ID by subtly mapping one
special guest physical page (named EPT-ID-Page) across dif-
ferent EPTs. During VM initialization, the guest OS allocates
the EPT-ID-Page and passes its address to the hypervisor. The
hypervisor maps the EPT-ID-Page to different host physical
pages in different EPTs (in different PDPTs) and stores the
corresponding EPT-ID in each physical page. Therefore, the
guest OS can always obtain the current EPT-ID by simply
reading the EPT-ID-Page (first four bytes).

3.2 Multi-Domain Access Support

MPK supports 16 domains and allows one thread to access
any of them by configuring the PKRU register. Nevertheless,
it is non-trivial to support this flexible feature in EPK since
there are domains across different EPTs.

Accessing multiple domains in the same EPT can still be
accomplished simply by configuring PKRU. To transparently
support accessing multiple domains in different EPTs, EPK

USENIX Association 2022 USENIX Annual Technical Conference    613



further employs another hardware feature named VE (virtual-
ization exception). The hypervisor converts EPT violations
in the shadow address space into VEs which will be handled
in the guest OS. The VE handler in the OS can switch the
EPTs for one thread and thus help it to seamlessly access
multiple EPTs. Specifically, when a thread needs to acquire
the access permission of domains across multiple EPTs si-
multaneously, it needs to inform the kernel of the domain
information. Suppose the thread needs to access domain-A
in EPT-1 and domain-B in EPT-2 and first runs in EPT-1. As
running in EPT-1, it can directly access domain-A but will
trigger an EPT violation when attempting to access domain-B.
Because domain-B is in the shadow address space, the cor-
responding EPT violation will be caught by the VE handler
instead of causing expensive VMExits. Since the OS knows
that the thread can access domain-B, the VE handler will
switch to EPT-2 by using VMFUNC and setting PKRU to the
required value. After that, the thread can be restored and con-
tinue to access domain-B. A similar procedure happens when
it later accesses domain-A in EPT-2. Thereby, EPK gives an
illusion that one thread can access domains in multiple EPTs
at the same time.

Two points are worth mentioning. First, EPK only con-
verts EPT violations to VEs within the shadow address space,
which has no interference on the VM’s original execution.
Second, different from getting access to domains in the same
EPT or a specific domain in other EPTs (fast path), getting
access to multiple domains in different EPTs requires the
kernel involvement (slow path).

3.3 System Components in Linux/KVM
EPK’s prototype implementation on Linux/KVM mainly con-
sists of three components: a user library, a kernel module in
the guest OS (Linux), and a hypercall handler in the hypervi-
sor (KVM).

Figure 3 lists the main library interfaces available to ap-
plications. The first two functions invoke the kernel module
through ioctl to allocate and free domain IDs. alloc_domains
can get multiple domain IDs, and the kernel module will try

  /* Allocate domain IDs with affinity */
  int alloc_domains(int num, int dom_ids[]);

  /* Free domain IDs */
  int free_domains(int num, int dom_ids[]);

  /* Allocate a virtual memory range for a domain */
  void *domain_mmap(int dom_id, void *addr, size_t len,
                   int prot, int flags);

  /* Remove some mappings */
  int domain_munmap(void *addr, size_t len);

  /* Retrieve the access permission of a domain */
  int domain_begin(int id, int prot);

  /* Release the domain permission */
  int domain_end(int id);

Figure 3: The APIs provided by the user library of EPK.

to return the domains that are located in the same EPT. This is
because some domains may have affinities, i.e., they are likely
to be traversed together. Properly utilizing affinity in the appli-
cations can benefit the performance. Although it is non-trivial
in general, achieving locality is straight forward in some cases.
For example, in Section 4.2, a simple locality-aware request
dispatching scheme can make Memcached embrace the affin-
ity benefits; in Section 5.2, simply letting one thread work on
the warehouses within the same EPT is enough.

domain_mmap first invokes mmap and then informs the
kernel module about the domain mapping information. The
kernel module records the information by using Linux’s rbtree
and validates domain page faults based on it. Huge page
mapping is also supported through setting the flag argument.
The last two interfaces are responsible for switching memory
domains and are purely implemented in user mode except
for accessing multiple domains in different EPTs. It is also
necessary to know the current EPT-ID in user mode. For
example, switching domains in the same EPT requires no
VMFUNC. EPK does this by reusing the EPT-ID-Page During
its initialization, the library asks the kernel module to map
the EPT-ID-Page as read-only into the application. Besides, a
domain memory allocator based on [34] is also provided.

Since servicing invocations from applications and record-
ing the domain-related information, the kernel module pro-
vides a routine that aids in handling domain page faults. We
insert a hook in the Linux page fault handler for invoking this
routine. When a page fault occurs, the page fault handler still
executes as before (e.g., allocates a free page) but invokes
this routine just before setting the GPA of the newly allo-
cated page in the page table entry. The routine then checks
whether the page fault occurred within the domain regions
and whether it was legal. If it is a legal domain page fault,
the routine updates the GPA by adding SHADOW REGION
OFFSET to it and invokes the hypercall to fill the mapping
for the updated GPA in the EPT (as described in Section 3.1).
Finally, the routine returns and the page fault handler sets the
updated GPA in the page table entry. Another simple hook
is added to the OS schedule function (i.e., __schedule). It
saves/restores the EPT-ID for threads of applications that use
EPK. Specifically, it saves the current EPT-ID in the thread’s
task_struct when scheduling out such a thread and restores
the EPT-ID with VMFUNC (if necessary) when scheduling in
the thread. Moreover, we add the VE handler for transparently
supporting flexible multi-domain access.

In KVM, besides enabling VE and VMFUNC, we extend
the hypercall handler to provide two additional functions for
the guest kernel module. The first is to map the EPT-ID-Page,
and the second is to add the EPT mapping for the VM’s
shadow address space. Furthermore, to support reclaiming the
pages mapped in the shadow address space, the hypervisor
needs to first disable VE on the pages to reclaim and record
the reclaim information When swapping back the pages, the
hypervisor needs to re-enable VE on the pages. Besides these,

614    2022 USENIX Annual Technical Conference USENIX Association



the hypervisor can reclaim the pages as before. Yet, this re-
claiming mechanism is not supported in the current imple-
mentation of EPK.

EPK only requires minor modifications on Linux/KVM.
Our prototype only adds 250 lines of code (LOC) in KVM,
13 LOC in guest OS, and 600 LOC in guest kernel module.

4 Case Study: Protecting Server Applications

Experiment Setup. All the experiments in this paper are
conducted on a Dell PowerEdge R640 server with Intel Xeon
Gold 6138 CPU. Hyper-threading is disabled, and the CPU
frequency is fixed to 2.0GHz. The L2 TLB has 1536 entries. In
Section 4 and Section 5, we implement and evaluate EPK on
Linux/KVM-4.19.88 (both the guest OS and the hypervisor).
The experiments are conducted in a VM (20 CPUs and 80GB
memory), and the loopback network is used. All experiments
use 4k memory pages without explicit statements.
Comparison Systems. Besides the native performance (run
benchmarks with no isolation), we compare the performance
of EPK with libmpk [38], lwC [32], and a VMFUNC-only
solution. We evaluate libmpk in single-thread experiments
since it does not support multi-threading. Since lwC is imple-
mented on FreeBSD, we simulate its performance on Linux.
Specifically, we first measure its switch cost (around 6,000
cycles, which corresponds to the reported data in Table 2
in ERIM [46] and Table 2 in lwC [32]) and then add such
switch cost in the benchmarks (i.e., waiting for 6,000 cycles
when switching context is needed). Note that the simulated
performance will be better than the actual performance be-
cause the indirect cost of switching address space is ignored.
We also implement a VMFUNC-only solution that provides
one memory domain in one EPT and leverages VMFUNC for
domain switches. The experiment of libmpk is conducted in
host, while all the other systems run in the VM.

4.1 Micro-benchmarks

Domain Num 3 4 8 15 16 32 64

libmpk(128 pages) 184 184 186 188 12,991 13,148 13,048
VMFUNC 350 831 830 836 834 849 830
EPK 97 97 100 101 111 115 162

Table 4: The average cost (in cycles) of domain switches.

We leverage different solutions to create multiple memory
domains and evaluate the domain switching cost (shown in
Table 4). The test program initially runs in domain-0 (not
counted in the domain number) and switches between the
created domains in order (sequential access). The number
of iterations is 100,000 and we measure the average cost.
libmpk’s switch cost gets much higher when the domain num-
ber is above 15 (domain-0 takes one protection key). Besides,

its switch cost is severely influenced by the size of protected
memory. When each domain contains 128 pages, its switch
cost becomes more than 10,000 cycles if the domain number
exceeds 16, which is even 100× slower than EPK. With the
domain size increasing, its switch cost will enlarge due to
more page table updates during key eviction, as shown in Ta-
ble 2. In contrast, the switch time of the other two approaches
is immune to the domain size.

The VMFUNC-only solution uses one EPT for domain-0,
and its switch cost is about 350 cycles which mainly comes
from two VMFUNC instructions when the domain number
is no more than 3 (the total EPT number is no more than
4). However, its cost increases to around 830 cycles when
the domain number exceeds 3. This is because TLB entries
are tagged with EPT base addresses, and the involvement
of more EPTs may decrease the TLB hit rate. Specifically,
accessing the same memory page in different EPTs generates
different TLB entries and then may exceed the capacity of the
corresponding TLB set. EPK shows the lowest average switch
cost since most switches are based on WRPKRU. When the
domain number is less than 16, it outperforms libmpk because
the latter one involves virtual protection key management
(although no key eviction). When the domain number exceeds
60, the average cost of EPK increases since there are more
than 4 EPTs.

Yet, in the worst case, EPK needs both WRPKRU and VM-
FUNC for switching to one domain, and takes around 860
cycles for traversing domains like the above, which means the
performance of EPK may converge with the VMFUNC-only
solution with random switches.

4.2 Macro-benchmarks

NGINX. Introducing intra-process memory isolation to
server applications brings the potential to achieve higher
security or reliability. We first apply different solutions to
a widely-used web server, NGINX [9] v1.12.1, to evaluate
the performance overhead. We isolate SSL session keys as
ERIM [46] does (including preventing the abuse of domain
switching), except that we store per-client session keys in
different domains rather than in one domain. We leverage
ab [1] to generate the workload: 300 clients keep sending
file requests one by one. The server thread is fully loaded.
The total domain number is 300 and each domain contains 5
memory pages.

Figure 4a shows the evaluation results. The throughput is
normalized because libmpk is implemented on Linux 4.14.2
and the native throughput differs on Linux 4.14.2 and 4.19.88
(EPK) (while KPTI is disabled on both, other mitigations on
CPU vulnerabilities are key factors). EPK imposes overhead
from 4.3% to 5.8% compared with native and outperforms
other solutions. The overhead of the VMFUNC-only solution
varies from 11.0% to 12.4%. Notice that the NGINX serving
thread handles client requests in order. Thus, most domain

USENIX Association 2022 USENIX Annual Technical Conference    615



 0

 0.2

 0.4

 0.6

 0.8

 1

0k 1k 8kN
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

Native
EPK

VMFUNC

libmpk
lwC(sim)

(a) NGINX. X-axis: each request size.

 0

 5

 10

 15

 20

 25

1 4 8 20 60 70T
h

ro
u

g
h

p
u

t 
(x

1
0

,0
0

0
 r

e
q

/s
) Native

EPK
VMFUNC
lwC(sim)

(b) Memcached SET. X-axis: the number of users.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

1 4 8 20 60 70T
h

ro
u

g
h

p
u

t 
(x

1
0

,0
0

0
 r

e
q

/s
) Native

EPK
VMFUNC
lwC(sim)

(c) Memcached GET. X-axis: the number of users.

Figure 4: (a) shows the performance of protecting session keys in NGINX web server. (b) and (c) show the performance of
isolating different users in Memcached (omit libmpk since it lacks the support of multi-threading).

switches in EPK need no EPT changing, making EPK outper-
form the VMFUNC-only solution. When storing each session
key in an individual context in lwC, the overhead is 37.1% on
average merely due to the explicit cost of domain switches.
The overhead incurred by libmpk ranges from 14.5%-18.9%
(23.4% to 33.2% if in the virtualization environment) due to
the involvement of page table modifying and TLB flushing.
In the cases of infrequent switching and small domain size (5
pages), libmpk will not lead to too much overhead.

Memcached. We evaluate Memcached [8] 1.6.9 and use lib-
Memcached as the client library in this experiment. Mem-
cached is a well-known key-value store and usually runs as a
multi-thread server application. Arbiter [49] suggests that it is
preferred to isolate data from different clients in Memcached
for security-sensitive cases. Like Arbiter, we enable Simple
Authentication and Security Layer (the SASL configuration)
in Memcached and then isolate data stored by different clients.
Besides, we slightly modify the request dispatching scheme
of Memcached so that the requests from one client are always
dispatched to the same worker thread for leveraging the do-
main affinity provided by EPK. The worker thread switches
to the client’s corresponding domain before handling a re-
quest and exits that domain before sending back the reply.
We create a different number of client threads, and each of
them uses libMemcached for sending SET/GET requests. The
sizes of key and value are 32 bytes and 256 bytes, separately.
There are four worker threads (default configuration) on the
server-side, and the clients will be evenly partitioned to them.
In this experiment, the max domain number is 70 and each
domain contains about 2,000 memory pages.

Figure 4b and 4c show the throughput of Memcached. As
before, lwC leads to the highest overhead due to its expensive
switch cost. When the client number is no more than 60, EPK
incurs at most 0.7% overhead on the throughput of SET op-
erations. The overhead on the throughput of GET operations
is slightly higher (up to 2.9%) because the GET operations
are lighter than the SET ones. The extremely low overhead is
because no EPT switches happen on the critical path. EPK al-
lows each worker thread to create 15 domains in one EPT, and
thus four worker threads can handle 60 clients (60 domains)

without switching EPTs. When the number of clients exceeds
60, the overhead of EPK becomes larger because some worker
threads need to handle requests from more than 15 clients,
and then EPT switches happen.

In contrast, the VMFUNC-only solution incurs a much
larger overhead, i.e., up to 17.9% and 34.0% overhead for
the throughput of GET and SET operations, separately. The
overhead mainly comes from TLB misses, as explained in
Section 4.1. For validation, we further carry out two exper-
iments marked as VMFUNC-test-1 and VMFUNC-test-2 in
Table 5. The former one is that the worker thread switches
to the target EPT and immediately switches back before han-
dling a request. So, all the requests are handled in EPT-0. The
latter one is that each worker thread always switches to EPT-
1 for handling requests. So, all the requests are handled in
EPT-1. Both of them show close-to-native performance, and
the TLB miss number is not significantly enlarged. However,
the VMFUNC-only solution causes many more TLB misses
and then leads to the highest overhead. The overhead of TLB
miss in NGINX is not obvious because the worker thread of
NGINX only switches to other EPTs when accessing session
keys while the worker thread of Memcached executes most
logic in different EPTs.

Throughput (×10K req/s) dTLB/iTLB misses

Native 24.5 1 / 1
VMFUNC-test-1 24.4 1.1 / 2.4
VMFUNC-test-2 24.0 1.2 / 2.4
VMFUNC 20.1 9.5 / 29.1

Table 5: The throughput and TLB misses (normalized) when
evaluating Memcached SET operation with 60 clients.

Since libmpk does not support multi-thread, we evaluate
libmpk in Memcached with a single worker thread. When
there are 60 domains, the overhead of the above test exceeds
80%, which is significantly higher than that in NGINX be-
cause each domain contains about 2,000 pages.

616    2022 USENIX Annual Technical Conference USENIX Association



 300

 500

 700

 900

 1100

Native
EPK

VMFUNC
libmpk

Number of Domains

T
h

ro
u

g
h

p
u

t 
(K

o
p

s
/s

)

 0
 4
 8

 12

4 15 16 64 128
Number of Domains

T
h

ro
u

g
h

p
u

t 
(K

o
p

s
/s

)

(a) B+-tree test-1.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

1 2 4 8

T
h

ro
u

g
h

p
u

t 
(M

o
p

s
/s

)

Number of Threads

Native
EPK

VMFUNC

(b) B+-tree test-2.

 1220
 1260

EPK
VMFUNC

libmpk

Number of Domains

T
im

e
 O

v
e

rh
e

a
d

 (
ra

ti
o

)

 0
 0.4
 0.8
 1.2
 1.6

 2
 2.4
 2.8

4 15 16 64 128

direct
indirect

Number of Domains

T
im

e
 O

v
e

rh
e

a
d

 (
ra

ti
o

)

(c) B+-tree test-3.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

8 15 16 20 32

T
h

ro
u

g
h

p
u

t 
(K

o
p

s
/s

)

Number of Domains

Native
EPK

VMFUNC
libmpk

(d) Linked List test.

25

50 EPK
VMFUNC
libmpk

16K 64K 256K 1M 4M 16M 64M 128M 256M
Memory Size per Domain

0.0

2.5

5.0
Ti

m
e 

Ov
er

he
ad

 (r
at

io)

(e) Hashtable test.

 0

 0.5

 1

 1.5

 2

 2.5

1 6 12 16 20

T
h

ro
u

g
h

p
u

t 
(M

o
p

s
/s

)

Number of Domains per Thread

Native
EPK

VMFUNC

(f) TATP benchmark.

Figure 5: B+-tree (a) Single-thread and random access, (b) Multi-thread and each thread operates on 15 domains, (c) Time
breakdown when single-thread and sequential access. (d) Linked List (low switch frequency). (e) Hashtable benchmark (different
domain memory size). (f) TATP benchmark. Omit libmpk (single-thread support) in the multi-threaded cases.

5 Case Study: Isolating NVM Data

To embrace the low access latency of NVM, applications usu-
ally map NVM into the address space and access it through
load/store instructions. Bringing intra-process memory isola-
tion to protect NVM data (e.g., reducing the data exposure
time) has also been investigated by recent work [56, 57]. In
this section, we evaluate the benchmarks similar to existing
NVM studies [23, 33, 56, 57], using DRAM as NVM.

5.1 Data Structure Benchmarks
We first experiment on B+-tree. We map each B+-tree in an
individual domain and create different numbers of threads to
do lookup or insert operations (the ratio is 1:1 and other ratios
show similar performance trends). Domain switches occur
before and after an operation. Each tree initially has 500,000
key-value pairs, and each tree node has up to 32 child nodes.
In this experiment, the max domain number is 128 and the
size of each domain is about 128MB.

The overhead of lwC in the above benchmarks is always
around 80% because one B+-tree operation takes just about
2,100 cycles.

Figure 5a shows the throughput when a single thread op-
erates on a randomly selected tree (i.e., randomly switching
to a domain). If the domain number is less than 16, EPK
and libmpk bring about 7% and 11% overhead, individually.
When the domain number exceeds 15, libmpk introduces un-
acceptable overhead (throughput drops by 99.8%) due to the
substantial cost of key eviction (as the domain size is not
small), and EPK can outperform it by two orders of magni-

tude. Note that the kernel version has minor effects on the
native performance since this benchmark rarely issues sys-
tem calls. The VMFUNC-only solution incurs 27% overhead
when the domain number is 4. Compared to EPK, its higher
overhead comes from two sources: one is VMFUNC is slower
than WRPKRU; the other is more TLB misses (its dTLB and
iTLB misses are 1.34× and 3.34× of EPK’s, respectively).
When the domain number increases to 64 and 128, EPK’s
overhead also increases to 32% and 44% because more EPTs
and EPT switches are required. Specifically, when there are
64 domains, 78% of domain switches in EPK involve EPT
switches. If accessing different domains sequentially instead
of randomly, EPK’s overhead is below 10% (3% for huge
page) when the domain number is no over 60.

Figure 5b shows the performance when there are multiple
threads on different cores and each thread accesses 15 differ-
ent domains. EPK’s overhead remains below 5% as the thread
number increases, which is significantly lower than that of
the VMFUNC-only solution (41% to 51%).

We further analyze the overhead of the three approaches in
terms of the time cost (the part that exceeds the native time):
the switching time (direct cost) and the rest time overhead
incurred by the pollution on CPU internal structures including
TLBs and caches (indirect cost). The experiment is one thread
operates on the tree in each domain sequentially to complete a
fixed amount of operations. Figure 5c presents the breakdown.
The VMFUNC-only solution brings about 1.2× time overhead
when the domain number exceeds 8. Its indirect cost remains
around 0.8× because the TLB miss rate is almost stable. The
page table updating operations of libmpk leads to both high
direct cost and indirect cost (not only incurs TLB misses

USENIX Association 2022 USENIX Annual Technical Conference    617



but also leads to intensive cacheline pollution). EPK causes
0.23× (0.13× for huge page) indirect cost when there are 64
domains due to more than 4 EPTs, which is still better than
others, and causes much lower cost for fewer domains.

Note that the domain switch frequency is proportional to
the throughput in the presented benchmarks. We also con-
duct an experiment on Linked List (Figure 5d): each list is
separated into one domain, and one thread performs 10 oper-
ations (search, insert, delete) in a random list for each time.
The switch frequency is less than 1,400 times per second.
libmpk still introduces 65.1% performance overhead when
there are 32 domains and each domain is 256 MB. The other
two approaches cause unnoticeable overhead.

Last, Figure 5e shows the overhead (in terms of the time
cost) of different approaches as the domain size increases. In
this experiment, each hash table resides in one domain (32 do-
mains), and one thread keeps performing an operation (search
or insert) in one random domain. We gradually increase the
domain size by adding more buckets/key-value pairs in each
hash table. The overhead of libmpk increases as the domain
size grows, as expected, whereas the overhead of EPK and the
VMFUNC-only solution decreases because the native perfor-
mance decreases when more memory involves. Specifically,
when each domain is 256 MB, the overhead of the latter two
are 1.3% and 4.7%, respectively.

Virtualization Cost. Virtualization brings performance
overhead to applications, especially when the working set is
large and TLB misses are frequent. For example, when the
domain size in hash table is configured as 16KB or 128MB,
the virtualization overheads are 2.1% and 9.0%, respectively.
When a VM application uses EPK, the virtualization cost is
not accounted on EPK. Otherwise (in bare metal), the virtual-
ization cost should be included in the overhead of EPK. Nev-
ertheless, a thin virtualization layer instead of a full-fledged
hypervisor can minimize the virtualization cost [22].

5.2 OLTP Benchmarks

TATP [43] is an online transaction processing (OLTP) bench-
mark. In the experiment, we use the above B+-tree as the data
store and create four threads to execute transactions (three
read-only and three read-write ones). We store a fixed amount
of initial data in different domains, and each thread switches
to the corresponding domain before executing one transaction.
The max domain number is 80 and the size of each domain
is 512MB. Figure 5f presents the throughput as the domain
number for each thread increases from 1 to 20. The native
throughput is in a decreasing trend along with the increase of
domain number because more data weakens the cache local-
ity. EPK’s overhead is within 7%, while the VMFUNC-only
solution incurs up to 32% overhead. We also run single-thread
TATP with libmpk. Similar to B+-tree test-1, the overhead of
libmpk is over 99% when the domain number exceeds 15.

TPC-C [18] is another OLTP benchmark in which there

are multiple warehouses. We isolate different warehouses as
well as their associated data in different domains. The max
domain number is 128 and the size of each domain is 400MB.
According to its specification, 7.2% of the transactions up-
date multiple warehouses simultaneously. There are also four
threads executing the transactions. When each thread oper-
ates on less than 16 domains, EPK achieves almost the same
throughput as the native (0.6% overhead). The overhead is
lower than that in TATP because the transactions in TPC-
C are more heavyweight. When each thread operates on 32
domains, the overhead of EPK becomes 3.2% as VEs are trig-
gered for supporting transparent multi-domain access. The
other approaches are infeasible in this experiment due to the
lack of the support of multi-domain access.

6 Case Study: Boosting IPCs in Microkernels

6.1 HyBridge

Different from monolithic OSes which run all the OS modules
in the kernel-level, microkernels leave minimal functionalities
in the kernel while running all other OS modules (referred to
as system servers below) such as file systems, network stacks,
and device drivers into separated user-level processes. Inher-
ently, microkernels embrace better security and fault isolation,
but leads to non-negligible communication cost at runtime.
Specifically, since system servers are user-level processes, the
interactions between two servers or between an application
and a server require inter-process communication (IPC). In
contrast, on monolithic OSes (e.g., Linux), the interaction
between two OS modules only requires function calls, and
the interaction between applications and the OS can be as fast
as about 150 cycles (syscall and sysret). So there has been a
long line of research to reduce the cost of IPC to bridge the
performance gap between microkernels and monolithic OSes.

Server0 Server1APP

Server0 Server1

APPUser

Kernel

(sqlite) (xv6fs) (ramdisk)

Figure 6: Traditional IPC flow on microkernels is shown on
the left, and IPC with UnderBridge is shown on the right.

A most recent IPC design called UnderBridge [22] retrofits
Intel MPK to optimize (synchronous) IPC. For reducing the
cost of IPC between an application and a server, it pulls sys-
tem servers from user-level processes into the kernel address
space as shown in Figure 6. Besides, it leverages Intel MPK
to ensure the isolation between system servers in the kernel,
and the IPCs between them are based on WRPKRU and thus
greatly optimized. However, due to the limitation of MPK
memory domains, it can only run limited system servers in the
kernel and accelerate IPCs to them (issue-1). Also, although
it can reduce the privilege switches during IPCs between ap-

618    2022 USENIX Annual Technical Conference USENIX Association



plications and servers, the page table switches are still needed
because it requires a separate kernel page table (issue-2).

Since EPK can construct even thousands of isolated mem-
ory domains efficiently and enable fast domain switch at user-
level, we propose EPK-based HyBridge for boosting IPCs for
microkernels, which is inspired by UnderBridge while fixing
the two issues of UnderBridge. As shown in Figure 7, system
servers run at user-level, and each one exclusively takes one
or more memory domains for holding its own memory, in-
cluding code, data, stack, and heap. Thus, one system server
cannot access others’ private memory, just like when they
are isolated in different processes while IPCs are based on
domain switches.

Cross-server IPC. The cross-server IPCs only happen be-
tween system servers that need to interact with each other.
For example, a file system communicates with a disk driver
while a network stack does not. This also matches the domain
affinity in EPK. Therefore, the microkernel can run the related
system servers in the same EPT. When two servers establish
an IPC connection, the microkernel will map an IPC gate,
i.e., a piece of code, for them. During an IPC invocation, the
gate will transfer the control flow from the caller to the callee.
Specifically, it saves the caller’s execution states, then exe-
cutes WRPKRU to switch to the callee’s domain, and restores
the callee’s execution states. Similarly, it does the reverse
procedure when the IPC returns. HyBridge also allows two
servers to share memory for exchanging data by assigning a
free memory domain to them, e.g., shared memory domain 4
in Figure 7.

Trampo-
line Servers Trampoline

APP Server0 Server1 Server2

Microkernel

dom: 1

shm: 4

dom: 2

shm: 4

dom: 3

shm: -

EPT-0 EPT-1 EPT-n

Other

Servers

Figure 7: The overview of HyBridge. The numbers after
colons are domain IDs. Shared memory is short as shm.

Application-to-server IPC. Applications execute in differ-
ent processes (in EPT-0) just like before while several system
servers can run in one process (across one or more EPTs),
which means each application has a unique guest CR3 (GPA)
while multiple servers share one. Since an application and a
server run in different EPTs, the IPCs between them need EPT
switching. HyBridge attaches a trampoline in the EPTs for
running servers and maps the trampoline into an application
when it asks for establishing an IPC connection with some
server. The trampoline plays the role of the IPC gate and uses
VMFUNC to switch between the caller and the callee. Though
VMFUNC can directly switch EPT, it does not change guest
CR3. However, for an application-to-server IPC, the caller
and callee use different CR3 (CR3-App and CR3-Server). So,

besides mapping the trampoline, HyBridge also maps CR3-
App (GPA) to the HPA of CR3-Server in the server’s EPT
during the IPC establishment. In this way, the HPA mapping
for the guest CR3 is transparently changed after executing
VMFUNC, i.e., the guest page table is switched from the ap-
plication to the server. When an application invokes an IPC,
the trampoline saves the caller’s execution states (executes in
EPT-0), executes VMFUNC (switches the EPT), and restores
the callee’s execution states (executes in server’s EPT).

Security Enforcement. Besides memory isolation, Hy-
Bridge employs additional security mechanisms to achieve
the same security guarantee as original microkernels. Com-
pared with original IPC designs, HyBridge makes an untrusted
system server have two more potential attack vectors. One is
that a server may bypass the memory isolation by maliciously
executing WRPKRU or VMFUNC and then access others’
memory. The other is that a server may issue arbitrary IPCs
to other servers by maliciously executing the trampoline code
without the corresponding capabilities.

HyBridge eliminates the two attack vectors as follows.
First, it utilizes binary scanning and rewriting to ensure that
each server contains no WRPKRU or VMFUNC instructions
during binary loading. Meanwhile, it adds sanity checks in
the IPC gates for ensuring the argument of WRPKRU is le-
gal, which is similar as ERIM [46]. So, a compromised or
malicious server cannot illegally execute these two instruc-
tions to retrieve unauthorized memory permissions even with
return-oriented programming (ROP). Second, HyBridge uses
a token-based mechanism to authenticate IPC invocations
as SkyBridge [37] does. Considering control flow hijacking,
trampolines can be executed arbitrarily or it is even possible to
jump into the middle of the trampoline, i.e., using VMFUNC
to switch to any EPT. Although they cannot be misused to
break the memory isolation, an untrusted server may issue
arbitrary IPCs by invoking them. To prevent this, HyBridge
lets a server generate a random 64-bit token for a registered
client (another server or an application) when building the
IPC connection, and a client needs to pass the token during
IPCs for authentication. The server only serves the IPC re-
quests with legal tokens, so the problem of arbitrary IPCs can
be avoided. Moreover, HyBridge also prevents the occurrence
of VMFUNC in applications by scanning and rewriting the
binary code. Thus, an application can only switch to system
servers through the mapped trampoline.

6.2 Experiments

We implement HyBridge on three well-known microkernels,
Zircon [4], seL4 [10], and Fiasco.OC [3], to assess its effec-
tiveness. Besides, we also compare it with SkyBridge [37]
which runs system servers in different EPTs and imple-
ments kernel-bypass IPCs based on VMFUNC, and Under-
Bridge [22]. We deploy the thin virtualization layer from
SkyBridge while applying extensions needed by three IPC de-

USENIX Association 2022 USENIX Annual Technical Conference    619



 0

 5

 10

 15

 20

insert update query delete

T
h
ro

u
g
h
p
u
t 
(N

o
rm

a
liz

e
d
)

Native w/o KPTI
Zircon-SkyBridge

Zircon-UnderBridge

Zircon-HyBridge
Monolithic

Monolithic w/o KPTI

(a) Zircon.

 0

 1

 2

 3

 4

 5

insert update query delete

T
h
ro

u
g
h
p
u
t 
(N

o
rm

a
liz

e
d
)

Native w/ KPTI
Native w/o KPTI
seL4-SkyBridge

seL4-UnderBridge

seL4-HyBridge
Monolithic

Monolithic w/o KPTI

(b) seL4.

 0

 2

 4

 6

 8

 10

 12

insert update query delete

T
h
ro

u
g
h
p
u
t 
(N

o
rm

a
liz

e
d
)

Native w/ KPTI
Native w/o KPTI

Fiasco.OC-SkyBridge
Fiasco.OC-UnderBridge

Fiasco.OC-HyBridge
Monolithic

Monolithic w/o KPTI

(c) Fiasco.OC.

Figure 8: Normalized throughput of SQLite3 on different microkernels. KPTI is short for kernel-page-table-isolation.

signs. We evaluate the performance of SQLite3 v3.23.0 [11],
a database application, after applying different IPC mecha-
nisms on different microkernels. For severing SQLite3, we
run two system servers, a file system named xv6fs [16] and a
RAMdisk. When SQLite3 operates a storage file, it will first
invoke the xv6fs server by an application-to-server IPC; then,
the xv6fs will access RAMdisk through cross-server IPCs.
We also simulate the performance of a monolithic kernel by
running system servers in the kernel and connecting them
with function calls.

Figure 8a, 8b and 8c present the normalized throughput
on the three microkernels. The native performance of each
microkernel is set as the baseline. Because Zircon has the
slowest native IPC among the three microkernels since it in-
cludes scheduling overhead in IPCs, HyBridge can provide
the highest speedup for it, i.e., more than 9× speedup for three
database operations. The performance improvement of query
operations is relatively small because SQLite3 has an inter-
nal cache of recent data and may handle the queries without
issuing IPC requests. For seL4 which optimizes IPC perfor-
mance extensively, HyBridge can also improve the throughput
(except query) to more than 2.5× of the native.

Besides, HyBridge can outperform SkyBridge by up to 66%
because most IPCs issued from SQLite3 to xv6fs involve
multiple cross-server IPCs between xv6fs and RAMdisk,
whereas the cross-server IPCs are more lightweight in Hy-
Bridge. Specifically, an cross-server IPC takes 110 and 437
CPU cycles in HyBridge (WRPKRU-based) and SkyBridge
(VMFUNC-based), respectively. In this benchmark, HyBridge
only shows slightly higher performance than UnderBridge
since cross-server IPCs dominate, while it has more advan-
tage over UnderBridge in the application-to-server IPC (e.g.,
527 vs. 723 CPU cycles when implemented on our research
microkernel, ChCore [22]) owing to no CR3 changing.

7 Other Related Work

Many studies [15, 19, 27, 36, 42, 48, 58] leverage instruction
instrumenting to achieve memory isolation, which may incur
non-trivial overhead. Many other studies [25, 27, 32, 35, 39]
utilize the memory management unit (MMU) to check mem-
ory accesses efficiently. Specifically, they divide a process
into different compartments and assign each one an individual
(extended) page table. However, switching between compart-

ments requires (extended) page table switching, which can
be costly when the cross-boundary invocation is frequent.
Twizzler [14] is a pioneer data-centric OS for NVM and uses
EPT/VMFUNC to create different memory domains for NVM
isolation. Differently, EPK focuses on solving the challenges
of combining MPK and EPT/VMFUNC and outperforms a
VMFUNC-only solution. Besides, recent work [28, 51] har-
nesses hardware features like Supervisor-Mode Access Pre-
vention (SMAP) or underused intermediate privilege levels
(Ring1 and Ring2 on x86) to achieve efficient intra-process
memory isolation. Yet, they can only provide two isolated
memory domains.

Prior work [21, 47, 52, 54] also proposes architecture de-
signs to facilitate efficient intra-process memory isolation,
which, however, is not achievable on commodity machines.
PLB [53] proposes architecture changes which differs from
Intel MPK for supporting scalable domains but requires vir-
tually indexed cache which may cause performance issues.
Besides Intel, both ARM (ARMv7) and AMD propose similar
features of memory domains and face the same scalability
problem of the domain number. The basic idea of EPK is
feasible to be extended to them as they also support 2-stage
address translation. Yet, for efficiency, hardware-assisted fast
switching (currently commercially unavailable) of stage-2
page table is needed on the two architectures.

An orthogonal study [17] shows that some system calls can
be used to break the MPK isolation, so the OS may need to
be aware of MPK in the future or the applications needs to
incorporate other mechanisms like system call filtering [12].

8 Summary

This paper presents EPK which first combines the usage of
MPK and hardware virtualization features to achieve scalable
and efficient intra-process memory isolation. The case studies
demonstrate various potential usages of EPK.

9 Acknowledgement

We sincerely thank the anonymous shepherd and review-
ers for their insightful suggestions. This work is supported
in part by China National Natural Science Foundation (No.
61925206 and No.U19A2060), Huawei, and STCSM (No.
21511101502). Yubin Xia is the corresponding author.

620    2022 USENIX Annual Technical Conference USENIX Association



References

[1] https://httpd.apache.org/docs/2.4/programs/ab.html.
[2] The 20 best linux apps ever. https://helpdeskgeek.com/

linux-tips/the-20-best-linux-apps-ever/.
[3] Fiasco.oc repository. https://l4re.org/download/

snapshots/.
[4] Fuchsia repository. https://fuchsia.dev/fuchsia-src/

development/source_code.
[5] The heartbleed bug. https://heartbleed.com/.
[6] Intel optane technology. https://www.intel.com/

content/www/us/en/architecture-and-technology/
intel-optane-technology.html.

[7] Intel software developer’s manual. https:
//software.intel.com/sites/default/files/managed/
39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf.

[8] Memcached. https://www.memcached.org.
[9] Nginx. https://nginx.org.

[10] sel4 repository. https://github.com/seL4/seL4.
[11] Sqlite. https://www.sqlite.org/index.html.
[12] Jenny: Securing syscalls for PKU-based memory iso-

lation systems. In 31st USENIX Security Sympo-
sium (USENIX Security 22), Boston, MA, Aug. 2022.
USENIX Association.

[13] A. Ahmad, S. Lee, P. Fonseca, and B. Lee. Kard:
Lightweight data race detection with per-thread memory
protection. In Proceedings of the 26th ACM Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS 2021,
page 647–660, New York, NY, USA, 2021. Association
for Computing Machinery.

[14] D. Bittman, P. Alvaro, P. Mehra, D. D. E. Long, and
E. L. Miller. Twizzler: a data-centric os for non-volatile
memory. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 65–80. USENIX Association,
July 2020.

[15] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akri-
tidis, A. Donnelly, P. Barham, and R. Black. Fast byte-
granularity software fault isolation. In Proceedings of
the ACM SIGOPS 22nd Symposium on Operating Sys-
tems Principles, SOSP ’09, page 45–58, New York, NY,
USA, 2009. Association for Computing Machinery.

[16] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F.
Kaashoek, and N. Zeldovich. Using crash hoare logic
for certifying the fscq file system. In Proceedings of
the 25th Symposium on Operating Systems Principles,
SOSP ’15, page 18–37, New York, NY, USA, 2015. As-
sociation for Computing Machinery.

[17] R. J. Connor, T. McDaniel, J. M. Smith, and
M. Schuchard. Pku pitfalls: Attacks on pku-based mem-
ory isolation systems. In 29th USENIX Security Sympo-
sium (USENIX Security 20), pages 1409–1426. USENIX

Association, Aug. 2020.
[18] T. P. P. Council. http://www.tpc.org/tpcc/. TPC Bench-

mark C.
[19] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and

G. C. Necula. Xfi: Software guards for system address
spaces. In Proceedings of the 7th Symposium on Oper-
ating Systems Design and Implementation, OSDI ’06,
pages 75–88, Berkeley, CA, USA, 2006. USENIX As-
sociation.

[20] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back,
and S. Clawson. Microkernels meet recursive virtual
machines. In Proceedings of the Second USENIX Sympo-
sium on Operating Systems Design and Implementation,
OSDI ’96, pages 137–151, New York, NY, USA, 1996.
ACM.

[21] T. Frassetto, P. Jauernig, C. Liebchen, and A.-R. Sadeghi.
IMIX: In-process memory isolation extension. In 27th
USENIX Security Symposium (USENIX Security 18),
pages 83–97, Baltimore, MD, Aug. 2018. USENIX As-
sociation.

[22] J. Gu, X. Wu, W. Li, N. Liu, Z. Mi, Y. Xia, and H. Chen.
Harmonizing performance and isolation in microker-
nels with efficient intra-kernel isolation and communi-
cation. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 401–417, July 2020.

[23] J. Gu, Q. Yu, X. Wang, Z. Wang, B. Zang, H. Guan,
and H. Chen. Pisces: A scalable and efficient persis-
tent transactional memory. In Proceedings of the 2019
USENIX Conference on Usenix Annual Technical Con-
ference, USENIX ATC ’19, page 913–928, USA, 2019.
USENIX Association.

[24] M. Hedayati, S. Gravani, E. Johnson, J. Criswell, M. L.
Scott, K. Shen, and M. Marty. Hodor: Intra-process
isolation for high-throughput data plane libraries. In
Proceedings of the 2019 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC ’19, pages
489–503, Berkeley, CA, USA, 2019. USENIX Associa-
tion.

[25] T. C.-H. Hsu, K. Hoffman, P. Eugster, and M. Payer. En-
forcing least privilege memory views for multithreaded
applications. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’16, page 393–405, New York, NY, USA, 2016.
Association for Computing Machinery.

[26] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Win-
wood. sel4: Formal verification of an os kernel. In
Proceedings of the ACM SIGOPS 22Nd Symposium on
Operating Systems Principles, SOSP ’09, pages 207–
220, New York, NY, USA, 2009. ACM.

[27] K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athana-
sopoulos. No need to hide: Protecting safe regions on

USENIX Association 2022 USENIX Annual Technical Conference    621

https://httpd.apache.org/docs/2.4/programs/ab.html
https://helpdeskgeek.com/linux-tips/the-20-best-linux-apps-ever/
https://helpdeskgeek.com/linux-tips/the-20-best-linux-apps-ever/
https://l4re.org/download/snapshots/
https://l4re.org/download/snapshots/
https://fuchsia.dev/fuchsia-src/development/source_code
https://fuchsia.dev/fuchsia-src/development/source_code
https://heartbleed.com/
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html 
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html 
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html 
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://www.memcached.org
https://nginx.org
https://github.com/seL4/seL4
https://www.sqlite.org/index.html


commodity hardware. In Proceedings of the Twelfth
European Conference on Computer Systems, EuroSys
’17, pages 437–452, New York, NY, USA, 2017. ACM.

[28] H. Lee, C. Song, and B. B. Kang. Lord of the x86 rings:
A portable user mode privilege separation architecture
on x86. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’18, pages 1441–1454, New York, NY, USA, 2018.
ACM.

[29] H. Lefeuvre, V.-A. Bădoiu, c. Teodorescu, P. Olivier,
T. Mosnoi, R. Deaconescu, F. Huici, and C. Raiciu.
Flexos: Making os isolation flexible. In Proceedings
of the Workshop on Hot Topics in Operating Systems,
HotOS ’21, page 79–87, New York, NY, USA, 2021.
Association for Computing Machinery.

[30] J. Liedtke. Improving ipc by kernel design. In Pro-
ceedings of the Fourteenth ACM Symposium on Operat-
ing Systems Principles, SOSP ’93, pages 175–188, New
York, NY, USA, 1993. ACM.

[31] J. Liedtke. A persistent system in real use - experiences
of the first 13 years. pages 2 – 11, 01 1994.

[32] J. Litton, A. Vahldiek-Oberwagner, E. Elnikety, D. Garg,
B. Bhattacharjee, and P. Druschel. Light-weight con-
texts: An os abstraction for safety and performance. In
Proceedings of the 12th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’16,
pages 49–64, Berkeley, CA, USA, 2016. USENIX As-
sociation.

[33] M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng,
and J. Ren. Dudetm: Building durable transactions with
decoupling for persistent memory. In Proceedings of
the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’17, page 329–343, New York,
NY, USA, 2017. Association for Computing Machinery.

[34] R. Liu and H. Chen. Ssmalloc: a low-latency, locality-
conscious memory allocator with stable performance
scalability. In Proceedings of the Asia-Pacific Workshop
on Systems, pages 1–6, 2012.

[35] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia.
Thwarting memory disclosure with efficient hypervisor-
enforced intra-domain isolation. In Proceedings of the
22Nd ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’15, pages 1607–1619, New
York, NY, USA, 2015. ACM.

[36] S. McCamant and G. Morrisett. Evaluating sfi for a
cisc architecture. In Proceedings of the 15th Conference
on USENIX Security Symposium - Volume 15, USENIX-
SS’06, Berkeley, CA, USA, 2006. USENIX Association.

[37] Z. Mi, D. Li, Z. Yang, X. Wang, and H. Chen. Sky-
bridge: Fast and secure inter-process communication for
microkernels. In Proceedings of the Fourteenth EuroSys
Conference 2019, EuroSys ’19, pages 9:1–9:15, New

York, NY, USA, 2019. ACM.
[38] S. Park, S. Lee, W. Xu, H. Moon, and T. Kim. Libmpk:

Software abstraction for intel memory protection keys
(intel mpk). In Proceedings of the 2019 USENIX Confer-
ence on Usenix Annual Technical Conference, USENIX
ATC ’19, pages 241–254, Berkeley, CA, USA, 2019.
USENIX Association.

[39] S. Proskurin, M. Momeu, S. Ghavamnia, V. P. Kemerlis,
and M. Polychronakis. xmp: Selective memory protec-
tion for kernel and user space. In Proceedings of 41st
IEEE Symposium on Security and Privacy, S&P ’20,
2020.

[40] V. A. Sartakov, L. Vilanova, and P. Pietzuch. Cubi-
cleos: A library os with software componentisation for
practical isolation. In Proceedings of the 26th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, ASP-
LOS 2021, page 546–558, New York, NY, USA, 2021.
Association for Computing Machinery.

[41] D. Schrammel, S. Weiser, S. Steinegger, M. Schwarzl,
M. Schwarz, S. Mangard, and D. Gruss. Donky: Do-
main keys – efficient in-process isolation for risc-v and
x86. In 29th USENIX Security Symposium (USENIX
Security 20), pages 1677–1694. USENIX Association,
Aug. 2020.

[42] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko,
K. Schimpf, B. Yee, and B. Chen. Adapting software
fault isolation to contemporary cpu architectures. In Pro-
ceedings of the 19th USENIX Conference on Security,
USENIX Security’10, pages 1–1, Berkeley, CA, USA,
2010. USENIX Association.

[43] N. Simo, W. Antoni, m. Markku, and R. Vilho.
http://tatpbenchmark.sourceforge.net/. Telecom Appli-
cation Transaction Processing Benchmark.

[44] M. Sung, P. Olivier, S. Lankes, and B. Ravindran. Intra-
unikernel isolation with intel memory protection keys.
In Proceedings of the 16th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environ-
ments, pages 143–156, 2020.

[45] D. Tsafrir. The context-switch overhead inflicted by
hardware interrupts (and the enigma of do-nothing
loops). In Experimental Computer Science on Experi-
mental Computer Science, ecs’07, pages 3–3, Berkeley,
CA, USA, 2007. USENIX Association.

[46] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte,
M. Sammler, P. Druschel, and D. Garg. Erim: Secure,
efficient in-process isolation with protection keys (mpk).
In Proceedings of the 28th USENIX Conference on Se-
curity Symposium, SEC’19, pages 1221–1238, Berkeley,
CA, USA, 2019. USENIX Association.

[47] L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion,
and M. Valero. Codoms: Protecting software with code-
centric memory domains. In 2014 ACM/IEEE 41st Inter-

622    2022 USENIX Annual Technical Conference USENIX Association



national Symposium on Computer Architecture (ISCA),
pages 469–480. IEEE, 2014.

[48] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient software-based fault isolation. In Proceedings
of the Fourteenth ACM Symposium on Operating Sys-
tems Principles, SOSP ’93, pages 203–216, New York,
NY, USA, 1993. ACM.

[49] J. Wang, X. Xiong, and P. Liu. Between mutual trust and
mutual distrust: Practical fine-grained privilege separa-
tion in multithreaded applications. In Proceedings of the
2015 USENIX Conference on Usenix Annual Technical
Conference, USENIX ATC ’15, page 361–373, USA,
2015. USENIX Association.

[50] X. Wang, S. Yeoh, P. Olivier, and B. Ravindran. Secure
and efficient in-process monitor (and library) protection
with intel mpk. In Proceedings of the 13th European
Workshop on Systems Security, EuroSec ’20, page 7–12,
New York, NY, USA, 2020. Association for Computing
Machinery.

[51] Z. Wang, C. Wu, M. Xie, Y. Zhang, K. Lu, X. Zhang,
Y. Lai, Y. Kang, and M. Yang. Seimi: Efficient and
secure smap-enabled intra-process memory isolation.
ieee symposium on security and privacy, 2020.

[52] R. N. M. Watson, R. M. Norton, J. Woodruff, S. W.
Moore, P. G. Neumann, J. Anderson, D. Chisnall,
B. Davis, B. Laurie, M. Roe, N. H. Dave, K. Gudka,
A. Joannou, A. T. Markettos, E. Maste, S. J. Murdoch,
C. Rothwell, S. D. Son, and M. Vadera. Fast protection-
domain crossing in the cheri capability-system architec-
ture. IEEE Micro, 36(5):38–49, Sept. 2016.

[53] J. Wilkes and B. Sears. A comparison of protection
lookaside buffers and the PA-RISC protection architec-

ture. In Technical Report HPL–92–55. Hewlett-Packard
Laboratories, Mar. 1992.

[54] E. Witchel, J. Cates, and K. Asanović. Mondrian mem-
ory protection. In Proceedings of the 10th International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS X, pages
304–316, New York, NY, USA, 2002. ACM.

[55] M. Wu, Z. Zhao, Y. Yang, H. Li, H. Chen, B. Zang,
H. Guan, S. Li, C. Lu, and T. Zhang. Platinum: A cpu-
efficient concurrent garbage collector for tail-reduction
of interactive services. In 2020 USENIX Annual Tech-
nical Conference (USENIX ATC 20), pages 159–172.
USENIX Association, July 2020.

[56] Y. Xu, Y. Solihin, and X. Shen. Merr: Improving security
of persistent memory objects via efficient memory expo-
sure reduction and randomization. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’20, page 987–1000, New York, NY,
USA, 2020. Association for Computing Machinery.

[57] Y. Xu, C. Ye, Y. Solihin, and X. Shen. Hardware-based
domain virtualization for intra-process isolation of per-
sistent memory objects. In 2020 ACM/IEEE 47th An-
nual International Symposium on Computer Architec-
ture (ISCA), pages 680–692. IEEE, 2020.

[58] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Or-
mandy, S. Okasaka, N. Narula, and N. Fullagar. Native
client: A sandbox for portable, untrusted x86 native code.
In Proceedings of the 2009 30th IEEE Symposium on
Security and Privacy, SP ’09, pages 79–93, Washington,
DC, USA, 2009. IEEE Computer Society.

USENIX Association 2022 USENIX Annual Technical Conference    623





Memory Harvesting in Multi-GPU Systems with Hierarchical Unified Virtual
Memory

Sangjin Choi∗

KAIST
Taeksoo Kim∗

KAIST
Jinwoo Jeong

Ajou University
Rachata Ausavarungnirun

KMUTNB

Myeongjae Jeon
UNIST

Youngjin Kwon
KAIST

Jeongseob Ahn†

Ajou University

Abstract
With the ever-growing demands for GPUs, most organizations
allow users to share the multi-GPU servers. However, we
observe that the memory space across GPUs is not effectively
utilized enough when consolidating various workloads that
exhibit highly varying resource demands. This is because
the current memory management techniques were designed
solely for individual GPUs rather than shared multi-GPU
environments.

This study introduces a novel approach to provide an illu-
sion of virtual memory space for GPUs, called hierarchical
unified virtual memory (HUVM), by incorporating the tem-
porarily idle memory of neighbor GPUs. Since modern GPUs
are connected to each other through a fast interconnect, it
provides lower access latency to neighbor GPU’s memory
compared to the host memory via PCIe. On top of HUVM,
we design a new memory manager, called memHarvester, to
effectively and efficiently harvest the temporarily available
neighbor GPUs’ memory. For diverse consolidation scenarios
with DNN training and graph analytics workloads, our exper-
imental result shows up to 2.71× performance improvement
compared to the prior approach in multi-GPU environments.

1 Introduction

As the demand for GPUs explodes, it is now a common prac-
tice in both academia and industry to equip multiple GPUs in
a single server and make them shareable. Many enterprises
in the industry have built large GPU clusters comprised of
a set of multi-GPU servers to satisfy the demand for a va-
riety of workloads from deep learning [1, 13, 18, 26, 36] to
graph applications [6, 10, 19, 31] while saving the infrastruc-
ture cost by sharing. However, as a downside, achieving high
GPU resource efficiency in such multi-GPU servers remains a
challenge. Figure 1 presents that the current memory manage-
ment technique is not effective enough for shared multi-GPU

∗Co-first authors
†Corresponding author

environments where multiple jobs are running across GPUs
independently. Although a small amount of memory ranging
from hundreds of MB to a few GB remains idle in one or a
few GPUs, other GPUs under heavy memory pressure rely on
the host memory as a swap device that is significantly slower
than remote GPUs within the same server.

Meanwhile, GPU vendors have faced the challenge of scal-
ing the memory capacity of single GPUs. To overcome the
limited capacity of GPUs, a train of previous studies pro-
vides an illusion of infinite memory space with the host mem-
ory [11,14,17,25,28]. However, none of the work does utilize
the idle memory of neighbor GPUs in commodity multi-GPU
systems. As modern GPU servers are commonly equipped
with 8~16 GPUs connected via high-speed interconnect such
as NVLink, accessing the idle memory of neighbor GPUs
is much faster than that of the host. For instance, NVIDIA
DGX-2 has 16 GPUs with point-to-point connections through
NVLink 3.0, yielding a large pool of 512GB GPU memory
at 600GB/s bidirectional bandwidth [23]. On the other hand,
swapping GPU memory to host DRAM via the latest PCIe
4.0 could utilize up to 32GB/s bandwidth only.

In this study, we introduce a new approach providing an
illusion of virtual memory space for GPUs called hierar-
chical unified virtual memory (HUVM) comprised of local
GPU, spare memory of neighbor GPUs, and the host memory.
HUVM opens up a new opportunity for memory virtualiza-
tion by increasing the effective memory space with minimal
performance overhead. When the local GPU memory does
not have free space, HUVM leverages the spare1 memory in
neighbor GPUs as a victim cache between the GPU and host
instead of directly swapping out data to the host memory.

However, it is challenging to effectively and efficiently
harvest the spotty-available, small fraction of neighbor GPUs’
memory because the amount of idle memory is highly variable
and unknown a priori. Beyond the single GPU perspective,
we redesign the memory management scheme for modern
multi-GPU servers. HUVM systems have to find the best

1The terms spare, idle, and harvested are used interchangeably.

USENIX Association 2022 USENIX Annual Technical Conference    625



Pagerank
(soc-twitter-2010)

GPU0

VGG16
(256)

GPU1 & GPU2

WCC
(soc-sinaweibo)

GPU3

0

25

50

75

100

125

150

175

Case-1

BFS
(web-uk-2005)
GPU0 & GPU1

(256)
GPU2

ResNet101
(64)

GPU3

0

25

50

75

100

125

150

175

MobileNet

Case-2

WCC

GPU0

BFS

GPU1

Pagerank
(web-ClueWeb09)

GPU2 & GPU3

0

25

50

75

100

125

150

175

(soc-twitter-2010)

Case-3

WCC
(soc-twitter-2010)

GPU0

Louvain

GPU1 & GPU2

ResNet101
(64)

GPU3

0

25

50

75

100

125

150

175

(web-uk-2005)

Case-4

−0.04

−0.02

0.00

0.02

0.04

M
em

or
y

U
sa

ge
(%

)
GPU Memory Host Memory Free Memory

Figure 1: Memory usage snapshot in multi-GPUs hosting memory-intensive workloads (Section 6.1 and Table 2 present the
detailed information for workloads and experimental environment)

way to utilize the small fraction of harvested memory while
minimizing the performance impact on workloads running in
the neighbor GPUs.

To that end, we propose a memory manager of HUVM,
called memHarvester, implemented in the GPU driver layer.
memHarvester functions as a centralized coordinator for dat-
apath in HUVM. As an essential part of memHarvester, we
propose a new multi-path parallel prefetcher, which exploits
the path diversity of HUVM, comprised of PCIe and NVLink.
Unlike many previous approaches [11, 14, 17, 25, 28] rely-
ing only on the host memory via PCIe, memHarvester first
prefetches data from the spare memory to the local GPU
through NVLink. Meanwhile, if the PCIe channel attached
to the neighbor GPU is not contended, memHarvester allows
for prefetching the data from the host memory to the spare
memory of the neighbor GPU through the PCIe channel in
parallel. Therefore, we can convert the latency of fetching data
from the host memory to that of the spare memory effectively.
memHarvester manages the space of harvested memory. Due
to the limited space of spare memory, memHarvester is un-
able to keep all the evicted data in the harvested memory,
leading to the host memory swap eventually. To reduce the
performance overhead of data eviction from GPU to host,
memHarvester supports eviction with 2MB large pages to
host memory instead of 4KB base pages.

When HUVM and memHarvester host multiple workloads,
it can improve memory utilization and overall server effi-
ciency. However, on a downside, memHarvester may cause
performance interference to the applications running on the
GPU yielding idle memory. Thus, memHarvester immedi-
ately reclaims the spare memory to give it back to its original
physical memory space with minimal latency whenever the
application running on the yielding GPU needs additional
memory, thereby minimizing performance interference.

We implement our prototype system on top of NVIDIA’s
unified virtual memory (UVM) driver version 460.67, which is
publicly accessible [29]. Without any modifications to applica-
tions or machine learning platforms, memHarvester transpar-

ently detects the availability of spare memory and dynamically
constructs a new memory hierarchy. We quantify the effec-
tiveness of memHarvester with HUVM for diverse consolida-
tion scenarios on an AWS p3.8xlarge instance. The server
has four NVIDIA V100 (16GB) GPUs connected through
NVLink. Our experimental result shows that memHarvester
can achieve significant throughput improvement for the large
graph analytics workloads. For diverse consolidation scenar-
ios with DNN training and graph analytics workloads, our
experimental result shows up to 2.71× performance improve-
ment compared to the prior approach in multi-GPU environ-
ments with minimum interference of other workloads running
on the same server.

2 Motivation and Background

This section characterizes memory usage behaviors of emerg-
ing workloads in shared multi-GPU environments and dis-
cusses opportunities to improve overall memory utilization
by exploiting idle memory of neighbor GPUs.

2.1 Memory Usage in Shared Multi-GPUs

With the ever-growing demands of GPUs from development to
deployment, most organizations allow semi-trusted users (e.g.,
employees in a company) to share the multi-GPU servers, re-
ducing the cost of building the infrastructure [9,13,18,35,36].
Due to the shared nature, such GPU servers consolidate a wide
range of workloads. In particular, many of the jobs running
in the shared GPU servers are DNN training workloads for
computer vision and natural language processing [11, 25, 28]
that take a long time to complete. Thus, it leads to limited re-
source availability of certain GPUs at a time. Another widely
witnessed application in multi-GPU servers is graph analyt-
ics [10, 19, 31], which figures out the relationships between
objects in a given graph.

When looking at the memory consumption of such two
emerging workloads, it is usually required for DNN training

626    2022 USENIX Annual Technical Conference USENIX Association



jobs to tune the batch size to almost fit on GPUs to achieve
maximum resource utilization [28]. On the other hand, the
memory consumption of graph analytics jobs depends on the
number of edges and vertices of a given graph. For a large
dataset that does not fit in the given GPU memory, one can
leverage a graph partitioning approach to make each parti-
tion fit on individual GPUs. However, the graph partitioning
task introduces additional complexity in implementation [4]
such that some of the graph algorithms are not supported to
run on multi-GPUs (e.g., Betweenness Centrality in cu-
Graph [6]). To overcome the memory space limitation, we
can leverage host-side memory as a swap device to the GPUs
through the unified virtual memory (UVM) technique that pro-
vides an illusion of infinite memory space [29]. Although this
enables us to run analytics on large graphs or DNN training
with large batches without out-of-memory errors, it signifi-
cantly degrades performance.

In shared multi-GPU servers, we observe that a small
amount of memory space across GPUs remains idle. Figure 1
shows memory snapshots of a 4-GPU (V100) server hosting
multiple memory-intensive workloads. We profile four run-
ning scenarios each of which runs either graph analytics or
DNN training jobs using one or multiple GPUs. The exper-
imental environment is described in Section 6.1. The result
shows that some GPU memory is not fully utilized, causing
memory imbalance across workloads. In Case-1, VGG16 and
WCC leave a small amount of memory of GPU-1, 2, and 3,
whereas Pagerank has to use the host memory for a swap
device to run the large dataset. Another example is to run
Pagerank with a relatively small dataset (web-ClueWeb09)
with two GPUs in Case-3. In this case, the memory of GPU-
2 and 3 is not fully utilized. Even though Louvain and BFS
experience heavy memory pressure, the current memory man-
agement technique does not leverage the idle memory of
the neighbor GPUs. These results confirm that the current
memory management design is still not efficient in shared
multi-GPU systems, wasting valuable GPU memory capacity.
Considering that each workload has highly varying memory
demands, achieving high global memory utilization in multi-
GPU system is a challenging problem.

2.2 Exploiting Neighbor GPU Memory
Modern GPU servers provide useful primitives to facilitate
memory harvesting, i.e., leveraging fast intra-server GPU in-
terconnects without modifying applications or frameworks.

Fast interconnect. Modern GPU servers are commonly
equipped with 8~16 GPUs connected via high-speed intercon-
nect such as NVLink. For instance, NVIDIA DGX-2 has 16
GPUs with direct peer GPU access through fully connected
NVLink topology, yielding a large pool of 512GB GPU mem-
ory at 600GB/s GPU-to-GPU bidirectional bandwidth [23].
With this HW specification, modern GPU servers can pro-
vide an attractive option for GPU-to-GPU communication to

CPU

GPU

Page Table

GPU
Memory

3 4

Unified Memory
Normal access path

Page fault path

Host
Memory

2
1

Figure 2: Unified address space in modern GPUs

transmit data without using the expensive PCIe interconnect.

Transparent control. Memory harvesting must address the
cases that transfer data between GPUs running jobs across
different applications. For example, in Figure 1, the graph
analytics jobs and DL training jobs use their own frameworks.
The unified virtual memory (UVM), introduced by NVIDIA
and AMD, enables large-memory applications to seamlessly
oversubscribe the limited GPU memory [29]. The technology
is implemented as a GPU driver, so implementing memory
harvesting in UVM requires no modification to the GPU
applications or ML frameworks.

This section first explains how the current UVM driver
works to leverage host memory for extending the limited
GPU memory capacity. The UVM driver takes advantage
of the host memory as a swap space for the GPU. Figure 2
presents how the UVM driver provides the unified address
space across the GPU and host memory. The driver identifies
whether the page being accessed by GPU is located on the
GPU or the host memory through the page fault mechanism.
With a single unified page table, UVM translates GPU virtual
address into either GPU physical address or host physical
address. If UVM identifies that the page accessed by the
GPU kernel is mapped to the host by referring to the page
table 1 , a page fault exception is raised 2 and the UVM
driver brings the page into the GPU memory (typically via
PCIe interconnect) 4 . Meanwhile, when no free space is
available in GPU, the driver needs to evict an old page from
GPU memory before transferring the faulted page to GPU 3 .
Moving these pages requires page table entries to be properly
updated to map new locations.

Opportunity. As observed in Figure 1, if one GPU needs
more memory than its memory capacity, it can spill the frac-
tion of oversubscription to one or more neighbor GPUs that
still consume less than the total memory capacity with the
fast interconnect. Moreover, by leveraging the unified address
space supported by the UVM driver, we can serve diverse
jobs ranging from graph analytics to DL training jobs without
modifying applications or frameworks. Such harvesting of
idle memory in neighbor GPUs opens up a unique opportunity
to lower performance overhead under memory oversubscrip-
tion by increasing the effective memory space. To work well

USENIX Association 2022 USENIX Annual Technical Conference    627



PCIe NVLink (speedup)

Throughput (GB/s) 12.3 40.1 (3.3×)
Latency (µs) 16.7 5.1 (3.2×)

Table 1: Throughput and latency with PCIe and NVLink

with a very small fraction of idle memory, the mechanism for
harvesting idle memory of neighbor GPUs should be timely
and efficient. In Section 3.2, we address the design challenges
in more detail.

3 Hierarchical Unified Virtual Memory

This section first measures the performance benefits of ac-
cessing the neighbor GPU’s memory connected through the
high-speed interconnect (NVLink). Based on the measure-
ments, we introduce a new unified memory, called hierarchi-
cal unified virtual memory, tailored for multi-layered memory
systems comprised of local GPU, neighbor GPUs, and host
memory. With the new memory organization, this section
discusses how to incorporate the spare memory of neighbor
GPUs into the memory hierarchy to bridge the performance
gap between local GPU memory and host memory. Accessing
neighbor GPUs is faster than accessing the host memory, but
the spare memory space is dynamic and often limited, and
may be shared by multiple harvesters. Therefore, utilizing a
small amount of spare memory is crucial for effective harvest-
ing. Finally, we discuss design challenges when leveraging
the spare memory of neighbor GPUs with limited capacity.

3.1 Data Path with HUVM
To understand the performance benefit of harvesting the
neighbor GPU memory, we conduct a performance analy-
sis to measure the throughput migrating 2MB2 data from
a GPU memory to the host memory via PCIe and from a
GPU memory to the other GPU memory via NVLink on
an AWS p3.8xlarge instance. Two GPUs are connected
through NVLink 2.0 with two lanes, providing up to uni-
directional bandwidth of 50GB/s. Table 1 shows a compari-
son of bandwidth and latency between PCIe and NVLink. As
expected, such NVLink provides more than 3× better perfor-
mance in terms of throughput and latency, indicating that data
transfer time can be significantly reduced if we evict pages to
neighbor GPUs. We anticipate that this performance gap will
be higher in the next generation of high-speed interconnect.

Using the fast interconnect, i.e., NVLink, we build a new
data path exploiting the spare memory of neighbor GPUs.
Our approach brings two advantages in terms of performance.
First, the new data path accelerates memory eviction. When
evicting a memory chunk from the local GPU due to the

2Currently, the unit of memory eviction is a 2MB chunk in the UVM.

lack of memory space, if there is idle space in the neighbor
GPU, our approach uses NVLink rather than PCIe to evict
the memory chunk. Second, the new data path can reduce the
latency of fetching. As the spare memory can act as a victim
cache, we populate as many evicted chunks as possible on the
spare memory. If these chunks are accessed again shortly, the
chunks are fetched to the local GPU with the fast NVLink.

3.2 Design Challenges
Although our hierarchical unified virtual memory can reduce
the performance penalty of GPU memory oversubscription,
utilizing the spare memory poses several challenges.

1 Effective harvesting: If the spare memory is not sufficient
to serve all the evicted pages from the GPU applications, the
effectiveness of memory harvesting would be limited to only
buffering the evictions.

2 Minimal interference: Harvesting may cause perfor-
mance interference of the application running on the yielding
GPU. Since we borrow the NVLink and PCIe bandwidth
of the neighbor GPUs for the spare memory, our harvesting
technique needs to minimize the performance interference.

3 Low overhead: Since UVM relies on the page fault mech-
anism, our approach inherits the same performance overhead,
manipulating page table entries. Such overhead can prevent
us from using full PCIe and NVLink bandwidth.

4 Framework-agnostic: All the GPU jobs do not rely on a
specific framework. Our design and implementation need to
be generalized to host a wide range of GPU workloads.

4 Memory Management for HUVM

This section presents a new memory manager, called memHar-
vester, for HUVM. memHarvester aims to hide the latency
from the performance-critical path in accessing host mem-
ory with small but fast spare memory of neighbor GPUs.
memHarvester opportunistically harvests the spare memory
of neighbor GPUs while minimizing the performance penalty
of memory-intensive applications that require more memory
than available in one or more GPUs. To do so, memHar-
vester identifies the availability of spare memory in neighbor
GPUs and plugs the spare memory into the memory hierarchy
dynamically. To effectively harvest the spare memory, we
explore a set of techniques: hierarchical and background evic-
tion, fetching data in parallel, and prefetching in a neighbor
GPU memory.

4.1 Overview
By harvesting spare memory in multi-GPU systems, memHar-
vester creates an illusion of GPU applications having a small
cache between a GPU and host memory. Figure 3 presents the

628    2022 USENIX Annual Technical Conference USENIX Association



Multi-path prefetch 
(Sec. 4.3.2)

GPU-0 GPU-1

PCIe

Pre-eviction (Sec. 4.2.1)1

NVLink

H
o
s
t

Fault batch

Large page eviction 
(Sec. 4.2.2)

Next pages
to be prefetched

4 Multi-path prefetch
(Sec. 4.3.2)

56 Multi-path prefetch 
(Sec. 4.3.2)

3

2

3

Parallel fetch 
(Sec. 4.3.1)

Figure 3: Exploiting spare memory with path diversity

overview of our proposed techniques. memHarvester allows
GPU-0 to utilize the spare memory of GPU-1. 1 Instead
of evicting data to the host memory directly, memHarvester
uses the spare memory connected through NVLink as a vic-
tim buffer to shorten the latency of memory evictions. To
reduce the cost of memory evictions, memHarvester takes ad-
vantage of pre-eviction to the spare memory. With the spare
memory, memHarvester reduces the number of evicting data
to the host memory. However, it cannot eliminate accessing
the host memory. 2 To alleviate the penalty of populating
pages on the host, we introduce a large page eviction scheme,
amortizing the cost of evicting multiple base pages. 3 If
accessing data in the host memory is inevitable, we exploit
the parallelism with path diversity in the multi-GPU systems
when handling page fault batches. This approach utilizes the
individual PCIe lanes attached to the harvested GPU and the
local GPU at the same time.

To further hide the latency of migrating data to local GPU
memory, we introduce a new multi-path parallel prefetcher
exploiting the harvested memory and the path diversity in
the multi-GPU systems. 4 The data residing in the spare
memory is prefetched into the local GPU through NVLink.
Meanwhile, we prefetch the data belonging to the host mem-
ory to either the spare memory 5 or local GPU memory
6 , depending on the PCIe congestion. Specifically, when

there are multiple harvesters exercising the same spare mem-
ory, the harvested GPU can receive excessive prefetching
requests, which saturate the PCIe bandwidth and adversely
delay transfers of prefetch data. To address the problem, we
have a facility dynamically enabling and disabling the use of
spare memory in prefetching data from the host memory. Also,
memHarvester prioritizes the memory eviction demands over
prefetching on the harvested area because serving memory
evictions is on the critical path of handling page faults.

Each GPU process has a separate page table. Even though
evicted pages are located in the neighbor GPU yielding spare

memory, the process running in that neighbor GPU is not
allowed to access the evicted pages. This is because the page
table of the process in the neighbor GPU does not have the
mapping information for the evicted pages, like the existing
UVM driver [29]. Therefore, we do not violate the integrity
and secrecy of evicted pages.

4.2 Hiding Eviction Latency to Host

Once the memory capacity is full, it is not allowed to bring
data to the GPU before completing the memory eviction.
The memory eviction is a part of the performance-critical
path. Since migrating data to GPU memory is faster than to
the host memory, our harvesting can reduce the latency of
handling GPU page faults. After evicting the pages, memHar-
vester rapidly moves to the next step of fetching requested
pages. While the harvesting GPU fetches the required pages,
memHarvester invokes a background writeback thread to
make a copy of the evicted page present in the harvested
memory to the host memory. After copying pages, memHar-
vester marks the pages backed in host memory as removable.
The purpose of the background copy is to immediately re-
turn the harvested space to the original GPU with negligible
overhead. Once the application in the yielding GPU requires
more memory than it currently has, it causes a GPU page
fault. Then, memHarvester reclaims the harvested (remov-
able) pages for the yielding GPU to use without the eviction.
It picks the pages that come first into the yielding GPU. If
there is no free or removable page, the yielding GPU may
need to wait until the pages in the harvested region become
removable. Although it can potentially incur the performance
overhead, it rarely happens when evaluating our technique.

Therefore, our approach of using spare memory as a victim
buffer allows that with a small fraction of memory, memHar-
vester turns the latency of host memory access into that of a
neighbor GPU memory almost entirely, eliminating the host
access latency from performance-critical eviction path.

4.2.1 Pre-eviction

When evicting pages to host memory, it is known that the
pre-eviction scheme cannot hide the eviction latency entirely
because the pre-eviction rate is limited to the PCIe band-
width [25,28]. In addition, pre-eviction requests contend with
fetch requests occasionally, adding extra latency to critical
fetch requests by stalling them. On the other hand, when
evicting pages to harvested memory, it uses abundant NVLink
bandwidth without contending the fetch requests from host
memory. Once the memory consumption of harvesting GPU
reaches a threshold of total physical memory (by default, if
less than 50 free chunks are available), memHarvester invokes
a pre-eviction thread. The pre-eviction has a good match with
the background writeback technique because pre-eviction and
writeback are pipelined. Ultimately, such pre-eviction allows

USENIX Association 2022 USENIX Annual Technical Conference    629



free memory available most of the time and effectively elim-
inates the eviction time from the GPU page fault latency.
memHarvester uses the well-known LRU policy to select
pages to be evicted. Pre-eviction with LRU policy works well
with the memory access patterns of graphs and DNN work-
loads because most of them exhibit a cyclic memory access
pattern with long reuse distances [2, 19, 35, 37, 38].

4.2.2 Large page eviction

The granularity for page faults is supposed to be the same size
as the host architecture because the UVM driver relies on the
demand paging scheme. On the other hand, the UVM driver
uses a 2MB chunk as an eviction unit to simplify memory
management. While evicting a 2MB chunk from the GPU to
the host, the UVM driver splits the 2MB chunk into 512 4KB
pages and performs the page population for the 512 pages
because the driver is conservatively implemented to use the
base page in the host architecture. To avoid such undesired
inefficiency, memHarvester allocates 2MB of large pages in
host memory by using the kernel’s contiguous memory allo-
cator [21]. Hence, memHarvester performs a single operation
for populating a 2MB page between GPU and host memory
instead of performing for individual 512 4KB pages. With or
without our harvesting scheme, we can apply this large page
eviction to all cases where a GPU has to interact with host
memory.

4.2.3 Eviction policy

As multiple GPUs can leave a small amount of idle mem-
ory, as shown in Figure 1, memHarvester selects a target in a
round-robin fashion to avoid hotspot contention and maximize
the available GPU-to-GPU bandwidth in the system. Addi-
tionally, the round-robin policy enables each yielding GPU to
make the removable pages in parallel through individual PCIe
lanes. Eviction to the spare memory can incur performance
interference to applications running on that yielding GPUs.
We evaluate the negative performance impact of harvesting
memory in Section 6.2.1.

When multiple harvesting requests are concentrated on
a single spare memory, memHarvester handles the requests
following their arrival orders. Note that the spare memory is
used as a shared cache across harvesters.

4.3 Hiding Fetch Latency from Host
Evicting pages to the harvested memory reduces fetching
latency if the local GPU accesses its evicted pages in a short
period because memHarvester can fetch pages from the victim
buffer in the neighbor GPU. In addition to that, memHarvester
deploys two proactive schemes to hide fetch latency from the
host memory with the limited space of harvested memory:
fetching pages in parallel on page faults and pre-fetching
pages with diverse paths.

4.3.1 Fetching pages in parallel

To reduce the cost of handling page faults, modern GPUs
batch multiple page faults. The number of faults in a batch
varies from time to time.3 The UVM driver handles requested
pages corresponding to the page faults one by one. On
the other hand, with the availability of harvested memory,
memHarvester parallelizes handling multiple page faults in
the same batch. memHarvester invokes page fault handling
threads for each GPU (i.e., harvesting GPU and yielding
GPUs), dividing tasks to each handling thread. As shown
in Figure 3 ( 3 ), one thread for harvesting GPU takes faults
from the head of the fault buffer, while the other thread for
yielding GPU traverses the buffer from the tail and places
the data corresponding to the fault on the harvested memory.
memHarvester effectively reduces the latency of handling
faults by fetching pages to local and the spare memory in par-
allel, so it utilizes the individual PCIe lanes attached to each
GPU. Later, the fetched faults on the spare memory will be
consumed through NVLink, reducing the fault latency further.

4.3.2 Multi-path parallel prefetcher

To hide the latency of accessing host and spare memory, we
design a multi-path parallel prefetcher exploiting the path
diversity in multi-GPU systems. When prefetching multiple
memory chunks across the host and spare memory, there is
no dependency between chunks. Our multi-path prefetcher
can exploit the parallelism fetching the chunks with PCIe and
NVLink. memHarvester first places the pages in the spare
memory to the local GPU memory via NVLink ( 4 in Fig-
ure 3). For the pages in the host memory, memHarvester
prefetches them on either the spare memory ( 5 ) or the local
GPU memory through PCIe ( 6 ). The policy paragraph below
explains how to select the target memory when prefetching
from the host dynamically.

For selecting candidates to be prefetched, memHarvester
uses a simple yet effective next line and stride prefetchers,
which are good enough for graph analytics [2, 19, 38] and
DNN training workloads [7, 32, 33, 35, 37]. By extracting the
memory access pattern from the page fault history, memHar-
vester prefetches the next couple of chunks from either the
host memory or the harvested memory, depending on where
the chunks are located. We empirically select the amount
of prefetch as 32MB and will show the sensitivity study in
Section 6.2.1.

4.3.3 Prefetch policy

Unless the PCIe lane attached to the spare memory is crowded,
we observe that prefetching to the spare memory can further
reduce the fetch latency compared to the prefetch directly
from the host to the local GPU. This is because leveraging

3The stock UVM driver handles up to 128 faults in a batch.

630    2022 USENIX Annual Technical Conference USENIX Association



X Y

A B

  A B C DHost

  X Y C D EGPU-0

X

A

Y

B

  A B C DHost

  X YGPU-0

X Y
  GPU-1

  X Y C D

  A B C D E

  X Y C D

  A B

  

  A B C DHost

  X YGPU-0
A

B  GPU-1

X Y   X Y C D

  A

  
X Y

Pre-eviction

removable

Large page

Parallel fetch

(a) Baseline

(b) Harvesting with pre-eviction and large page

(c) Harvesting with pre-eviction, large page, and parallel fetch.

 B will be fetched from GPU-1 to GPU-0.

Fetch Eviction

Memory (before) Memory (after)Timeline

 page

 H
a
rv

e
s
te

d

M
e
m

o
ry

E E X Y

E X Y BE

… …

… …

… …

Figure 4: Timeline comparison for pre-eviction, large page,
and parallel fetch (Suppose that GPU-0 is harvesting the idle
memory of GPU-1)

spare memory can reduce both 1) the number of page faults
by proactively fetching pages and 2) the page fault latency by
placing the pages highly likely to be accessed on the spare
memory. On the other hand, as the number of active harvesters
increases, the PCIe lane attached to the spare memory can be
congested. Then, it slows down supplying the pages to the
spare memory due to the limited PCIe bandwidth, increasing
the fault latency.

To deal with diverse harvesting scenarios in multi-GPU
servers, we have a policy in prefetching to dynamically select
where the data in the host memory to be prefetched to either
the spare memory ( 5 ) or the local GPU memory ( 6 ) based
on the number of active harvesters.

4.4 Putting It All Together

Suppose the application running on the GPU-0 is accessing
page A and B on the host memory. The GPU-0 memory is
fully occupied except for the small number of reserved pages
that hide memory eviction time in handling page faults. Fig-
ure 4a and Figure 4b compare how memHarvester eliminates
the memory eviction latency from the critical path. While
handling the page faults, if the number of the reserved chunks
falls below the threshold (set as 50 chunks), memHarvester
triggers the pre-eviction task to secure the free space for
upcoming page faults without the memory eviction. In this
example, the oldest page X and Y in the GPU-0 are evicted

C D

B E

  X Y C DHost

  AGPU-0

  GPU-1

  X Y C D

  A B E

  
C D

Host

GPU-0

GPU-1

  X Y C D

  A B E

  

(b) Accelerating fetch for C and D from harvested memory when accessed

C D

(a) Prefetching C and D (Host    GPU-1), and E (GPU-1    GPU-0) in parallel

while fetching B from harvested memory

TimelineMemory (before) Memory (after)

E XX Y B Y C D

X Y F

Two-staged prefetch

  X Y C D

  A B E

  X Y C D F

Next prefetched page

Fetch Prefetch

… …

… …

Figure 5: Timeline for our multi-path parallel prefetcher

to the harvested memory of the GPU-1 as background. Once
it is completed, memHarvester makes a copy of that pages to
the host and marks them as removable.

While handling the fault for page A, memHarvester looks
up the faulted pages belonging to the same batch group. Fig-
ure 4c presents that page A and B are in the same batch. Thus,
the fault batch can be processed to the local and harvested
memory in parallel. While fetching page A to the local GPU
memory, memHarvester places page B on the harvested mem-
ory. Since each GPU has its PCIe lane, we can fetch page
A and B in parallel. Although it cannot reduce the number
of page faults, we can hide the latency for fetching page B.
Eventually, it does reduce the fault latency by fetching page
B from the harvested memory connected through NVLink,
rather than the host via PCIe.

Since the page A and B are faulted in order, memHar-
vester prefetches the next page C, D, and E. Assume that
the number of pages to be prefetched is three in this exam-
ple. Figure 5a depicts how the multi-path parallel prefetcher
works. As page C and D are in the host memory, those can be
prefetched into either the harvested memory or the local GPU
memory through the PCIe lane. In this example, we assume
that the PCIe lane is not contended so that memHarvester
selects the harvested memory as the target. On the other hand,
page E, which is in the harvested memory, is prefetched to
the local GPU memory in parallel via NVLink. It can elim-
inate the fault if page E is accessed from the application.
Figure 5b presents that we can potentially reduce the fault
latency for page C and D by fetching such pages from the
harvested memory when they are accessed.

5 Implementation

We implement our prototype, memHarvester, in the NVIDIA
UVM driver version 460.67. The modification of the UVM

USENIX Association 2022 USENIX Annual Technical Conference    631



driver is 1,838 lines of C code measured by SLOCCount. We
do not require any modifications to runtime and frameworks.

5.1 Managing Spare Memory
As UVM, memHarvester manages GPU physical memory
as 2MB chunks. Each chunk has metadata, which describes
the states and physical address of the 2MB chunk. For each
GPU, memHarvester maintains a linked list of the metadata
for free 2MB chunks. By referencing the free list of GPUs,
memHarvester can easily extract available spare memory in
the system. Once a GPU harvests a neighbor GPU’s memory,
memHarvester marks the metadata to indicate that a 2MB
chunk is harvested from the neighbor GPU.

5.2 Managing GPU Memory Eviction
To evict a chunk, memHarvester selects the oldest chunk from
per-GPU LRU4 lists as the stock UVM. The pre-eviction
path diverges depending on the availability of harvested mem-
ory. If memHarvester has harvested memory, the background
thread evicts chunks to the harvested memory. Otherwise, it
evicts chunks to host memory. When memHarvester evicts
a chunk to the harvested memory, memHarvester moves the
chunk metadata from the LRU list to the evicted list. Since the
evicted chunk resides only on the harvested memory, memHar-
vester does not allow the chunk to be reclaimed by the har-
vestee. Once the eviction to the harvested memory is com-
pleted, memHarvester invokes a writeback thread to duplicate
the chunk in the harvested memory to host memory. After that,
memHarvester marks the chunk as removable and moves the
chunk to the removable list. When the harvested memory has
to be returned to the original GPU, memHarvester reclaims
the removable chunks first. Before completing the writeback
task, we are not able to reclaim the harvested space for serv-
ing the other request. Thus, the throughput of the writeback
thread is critical. memHarvester increases the eviction size
with large page to accelerate writeback thread and eviction.

5.3 Managing Fetch Requests
When a page fault exception occurs, the fault exception han-
dler supplies faults from the head of the fault batch as usual.
At the same time, memHarvester wakes up another kernel
thread to serve fault entries from the tail of the fault batch
to the harvested memory in parallel. As a result, we spend
less time completing the fault batch with harvested memory.
To coordinate consuming the fault batch shared between two
threads, we use the mutex lock to handle a fault entry from
the buffer synchronously.

After handling the demand fault batch, memHarvester trig-
gers our multi-path prefetcher utilizing both the PCIe and
NVLink bandwidth. memHarvester employees a simple but

4The LRU term presents the least recently swapped-in page.

effective next-line prefetcher for capturing the memory ac-
cess pattern observed in graph analytics and DNN training. It
keeps track of the addresses for the faulted pages to identify
the direction of previous page fault addresses. Once the direc-
tion is determined, memHarvester prefetches the next 32MB
as default. For the selected chunks, we examine the metadata
to filter out the chunks already in the local GPU. We sepa-
rate the selected chunks into two different queues according
to their origin, either the host or the harvested memory, and
then conduct the multi-path prefetch. While prefetching the
chunks in the host to the harvested memory through PCIe,
we use a kernel thread to prefetch the other chunks in the
harvested memory to the local GPU via NVLink. We mark
prefetched chunks as removable so that it can be immedi-
ately reclaimed when needed. If we encounter on-demand
faults while prefetching, we abandon the ongoing prefetches
to serve the demand faults first.

6 Evaluation

6.1 Experimental Setup

To evaluate the effectiveness of memHarvester, we conduct
performance comparisons with the stock version of the unified
virtual memory (Base) and the prior approach employing the
pre-eviction and prefetch techniques for the host memory [11,
14,17,25,28] (Pre-ef-host). As the implementation of prior
studies is not publicly available, we imitate the behavior of
pre-eviction and prefetch on top of the stock UVM driver.
The evaluation is performed on an AWS p3.8xlarge which
has four NVIDIA V100 GPUs, each with 16GB of memory.
These four GPU cards are connected to each other through
NVSwitch and NVLink 2.0 [16] and 240GB of host memory
is attached through PCIe 3.0.

6.2 Experimental Results

6.2.1 Inter-job Harvesting

First, we evaluate our scheme in a shared multi GPU server
hosting multiple DNN training and graph analytics workloads.
We show how the idle memory of GPUs can be harvested by
memory-intensive workloads running on other GPUs with
inter-job harvesting. In this evaluation, all training workloads
run with PyTorch (version 1.10.1), and all graph analytics
workloads run with cuGraph (version 21.12).

Performance improvement. We evaluate the execution time
of multiple workloads in four scenarios by varying the type
of jobs and the number of harvesters to mimic a shared multi-
GPU server environment. Table 2 presents the scenarios and
the memory usage ratio for each job according to the given
graph dataset or batch size. Figure 6 shows the speedup of the
execution time to Base and also measures the performance

632    2022 USENIX Annual Technical Conference USENIX Association



Pagerank VGG16 WCC

Case-1

0

1

2

3

4
H (1) Y (3)

BFS MobileNet ResNet101

Case-2

H (2) Y (2)

WCC BFS Pagerank

Case-3

H (2) Y (2)

WCC Louvain ResNet101

Case-4

H (3) Y (1)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

E
xe

cu
tio

n
tim

e
sp

ee
du

p
to

ba
se

lin
e

(R
at

io
)

Base Pre-ef-host memHarvester

Figure 6: Execution time speedup of memory intensive workloads with memHarvester on four different harvesting scenarios
(H: Harvesting GPU, Y: Yielding GPU, and the numbers in parentheses indicate the number of participating GPUs)

GPU-0 GPU-1 GPU-2 GPU-3

Case-1 Pagerank (1.87x) VGG16 WCC (0.79x)
(ratio) soc-twitter-2010 256 (0.96x) soc-sinaweibo

Case-2 BFS (1.51x) MobileNet ResNet101
(ratio) web-uk-2005 256 (0.91x) 64 (0.67x)

Case-3 WCC (1.77x) BFS (1.70x) Pagerank (0.74x)
(ratio) soc-twitter-2010 soc-twitter-2010 web-Clue09-50m

Case-4 WCC (1.77x) Louvain (1.47x) ResNet101
(ratio) soc-twitter-2010 web-uk-2005 64 (0.74x)

Table 2: Multi-job scenarios with memory usage ratio in
parentheses, input graph, and batch size (Gray cell: harvester)

of Pre-ef-host (i.e., the prior approach [17, 28]) for perfor-
mance comparison. For all the cases, the execution time of
harvesters, which do not fit on one or more V100 GPU mem-
ory (16GB), can be significantly improved by harvesting the
idle memory of neighbor GPUs connected through NVLink.

In Case-1, Pagerank running on GPU-0 benefits from
the spare memory of GPU-1 and 2 where VGG16 is running
in data-parallelism and spare memory of GPU-3 where WCC
is running, leading to 3.53× and 1.31× improvement over
Base and Pre-ef-host, respectively. The amount of total
spare memory of GPU-1, 2, and 3 is around 4.64GB, which is
much smaller than the overcommitted memory of 13.92GB by
Pagerank. Although the spare memory is unable to serve all
the evictions from Pagerank, our memHarvester effectively
harvests the spare memory to hide the latency of accessing
the host. In addition, the negative performance impact to the
applications running on the yielding GPUs is negligible.

We also evaluate the performance changes by varying the
number of harvesting and yielding GPUs. In Case-2, BFS
running on GPU-0 and 1 harvests the spare memory of GPU-
2 and 3 where MobileNet and ResNet101 are running in
each of the GPUs. memHarvester considers that the sepa-
rated spare memory is logically unified like a shared cache
across the harvesters. Our memHarvester can increase the
performance of BFS by 3.52× and 2.1× compared to Base
and Pre-ef-host, respectively. While harvesting, the perfor-

Pagerank (Case-1)
1

2

3

4

BFS (Case-2) WCC (Case-3) Louvain (Case-4)0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

E
xe

cu
tio

n
tim

e
sp

ee
du

p
to

ba
se

lin
e

(R
at

io
)

H
H+PE

H+PE+LP
H+PE+LP+PLF

H+PE+LP+PLF+LPF
H+PE+LP+PLF+MPF

Figure 7: Effectiveness of individual techniques

mance impact of yielding GPUs is around 7~9%.
We show a different scenario in Case-3 where two appli-

cations each of which runs on a single GPU contend for the
idle memory of neighbor GPUs. WCC running on GPU-0 and
BFS running on GPU-1 harvests the spare memory of GPU-2
and 3 where Pagerank is running with its graph partitioned
across two GPUs. Our memHarvester can increase the perfor-
mance of WCC by 3.83× and 2.71×, and that of BFS by 3.21×
and 2.67× compared to Base and Pre-ef-host, respectively.
There is no performance degradation in Pagerank running
on the yielding GPU.

In Case-4, we evaluate the effectiveness of our approach
when two workloads share a limited spare memory con-
tributed by a single GPU. ResNet101 yields 4.16GB idle
memory that is shared by WCC running on GPU-0, and
Louvain running on GPU-1 and 2. Although the through-
put improvement is not much compared to other cases, it still
outperforms pre-ef-host by 30~40%. Compared to Base,
the harvesters show around 2.1~2.36× improvement while
the performance impact of yielding GPU is around 7%.

Analysis of performance improvement. We decompose the
contribution of the performance improvement to individual
schemes constituting memHarvester. To this end, Figure 7
shows performance changes for each workload (from the left
to the right) while we enable spare memory harvesting (H),
pre-eviction (PE), large page support (LP), parallel fetch (PLF),
local prefetcher (LPF) and multi-path parallel prefetcher (MPF)
in order. Note that local prefetcher (LPF) is not a scheme of

USENIX Association 2022 USENIX Annual Technical Conference    633



Pagerank (Case-1)
1.0

1.2

1.4

1.6

1.8

BFS (Case-2) WCC (Case-3) Louvain (Case-4)0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

E
xe

cu
tio

n
tim

e
sp

ee
du

p
to

pr
ef

et
ch

di
sa

bl
ed

(R
at

io
) 2MB 4MB 8MB 16MB 32MB

Figure 8: Sensitivity to the amount of prefetch

memHarvester and it is evaluated as a baseline to compare the
performance gain of our multi-path parallel prefetcher (MPF).

In general, we observe higher performance gain while we
enable each scheme one by one. This is because each scheme
has its complementary benefit to memHarvester: i) spare mem-
ory harvesting (H) utilizes the spare memory as an eviction
buffer and a victim cache to reduce the latency of migrating
chunks by using NVLink rather than PCIe; ii) pre-eviction
(PE) eliminates the eviction latency from the critical path
by reducing on-demand page faults; iii) large page support
(LP) reduces the time of making removable pages by writ-
ing back the chunks to host in batch; and iv) parallel fetch
(PLF) reduces the latency of handling on-demand page faults
by fetching the pages in the fault batch in parallel with both
PCIe and NVLink. While the first three schemes (H, PE, LP)
focus on optimizing the eviction penalty, parallel fetch (PLF)
focuses on reducing the latency when handling page faults.

Finally, we investigate our multi-path parallel prefetcher
(MPF) which drastically improves performance compared with
local prefetcher (LPF). For Case-1, 2, and 3, some of the
evicted data reside in the host memory due to the lack of
aggregated idle GPU memory in the system. Our multi-path
parallel prefetcher utilizes the PCIe of the yielding GPU to
prefetch data in host to the harvested memory. For Case-4,
however, our multi-path parallel prefetcher (MPF) selects to
prefetch data in the host memory to the local GPU memory
rather than the harvested memory to avoid contention in the
PCIe lane attached to the yielding GPU. Because there is
more than one harvester per one spare memory, multi-path
parallel prefetcher (MPF) changes the policy to directly fetch
data from the host to local GPU memory. Thus, multi-path
parallel prefetcher (MPF) has no performance gain compared
to local prefetcher (LPF) in Case-4.

Sensitivity study. In this subparagraph, we present the sensi-
tivity study of memHarvester to examine three aspects.

1 Prefetch size and stride: We evaluate the sensitivity study
for our next line and stride prefetches used in multi-path
parallel prefetcher. Figure 8 depicts the execution time
improvement by varying the amount of prefetches from 2MB
to 32MB with a 2MB stride. Since both graph analytics and
DNN training workloads exhibit sequential access patterns
during the execution [2, 19, 35, 37, 38], our prefetcher extracts
the direction of accessing the memory address and issues the

Pagerank (1.68x)
0

1

2

3

4

BFS (1.40x) WCC (1.94x) Louvain (1.83x)0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

E
xe

cu
tio

n
tim

e
sp

ee
du

p
to

ba
se

lin
e

(R
at

io
)

5% 10% 20% 40% 60%

Figure 9: Sensitivity to the size of spare memory (The num-
bers in parentheses indicate the overcommitment ratio)

prefetch requests for the next chunks to either the host memory
or the spare memory depending on where the selected chunk
is located (host to spare and spare to local). While evaluating
our prefetcher, we observe that the 2MB stride shows better
throughput than the next line (0MB stride). For all four cases,
increasing the amount of prefetch steadily improves the per-
formance. We select 32MB as our default prefetch size with
a stride of 2MB. We will further investigate how the amount
of prefetch can be dynamically adjusted for maximizing the
prefetch effects in our future study.

2 Available spare memory: In a shared multi-GPU server,
we expect that the available memory for harvesting fluctuates.
We evaluate the execution time of four graph analytics work-
loads by manually varying the amount of spare memory from
5% to 60%. We imitate a scenario with 2 GPUs with one GPU
running a memory-intensive graph analytics workload and
the other GPU yielding spare memory with an appropriate
size of cudaMalloc. Figure 9 exhibits that the performance
can be improved by harvesting more idle memory of neighbor
GPUs. Interestingly, even with 5% (800MB) of spare mem-
ory, we can achieve more than 2× improvement for all four
workloads. By effectively managing the small amount of idle
memory of a neighbor GPU, the performance improvement is
significant. However, when a certain amount of spare memory
is harvested to accommodate all the active working sets to
fit in the local GPU with the harvested memory, maximum
performance is achieved and there is no additional improve-
ment even if we increase the amount of spare memory. We
observed that the amount of overcommitment size is larger
than the active working set. For Louvain with an overcommit-
ment ratio of 1.83×, the maximum performance is achieved
when the spare memory size is 40% and even if the spare
memory size is increased, there is no additional performance
gain. We found a discrepancy between the size of the active
memory working set and the size of memory malloc’ed by
the user-level and will further investigate whether we can also
harvest the unused memory space that is not included in the
active working set in our future study.

3 Performance interference: While harvesting spare mem-
ory, our approach can cause performance interference to
the applications running on GPUs that yield the spare
memory. This is because the harvesters piggyback the

634    2022 USENIX Annual Technical Conference USENIX Association



ResNet101

Base H H+PE+LP memHarvester

VectorAdd (1) 1 0.99 0.99 0.97

VectorAdd (3) 1 0.91 0.88 0.87

Table 3: Normalized execution time of ResNet101 by increas-
ing the number of VectorAdd harvesters

memory and PCIe bandwidth of yielding GPUs. Table 3
presents the impact of performance interference through a
VectorAdd microbenchmark designed to generate a signif-
icant memory harvesting traffic. By increasing the number
of VectorAdd harvesters, we measure the performance of
ResNet101, which yields idle memory on one GPU. To in-
vestigate the interference incurred by individual schemes, we
decompose our schemes into harvesting only (H), with pre-
eviction and large page (H+PE+LP), and with all the prefetch-
ers (memHarvester). When running with a single harvester,
the impact of performance interference for ResNet101 is neg-
ligible, up to 3% compared to the baseline. The maximum
pressure to the GPU yielding idle memory is bounded by the
network bandwidth of two GPUs through NVLink.

Meanwhile, three harvesters reduce performance by 13%.
Even with harvesting only (H), it shows 9% performance
degradation. As the number of harvesters increases, the
amount of memory traffic to the idle memory can also in-
crease, leading to the memory bandwidth contention. When
enabling pre-eviction and large page (H+PE+LP) schemes, it
can utilize the idle memory more effectively, but it poses
an additional 3% overhead. When all the proposed schemes
are applied (memHarvester), the performance interference is
not much different. Since our multi-path parallel prefetcher
(MPF) selects to prefetch data in the host memory to the lo-
cal GPU memory rather than the harvested memory to avoid
contention in the PCIe lane attached to the yielding GPU. We
anticipate that throttling the harvesting traffic can reduce the
performance interference though it decreases the benefits to
the harvesters. We leave this optimization to future work.

6.2.2 Intra-job Harvesting.

Our memory harvesting technique can be applied to multi-
GPU applications where the memory consumption of individ-
ual GPUs is not even. The representative example is multi-
GPU DNN training exploiting pipeline parallelism [20]. Such
memory usage imbalance is primarily due to non-identical
model partitions placed across the GPUs to balance the com-
putation of each partition, leading to different memory de-
mands (e.g., some of the GPUs need to have multiple weight
and activation versions in pipeline parallelism). We evaluate
the effectiveness of HUVM with memHarvester for single
DNN training jobs. For this evaluation, we select GNMT16,
GNMT8, ResNet50, and VGG16 with PyTorch. For the baseline,

GNMT16 (128)
H1 → Y3

0

1

2

3

GNMT8 (256)
H2 → Y2

0

1

2

3

ResNet50 (128)
H2 → Y2

0

1

2

3

VGG16 (128)
H3 → Y1

0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0

−0.04

−0.02

0.00

0.02

0.04

N
or

m
al

iz
ed

th
ro

ug
hp

ut
to

ba
se

lin
e

(R
at

io
)

Base Pre-ef-host memHarvester

Figure 10: Throughput improvement for single training work-
loads (H: # harvesting GPU and Y: # yielding GPU)

GPU0 GPU1 GPU2 GPU3
GNMT16 (128)

H1 → Y3

0

20

40

60

80

100

GPU0 GPU1 GPU2 GPU3
GNMT8 (256)

H2 → Y2

0

20

40

60

80

100

GPU0 GPU1 GPU2 GPU3
ResNet50 (128)

H2 → Y2

0

20

40

60

80

100

GPU0 GPU1 GPU2 GPU3
VGG16 (128)

H3 → Y1

0

20

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0

−0.04

−0.02

0.00

0.02

0.04

G
P

U
M

em
or

y
U

sa
ge

(%
)

Used Harvested Free

Figure 11: Memory usage for single training workloads (H: #
harvesting GPU and Y: # yielding GPU)

the PyTorch framework is modified to support the memory
oversubscription with NVIDIA UVM.

Performance improvement. Figure 10 shows the re-
sults of throughput comparison among memHarvester,
Pre-ef-host, and Base. To initiate memory oversubscrip-
tion, the batch size in each model is chosen such that at least
one of the four GPUs goes beyond the local memory capacity.
The figure shows that for all the models, memHarvester outper-
forms Pre-ef-host. In particular, for GNMT16 and ResNet50,
memHarvester can effectively eliminate the host memory ac-
cesses in the increased batch size by harvesting only idle
memory of neighbor GPUs. This leads to the throughput in
memHarvester 1.5~1.6× higher than that in Pre-ef-host
for the two models.

Figure 11 shows the memory profiles of the four models
across the individual GPUs. It is worth noting that model
training under memHarvester achieves throughput gains via
diverse memory harvesting paths. For GNMT16, GPU-1 is the
only GPU harvesting the spare memory of GPU-0, 2, and
3. On the contrary, for ResNet50, GPU-0 and 1 are the two
harvesting GPUs that utilize the spare memory of the other
two yielding GPUs, i.e., GPU-2 and 3.

More interestingly, for GNMT8 and VGG16, the aggregated
idle memory across the yielding GPUs is not sufficient to
serve the data evicted from the harvesting GPUs. In VGG16
with batch size 128, GPU-0, 1, and 2 use up all the idle mem-
ory of GPU-3 and then require using the host memory ad-
ditionally. In spite of exercising the host memory, memHar-
vester shows meaningful throughput gains for both workloads.
memHarvester improves throughput over Pre-ef-host by
2.16× and 1.24× for GNMT8 and VGG16, respectively.

USENIX Association 2022 USENIX Annual Technical Conference    635



7 Related Work

To the best of our knowledge, memHarvester is the first to
propose a framework that allows GPU applications to utilize
neighbor GPU’s memory connected through the high-speed
interconnect (NVLink). There have been significant efforts in
both the architecture and systems community to support GPU
memory oversubscription while minimizing the performance
degradation of applications. Demand paging on GPUs [3, 22,
24] allows the GPUs to move pages from the GPU’s memory
to/from the CPU’s memory automatically. We survey recent
techniques that provide mechanisms to allow applications
with a large working set to run on GPUs.

Framework-guided approach. For deep learning (DL) train-
ing workloads, prior studies proposed to have the framework
insert the pre-eviction and pre-fetch operations by analyzing
the dataflow graph [11,17,28]. Peng et al. introduced a sophis-
ticated technique employing the pre-fetch and recomputation
opportunistically without relying on the dataflow graph [25],
these also require the intensive framework modification in
terms of tensor allocation. Besides the pre-fetch technique,
Animesh et al. proposed to compress the data, which shows
the long reuse distance to save memory while the data is not
being actively used [12]. Although this design approach can
be effective, it requires the framework modification and under-
standing of the target applications, incurring the engineering
overhead. Unlike such previous studies, we design and imple-
ment our solution in the GPU driver which can coordinate all
the GPU memory in a centralized way.

Architectural approach. The architecture community also
explored hardware techniques to minimize the overhead of
GPU memory virtualization. Recently, Choukse et al. ex-
plored the advantage of leveraging the neighbor GPU memory
which is connected through the high-bandwidth interconnect
(NVLink). Unlike our approach, they studied a HW-based
compression scheme to squeeze the limited neighbor GPU
memory [5]. Ganguly et al. studied the prefetch technique
used in the NVIDIA UVM driver in the overcommitted envi-
ronment and proposed a HW-based pre-eviction and pre-fetch
techniques [8]. Kim et al. exploited that modern GPUs handle
the page faults in a batch and co-designed the GPU runtime
and hardware to overlap the page eviction and migration effec-
tively [14]. Li et al. proposed a framework for memory over-
commitment [17] to efficiently virtualize GPU memory, but
the disadvantage of those studies requires significant changes
to the GPU runtime and hardware. Although such hardware
approaches can further improve the performance as well as
the efficiency, it requires new hardware structures.

Memory compression. Many previous studies [5, 15, 17, 27,
30,34] proposed techniques to perform memory compression.
While these techniques allow more data on the GPU memory,
they are orthogonal to HUVM and can be used in conjunction
to further improve the effectiveness of our proposal.

8 Conclusion

In this study, we propose a new approach of virtualizing multi-
GPU memory, hierarchical unified virtual memory, by dynam-
ically incorporating the spare memory of neighbor GPUs in
multi-GPU systems. This can alleviate the memory fragmen-
tation problem by creating the illusion of GPU applications
having an increased effective memory space. To effectively
utilize the small fraction of neighbor GPUs’ memory, we
introduced a memory manager for multi-GPU systems that
has a set of techniques, including large page support, parallel
fetch, and multi-path parallel prefetcher. Since our techniques
can effectively reduce the latency of accessing host memory,
for memory-intensive workloads, throughput performance is
significantly improved compared to baseline and prior studies
based on pre-eviction and prefetch techniques.

Acknowledgments

We thank the anonymous reviewers and our shepherd for
their valuable comments and feedback. This research is sup-
ported by the MSIT(Ministry of Science and ICT), Korea, un-
der the ITRC(Information Technology Research Center) sup-
port program(2021-0-02051) supervised by the IITP(Institute
for Information & Communications Technology Planning
& Evaluation) and Electronics and Telecommunications
Research Institute(ETRI) grant (22ZS1300). This work is
also supported by the National Research Foundation of Ko-
rea(NRF) grant funded by the Korea government(MSIT) (No.
2020R1C1C1014940).

References

[1] B. Acun, M. Murphy, X. Wang, J. Nie, C. Wu, and
K. Hazelwood. Understanding training efficiency of
deep learning recommendation models at scale. In Pro-
ceedings of the IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2021.

[2] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur
Mutlu, and Kiyoung Choi. A scalable processing-in-
memory accelerator for parallel graph processing. In
Proceedings of the 42nd Annual International Sympo-
sium on Computer Architecture (ISCA), 2015.

[3] AMD. Radeon‘s Next-generation Vega Architec-
ture. https://en.wikichip.org/w/images/a/a1/
vega-whitepaper.pdf, 2017.

[4] Akhil Arunkumar, Evgeny Bolotin, Benjamin Cho,
Ugljesa Milic, Eiman Ebrahimi, Oreste Villa, Aamer
Jaleel, Carole-Jean Wu, and David Nellans. Mcm-gpu:
Multi-chip-module gpus for continued performance scal-
ability. In Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA), 2017.

636    2022 USENIX Annual Technical Conference USENIX Association

https://en.wikichip.org/w/images/a/a1/vega-whitepaper.pdf
https://en.wikichip.org/w/images/a/a1/vega-whitepaper.pdf


[5] E. Choukse, M. B. Sullivan, M. O’Connor, M. Erez,
J. Pool, D. Nellans, and S. W. Keckler. Buddy com-
pression: Enabling larger memory for deep learning and
hpc workloads on gpus. In Proceedings of the 47th
Annual International Symposium on Computer Architec-
ture (ISCA), 2020.

[6] cuGraph. GPU Graph Analytics. https://github.
com/rapidsai/cugraph.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding.
arXiv:1810.04805, 2018.

[8] Debashis Ganguly, Ziyu Zhang, Jun Yang, and Rami
Melhem. Interplay between hardware prefetcher and
page eviction policy in cpu-gpu unified virtual memory.
In Proceedings of the 46th International Symposium on
Computer Architecture (ISCA), 2019.

[9] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin,
Yibo Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang Liu,
and Chuanxiong Guo. Tiresias: A gpu cluster manager
for distributed deep learning. In Proceedings of the 16th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2019.

[10] Wei Han, Daniel Mawhirter, Bo Wu, and Matthew Bu-
land. Graphie: Large-scale asynchronous graph traver-
sals on just a gpu. In Proceedings of the 26th Interna-
tional Conference on Parallel Architectures and Compi-
lation Techniques (PACT), 2017.

[11] Chien-Chin Huang, Gu Jin, and Jinyang Li. Swapad-
visor: Pushing deep learning beyond the gpu memory
limit via smart swapping. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), 2020.

[12] Animesh Jain, Amar Phanishayee, Jason Mars, Lingjia
Tang, and Gennady Pekhimenko. Gist: Efficient data
encoding for deep neural network training. In Proceed-
ings of the 45th Annual International Symposium on
Computer Architecture (ISCA), 2018.

[13] Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-
ishayee, Junjie Qian, Wencong Xiao, and Fan Yang.
Analysis of Large-Scale Multi-Tenant GPU clusters for
DNN training workloads. In Proceedings of the USENIX
Annual Technical Conference (ATC), 2019.

[14] Hyojong Kim, Jaewoong Sim, Prasun Gera, Ramyad Ha-
didi, and Hyesoon Kim. Batch-aware unified memory
management in gpus for irregular workloads. In Pro-
ceedings of the Twenty-Fifth International Conference

on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2020.

[15] J. Kim, M. Sullivan, E. Choukse, and M. Erez. Bit-
plane compression: Transforming data for better com-
pression in many-core architectures. In Proceedings of
the 43rd International Symposium on Computer Archi-
tecture (ISCA), 2016.

[16] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li,
Xu Liu, Nathan R. Tallent, and Kevin J. Barker. Eval-
uating modern gpu interconnect: Pcie, nvlink, nv-sli,
nvswitch and gpudirect. IEEE Trans. Parallel Dis-
tributed Systems (TPDS), 31(1), January 2020.

[17] Chen Li, Rachata Ausavarungnirun, Christopher J. Ross-
bach, Youtao Zhang, Onur Mutlu, Yang Guo, and Jun
Yang. A framework for memory oversubscription man-
agement in graphics processing units. In Proceedings
of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems (ASPLOS), 2019.

[18] Kshiteej Mahajan, Arjun Balasubramanian, Arjun
Singhvi, Shivaram Venkataraman, Aditya Akella, Amar
Phanishayee, and Shuchi Chawla. Themis: Fair and ef-
ficient GPU cluster scheduling. In Proceedings of the
17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2020.

[19] Seung Won Min, Vikram Sharma Mailthody, Zaid
Qureshi, Jinjun Xiong, Eiman Ebrahimi, and Wen-mei
Hwu. Emogi: Efficient memory-access for out-of-
memory graph-traversal in gpus. Proc. VLDB Endow.,
2020.

[20] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger,
Phillip B. Gibbons, and Matei Zaharia. Pipedream: Gen-
eralized pipeline parallelism for dnn training. In Pro-
ceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP), 2019.

[21] Michal Nazarewicz. A deep dive into cma, Mar. 2012.
https://lwn.net/Articles/486301/.

[22] NVIDIA. NVIDIA Tesla P100 P100 GPU
Architecture. https://images.nvidia.
com/content/pdf/tesla/whitepaper/
pascal-architecture-whitepaper.pdf, 2016.

[23] NVIDIA. Nvidia dgx-2: The world’s most pow-
erful ai system for the most complex ai chal-
lenges., 2019. https://www.nvidia.com/en-us/
data-center/dgx-2/.

USENIX Association 2022 USENIX Annual Technical Conference    637

https://github.com/rapidsai/cugraph
https://github.com/rapidsai/cugraph
https://lwn.net/Articles/486301/
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://www.nvidia.com/en-us/data-center/dgx-2/
https://www.nvidia.com/en-us/data-center/dgx-2/


[24] NVIDIA. NVIDIA A100 Tensor Core GPU
Architecture. https://www.nvidia.com/
content/dam/en-zz/Solutions/Data-Center/
nvidia-ampere-architecture-whitepaper.pdf,
2020.

[25] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang
Ma, Qian Xiong, Fan Yang, and Xuehai Qian. Capuchin:
Tensor-based gpu memory management for deep learn-
ing. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020.

[26] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subra-
manya, Willie Neiswanger, Qirong Ho, Hao Zhang, Gre-
gory R. Ganger, and Eric P. Xing. Pollux: Co-adaptive
cluster scheduling for goodput-optimized deep learn-
ing. In Proceedings of the 15th USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2021.

[27] M. Rhu, M. O’Connor, N. Chatterjee, J. Pool, Y. Kwon,
and S. Keckler. Compressing DMA Engine: Leveraging
Activation Sparsity for Training Deep Neural Networks.
In Proceedings of the IEEE International Symposium
on High Performance Computer Architecture (HPCA),
2018.

[28] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Ar-
slan Zulfiqar, and Stephen W. Keckler. vdnn: Virtualized
deep neural networks for scalable, memory-efficient neu-
ral network design. In Processing of the 49th Interna-
tional Symposium on Microarchitecture (MICRO), 2016.

[29] Nikolay Sakharnykh. Maximizing unified
memory performance in cuda, Nov. 2017.
https://developer.nvidia.com/blog/
maximizing-unified-memory-performance-cuda/.

[30] V. Sathish, M. Schulte, and N. Kim. Lossless and Lossy
Memory I/O Link Compression for Improving Perfor-
mance of GPGPU Workloads. In Proceedings of the
21st International Conference on Parallel Architectures
and Compilation Techniques (PACT), 2012.

[31] Dipanjan Sengupta, Shuaiwen Leon Song, Kapil Agar-
wal, and Karsten Schwan. Graphreduce: processing

large-scale graphs on accelerator-based systems. In
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Anal-
ysis (SC), 2015.

[32] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
In 3rd International Conference on Learning Represen-
tations (ICLR), 2015.

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In
Advances in Neural Information Processing Systems
(NIPS), 2017.

[34] N. Vijaykumar, G. Pekhimenko, A. Jog, A. Bhowmick,
R. Ausavarungnirun, C. Das, M. Kandemir, T. Mowry,
and O. Mutlu. A Case for Core-Assisted Bottleneck
Acceleration in GPUs: Enabling Flexible Data Compres-
sion with Assist Warps. In Proceedings of the 42nd Inter-
national Symposium on Computer Architecture (ISCA),
2015.

[35] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
Fan Yang, and Lidong Zhou. Gandiva: Introspective
cluster scheduling for deep learning. In Proceedings
of the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2018.

[36] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang,
Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and
Yangqing Jia. Antman: Dynamic scaling on GPU clus-
ters for deep learning. In Proceedings of the 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2020.

[37] Peifeng Yu and Mosharaf Chowdhury. Fine-grained
GPU sharing primitives for deep learning applications.
In Proceedings of Machine Learning and Systems (ML-
Sys), 2020.

[38] Yunming Zhang, Vladimir Kiriansky, Charith Mendis,
Saman Amarasinghe, and Matei Zaharia. Making caches
work for graph analytics. In Proceedings of the IEEE
International Conference on Big Data (Big Data), 2017.

638    2022 USENIX Annual Technical Conference USENIX Association

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://developer.nvidia.com/blog/maximizing-unified-memory-performance-cuda/
https://developer.nvidia.com/blog/maximizing-unified-memory-performance-cuda/


Zero Overhead Monitoring for Cloud-native Infrastructure using RDMA

Zhe Wang1, Teng Ma2, Linghe Kong1, Zhenzao Wen2, Jingxuan Li2, Zhuo Song2, Yang Lu2

Yong Yang2, Tao Ma2, Guihai Chen1, Wei Cao2

1Shanghai Jiao Tong University
2Alibaba Group

Abstract
Cloud services have recently undergone a major shift from
monolithic designs to microservices running on the cloud-
native infrastructure, where monitoring systems are widely
deployed to ensure the service level agreement (SLA). Nev-
ertheless, the traditional monitoring system no longer fulfills
the demands of cloud-native monitoring, which is observed
from the practical experience in Alibaba cloud. Specifically,
the monitor occupies resources (e.g., CPU) of the monitored
infrastructure, disturbing services running on it. For example,
enabling monitor causes jitters/declines of online services in
Alibaba’s “double eleven” shopping festival with high loads.
On the other hand, the quality of service (QoS) of monitoring
itself, which is vital to track and ensure SLA, is not guaran-
teed with the high loaded system.

In this paper, we design and implement a novel monitor-
ing system, named ZERO, for cloud-native monitoring. First,
ZERO achieves zero overhead to collect raw metrics from the
monitored hosts using one-sided remote direct memory access
(RDMA) operations, thus avoiding any interferences to cloud
services. Second, ZERO adopts receiver-driven model to col-
lect monitoring metrics with high QoS, where credit-based
flow control and hybrid I/O model are proposed to mitigate
network congestion/interference and CPU bottlenecks. ZERO
has been deployed and evaluated in Alibaba cloud. Deploy-
ment results show that ZERO achieves no CPU occupation at
the monitored host and supports 1∼ 10k hosts with 0.1∼ 1s
sampling interval using single thread for network I/O.

1 Introduction

Recent shifts in the production cloud environment from mono-
lithic designs to microservice-based architecture [33,34] have
made cloud-native infrastructure the cornerstone of cloud
computing services. The cloud-native applications consist of
thousands of single-concern, loosely-coupled microservices
running on containerized platforms [76]. The underlying sys-
tems are treated as disposable and immutable, finally enabling
highly available, flexible and scalable cloud services.

In order to ensure the service level agreement (SLA) [52],
the whole infrastructure is monitored with not only the upper-
layer application metrics, but also the fundamental system
metrics [84]. The novel cloud-native infrastructure, however,
brings new challenges/demands to cloud-native monitoring,
along with two major issues in commercial deployments.

First, traditional monitoring systems [10, 11, 65] occupies
host (physical/virtual machine, PM/VM) resources to col-
lect, process and upload metrics (Figure 1), which inevitably
causes resource contentions with cloud services — enabling
monitors causes jitters/declines of online services in Alibaba
“double eleven” shopping festival (Figure 3). To ensure ser-
vice SLA with resource constraints, the deployed monitor at
the host should have no resource occupation.

Second, the quality of service (QoS) of monitoring itself
is not guaranteed, which fails to support massive metrics
with rapid variations in cloud-native monitoring. The la-
tency/throughput of monitoring jitters severely due to the high
system loads or small CPU quota set by the cloud provider
(Figure 4). However, monitoring system with high QoS is
vital to track and ensure SLA of monitored services [80, 84].

To resolve the limitations of traditional monitoring system
and fulfill the demands of cloud-native monitoring, we design
and implement a novel ZERO monitoring system in this paper.
ZERO proposes a receiver-driven model, which collects raw
metrics from the monitored host via one-sided RDMA opera-
tions, i.e., RDMA read. Based on the ZERO framework, the
monitoring system is expected to achieve no CPU occupation
at the monitored host, low latency and high throughput, finally
avoiding any interferences to services and fulfilling the QoS
requirements of large-scale distributed monitoring.

However, there still exist several challenges to achieve
the above goals. As shown in Figure 1, traditional moni-
tor collects and processes raw metrics from the monitored
processes, then upload metrics to the remote host, which in-
evitably causes CPU occupations. How to manage memory
regions of system/application metrics and expose them to the
remote host, finally achieving zero-overhead monitoring via
RDMA read, is challenging. On the other hand, the remote

USENIX Association 2022 USENIX Annual Technical Conference    639



Microservice Microservice Microservice

TCP/IP
Proxy/Broker

TCP/IP
Proxy/Broker

Controller Analyze Display

Li
nu

x 
K

er
ne

l

Device Driver

Network  Stack

TCP/UDP

IP layer

Traffic Control

Li
nu

x 
K

er
ne

l

Device Driver

Network  Stack

TCP/UDP

IP layer

Traffic Control

TCP/IPTCP/IPTCP/IP

Li
nu

x 
K

er
ne

l

Device Driver

Network  Stack

TCP/UDP

IP layer

Traffic Control

Li
nu

x 
K

er
ne

l

Device Driver

Network  Stack

TCP/UDP

IP layer

Traffic Control

kernel
stack

Collect

Process
Upload

Host (PM/VM)Host (PM/VM)Host (PM/VM)

Local Agent

Remote 
Controller

Collector

RPC Performance jitter

CPU

CPU occupation

RPC

Figure 1: Traditional monitoring System.

monitoring host becomes bottlenecks in the receiver-driven
model, as a tradeoff of offloading local monitoring overhead
to the remote host. The remote host performs RDMA read on
many monitored hosts, resulting in incast problem [85] 1. The
remote host not only collects metrics, but also processes raw
metric for further operations, all of which are CPU intensive.
How to enable large-scale monitoring with network/CPU bot-
tlenecks is challenging as well.

To access raw metrics with no CPU occupation, ZERO
proposes the novel control plane and data plane. For the
ease of clarity, we separate ZERO into local agent and remote
controller (Figure 2). To achieve high scalability in reliable
connection (RC) mode [26, 82], system/application metrics
are managed by one agent and share one queue pair (QP)
connection. In the control plane, ZERO agent provides univer-
sal interfaces for systems/applications to register the memory
regions of their metrics at the RDMA NIC (RNIC). The
metadata of these metrics are recorded at the control region.
ZERO controller can thus acquire metadata of metrics from
the control region as the prerequisite to access raw metrics.
All metrics only need to register once if the metadata is not
updated, after which ZERO agent enters blocking mode. In
the data plane, the memory regions of metrics (data region)
are exposed to the agent process via shared memory, finally to
the remote controller. The ZERO controller can thus perform
RDMA read on the data region directly without involving
memory copies and CPU usages at the monitored host. As
a result, ZERO achieves disposable overhead in the control
plane and zero overhead in the data plane.

To deal with the network/CPU bottlenecks at the controller,
ZERO proposes credit-based flow control (Credit-FC) and hy-
brid I/O model. We observe that the receiver-driven model is

1Incast problem happens when multiple senders transfer data to one
receiver simultaneously.

Microservices

READ

Shared Memory

QP  Connection

MicroserviceMicroservice

Shared MemoryShared Memory

CPU Zero
Copy

Blocking

Running

WRITE

Metrics

Control
Plane

CPU
CopyCopyCopyCopyCopy

Data
Plane

Collecting Thread
Credit-FC + Hybrid I/O

QP  Connection WRITE

Meta Data 

ZERO Controller

Host (PM/VM)

ZERO
Agent

Processing Thread

Register

Persistence + Visualization

Zero
CopyCopyCopyCopyCopyCopy

Shared Memory

Figure 2: ZERO monitoring system.

superior to the traditional sender-driven model (i.e., agent ac-
tively uploads metrics as per heartbeat): i) collecting metrics
on demand to ensure the QoS of monitoring on latency; ii)
limiting the total in-flight data of concurrent flows to avoid net-
work congestion/interference. Accordingly, ZERO proposes
Credit-FC to mitigate the incast problem while fulfilling the
latency/throughput requirements of monitoring. On the other
hand, ZERO introduces hybrid I/O model (a combination of
event driven and busy polling mechanisms) and adopts thread
dispatching to remedy the CPU bottlenecks of collecting and
processing metrics, respectively.

As case studies, we integrate application (Redis [12]) met-
rics, system (kernel/containers [27, 76]) metrics and eBPF [3]
metrics into the ZERO framework to demonstrate its gen-
erality and flexibility. We also share our experience about
building large-scale monitoring system using RDMA.

The major contributions of this paper are summarized as
follows:
• We propose the first zero-overhead monitoring system,

ZERO, to resolve limitations of traditional monitoring sys-
tem in cloud-native monitoring.

• We tackle several challenges of zero-overhead monitoring,
including data plane with no CPU involvement, network
congestion/interference caused by monitoring traffics, and
CPU bottlenecks at the controller.

• We have deployed and evaluated ZERO in Alibaba cloud.
ZERO achieves no CPU occupation at the monitored host
and supports 1∼ 10k hosts with 0.1∼ 1s sampling intervals.
We also share our experience with ZERO.
The paper is organized as following. Section 2 introduces

the background and motivation. Section 3 proposes zero-
overhead monitoring. Section 4 designs and implements
ZERO framework. Section 5 presents case studies. Section 6
evaluates the proposed design. Section 7 introduces the ex-
perience and future work. Section 8 discusses related works
and Section 9 concludes this paper.

640    2022 USENIX Annual Technical Conference USENIX Association



Figure 3: Monitor interfering with services.

2 Background and Motivation

In this section, we further elaborate cloud native monitoring
and the inherent limitations of traditional monitoring system.

2.1 Cloud-Native Monitoring
Monitoring system deployed at the cloud-native infrastructure,
namely, cloud-native monitoring, is indispensable to ensure
the SLA of cloud services. Monitor collects the bottom-layer
system metrics, such as the utilization of physical resources
(CPU, memory, etc.). Based on system metrics, monitor-
ing system performs health checks on the underlying system,
makes early alert and provides suggestions to administra-
tors [18]. Furthermore, by analyzing the historical resource
consumption and performance variations, cloud providers
improve system utilization and lower operational expenses
(OpEx) [27, 28, 41]. On the other hand, the upper-layer ap-
plication metrics, e.g., requests per second of key-value ser-
vice [12,45], directly reflect user activities and functional state
of applications. The monolithic applications are decoupled to
thousands of microservices [33], all of which are monitored
to track and ensure the SLA.

The novel cloud-native applications together with the es-
sential infrastructure bring new challenges/demands to cloud-
native monitoring, along with two major issues in commercial
deployment.

How to avoid monitor interfering with services? Microser-
vices have much stricter requirements of QoS compared with
typical applications [33]. However, the cloud-native environ-
ment is highly resource constrained. For example, Alibaba
cloud adopts mixed deployment of CPU-intensive online ser-
vice [42] and I/O-intensive batch jobs [93] at the same host, to
maximize resource utilization [43, 78] and reduce long-term
capital expenses (CapEx). Microsoft Azure also reports that
80% of VMs only have 1 ∼ 2 vCPU cores [27]. The monitor

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  100  200  300

 0

 50

 100

R
e

q
u

e
s

t 
L

a
te

n
c

y
 (

m
s

)

C
P

U
 U

ti
li

z
a

ti
o

n
 (

%
)

Time (s)

Request Latency
CPU Utilization

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  500  1000  1500  2000  2500

 0

 50

 100

R
e

q
u

e
s

t 
L

a
te

n
c

y
 (

m
s

)

C
P

U
 U

ti
li

z
a

ti
o

n
 (

%
)

Time (s)

Request Latency
CPU Utilization

Figure 4: Monitoring jitters with high system loads in Netdata
(upper) and Prometheus (bottom).

should have no CPU occupation to avoid contentions with
cloud services.

How to ensure QoS of monitoring? Cloud-native monitor-
ing needs to support massive metrics with rapid variations.
Cloud providers, such as Alibaba, Netflix and Uber, need to
monitor millions of metrics with hundreds to thousands of mi-
croservices [80]. Besides, these application metrics (financial
transactions, social network and e-commerce [67, 94]) and
system metrics (CPU, memory, network [6, 54]) have rapid
variations with a time scale of seconds/milliseconds. To track
and ensure SLA of services, monitoring requires high QoS
from the perspective of latency and throughput.

2.2 Traditional Monitoring System

We next introduce traditional distributed monitoring sys-
tems [10, 51, 65] and elaborate their limitations as the mo-
tivation of ZERO. As shown in Figure 1, multiple collec-
tors acquire application/system metrics via specific interfaces,
meanwhile raw metrics are processed as the final outcomes
(Section 5). After that, the collected metrics are uploaded to
the remote controller for further analysis and visualization.
Each step occupies host CPUs for memory copy, calcula-
tion, network transmission, etc., which inevitably interfer-
ing with services running on the host. On the other hand,
traditional monitor massively relies on the kernel’s TCP/IP
network stack to transmit metrics. However, kernel data pro-
cessing overhead has became the main bottleneck of end-
to-end latency/throughput [90]. State-of-the-art works thus
offload network functionality from kernel to user-space net-
work stack [39, 53, 64] or hardware [35, 44, 70].

We next elaborate the limitations of traditional monitors in
our real deployment. We consider two representative open-

USENIX Association 2022 USENIX Annual Technical Conference    641



sourced monitors, i.e., Netdata [10] and Prometheus [11].
We observed that enabling monitors causes jitters of online
service in Alibaba “double eleven” shopping festival with
high loads. We use Netdata to monitor a high-loaded host
running Redis services with 1s sampling interval. As shown
in Figure 3, monitor process causes jitters of Redis service,
i.e., the throughput declines by 6.25% while tail latency in-
creases by 2× periodically, due to the CPU occupation in each
monitoring cycle. We analyze that reasons for such “interfer-
ence spikes” are two folds. First, the deployment of service
and monitor processes may adopt default CPU scheduling or
specific CPU bonding [48], where contentions happen when
service/monitor processes are scheduled/bonded to the same
CPU core. Second, the CPU utilization keeps on high water
level and exhibits burst natures, especially during sales pro-
motion with high loads. Thus, the duty-cycled monitoring
process with slight CPU occupation (1∼ 5%) already causes
severe interference (Figure 3). The CPU breakup of monitor
shows that the uploading phase occupies 5∼ 10% of the to-
tal CPU utilization while the collecting phase occupies the
majority. On the other hand, the QoS of monitoring is highly
affected by the system load or CPU quota set by the cloud op-
erator. The latency of monitoring increases by more than 10×,
when host CPU is saturated or CPU quota is reached (Fig-
ure 4). Assigning dedicated cores for monitoring may avoid
these problems, however, causes large wastes of resources
and high CapEx. Besides, the monitoring process may be
blocked to request metrics via service interface (Section 5).

3 Zero-overhead Monitoring

To avoid resource contentions with services and ensure QoS of
monitoring, we propose the zero-overhead monitoring system,
namely ZERO, for cloud-native monitoring. ZERO exploits
features of monitoring metrics and RDMA capability in mod-
ern data center. The basic idea is that most of raw metrics
are counters updated at fix memory regions — the remote
controller can thus obtain these metrics by performing RDMA
read on these memory regions — without any CPU involve-
ment at the monitored side. We next elaborate possibilities
and challenges of realizing ZERO.
Metric features. ZERO is based on two features of moni-
toring metrics. First, most of the monitoring metrics are
counters. Systems/applications update these metrics at fixed
memory region after initialization. For instance, the number
of stored/evicted key-value pairs in Redis and the number of
sent/received packets recorded by kernel stack are all counters.
Second, processing of raw metrics is simple algebraic calcu-
lation and can be offloaded to the controller. For example,
Redis exports statistic data on the raw metrics and per-CPU
counters are summed to get the final kernel metrics. These
features are general to system/application metrics and ZERO
can thus support various metrics as an universal framework
(Section 5).

RDMA support. ZERO then leverages one-sided RDMA
operation to read raw metrics/counters, to achieve no
CPU/kernel involvements at the monitored host. RDMA has
been widely used in data centers and provides new character-
istics of low latency (as low as 1 µs), high bandwidth (more
than 100Gbps) and kernel/CPU bypass. RDMA supports
both one-sided and two-sided operations. The one-sided op-
erations directly operate on the remote memory via read and
write without involving the remote server’s CPU. To per-
form one-sided RDMA operations, one needs to register the
memory region (MR) at the RNIC of remote host and acquire
the generated remote protection key (rkey). The two-sided
operations, i.e., send and recv, communicate via an interface
similar to socket. In the following paper, we refer to RDMA
read, write, send and recv as READ, WRITE, SEND and
RECV, respectively. RDMA hosts create queue pairs (QP)
consisting of a send queue and a receive queue, then post
RDMA operations on send/receive queue to communicate
with the remote host. RDMA transport supports reliable or
unreliable connection (RC/UC) and unreliable datagram (UD).
One-to-one connections between QPs are required in RC/UC
mode, whereas one-to-many communication is supported in
UD mode. Different transport types support different subsets
of RDMA operations, and READ operation is only supported
in RC mode.
Challenges. While ZERO is expected to achieve zero-
overhead monitoring, there still exist two challenges to make
the idea practical. First, we observe that most CPU time of
traditional monitor are spent on collecting metrics from sys-
tem/application processes (Section 2.2). ZERO also needs to
eliminates such overheads in its data plane, besides the trans-
mission overheads offloaded to RNIC. Second, controller is
bottlenecked on both network and CPU with large number of
monitored hosts, as all monitoring overheads are offloaded
to the remote controller. With all these challenges, the key
innovation of Zero lies in effectively exploiting one-sided
RDMA and designing the separate control/data plane to re-
alize zero-overhead monitoring. Zero further incorporates
several designs to resolve practical issues (network conges-
tion/interference, scalability) in distributed monitoring.

4 Design and Implementation

In this section, we present the overview of the ZERO frame-
work. We then introduce the design and implementation of
ZERO in details.

4.1 Overview
As shown in Figure 2, ZERO proposes the novel control plane
and data plane to collect raw metrics without CPU involve-
ments at the monitored host. ZERO adopts receiver-driven
model to collect metrics from large number of hosts, and deals
with the network and CPU bottlenecks at the controller.

642    2022 USENIX Annual Technical Conference USENIX Association



type sizeoffsetaddress rkey

addressaddress

addressaddress

addressaddress

addressaddress

addressaddress

addressaddressM
ul

tip
le

 R
E

A
D

s

offset

(a) Inefficient READ.

offsetaddress rkeystructure

addressaddress

addressaddress

data
region

control
region

Tw
o 

R
EA

D
s

(b) Efficient READ.

Figure 5: READ w/o (left) or w/ (right) memory management.

The scalability of RDMA-based system is constrained by
the on-chip memory (SRAM) of RNIC [26, 82]. To achieve
high scalability at the controller, all metrics at the host are
managed by one agent and share one QP connection. In the
control plane, ZERO agent provides interface for systems and
applications to register the memory region of their metrics
(data region) at the RNIC. The metadata of metrics (e.g.,
address, rkey) are written into the control region. ZERO con-
troller can thus obtain metadata by reading the control region
and access to raw metrics via reading the data region. The
agent process is blocked unless systems/applications need
to register/update metrics. In the data plane, the memory
region of metrics are exposed to the agent process via shared
memory, finally to the remote controller. The controller per-
forming READ on the data region to acquires metrics, which
achieves zero copy and no CPU involvement at the monitored
host. In the real deployment, the control-plane overhead is
usually disposable — the metrics only need to register once —
then keeps in use or updates after a long time. The data plane
has no CPU occupation as expected.

ZERO supports large-scale monitoring via single controller.
ZERO adopts thread dispatching, where only 1 ∼ 2 threads
are used to collect metrics and the rest cores are used to
process metrics in parallel for further operations, e.g., visual-
ization and persistence. ZERO controller uses receiver-driven
model, i.e., issuing READ requests on the monitored hosts
to collect raw metrics, which is superior to the traditional
sender-driven model. ZERO achieves high monitoring QoS
by posting READ requests on demand and avoids network
congestion/interference by controlling the total in-flight data.
Accordingly, credit-based flow control (Credit-FC) and hy-
brid I/O model are proposed to remedy the incast problem
and CPU bottleneck, respectively.

4.2 ZERO Control Plane and Data plane
We introduce the ZERO control plane and data plane, together
with ZERO framework usage and interface in this subsection.
Control plane. ZERO agent deals with registration requests
from systems/applications, which uses UNIX domain socket
for inter-process communications (IPC). To handle the re-
quest, the MRs of monitoring metrics are registered at the

RNIC and the metadata of MRs (e.g., address, type, size,
rkey) are recorded at the control region (Figure 5a). Note
that the MR is pinned after metrics are registered and will
be released only after metrics expire. ZERO agent registers
the control region at the RNIC and builds a QP connection
with the remote controller in advance. The controller can thus
acquire the metadata of metrics by reading and parsing the
control region, then access raw metrics.

The control plane has disposable overhead. ZERO agent
inevitably occupies host resources to deal with registration re-
quests. However, we observe that the control-plane overhead
is disposable for most of metrics. We divided metrics into
three types according to the practice in Alibaba cloud. First,
metrics of the underlying systems and persistent services, e.g.,
database and storage services [56, 91], are usually immobile
once registered. Second, some services may be dynamically
created/destroyed. For example, e-commerce services are
periodically expanded/shrunk according to the number of
users shopping online [60]. Third, some user requests are
served by ephemeral serverless functions to mitigate the cost
of long-lived services with intermittent activities [25, 33].

Generally, ZERO agent enters into blocking mode with no
CPU occupation (Figure 2). When services change, ZERO
agent resumes to (de)register metrics and update the corre-
sponding control region. For the first two cases, ZERO agent
handles registration requests and updates control regions in-
frequently with negligible overhead. ZERO controller also
only reads control regions once in a long period. In the server-
less case, ZERO agent may frequently (de)register metrics
of serverless functions. ZERO agent further uses WRITE to
write the updated metadata into the remote control region
(Figure 2). ZERO controller can thus obtain raw metrics by
only reading the data region with one RTT. Note that the over-
head of ZERO using WRITE or SEND/RECV is still much
lower than that of the traditional monitor (Section 6.2).
Data plane. To eliminate the overhead of collecting metrics
from multiple processes and avoid frequent memory copies,
ZERO exclusively adopts shared memory in its data plane.
Specifically, ZERO agent uses mmap operations, which are
invoked when registering metrics, to expose MRs of metrics
(data region) to the agent process, finally to the remote con-
troller. The mmap operation takes 4KB page as the basic unit.
However, metrics are not necessarily locating at the page
header (Figure 5). ZERO agent calculates the page header of
metrics to mmap their pages. As shown in Figure 5, ZERO
agent records the page address and page offset in the control
region. To protect data region from being modified by local
agent or malicious remote host, ZERO sets read-only access
to the data region via mmap flags and uses the rkey mechanism
inherently supported by RDMA. ZERO controller obtains raw
metrics by performing READ on the data region.

The data plane has zero overhead. The data plane achieves
zero CPU occupation, zero copy, and no extra memory foot-
print at the monitored host, via the shared memory design.

USENIX Association 2022 USENIX Annual Technical Conference    643



// type one, specifying attributes of variables

struct disk my_disk{

.disk = "sda",

.hash = 0x000f3456, ...

} __attribute__((section(".zero_init"));

//type two, using allocator

struct disk *my_disk = zero_malloc(sizeof(struct disk));

Figure 6: Management interface for two types of metrics.

An alternative solution of copying metrics when updating
causes frequent CPU occupations for memory copies, and
extra memory footprints. Besides, ZERO data plane ensures
the read-write consistency between remote and local mem-
ory. Most of application/system metrics are defined as atomic
variables, which are updated atomically in the shared mem-
ory. The atomic update only needs 1∼3ns in Intel Haswell
architecture [74] — three orders of magnitude lower than that
of RDMA operations (1µs) — the memory consistency is
guaranteed between update and READ. For non-atomic vari-
ables, ZERO uses bit flags to indicate the states of updating.
FaRM [31] and Pilaf [68] use a similar method to ensure data
consistency with READ. ZERO controller will check whether
metrics are read correctly via bit flags and retry in the next
cycle. We eliminate all synchronous locks for zero overhead,
which may cause inconsistency under rare race conditions
while ensuring accuracy for most cases.

Memory management is indispensable. While local host
achieves zero overhead in ZERO data plane, we observe that
simply performing READ on massive metrics cannot achieve
desirable performance. Because metrics are distributed across
the process/kernel space with discrete memory addresses,
ZERO controller needs to read large number of entries in
control region as well as metrics in data region (Figure 5a).
However, the bandwidth of READ falls rapidly and the la-
tency is nearly doubled when the number of MRs increases
from 100 to 10k, due to evictions in the RNIC SRAM [26,82].
ZERO introduces memory management to reduce the number
of MRs and READ requests required to collect massive met-
rics. Specifically, ZERO proposes two memory-management
mechanisms for two types of metrics (Figure 6). First, many
metrics are global variables or data structures. One can mark
these metrics by specifying attributes of variables [13]. The
compiler will distribute these metrics to the same data seg-
ment. Second, metrics are defined as pointers to variables.
ZERO provides a memory allocator for these metrics. Specifi-
cally, the MRs of metrics are allocated with continuous space
via the allocation API. The core idea of both methods is con-
catenating metrics to the same MR to support massive metrics.
Besides, data region is aligned as struct and recorded at the
control region for the ease of memory parsing at the controller.
As shown in Figure 5b, ZERO controller only needs to post
one READ request on the same MR to get a list of metrics.

Framework usage and interface. ZERO can be easily de-
ployed at hosts (PM/VM) with RDMA support. ZERO agent
and controller need to be initiated at the local and remote host
respectively. Systems/applications then invoke agent API
to manage and (de)register their metrics. The agent accom-
plishes all control-plane operations, e.g., mmap, updates of
control region, when handling (de)register requests.

4.3 Scaling-out Monitoring
We next present how to support large-scale monitoring with
single ZERO controller. ZERO proposes credit-based flow
control (Credit-FC) and hybrid I/O model, to avoid network
congestion/interference and remedy CPU bottlenecks respec-
tively. ZERO controller needs to collect and process metrics
from large number of hosts, while fulfilling the monitoring
QoS in latency and throughput. To achieve this goal, the
controller adopts thread dispatching to collect and process
metrics in parallel with individual threads.
Collecting metrics. The controller only assigns 1∼ 2 threads
to collect metrics. ZERO achieves high efficient network I/O
with single thread by posting READ requests then polling
completions on multiple QPs in batch. This is feasible be-
cause both post_send and poll_cq are fast non-block op-
erations. According to our experiment, the batch operations
only add negligible latency (tens of µs).

Receiver-driven model is superior to send-driven model.
Issuing READ on data region turns out a receiver-driven
model to collect metrics from multiple hosts. The receiver-
driven model has two benefits compared with the traditional
sender-driven model. The controller posts READ requests
on demand to meet the target latency or updating frequency
in monitoring. Besides, it also facilitates to avoid network
congestion/interference by limiting the total in-flight data of
concurrent flows. We next intuitively formulate the scale-out
ability of such receiver-driven model. The monitored hosts
have different requirements in terms of updating interval U
and data size S, i.e., controller needs to collect S bytes in
every U seconds for a specific host. Assuming the bandwidth
B of the receiver is fully utilized, the maximum number of
supported hosts n = B×U/S. Our deployment shows that
ZERO supports at least 1k hosts with 128KB metrics and
100ms sampling interval.
Credit-based flow control. Concurrent READ requests gen-
erate burst network traffics, which are transmitted from multi-
ple hosts to the controller simultaneously, resulting in severe
incast problems. ZERO introduces Credit-FC to remedy the
incast problem, which works as follows.

Large-sized READ requests are segmented into fix-sized
fragments with 4KB page size. ZERO chooses such moderate
size due to three considerations: i) page is the basic unit of
shared memory, which can accommodate 1k 32-bit metrics
and fulfill the demands of most services; ii) the number of
READ requests is bounded as the total size of metrics in

644    2022 USENIX Annual Technical Conference USENIX Association



single host is general hundreds of KBs; iii) the small size
facilitates congestion control in severe incast.

Subsequently, credits are used to limit the total in-flight
data of concurrent flows (identified by a QP). Posting READ
requests or polling completion events will consume or regain
credits for the target flow. The state-of-the-art works [44, 70]
adopt bandwidth-delay product based flow control (BDP-FC),
which bounds the in-flight data per flow by the BDP of the
network. However, BDP is large enough to cause congestion
and trigger explicit congestion notification (ECN) packets or
priority-based flow control (PFC) pause frames [95], with
large number of concurrent flows (Figure 11c). ZERO pro-
poses Credit-FC to limit the total in-flight data. Specifically,
the credit of each flow C f is set to T/n, where T is the total
credit and n is the number of concurrent flows. Finally, Credit-
FC effectively avoids triggering ECN/PFC (Section 6.3) and
network interference with service traffics (Section 7).
Hybrid I/O model. To avoid the thread performing network
I/O being saturated, ZERO proposes the hybrid I/O model
incorporating event driven and polling mechanisms, which
is similar to NAPI in Linux [73]. The event-driven I/O can
effectively avoid CPU occupation for busy polling. Each QP
is associated with an event channel to notify a new (first) com-
pletion event. The I/O multiplexing interface, e.g., epoll, is
used to listen the fds of multiple event channels. The collect-
ing thread blocks until completion events are notified from
one or multiple QPs, then polling the in-flight requests of
the corresponding QPs. We observe that the event-driven
model effectively reduces CPU utilization with large number
of in-flight requests (Figure 12b). However, when the mon-
itored data size is too small with only several requests after
segmentation, the epoll syscall and thread blocking incur
high variations in READ latency (Figure 12a). The controller
thus uses busy polling for hosts with small number of re-
quests. In the hybrid I/O model, ZERO assigns two threads to
perform event-driven polling and busy polling, respectively.
Note that both threads share Credit-FC.
Processing metrics. The controller dispatches multiple
threads to processing raw metrics in parallel. Specifically, the
MRs of the collected metrics are placed into the appropriate
queue where each MR can be handled by one of multiple pro-
cessing threads. Each MR concatenated by a list of metrics is
parsed as struct directly according to the metadata recorded
at the control region. The parsed metrics are then processed
by reproducing the same calculations which are originally
performed by the monitored host. Finally, the controller im-
ports processed metrics into InfluxDB [7] for persistence and
uses Grafana [5] for visualization.

5 Case Study

In this section, we present how to integrate application/system
metrics into the ZERO framework using three typical cases of

Redis [12], Linux kernel [81] and eBPF [3].

Redis Case. Redis [14] has been widely deployed in Alibaba
cloud as database, cache, and message broker, providing low-
latency in-memory data structure storage services. Traditional
monitor acquires Redis metrics by requesting INFO interface
of Redis server. Traditional monitor thus occupies the re-
source of Redis server and the host to obtain metrics. As a
comparison, ZERO only needs to register metrics and requires
no resource occupation for collecting metrics. There exist
more than two hundred metrics in each Redis service instance.
The naive implementation is performing READ on these met-
rics one-by-one (see Figure 5a), resulting in high latency and
CPU utilization. To resolve this problem, we use allocation
API (type two) to allocate and structuralize Redis metrics
with continuous memory. As shown in Figure 5b, ZERO only
needs to register and perform READ once for each Redis
instance in our implementation. ZERO controller then parses
metrics as struct according to the memory structure.

Linux Kernel Case. Linux kernel exports system metrics
to user space via proc interface, which creates files under
/proc directory and bonds corresponding kernel functions.
Traditional monitor usually needs to read hundreds of proc
files to get all system metrics, which incurs extra overhead
for user/kernel-space processing. With ZERO framework,
kernel metrics are registered at the ZERO agent then exported
to the ZERO controller directly. We use ZERO to monitor
metrics managed by container namespace for the container-
based services [1]. Kernel metrics are usually implemented
as lock-free per-CPU counters to avoid locking overhead.
ZERO controller needs to READ all replications of metrics
in each CPU core, locating at separate pages. Production
cloud environment adopts fine-grained resource assignment
and isolation, in which more than 90% hosts only have 1∼ 4
CPU cores [27]. ZERO only needs 1∼ 4 requests to obtain
kernel metrics.

eBPF Case. The extend Berkeley Packet Filter (eBPF) [3,66]
is an evolving technology, which can dynamically attach pro-
gram to running kernel for tracing, instructing, and even con-
trolling the kernel code path. eBPF has been widely used in
cloud computing for monitoring [6, 54], networking [38, 83],
virtualization [21, 22] and security [29, 30]. We use eBPF to
monitor traffics and retransmissions of large number of TCP
connections in MaxCompute [32, 93] service. eBPF provides
in-kernel data structure, called map, to enable control and
data messages delivery within kernel or between kernel and
user space. eBPF attaches probes to kernel/application func-
tions at runtime and exports metrics, events and histograms
to eBPF map. User process reads the entry of eBPF map via
syscall. However, reading large number of entries incurs
large overhead due to frequent syscalls. To integrate eBPF
into ZERO framework, eBPF array map is adopted, which
supports mmap operations (from Linux kernel 5.5+) and can
thus export its memory to ZERO agent directly.

USENIX Association 2022 USENIX Annual Technical Conference    645



Name Nodes Hosts OS kernel Intel Xeon CPU code Mellanox NIC Protocol ECN PFC
Cluster1 65 × PMs 1024 × VMs Linux 5.5 E5-2682 (64 cores) 2 × 25GbE ConnectX-4 Lx RoCEv1/2 7 3

Cluster2 9 × PMs 1024 × Containers Linux 3.10 Platinum 8369B (64 cores) 200GbE ConnectX-6 Dx RoCEv1/2 3 3

Table 1: Deployment environment.

6 Evaluation

6.1 Evaluation Setup
In our evaluation, we adopt a multi-phase deployment with
two typical clusters, as summarized in Table 1. Initially, we
deploy Zero in a test environment (Cluster1) with a rational
scale that mimics the production environment for demon-
stration. We next deployed ZERO in a public-cloud envi-
ronment (Cluster2), which covers common cloud services
in production. The deployment scale has continued to grow
according to the feedback of canary testing and the actual
demands of services. In Cluster1, services operates in guest
VMs with 4 vCPU cores. The RNICs are virtualized and
assigned to VMs via passthrough [87]. In Cluster2, services
are deployed in containers running on bare-metal servers [92].
Each VM/container is monitored independently to evaluate
the scalability of ZERO. Note that both configurations are
typical in Alibaba cloud-native platform [15]. We use ZERO
to monitor typical services, e.g., Redis [14], container [1] and
MaxCompute [32, 93].

We evaluate ZERO performance from three aspects:
• CPU Utilization: The CPU utilization is defined as occu-

pied CPU time per second. We use perf tool to measure
the CPU utilization of both ZERO agent and controller. We
verify the CPU involvement of monitor in control plane
and data plane. We also need to concern about the CPU
utilization of ZERO controller for scalability.

• Latency: The latency of ZERO is the time used to READ all
metrics from the monitored host. For traditional monitor,
the latency consists of time used to collect/process all met-
rics and time used to upload all metrics. We verify whether
monitor can meet up the updating frequency of metrics by
latency.

• Throughput: The throughput is the collected bytes per sec-
ond during each monitoring period. We verify whether
monitor can support massive metrics by throughput.

We test the impact of the following parameters on monitor-
ing performance:
• Sampling Interval: The required sampling interval is de-

termined by the updating frequency of metrics. We eval-
uate ZERO with 10 ∼ 1000ms sampling intervals and use
1000ms by default.

• Number of Instances/Connections/Requests: All of three
parameters impact the CPU utilization and data size of
monitoring. The number of service/container instances
varies from 10 to 40, with a default value of 10. The number

Metric Monitor Redis Kernel eBPF
Total

Latency
(ms)

Baseline 0.7∼ 19.3 0.5∼ 1.6 0.8∼ 12.5
ZERO RPC 0.08∼ 0.18 0.14∼ 0.36 0.10∼ 1.02

ZERO 0.05∼ 0.14 0.07∼ 0.23 0.08∼ 0.87

Agent
CPU

Utilization
(%)

Baseline 0.5∼ 45 0.01∼ 4 0.08∼ 6
ZERO RPC 0.01∼ 0.55 0.08∼ 0.9 0.05∼ 0.68

Control
plane 0.05∼ 0.07 0.8∼ 1.5 0.04∼ 0.05
Data
plane 0 0 0

Table 2: Summary of ZERO overhead.

of TCP connections varies from 1k to 16k, with a default
value of 1k. The number of work requests varies from 8 to
128 for a host, with a default value of 32.

• Number of Hosts: One ZERO controller is deployed to mon-
itor multiple hosts running ZERO agent. We increase the
number of hosts (from 64 to 1024) to evaluate the scalability
of ZERO framework.

We use the state-of-the-art monitoring system named Net-
data [10], existing NX monitor in Alibaba cloud, and ZERO
RPC as comparison benchmarks:
• Netdata: Netdata is widely used by cloud providers, e.g.,

Amazon Web Services (AWS) and Microsoft Azure [8].
Netdata integrates application/system metrics in one agent
by requesting application interface or reading proc files
respectively. The agent uploads metrics to the controller as
per heartbeat or the controller acquires metrics via sending
RPC requests to the agent.

• NX: NX is a network monitoring tool deployed in Alibaba
cloud. NX exports network metrics as logs, e.g., info of
TCP connections, then uploads the collected metrics via
log service. We have integrated ZERO framework into the
NX monitor to improve its performance.

• ZERO RPC: ZERO RPC adopts the same data plane to
access raw metrics. However, ZERO RPC is implemented
via SEND/RECV instead of READ. The controller issues
RPC requests to the agent, after which agent returns metrics
as response. We explore design alternations of two-sided
RDMA via ZERO RPC.

6.2 ZERO Overhead
We evaluate the CPU utilization and latency of ZERO in
monitoring Redis, container and MaxCompute services. We
present overall performance and summarize two key observa-
tions, followed by detailed micro-benchmarks for each case.

646    2022 USENIX Annual Technical Conference USENIX Association



(a) Agent CPU vs. Instances. (b) Latency vs. Instances. (c) Agent CPU vs. Intervals. (d) Latency vs. Intervals.

Figure 7: Monitor performance with 10−40 Redis instances and 10−1000ms sampling interval.

(a) Agent CPU vs. Instances. (b) Latency vs. Instances. (c) Agent CPU vs. Intervals. (d) Latency vs. Intervals.

Figure 8: Monitor performance with 10−40 container instances and 10−1000ms sampling interval.

(a) Agent CPU vs. Entries. (b) Latency vs. Entries. (c) Agent CPU vs. Intervals. (d) Latency vs. Intervals.

Figure 9: Monitor performance with 1−16k TCP connections and 10−1000ms sampling interval.

Overall. Table 2 summaries the overhead of ZERO monitor.
We focus on the monitoring latency and the CPU utilization
of ZERO agent. Both Netdata or NX are referred as baselines.
First, ZERO monitor reduces latency by one/two order of mag-
nitudes compared with baselines. Our following breakdown
of total latency reveals that baseline methods spend most of
time to collect metrics from system/application processes.
The TCP-based baselines actively upload metrics and achieve
similar latency in uploading phase as ZERO READ. ZERO
RPC has higher latency than ZERO READ because each RPC
requires at least two RTTs [45, 68]. Second, ZERO agent
achieves disposable overhead in control plane and zero over-
head in data plane. The CPU utilization of ZERO control plane
only increases slightly when registering more MRs, which is
not affected by the sampling interval. The CPU utilization of
ZERO data plane is always zero as expected. On the contrast,

the CPU utilization of baselines reaches very high values with
lower sampling intervals. ZERO RPC eliminates the over-
head of collecting metrics, however, the CPU utilization for
posting SEND/RECV requests and polling completions still
increases with lower sampling intervals. In summary, the
benefit of ZERO to cloud services is enabling higher SLA of
infrastructure, which effectively avoids performance jitters
caused by CPU interference. Zero also improves monitor-
ing performance, which reduces latency by 1∼2 orders of
magnitude and increases throughput by 3∼6× (Section 6.3).

Redis Case. The monitoring performance of Redis case is
shown in Figure 7. Netdata uses single or multiple threads to
collect metrics from multiple Redis instances. With the incre-
ment of service instances, the CPU utilization of single- and
multi-thread Netdata increase from 0.4 ∼ 0.5% to 1.5 ∼ 2%,
which already severely interferes Redis services (Figure 3).

USENIX Association 2022 USENIX Annual Technical Conference    647



(a) Average latency vs. Hosts. (b) Total latency vs. Hosts. (c) Throughput vs. Hosts. (d) Controller CPU vs. Hosts.

Figure 10: Monitor performance with 64−1024 hosts × 128KB data in Cluster1.

(a) Average latency vs. Hosts. (b) Throughput vs. Hosts. (c) Single run with 256 Hosts. (d) Controller CPU vs. Hosts.

Figure 11: Monitor performance with 64−1024 hosts × 128KB data in Cluster2.

With 10× lower sampling interval, the Netdata CPU increases
10×, while the gap of CPU utilization between single- and
multi-thread becomes larger. However, the multi-thread Net-
data achieves 0.7 ∼ 1ms latency (Figures 7b and 7d). Netdata
thus trades off CPU utilization with latency. On the contrary,
ZERO has negligible CPU utilization (< 0.1%) in its control
plane, which is a one-off expense independent of sampling
intervals as shown in Figure 7c. ZERO data plane has zero
CPU overhead denoted by the tiny pillar in Figures 7a and 7c.
ZERO reduces latency by one/two order of magnitudes com-
pared with Netdata, as shown in Figures 7b and 7d.

Linux kernel case. Figure 8 illustrates the performance of
Linux kernel case, where ZERO monitors multiple container
instances. As shown in Figures 8a and 8c, the CPU utilization
of the ZERO data plane is zero. The CPU utilization of ZERO
control plane is high, because of the frequent invocations of
mmap when registering per-CPU kernel metrics. However, the
total CPU time of ZERO control plane is fixed, i.e., 3.4 ∼ 14.7
ms to register 10 ∼ 40 instances. As shown in Fig 8c, the
overhead of ZERO control plane is only 0.8% independent
of sampling intervals, while the Netdata CPU increase to 4%
with 10ms sampling interval. ZERO achieves 0.07 ∼ 0.1ms
latency, which is an order of magnitude lower than that of
Netdata (0.5∼ 1.6ms). ZERO may have higher READ latency
than the uploading latency of Netdata. Because kernel metrics
are per-CPU counters, ZERO controller needs n requests to
obtain n copies of counters in each CPU.

eBPF case. Figure 9 shows the performance of monitoring
TCP connections of with NX, NX-eBPF and ZERO. NX mon-
itor has the highest CPU utilization (1.6 ∼ 59%) and latency

(16 ∼ 250ms), due to its outdated implementation, which
traverses all TCP connections using the kernel tcp_diag in-
terface. NX-eBPF introduces eBPF to low the overhead of
getting TCP info, while ZERO further eliminates the syscall
and memory copy overhead of reading eBPF map. As shown
in Figures 9b and 9d, ZERO performs 40%∼80% lower la-
tency than that of NX. Similar with Redis and Linux kernel
case, the CPU utilization of ZERO data plane is still zero.

6.3 ZERO Scalability
We then evaluate the scalability of ZERO. The controller
adopts receiver-driven model to obtain raw metrics, which
issues TCP-based RPC or READ requests to the agent. The
collecting phase at the monitored host is omitted to compare
the raw performance. The controller adopts busy polling
by default. The ideal result is obtained via ib_read_bw [16].
Our three key observations are summarized as follows.
READ achieves better performance. The TCP-based base-
line achieves much higher average latency compared with
ZERO (Figure 10). The total elapsed time of collecting met-
rics from all hosts is usually 2 ∼ 3× the average latency in
TCP, resulting in low throughput. We analyze that TCP suffers
from low efficient congestion control (CC) [20, 37] and the
processing overhead of kernel stack [24]. Both factors incur
large delay to concurrent RPC requests, resulting in variations
of starting/ending time. On the contrary, ZERO eliminates
the overhead of kernel stack via RDMA. The average latency
and elapsed time of ZERO are nearly equivalent (Figures 10a
and 10b). ZERO also achieves lower CPU compared with the
baseline as shown in Figure 10d.

648    2022 USENIX Annual Technical Conference USENIX Association



(a) Average latency vs. Hosts. (b) Controller CPU vs. Hosts.

Figure 12: Monitor performance with 8−128 WRs × 4KB.

Credit-FC avoids triggering ECN/PFC. In Cluster1, we
evaluate the ZERO performance w/ Credit-FC and BDP-FC,
and w/o any flow control (FC). For tests w/o FC, the controller
posts all requests in the beginning. The BDP-FC adopts
a fixed credit of BDP (16KB with 25GbE bandwidth and
5 ∼ 6µs RTT). Interestingly, PFC pause is not triggered until
256 QPs for ZERO w/o FC, due to the large dynamic buffer
of switches [17] and the high threshold of PFC pause action
(XOFF) [95]. Besides, the RNIC limits the maximum of
outstanding READ requests to 16. Accordingly, the total
credit is set to 8MB = 128×64KB. As shown in Figure 10a,
both Credit-FC and BDP-FC effectively avoid PFC. The gap
between ZERO and ideal is origin from the extra overhead
in monitoring (Figure 10c), e.g., virtualization, initializing
and posting work requests (WRs) for each VM. The 25GbE
bandwidth is still saturated with the Cf ≥ BDP.

In Cluster2, the network has much higher BDP (96KB with
200GbE bandwidth and 4µs RTT) and the ECN is enabled by
default. We observe a large fraction of ECN marked packets
and high latency in BDP-FC (Figure 11a), because the ECN
minimum threshold [95] is set to ∼ 1000KB. Credit-FC still
works with 512/1024 QPs due to the posting and arrival delay
of READ requests with single thread (Section 4.3), where the
build-up buffer should reach 2/4MB with the smallest quota
of 4KB. We observe similar phenomenon with 1024 QPs in
Cluster1. As shown in Figure 11b, Credit-FC only utilizes
half of the 200 GbE bandwidth — because the credit is much
smaller than the BDP of network to avoid congestion/ECN
(4 ∼ 16KB vs. 96KB) — the bottleneck lies in the switch
buffer/threshold instead of end host. The throughput also
degrades rapidly because large number of QPs share RNICs
at both agent and controller.

We next zoom into the difference between Cluster1 and
Cluster2. Cluster1 set much higher PFC threshold than the
ECN threshold in Cluster2, resulting in larger credit to satu-
rate the bandwidth. However, the tradeoff is that the pause
duration occupies ∼ 99% (Figure 10b) when PFC is triggered.
As a comparison, ECN reacts to congestion and recovers
traffic rapidly (Figure 11c). Another benefit of Credit-FC is
reducing the CPU utilization for busy polling via avoiding
network congestion as shown in Figures 10d and 11d.

Hybrid-I/O model is highly CPU efficient. We then evalu-
ate the hybrid-I/O model in Cluster1. We post all requests in
the beginning as the maximum outstanding READ requests
is bounded to 16 by RNIC. As shown in Figure 12b, the CPU
utilization of both epoll and polling increases with large data
size, while epoll achieves lower CPU utilization. To high-
light the gap, we set lower sampling interval to monitor 128
hosts with 256KB data. Results show that the CPU utilization
of epoll and polling are 13.5/40.9% and 20.2/72.6 respec-
tively with 100/10ms interval. However, the event-driven
polling has high performance variations with small number of
requests (Figure 12a), due to epoll syscall and thread block-
ing. With large-sized data, such overhead is averaged across
many in-flight requests. We thus adopt epoll for general cases
(32 ∼ 128 requests) and polling for hosts with small-sized
data (< 32 requests).

7 Experience and Future Work

In this section, we share our experience of building large-scale
monitoring system using RDMA.
Achieving high scalability and availability. The scalability
of RDMA-based distributed systems is limited by the number
of QPs [26,62,82], which are cached in the limited SRAM of
RNIC. Even several works [46, 47] adopt UD to reduce the
number of QPs, ZERO uses READ to bypass the monitored
host, which is only supported in RC mode. ZERO adopts QP
sharing and grouping to remedy the QP constraints. First,
ZERO agent manages all system/application metrics in a host
sharing one QP connection. Second, ZERO controller moni-
tors a group of QPs/hosts in each period, e.g., 64 hosts with
1 ∼ 10ms period, then switches to another group of QPs/hosts
to avoid frequent QP evictions. To achieve high availabil-
ity, each agent will build QP connections with at least three
controllers in the practical deployment. Similar to most dis-
tributed systems, all these controllers run a consensus-based
coordination service [40] to detect failures, and ZERO can
switch to a standby controller seamlessly when the active
controller is down.
Avoiding network interference. In the practical deployment,
monitoring traffics co-exist with service traffics and inevitably
impacts the network performance of services, due to the con-
tentions at both agent and switches. Note that the controller
has no such concerns with dedicated server for monitoring.
Before ZERO, existing deployment adopts several mecha-
nisms for traffic isolation, which inevitably brings other side
effects. For example, a thorough solution is physically iso-
lating traffics of services and monitoring with independent
NICs and links [2]. However, physical isolation incurs large
CapEx and is only suitable to high-priority services neces-
sitating high SLA. Another solution is assigning a separate
and lower-priority queue for monitoring traffics [35]. The
persistent high loads of services may cause starvation of mon-

USENIX Association 2022 USENIX Annual Technical Conference    649



itoring traffics and losses of data in consecutive monitoring
periods. Besides, ZERO built on RDMA is sensitive to such
timeouts, which may cause QP state machine errors [72]. We
thus abandon the traditional method of traffic isolation and
resort to receiver-driven CC to avoid network interference.

ZERO provides a new perspective to mitigate network in-
terference, i.e., limiting the credit of monitoring traffics when
co-existing. Specifically, the controller adopts group switch-
ing with 64 QPs/hosts in each group. The QPs of next group
will be pre-fetched to RNIC SRAM for warming up. The
total credit T in Credit-FC is set to 256KB, which maximally
adds ∼ 20/10µs queuing delay with 100/200GbE bandwidth.
Note that the maximum build-up queue is much less than
256KB due to the posting and arrival delay (Section 6.3). As
a comparison, the traditional send-driven model easily causes
network jitters with burst traffics. Besides, such settings have
a negligible impact on monitoring QoS and single controller
supports 1 ∼ 10k hosts with 0.1 ∼ 1s intervals. The agent
only occupies 0.01∼ 0.1% bandwidth of the monitored host.
Receiver-driven CC. Compared with existing sender-driven
CC, the receiver-driven CC achieves several benefits in mon-
itoring. Existing CC mechanisms, e.g., DCQCN [95] and
TIMELY [69], react to congestion after switch buffer/queue
reach threshold. Besides, they aim to achieve equal bandwidth
sharing across multiple flows, and cannot avoid interference
between service traffics and monitoring traffics. As a compar-
ison, the receiver-driven CC avoids network congestion and
interference in advance by limiting the total in-flight data of
monitoring. On the other hand, existing CC mechanisms, e.g.,
DCQCN and HPCC [57], are complex in deployment and
requires ECN or in-network telemetry (INT) supports from
switches. However, ECN or INT capability are not always
supported, e.g., in Cluster1. The Credit-FC in our deployment
is simple and effective to avoid triggering PFC/ECN.

We also observe several limitations of current Credit-FC.
It only adopts credit without pacing [50] and cannot support
massive concurrent flows with a 4KB transmission fragment.
Besides, it is not a universal CC mechanism for data-center
traffics, which dedicates to avoid network congestion and
interference caused by monitoring traffics in the ZERO frame-
work. In our future work, we will try to resolve these limi-
tations from two aspects. First, we will consider both host
bandwidth and ECN threshold [88] with a combination of
credit- and pacing-based CC, to achieve full bandwidth uti-
lization while avoiding network congestion. Second, we will
explore the universal receiver-driven model in cloud networks,
which has the benefits of CPU offloading via RDMA and more
convenient CC [77].

8 Related Work

One-sided RDMA. In the system area, it is a trend to lever-
age one-sided RDMA operations to bypass the server CPUs.

As pioneering works, Pilaf [68] enables the clients to directly
read data from the server memory via RDMA read. Clients
use CRC64 to search for the inconsistency of data caused
by the possible read-write races on the server. RFP [79, 86]
explores one-sided RDMA to provide another alternative so-
lution for RPC, which uses RDMA read to fetch the response
result. On the other hand, several works [46, 61, 86] explore
how to optimize the raw performance of one-sided RDMA. To
the best of our knowledge, ZERO is the first work to leverage
one-sided RDMA for distributed monitoring.
Monitoring system. There are plenty of works targeting for
the design of monitoring system [65]. Yet, all these works
focus on data analytic [51, 80], tracing bugs [59, 63] and vi-
sualization [71]. Distinct from these works, where monitors
are tightly coupled with the monitored applications and hosts,
ZERO decouples the monitor from the monitored infrastruc-
ture and eliminates the monitoring overhead completely.
Cloud-native monitoring. Netdata [10] enables users to
quickly identify and troubleshoot issues, and make data-
driven decisions according to the pre-built visible dashboards.
Prometheus [11] is an open-sourced monitoring system with
complete ecosystem to extract time series data from the cloud-
native applications, and it focuses on collecting metrics via a
powerful query language called PromQL. Stackdriver [4] is
the logging and monitoring solution of Google, which is inte-
grated tightly into Google Cloud. Likewise, ZERO is deeply
used in the cloud-native ecosystem of Alibaba cloud.

9 Conclusion

We propose the ZERO monitoring system framework, ex-
ploiting one-sided RDMA read for remote monitoring. ZERO
achieves zero-overhead monitoring via the novel control plane
and data plane. ZERO supports large-scale distributed moni-
toring via credit-based FC and hybrid I/O model. ZERO thus
paves the way for integrating RDMA into the monitoring
systems, which desires to benefit from the high performance
of RDMA while avoiding poor scalability. We deploy ZERO
in Alibaba cloud-native platform to evaluate its performance.
The deployment results show that ZERO resolves interference
problem of traditional monitor and easily fulfills both latency
and throughput requirements in cloud-native monitoring.

10 Acknowledgment

We sincerely thank the anonymous shepherd and review-
ers for their insightful comments and feedback. This work
was supported in part by NSFC grant 62141220, 61972253,
U1908212, 72061127001, 62172276, 61972254, the Program
for Professor of Special Appointment (Eastern Scholar) at
Shanghai Institutions of Higher Learning, Alibaba Innova-
tive Research (AIR) Program. Corresponding author: Linghe
Kong (linghe.kong@sjtu.edu.cn).

650    2022 USENIX Annual Technical Conference USENIX Association



References

[1] Alibaba Cloud Container Service for Kubernetes.
https://www.alibabacloud.com/en/product/
kubernetes, Dec. 2020.

[2] Best Practices of ECS Container Network Multi-NIC
Solution. https://www.alibabacloud.com/blog/
593997, Dec. 2020.

[3] Extended Berkeley Packet Filter. https://ebpf.io/,
Dec. 2020.

[4] Google cloud’s operations suite (formerly stack-
driver). https://cloud.google.com/products/
operations, Dec. 2020.

[5] Grafana. https://grafana.com/, Dec. 2020.

[6] Hubble. https://github.com/cilium/hubble, Dec.
2020.

[7] InfluxDB. https://www.influxdata.com/, Dec.
2020.

[8] Install netdata on cloud providers. https:
//learn.netdata.cloud/docs/agent/packaging/
installer/methods/cloud-providers, Dec. 2020.

[9] MaxCompute - Conduct large-scale data warehousing
with MaxCompute. https://www.alibabacloud.
com/product/maxcompute, Dec. 2020.

[10] Netdata - Monitor everything in real time for free with
Netdata. http://www.netdata.cloud, Dec. 2020.

[11] Prometheus - Monitoring system & time series database.
https://prometheus.io/, Dec. 2020.

[12] Redis. https://redis.io/, Dec. 2020.

[13] Specifying Attributes of Variables. https:
//gcc.gnu.org/onlinedocs/gcc-3.2/gcc/
Variable-Attributes.html, Dec. 2020.

[14] ApsaraDB for Redis. https://www.alibabacloud.
com/product/apsaradb-for-redis, June. 2021.

[15] Cloud-native applications management. https://www.
alibabacloud.com/en/solutions/container,
June. 2021.

[16] OFED performance test suite. https://github.com/
linux-rdma/perftest, June. 2021.

[17] Packet buffer of switches. https://https://people.
ucsc.edu/~warner/buffer.html, June. 2021.

[18] Giuseppe Aceto, Alessio Botta, Walter De Donato, and
Antonio Pescapè. Cloud monitoring: A survey. Com-
puter Networks, 57(9):2093–2115, 2013.

[19] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac,
Manuel Stein, Klaus Satzke, Andre Beck, Paarijaat
Aditya, and Volker Hilt. SAND: Towards high-
performance serverless computing. In USENIX ATC,
2018.

[20] Mohammad Alizadeh, Albert Greenberg, David A
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center
TCP (DCTCP). In ACM SIGCOMM, 2010.

[21] Nadav Amit and Michael Wei. The design and imple-
mentation of hyperupcalls. In USENIX ATC, 2018.

[22] Ashish Bijlani and Umakishore Ramachandran. Ex-
tension framework for file systems in user space. In
USENIX ATC, 2019.

[23] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant
Agrawal, Gang Chen, Beng Chin Ooi, Kian-Lee Tan,
Yong Meng Teo, and Sheng Wang. Efficient distributed
memory management with RDMA and caching. Pro-
ceedings of the VLDB Endowment, 11(11):1604–1617,
2018.

[24] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati,
Jaehyun Hwang, and Rachit Agarwal. Understanding
host network stack overheads. In ACM SIGCOMM,
2021.

[25] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and
Aleksander Slominski. The rise of serverless computing.
Communications of the ACM, 62(12):44–54, 2019.

[26] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable
RDMA RPC on reliable connection with efficient re-
source sharing. In EUROSYS, 2019.

[27] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark
Russinovich, Marcus Fontoura, and Ricardo Bianchini.
Resource central: Understanding and predicting work-
loads for improved resource management in large cloud
platforms. In SOSP, 2017.

[28] Christina Delimitrou and Christos Kozyrakis. Hcloud:
Resource-efficient provisioning in shared cloud systems.
In ASPLOS, 2016.

[29] Henri Maxime Demoulin, Isaac Pedisich, Nikos Vasi-
lakis, Vincent Liu, Boon Thau Loo, and Linh Thi Xuan
Phan. Detecting asymmetric application-layer denial-
of-service attacks in-flight with finelame. In USENIX
ATC, 2019.

[30] Luca Deri, Samuele Sabella, and Simone Mainardi.
Combining system visibility and security using eBPF.
In ITASEC, 2019.

USENIX Association 2022 USENIX Annual Technical Conference    651

https://www.alibabacloud.com/en/product/kubernetes
https://www.alibabacloud.com/en/product/kubernetes
https://www.alibabacloud.com/blog/593997
https://www.alibabacloud.com/blog/593997
https://ebpf.io/
https://cloud.google.com/products/operations
https://cloud.google.com/products/operations
https://grafana.com/
https://github.com/cilium/hubble
https://www.influxdata.com/
https://learn.netdata.cloud/docs/agent/packaging/installer/methods/cloud-providers
https://learn.netdata.cloud/docs/agent/packaging/installer/methods/cloud-providers
https://learn.netdata.cloud/docs/agent/packaging/installer/methods/cloud-providers
https://www.alibabacloud.com/product/maxcompute
https://www.alibabacloud.com/product/maxcompute
http://www.netdata.cloud
https://prometheus.io/
https://redis.io/
https://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/Variable-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/Variable-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc-3.2/gcc/Variable-Attributes.html
https://www.alibabacloud.com/product/apsaradb-for-redis
https://www.alibabacloud.com/product/apsaradb-for-redis
https://www.alibabacloud.com/en/solutions/container
https://www.alibabacloud.com/en/solutions/container
https://github.com/linux-rdma/perftest
https://github.com/linux-rdma/perftest
https://https://people.ucsc.edu/~warner/buffer.html
https://https://people.ucsc.edu/~warner/buffer.html


[31] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. Farm: Fast remote memory.
In USENIX NSDI, 2014.

[32] Yihui Feng, Zhi Liu, Yunjian Zhao, Tatiana Jin, Yidi
Wu, Yang Zhang, James Cheng, Chao Li, and Tao Guan.
Scaling large production clusters with partitioned syn-
chronization. In USENIX ATC, 2021.

[33] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,
Brian Ritchken, Brendon Jackson, et al. An open-source
benchmark suite for microservices and their hardware-
software implications for cloud and edge systems. In
ASPLOS, 2019.

[34] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan
He, Meghna Pancholi, and Christina Delimitrou. Seer:
Leveraging big data to navigate the complexity of perfor-
mance debugging in cloud microservices. In ASPLOS,
2019.

[35] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav
Soni, Jianxi Ye, Jitu Padhye, and Marina Lipshteyn.
RDMA over commodity ethernet at scale. In ACM
SIGCOMM, 2016.

[36] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui
Feng, Liang Mao, and Yungang Bao. Who limits the
resource efficiency of my datacenter: An analysis of
alibaba datacenter traces. In IEEE/ACM IWQoS, 2019.

[37] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a new
TCP-friendly high-speed TCP variant. ACM SIGOPS
operating systems review, 42(5):64–74, 2008.

[38] Toke Høiland-Jørgensen, Jesper Dangaard Brouer,
Daniel Borkmann, John Fastabend, Tom Herbert, David
Ahern, and David Miller. The eXpress data path: Fast
programmable packet processing in the operating sys-
tem kernel. In ACM CONEXT, 2018.

[39] Michio Honda, Felipe Huici, Costin Raiciu, Joao Araujo,
and Luigi Rizzo. Rekindling network protocol innova-
tion with user-level stacks. ACM SIGCOMM Computer
Communication Review, 44(2):52–58, 2014.

[40] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira,
and Benjamin Reed. Zookeeper: Wait-free coordination
for internet-scale systems. In USENIX ATC, volume 8,
2010.

[41] Seyyed Ahmad Javadi, Amoghavarsha Suresh, Muham-
mad Wajahat, and Anshul Gandhi. Scavenger: A black-
box batch workload resource manager for improving
utilization in cloud environments. In ACM SOCC, 2019.

[42] Congfeng Jiang, Yitao Qiu, Weisong Shi, Zhefeng Ge,
Jiwei Wang, Shenglei Chen, Christophe Cerin, Zujie
Ren, Guoyao Xu, and Jiangbin Lin. Characterizing co-
located workloads in Alibaba cloud datacenters. IEEE
Transactions on Cloud Computing, 2020.

[43] Anshul Jindal, Vladimir Podolskiy, and Michael Gerndt.
Performance modeling for cloud microservice applica-
tions. In ACM/SPEC ICPE, 2019.

[44] Anuj Kalia, Michael Kaminsky, and David Andersen.
Datacenter RPCs can be general and fast. In USENIX
NSDI, 2019.

[45] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Using RDMA efficiently for key-value services. In
ACM SIGCOMM, 2014.

[46] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Design guidelines for high performance RDMA systems.
In USENIX ATC, 2016.

[47] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Fasst: Fast, scalable and simple distributed transactions
with two-sided RDMA datagram RPCs. In USENIX
OSDI, 2016.

[48] Junaid Khalid, Eric Rozner, Wesley Felter, Cong Xu,
Karthick Rajamani, Alexandre Ferreira, and Aditya
Akella. Iron: Isolating network-based {CPU} in con-
tainer environments. In USENIX NSDI, 2018.

[49] Ricardo Koller and Dan Williams. Will serverless end
the dominance of linux in the cloud? In ACM HOSTOS,
2017.

[50] Gautam Kumar, Nandita Dukkipati, Keon Jang, Has-
san MG Wassel, Xian Wu, Behnam Montazeri, Yaogong
Wang, Kevin Springborn, Christopher Alfeld, Michael
Ryan, et al. Swift: Delay is simple and effective for con-
gestion control in the datacenter. In ACM SIGCOMM,
2020.

[51] Mahendra Kutare, Greg Eisenhauer, Chengwei Wang,
Karsten Schwan, Vanish Talwar, and Matthew Wolf.
Monalytics: online monitoring and analytics for manag-
ing large scale data centers. In International Conference
on Autonomic Computing, 2010.

[52] Sándor Laki, Gergő Gombos, Péter Hudoba, Szilveszter
Nádas, Zoltán Kiss, Gergely Pongrácz, and Csaba
Keszei. Scalable per subscriber QoS with core-stateless
scheduling. ACM SIGCOMM Demo, 1:84–86, 2018.

[53] Sándor Laki, Dániel Horpácsi, Péter Vörös, Róbert
Kitlei, Dániel Leskó, and Máté Tejfel. High speed
packet forwarding compiled from protocol independent
data plane specifications. In ACM SIGCOMM, 2016.

652    2022 USENIX Annual Technical Conference USENIX Association



[54] Joshua Levin. Viperprobe: Using eBPF metrics to
improve microservice observability, 2020.

[55] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao
Zhang. Socksdirect: Datacenter sockets can be fast and
compatible. In ACM SIGCOMM, 2019.

[56] Feifei Li. Cloud-native database systems at Alibaba:
Opportunities and challenges. Proceedings of the VLDB
Endowment, 12(12):2263–2272, 2019.

[57] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, et al. HPCC:
High precision congestion control. In ACM SIGCOMM.
2019.

[58] Qixiao Liu and Zhibin Yu. The elasticity and plasticity
in semi-containerized co-locating cloud workload: a
view from alibaba trace. In ACM SOCC, 2018.

[59] Chang Lou, Peng Huang, and Scott Smith. Understand-
ing, detecting and localizing partial failures in large
system software. In USENIX NSDI, 2020.

[60] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye,
Guoyao Xu, Liping Zhang, Yu Ding, Jian He, and
Chengzhong Xu. Characterizing microservice depen-
dency and performance: Alibaba trace analysis. In ACM
SoCC, 2021.

[61] Teng Ma, Kang Chen, Shaonan Ma, Zhuo Song, and
Yongwei Wu. Thinking more about RDMA memory
semantics. In IEEE International Conference on Cluster
Computing (CLUSTER), 2021.

[62] Teng Ma, Tao Ma, Zhuo Song, Jingxuan Li, Huaixin
Chang, Kang Chen, Hai Jiang, and Yongwei Wu. X-
RDMA: Effective RDMA middleware in large-scale
production environments. In IEEE International Con-
ference on Cluster Computing (CLUSTER), 2019.

[63] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca.
Pivot tracing: Dynamic causal monitoring for distributed
systems. In SOSP, 2015.

[64] Ilias Marinos, Robert NM Watson, and Mark Hand-
ley. Network stack specialization for performance.
ACM SIGCOMM Computer Communication Review,
44(4):175–186, 2014.

[65] Matthew L Massie, Brent N Chun, and David E Culler.
The ganglia distributed monitoring system: design, im-
plementation, and experience. Parallel Computing,
30(7):817–840, 2004.

[66] Steven McCanne and Van Jacobson. The BSD Packet
Filter: A new architecture for user-level packet capture.
In USENIX winter, 1993.

[67] Bradley Miles and Dave Cliff. A cloud-native glob-
ally distributed financial exchange simulator for study-
ing real-world trading-latency issues at planetary scale.
arXiv preprint arXiv:1909.12926, 2019.

[68] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Us-
ing one-sided RDMA reads to build a fast, cpu-efficient
key-value store. In USENIX ATC, 2013.

[69] Radhika Mittal, Vinh The Lam, Nandita Dukkipati,
Emily Blem, Hassan Wassel, Monia Ghobadi, Amin
Vahdat, Yaogong Wang, David Wetherall, and David
Zats. TIMELY: RTT-based congestion control for the
datacenter. In ACM SIGCOMM, 2015.

[70] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan
Zahavi, Arvind Krishnamurthy, Sylvia Ratnasamy, and
Scott Shenker. Revisiting network support for RDMA.
In ACM SIGCOMM, 2018.

[71] Alex Page, Tolga Soyata, Jean-Philippe Couderc,
Mehmet Aktas, Burak Kantarci, and Silvana Andreescu.
Visualization of health monitoring data acquired from
distributed sensors for multiple patients. In IEEE
GLOBECOM, 2015.

[72] Waleed Reda, Marco Canini, Dejan Kostić, and Simon
Peter. {RDMA} is turing complete, we just did not
know it yet! In USENIX NSDI, 2022.

[73] Jamal Hadi Salim, Robert Olsson, and Alexey
Kuznetsov. Beyond softnet. In 5th Annual Linux
Showcase & Conference, 2001.

[74] Hermann Schweizer, Maciej Besta, and Torsten Hoefler.
Evaluating the cost of atomic operations on modern
architectures. In IEEE PACT, 2015.

[75] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying
Zhang. Legoos: A disseminated, distributed os for
hardware resource disaggregation. In USENIX OSDI,
2018.

[76] Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bag-
dasaryan, Christina Delimitrou, Robbert Van Renesse,
and Hakim Weatherspoon. X-containers: Breaking
down barriers to improve performance and isolation of
cloud-native containers. In ASPLOS, 2019.

[77] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F
Wenisch, Monica Wong-Chan, Sean Clark, Milo MK
Martin, Moray McLaren, Prashant Chandra, Rob
Cauble, et al. 1RMA: Re-Envisioning Remote Memory
Access for Multi-Tenant Datacenters. In ACM SIG-
COMM, 2020.

[78] Akshitha Sriraman, Abhishek Dhanotia, and Thomas F
Wenisch. Softsku: optimizing server architectures for
microservice diversity@ scale. In ISCA, 2019.

USENIX Association 2022 USENIX Annual Technical Conference    653



[79] Maomeng Su, Mingxing Zhang, Kang Chen, Zhenyu
Guo, and Yongwei Wu. RFP: When RPC is faster than
server-bypass with RDMA. In EUROSYS, 2017.

[80] Jörg Thalheim, Antonio Rodrigues, Istemi Ekin Akkus,
Pramod Bhatotia, Ruichuan Chen, Bimal Viswanath,
Lei Jiao, and Christof Fetzer. Sieve: actionable in-
sights from monitored metrics in distributed systems. In
ACM/IFIP/USENIX Middleware Conference, 2017.

[81] Linus Torvalds. The linux edge. Communications of
the ACM, 42(4):38–39, 1999.

[82] Shin-Yeh Tsai and Yiying Zhang. Lite kernel RDMA
support for datacenter applications. In SOSP, 2017.

[83] Marcos AM Vieira, Matheus S Castanho, Racyus DG
Pacífico, Elerson RS Santos, Eduardo PM Câmara
Júnior, and Luiz FM Vieira. Fast packet processing
with eBPF and XDP: Concepts, code, challenges, and
applications. ACM Computing Surveys, 53(1):1–36,
2020.

[84] Hanzhang Wang, Phuong Nguyen, Jun Li, Selcuk Ko-
pru, Gene Zhang, Sanjeev Katariya, and Sami Ben-
Romdhane. Grano: Interactive graph-based root cause
analysis for cloud-native distributed data platform. Pro-
ceedings of the VLDB Endowment, 12(12):1942–1945,
2019.

[85] Haitao Wu, Zhenqian Feng, Chuanxiong Guo, and Yong-
guang Zhang. ICTCP: Incast congestion control for
TCP in data-center networks. IEEE/ACM transactions
on networking, 21(2):345–358, 2012.

[86] Yongwei Wu, Teng Ma, Maomeng Su, Mingxing Zhang,
Kang Chen, and Zhenyu Guo. RF-RPC: Remote
fetching RPC paradigm for RDMA-enabled network.
IEEE Transactions on Parallel and Distributed Systems,
30(7):1657–1671, 2018.

[87] Xin Xu and Bhavesh Davda. A hypervisor approach to
enable live migration with passthrough sr-iov network
devices. ACM SIGOPS Operating Systems Review,
51(1):15–23, 2017.

[88] Siyu Yan, Xiaoliang Wang, Xiaolong Zheng, Yinben
Xia, Derui Liu, and Weishan Deng. ACC: Automatic
ECN tuning for high-speed datacenter networks. In
ACM SIGCOMM, 2021.

[89] Jian Yang, Joseph Izraelevitz, and Steven Swanson.
Filemr: Rethinking RDMA networking for scalable per-
sistent memory. In USENIX NSDI, 2020.

[90] Kenichi Yasukata, Michio Honda, Douglas Santry, and
Lars Eggert. StackMap: Low-latency networking with
the OS stack and dedicated NICs. In USENIX NSDI,
2016.

[91] Chaoqun Zhan, Maomeng Su, Chuangxian Wei, Xiao-
qiang Peng, Liang Lin, Sheng Wang, Zhe Chen, Feifei
Li, Yue Pan, Fang Zheng, et al. Analyticdb: Real-time
olap database system at alibaba cloud. Proceedings of
the VLDB Endowment, 12(12):2059–2070, 2019.

[92] Xiantao Zhang, Xiao Zheng, Zhi Wang, Hang Yang,
Yibin Shen, and Xin Long. High-density multi-tenant
bare-metal cloud. In ASPLOS, 2020.

[93] Zhuo Zhang, Chao Li, Yangyu Tao, Renyu Yang, Hong
Tang, and Jie Xu. Fuxi: a fault-tolerant resource man-
agement and job scheduling system at internet scale. In
Proceedings of the VLDB Endowment, volume 7, pages
1393–1404, 2014.

[94] Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin
She, Sifan Liu, Rui Gu, Beng Chin Ooi, and Junfeng
Yang. Overload control for scaling wechat microser-
vices. In ACM SOCC, 2018.

[95] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong
Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Pad-
hye, Shachar Raindel, Mohamad Haj Yahia, and Ming
Zhang. Congestion control for large-scale RDMA de-
ployments. In ACM SIGCOMM, 2015.

654    2022 USENIX Annual Technical Conference USENIX Association



CRISP: Critical Path Analysis of Large-Scale Microservice Architectures

Zhizhou Zhang
University of California, Santa Barbara

Murali Krishna Ramanathan
Uber Technologies

Prithvi Raj
Uber Technologies

Abhishek Parwal
Uber Technologies

Timothy Sherwood
University of California, Santa Barbara

Milind Chabbi
Uber Technologies

Abstract
Microservice architectures have become the lifeblood of
modern service-oriented software systems. Remote Procedure
Calls (RPCs) among microservices are deeply nested,
asynchronous, and large in number, thus making it very hard to
identify the underlying service(s) that contribute to the overall
end-to-end latency experienced by a top-level request. State-
of-the-art RPC tracing tools collect a deluge of data but provide
little insight. We need sophisticated tools to bubble-up signals
from a myriad of RPC traces to assist developers in identifying
optimization opportunities, pinpointing common bottlenecks,
setting appropriate time outs, diagnosing error conditions, and
planning and managing compute capacity, to name a few.

In this paper, we present CRISP — a tool to perform critical
path analysis (CPA) over a large number of traces collected
from RPCs in microservices environments. CRISP provides
three critical performance analysis capabilities: a) a top-down
CPA of any specific endpoint, which is tailored for service own-
ers to drill down the root causes of latency issues, b) a bottom-
up CPA over all endpoints in the system — tailored for infras-
tructure and performance engineers — to bubble up those (inte-
rior) APIs that have a high impact across many endpoints, and
c) an on-the-fly anomaly detection to alert potential problems.

We have applied CRISP’s capabilities on Uber’s entire
backend system composed of ⇠40K endpoints that cater
to real-time requests from more than 100 million active
daily users worldwide. Using the critical path as the basis
of performance analysis has a) helped us identify five
performance issues and optimization opportunities across
two business-critical microservices, b) guided us in our future
hardware choice that reduces end-to-end latencies, and c)
reduced the false positives in anomaly detection by up to 50%
while speeding up the training and inference by up to 28⇥ and
up to 67⇥, respectively, over the state of the art.

1 Introduction

Microservice architectures [23, 27, 28, 36, 43, 45, 56] have
become the lifeblood of modern service-oriented software sys-

Figure 1: Complex microservice RPC call graph at Uber collected
via Jaeger tracing.

tems. As opposed to monolithic software development and de-
ployment, in a microservice environment, the business logic is
broken into individually deployable programs,which allow fast
development and scalable deployment. Individual microser-
vice instances interact with one another via remote procedure
calls (RPCs). As microservices evolve with the business, they
grow in number and their interactions become complex.

Uber’s backend is an exemplar of microservice architecture.
Uber has⇠4,000 microservices interacting with each other via
RPCs. Each microservice hosts a handful of APIs, leading to
a total of about 40,000 unique RPC endpoints that can call one
another in complex ways, as depicted in Figure 1. Hereafter,
we use the terms endpoint and API interchangeably to mean
a uniquely named functionality provided by a service. We
use the terms operation and RPC interchangeably to mean an
instance of invocation of such an API.

A service request arriving at an entry point API to the Uber
backend systems undergoes multiple “hops” through numer-
ous microservice RPCs before being fully serviced. The life of
a request results in intricate microservice interactions. These
interactions are deeply nested, asynchronous, and invoke nu-
merous other downstream APIs. As a result of this complexity,
it is very hard to identify which underlying service(s) contribute
to the overall end-to-end latency [21, 32, 38, 44, 52, 53, 63]
experienced by a top-level request. Answering this question
is critical in many situations. For example:
• Identifying optimization opportunities for a top-level

USENIX Association 2022 USENIX Annual Technical Conference    655



microservice (e.g., reducing tail latency)
• Identifying bottleneck APIs that affect numerous endpoints
• Setting appropriate time-to-live values for RPCs
• Diagnosing outages and error conditions
• Planning for computing and other capacity management

The critical path [59] is the longest chain of dependent tasks
in a microservice dependency graph. Reducing the critical
path length is necessary to reduce the end-to-end latency of
a request. Hence, latency optimization efforts benefit from
prioritizing the services that are on the critical path.

We have developed a tool, CRISP 1, to pinpoint and
quantify performance problems in microservice architectures.
CRISP uses the RPC tracing facility provided by Jaeger [6]
and constructs the critical path through a request’s graph of
dependencies. The critical path may vary among requests;
hence, CRISP computes the critical path per request. It then
aggregates and summarizes critical paths from millions of
requests. Finally, it presents them as digestible and actionable
insights via rich heat maps [5] and flame graphs [31]. CRISP
provides knobs to dissect the details with different percentile
values that help in performance diagnoses.

As a full-fledged performance analysis tool, CRISP caters
to various use cases via the following rich set of capabilities
that scale to work on millions of traces:
• Top-down analysis: A top-down analysis of any specific

endpoint of interest. This capability allows service owners
to deep dive into their specific endpoint and pinpoints and
quantifies bottlenecks encountered in the RPC dependency
graph. Improving these bottlenecks should be the first-order
priority to reduce the latency of the endpoint.

• Bottom-up analysis: A bottom-up analysis over all
endpoints, which bubbles up and ranks by the impact of
those interior APIs that cause the most latency across most
endpoints. Optimizing these interior APIs reduces latency
across numerous endpoints.

• Neural network-based anomaly detection: An automated
anomaly detection system, which detects whether a
request is exhibiting abnormal behavior compared with
the past history of the endpoint. The system is trained per
endpoint using an autoencoder-decoder machine learning
technique [39]. This system is set up to expedite problem
detection and alert developers. Basing the abnormality
detection on the divergence in the critical path as opposed
to the full call graph [39] not only makes the training and
inference faster but also reduces false alerts.
Practical deployment of CRISP at Uber over a three-month

period working on 40K endpoints while processing ⇠200GB
of traces with ⇠18 million spans in ⇠256 hours of CPU time
per day has resulted in the following impact:
• Detection and narrowing down the causes of five latency

impacting bugs in two business-critical services
• Identification of a 1.5⇥ tail latency lengthening due to

1named taking letters from critical and span

hardware choice and the resulting guidance for future
hardware selection

• Up to 27.77⇥ speedup in training, up to 66.85⇥ speed up
in inference, and 50% reduction in false alerts in identifying
abnormality of service behaviors over the state of the art [39]
The rest of this paper is organized as follows: Section 2

motivates CRISP with a use case at Uber, Section 3 describes
the Jaeger tracing framework, Section 4-6 describe the
methodology, internals, and features of CRISP, Section 7
evaluates CRISP at Uber, Section 8 discusses the related
work, and Section 9 offers our conclusions.

2 Motivating Example for CRISP

Fulfillment [8] at Uber is a platform to orchestrate and manage
the lifecycle of orders and user sessions with millions of active
participants. The Fulfillment platform is a foundational Uber
capability that enables the rapid scaling of new verticals. The
platform handles more than a million concurrent users and
billions of trips per year that span over ten thousand cities. The
platform handles billions of database transactions a day. Hun-
dreds of Uber microservices rely on the platform as the source
of truth for the accurate state of the trips and driver or delivery
sessions. Events generated by the platform are used to build
hundreds of offline datasets to make critical business decisions.
Over 500 developers extend the platform using APIs, events,
and code to build more than 120 unique fulfillment flows.

The createOrder endpoint allows capturing the re-
quester’s intent in the Uber backend. Intent can be to request a
ride from one of the ridesharing lines of products, food booked
and dispatched by one of the courier partners, or a package be
delivered to a customer. This endpoint has a complex task de-
pendency graph necessary for: a) determining order risk such
as user fraud, sufficient user balance via authentication hold,
b) ensuring the fare presented to the requester in the shopping
phase is still valid, c) determining the benefits the requester is
eligible for, d) enriching data with location information, and e)
creating an order in the backend to start the matching process.

The tasks in this endpoint have grown organically as
requirements evolved. This has led to an increase in p95
latency to 6 seconds, affecting user experience. The service
itself is written in Java, and highly (both macro and micro)
optimized using periodic profiling. However, the profiling
offered no insights into downstream calls, where most time
is spent. Quantitative insight into the causes of the latency was
hard to analyze by looking at individual traces because each
trace contains thousands of nested and overlapping RPCs.

There are numerous sampling- and instrumentation-based
profilers [10, 11, 13, 29] for intra-service profiling. However,
they do not collect metrics at the individual request level. The
Fulfillment microservice (as most other microservices) is
highly threaded; the work of an individual request may be
partitioned among multiple threads within a process as well

656    2022 USENIX Annual Technical Conference USENIX Association



Figure 2: Critical path(s) of createOrder endpoint shown as a flame graph via CRISP after processing 100K Jaeger traces.

as multiple threads may be handling independent requests
simultaneously. In such a setup, traditional profilers fail to
highlight the causes of latencies incurred at an individual
request level. Also, traditional profilers fail to capture IO
waiting, task dependencies, and serialization patterns.

With CRISP, the development team performed a top-down
critical path analysis of this endpoint over 100K traces
(⇠200GB of traces) and visualized the results as a flame graph
as shown in Figure 2. Navigating the “hot” critical paths via
the flame graph not only corroborated an existing hunch while
offering quantitative guidance but also shed light on new
optimization opportunities lurking in the wild. Below, we
enumerate a few defects and optimization opportunities that
became evident by inspecting CRISP-provided insights.

Async flow optimization: decideOrderRisk contributes
to about 68% of the end-to-end P50 latency, revealing
the following optimizations: a) aggressively use cache in
FraudScore to reduce its latency and b) parallelize the
calls beneath this big endpoint (e.g., PaymentAuthHold and
FraudScore). In the long term, the team envisions using an
asynchronous invocation of paymentAuthHold and using
notification to the requester when a provider is assigned.

Unnecessary API serialization: There was an unnecessary
serialization between GetVenues and GetAccessPts. These
two RPCs can be done in parallel.

Avoidable server roundtrip for validation:
FareValidate contributes to about 5% of the end-to-end P50
latency. This is a call that need not be performed every time.
Trusted edge devices (e.g., company mobile app) can validate
at the edge improving performance for trusted users and falling
back to server validation if the fare has expired based on fare
expiry TTL; untrusted apps will use the full server validation.

Caching over DB fetch: GetMarketplaceBenefits con-
tributes to about 5% of the P50 latency. This can be served via
a cache rather than a database read to fetch requester benefits.

3 Background

In this section, we first describe the microservice tracing
infrastructure at Uber and then enumerate its shortcomings.

3.1 Distributed Tracing at Uber
Microservices run over several physical hosts, usually owned
by multiple teams, and written in multiple languages. It is
impossible to use traditional profilers [7,13,29] to gain insight
into the events involved in processing a request. Because
each physical host can have a separate clock, it is intractable
to infer causality using time alone. Distributed tracing [47]
encodes causality information in a distributed context, which
is propagated across process boundaries. It provides a way to
infer states across various services for the lifetime of a request.

At Uber, Jaeger [6] is used as the distributed tracing
system. Jaeger provides clients for generating trace data and
components for storage and retrieval of traces. Microservices
instrumented with Jaeger clients produce OpenTracing [6]
-compliant spans when receiving new requests and attach
distributed context information (trace ID, span ID, custom
key-value pairs). The “span” [46] is the primary building block
of a distributed trace, which represents a serial unit of work
done in a distributed system. Each span contains the following
information:
• API name
• Start and finish timestamps
• Custom key-value pairs
• Span context and references (described below)

Each span may reference other spans with a causal
relationship by span context. A span may reference a parent
with the ChildOf relationship, indicating that the parent span
waits for the child to finish a certain task. Multiple child spans
can be referenced by the same parent and run concurrently.

While the source code is always instrumented, the overhead
is controlled by a dynamic sampling rate, which is adjusted
based on the traffic received by Internet-facing endpoints. No
data is collected for traces that are not sampled. Specifically,
adaptive sampling sets a target QPS for traces on a per root
service-endpoint basis, which ensures that the number of
samples on the external API request remains roughly constant.
Jaeger does not support tail-based sampling [12].

Figure 3 depicts the Jaeger deployment at Uber. Jaeger
is deployed as multiple components, with a jaeger-agent
running on every host. All applications running on this host
send spans to jaeger-agent over UDP [9]. jaeger-agent
then forwards these spans to a jaeger-collector, which
then buffers spans onto the Kafka [37] distributed event

USENIX Association 2022 USENIX Annual Technical Conference    657



Figure 3: Jaeger deployment at Uber.

streaming platform. The spans buffered in Kafka have multiple
consumers: jaeger-ingester, which inserts them into
Docstore [3], a distributed SQL database, and allows for
retrieving full traces; jaeger-indexer, which inserts them
into Sawmill [4], a schema-agnostic logging platform that
allows user-friendly search on spans fields. Additionally, spans
are consumed by Apache Flink [15] jobs to produce multi-hop
dependency graphs. Depending on the sampling configuration
in effect, the backend processes around 400K-1M spans per
second, which is approximately 20TB each day. Variance is
common due to diurnal patterns.

3.2 Difficulties with Large-Scale Jaeger Traces

Despite their power, Jaeger traces are highly complicated.
Jaeger provides a UI to filter traces by time ranges and also
provides a UI to view the trace as a callgraph, as well as an
expandable tree over a timeline. In spite of these facilities,
the users of this manual workflow often complained about the
following limitations to analyze endpoint latencies:

• Only first-level insights are possible from drilling down into
microservice latencies and errors.

• Using a few Jaeger traces is insufficient to reach a reliable
conclusion. Users can visualize and navigate only one Jaeger
trace at a time. There is no aggregate summary of traces.

• A single Jaeger trace can be so complex that it is not humanly
possible to browse and understand the details. Endpoints
commonly have thousands of nodes in the RPC graph with
25-deep call chains and up to 40 spans overlapping in time.
It is cumbersome to manually understand the critical path
due to the asynchronous nature of calls.

• There is a lack of regular, performance-driven feedback
tooling to optimize the workflow or downstream systems.

These challenges introduce a barrier to our developers in
effectively using Jaeger to either detect anomalous situations
or identify optimization opportunities.

4 CRISP Methodology

The fundamental difficulty in making sense out of a Jaeger trace
is due to the complexity of the graph. Our premise is that while
the whole graph is interesting in terms of data richness, it brings
a lot of noise. There are many RPCs and call paths that are in-
significant for a high-level analysis and optimization task. With
this understanding, we shrink the graph to its quintessential
element—the critical path—and aggregate many traces into
a single summary that is still rich with call path information.

Critical Path Analysis [25, 59] (CPA) is a well-studied
concept over directed acyclic graphs (DAG) formed out
of computing graphs in parallel computing. The nodes in
the DAG represent tasks (units of serial execution) and the
edges represent dependencies between tasks. A node with an
out-degree greater than one “spawns” children’s tasks and a
node with an in-degree greater than one waits (“syncs”) for the
children to finish. Total work is the sum of weights of all nodes
and the critical path is the longest weighted path in the DAG.

Definition 1 (Critical Path). In a task graph G=(V,E) made
of task vertices V and their dependency edges E, with two
special vertices S (start node) and F (finish node), the critical
path is a maximal-weight path from S to F . G may contain
more than one critical path.

The critical path identifies the sequence of dependent compu-
tations that consume the most time. To speed up the service, it is
strictly necessary to boost the components on the critical path.

RPCs among microservice operations have a parent-child
hierarchical relationship and can be construed as a parallel
computation DAG. The deriving critical path from Jaeger
traces, however, has the following challenges:
• Unlike a traditional parallel computing DAG seen in the

academic literature, the Jaeger traces do not provide clear
“spawn” and “sync” events in the DAG.

• The parent spans in Jaeger traces carry no dependence
information and so the information of the last “sync“ child
span is not directly available.

• In order to obtain the last “sync“ child span, clock informa-
tion is needed. However, the clocks on different machines
where spans are collected are not time-synchronized.

• The critical path across all requests may not be unique.
Services have diurnal patterns and different traces may
exhibit different critical paths, which need to be aggregated,
and yet “hot” critical paths need to be bubbled up.

• Since the service codes keep evolving, the critical path
keeps changing.

We address these challenges in the next section.
We also mention in passing that the CPA is not a perfor-

mance analysis panacea. Once the exposed latency on the
critical path is eliminated, a new critical path may emerge
which necessitates the need for an iterative profiling and
optimization approach.

658    2022 USENIX Annual Technical Conference USENIX Association



5 Critical Path Analysis

In this section, we detail how we compute, aggregate, and repre-
sent critical paths from many Jaeger traces for a given endpoint.

5.1 Deriving Critical Path from a Single Trace
CRISP’s trace analysis exploits a map-reduce paradigm to pro-
cess millions of traces belonging to each endpoint. To this end,
each process loads an input Jaeger trace file (JSON format) and
builds an n-ary tree, where each parent node is the RPC caller
and the children nodes are the immediate downstream callees.

In order to compute the critical path through the trace,
we need a computational DAG. To accomplish this under
Jaeger/Opentrace trace format, we make use of the start
and end times of children’s spans. The start time in every
immediate child creates a “spawn” event in the parent and
splits its span at that point in time. Similarly, the end time in
every immediate child creates a “sync” event in the parent and
splits its span at the point in time. Thus, we transform the tree
into a logical DAG for critical path construction.

Figure 4 shows an example DAG constructed from Jaeger
traces by looking at span start and end times. In Figure 4,
the span A is the root span, which invokes spans B, X , and
D. The span B in turn invokes span C. The start time T1 and
its end-time T6 of B create a spawn and sync points on A,
respectively. Similarly, the spans X and D, create further
segments in A. Similarly, B’s child C, creates the spawn and
sync points on B at T3 and T4, respectively.

Limitations of Jaeger/Opentrace format: One key
limitation of the Jaeger is that the parent spans (a.k.a., caller)
do not contain dependence information. Specifically, they
lack the information of both start and end of callee RPC.
Instead, it is the callee that stores both the ID of its parent
and callee’s start and end time (per callee’s local clock)
in its own span. The implication of the constraint is that
the dependency relationship needs to be inferred via clock
information recorded in the callee span.

In addition, the inference can be inaccurate because of the
clock skew that will be discussed in Section 5.2. Traditionally,
the computation of the critical path depends on the last
returned child of the parent spans [24]. In Jaeger traces, the
last arriving child information is not directly recorded in the
parent span. Instead, the last arriver needs to be inferred using
the span end time for each child, which will be based on each
child’s local clock. Without correctly handling the clock skew,
the critical path analysis can go wrong.

One may extend Jaeger tracing by making the callee return
additional data to the caller. Unfortunately, ensuring that these
changes are adopted universally across thousands of services
is an engineering hurdle. Such changes also require support
from different RPC libraries used by our system. Our solution,
in contrast, does not require such large-scale system-wide

Timeline

A

B

X

C1

X1

A2 A3 A4 A5A1

B1 B2 B3

C

T0 T1 T2 T3 T4 T5 T6 T7

D1
D

A6 A7

T8 T9

Figure 4: Trace with root span A, its children B, X , and D. B further
calls C. CRISP further segments each parent traces based on the start
and end time of its children. The red-colored blocks represent the
critical path through the trace.

def CP ( r o o t ) :
p a t h = [ r o o t ]
i f l e n ( r o o t . c h i l d ) == 0 :

re turn p a t h
c h i l d r e n = sor tDescendingByEndTime ( r o o t . c h i l d r e n )
l f c = c h i l d r e n [ 0 ]
p a t h . e x t e n d ( CP ( l f c ) )
f o r c in c h i l d r e n [ 1 : ] :

i f h a p p e n s B e f o r e ( c , l f c ) :
p a t h . e x t e n d ( CP ( c ) )
l f c = c

re turn p a t h

Listing 1: Pseudocode to compute critical path.

changes but yet produces high quality results as we describe
in the rest of this section.

5.1.1 Critical Path Algorithm

We, first, describe how we compute the critical path in a trace
assuming perfectly synchronized clocks in this subsection. We
expand to handle unsynchronized clocks in Section 5.2.

The process of computing the critical path (CP shown in
Listing 1) on the logical DAG starts at the root node R—the
endpoint under study. We sort all its children by their span end
time and pick the last finishing child (LFC). The entirety of
LFC is on the critical path. Let LFCs be the start time of the
LFC; we ignore all children spans of R that may start or end in
the time intervening between the start and the end of LFC. We
now look for the next child of R whose end time immediately
precedes LFCs and perform the same procedure iteratively
until no child is left to process. Time not attributed to any child
of R is attributed to the root span itself.

The process is also recursive. Once an LFC is identified,
it recursively calls CP on its own children to distribute its time
under its children. The result of the CP algorithm is a sequence
of graph nodes with time associated with each one of them. Ap-
plying this algorithm to the trace shown in Figure 4, the critical
path is represented by the fragments A1B1C1B3A5D1A7.

There are two types of metrics associated with each node
of the critical path — inclusive time and exclusive time. The
“exclusive” time does not include the time spent in a node’s
callees. The “inclusive” time is the total wall clock time from
the start to the end of the RPC on the specific node.

USENIX Association 2022 USENIX Annual Technical Conference    659



A
B
C

D

B
M
Y

C

A B C

D

B M

C

A B C

D

M
…

trace 1

trace N

…
A

X

Trace DAGs critical path as 
Critical CCT (CCCT)

Aggregate 
CCCT

A

Figure 5: From trace to DAG to critical path (CCCT) to aggregate
critical calling context tree. In the trace DAGs (left of the diagram)
the x-axis is the flow of time. Horizontal lines are Jaeger spans and
vertical lines are caller-callee relationships. Red-colored horizontal
spans are on the critical path.

Since every node on the critical path encodes the informa-
tion on how it was called, and since all call paths originate
from a common root — the endpoint under investigation —
it enables us to merge all call paths into a calling context tree
(CCT) [14] by looking at their common prefixes. Consider
the critical path A1B1C1B3A5D1A7 for the trace in Figure 4.
This path encodes the following call and return information:
A calls B calls C returns to B returns to A calls D returns to A.
With this, we can infer that there are the following call chains
involved on the critical path: A, A ! B, A ! B !C, A ! B,
A, A ! D, and A. We can merge all these call paths into a
CCT and call it a Critical Calling Context Tree (CCCT). This
process is presented in the center section of Figure 5.

The calling context information makes it not only rich
but also helps in aggregating critical paths from multiple
traces described later in Section 5.3. A level of aggregation
happens immediately within each trace processing: if the
same endpoint appears multiple times on the critical path, we
sum them as long as their call chains are exactly the same.
For example, in the previous A1B1C1B3A5D1A7 critical path
example, we merge the multiple occurrences of call paths A⇤
and A⇤!B⇤. This merger discards the ordering relationship
between events, which we do not need for further analysis.

5.2 Challenges with the Clock Drift
The span start and end times recorded in Jaeger traces are
both callee’s local-machine time stamps converted to the
standard UTC time. Machine clocks on two different physical
machines drift [17, 49, 58] despite their periodic NTP-based
synchronization. As a consequence of using local clocks, our
critical path algorithm (if not corrected) can go wrong and
sometimes lead to significant misattribution.

Span overlap problem: Figure 6 shows an ideal trace where
the three spans A, B, and C are invoked one after another by the
parent P. Most of the time should be attributed to the children.
Figure 7 shows the trace for this example from our production,
where the time recorded for the children spans have a small
overlap; there is an overlap between the end of A and the start of
B and the end of B and the start ofC. In this case, the critical path

P

A

misattribution

B C

P

A
B

C

Figure 6: Ideal traces for a
parent with three serialized
children executions. Red lines
show the critical path.

P

A

misattribution

B C

P

A
B

C

Figure 7: Actual traces due to
clock drift. Red lines show the
corresponding critical path.

� ����
���������������	���������������

�


��

����

�
��

	���

	
��

�
��

�

Figure 8: Distribution of time overlap recorded in Jaeger for two
sequentially invoked RPCs. A positive value shows an overlap. The
mean is 204.21µs and the max is 1696.00µs.

is not attributed to span B and instead attributed to the parent.
Due to the clock drift,more than 50% of our traces recorded this
type of span overlaps causing misattribution in critical paths.

We conducted a detailed study on the impact of such clock
drift. Figure 8 plots the time overlap recorded in Jaeger traces
of two sequentially invoked RPCs sampled over 118K traces.
A positive value shows overlap and a negative value shows
non-overlap. More than 50% of samples show an overlap. The
P50 overlap is 204µs and the maximum overlap is 1696µs.

Based on this empirical observation, we tuned the
happensBefore(A, B) part of our CP algorithm with the
following relaxation:
• Aend�threshold<Bstart , and
• No other children of the parent of P of A can start or end in

the overlapped time range
The first condition allows a small threshold amount of

overlap between the end of the previous span with the start of
the next span. The second condition ensures that in the region
of the allowed overlap, there is no other spawn and sync event,
which ensures the parent-child serialization. The threshold
is set to 1ms.

Span overflow and underflow problems: In addition to the
overlap, there can be overflow and underflow of child spans
due to the clock drift. We enumerate these problems along
with our pragmatic solutions below:
• A child span C may start before the start of the parent span

P. In such cases, we truncate the start time of C till the start
time of P. This may involve the recursive truncation of C’s
descendants.

• A child span C may end after the end of the parent span P. In
such cases, we truncate the end time ofC to the end time of P.

660    2022 USENIX Annual Technical Conference USENIX Association



This may involve the recursive truncation of C’s descendant.
• Although rare, a child span C may end before the start time

of parent span P. Similarly, a child span C may start after the
end time of the parent span P. In these cases, we completely
drop the subtree formed by C for CPA.
This tailoring fixed our CP algorithm. The total time

truncation over millions of traces was under 5% giving us the
confidence that a significant part of the data was retained.

5.3 Aggregating Critical Paths
While one trace can be compressed into its essential critical
path and represented as a CCCT, it may not be representative.
Hence, we need to inspect numerous traces to derive a “typical”
shape of the critical path. Distinct traces may exhibit different
critical paths based on many things, such as calling parameters,
scheduling decisions, system load, time of the day, and
network delays, to name a few. Hence, a summary of typical
components on the critical path is desired.

To this end, we merge all critical paths (represented as
CCCTs) into a weighted, aggregate CCCT. We follow the
tree merging process done in HPCToolkit [13]. The aggregate
CCCT succinctly summarizes all call paths leading to critical
path nodes in all traces; it captures the quantitative aspect by
associating higher weights to those call paths that are often
on the critical path. The weights of the nodes in such a tree
would be the summation of the weights of the constituent call
paths. Specifically, we provide different percentiles (e.g., P50,
P95, P99) of the latency values, which are widely used for
QoS purposes. Figure 5 exemplifies this process.

5.4 Workflow for Continuous CPA
Figure 9 depicts the workflow followed by CRISP for
performing critical path analysis of microservice traces for all
endpoints. The components belonging to CRISP are marked
by the outermost rectangular box.

All services are instrumented to produce Jaeger traces
during their RPCs. The instrumentation is enabled across
languages such as Go, Java, Node.JS, and Python. The RPCs
emit Jaeger spans into a common data store, which can be
queried via SQL-style queries.

The CRISP workflow runs as a daily job. The workflow
begins by collecting a list of endpoints. Each endpoint can be
handled in parallel. Hence, we dedicate a handful of machines
that shard the list of endpoints among them.

For each endpoint, CRISP queries the Jaeger data store
(via sawmill-query) service to fetch a list of traceIDs. This
query is set up to obtain the last two weeks’ worth of traces.
We then use these traceIDs to fetch the actual JSON traces
(jaeger-query) service. We exploit IO parallelism here to
fetch many traces concurrently.

We compute the critical path over each trace in parallel using
the map-reduce paradigm. The set of critical paths obtained is

fed into an aggregating process that summarizes and produces
the daily critical path report for each endpoint (top-down
analysis) and also produces overall metrics aggregated over
all endpoints (bottom-up analysis). The results are injected
into blob storage that can be easily navigated by a varied set
of users, including service owners, performance engineers,
and capacity managers. An offline anomaly detection model
is also trained per endpoint result.

6 CRISP Features

We have developed tools to inspect critical paths for top-down
performance analysis of specific endpoints, bottom-up
analysis over all endpoints, and automatic anomaly detection
over traces. We describe these features in this section.

6.1 Top-Down Analysis
We store the results of our CPA for each endpoint into profiles
for investigation by service owners. CRISP provides the
following means of visualization of CPA over each endpoint.

Flame graph: Flame graph [31] is a powerful way to
visualize hierarchical call paths arising from profiling. The
interactive visualization is easier to digest and investigate.
Since we maintain the summarized critical paths as aggregate
CCCTs, which are formed of many weighted call paths, it
naturally avails itself to be represented as a flame graph.

If we chose all traces to represent a single flame graph, the
critical path found in P99 latencies may dominate the flame
graph and mask the other common cases. For that reason, we
show three different flame graphs for different percentiles
of latency values (e.g., P50, P95, and P99). We also produce
differential flame graphs [30] that show how the critical paths
change between two percentile values.

Heat map: Flame graphs are useful for navigating call chains
but developers sometimes need access to an actual Jaeger trace
that represents a given data so that they can inspect it in further
detail. For this reason, CRISP provides the heat map view (see
Figure 10), where the rows are the endpoints and the columns
represent individual traces. Each cell in the heat map represents
the exclusive time on the critical path and each cell is gradient
colored based on its contribution (exclusive time) to the total
latency. In this view, we collapse the call paths and accumulate
the metrics from all call paths, reaching the same endpoint in
a single row. However, for exploration, the developers have
access to the top 5 call chains (not shown) for each endpoint,
which is available by hovering over any row. In this view,
the user can also choose percentile values and inclusive or
exclusive metrics to sort the rows. Each column is also sorted by
a high to low contribution for a given chosen metric. Selecting
any trace takes the user to the Jaeger-UI to inspect the trace.

USENIX Association 2022 USENIX Annual Technical Conference    661



Jaeger traces

List of 
endpoints

Sawmill Query

Trace 
Ids

Jaeger Query

Fetch 
trace 
Ids

Fetch 
traces

Compute
Critical 
Path

Aggregation, 
Analytics, and 
Summarization

traces

Critical 
Paths

Critical 
Path 
Report

Blob 
storage

Periodic Job

Microservices
Compute
feature 
vectors

SCPV
ML model 
trainingTrained 

models

A
no

m
al

y 
de

te
ct

io
n

Figure 9: Schematic diagram of CPA over Jaeger traces.

 P50(E)  trace 1 trace 2 trace 3 trace 4 trace 5 trace 6 trace 7 trace 8 trace 9 trace 10
totalTime 3.58e+06 1.37e+07 1.31e+07 1.28e+07 1.21e+07 1.21e+07 1.21e+07 1.03e+07 9.39e+06 9.06e+06 8.99e+06

2.13e+06 0.00e+00 0.00e+00 0.00e+00 0.00e+00 9.86e+06 0.00e+00 8.10e+06 3.23e+06 4.36e+06 5.39e+06
1.96e+05 2.22e+05 1.34e+06 1.66e+06 1.44e+05 1.54e+05 5.20e+04 7.40e+04 4.02e+06 2.07e+05 1.30e+06
2.74e+05 1.43e+05 5.23e+04 2.67e+05 5.00e+04 5.38e+05 6.70e+05 5.48e+05 2.73e+05 2.72e+05 9.40e+04
2.33e+05 3.08e+05 1.69e+05 2.69e+05 2.01e+05 2.01e+05 2.54e+05 4.11e+05 2.77e+05 2.24e+05 1.91e+05
1.02e+05 1.44e+06 1.53e+04 1.41e+05 9.68e+04 1.30e+05 1.06e+05 9.25e+04 1.32e+05 5.09e+04 1.03e+05
7.37e+04 3.17e+05 0.00e+00 8.41e+04 2.49e+05 6.97e+04 8.18e+04 6.66e+04 8.09e+04 0.00e+00 3.97e+05
6.13e+04 1.35e+05 6.08e+04 5.10e+04 9.81e+04 6.63e+04 5.29e+04 7.77e+04 5.99e+04 6.94e+04 6.98e+04
6.51e+04 0.00e+00 0.00e+00 6.33e+04 8.90e+04 4.26e+04 8.19e+04 5.27e+04 5.28e+04 7.04e+04 5.69e+04
5.60e+04 1.09e+05 0.00e+00 5.63e+04 1.05e+05 5.71e+04 5.68e+04 5.29e+04 4.95e+04 0.00e+00 1.06e+05

Service::Operation139
Service::Operation2
Service::Operation6
Service::Operation3
Service::Operation7
Service::Operation1
Service::Operation9

Service::Operation142
Service::Operation4

Figure 10: Example heat map from 1000 traces. The result is sorted
by the P50 percentile value of the exclusive time of each operation.
Each cell is the accumulated time in µs.

6.2 Bottom-Up Analysis
The objective of the bottom-up analysis is to derive insights
from all endpoints and to bubble up those interior APIs
improving which will improve many endpoints. The bottom-
up analysis is a data-intensive process and needs access to
critical paths from all endpoints. For this reason, we retain
the aggregate CCCT computed for each endpoint from the
top-down process, along with some additional statistics related
to the overall graph structure. Once all endpoints are processed,
the bottom-up analysis runs; it aggregates the statistics from
each endpoint and quantifies the impact of each API over all
other endpoints. The output of the bottom-up analysis is a
descending priority list of top APIs that are often in many
endpoints. Additionally, the bottom-up analysis produces
various histograms over all traces taken together, which
include the total number of times any API appears in any graph,
the total number of times an API appears on the critical path,
the number of unique APIs on the critical path, the critical path
length, and the maximum degree of concurrency in a trace,
among others. These graphs are intended to inform infrastruc-
ture and hardware engineers to better understand the current
needs of our systems and aid capacity planning for the future.

6.3 Anomaly Detection
We also employ CRISP to pinpoint whether a new incoming
trace (for a given endpoint) deviates from the normal execution
behavior. For this purpose, we have trained a machine learning
model and used it for inference.

During the offline training, we encode the critical path
(CCCT) for each trace of an endpoint into feature vectors,

A, 5
C, 4B, 3

D, 2 C, 1

A 5
A!B 3
A!B!C 4
A!D 2
A!D!C 1

Figure 11: An example CCCT (left), the letters indicate name and the
numbers indicate the exclusive time on the span. The corresponding
SCPV (right).

which we call service critical path vectors (SCPV). We
feed several SCPVs into an autoencoder to learn the normal
execution pattern of the given service. During the online
inference, the learned model will infer whether the given new
trace is abnormal or not based on an anomaly score.

The architecture design, training, and inference of the
autoencoder are derived from TraceAnomaly [39], which
is the state-of-the-art framework for anomaly detection in
microservices trace. The neural architectural details are
described in Appendix B. The key difference between CRISP
and TraceAnomaly is in the data encoding. TraceAnomaly
uses a service trace vector (STV) which encodes every path
in the trace and, in contrast, CRISP encodes only on the call
paths for those spans that are on the critical path spans.

SCPV encoding: Figure 11 exemplifies encoding the crit-
ical path present as a CCCT into an SCPV. For each node in
CCCT, it assigns weights based on its exclusive execution time.
Notice that endpointC occurs twice on the critical path, thus it is
also encoded twice in the SCPV, given the call chain is different.
The training set is a 2D matrix where each column is a feature
(call path) and each row is the feature values of a given trace.

Using the call paths of spans only on the critical path,
compared with the prior work that used all call paths in the
entire graph, offers significant benefits. It reduces the feature
dimensions; it reduces the training and inference time; and,
most importantly, it improves the model accuracy. The impact
of the CCCT-based encoding is substantial and evaluated in
Section 7.3.

7 Experience and Evaluation

In Section 7.1, we describe one of our findings by applying
the top-down analysis of CRISP at Uber, in Section 7.2 we

662    2022 USENIX Annual Technical Conference USENIX Association



1/13/22, 11:16 AM diff1.svg

file:///Users/milind/Projects/CRISP_DATA/diff1.svg 1/1

Flame Graph

[driver..

[fulfillment-compatible] GET:/supply/{uuid}

[dosa-gateway] Dosa::read [fulfillment] google.spanner.v1.Sp..
[courier-task-platform] Dosa::read

[driver-presentation] supply.ReadSupply(Supply::readSupply)

[courier-task-platform] repository.dosa.get_task_completion_status

[courier-task-platform] handler.couriertaskplatformthrift.get_task_completion_status [mp-proxy] GET:fulfillment-http

[driver-presentation] DriverTasks::getDriverTasks

[o..

[d..

[courier-task-platform] controller.couriertaskplatform.get_task_completion_status

[fulfillment] google.spanne

[fulfillment-compatible] uber.

all

[order..[courier-task-platform] CourierTaskPlatform::getTaskCompletionStatus
[driver-presentation] CourierTaskPlatform::getTaskCompletionStatus

[mp-proxy] relay::mpx-prod-9

[dosa-gateway] cassandraRead

[fulfillment-compatible] uber.marketp..
[..

[fulfillment] uber.marketplace.fulfill.. [fulfillment] uber.marketplac+47%
+20%

Figure 12: Differential flame graph for the getDriverTask endpoint. Red colors indicate the growth from P50 critical paths to P95 critical paths.

show valuable characteristics of microservices at Uber by
applying the bottom-up analysis of CRISP. In Section 7.3,
we empirically evaluate the anomaly detection capability of
CRISP and in Section 7.4 we describe how we employed
CRISP in guiding future hardware selection to reduce tail
latency in our services.

7.1 Tail Latency Investigation via Top-Down
Analysis

getDriverTasks is a business-critical endpoint in the
driver-presentation service responsible for returning the
task plan that a driver needs to perform. A sample task plan
could be: passenger mask check, pickup passenger, pickup
food, drop off passenger, and drop off food. This endpoint
assembles the task plan and enriches it by calling numerous
other microservices such as courier-task-platform.

Figure 12 shows the differential flame graph for the
getDriverTask endpoint. The graph plots a difference be-
tween the critical paths seen in the traces with the P50 latency
vs. P95 latency for the getDriverTask endpoint. The red-
colored boxes show the growth in percentage time spent in P95
with regards to P50. The getTaskCompletionStatus API
was absent in the P50 traces, whereas it occupies 47% of the
total execution in P95 traces, contributing to the same amount
of addition to the tail latency. This endpoint dependency makes
a call to Cassandra—an expensive database read. Based on this
insight from CRISP’s differential flame graph views,we identi-
fied the root cause of performance variance and high tail latency.
We recommend caching with timestamp filtering optimization
as opposed to a database read to reduce the tail latency.

Trace processing overheads: Table 1 shows the overhead
of analyzing the getDriverTasks endpoint discussed in this
section running on 16 cores of an Intel Xeon Skylake machine
clocked at 2.4 GHz.

Table 1: Overhead of top-down analysis of getDriverTasks.

Num Traces Trace size Processing time Memory usage
10k 6.8 GB 48 sec 2.1 GB
20k 14 GB 109 sec 4.2 GB
40K 28 GB 232 sec 8.5 GB
80K 56 GB 553 sec 17.6 GB

Sparse sampling vs. quality of CPA: We observed that
the sampling rate does not qualitatively affect the aggregate
critical path results. We conducted an experiment where we
first produced an aggregate critical path from 1 million traces.

We also produced critical paths from randomly sampled 100K
and 10K traces from the same data set. We noticed that the
attribution of the top 20 services on the critical path, whether
for 10K or 100K samples, was essentially the same as the one
produced from 1M traces.

7.2 Systemic Insights via Bottom-Up Analysis
In this section, we show the result of running CRISP with
bottom-up analysis on the collected trace dataset and some
insight associated with the data. The dataset includes more
than 1 million traces, ⇠4k services, and ⇠40k endpoints. It
takes around 4 hours on 32-cores of a Intel Xeon Skylake
machine clocked at 2.4 GHz.

Total RPCs per request: Figure 13 is a histogram of the to-
tal number of RPCs made per request, which is same as the total
number of spans in a trace. On average there are 112 spans in a
trace. However, there exist several large ones with a maximum
of 275K spans. Such scale brings significant challenges for the
developer to debug without proper reduction of the graph size.

Total endpoints in a trace: Figure 14 is a histogram of the
total number of unique endpoints found in each trace. At most
each trace has 1400 unique endpoints.

Latency distribution: Figure 15 plots the histogram of
latencies observed in each of ⇠1M traces. The tail is several
orders of magnitudes longer than the mean or median.

RPC depth: Figure 16 is a histogram of the longest call
chain found in each trace. The depth of the call chain is another
measure of the complexity of traces. The average RPC depth
is 8.5. The maximum observed depth is 36.

Unique caller: Figure 17 is a histogram of the number of
the unique callers for each endpoint across one million traces.
The number differs wildly as the mean value is just above 2
but the maximum value is 620.

Degree of concurrency: Figure 18 is a histogram of the
maximum number of spans that overlap in time in each trace.
This number gives the degree of concurrency (and hence a
measure of the complexity) in our traces. Overall, the microser-
vices show a high degree of concurrency. On average, the
degree of concurrency is 21. The degree of concurrency often
grows to 100s for more complicated services. The maximum
degree of concurrency we observed in ⇠1M traces was 3076.

Total RPCs on the critical path: Figure 19 is a histogram of
the number of spans on the critical paths, which counts the num-
ber of RPCs made on the critical path. Besides a few outliers,
the length of the critical path is short. On average, there are 33

USENIX Association 2022 USENIX Annual Technical Conference    663



��� ��� ��� ��� ��	
����������������������������

���

���

���

���


�
��

�

Figure 13: Histogram of the
number of spans per trace.

��� ��� ���
	�����������������
�����
�

���

���

���

���

��
��

�
Figure 14: Histogram of number
of unique endpoints per trace.

��� ��� ��
 ��� ���
������������������������

���

���

���

��	

��


�
��

�

Figure 15: Distribution of
latency among all traces.

�� �� �� �� �� ��

�������������������������

���

���

���

���

	�
��

�

Figure 16: Histogram of longest
call chain per trace.

��� ��� ���

���������������������

���

���

���

���

���

	�
��

�

Figure 17: Histogram of the
number of unique caller for each
endpoint.

� 	�� ���� �	�� ���� �	�� ����
�������������������������

���

���

���

���

���


�
��

�

Figure 18: Histogram of the de-
gree of the concurrency (max no.
of overlapping spans) per trace.

��� ��� ��� ��� ��	
�������������������������������

���

���

���

���


�
��
�

Figure 19: Histogram of the
number of spans on the critical
path per trace.

�� �� 	� 
� ��� ��� ���
������������������������������

���

���

���

���

��
��

�

Figure 20: Histogram of the
number unique endpoints on the
critical path per trace.

RPCs on the critical path (in contrast, the entire graph in Fig-
ure 13 shows 112-275K RPCs in traces). The short critical path
length allows the developer to investigate and debug easily.

Endpoints on the critical path: Figure 20 is a histogram
of the unique endpoints on each critical path. Compared with
the number of endpoints in the entire trace (Figure 14), the
number of the endpoints on the critical path is an order of
magnitude smaller (the maximums are 1400 vs. 140). The 10x
size-reduction matches our observation of the 6 services we
test for anomaly detection.

7.3 Empirical Analysis of Anomaly Detection
Here, we will evaluate CRISP’s anomaly detection on six
critical endpoints.

Methodology: We collect traces for six microservices in
real production over a 14-day period. The training data for each
case includes 20,000 traces and the testing data has 500 unseen
traces for normal and abnormal data. To generate abnormal
inference data, we drop 20% of the nodes in the graph and
randomly shuffle the duration of the nodes as described in
[26,39,48]. We did not use real anomalous traces for evaluation
since we do not have a large number of labelled anomalous
traces (i.e., we have a lot of false negatives). Also, the labeled
data contains false positives and coordinating with hundreds
of developers to verify the veracity of labeling is non-trivial.

We use TraceAnomaly [39] as the baseline against which
we compare our results. We adopt the same architecture of the
autoencoder and reuse their code. The main difference is that
we use CRISP to preprocess the trace before feeding it into the
autoencoder so that only paths appearing on the critical path in-
formation are included. A fundamental assumption is that any

noticeable difference in the trace must impact the critical path.
Hardware: We use two machines in our evaluation: a CPU-

only machine with 256 GB memory and a CPU+GPU machine
with 128 GB memory. Most of the experiment is done on a ma-
chine with GPUs. It has 2 Quadro RTX 5000 GPUs and 2 socket
Intel Xeon Gold 5218 CPU at 2.30GHz. The CPU machine has
2 sockets with Intel Xeon Silver 4214 CPU at 2.20GHz. Both
machines run on Linux 4.14. The reason to use two machines is
that for some experiments, the training data for TraceAnomaly
cannot fit the GPU memory, whereas CRISP’s training data al-
ways fits on GPU memory. In such cases, for a fair comparison,
we also run the experiment on the 256 GB CPU-only.

Table 2 shows the empirical evaluation results of anomaly
detection on 6 large online services at Uber. It captures
the essential features such as the number of RPCs, unique
endpoints, and call path diversity in these services. It also
shows the training and inference time with both STV (prior
art from TraceAnomaly) and SCPV (our work) data. Finally,
the last 4 columns present the model accuracy in terms of
precision and recall. In summary, using critical path via
CRISP reduces the training time and inference time and
improves the recall performance on top of the state of the art.

Training speedup: From the table, we can observe that
CRISP offers up to 22⇥ speedup for training compared with
TraceAnomaly. Even the smallest speedup is more than 50%.

The reason for the speedup is that the training data from
CRISP (SCPV) is one magnitude smaller than TraceAnomaly
(STV) up to 25⇥ for Service 6. The number of unique call
paths on the critical path is significantly smaller than the total
number of call paths in the entire graph (also see Figures 13-20).
Furthermore, when the number of the trace and the dimension

664    2022 USENIX Annual Technical Conference USENIX Association



Table 2: Evaluation results for large online services. Inference time is measured with 1000 traces. (TA⇤=TraceAnomaly.)

No. of
Unique

endpoints

Max
no. of
spans

No. of callpaths/
features

Training Time CRISP
training
speedup

Inference Time CRISP
inference
speedup

Precision Recall

TA⇤ CRISP TA⇤ CRISP TA⇤ CRISP TA⇤ CRISPSTV SCPV
Service 1 214 1429 5117 1186 70m (GPU) 46m (GPU) 1.52X 2.24s (GPU) 1.21s (GPU) 1.85X 1.0 0.998 0.986 0.992
Service 2 969 1724 9725 1860 100m (GPU) 50m (GPU) 2.00X 3.54s (GPU) 1.40s (GPU) 2.54X 1.0 1.0 0.958 0.984
Service 3 734 5320 20321 2154 150m (GPU) 50m (GPU) 3.00X 5.64s (GPU) 1.36s (GPU) 4.15X 1.0 1.0 0.5 0.982

Service 4 912 20001 25347 2715 1184m (CPU) 56m (GPU)
219m (CPU)

21.14X (GPU)
5.41X (CPU) 56.67s (CPU) 1.56s (GPU)

9.26s (CPU)
36.33X (GPU)
6.12X (CPU) 1.0 1.0 0.928 0.978

Service 5 768 6562 26404 2336 811m (CPU) 51m (GPU)
177m (CPU)

15.90X (GPU)
4.58X (CPU) 42.90s (CPU) 1.36s (GPU)

5.81s (CPU)
31.54X (GPU)
7.38X (CPU) 1.0 0.998 0.5 0.982

Service 6 1477 10992 28968 1151 1305m (CPU) 46m (GPU)
148m (CPU)

27.77X (GPU)
8.82X (CPU) 78.88s (CPU) 1.18s (GPU)

4.48s (CPU)
66.85X (GPU)
17.61X (CPU) 1.0 1.0 0.912 0.977

of the feature vector is large, the size of the training data of
TraceAnomaly can easily exceed the memory of the GPU,
which makes it unable to train. For such cases (Service 4, 5, and
6), we can still see more than 4⇥ speedup even if we train both
TraceAnomaly and CRISP on CPU machines. When CRISP
is trained on the GPU machine, the speedup can easily exceed
15⇥. The faster training allows for more practical deployment.

Inference speedup: Similar to training speedup, the
reduction in inference data size leads to a faster inference of
CRISP. The smallest speedup is more than 1.85⇥ whereas
the largest speedup is over 66⇥. This lower latency allows us
to batch many inferences together to exploit GPU throughput.

Precision: From Table 2, we can see that both
TraceAnomaly and CRISP are capable of detecting
the abnormal trace accurately. Autoencoders are capable of
capturing the complex pattern of the graph. TraceAnomaly
works slightly better than CRISP on 2 services, but overall
accuracy is very high for both methods.

Recall: The recall is the part that differentiates the quality of
results between TraceAnomaly and CRISP. Recall measures
how many of the actual positives the model captures through
labeling it as positive, (i.e., True_Positive

True_Postive+False_Positive ). When
the recall is closer to 1, it indicates that the model makes fewer
false-positive predictions (an anomaly in this case). From
Table 2, it is clear that CRISP outperforms TraceAnomaly by a
noticeable margin. Particularly for Service 3 and 5, half of the
positive prediction of the anomaly is false, meaning all normal
traces for inference are labeled abnormal by TraceAnomaly.
To make sure the prediction is actually incorrect, we asked
the service owners and verified that the normal inference
testing traces are not showing any abnormal behaviors. On the
contrary, CRISP’s recall is close to 1. For Service 1 and 2, the
performance of CRISP is slightly better than TraceAnomaly,
as both models make relatively accurate predictions. CRISP
shows more than 5% improvement for Service 4 and 6.

CRISP produces superior results on services with a large
number of call paths. For instance, there are 912 endpoints
in Service 4 but the total call paths is 25,347. Since there
is more diversity among the shapes of the call chains on
the entire graph, the SCPV encoding fails to capture its full
variety; consequently, unseen call paths easily trigger a false
positive in TraceAnomlay. In contrast, the critical path remains

fairly stable when trained over a large corpus of traces, and
consequently CRISP has fewer false positives.

7.4 CPA in Hardware Selection
In addition to the parent-child transitive relationships and
times, Jaeger traces also contain additional information, such
as the hostname on which the span was executed. Uber’s data
center consists of diverse hardware CPU SKUs. Services can
be installed on different hardware versions. Hence, an API
may run on different hardware on different requests.

We collected the critical path for one of our important ser-
vices using CRISP and identified that a downstream operation
was on the critical path. We further clustered the samples from
the profiles by the CPU versions on which they were running.
The violin plot in Figure 21 in Appendix A shows how the
latencies vary on 2 prominent CPU SKUs: Intel Xeon Silver
4212 running at 2.2 GHz (SKU-A) and Intel Xeon Silver
4212R running at 2.4 GHz (SKU-B). The two SKUs are identi-
cal (same vendor, microarchitecture, cache size, etc.) with the
only exception being that their CPU clock speeds are different.
This mild (9%) difference in the clock speed has a profound
impact on the behavior of the plotted service. The P50 value
for SKU-A is 15% higher than that on SKU-B. Moreover, the
tail latency on SKU-A is 1.5x higher than the one on SKU-A.

To summarize, a slightly faster CPU clock proves to have
a significant impact on reducing the tail latency and overall
latency. This difference has a significant impact on the
overall capacity allocation since tail latency (e.g., P95) is
often used in capacity allocation. This observation demands
further, systematic investigation into classifying critical path
components as CPU SKU sensitive vs. insensitive; also, such
categorization helps data center-wide microservice schedulers
to favor SKU-sensitive services on the critical path onto the
SKUs where they exhibit superior performance.

8 Related Work

Critical Path Analysis (CPA) has been extensively ex-
plored in the shared-memory parallel programming
paradigm [13, 20, 25, 40, 50, 54, 55, 59, 62] but less explored in
distributed parallel systems. Unlike shared-memory and struc-

USENIX Association 2022 USENIX Annual Technical Conference    665



tured parallel programs, microservices use distributed parallel
computing environments and are unstructured in nature.

Barford and Crovella [16] utilize critical path analysis for
profiling and understanding TCP transactions and improve
data transfer latency in web applications; however their scale
is significantly smaller than the 4K services deployed over mil-
lions of CPU cores that we handle. Bohem et al. [18] employ
tracing and CPA for MPI programs in HPC environments;
this approach has not been employed in microservice environ-
ments. Kaldor et al. [33] develop an end-to-end tracing system
(Canopy) for tracking requests from web-browsers/mobile to
backend services; it handles billions of traces. A distinguishing
feature of CRISP compared with Canopy is the use of CPA,
which significantly reduces the data needed for analysis.

Qiu et al. [48] propose a fine-grained resource management
framework based on microservice traces using CPA. They
employ the insights for scheduling and other resource
management to reduce CPU utilization. However, their work
does not cover industry-scale deployment; they also do not
facilitate performance bug or anomaly detection and cannot
provide bottom-up system-wide performance insights.

Fields et al. [24] explore a hardware predictor to analyze
the criticality of instructions by using CPA and use it to
guide dynamic instruction scheduling. Venkataramani et
al. [55] propose Global Critical Path (GCP) to predict
system-level performance and optimize the performance
of highly concurrent self-timed circuits. These approaches
rely on the precise last arriver information, which is readily
available in these cases. Our critical path computation in
microservices also depends on knowing the last arriver. Unlike
the aforementioned approaches, we do not have direct access
to the last arriver in our distributed system. As a result, we
need to use clock information from different hosts and adjust
for clock skew to heuristically infer the last arriver.

Multiple tools have been developed to profile and debug
large distributed and parallel systems. lprof [64] constructs
request flow from logs and it is as good as the quality of logs;
it has not been evaluated on microservices; it also does not
provide CPA and hence suffers from a voluminous noisy data.
Mace et al. [41] developed Pivot as a dynamic, extensible
tracing system for inter-operating applications. Pivot employs
a happen-before relationship between events to establish
causality. Pivot does not build a critical path and hence pays
equal attention to any causal relationship unlike CRISP. Chow
et al. [19] build a system that utilizes a large number of request
traces to validate hypotheses about causal relationships.
Edgar [2] provides a summarized view of request traces,
logs, and metadata in distributed systems. It does not employ
sophisticated analyses or automated anomaly detection.

Several works have focused on microarchitectural aspects
of microservices [34, 42, 52, 60, 61]. Most of these works
are focused on how microservices utilize microarchitectural
features, but ignore the end-to-end user request; in contrast,
CRISP takes a higher-level approach and looks at the entire

flow of requests through a chain of services.
Multiple works have studied anomaly detection in dis-

tributed systems. Liu et al. [39] use Deep Bayesian Network
to detect the performance anomaly in an unsupervised manner.
They utilize machine learning to learn the normal behavior
pattern of the given dependency graph and try to detect the
anomaly online. Gan et al. [26] propose a root cause analysis
system for large-scale microservices using machine learning.
The system uses Conditional Variational Autoencoders
(CVAE) [51] to automatically generate the counterfactual
training data. These approaches have used the entire call graph,
leading to significant training and inference time. In contrast,
CRISP uses only the critical path(s), leading to dramatic
speedups while producing higher quality results.

9 Conclusions and Future Work

Microservices are the preferred architecture choice in modern
service-oriented software systems. Large-scale microservices
have tens of thousands of endpoints with complex, nested,
and asynchronous. Prior work in profiling microservices has
either focused on tracing techniques, which produce a lot of
data, but lack in delivering insights, or on micro-architectural
optimization within a service, ignoring the full picture of the
life of a request through myriad services. This paper develops
a tool, CRISP, which uses critical path analysis (CPA) over
RPC traces to bubble-up interesting activities and discard
noisy events. CRISP provides rich developer insights both for
service owners and infrastructure engineers. In a short three-
month deployment period, CRISP’s analyses have sifted over
4,000+ services, 40,000+ endpoints, hundred of millions of
traces, and tens of terabytes of data at Uber; as a result, CRISP
has bubbled-up profiling results that helped developers under-
stand and optimize important services. Employing the critical
path, as opposed to the whole RPC trace, speeds up the training
of models and on-the-fly inference for anomaly detection
while also producing noticeably higher quality results.

Our future work involves enhancing CRISP to address other
use cases such as setting the TTL values for downstream calls
and bubbling up those downstream services that often return
errors. We plan to expand our anomaly detection to include
developers in the loop and improve traces with labelled data.

Availability

Parts of the code of this work are open-sourced [1].

Acknowledgement

This material is based upon work supported by the National Sci-
ence Foundation under Grants No. 2006542 and 1763699. We
thank our shepherd and the anonymous reviewers for their feed-
back. We also thank William Fulton and Sara Wilmes-Reitz
for their help with proof-reading a draft version of this paper.

666    2022 USENIX Annual Technical Conference USENIX Association



References

[1] CRISP: Critical Path Analysis of Microservice Traces.
https://github.com/uber-research/CRISP.

[2] Edgar: Solving Mysteries Faster with Observability.
https://netflixtechblog.com/edgar-solving-
mysteries-faster-with-observability-
e1a76302c71f. (Accessed on 11/30/2021).

[3] Evolving Schemaless into a Distributed SQL
Database. https://eng.uber.com/schemaless-
sql-database/. (Accessed on 01/12/2022).

[4] Fast and Reliable Schema-Agnostic Log Analytics Plat-
form. https://eng.uber.com/logging/. (Accessed
on 01/12/2022).

[5] Heat Map. https://en.wikipedia.org/wiki/
Heat_map. (Accessed on 01/11/2022).

[6] Jaeger: open source, end-to-end distributed tracing.
https://www.jaegertracing.io/. (Accessed on
12/01/2021).

[7] perf (linux) - wikipedia. https://en.wikipedia.org/
wiki/Perf_(Linux). (Accessed on 01/12/2022).

[8] Uber’s Fulfillment Platform: Ground-up Re-
architecture to Accelerate Uber’s Go/Get Strategy.
https://eng.uber.com/fulfillment-platform-
rearchitecture/. (Accessed on 01/12/2022).

[9] User Datagram Protocol. https://en.wikipedia.org/
wiki/User_Datagram_Protocol. (Accessed on
01/11/2022).

[10] perf: Linux profiling with performance counters. https:
//perf.wiki.kernel.org/index.php/Main_Page,
2013.

[11] Profiling Go Programs. https://blog.golang.org/
pprof, 2013.

[12] Head-based and tail-based sampling, rate-limiting.
https://opentelemetry.uptrace.dev/guide/
sampling.html#introduction, April 2022.

[13] ADHIANTO, L., BANERJEE, S., FAGAN, M., KRENTEL,
M., MARIN, G., MELLOR-CRUMMEY, J., AND TAL-
LENT, N. R. HPCToolkit: Tools for performance
analysis of optimized parallel programs. Concurrency
and Computation: Practice and Experience 22, 6 (2010),
685–701.

[14] AMMONS, G., BALL, T., AND LARUS, J. R. Exploiting
Hardware Performance Counters with Flow and Context
Sensitive Profiling. In Proceedings of the ACM SIGPLAN
1997 Conference on Programming Language Design

and Implementation (New York, NY, USA, 1997), PLDI
’97, Association for Computing Machinery, p. 85–96.

[15] APACHE FLINK TEAM. Apache Flink: State-
ful Computations over Data Streams. https:
//flink.apache.org/.

[16] BARFORD, P., AND CROVELLA, M. Critical path anal-
ysis of TCP transactions. ACM SIGCOMM Computer
Communication Review 30, 4 (2000), 127–138.

[17] BLUEMATADOR. Time Drift (NTP). https:
//www.bluematador.com/docs/troubleshooting/
time-drift-ntp.

[18] BÖHME, D., GEIMER, M., ARNOLD, L., VOIGTLAEN-
DER, F., AND WOLF, F. Identifying the Root Causes of
Wait States in Large-Scale Parallel Applications. ACM
Trans. Parallel Comput. 3, 2 (jul 2016).

[19] CHOW, M., MEISNER, D., FLINN, J., PEEK, D., AND
WENISCH, T. F. The mystery machine: End-to-end
performance analysis of large-scale internet services. In
11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14) (2014), pp. 217–231.

[20] CURTSINGER, C., AND BERGER, E. D. Coz: Finding
code that counts with causal profiling. In Proceedings
of the 25th Symposium on Operating Systems Principles
(2015), pp. 184–197.

[21] DELIMITROU, C., AND KOZYRAKIS, C. Amdahl’s Law
for Tail Latency. Commun. ACM 61, 8 (jul 2018), 65–72.

[22] EPANECHNIKOV, V. A. Non-parametric estimation of
a multivariate probability density. Theory of Probability
& Its Applications 14, 1 (1969), 153–158.

[23] FERDMAN, M., ADILEH, A., KOCBERBER, O.,
VOLOS, S., ALISAFAEE, M., JEVDJIC, D., KAYNAK,
C., POPESCU, A. D., AILAMAKI, A., AND FALSAFI,
B. Clearing the Clouds: A Study of Emerging Scale-out
Workloads on Modern Hardware. In Proceedings of the
Seventeenth International Conference on Architectural
Support for Programming Languages and Operating
Systems (New York, NY, USA, 2012), ASPLOS XVII,
Association for Computing Machinery, p. 37–48.

[24] FIELDS, B., RUBIN, S., AND BODIK, R. Focusing
processor policies via critical-path prediction. In
Proceedings 28th Annual International Symposium on
Computer Architecture (2001), IEEE, pp. 74–85.

[25] FRIGO, M., LEISERSON, C. E., AND RANDALL,
K. H. The Implementation of the Cilk-5 Multithreaded
Language. In Proceedings of the ACM SIGPLAN 1998
Conference on Programming Language Design and
Implementation (New York, NY, USA, 1998), PLDI ’98,
Association for Computing Machinery, p. 212–223.

USENIX Association 2022 USENIX Annual Technical Conference    667

https://github.com/uber-research/CRISP
https://netflixtechblog.com/edgar-solving-mysteries-faster-with-observability-e1a76302c71f
https://netflixtechblog.com/edgar-solving-mysteries-faster-with-observability-e1a76302c71f
https://netflixtechblog.com/edgar-solving-mysteries-faster-with-observability-e1a76302c71f
https://eng.uber.com/schemaless-sql-database/
https://eng.uber.com/schemaless-sql-database/
https://eng.uber.com/logging/
https://en.wikipedia.org/wiki/Heat_map
https://en.wikipedia.org/wiki/Heat_map
https://www.jaegertracing.io/
https://en.wikipedia.org/wiki/Perf_(Linux)
https://en.wikipedia.org/wiki/Perf_(Linux)
https://eng.uber.com/fulfillment-platform-rearchitecture/
https://eng.uber.com/fulfillment-platform-rearchitecture/
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://blog.golang.org/pprof
https://blog.golang.org/pprof
https://opentelemetry.uptrace.dev/guide/sampling.html#introduction
https://opentelemetry.uptrace.dev/guide/sampling.html#introduction
https://flink.apache.org/
https://flink.apache.org/
https://www.bluematador.com/docs/troubleshooting/time-drift-ntp
https://www.bluematador.com/docs/troubleshooting/time-drift-ntp
https://www.bluematador.com/docs/troubleshooting/time-drift-ntp


[26] GAN, Y., LIANG, M., DEV, S., LO, D., AND DELIM-
ITROU, C. Sage: practical and scalable ML-driven
performance debugging in microservices. In Proceed-
ings of the 26th ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems (2021), pp. 135–151.

[27] GLUCK, A. Introducing Domain-Oriented Mi-
croservice Architecture). https://eng.uber.com/
microservice-architecture/.

[28] GOLDBERG, Y. Scaling Gilt: from Monolithic Ruby
Application to Distributed Scala Micro-Services Archi-
tecture. https://www.infoq.com/presentations/
scale-gilt.

[29] GRAHAM, S. L., KESSLER, P. B., AND MCKUSICK,
M. K. Gprof: A call graph execution profiler. In Pro-
ceedings of the 1982 SIGPLAN Symposium on Compiler
Construction (New York, NY, USA, 1982), SIGPLAN
’82, Association for Computing Machinery, p. 120–126.

[30] GREGG, B. Differential Flame Graphs.
https://www.brendangregg.com/blog/2014-
11-09/differential-flame-graphs.html.

[31] GREGG, B. The flame graph. Communications of the
ACM 59, 6 (2016), 48–57.

[32] HAQUE, M. E., HE, Y., ELNIKETY, S., NGUYEN, T. D.,
BIANCHINI, R., AND MCKINLEY, K. S. Exploiting
Heterogeneity for Tail Latency and Energy Efficiency. In
Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture (New York, NY, USA,
2017), MICRO-50 ’17, Association for Computing
Machinery, p. 625–638.

[33] KALDOR, J., MACE, J., BEJDA, M., GAO, E.,
KUROPATWA, W., O’NEILL, J., ONG, K. W.,
SCHALLER, B., SHAN, P., VISCOMI, B., ET AL.
Canopy: An end-to-end performance tracing and
analysis system. In Proceedings of the 26th Symposium
on Operating Systems Principles (2017), pp. 34–50.

[34] KANEV, S., DARAGO, J. P., HAZELWOOD, K.,
RANGANATHAN, P., MOSELEY, T., WEI, G.-Y., AND
BROOKS, D. Profiling a warehouse-scale computer. In
Proceedings of the 42nd Annual International Sympo-
sium on Computer Architecture (2015), pp. 158–169.

[35] KINGMA, D. P., AND WELLING, M. Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114
(2013).

[36] KRAMER, S. The Biggest Thing Amazon Got Right:
The Platform. https://gigaom.com/2011/10/12/
419-the-biggest-thing-amazon-got-right-
the-platform/, October 2011.

[37] KREPS, J., NARKHEDE, N., RAO, J., ET AL. Kafka:
A distributed messaging system for log processing. In
Proceedings of the NetDB (2011), vol. 11, pp. 1–7.

[38] LI, J., SHARMA, N. K., PORTS, D. R. K., AND
GRIBBLE, S. D. Tales of the Tail: Hardware, OS, and
Application-Level Sources of Tail Latency. In Pro-
ceedings of the ACM Symposium on Cloud Computing
(New York, NY, USA, 2014), SOCC ’14, Association
for Computing Machinery, p. 1–14.

[39] LIU, P., XU, H., OUYANG, Q., JIAO, R., CHEN,
Z., ZHANG, S., YANG, J., MO, L., ZENG, J., XUE,
W., ET AL. Unsupervised detection of microservice
trace anomalies through service-level deep bayesian
networks. In 2020 IEEE 31st International Symposium
on Software Reliability Engineering (ISSRE) (2020),
IEEE, pp. 48–58.

[40] LIU, X., MELLOR-CRUMMEY, J., AND FAGAN, M. A
New Approach for Performance Analysis of OpenMP
Programs. In Proceedings of the 27th International
ACM Conference on International Conference on
Supercomputing (New York, NY, USA, 2013), ICS ’13,
Association for Computing Machinery, p. 69–80.

[41] MACE, J., ROELKE, R., AND FONSECA, R. Pivot
tracing: Dynamic causal monitoring for distributed
systems. In Proceedings of the 25th Symposium on
Operating Systems Principles (2015), pp. 378–393.

[42] MARS, J., TANG, L., HUNDT, R., SKADRON, K., AND
SOFFA, M. L. Bubble-Up: Increasing Utilization in
Modern Warehouse Scale Computers via Sensible Co-
Locations. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture (New
York, NY, USA, 2011), MICRO-44, Association for
Computing Machinery, p. 248–259.

[43] MAURO, T. Adopting Microservices at Netflix:
Lessons for Architectural Design. https://
www.nginx.com/blog/microservices-at-netflix-
architectural-best-practices/, Feb 2015.

[44] MIRHOSSEINI, A., SRIRAMAN, A., AND WENISCH,
T. F. Enhancing Server Efficiency in the Face of Killer
Microseconds. In Proceedings of the 25th Interna-
tional Symposium on High-Performance Computer
Architecture (HPCA ’19) (2019), IEEE, pp. 185–198.

[45] NADAREISHVILI, I., MITRA, R., MCLARTY, M., AND
AMUNDSEN, M. Microservice Architecture: Aligning
Principles, Practices, and Culture, 1st ed. O’Reilly
Media, Inc., 2016.

[46] OPENTRACING DEVELOPERS. OpenTracing:
Span. https://opentracing.io/docs/overview/
spans/.

668    2022 USENIX Annual Technical Conference USENIX Association

https://eng.uber.com/microservice-architecture/
https://eng.uber.com/microservice-architecture/
https://www.infoq.com/presentations/scale-gilt
https://www.infoq.com/presentations/scale-gilt
https://www.brendangregg.com/blog/2014-11-09/differential-flame-graphs.html
https://www.brendangregg.com/blog/2014-11-09/differential-flame-graphs.html
https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform/
https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform/
https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://opentracing.io/docs/overview/spans/
https://opentracing.io/docs/overview/spans/


[47] OPENTRACING DEVELOPERS. OpenTracing: What
is Distributed Tracing? https://opentracing.io/
docs/overview/what-is-tracing/.

[48] QIU, H., BANERJEE, S. S., JHA, S., KALBARCZYK,
Z. T., AND IYER, R. K. FIRM: An Intelligent
Fine-grained Resource Management Framework for
SLO-Oriented Microservices. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 20) (2020), pp. 805–825.

[49] S V, S. Time drift monitoring: Troubles of un-
synchronized servers - site24x7 blog. https://
www.site24x7.com/blog/time-drift-monitoring-
troubles-of-unsynchronized-servers. (Ac-
cessed on 06/02/2022).

[50] SCHARDL, T. B., KUSZMAUL, B. C., LEE, I.-T. A.,
LEISERSON, W. M., AND LEISERSON, C. E. The
Cilkprof Scalability Profiler. In Proceedings of the 27th
ACM Symposium on Parallelism in Algorithms and
Architectures (New York, NY, USA, 2015), SPAA ’15,
Association for Computing Machinery, p. 89–100.

[51] SOHN, K., LEE, H., AND YAN, X. Learning structured
output representation using deep conditional generative
models. Advances in neural information processing
systems 28 (2015), 3483–3491.

[52] SRIRAMAN, A., DHANOTIA, A., AND WENISCH, T. F.
SoftSKU: Optimizing Server Architectures for Microser-
vice Diversity @Scale. In Proceedings of the 46th Inter-
national Symposium on Computer Architecture (2019),
Association for Computing Machinery, p. 513–526.

[53] SRIRAMAN, A., LIU, S., GUNBAY, S., SU, S., AND
WENISCH, T. F. Deconstructing the Tail at Scale Effect
Across Network Protocols. The Annual Workshop on
Duplicating, Deconstructing, and Debunking (2016).

[54] TALLENT, N. R., AND MELLOR-CRUMMEY, J. M.
Effective performance measurement and analysis of
multithreaded applications. In Proceedings of the 14th
ACM SIGPLAN symposium on Principles and practice
of parallel programming (2009), pp. 229–240.

[55] VENKATARAMANI, G., BUDIU, M., CHELCEA, T.,
AND GOLDSTEIN, S. C. Global critical path: A tool
for system-level timing analysis. In Proceedings of the
44th annual Design Automation Conference (2007),
pp. 783–786.

[56] VILLAMIZAR, M., GARCÉS, O., CASTRO, H., VE-
RANO, M., SALAMANCA, L., CASALLAS, R., AND
GIL, S. Evaluating the monolithic and the microservice
architecture pattern to deploy web applications in the
cloud. In 2015 10th Computing Colombian Conference
(10CCC) (2015), pp. 583–590.

[57] WESTFALL, P. H., AND YOUNG, S. S. Resampling-
based multiple testing: Examples and methods for
p-value adjustment, vol. 279. John Wiley & Sons, 1993.

[58] WIKIPEDIA. Clock drift. https://
en.wikipedia.org/wiki/Clock_drift.

[59] YANG, C.-Q., AND MILLER, B. Critical path analysis
for the execution of parallel and distributed programs. In
[1988] Proceedings. The 8th International Conference
on Distributed (1988), pp. 366–373.

[60] YANG, H., BRESLOW, A., MARS, J., AND TANG, L.
Bubble-Flux: Precise Online QoS Management for
Increased Utilization in Warehouse Scale Computers. In
Proceedings of the 40th Annual International Symposium
on Computer Architecture (New York, NY, USA, 2013),
ISCA ’13, Association for Computing Machinery,
p. 607–618.

[61] YASIN, A. A top-down method for performance analysis
and counters architecture. In 2014 IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS) (2014), IEEE, pp. 35–44.

[62] YOGA, A., AND NAGARAKATTE, S. Parallelism-centric
what-if and differential analyses. In Proceedings of the
40th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (2019), pp. 485–501.

[63] ZHANG, Y., MEISNER, D., MARS, J., AND TANG, L.
Treadmill: Attributing the Source of Tail Latency through
Precise Load Testing and Statistical Inference. In 2016
ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA) (2016), pp. 456–468.

[64] ZHAO, X., ZHANG, Y., LION, D., ULLAH, M. F., LUO,
Y., YUAN, D., AND STUMM, M. lprof: A non-intrusive
request flow profiler for distributed systems. In 11th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14) (2014), pp. 629–644.

USENIX Association 2022 USENIX Annual Technical Conference    669

https://opentracing.io/docs/overview/what-is-tracing/
https://opentracing.io/docs/overview/what-is-tracing/
https://www.site24x7.com/blog/time-drift-monitoring-troubles-of-unsynchronized-servers
https://www.site24x7.com/blog/time-drift-monitoring-troubles-of-unsynchronized-servers
https://www.site24x7.com/blog/time-drift-monitoring-troubles-of-unsynchronized-servers
https://en.wikipedia.org/wiki/Clock_drift
https://en.wikipedia.org/wiki/Clock_drift


A Violin Plot for Hardware Selection

Intel Xeon Silver 4214
@2.2GHz

Intel Xeon Silver 4214R
@2.4GHz

10

20

30

40

50

60

70

La
te

nc
y

Figure 21: Violin plots of the exclusive execution time of a critical
path operation with two different CPUs. The latency is in µs.

B Autoencoder Model Architecture

We choose the Deep Bayesian Network for anomaly detection
given it is capable of learning complex patterns from the
trace. We adopt the model from TraceAnomaly [39], which
is the state-of-the-art framework for microservice trace
based anomaly detection. Specifically, we adopt Variational
Auto-Encoder (VAE) [35] to model the distribution pattern
from the normal execution. VAE is an unsupervised learning
that does not require a label, which can be expensive to obtain
in our setting due to the volume of traces. Figure 22 depicts
the architecture of VAE. It has three components: encoder,
posterior flow, and decoder.

The encoder contains 1 hidden layer (hf(x)) to learn the hid-
den features of SCPV. The goal is to learn the mean µz(0) and the
standard deviation sz(0) of the SCPV. z(0) is sampled from diag-
onal Gaussian N (µz(0) ,sz(0)I) and served as the latent variable
to fit the distribution. e is a small constant vector that has been
introduced to avoid numerical issues during the training [39].
SoftPlus is defined as SoftPlus(x)= log(1+exp(x)).

For the next step, posterior flow allows the network to learn
more complex patterns of the trace. The input is z(0) and after
passing length of K flow it will become as z(K).

Then, z(K) will be passed into the decoder network to
extract hidden features. Similarly, the purpose of those hidden
features is to derive the mean µx and standard deviation sx of
the input trace vector. After that, the reconstructed x will be
sampled from N (µx,s2

xI)

C Inference

When a new trace is given, the log-likelihood value will be
computed against the model to detect whether the trace is
abnormal or not. If the trace x is significantly different than
the normal trace, the value of a trace log pq(x) is noticeably
smaller than the value of the normal traces. Instead of manually
setting the threshold of anomaly, we follow the work from
Liu et al. [39] and use Kernel Density Estimation (KDE) [22]
to learn the distribution of the normal traces log-likelihood.
Specifically, we adopt the p-value [57] approach and set the
value as 0.001 to check if the probability of the log-likelihood
value not following the learned distribution.

If the trace contains any unseen call chain, it will be
regarded as abnormal. Training is a continuous process since
the code evolves and the call paths keep changing over time.
We use a sliding window of last 14 days of trace to keep our
model up-to-date.

Trace 1 Trace 2 Trace n…

CRISP

SCPV 
X

Hidden Layers 
h�(x)

Linear SoftPlus + �

�z(0) �z(0)

z(0) z(1) z(2) …

Encoder

z(K)

Hidden Layers 
h�(Z)

Linear SoftPlus + �

�X �X

Reconstructed X

Decoder

Posterior flow

Figure 22: Architecture of neural network for anomaly detection.

670    2022 USENIX Annual Technical Conference USENIX Association



Artifact Appendix

Abstract

This artifact includes the script to utilize CRISP as we presented in the paper.

Scope

The artifact allows: top-down analysis, bottom-up analysis, and preprocessing

for anomaly detection. It does not come with any traces to analyze and those

traces need to be provided by the user.

Contents

It contains the implementation of CRISP with corresponding script to run the

analysis.

Hosting

The artifact is available at https://github.com/uber-research/CRISP under atc-
2022 branch.

Requirements

• Python3.6 is recommended to run the anomaly detection. Otherwise, any

python3 version should be fine.

• Git is also needed.

• ”git clone https://github.com/NetManAIOps/TraceAnomaly.git” is required

under the root directory in order to run anomaly detection.

Setup

• ”python3.6 -m pip install -r requirements.txt” to install the de-

pendency for CRISP.

• ”python3.6 -m pip install -r TraceAnomaly/requirements.txt” to
install the dependencies for TraceAnomaly.

• You may need to install protobuf if the requirements.txt doesn’t work in

TraceAnomaly by ”python3.6 -m pip install protobuf==3.12.4”.

• specify ”TRACE DIR” in ”bottom-up.sh”, ”top-down.sh”, and ”preprocess.sh”.

USENIX Association 2022 USENIX Annual Technical Conference    671

https://github.com/uber-research/CRISP


Top-down Analysis

Before running, you need to specify the input, output, serviceName, opera-

tionName, and processor number in top-down.sh. Make sure the output direc-

tory already existed. To run the analysis, simpling typing

mkdir top−down−r e s u l t

bash top−down . sh

By default, the script will use all processors to run. You can change the

processor number with ”--parallelism” knob in top-down.sh script.

The result will be in top-down-result folder. It will represent Figure 2,

Figure 11, and Figure 13 in the original paper. The number and shape won’t

be exactly the same given the trace and endpoints are di↵erent from the paper.

Specifically, flamegraph like Figure 2 is generated as flame-graph-P50.cct.svg,
flame-graph-P95.cct.svg, and flame-graph-P99.cct.svg. criticalPaths.html
is like the heatmap in Figure 11 and please open it in browser. The di↵erential

flamegraph like Figure 13 can be viewed in flame-graph-P50vsP95.cct.svg

Bottom-up Analysis

To use the artifact, run

bash bottom−up . sh

The figure will be generated under ”result-bottom-up/” folder, which looks

like Figure 13 ˜ Figure 20 from the paper.

Anomaly Detection

Data Preprocessing run ”bash preprocess.sh” to run generate the data

for anomaly detection. Note each training, normal, and abnormal data needs

to be parsed twice as it is shown in ”preprocess.sh”. The reasons is that we

need to know the total number of call path to generate the data.

Training Please refer to https://github.com/NetManAIOps/TraceAnomaly.

Result Parsing Please go back to root directory when parsing the results.

The trained model and the predicted results will be in ”TraceAnomaly/webankdata/”.
To parse the results, run ”python3.6 parse-rnvp.py -i path to rnvp file”.

672    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/NetManAIOps/TraceAnomaly


Whale: Efficient Giant Model Training over Heterogeneous GPUs

Xianyan Jia1, Le Jiang1, Ang Wang1, Wencong Xiao1, Ziji Shi12, Jie Zhang1,
Xinyuan Li1, Langshi Chen1, Yong Li1, Zhen Zheng1, Xiaoyong Liu1, Wei Lin1

1Alibaba Group 2National University of Singapore

Abstract
The scaling up of deep neural networks has been demon-

strated to be effective in improving model quality, but also
encompasses several training challenges in terms of train-
ing efficiency, programmability, and resource adaptability.
We present Whale, a general and efficient distributed train-
ing framework for giant models. To support various parallel
strategies and their hybrids, Whale generalizes the program-
ming interface by defining two new primitives in the form
of model annotations, allowing for incorporating user hints.
The Whale runtime utilizes those annotations and performs
graph optimizations to transform a local deep learning DAG
graph for distributed multi-GPU execution. Whale further
introduces a novel hardware-aware parallel strategy, which
improves the performance of model training on heterogeneous
GPUs in a balanced manner. Deployed in a production cluster
with 512 GPUs, Whale successfully trains an industry-scale
multimodal model with over ten trillion model parameters,
named M6, demonstrating great scalability and efficiency.

1 Introduction

The training of large-scale deep learning (DL) models has
been extensively adopted in various fields, including computer
vision [15, 30], natural language understanding [8, 35, 43, 44],
machine translation [17, 26], and others. The scale of the
model parameters has increased from millions to trillions, sig-
nificantly improving model quality [8, 24], but this has come
at the cost of considerable efforts to efficiently distribute the
model across GPUs. The commonly used data parallelism
(DP) strategy is a poor fit, since it requires the model replicas
in GPUs perform gradient synchronization proportional to the
model parameter size for every mini-batch, thus easily becom-
ing a bottleneck for giant models. Moreover, training trillions
of model parameters requires terabytes of GPU memory at
the minimum, which is far beyond the capacity of a single
GPU.

To address the aforementioned challenges, a series of new
parallel strategies in training DL models have been pro-

posed, including model parallelism (MP) [25], pipeline par-
allelism [20, 32], etc. For example, differing from the DP
approach where each GPU maintains a model replica, MP
partitions model parameters into multiple GPUs, avoiding gra-
dient synchronization but instead letting tensors flow across
GPUs.

Despite such advancements, new parallel strategies also
introduce additional challenges. First, different components
of a model might require different parallel strategies. Consider
a large-scale image classification task with 100K classes,
where the model is composed of ResNet50 [19] for feature
extraction and Fully-Connected (FC) layer for classification.
The parameter size of ResNet50 is 90 MB, and the parameter
size of FC is 782 MB. If DP is applied to the whole model, the
gradient synchronization of FC will become the bottleneck.
One better solution is to apply DP to ResNet50 and apply
MP to FC (Section 2.3). As a result, the synchronization
overhead can be reduced by 89.7%, thereby achieving better
performance [25].

Additionally, using those advanced parallel strategies in-
creases user efforts significantly. To apply DP in distributed
model training, model developers only need to program the
model for one GPU and annotate a few lines, and DL frame-
works can replicate the execution plan among multiple GPUs
automatically [27]. However, adopting advanced parallelism
strategies might make different GPUs process different parti-
tions of the model execution plan, which is difficult to achieve
automatically and efficiently [23,46]. Therefore, significant ef-
forts are required for users to manually place computation op-
erators, coordinate pipeline among mini-batches, implement
equivalent distributed operators, and control computation-
communication overlapping, etc. [26, 38, 41, 43]. Such an
approach exposes low-level system abstractions and requires
users to understand system implementation details when pro-
gramming the models, which greatly increases the amount of
user effort.

Further, the training of giant models requires huge com-
puting resources. In industry, the scheduling of hundreds of
homogeneous high-end GPUs usually requires a long queuing

USENIX Association 2022 USENIX Annual Technical Conference    673



time. Meanwhile, heterogeneous GPUs can be obtained much
easier (e.g., a mixture of P100 [2] and V100 [3]) [21,47]. But
training with heterogeneous GPUs efficiently is even more
difficult, since both the computing units and the memory ca-
pacity of GPUs need to be considered when building the
model. In addition, due to the dynamic scheduling of GPUs,
users are unaware of the hardware specification when building
their models, which brings a gap between model development
and the hardware environment.

We propose Whale, a deep learning framework designed for
training giant models. Unlike the aforementioned approaches
in which the efficient model partitions are searched automat-
ically or low-level system abstractions and implementation
details are exposed to users, we argue that deep learning frame-
works should offer high-level abstractions properly to support
complicated parallel strategies by utilizing user hints, espe-
cially when considering the usage of heterogeneous GPU re-
sources. Guided by this principle, Whale strikes a balance by
extending two necessary primitives on top of TensorFlow [7].
Through annotating a local DL model with those primitives,
Whale supports all existing parallel strategies and their com-
binations, which is achieved by automatically rewriting the
deep learning execution graph. This design choice decouples
the parallel strategies from model code, and lowers them into
dataflow graphs, which not only reduces user efforts but also
enables graph optimizations and resources-aware optimiza-
tions for efficiency and scalability. In this way, Whale eases
users from the complicated execution details of giant model
training, such as scheduling parallel executions on multiple de-
vices, and balancing computation workload among heteroge-
neous GPUs. Moreover, Whale introduces a hardware-aware
load balancing algorithm when generating a distributed execu-
tion plan, which bridges the gap between model development
and the heterogeneous runtime environment.

We summarize the key contributions of Whale as follows:

1. For carefully balancing user efforts and distributed graph
optimization requirements, Whale introduces two new
high-level primitives to express all existing parallel
strategies as well as their hybrids.

2. By utilizing the annotations for graph optimization,
Whale can transform local models into distributed mod-
els, and train them on multiple GPUs efficiently and
automatically.

3. Whale proposes a hardware-aware load balancing al-
gorithm, which is seamlessly integrated with parallel
strategies to accelerate training on heterogeneous GPUs.

4. Whale demonstrates its capabilities by setting a new
milestone in training the largest multi-modality pre-
trained model M6 [28] with ten trillion model parame-
ters, which requires only four lines of code change to
scale the model and run on 512 NVIDIA V100M32
GPUs (Section 5.3.2).

Whale has been deployed as a production system for large-
scale deep learning training at Alibaba. Using heterogeneous
GPUs, further speedup of Bert-Large [13], Resnet50 [19],
and GNMT [48] from 1.2x to 1.4x can be achieved owing
to the hardware-aware load balancing algorithm in Whale.
Whale also demonstrates its capabilities in the training of
industry-scale models. With only four-line changes to a local
model, Whale can train a Multi-Modality to Multi-Modality
Multitask Mega-transformer model with 10 billion parameters
(M6-10B) on 256 NVIDIA V100 GPUs (32GB), achieving
91% throughput in scalability. What’s more, Whale scales
to ten trillion parameters in model training of M6-10T using
tensor model parallelism on 512 V100 GPUs (32GB), setting
a new milestone in large-scale deep learning model training.

2 Background and Motivation

In this section, we first recap the background of distributed
DL model training, especially the parallel strategies for large
model training. We then present the importance and the chal-
lenges of utilizing heterogeneous GPU resources. Finally, we
discuss the gaps and opportunities among existing approaches
to motivate the design of a new training framework.

2.1 Parallel Strategies

Deep learning training often consists of millions of iterations,
referred to as mini-batches. A typical mini-batch includes
several phases to process data for model updating. Firstly, the
training data is fed into the model layer-by-layer to calculate
a set of scores, known as a forward pass. Secondly, a training
loss is calculated between the produced scores and desired
scores, which is then utilized to compute gradients for model
parameters, referred to as a backward pass. Finally, the gra-
dients scaled by a learning rate are used to update the model
parameters and optimizer states.

Data parallelism. Scaling to multiple GPUs, data paral-
lelism is a commonly adopted strategy where each worker
holds a full model replica to process different training data
independently. During the backward pass of every mini-batch,
the gradients are averaged through worker synchronization.
Therefore, the amount of communication is proportional to
the model parameter size.

Pipeline Parallelism. As shown in Figure 1, a DL model
is partitioned into two modules, i.e., M0 and M1 (which are
also named pipeline stages), which are placed on 2 GPUs
respectively. The training data of a mini-batch is split into
two smaller micro-batches. In particular, GPU0 starts with
the forward of the 1st micro-batch on M0, and then it switches
to process the forward of the 2nd micro-batch while sending

674    2022 USENIX Annual Technical Conference USENIX Association



timeline 

M1

GPU1

M0

GPU0
F0 F1 B0 B1

F0 F1B0 B1

Figure 1: Pipeline parallelism
of 2 micro-batches on 2 GPUs.

AllGather

Local

Split

GPU0 GPU1

Figure 2: Tensor model paral-
lelism for matmul on 2 GPUs.

GPU1

Input

ResNet50

FC

Softmax

Input0

ResNet50 
replica0

Input1

ResNet50 
replica1

FC shard0 FC shard1

Softmax 
shard0

Softmax 
shard1

GPU0 GPU1

GPU0

(a) Local Model (b) Distributed Model

[bs, 100K]

Fe
at

ur
e

C
la

ss
ifi

ca
tio

n

Figure 3: Hybrid parallelism
for image classification.

V100

T4

Sync
SyncIdle GPU cycle

V100

T4

Sync
Sync

timeline

(a) Naïve DP with identical batch size

(b) Hardware-aware DP with load balance

Figure 4: Data parallelism on
heterogeneous GPUs

the output of the 1st micro-batch to GPU1. After GPU1 fin-
ishes processing forward and backward of the 1st micro-batch
on M1, GPU0 continues to calculate the backward pass for
M0 after receiving the backward output of M1 from GPU1.
Therefore, micro-batches are pipelined among GPUs, which
requires the runtime system to balance the load and overlap
computation and communication carefully [16, 20, 32, 54].
The model parallelism [11,12] can be treated as a special case
of pipeline parallelism with only one micro-batch.

Tensor Model Parallelism. With the growing model size,
to process DL operators beyond the memory capacity of the
GPU, or to avoid significant communication overhead across
model replicas, an operator (or several operators) might be
split over multiple GPUs. The tensor model parallelism strat-
egy partitions the input/output tensors and requires an equiv-
alent distributed implementation for the corresponding op-
erator. For example, Figure 2 illustrates the tensor model
parallelism strategy for a matmul operator (i.e., matrix multi-
plication) using 2 GPUs. A matmul operator can be replaced
by two matmul operators, wherein each operator is responsi-
ble for half of the original computation. An extra all-gather
operation is required to merge the distributed results.

In selecting a proper parallel strategy for model training,
both model properties and resources need to be considered.
For example, transformer [44] is an important model in natu-
ral language understanding, which can be trained efficiently
using pipeline parallelism on a few GPUs (e.g., 8 V100 GPUs
with NVLINK [4]). However, pipeline parallelism does not
scale well with more GPUs (e.g., 64 V100 GPUs). Given more
GPUs, each training worker is allocated with fewer operators,
of which the GPU computation is not sufficient enough to
overlap with the inter-worker communication cost, resulting
in poor performance. Therefore, a better solution is to apply
hybrid parallelism, where model partitions can be applied
with different parallel strategies in combination, and parallel
strategies can be nested. Particularly, for the training of a
transformer model on 64 GPUs, the model parameters can
be partitioned into 8 GPUs using a pipeline strategy, and ap-
ply model replica synchronization among 8 pipelined groups
using nested data parallelism. Moreover, different parallel
strategies can also apply to different model partitions for a hy-

brid. As an example, a large-scale image classification model
(i.e., 100K categories) consists of the image feature extraction
partition and the classification partition. The image feature ex-
traction partition requires a significant amount of computation
on fewer model parameters. Conversely, the classification par-
tition includes low-computation fully-connected and softmax
layers, which are often 10x larger in model size compared
to that of image feature extraction. Therefore, adopting a ho-
mogeneous parallel strategy will hinder the performance of
either partitions. Figure 3 illustrates a better hybrid parallelism
approach, in which data parallelism is applied for features
extraction partition, tensor model parallelism is adopted for
classification partition, and the two are connected.

2.2 Heterogeneity in GPU Clusters
Training a giant model is considerably resource-intensive [17,
33]. Moreover, distributed model training often requires re-
sources to arrive at the same time (i.e., gang schedule [21,50]).
In industry, the shared cluster for giant model training is usu-
ally mixed with various types of GPUs (e.g., V100, P100, and
T4) for both model training and inference [47]. Training gi-
ant models over heterogeneous GPUs lowers the difficulty of
collecting all required GPUs (e.g., hundreds or thousands of
GPUs) simultaneously, therefore speeding up the model explo-
ration and experiments. However, deep learning frameworks
encounter challenges in efficiently utilizing heterogeneous
resources. Different types of GPUs are different in terms
of GPU memory capacity (e.g., 16GB for P100 and 32GB
for V100) and GPU computing capability, which natively in-
troduces an imbalance in computational graph partition and
deep learning operator allocation. Figure 4 illustrates train-
ing a model using data parallelism on two heterogeneous
GPUs, i.e., V100 and T4. The V100 training worker com-
pletes forward and backward faster when training samples are
allocated evenly, thereby leaving idle GPU cycles before gra-
dient synchronization at the end of every mini-batch. Through
the awareness of hardware when dynamically generating an
execution plan, Whale allocates more training samples (i.e.,
batch-size=4) for V100 and the rest of 2 samples for T4 to
eliminate the idle waiting time. Combined with advanced
parallel strategies and the hybrids over heterogeneous GPUs,
different GPU memory capacities and capabilities need to

USENIX Association 2022 USENIX Annual Technical Conference    675



be further considered when partitioning the model for effi-
cient overlapping, which is a complex process (Section 3.3).
Model developers can hardly consider all resources issues
when programming, and we argue that developers should not
have to. A better approach for a general deep learning frame-
work would be automatically generating the execution plan
for heterogeneous resources adaptively.

2.3 Gaps and Opportunities

Recent approaches [20, 26, 38, 41, 43] have been proposed for
giant model training, however, with limitations as a general
DL framework. Firstly, they only support a small number of
parallel strategies, which lack a unified abstraction to support
all of the parallel strategies and the hybrids thereof. Secondly,
significant efforts are required in code modifications to utilize
the advanced parallel strategies, compared with local model
training and DP approach. Mesh-tensorflow [41] requires the
re-implementation of DL operators in a distributed manner.
Megatron [43], GPipe [20], DeepSpeed [38], and GShard [26]
require user code refactoring using the exposed low-level
system primitives or a deep understanding for the implemen-
tation of parallel strategies. Thirdly, automatically parallel
strategy searching is time-consuming for giant models. Al-
though Tofu [46] and SOAP [23] accomplish model parti-
tioning and replication automatically through computational
graph analysis, the search-based graph optimization approach
has high computational complexity, which is further positively
associated with the number of model operators (e.g., hundreds
of thousands of operators for GPT3 [8]) and allocated GPUs
(e.g., hundreds or thousands), making such an approach im-
practical when applying to giant model training. Finally, due
to the heterogeneity in both GPU computing capability and
memory, parallel strategies should be used adaptively and
dynamically.

There are significant gaps in supporting giant model train-
ing using existing DL frameworks. Exposing low-level inter-
faces dramatically increases user burden and limits system
optimization opportunities. Users need to understand the im-
plementation details of distributed operators and handle the
overlapping of computation with communication, which is
hard for model developers. Using a low-level approach tightly
couples model code to a specific parallel strategy, which re-
quires code rewriting completely when switching between
parallel strategies (i.e., from pipeline parallelism to tensor
model parallelism). More constraints are introduced to model
algorithm innovations, because the efforts of implementing a
new module correctly in hybrid strategies are not trivial, let
alone consider the performance factors such as load balancing
and overlapping. From the system aspect, seeking a better
parallel strategy or a combination using existing ones also
requires rewriting user code, demanding a deep understanding
of the DL model.

To address the aforementioned challenges, Whale explores

a new approach that supports various parallel strategies while
minimizing user code modifications. By introducing new uni-
fied primitives, users can focus on implementing the model
algorithm itself, while switching among various parallel strate-
gies by simply changing the annotations. Whale runtime uti-
lizes the user annotations as hints to select parallel strategies
at best effort with automatic graph optimization under a lim-
ited search scope. Whale further considers heterogeneous
hardware capabilities using a balanced algorithm, making
resource heterogeneity transparent to users.

3 Design

In this section, we first introduce key abstractions and parallel
primitives which can express flexible parallelism strategies
with easy programming API (Section 3.1). Then, we describe
our parallel planner that transforms a local model with parallel
primitives into a distributed model, through partitioning Task-
Graphs, inserting bridge layers to connect hybrid strategies,
and placing TaskGraphs on distributed devices (Section 3.2).
In the end, we propose a hardware-aware load balance al-
gorithm to speed up the training with heterogeneous GPU
clusters (Section 3.3).

3.1 Abstraction
3.1.1 Internal Key Concepts

Deep learning frameworks such as TensorFlow [7] provide
low-level APIs for distributed computing, but is short of ab-
stractions to represent advanced parallel strategies such as
pipeline. The lack of proper abstractions makes it challeng-
ing in the understanding and implementation of complicated
strategies in a unified way. Additionally, placing model oper-
ations to physical devices properly is challenging for compli-
cated hybrid parallel strategies, especially in heterogeneous
GPU clusters. Whale introduces two internal key concepts,
i.e., TaskGraph and VirtualDevice. TaskGraph is used to mod-
ularize operations for applying a parallel strategy. VirtualDe-
vice hides the complexity of mapping operations to physical
devices. The two concepts are abstractions of internal system
design and are not exposed to users.

TaskGraph(TG) is a subset of the model for parallel trans-
formation and execution. One model can have one or more
non-overlapping TaskGraphs. We can apply parallel strate-
gies to each TaskGraph. By modularizing model operations
into TaskGraphs, Whale can apply different strategies to dif-
ferent model parts, as well as scheduling the execution of
TaskGraphs in a pipeline. A TaskGraph can be further repli-
cated or partitioned. For example, in data parallelism, the
whole model is a TaskGraph, which can be replicated to mul-
tiple devices. In pipeline parallelism, one pipeline stage is
a TaskGraph. In tensor model parallelism, we can shard the
TaskGraph into multiple submodules for parallelism.

676    2022 USENIX Annual Technical Conference USENIX Association



import whale as wh
wh.init(wh.Config({

"num_micro_batch": 8}))
with wh.replicate(1):

model_stage1()
with wh.replicate(1):

model_stage2()

Example 1: Pipeline with 2
TaskGraphs

import whale as wh
wh.init()
with wh.replicate(total_gpu):

features = ResNet50(inputs)
with wh.split(total_gpu):

logits = FC(features)
predictions = Softmax(logits)

Example 2: Hybrid of replicate
and split

VirtualDevice (VD) is the logical representation of com-
puting resources, with one VirtualDevice having one or more
physical devices. VirtualDevice hides the complexity of de-
vice topology, computing capacity as well as device placement
from users. One VirtualDevice is assigned to one TaskGraph.
Different VirtualDevices are allowed to have different or the
same physical devices. For example, VD0 contains physical
devices GPU0 and GPU1, VD1 contains physical devices
GPU2 and GPU3 (different from VD0), and VD2 contains
physical devices GPU0 and GPU1 (the same as VD0).

3.1.2 Parallel Primitives

The parallel primitive is a Python context manager, where
operations defined under it are modularized as one TaskGraph.
Each parallel primitive has to be configured with a parameter
device_count, which is used to generate a VirtualDevice by
mapping the device_count number of physical devices. Whale
allows users to suggest parallel strategies with two unified
primitives, i.e., replicate and split. The two primitives can
express all existing parallel strategies, as well as a hybrid of
them [20, 25, 26, 32, 43].

replicate(device_count) annotates a TaskGraph to be repli-
cated. device_count is the number of devices used to compute
the TaskGraph replicas. If device_count is not set, Whale al-
locates a TaskGraph replica per device. If a TaskGraph is
annotated with replicate(2), it is replicated to 2 devices, with
each TaskGraph replica consuming half of the mini-batch.
Thus the mini-batch size for one model replica is kept un-
changed.

split(device_count) annotates a TaskGraph to apply intra-
tensor sharding. The device_count denotes the number of
partitions to be sharded. Each sharded partition is placed on
one device. For example, split(2) shards the TaskGraph into
2 partitions and placed on 2 devices respectively.

The parallel primitives can be used in combination to ap-
ply different parallel strategies to different partitions of the
model. Additionally, Whale also provides JSON Config API
to enable system optimizations. The config auto_parallel is
used to enable automatic TaskGraph partitioning given a pro-
vided partition number num_task_graph, which further eases
the programming for users and is necessary for hardware-
aware optimization when resource allocation is dynamic (Sec-
tion 3.3). In Whale, pipeline parallelism is viewed as an ef-
ficient inter-TaskGraph execution strategy. Whale uses the

Bridge

legend: pipeline excution sync gradients device mapping

VD1 VD2

GPU0 GPU1 GPU2 GPU3

Bridge

GPU4 GPU5 GPU6 GPU7

GPU0
GPU1

G
PU

2

G
PU

3

G
PU

6

G
PU

7

GPU4TG1
GPU5

TG2

M2
M1

TG2

TG1

with replicate(2):

with split(2):
Local Model

(a) Parallel primitive annotation

(b) Virtual device generation (c) Parallel plan Generation

Figure 5: Whale Overview

config num_micro_batch to enable efficient pipeline paral-
lelism among TaskGraphs when the value is greater than 1.
In this way, Whale decouples the generation of TaskGraph
from the choice of pipeline parallelism strategies [16, 20, 32].
The system can easily extend to incorporate more pipeline
strategies (e.g., swap the execution order of B0 and F1 for
M1 in Figure 1).

Besides the combination of parallel strategies or pipeline
parallelism, Whale further supports nested data parallelism
to the whole parallelized model. Nested data parallelism is
enabled automatically when the number of available devices
is times of total devices requested by TaskGraphs.

Example 1 shows an example of pipeline parallelism with
two TaskGraphs, with each TaskGraph being configured with
1 device. The pipeline parallelism is enabled by configuring
the pipeline.num_micro_batch to 8. The total device number
of the two TaskGraphs is summed to 2. If the available device
number is 8, which is 4 times of total device number, Whale
will apply a nested 4-degree data parallelism beyond the
pipeline. In contrast, when using two available devices, it is a
pure pipeline. Example 2 shows a hybrid strategy that repli-
cates ResNet50 feature part while splitting the classi f ication
model part for the example in Figure 3.

wh.init(wh.Config({"num_task_graph":2,
"num_micro_batch":4,"auto_parallel":True}))

model_def()

Example 3: Auto pipeline

Example 3 shows an automatic pipeline example with two
TaskGraphs. When auto_parallel is enabled, Whale will par-
tition the model into TaskGraphs automatically according
to the computing resource capacity and the model structure.
(Section 3.3)

3.2 Parallel Planner
The parallel planner is responsible for producing an efficient
parallel execution plan, which is the core of Whale runtime.
Figure 5 shows an overview of the parallel planner. The work-
flow can be described as follows: (a) The parallel planner
takes a local model with optional user annotations, computing

USENIX Association 2022 USENIX Annual Technical Conference    677



resources, and optional configs as inputs. The model hyperpa-
rameters (e.g., batch size and learning rate), and computing
resources (e.g., #GPU and #worker) are decided by the users
manually, while the parallel primitive annotations and con-
figs (e.g., num_task_graph and num_micro_batch) could be
either be manual or decided by Whale automatically; (b) the
VirtualDevices are generated given computing resources and
optional annotations automatically (Section 3.2.1); and (c)
the model is partitioned into TaskGraphs, and the TaskGraph
is further partitioned internally if split is annotated. Since we
allow applying different strategies to different TaskGraphs,
there may exist an input/output mismatch among TaskGraphs.
In such case, the planner will insert the corresponding bridge
layer automatically between two TaskGraphs (Section 3.2.3).

3.2.1 Virtual Device Generation

VirtualDevices are generated given the number of devices
required by each TaskGraph. Given K requested physical
devices GPU0,GPU1, ...,GPUK and a model with N Task-
Graphs, with corresponding device number d1,d2, ...dN . For
the ith TaskGraph, Whale will generate a VirtualDevice with
di number of physical devices. The physical devices are taken
sequentially for each VirtualDevice. As mentioned in Sec-
tion 3.1.2, when the available device number K is divisible
by the total number of devices requested by all TaskGraphs
∑

N
i di, Whale will apply a nested DP of K

∑
N
i di

-degree to the
whole model. In such case, we also replicate the correspond-
ing VirtualDevice for TaskGraph replica. By default, devices
are not shared among TaskGraphs. Sharing can be enabled
to improve training performance in certain model sharding
cases by setting cluster configuration1. Whale prefers to place
one model replica (with one or more TaskGraphs) within a
node, and replicates the model replicas across nodes. Ad-
vanced behaviors such as placing TaskGraph replicas within
a node to utilize NVLINK for AllReduce communication can
be achieved by setting the aforementioned configuration. For
example, as shown in Figure 5, there are two TaskGraphs, and
each TaskGraph requests 2 GPUs. Two VirtualDevices VD1
and VD2 are generated for two TaskGraphs. VD1 contains
GPU0 and GPU1, and VD2 contains GPU2 and GPU3. As
the number of available GPUs is 8, which is divisible by the to-
tal GPU number of TaskGraphs 4, a replica of VirtualDevices
can be generated but with different physical devices.

3.2.2 TaskGraph Partitioning

Whale first partitions a model into TaskGraphs, either by us-
ing explicit annotations or automatic system partitioning. If a
user annotation is given, operations defined within certain par-
allel primitive annotation compose a TaskGraph. Otherwise,
the system generates TaskGraphs based on the given config

1https://easyparallellibrary.readthedocs.io/en/latest/
api/config.html#clusterconfiguration

ShardingUnit: MatMul

AllReduce

Input ShardingInfo {[0, 0], [0, 1]}

Input ShardingInfo {[0, 1], [1, 0]}

SP1

SP2

Figure 6: Sharding pattern example for MatMul. One
ShardingUnit can map to multiple sharding patterns.

parameter num_task_graph and hardware information. The
details of the hardware-aware model partitioning is described
in Section 3.3.

If a TaskGraph is annotated with split(k), Whale will au-
tomatically partition it by matching and replacing sharding
patterns with a distributed implementation. Before describ-
ing the sharding pattern, we introduce two terminologies for
tensor model parallelism: 1) ShardingUnit is a basic unit for
sharding, and can be an operation or a layer with multiple
operations; and 2) ShardingInfo is the tensor sharding infor-
mation, and is represented as a list [s0,s1, ...,sn] given a tensor
with n dimensions, where si represents whether to split the
ith dimension, 1 means true and 0 means false. For example,
given a tensor with shape [6,4], the ShardingInfo [0,1] indi-
cates splitting in the second tensor dimension, whereas [1,1]
indicates splitting in both dimensions. A sharding pattern(SP)
is a mapping from a ShardingUnit and input ShardingInfo
to its distributed implementations. For example, Figure 6
shows two sharding patterns SP1 and SP2 with different input
ShardingInfo for ShardingUnit MatMul.

To partition the TaskGraph, Whale first groups the oper-
ations in the split TaskGraph into multiple ShardingUnits
by hooking TensorFlow ops API2. The TaskGraph sharding
process starts by matching ShardingUnits to the predefined
sharding patterns in a topology order. A pattern is matched by
a ShardingUnit and input ShardingInfos. If multiple patterns
are matched, the pattern with a smaller communication cost is
selected. Whale replaces the matched pattern of the original
ShardingUnit with its distributed implementation.

3.2.3 Bridge Layer

When applying different parallel strategies to different Task-
Graphs, the input/output tensor number and shape may change
due to different parallelism degrees or different parallel strate-
gies, thereby resulting in a mismatch of input/output tensor
shapes among TaskGraphs. To address the mismatch, Whale
proposes a bridge layer to gather the distributed tensors and
feed them to the next TaskGraph.

2TensorFlow Ops: https://github.com/tensorflow/tensorflow/
tree/r1.15/tensorflow/python/ops

678    2022 USENIX Annual Technical Conference USENIX Association

https://easyparallellibrary.readthedocs.io/en/latest/api/config.html#clusterconfiguration
https://easyparallellibrary.readthedocs.io/en/latest/api/config.html#clusterconfiguration
https://github.com/tensorflow/tensorflow/tree/r1.15/tensorflow/python/ops
https://github.com/tensorflow/tensorflow/tree/r1.15/tensorflow/python/ops


(a) replicate bridge

Gather 
(3, batch_dim)

Gather 
(3, split_dim)

(b) split bridge

Figure 7: Bridge patterns.

Whale designs two bridge patterns for replicate and split
respectively, as shown in Figure 7. For replicate, the Task-
Graph is replicated to N devices, with different input batches.
The bridge layer gathers the outputs from different batches
for concatenation in batch dimension batch_dim. For split,
the outputs of TaskGraph are partitioned in split dimension
split_dim. The bridge layer gathers TaskGraph outputs for
concatenation in split_dim. By using the bridge layer, each
TaskGraph can obtain a complete input tensor. If the gather
dimension of the bridge layer is the same as the successor
TaskGraph input partition dimension, Whale will optimize
by fusing the aforementioned two operations to reduce the
communication overhead. As an example, if the outputs of
the TaskGraph are gathered in the first dimension, and the
inputs of the successor TaskGraph are partitioned in the same
dimension, then Whale will remove the above gather and
partition operations.

3.3 Hardware-aware Load Balance
In this section, we describe how we utilize the hardware infor-
mation to balance the workloads among TaskGraphs, which
achieves high performance even in heterogeneous GPU clus-
ters. The Whale parallel planner obtains the hardware infor-
mation from the cluster scheduler when the training job is
launched, and is responsible for both intra-TaskGraph and
inter-TaskGraph load balancing.

3.3.1 Intra-TaskGraph Load Balance

When the allocated devices are homogeneous, by default
Whale distributes the workloads within a TaskGraph to multi-
ple devices evenly. However, when allocated with heteroge-
neous GPUs with different computing capacities (e.g., V100
and P100), the aforementioned identical distribution effec-
tuates suboptimal performance. Such performance can be
attributed to a synchronization barrier at the end of Task-
Graph execution, which leads to long idle GPU time for the
faster GPU, as shown in Figure 4(a). To improve the over-
all utilization of heterogeneous GPUs, we need to balance
the computing according to the device’s computing capacity.
The intra-TaskGraph load balance attempts to minimize the
idle time within a TaskGraph, which is achieved by balanc-
ing the workloads proportional to device computing capacity
while being subject to memory constraints. For a TaskGraph
annotated with replicate, Whale balances the workload by
adjusting the batch size for each TaskGraph replica. The local
batch size on heterogeneous devices might differ due to the
load balancing strategy (Whale keeps the global batch size

unchanged). If batch-sensitive operators such as BatchNorm
exist, the local batch differences might have statistical effects.
Yet, no users suffered convergence issues in our experiments
or in our production deployment, which is probably due to
the robustness of DL. Besides, techniques like SyncBatch-
Normaliazaion3 might help. For a TaskGraph annotated with
split, Whale balances the FLOP of a partitioned operation
through uneven sharding in splitting dimension among multi-
ple devices.

We profile the TaskGraph T G on single-precision floating-
point operations(FLOP) as T G f lop and peak memory con-
sumption as T Gmem. Given N GPUs, we collect the infor-
mation for device i including the single-precision FLOP per
second as DFi and memory capacity as DMi. Assuming the
partitioned load ratio on the device i is Li, we need to find
a solution that minimizes the overall GPU waste, which is
formulated in Formula 1. We try to minimize the ratio of the
computational load of the actual model for each device Li
and the ratio of the computing capacity of the device over the
total cluster computing capacity DFi/∑

N
i=0 DFi, the maximum

workload being bounded by the device memory capacity DMi.

min
N

∑
i

∥∥∥∥∥Li −
DFi

∑
N
i=0 DFi

∥∥∥∥∥
s.t.

N

∑
i=0

Li = 1; Li ∗T Gmem <= DMi,(i = 1,2, ...,N)

(1)

The load ratio Li in each device is initialized in propor-
tional to the device’s computing capacity, which ideally re-
sults in a most balanced partition. However, when the memory
constraint is not satisfied, we need to adjust the load alloca-
tion to avoid out-of-memory (OOM) errors, while still trying
to achieve good performance. Whale proposes a memory-
constraint balancing algorithm to balance the workloads
among devices. The main idea of the algorithm is to shift the
workload from the memory-overload device to a memory-free
device with the lowest computation load. The details of the
algorithm are illustrated in Algorithm 1. It takes a TaskGraph
T G and VirtualDevice with N physical devices as inputs. The
algorithm first initializes (line 3-10) the profiling results in-
cluding 1) load_ratios as the workload ratios of devices; 2)
mem_utils as the memory utilization of devices; 3) f lop_utils
as the FLOP utilization of devices; 4) oom_devices records
out of memory devices whose value in mem_utils is greater
than 1; and 5) f ree_devices records devices that have free
memory space. The algorithm then iteratively shifts the load
from a memory-overload device to a memory-available de-
vice (line 11-18). It first finds a peak_device with maxi-
mum memory utilization from oom_devices, then it finds a
valley_device with available memory space and the lowest

3https://www.tensorflow.org/api_docs/python/tf/keras/
layers/experimental/SyncBatchNormalization

USENIX Association 2022 USENIX Annual Technical Conference    679

https://www.tensorflow.org/api_docs/python/tf/keras/layers/experimental/SyncBatchNor malization
https://www.tensorflow.org/api_docs/python/tf/keras/layers/experimental/SyncBatchNor malization


Algorithm 1: Memory-Constraint Load Balancing
Input: TaskGraph T G,VirtualDevice(N)

1 load_ratios = /0; mem_utils = /0 ; f lop_utils = /0

2 oom_devices = /0 ; f ree_devices = /0

3 foreach i ∈ 0...N do
4 load_ratios[i] = DFi

∑
N
i=0 DFi

5 mem_utils[i] = load_ratios[i]∗T Gmem
DMi

6 f lop_utils[i] = load_ratios[i]∗T G f lop
DFi

7 if mem_utils[i]> 1 then
8 oom_devices.append(i)

9 else
10 f ree_devices.append(i)

11 while oom_devices ̸= /0 & f ree_devices ̸= /0 do
12 peak_device = argmax(oom_devices,key = mem_utils)
13 valley_device = argmin( f ree_devices,key =

( f lop_utils,mem_utils))
14 if shi f t_load(peak_device,valley_device) == success

then
15 update_pro f ile(mem_utils, f lop_utils)
16 oom_devices.pop(peak_device)

17 else
18 f ree_devices.pop(valley_device)

Other Memory
Consumption

MB FWD Activation

Other Memory 
Consumption

MB FWD Activation

M
em

or
y

TaskGraph0
V100 32GB

TaskGraph1 
P100 16GB

MB FWD Activation

Figure 8: Pipeline TaskGraphs on heterogeneous GPUs

FLOP utilization. The shi f t_load function attempts to shift
the workload from a peak_device to a valley_device. For data
parallelism, the batch size in the peak_device is decreased
by b, and the batch size in the valley_device is increased by
b. b is the maximum number that the valley_device will not
go OOM after getting the load from the peak_device. The
profiling information for each device is updated after a suc-
cessful workload shift is found. The aforementioned process
iterates until the oom_devices are empty or the f ree_devices
are empty.

3.3.2 Inter-TaskGraph Load Balance

When multiple TaskGraphs are executed in a pipeline, we
need to balance the inter-TaskGraph workloads on hetero-
geneous GPUs. As we introduced in Section 2.1, pipeline
parallelism achieves efficient execution by interleaving for-
ward/backward execution among multiple micro-batches. For
a model with N TaskGraphs, the ith TaskGraph needs to cache
N − i forward activations [32]. Notably, ith TaskGraph has to

cache one more micro-batch forward activation than the pre-
vious TaskGraph. Since activation memory is proportional to
batch size and often takes a large proportion of the peak mem-
ory, e.g., the activation memory VGG16 model with batch size
256 takes up around 74% of the peak memory [18], resulting
in uneven memory consumption among different TaskGraphs.
The different memory requirements of TaskGraphs motivate
us to place earlier TaskGraphs on devices with higher mem-
ory capacity. This can be achieved by sorting and reordering
the devices in the corresponding VirtualDevice by memory
capacity, from higher to lower. Figure 8 shows the memory
breakdown of the pipeline example (Figure 1) with two Task-
Graphs over heterogeneous GPUs V100 (32GB) and P100
(16GB), we prefer putting TaskGraph0 to V100, which has
a higher memory config. The TaskGraph placement heuris-
tic is efficient for common Transformer-based models (i.e.,
BertLarge and T5 in Figure 18). There might be cases where
later stages contain large layers (i.e., large sparse embedding),
which can be addressed in Algorithm 1 on handling OOM er-
rors. After reordering the virtual device according to memory
requirement, we partition the model operations to TaskGraphs
in a topological sort and apply Algorithm 1 to balance the
computing FLOP among operations, subject to the memory
bound of the memory capacity of each device.

4 Implementation

Whale is implemented as a standalone library without modifi-
cation of the deep learning framework, which is compatible
with TensorFlow1.12 and TensorFlow1.15 [7]. The source
code of Whale includes 13179 lines of Python code and 1037
lines of C++ code. We have open-sourced4 the Whale frame-
work to help giant model training accessible to more users.

Whale enriches the local model with augmented informa-
tion such as phase information, parallelism annotation, etc.,
which is crucial to parallelism implementation. To assist
the analysis of the user model without modifying the user
code, Whale inspects and overwrites TensorFlow build-in
functions to capture augmented information. For example,
operations are marked as backward when t f .gradients or
compute_gradients functions are called.

The parallel strategy is implemented by rewriting the com-
putation graph. We implement a general graph editor module
for ease of graph rewriting, which includes functions such as
subgraph clone, node replacement, dependency control, and
so on. To implement data parallelism, Whale first clones all
operations and tensors defined in a local TaskGraph and re-
places the device for model replicas. Then it inserts NCCL [6]
AllReduce [40] operation to synchronize gradients for each
TaskGraph replica. To implement tensor model parallelism,
Whale shards the TaskGraph by matching a series of prede-
fined patterns, replacing them with corresponding distributed

4https://github.com/alibaba/EasyParallelLibrary

680    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/alibaba/EasyParallelLibrary


0

5

10

15

20

25

30

35

40

1 8 16 32
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sp
ee
du
p

G
PU
U
til
iz
at
io
n

Number of GPU request

TF speedup
Whale speedup
TF GPU Util

Whale GPU Util

Figure 9: Whale DP vs TF DP
on ResNet.

0

5

10

15

20

25

30

35

40

1 8 16 32
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sp
ee
du
p

G
PU
U
til
iz
at
io
n

Number of GPU request

TF speedup
Whale speedup
TF GPU Util

Whale GPU Util

Figure 10: Whale DP vs TF DP
on BertLarge.

0

1

2

3

4

5

6

7

8

4 8
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Sp
ee
du
p

G
PU
U
til
iz
at
io
n

Number of TaskGraphs

Gpipe
Whale

Gpipe GPU Util
Whale GPU Util

Figure 11: Whale Pipeline vs
GPipe.

0

5

10

15

20

25

30

8 16 32
0

0.2

0.4

0.6

0.8

1

Sp
ee
du
p

G
PU
U
til
iz
at
io
n

Number of GPU request

#TG=2 Speedup
#TG=4 Speedup
#TG=8 Speedup

Figure 12: Hybrid pipeline par-
allelism on BertLarge.

implementation, and inserting communication operations as
needed. To implement pipeline parallelism, Whale builds a
pipeline strategy module that supports state-of-the-art strate-
gies [16, 20, 32]. By default, Whale adopts a backward-first
strategy which is similar to PipeDream [32]. The pipeline
strategy is implemented by first partitioning the minibatch
into micro-batches. The interleaving of forward-backward
micro-batch execution is achieved by inserting control de-
pendency operations among entrance and exit operations of
different TaskGraphs.

To assist hardware-aware optimizations, Whale implements
profiling tools that profile the model FLOPS and peak mem-
ory consumption. The parallel planner gets the hardware in-
formation from our internal GPU cluster, which is used to
generate an efficient parallel plan by balancing the computing
workloads over heterogeneous GPUs.

Besides, Whale is highly optimized in both computing ef-
ficiency and memory utilization by integrating with a series
of optimization technologies such as ZERO [36], recomputa-
tion [10], CPU offload [39], automatic mixed precision [31],
communication optimization [40], XLA [7], etc.

5 Experiment

In this section, we first demonstrate the efficiency of the par-
allelism strategy by evaluating micro-benchmarks. We then
evaluate the training with heterogeneous GPUs to show the
advantages of the hardware-aware load balance algorithm.
We end by showing the effectiveness and efficiency of Whale
by two industry-scale multimodal model training cases. All
the experiments are conducted on a shared cloud GPU cluster.
Every cluster node is equipped with a 96-core Intel Xeon Plat-
inum 8163 (Skylake) @2.50GHz with 736GB RAM, running
CentOS 7.7. Each node consists of 2/4/8 GPUs, with NVIDIA
32-GB V100 GPUs [3] or NVIDIA 16-GB P100 GPUs [2],
powered by NVIDIA driver 418.87, CUDA 10.0, and cuDNN
7. Nodes are connected by 50Gb/s ethernet. All the models
are implemented based on TensorFlow 1.12.

5.1 Micro-benchmark
In this section, we evaluate Whale with a series of micro-
benchmarks. We first demonstrate that Whale is efficient in
single parallel strategy by comparing with TensorFlow Esti-
mator [14] DP and GPipe [20] pipeline. We then show the
advantages of Whale hybrid strategies over single parallel
strategy. Next, we measure the overhead of the bridge layer
for hybrid strategies. Finally, we evaluate the effect of shard-
ing patterns in automatic TaskGraph partitioning.

5.1.1 Performance of Single Parallel Strategy

We evaluate Whale DP by comparing it with TensorFlow
Estimator DP, using the BertLarge [13] and ResNet50 [19] on
different number of V100 GPUs. Figure 9 and Figure 10 show
the training throughput speedup on ResNet50 and BertLarge
respectively. The throughput speedup is calculated by dividing
the training throughput on N devices by the throughput on
one device. Whale DP consistently obtained better speedup
and higher GPU utilization than TensorFlow Estimator DP.
Such findings could be attributed to Whale’s communication
optimization technologies such as hierarchical and grouped
AllReduce, which is similar to Horovod [40].

We then evaluate the efficiency of Whale pipeline paral-
lelism by comparing with GPipe [20]. The pipeline scheduling
strategy in Whale is similar to PipeDream [32]. The exper-
iments are conducted using the BertLarge model with 4/8
pipeline stages on the different numbers of V100 GPUs. As
shown in Figure 11, the training throughput speedup of Whale
outperforms GPipe in both 4 stages and 8 stages by 1.45X
and 1.14X respectively. We attribute the performance gain to
the use of the alternating forward-backward scheduling pol-
icy [32], which improves GPU utilization. We also find that
the pipeline performance is sensitive to the num_task_graph,
thus exposing it as a configurable parameter can help achieve
a better performance when models and computing resources
change.

5.1.2 Performance of Hybrid Strategy

We evaluate hybrid strategies by comparing them with the
single parallel strategy. We also compare the performances of

USENIX Association 2022 USENIX Annual Technical Conference    681



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 8 16 32
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Th
ro
ug
hp
ut
(s
am
pl
es
/s
)

G
PU
U
til
iz
at
io
n

Number of GPU request

DP
DP+Split

DP GPU Util
DP+Split GPU Util

Figure 13: DP vs Hybrid on
ResNet50 w/ 100K classes.

1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000

8 16 32
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Th
ro
ug
hp
ut
(s
am
pl
es
/s
)

G
PU
U
til
iz
at
io
n

Number of GPU request

DP+Split
DP+Split GPU Util

Figure 14: Hybrid strategy on
ResNet50 w/ 1M classes.

1000

2000

3000

4000

5000

6000

7000

8 16 32
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Th
ro
ug
hp
ut
(s
am
pl
es
/s
)

G
PU
U
til
iz
at
io
n

Number of GPU request

SP2
SP1

SP2 GPU Util
SP1 GPU Util

Figure 15: Effect of Sharding
Pattern.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

8 16 32

C
om
m
un
ic
at
io
n
tim
e
ra
tio

Number of GPU request

DP comm ratio
Hybrid comm ratio

Figure 16: Overhead of Bridge
Layer.

hybrid strategies on different numbers of devices. We select
two typical types of hybrid strategies: 1) Nested pipeline with
DP; and 2) Combination of DP and tensor model parallelism.

We first apply a nested pipeline with DP to the BertLarge
model on V100 GPUs. The model is partitioned into 2/4/8
number of TaskGraphs, and we measure the training perfor-
mance of each model on 8/16/32 GPUs. Figure 12 shows that
pipelines with 2 TaskGraphs and 4 TaskGraphs get similar
training speedups and GPU utilization. However, we observe a
performance drop on 8 TaskGraphs and lower GPU utilization
compared to 2/4 TaskGraphs. This is because 8 TaskGraphs
lead to relatively fewer model operations in each TaskGraph,
and the GPU computation is not enough to overlap the inter-
TaskGraph communication, resulting in poor performance.

Next, we evaluate the combination hybrid strategy on a
large-scale image classification model, as we have discussed
in Section 2.1 and illustrated in Figure 3. We perform experi-
ments on classification numbers 100K and 1M on different
numbers of V100 GPUs. To reduce the communication over-
head of hybrid parallelism, we collocate the ResNet50 repli-
cas with FC partitions. We compare the hybrid results of 100K
classes with DP, as shown in Figure 13, hybrid parallelism
outperforms data parallelism by 1.13X, 1.66X, and 2.43X
training throughput speedup with 8, 16, and 32 GPUs respec-
tively, with the line plot corresponding to GPU utilization.
When the number of workers increases, hybrid parallelism
maintains a near-linear speedup, while the DP strategy fails
drastically beyond 16 workers. This is because the heavy FC
layer (the parameter size of ResNet50 backbone is 90 MB,
while the parameter size of FC layer is 782MB) incurs a huge
gradient synchronization overhead. For the task of 1M classes,
DP fails due to OOM. With hybrid parallelism, Whale allows
for the training of image classification task with one million
classes. Figure 14 shows the performance of hybrid paral-
lelism over 8/16/32 GPUs. The training throughputs from
8 GPUs to 32 GPUs achieve 95% scaling efficiency, which
highlights the need for using a hybrid strategy.

5.1.3 Overhead of Bridge Layer

To demonstrate the efficiency of the hybrid strategy, We mea-
sure the overhead of the bridge layer by profiling the bridge
layer time with 100K classes on 8/16/32 GPUs. We then com-
pare the overhead of gradient AllReduce time in DP with the

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ResNet-50
GNMT BertLarge

0.4

0.6

0.8

1

1.2

1.4

Sp
ee
du
p

G
PU
U
til
iz
at
io
n

Hardware-Aware Speedup
Base P100 GPU Util

Hardware-Aware P100 GPU Util
Base V100 GPU Util

Hardware-Aware V100 GPU Util

Figure 17: Hardware-Aware
Data Parallelism.

0

0.5

1

1.5

2

BertLarge
T5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sp
ee
du
p

G
PU
U
til
iz
at
io
n

Hardware-Aware Speedup
Base P100 GPU Util

Hardware-Aware P100 GPU Util
Base V100 GPU Util

Hardware-Aware V100 GPU Util

Figure 18: Hardware-Aware
Pipeline Parallelism.

bridge overhead to understand the performance gain from
hybrids. As shown in Figure 16, the overhead of the bridge
layer takes around 6% in overall training time in 8 GPUs and
10% in 32 GPUs. The overhead of the hybrid is reduced by 6X
on 32 GPUs compared to gradient synchronization overhead
of pure DP.

5.1.4 Effect of Sharding Pattern

As Whale automatically chooses a sharding pattern with min-
imum communication cost (Section 3.2.2), to demonstrate
the effect of exploring the sharding patterns, we force the
framework to use a specific pattern in this experiment. We
evaluate two types of sharding patterns as illustrated in Fig-
ure 6 on large scale image task with 100K classes. SP1 shards
the second input tensor in the second tensor dimension, and
SP2 shards the two input tensors and aggregates the results
with AllReduce. The comparison results of the two sharding
patterns are shown in Figure 15, where SP1 outperforms SP2
by 1.6X to 3.75X as the number of requested GPUs increases
from 8 to 32, as SP1 has a lower communication cost than SP2.
The exploration of sharding patterns allows for the possibility
of system optimization in distributed model implementation.

5.2 Performance of Load Balance
We show the benefits of the hardware-aware load balancing
algorithm by evaluating data parallelism and pipeline paral-
lelism.

For data parallelism, we evaluate three typical models, in-
cluding ResNet50, BertLarge, and GNMT [48]. The experi-
ments are conducted on heterogeneous GPUs that consist of
8 32GB V100 GPUs and 8 16GB P100 GPUs. We set the
same batch size for all model replicas as the baseline. We

682    2022 USENIX Annual Technical Conference USENIX Association



import whale as wh
wh.init(wh.Config({

"num_micro_batch": 35,
"num_task_graph": 8}))

# Define M6 model.
m6_model_def()

Example 4: M6-10B model
with pipeline

0

50

100

150

200

250

300

816 64 128 256

Th
ro
ug
hp
ut
(s
am
pl
es
/s
)

Number of GPU request

Figure 19: M6-10B
with Pipeline and DP.

then apply the hardware-aware algorithm to each model and
get the speedup compared with the baseline performance, as
shown in Figure 17. Whale outperforms the baseline in all
three models by a factor from 1.3X to 1.4X. We also measure
GPU utilization and report the average metric for each GPU
type. The hardware-aware policy significantly improves the
GPU utilization of V100 by 1.39X to 1.96X for the three
models, which improves the overall training performance.

For pipeline parallelism, we evaluate two models, including
BertLarge and T5-Large [52]. The training is performed on
heterogeneous GPUs that consist of 4 32GB V100 GPUs and
4 16GB P100 GPUs. Both BertLarge and T5-Large are parti-
tioned into 4 stages. We further apply a nested DP to pipeline.
We set the evenly partitioned model as the baseline. We con-
ducted training with the hardware-aware policy and got about
20% speedup on both models, as shown in Figure 18. The
GPU utilization of hardware-aware load balancing strategy
improved the GPU utilization of V100 by around 40%, which
shows the efficiency of the hardware-aware load balancing
algorithm.

5.3 Industry-Scale Giant Model Training
5.3.1 Training M6-10B Model

The M6-10B [28] model is a Chinese multimodal model with
10 billion parameters. The model consists of 24 encoder layers
and 24 decoder layers. We use Adafactor [42] as the training
optimizer. We parallelize the training of M6-10B model with
a hybrid parallel strategy, by nesting pipeline parallelism and
data parallelism. Whale can easily scale a local M6 model
to a distributed one by only adding a few lines on top of the
model definition as shown in Example 4. We set the number
of pipeline stages to 8 and the number of micro-batches to
35. We enable recomputation [10] to save activation mem-
ory during training. The training performance is evaluated
on 32-GB V100 GPUs. Each node contains 8 GPUs. When
scaling the computing nodes from 8 to 32, Whale achieved
91% scalability, as shown in Figure 19.

5.3.2 Training M6-MoE Model to Trillions

We scale the model parameters to 10 trillion (10T) by switch-
ing to hybrids of DP and tensor model parallelism with only
a small number of lines of code change. The computation
cost of training dense models is proportional to the model
parameters. If we scale the dense 10B model to the dense

10T model linearly without considering overhead, we need at
least 256,000 NVIDIA V100 GPUs. Instead of scaling the M6
model with dense structure, we adopt M6-MoE [53] model
with sparse expert solution [17, 26]. The sample code of the
MoE structure is implemented with Whale by adding four
lines, as shown in Example 5. Line 3 sets the default parallel
primitive as replicate, i.e., data parallelism is applied for the
operations if not explicitly annotated. Line 5 partitions the
computation defined under split scope across devices.

1 import whale as wh
2 wh.init()
3 wh.set_default_strategy(wh.replicate(total_gpus))
4 combined_weights ,dispatch_inputs=gating_dispatch()
5 with wh.split(total_gpus):
6 outputs = MoE(combined_weights , dispatch_inputs)

Example 5: Distributed MoE model

We evaluate M6-MoE model with 100 billion, 1 trillion and
10 trillion parameters respectively, the detailed configurations
can be found in [29, 53]. We enable built-in technologies of
Whale to optimize the training process, such as recomputa-
tion [10], AMP (auto mixed precision) [1], XLA [5], CPU
offloading [39], etc. We can train the M6-MoE-100B model
with 100 million samples on 128 V100 in 1.5 days. We ad-
vance the model scale to 1 trillion parameters on solely 480
NVIDIA V100 GPUs, in comparison with the recent SOTA
on 2048 TPU cores [17]. We further scale the model to 10
trillion parameters by adopting optimized tensor offloading
strategies [29] with 512 NVIDIA V100 GPUs. Whale can
scale models from 100 billion to 10 trillion without code
changes, which makes giant model training accessible to most
users.

6 Related Work

Giant model training. TensorFlow [7] and PyTorch [34]
provide well-supported data parallelism and vanilla model par-
allelism by explicitly assigning operations to specific devices.
However, they are not efficient enough for giant model train-
ing. Megatron [43], GPipe [20], and Dapple [16] have pro-
posed new parallel training strategies to scale the training of
large-scale models. DeepSpeed [38] lacks general support for
tensor model parallelism, besides, model layers are required
to rewrite in sequential for pipeline parallelism. GShard [26]
supports operator splitting by introducing model weight an-
notations and tensor dimension specifications. The high per-
formance of those works is achieved by exposing low-level
system abstractions to users (e.g., device placement, equiva-
lent distributed implementation for operators), or enforcing
model or tensor partition manually, which results in signifi-
cant user efforts. As a parallel work to Whale, GSPMD [51]
extends GShard by annotating tensor dimensions mapping for
both automatic and manual operator partitioning. As a gen-
eral giant model training framework, Whale adopts a unified
abstraction to express different parallel strategies and their hy-

USENIX Association 2022 USENIX Annual Technical Conference    683



brid nests and combinations, utilizing high-level annotations
and pattern matching for operator splitting. Whale further
scales to M6-10T through automatically distributed graph
optimizations with the awareness of heterogeneous resources.

Zero [36, 37, 39] optimizes memory usage by removing
redundant GPU memory, offloading computation to the CPU
host, and utilizing non-volatile memory respectively. Recom-
putation [10] trades computation for memory by recomput-
ing tensors from checkpoints. Such memory optimization
approaches are orthogonal to Whale, which can be further
combined for giant model training efficiently.

Graph optimization. Deep learning is powered by dataflow
graphs with optimizations to rewrite the graph for better per-
formance, such as TensorFlow XLA [7], TVM [9], Ansor [55],
AStitish [56], etc. TASO [22] and PET [45] adopt a graph
substitution approach to optimize the computation graph au-
tomatically. Those works mainly focus on the performance
of a single GPU, while Whale utilizes the graph optimization
approach for achieving efficient performance in distributed
training. Tofu [46] and SOAP [23] also use graph partition to
produce distributed execution plans, but with a high search
cost. Whale utilizes the introduced annotations to shrink the
search space, thus making graph optimization practical for gi-
ant model training at a trillion scale. Besides, Whale extends
the graph optimization approach to complicated parallel strate-
gies in a unified abstraction, capable of pipeline parallelism,
tensor model parallelism, and hybrid parallelism.

Resource heterogeneity. Philly [21] reports the trace study
in multi-tenant GPU clusters of Microsoft and shows the ef-
fect of gang scheduling on job queuing. MLaaS [47] studies a
two-month trace of a heterogeneous GPU cluster in Alibaba
PAI. Gandiva [49] shows jobs are different in sensitivity to
allocated resources. Whale is capable of adapting to resource
heterogeneity, which can reduce the queuing delay of giant
model training with hundreds of GPUs. The design of Whale
advocates the approach of decoupling model programming
and distributed execution. It dynamically generates an effi-
cient execution plan by considering the properties of both
model and heterogeneous resources.

7 Conclusion

Whale demonstrates the possibility of achieving efficiency,
programmability, and adaptability in a scalable deep learning
framework for training trillion-parameter models. Whale sup-
ports various parallel strategies using a unified abstraction,
hides distributed execution details through new primitive an-
notations, and adapts to heterogeneous GPUs with automatic
graph optimizations. Going forward, we hope that Whale can
become a large-scale deep learning training foundation to
further engage model algorithm innovations and system opti-
mizations in parallel, making giant model training technology
to be adopted easily and efficiently at scale.

Acknowledgements

We would like to thank our anonymous shepherd and review-
ers for their valuable comments and suggestions. We would
also like to thank the M6 team and all users of Whale for their
help and suggestions.

References

[1] Automatic mixed precision for deep learn-
ing. https://developer.nvidia.com/
automatic-mixed-precision.

[2] Nvidia tesla p100. https://www.nvidia.com/
en-us/data-center/tesla-p100/.

[3] Nvidia v100 tensor core gpu. https://www.nvidia.
com/en-us/data-center/v100/.

[4] NVLink. https://www.nvidia.com/en-us/
data-center/nvlink/.

[5] Xla: Optimizing compiler for machine learning. https:
//www.tensorflow.org/xla.

[6] Nccl. https://developer.nvidia.com/nccl, 2019.

[7] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning.
In 12th USENIX symposium on operating systems de-
sign and implementation (OSDI 16), pages 265–283,
2016.

[8] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

[9] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. TVM: An automated end-
to-end optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 578–594, Carlsbad,
CA, October 2018. USENIX Association.

[10] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. Training deep nets with sublinear memory
cost. arXiv preprint arXiv:1604.06174, 2016.

[11] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and
Karthik Kalyanaraman. Project adam: Building an effi-
cient and scalable deep learning training system. In 11th

684    2022 USENIX Annual Technical Conference USENIX Association

https://developer.nvidia.com/automatic-mixed-precision
https://developer.nvidia.com/automatic-mixed-precision
https://www.nvidia.com/en-us/data-center/tesla-p100/
https://www.nvidia.com/en-us/data-center/tesla-p100/
https://www.nvidia.com/en-us/data-center/v100/
https://www.nvidia.com/en-us/data-center/v100/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.tensorflow.org/xla
https://www.tensorflow.org/xla
https://developer.nvidia.com/nccl


USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 571–582, Broomfield,
CO, October 2014. USENIX Association.

[12] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai
Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao,
Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker,
Ke Yang, and Andrew Y. Ng. Large scale distributed
deep networks. In NIPS, 2012.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[14] Joshua V Dillon, Ian Langmore, Dustin Tran, Eugene
Brevdo, Srinivas Vasudevan, Dave Moore, Brian Patton,
Alex Alemi, Matt Hoffman, and Rif A Saurous. Ten-
sorflow distributions. arXiv preprint arXiv:1711.10604,
2017.

[15] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929,
2020.

[16] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu
Wang, Zhen Zheng, Chuan Wu, Guoping Long, Jun
Yang, Lixue Xia, Lansong Diao, Xiaoyong Liu, and Wei
Lin. Dapple: A pipelined data parallel approach for
training large models, 2020.

[17] William Fedus, Barret Zoph, and Noam Shazeer. Switch
transformers: Scaling to trillion parameter models with
simple and efficient sparsity, 2021.

[18] Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li,
Yonghao Zhu, Haoxiang Lin, and Mao Yang. Estimat-
ing gpu memory consumption of deep learning models.
In Proceedings of the 28th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, pages
1342–1352, 2020.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[20] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Mia Xu Chen, Dehao Chen, HyoukJoong Lee,
Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe:
Efficient training of giant neural networks using pipeline
parallelism. arXiv preprint arXiv:1811.06965, 2018.

[21] Myeongjae Jeon, Shivaram Venkataraman, Amar Phan-
ishayee, Junjie Qian, Wencong Xiao, and Fan Yang.
Analysis of large-scale multi-tenant GPU clusters for
DNN training workloads. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 947–
960, 2019.

[22] Zhihao Jia, Oded Padon, James Thomas, Todd Warsza-
wski, Matei Zaharia, and Alex Aiken. Taso: optimizing
deep learning computation with automatic generation
of graph substitutions. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, pages 47–
62, 2019.

[23] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond
data and model parallelism for deep neural networks.
In Ameet Talwalkar, Virginia Smith, and Matei Zaharia,
editors, Proceedings of Machine Learning and Systems
2019, MLSys 2019, Stanford, CA, USA, March 31 - April
2, 2019. mlsys.org, 2019.

[24] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scal-
ing laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

[25] Alex Krizhevsky. One weird trick for paralleliz-
ing convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014.

[26] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, De-
hao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. Gshard: Scaling gi-
ant models with conditional computation and automatic
sharding. arXiv preprint arXiv:2006.16668, 2020.

[27] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar,
Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith,
Brian Vaughan, Pritam Damania, and Soumith Chintala.
Pytorch distributed: Experiences on accelerating data
parallel training. Proc. VLDB Endow., 13(12):3005–
3018, 2020.

[28] Junyang Lin, Rui Men, An Yang, Chang Zhou, Ming
Ding, Yichang Zhang, Peng Wang, Ang Wang, Le Jiang,
Xianyan Jia, Jie Zhang, Jianwei Zhang, Xu Zou, Zhikang
Li, Xiaodong Deng, Jie Liu, Jinbao Xue, Huiling Zhou,
Jianxin Ma, Jin Yu, Yong Li, Wei Lin, Jingren Zhou, Jie
Tang, and Hongxia Yang. M6: A chinese multimodal
pretrainer, 2021.

[29] Junyang Lin, An Yang, Jinze Bai, Chang Zhou, Le Jiang,
Xianyan Jia, Ang Wang, Jie Zhang, Yong Li, Wei Lin,
et al. M6-10t: A sharing-delinking paradigm for effi-
cient multi-trillion parameter pretraining. arXiv preprint
arXiv:2110.03888, 2021.

USENIX Association 2022 USENIX Annual Technical Conference    685



[30] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using
shifted windows. arXiv preprint arXiv:2103.14030,
2021.

[31] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-
gory Diamos, Erich Elsen, David Garcia, Boris Ginsburg,
Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh,
et al. Mixed precision training. arXiv preprint
arXiv:1710.03740, 2017.

[32] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. Pipedream: gen-
eralized pipeline parallelism for dnn training. In Pro-
ceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 1–15, 2019.

[33] Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Anand Kor-
thikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie
Bernauer, Bryan Catanzaro, et al. Efficient large-scale
language model training on gpu clusters. arXiv preprint
arXiv:2104.04473, 2021.

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep
learning library. arXiv preprint arXiv:1912.01703, 2019.

[35] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer. arXiv
preprint arXiv:1910.10683, 2019.

[36] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and
Yuxiong He. Zero: Memory optimizations toward train-
ing trillion parameter models. In SC20: International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 1–16. IEEE, 2020.

[37] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,
Shaden Smith, and Yuxiong He. Zero-infinity: Breaking
the gpu memory wall for extreme scale deep learning.
arXiv preprint arXiv:2104.07857, 2021.

[38] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. Deepspeed: System optimizations enable
training deep learning models with over 100 billion pa-
rameters. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pages 3505–3506, 2020.

[39] Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-
inabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. Zero-offload: De-
mocratizing billion-scale model training. arXiv preprint
arXiv:2101.06840, 2021.

[40] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in tensorflow. arXiv
preprint arXiv:1802.05799, 2018.

[41] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin
Tran, Ashish Vaswani, Penporn Koanantakool, Peter
Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, et al. Mesh-tensorflow: Deep learning for super-
computers. In Advances in Neural Information Process-
ing Systems, pages 10414–10423, 2018.

[42] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive
learning rates with sublinear memory cost. In Interna-
tional Conference on Machine Learning, pages 4596–
4604. PMLR, 2018.

[43] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter lan-
guage models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. arXiv
preprint arXiv:1706.03762, 2017.

[45] Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma,
Shizhi Tang, Liyan Zheng, Yuanzhi Li, Kaiyuan Rong,
Yuanyong Chen, and Zhihao Jia. PET: Optimizing ten-
sor programs with partially equivalent transformations
and automated corrections. In 15th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 21), pages 37–54, 2021.

[46] Minjie Wang, Chien-Chin Huang, and Jinyang Li. Sup-
porting very large models using automatic dataflow
graph partitioning. In George Candea, Robbert van
Renesse, and Christof Fetzer, editors, Proceedings of
the Fourteenth EuroSys Conference 2019, Dresden, Ger-
many, March 25-28, 2019, pages 26:1–26:17. ACM,
2019.

[47] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang,
Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei Lin,
and Yu Ding. MLaaS in the wild: Workload analysis and
scheduling in large-scale heterogeneous gpu clusters. In
19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22). USENIX Association,
2022.

686    2022 USENIX Annual Technical Conference USENIX Association



[48] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridging
the gap between human and machine translation. arXiv
preprint arXiv:1609.08144, 2016.

[49] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
Fan Yang, and Lidong Zhou. Gandiva: Introspective
cluster scheduling for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI 2018, Carlsbad, CA, USA, October 8-
10, 2018, pages 595–610. USENIX Association, 2018.

[50] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang,
Pengyang Hou, Zhi Li, Yihui Feng, Wei Lin, and
Yangqing Jia. Antman: Dynamic scaling on GPU clus-
ters for deep learning. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 533–548. USENIX Association, November
2020.

[51] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake
Hechtman, Yanping Huang, Rahul Joshi, Maxim Krikun,
Dmitry Lepikhin, Andy Ly, Marcello Maggioni, et al.
Gspmd: General and scalable parallelization for ml
computation graphs. arXiv preprint arXiv:2105.04663,
2021.

[52] Linting Xue, Noah Constant, Adam Roberts, Mihir
Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua,
and Colin Raffel. mt5: A massively multilingual
pre-trained text-to-text transformer. arXiv preprint
arXiv:2010.11934, 2020.

[53] An Yang, Junyang Lin, Rui Men, Chang Zhou, Le Jiang,
Xianyan Jia, Ang Wang, Jie Zhang, Jiamang Wang, Yong
Li, et al. Exploring sparse expert models and beyond.
arXiv preprint arXiv:2105.15082, 2021.

[54] Bowen Yang, Jian Zhang, Jonathan Li, Christopher Ré,
Christopher Aberger, and Christopher De Sa. Pipemare:
Asynchronous pipeline parallel dnn training. Proceed-
ings of Machine Learning and Systems, 3, 2021.

[55] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, et al. Ansor: Generating
high-performance tensor programs for deep learning. In
14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 863–879, 2020.

[56] Zhen Zheng, Xuanda Yang, Pengzhan Zhao, Guoping
Long, Kai Zhu, Feiwen Zhu, Wenyi Zhao, Xiaoyong
Liu, Jun Yang, Jidong Zhai, Shuaiwen Leon Song, and

Wei Lin. Astitch: Enabling a new multi-dimensional
optimization space for memory-intensive ml training
and inference on modern simt architectures. In Pro-
ceedings of the 27th ACM International Conferenceon
Architectural Support for Programming Languages and
Operating Systems. ACM, 2022.

USENIX Association 2022 USENIX Annual Technical Conference    687





Cachew: Machine Learning Input Data Processing as a Service

Dan Graur
ETH Zurich

Damien Aymon
ETH Zurich

Dan Kluser
ETH Zurich

Tanguy Albrici
ETH Zurich

Chandramohan A. Thekkath
Google

Ana Klimovic
ETH Zurich

Abstract
Processing input data plays a vital role in ML training, im-

pacting accuracy, throughput, and cost. The input pipeline,
which is responsible for feeding data-hungry GPUs/TPUs
with training examples, is a common bottleneck. Alleviating
data stalls is critical yet challenging for users. While today’s
frameworks provide mechanisms to maximize input pipeline
throughput (e.g., distributing data processing on remote CPU
workers and/or reusing cached data transformations), leverag-
ing these mechanisms to jointly optimize training time and
cost is non-trivial. Users face two key challenges. First, ML
schedulers focus on GPU/TPU resources, leaving users on
their own to optimize multi-dimensional resource allocations
for data processing. Second, input pipelines often consume
excessive compute power to repeatedly transform the same
data. Deciding which source or transformed data to cache is
non-trivial: large datasets are expensive to store, the compute
time saved by caching is not always the bottleneck for end-to-
end training, and transformations may not be deterministic,
hence reusing transformed data can impact accuracy.

We propose Cachew, a fully-managed service for ML data
processing. Cachew dynamically scales distributed resources
for data processing to avoid stalls in training jobs. The ser-
vice also automatically applies caching when and where it is
performance/cost-effective to reuse preprocessed data within
and across jobs. Our key contributions are autoscaling and
autocaching policies, which leverage domain-specific met-
rics collected at data workers and training clients (rather than
generic resource utilization metrics) to minimize training
time and cost. Compared to scaling workers with Kubernetes,
Cachew’s policies reduce training time by up to 4.1× and
training cost by 1.1× to 3.8×.

1 Introduction

Input data processing is an essential part of machine learning
(ML) training. Transformations applied to input data before
it is fed to a model for training – such as extracting features,
sampling data from imbalanced classes, and randomly aug-
menting data – are key to achieving high accuracy [19,57,63].
Furthermore, the speed at which the input pipeline can ingest
data from storage, apply transformations on-the-fly, and load

Figure 1: Training jobs benefit differently when given more
CPU resources for input data processing per accelerator core.

transformed data to training nodes greatly impacts the time to
accuracy and the overall cost of model training.

While GPUs and TPUs used for training computations con-
tinue to provide more FLOPS, CPUs – which are responsible
for input data processing – are not keeping up. Hence, the
input pipeline is a common bottleneck in ML training [38].

Removing bottlenecks in the input pipeline can improve
end-to-end training time by over an order of magnitude and
greatly reduce costs [47, 48]. However, optimizing ML data
processing is non-trivial. Users face several key challenges.

First, allocating the right amount of CPU, memory, and
storage for input data processing, to optimize training time
and cost, is difficult. Users should allocate just enough re-
sources for the input pipeline to produce batches of data at
the throughput that the model can ingest data, which depends
on the model’s computational intensity and the hardware (#
of GPUs) allocated for training. As shown in Figure 1, each
model requires a different ratio of CPUs for data process-
ing and GPUs or TPUs for training. Hence, although ML
frameworks traditionally couple input data processing and
training such that the two stages execute on the same node, it
is becoming increasingly common to disaggregate data pro-
cessing, with systems like tf.data service [25] and Meta’s
Data PrePreprocessing (DPP) Service [69]. Disaggregation
enables customizing resource allocations per job. However,
today’s ML resource management systems focus on GPU allo-
cations [28,44,65], leaving users on their own to decide input

USENIX Association 2022 USENIX Annual Technical Conference    689



pipeline resource allocations that maximize performance and
minimize cost of training jobs. This is notoriously challenging
in the multi-dimensional resource setting of ML training [64].

Another major challenge is the significant amount of com-
pute and memory resources required for input data processing.
For example, when training deep recommender models with
petabytes of data, data ingestion can consume more power
than model training itself [69]. A promising approach to re-
duce data processing compute requirements is to memoize
the outputs of commonly executed data pipelines, since ML
training often involves redundant data accesses and transfor-
mations, both within and across jobs [34, 47, 48, 66]. Within a
job, it is common to iterate multiple times (i.e., epochs) over a
dataset. Across jobs, ML engineers typically experiment with
variations of models (e.g., hyperparameter tuning and model
search) while re-executing the same data pipeline.

ML data processing frameworks provide mechanisms for
reusing memoized data transformations, such as tf.data’s
cache and snapshot operators [22, 61, 62]. However, deter-
mining which (transformed) datasets are optimal to cache in
fast storage is non-trivial. Transformed datasets are costly to
store and slow to read if they are significantly larger in volume
than source data, which can occur after decompression and
data augmentations. Figure 2 shows that reusing memoized re-
sults stored on local SSDs of a training node does not always
improve epoch time, since local SSD bandwidth may saturate
when reading the larger transformed dataset. Even caching
source data on local SSDs does not always improve epoch
time compared to reading from cloud data lakes (e.g., we use
GCS [27]) since model training may be the bottleneck. If an
input pipeline applies random transformations to data each
epoch, the caching decision is further complicated as reusing
the transformed dataset from a single epoch can negatively
impact model training dynamics [16, 40].

In summary, ML data processing frameworks provide use-
ful mechanisms to alleviate data bottlenecks, such as distribut-
ing data processing on remote CPU workers and reusing
cached data transformations. However, today’s systems lack
policies that efficiently leverage these mechanisms to opti-
mize the overall performance and cost of ML training.

We propose Cachew, a fully-managed service for ML in-
put data processing. Inspired by the serverless computing
paradigm, which relieves developers from the burden of man-
aging virtual machines in the cloud [13, 55], Cachew relieves
ML users from the burden of managing compute, memory, and
storage infrastructure for ML input data processing. Cachew
consists of a centralized dispatcher, distributed input data
workers, and a disaggregated storage cluster that stores cached
datasets. We build Cachew on top of the tf.data frame-
work [48], extending its distributed service [25] to support
multi-tenancy, autoscaling, and autocaching. Cachew is open
source1 and compatible with the existing tf.data API.

1Cachew is available at: https://github.com/eth-easl/cachew

Figure 2: Caching source data or materializing data in local
storage does not always improve training throughput.

Our key contributions are the design and implementation
of autoscaling and autocaching policies for ML input data
processing. We show that traditional resource autoscaling ap-
proaches (e.g., in Kubernetes [1]), which are based on CPU
and memory utilization, are not sufficient to optimize training
time and cost. Instead, we base our policies on application-
specific metrics collected at input data workers and clients
while a job is running. The Cachew dispatcher leverages the
stateless nature of ML input data processing to adjust the
number of workers per job during runtime. By monitoring
batch time reported by clients, the dispatcher dynamically
finds the minimum number of workers (i.e., minimum cost)
that minimizes batch time (i.e., maximizes performance). By
monitoring per-worker throughput and the volume of data
produced by the input pipeline, the dispatcher also decides on
whether reading data from Cachew’s cluster cache is likely
to improve performance compared to reading and transform-
ing data from cloud data lakes on-the-fly. Cachew extends
the tf.data API with an autocache operator, which allows
users to specify up to which point in their input pipeline it is
acceptable to cache and reuse data from a training dynamics
perspective (e.g., before any random transformations).

We evaluate Cachew with microbenchmarks and three
popular ML models and data pipelines from the Tensor-
Flow Model Garden. We show that while the Kubernetes au-
toscaler under-provisons or over-provisions input data work-
ers, Cachew is able to identify the optimal number of data
workers to allocate for each job as well as the optimal caching
strategy at each autocache operator location in the input
pipeline to minimize training time and cost. We show that
compared to scaling workers with Kubernetes, Cachew’s poli-
cies reduce training cost by 1.1× to 3.8×.

2 ML Input Data Processing

We summarize the key characteristics of ML input data
pipelines (§ 2.1) and discuss why it is increasingly common
to disaggregate data processing from model training (§ 2.2).
§ 2.3 provides an overview of existing mechanisms for fast,
efficient input data pipeline execution.

690    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/eth-easl/cachew


2.1 ML Input Data Pipeline Characteristics

Reading input data from storage: The first step in ML input
data processing is reading source data. Deep learning input
pipelines typically read datasets that range from gigabytes to
petabytes in size, stored in low-cost distributed storage sys-
tems, such as cloud data lakes [48,68,69]. To avoid I/O bottle-
necks during training, it is common to cache input datasets in
more expensive, higher bandwidth storage systems [39, 47].

Transforming data: Before raw input data can be con-
sumed by a model, it must be preprocessed into elements that
the model can learn from. Common transformations include
decompressing data, parsing file formats, extracting features,
and batching elements. It is also common to add random-
ness to input data (e.g., randomly sampling, augmenting, and
shuffling elements) to improve model generalization [12].
Random data augmentations are critical for achieving state-
of-the-art accuracy in image classification [14, 15, 18, 21, 58],
object detection [19, 67], and speech recognition [49, 50].

Data transformations are generally executed on CPUs
rather than specialized hardware to better support user-defined
functions [48]. While some transformations can be applied
in offline batch processing jobs [6], many transformations
are applied on-the-fly during training for greater flexibility.
For instance, it is common to experiment with feature extrac-
tion, tune the batch size for a given GPU configuration, or
randomly augment data using different seeds across epochs.

While some transformations (e.g., decompression and aug-
mentation) expand the volume of data read from storage, other
transformations (e.g., filtering and sampling) decrease the vol-
ume of data fed to a model. A study of ML input pipelines at
Google found that the ratio of data fed to a model versus the
data read from storage varies widely across jobs. For 75% of
jobs, data transformations reduced data volume [48].

Loading data to training nodes: The final step is to load
data to GPUs/TPUs for model training. To avoid data stalls,
the input pipeline must produce data at a throughput greater
than or equal to the rate at which the model can consume data.
The model’s data ingestion rate depends on the algorithmic in-
tensity of the training computations and the hardware FLOPS.
Feeding data-hungry accelerators requires high software par-
allelism and pipelining for data processing [38, 48].

Re-executing input pipelines: In large-scale production
and research deployments, ML input data pipelines are com-
monly re-executed. Within a job, each training epoch reads
and transforms the same input dataset. Across jobs, common
ML training workflows, such as neural architecture search
and hyperparameter tuning, involve feeding the same pre-
processed data to different variations of a model [34, 70]. At
Google, the top 10% most commonly executed input pipelines
accounted for 77% of all input pipeline executions and 72%
of CPU cycles used for ML input data processing [48]. Oth-
ers have also observed a sizeable opportunity to reuse data
processing within and across ML jobs [47, 66].

2.2 Why disaggregate input data processing?

ML input data processing and training consist of fundamen-
tally different types of computation (user-defined data trans-
formations vs. gradient updates) that primarily use different
resources (CPUs vs. GPUs/TPUs). Yet ML frameworks have
typically coupled these two stages, such that they run on the
same nodes. Tight coupling has two major drawbacks. First,
CPU/memory-intensive input pipelines can easily saturate
host resources and limit training throughput. Zhao et al. [69]
showed that loading data over the network from distributed
storage – even without performing data transformations on the
CPU – consumes significant CPU cycles and memory band-
width in production deployments, leaving scarce resources
available for transforming data on training nodes. Second,
the ratio of resources required for input data processing vs.
model training varies across jobs (as seen in Figure 1, where
we varied the CPU cores available using the Linux taskset
command). However, cloud providers typically limit the CPU
cores and memory capacity that can be provisioned per ac-
celerator on a virtual machine [9, 26]. The fixed ratio of CPU
cores and memory attached to accelerators often leads to
imbalanced usage (i.e., either idle accelerators or idle CPUs).

To improve resource utilization and avoid input data stalls,
it is increasingly common to disaggregate data processing
from model training [25, 69]. Disaggregation is a well-known
approach for improving resource allocation flexibility [23,36].
This flexibility can save cost, since users can distribute input
data processing across as many or as few CPU worker nodes
as needed to avoid data stalls, without provisioning additional
expensive GPUs/TPUs.

2.3 Existing Mechanisms

We describe key mechanisms in existing frameworks for effi-
cient input data processing. Users can define and execute ML
input data pipelines with a variety of data loading frameworks,
such as tf.data [48], PyTorch DataLoader [17], NVIDIA
DALI [29], and CoorDL [47]. We highlight the tf.data
framework, as its combination of state-of-the-art mechanisms
serve as a foundation for our work. tf.data’s programming
model allows users to build input pipelines by composing and
customizing operators. The framework runtime executes in-
put pipelines as dataflow graphs, applying static and dynamic
optimizations to improve performance.

Disaggregation: tf.data service supports executing input
pipelines in a distributed manner [11]. The service consists
of a centralized dispatcher and a number of remote input data
workers. Clients (i.e., training nodes) register input pipelines
defined in the tf.data API with the dispatcher, which shards
data processing across all workers in the service. Clients fetch
data directly from workers. The Data PreProcessing Service
at Meta is another example of a framework that disaggregates
input data processing [69]. In both frameworks, users are

USENIX Association 2022 USENIX Annual Technical Conference    691



responsible for managing the number of input data workers
and deciding per-job resource allocations.

Dataset Caching: The tf.data snapshot operator al-
lows users to cache the output of their input pipeline to disk,
and materialize the transformed data on a subsequent training
run [22]. This trades off I/O capacity and bandwidth to free up
CPU resources. Inserting the snapshot operator at the appro-
priate point in an input pipeline to optimize overall training
time and cost remains the user’s responsibility. The current
snapshot implementation does not coordinate between asyn-
chronous reads and writes from multiple nodes, making it
incompatible with tf.data service (hence, we implement
our own put and get operators, described in §5.1).

CoorDL [47] and OneAccess [34] reuse input pipeline out-
puts when jobs are scheduled in a coordinated manner (e.g.,
hyperparameter tuning). However, these frameworks do not
reuse data transformations across arbitrary ML jobs that can
be submitted asynchronously to a service over time. Revam-
per [40] allows users to partially reuse the outputs of random
transformations in input pipelines while minimizing the im-
pact on training dynamics. Quiver [39] implements distributed
caching for DNN training, but it is designed exclusively for
managing source data rather than transformed datasets.

Autotuning: tf.data’s runtime and Plumber [38], a tool
for diagnosing input data bottlenecks, can dynamically tune
software parallelism and memory buffer sizes to maximize
performance on a given training node [48]. However, this
tuning does not scale resources beyond a single node.

GPU Offloading: NVIDIA DALI supports offloading cer-
tain input data processing, such as image data augmentations,
to GPUs [29]. This is a viable option to alleviate CPU bottle-
necks but may lead to GPU resource contention among input
data transformation tasks and model training tasks. Users
therefore need to decide which input data transformations
should run on CPUs vs. GPUs.

3 ML Input Data Service Challenges

While many useful mechanisms for ML input data processing
exist, it remains challenging for users to leverage these mecha-
nisms to minimize end-to-end ML training time and cost. We
focus on two key challenges: scaling resources for data pro-
cessing (§ 3.1) and saving compute resources by selectively
caching (transformed) datasets (§ 3.2).

3.1 Autoscaling Challenges

Selecting the right amount of compute, memory, and stor-
age resources to provision for ML input data processing is
critical yet challenging for ML users. Under-provisioning re-
sources for data processing leads to data stalls, which leave
expensive hardware accelerators idle, increasing end-to-end
training time and cost. Over-provisioning resources for data

processing leads to extra costs without improving end-to-
end performance. The optimal resource allocation for data
processing depends on the compute intensity of data transfor-
mations in the input pipeline, the volume of data that must be
read for each training batch, and the rate at which the pipeline
must produce data to match model ingestion throughput.

Determining the right resource allocation for ML input data
processing is non-trivial as each model and input data pipeline
combination have unique requirements [69]. For example, in
Figure 1, we vary the amount of CPU cores allocated for input
data processing to show how many cores are needed to meet
model training throughput requirements in various jobs. To
process the COCO dataset [43] and train the RetinaNet [42]
model, 4 CPU cores per TPU accelerator core are sufficient,
whereas to process the ImageNet [21] dataset and train the
EfficientNetv2 [59] model, the user should provision 12 CPU
cores per TPU accelerator core to avoid input data stalls dur-
ing training. We also observe that scaling memory capacity
and bandwidth greatly impacts performance. Furthermore,
we find that training throughput does not scale linearly with
CPU and memory resources, making it difficult to model how
resource allocation affects performance.

3.2 Autocaching Challenges

Deciding which input data transformations to materialize and
reuse versus which transformations to execute online during
training is complex. At Google, where tf.data is heavily
used in research and production ML training jobs, only 19%
of jobs use any kind of caching operator [48]. Meanwhile, the
same study found that many jobs would benefit from caching.

Making caching decisions requires users to reason about
the cost of storing preprocessed data to save CPU cycles.
This trade-off depends on the compute intensity of the input
pipeline, the size of the materialized dataset, and the rela-
tive cost of CPU and storage resources. Transformed datasets
may be slow to read and costly to store if they are signifi-
cantly larger in volume than source data, which can occur
with decompression and data augmentations. Caching does
not always improve epoch time, in particular if reading source
data from cloud storage and transforming it on-the-fly is suf-
ficiently fast to saturate model ingestion throughput. Another
challenge is that caching and reusing the results of transfor-
mations which randomly permute data from one epoch will
remove this randomness across epochs. Reusing this trans-
formed data within a job can significantly impact training
dynamics. Prior work has shown that reusing random aug-
mentations across epochs in a job is plausible, but must be
done sparingly to avoid degrading model accuracy [16, 40].
For example, Revamper proposes caching partially augmented
data elements and mixing them with freshly-computed, fully-
augmented elements [40].

An over-arching challenge is to jointly optimize auto-
caching and autoscaling. Regardless of whether input data

692    2022 USENIX Annual Technical Conference USENIX Association



workers are reading and transforming source data on-the-fly
from data lakes or reading transformed data from a cache,
we need to determine the right number of input data work-
ers and storage bandwidth to provision to maximize training
throughput while keeping costs low.

4 Cachew Design

We introduce Cachew, a multi-tenant service for ML input
data processing. To minimize end-to-end training time and
cost, Cachew jointly optimizes: 1) elastic, distributed resource
allocation for input data processing and 2) materialization of
data processing computations within and across jobs. Cachew
can be operated by an organization with multiple users that
asynchronously submit ML training jobs or by a public cloud
provider. With minimal extensions to the tf.data user API,
Cachew transparently manages resource allocation for data
processing, data caching, and network communication be-
tween Cachew clients and workers.

4.1 Service Architecture
Cachew consists of a centralized dispatcher, a dynamic num-
ber of input data workers, and a disaggregated storage cluster
for data caching, as shown in Figure 3.

Users register training nodes (i.e., clients) of ML training
jobs with the Cachew dispatcher. Clients provide a dataflow
graph representation of their input pipeline and a path to the
input data (§ 4.2). We assume input data resides in durable,
low-cost cloud storage, i.e., data lakes [68] such as S3 [56].

Input data workers are stateless components responsible
for producing batches of preprocessed data for clients. The
dispatcher dynamically adjusts the number of input data work-
ers for each job and divides each job’s input dataset (e.g., a
list of filenames) into independent partitions, called splits.
Workers pull new splits (e.g., indexes of the file list) from
the dispatcher when they are done processing previous splits.
Workers may read splits that correspond to source data which
they must transform on-the-fly by executing the job’s input
pipeline dataflow graph. Alternatively, splits may correspond
to files that contain already transformed (or partially trans-
formed) data in Cachew’s cache from previous executions of
the input pipeline.

The dispatcher maintains metadata about input pipeline
executions across jobs to make worker allocation and data
caching decisions. The scaling and caching policies (de-
scribed in § 4.3) and § 4.4) rely on the metrics listed in Table 1,
which the dispatcher aggregates in its metrics metadata store,
indexed by job ids, input pipeline hashes and job names. Since
there may be multiple workers and clients per job, metrics
are averaged across clients and workers of the same job. The
dispatcher also tracks which source and transformed datasets
are cached. The cache metadata store maintains the location
of cached datasets in Cachew’s cluster cache and is indexed

Figure 3: Cachew system architecture. Solid lines depict con-
trol logic and metadata communication. Dotted lines show
the flow of training data. Communication occurs via RPCs.

1 dataset = tf.data.TFRecordDataset(["file1", ...])

2 dataset = dataset.map(parse).filter(filter_func)

3 .autocache()

4 .map(rand_augment)

5 .shuffle().batch()

6 dataset = dataset.apply(distribute(dispatcherIP))

7 for element in dataset:

8 train_step(element)

Figure 4: User API to distribute tf.data input pipeline exe-
cution with Cachew. Users insert autocache to hint which
data is acceptable to cache/memoize and reuse within a job.

by various hashes of the input pipeline dataflow graph, which
we call fingerprints.

Clients fetch data from the workers that are assigned to
them by the dispatcher. Clients and workers periodically send
heartbeats to the dispatcher (by default every five seconds) to
maintain membership in the service and provide metrics.

Cachew’s cache cluster consists of high-bandwidth NVMe
SSD storage nodes, which are disaggregated from input data
workers. Hence, Cachew can scale storage independently,
based on data caching capacity and bandwidth requirements.
In addition to caching transformed datasets of frequently exe-
cuted input pipelines, Cachew can also cache source datasets,
to avoid I/O bottlenecks from cloud data lakes during training.

4.2 Cachew API

Cachew leverages the existing tf.data API for defining
ML input data pipelines [48]. Users define a pipeline by
chaining dataflow operators that can be parameterized with
user-defined functions (UDFs). Figure 4 shows an example
tf.data pipeline that reads input data from files, applies map
and filter operators with UDFs for parsing, filtering, and
randomly augmenting data, then shuffles and batches data.

Applying distribute in line 6 serializes the dataflow
graph and sends it to the service dispatcher to register the
job. If there are multiple training nodes in a job (i.e., for dis-

USENIX Association 2022 USENIX Annual Technical Conference    693



Source Name Description

Client
batch_time Time taken to get and process the last 100 batches

result_queue_size Avg. number of batches located in the prefetch buffer over the last 100 batches

Worker
active_time Avg. time per element spent in computation in the subtree rooted in the node

bytes_produced Total number of bytes produced by the node so far
num_elements Total number of elements produced by the node so far

Table 1: The set of metrics that are submitted by the workers and clients to the dispatcher via heartbeats.

tributed ML training), each node registers as a separate client
with the dispatcher and specifies an additional job_name pa-
rameter that is common across all clients of the same job. The
communication between clients and workers is abstracted
away from the python API. As shown in line 7, clients simply
iterate over the dataset to access a sequence of elements, as
if executing the input pipeline locally on the client.

Cachew introduces a new operator, autocache, which al-
lows users to specify point(s) in an input pipeline where model
training dynamics safely permit memoizing and reusing data
within a job. To avoid any impact on training accuracy, users
should apply autocache before any random data transforma-
tions in their pipeline (e.g., see line 3 of Figure 4). Users may
apply autocache in multiple locations in a pipeline. Cachew
will not always apply caching at an autocache operator; § 4.4
describes Cachew’s decision strategy. When autocache is
placed after a read operator (e.g., line 1), Cachew decides
whether caching source data in fast cluster storage improves
performance compared to reading source data from a low-
cost data lake. In §6, we evaluate Cachew with up to two
autocache operators per pipeline.

4.3 Autoscaling Policy

We describe how Cachew leverages the per-job client metrics
described in Table 1 to make worker scaling decisions.

Allocating workers for new jobs: The dispatcher starts
by executing each new job with a single worker. After the
client reports metrics from a configurable number of train-
ing batches, the dispatcher allocates a second worker for the
job and monitors the change in batch_time. We observe
that averaging metrics over 100 batches generally provides
a satisfactory level of noise smoothing. If batch_time de-
creases by more than a threshold (which we empirically set
to 3%) with the second worker, the dispatcher adds an ad-
ditional worker. The dispatcher continues adding workers
until a new worker improves batch_time by less than 3%, in
which case the scaling decision converges. The epoch time
(and hence batch time) plateaus when the workers can provide
data at sufficient throughput to saturate the model ingestion
rate (e.g., the red dotted line in Figure 6). The true plateau
occurs when the addition of a new worker leads to 0% change
in batch_time. However, we choose a slightly higher thresh-
old due to the noisy nature of metrics gathered at runtime.

This makes Cachew’s autoscaling policy more stable. We
observed that a 0% threshold would lead to unstable scaling
decisions, as the slightest noise could trigger the addition of
superfluous workers or the removal of essential workers from
the cluster. In order to reduce noise, it is possible to gather
the metrics over more batches, however this slows down the
scaling process. §6.2 shows a sensitivity study.

Re-scaling over time: Since metrics can be noisy, Cachew
periodically revisits the scaling decision each 10 new metrics
received from the client (i.e., every 1000 batches). Cachew
adds a worker if the current batch_time is significantly
higher than the value recorded at scaling convergence. To
detect if we are on the batch time plateau and can afford to
scale down, our intuition is that although batch time will be the
same, the result queue will build up if workers are able to pro-
vide data faster than the model can ingest it. Hence, Cachew
removes a worker if the current result_queue_size is sig-
nificantly (e.g., > 40%) higher than the size recorded at con-
vergence. Cachew continues removing workers as long as
the increase in batch_time is below the threshold. Clients
temporarily pause metric collection (e.g. 150 batches) when
they are notified that a worker has been added or removed for
their job. When the dispatcher de-allocates a worker from a
job, the worker processes any remaining splits, which clients
consume before the worker is removed. Hence, the model
sees all data in an epoch, regardless of scaling events.

We observed that in some cases, when the input dataset
consists of few files (e.g., the COCO dataset), the scaling
policy may not converge within an epoch because workers
may prefetch all dataset splits, leaving no splits for newly
added workers to process until the next epoch. Cachew detects
these scenarios and inserts an artificial epoch, which allows
workers to fetch data from the next epoch while other workers
process data from the current epoch. We do not introduce
artificial epochs if workers are writing to cache.

4.4 Autocaching Policy

When a new job is sent to Cachew, a hash of the entire input
pipeline is generated, which is then used to check if the given
pipeline has ever had some of its data cached. If yes, the
dispatcher extracts a hash for each autocache op. This is
done by traversing and hashing the input pipeline from its
source nodes up until the autocache node. Cachew checks its

694    2022 USENIX Annual Technical Conference USENIX Association



Figure 5: Cachew autocaching policy calculation.

cache store against these hashes to find potential hits. Cachew
will choose to introduce caching at the autocache location
with the highest throughput. It should be noted that in such
cases, compute is not considered, as caching only occurs if
it was deemed better in terms of throughput than compute.
If the given pipeline has not got any of its data in cache, the
job enters profiling mode. This stage is equivalent to full
input pipeline computation, with the exception that scaling is
blocked to not skew any metrics relevant to the autocaching
decision. The relevant metrics are presented in the Worker
section of Table 1. Once the input pipeline has produced
a sufficient amount of batches (we observe 300 batches to
be enough) Cachew’s dispatcher produces the autocaching
decision.

To carry out the autocaching decision, for each autocache
operator, the dispatcher estimates the time it takes the pipeline
to produce N elements if caching were to be introduced at
the autocache location. The dispatcher compares these N-
element-times with the compute mode N-element-time (i.e.,
how long it takes to produce N elements if no caching is ap-
plied to the pipeline) and selects the option with the minimum
time. If caching is chosen, Cachew introduces caching at the
relevant autocache op location. Figure 5 shows the main
values inferred by the dispatcher for the autocaching deci-
sion. It should be noted that due to operations such as batch,
filter, or repeat, an autocache op sees M elements being
produced, where M ̸= N can be true.

Let the LastOp’s active_time be active_timeL,
an autocache’s active_time be active_timeA
and the bytes per element at an autocache op be
bA. Cachew employs a throughput model of Glus-
terFS, formally defined as gGFS : R>0 → R>0, which
can infer the read time of b bytes from cache.
Cachew initially computes the TotalComputeTime
= N × active_timeL. For each autocache op,
Cachew computes the PreAutocacheTime = M ×
active_timeA, and then obtains the PostAutocacheTime
= TotalComputeTime − PreAutocacheTime. Next,
Cachew computes ProjectedCacheReadTime = M
×gGFS(bA). Finally, the ProjectedTotalCacheTime =
ProjectedCacheReadTime + PostAutocacheTime is com-
puted. The ProjectedTotalCacheTime of each autocache
op and the initial TotalComputeTime are compared, and the

option with the lowest value is selected.
Once the decision is made, scaling is re-enabled. Scaling

is triggered when the execution policy of the input pipeline
changes (e.g. from putting to getting data from cache). When
this happens, the worker count of a job is set to 1, and the
autoscaling policy is applied by initially scaling up.

4.5 Multi-tenancy
Cachew supports multi-tenancy. Jobs submitted by different
clients are accepted by Cachew, whose dispatcher applies the
autoscale and autocache policies on each job. The jobs are
self contained, and the autoscale and autocache decisions are
independent of other jobs running in Cachew. To ensure such
decisions are correct, metrics from different jobs with identi-
cal input pipelines are stored in the metadata store separately
from one another using the job names. Moreover, to avoid
performance interference, Cachew assigns each workers to at
most one job at a time.

Our current prototype of Cachew assumes that tenants are
mutually trusted and have permission to access each other’s
data. Hence, Cachew shares cached datasets across jobs from
different tenants. In §7, we discuss how the implementation
can be extended to implement data access control.

4.6 Fault tolerance
Dispatcher: The dispatcher stores metadata in memory for
fast look-ups. To avoid being a single point of failure, the
dispatcher can journal its state to a durable directory, such
that no state is lost when the dispatcher is restarted. Journaling
is also supported in the vanilla tf.data service [25].

Workers: Our implementation builds on top of existing
single-node tf.data checkpointing mechanisms, extending
them to work in the distributed setting. Workers communi-
cate with the dispatcher via heartbeats. If a parametrizable
number of heartbeats are missed (we set this parameter to
2), the dispatcher considers the worker failed and initiates
a failover. The dispatcher reassigns pending tasks to a free
worker in the pool. The new worker recovers any progress
the failed worker had made on the pending tasks by reading
the latest checkpoint committed in remote storage. The new
worker recomputes batches between the latest checkpoint and
the time of failure, to make the new worker’s iterator state
match the old worker’s iterator state at the time of failure. The
client includes an incrementing index in its request which
the new worker uses as time of failure to fast forward to.
However, the new worker does not transmit the recomputed
batches to the client since repeating data elements in train-
ing epochs can harm model accuracy. For instance, Mohan
et al. observed a double-digit drop in Top-1 accuracy when
training a ResNet18 for 70 epochs on ImageNet-1k without
exactly-once semantics [46]. In contrast, Cachew guarantees
that clients see each batch of input data exactly once during

USENIX Association 2022 USENIX Annual Technical Conference    695



training, even in the face of failures. Furthermore, our fault-
tolerance mechanisms make it viable to run Cachew workers
on transient cloud resources (i.e., spot VMs) to reduce the
cost of using remote workers for data processing.

Storage nodes: Cachew’s distributed cache applies erasure
coding with configurable redundancy. By default, we config-
ure the storage layer to store data with sufficient redundancy
to handle up to 25% of nodes in the storage cluster failing at a
given time. If a storage node fails, the distributed file system
uses parity blocks to recover data.

5 Implementation

We implement Cachew on top of the tf.data ML data pro-
cessing framework [48], leveraging its familiar API and mech-
anisms for distributed data processing and dataflow graph
rewriting. We also add a scalable cluster cache to the vanilla
tf.data service and expose the autocache operator to users
in the API. We extend the tf.data service dispatcher with
metadata stores that manage client/worker metrics and loca-
tions of cached datasets to implement our scaling and caching
policies. Our implementation consists of approximately 9000
lines of C++ code and 500 lines of Python on top of the
open-source tf.data code base. Cachew is open-source.

We run the Cachew dispatcher and workers inside Docker
containers and use Kubernetes to elastically scale the deploy-
ment. All communication between clients, workers, and the
dispatcher is done over gRPC [24]. We use GlusterFS [53],
deployed on high-bandwidth NVMe SSD storage nodes, as
our distributed caching storage system. GlusterFS is highly
scalable, offers sufficient throughput to saturate NVMe SSD
bandwidth, and its consistent hashing data distribution policy
supports dynamically adding and removing storage nodes.
We configure GlusterFS with distributed dispersed volumes,
which use erasure coding for fault-tolerance [54].

5.1 Autocache Mechanisms
Graph rewrites: When a user registers a new job, Cachew’s
dispatcher inspects the input pipeline’s dataflow graph. Wher-
ever the pipeline contains an autocache op, Cachew gener-
ates two versions of the pipeline, in which the autocache
is replaced by a put op and a get op, respectively. The dis-
patcher transparently replaces autocache with graph rewrites
using the TensorFlow Grappler [60] optimization framework.
The dispatcher sends workers the correct version of the in-
put pipeline graph, which depends on the execution mode
selected by Cachew’s autocaching policy for the job.

The put and get ops: Cachew introduces put and get
ops which store and retrieve data to and from the cache.
These ops build on underlying mechanisms in the tf.data
snapshot op implementation, but are designed for multi
worker scenarios, where several different worker nodes can
concurrently write and/or read to the same cache location

without conflicts. To support asynchronous behaviour, the
put and get op implementations both leverage queues and
multi-threading. For the put op, data to be written to cache
is placed in a queue. Multiple threads greedily dequeue el-
ements and write them to cache. Each thread writes in its
own file, which is closed when the size exceeds 250MiB and
a new file is opened. The get op functions in the opposite
manner, where threads read from cache and place elements
in the queue. When downstream operations require data from
the get op, they dequeue elements. Each thread requests the
file paths to read from the dispatcher. Operations before the
get op are not executed since the output is read from cache.

Since the ops are asynchronous, reads and writes will be
performed out of order. Hence, cache reads and writes behave
as a sliding-window shuffle of size ws = s× n, where ws is
the window size, s is the number of elements per cache file
and n is the number of readers or writers.

Dealing with limited cache capacity: Our current pro-
totype assumes that Cachew’s cache capacity is unbounded
(i.e., there is always space in the cache for a put op to suc-
ceed). To operate Cachew with a limited cache size, we plan
to extend the dispatcher implementation to periodically evict
cached datasets that provide the least performance improve-
ment across jobs, as in prior caching systems like Nectar [30].

6 Evaluation

6.1 Methodology
Workloads: We evaluate Cachew with three popular ML mod-
els and their corresponding input data pipelines in TensorFlow
Model Garden [3]. ResNet-50 [31] is an image classification
model whose input pipeline consists of parsing raw TFRecord
files, converting images to float16 format, and applying a
random crop and horizontal flip [4]. We use ImageNet [21]
and observe that the data transformations increase the source
dataset by 2.6×. RetinaNet [42] is an object detection model
whose input pipeline consists of parsing TFRecords, convert-
ing images to float16, applying a random horizontal flip, and
a series of computationally-intensive operations that create
candidate anchors at five different scale levels [5]. We train
RetinaNet on the COCO [43] dataset and the data transfor-
mations increase the data volume by 32.6×. Finally, Sim-
CLRv2 [15] is a semi-supervised learning framework used
for visual representation learning model. Given a randomly
sampled mini-batch of images, each image is augmented twice
with a random crop, color distortion, and Gaussian blur, cre-
ating two views of the same example. The model learns rep-
resentations by maximizing agreement between differently
augmented views of the same data example [2]. We use Sim-
CLR for semi-supervised image classification on ImageNet.
The data transformations increase the data volume by 10.7×.

Baselines: We compare Cachew’s resource scaling pol-
icy with the Kubernetes Horizontal Pod Autoscaler (HPA)

696    2022 USENIX Annual Technical Conference USENIX Association



(a) ResNet50 (b) RetinaNet (c) SimCLR

Figure 6: Scaling policy. Cachew selects the right number of workers to minimize epoch time and cost (orange markers).
Kubernetes Horizontal Pod Autoscaler does not select the optimal number of workers (blue markers), since it only scales based
on CPU usage and does not account for other potential input pipeline bottlenecks, e.g., memory and I/O bandwidth.

policy, which scales input data workers in the service based
on a 80% CPU resource utilization target per node [1]. We
measure the best-case epoch time for each model (i.e., model
ingestion rate) by running an infinitely fast input pipeline that
feeds synthetic data. Finally, we report the overhead of run-
ning tf.data pipelines on remote workers versus on training
nodes.

Execution modes: We consider two different placements
of the autocache operator in our input pipelines. We assume
the user inserts autocache near the beginning of the input
pipeline, immediately after a data read operator and before any
data transformation operators. We call this placement source
cache mode since it causes data workers to read source data
from Cachew’s cluster cache if the dispatcher decides to apply
caching at this point in the pipeline. We also assume the user
inserts autocache at the end of the input pipeline, after all
data transformations. We refer to this placement as full cache
mode, since input data workers will read fully transformed
data from the Cachew cluster cache if the dispatcher decides
to apply caching at this point in the pipeline. We compare
the performance of the source cache and full cache execution
modes with a compute mode, in which no data is reused in
the input pipeline, i.e., Cachew reads source data from cloud
storage and transforms data on-the-fly.

Metrics: We measure epoch time, i.e. the time it takes to
train the model on a complete iteration of the dataset, for each
model while varying the number of input data workers and
execution modes. We also report total training time and cost
for the compute and source cache execution modes. For cost,
we consider the Cachew input data worker node costs, storage
resources, and the cost of training nodes used for the duration
of the job. We assume the cost of the dispatcher is amortized
across multiple users and jobs. Note that in our workloads,
we observed full caching decreases training accuracy due to
the presence of random transformations in the input pipelines.
In our evaluation, we focus on demonstrating that Cachew
can select the right execution mode to maximize throughput,
assuming the user has placed the autocache operator in a
location that is acceptable for their use-case. Prior studies

Figure 7: Cachew’s first scaling decisions in compute mode
relative to the value of the improvement threshold.

have explored the impact on training dynamics when reusing
randomly transformed data across epochs [16, 40].

Cluster hardware setup: We run our experiments on
Google Cloud. The dispatcher runs on a n2-standard-16 VM.
We train ResNet-50 on n1-standard-32 VMs with four Tesla
V100 GPUs. We train SimCLRv2 and RetinaNet models on
v3-8 TPU VMs since the reference implementations are de-
signed for training on TPUs. We use n2-standard-2 VMs with
two 375GB NVMe SSDs for the GlusterFS storage cluster.
The network bandwidth between the storage cluster, workers,
and clients is at least 16 Gb/s.

6.2 Cachew Autoscaling

We sweep the number of input data workers for the com-
pute, source cache, and full cache execution modes for each
model. Figure 6 plots epoch time as a function of the number
of data workers and shows the number of workers selected
by Cachew’s scaling policy in orange and Kubernetes’s scal-
ing policy in blue markers. The dotted red line shows the
minimum epoch time achievable with an infinitely fast input
pipeline. In all execution modes, Cachew finds the minimum
(or near minimum) number of data workers to avoid data stalls

USENIX Association 2022 USENIX Annual Technical Conference    697



Figure 8: Cachew’s autocaching policy selects the execution
mode that minimizes batch time.

in model training. In contrast, the Kubernetes Horizontal Pod
Autoscaler noticeably under or over-provisions data workers.
Kubernetes HPA performs poorly as it does not detect bottle-
necks besides CPU and memory capacity, such as memory
bandwidth bottlenecks and I/O bottlenecks that can limit in-
put pipeline throughput. For SimCLRv2, the input pipeline
is highly compute intensive, hence Kubernetes scales up to
24 data workers to maintain per-node CPU utilization at the
80% target. In contrast, Cachew’s scaling policy checks the
relative improvement in batch time and determines there are
diminishing returns to scaling beyond 16 workers in compute
mode and 13 workers in source cache mode.

Figure 7 shows Cachew’s scaling decision sensitivity to the
batch_time improvement threshold value, which we sweep
from 1% to 11%. We include decisions that are suboptimal,
which Cachew may later correct in the training process. Both
ResNet50 and RetinaNet are robust to this threshold, as the
addition of a worker yields clear epoch time benefits (see
Figures 6a and 6b), thus the value of the threshold can be
quite large. For SimCLR, the addition of a new worker does
not always yield significant benefits to the epoch time (see
Figure 6c). Consequently, for such a model, lower thresholds
are more suitable. The downside of a lower threshold is that
the autoscaling policy becomes more susceptible to noise in
the metrics. This is visible in Figure 7, as the variance of
the decision increases, and outlier decisions become more
common. Cachew triggers rescaling in such cases, and even-
tually converges to the right decision. Gathering metrics over
multiple batches can help alleviate noise.

6.3 Cachew Autocaching

To evaluate Cachew’s caching policy, we run the service with
an input pipeline in which we carefully control and simulate
compute intensity. The input pipeline consists of reading
input data from storage (56GB), increasing the size of data
elements by 2.5×, and sleeping for a controlled duration of
time to simulate applying a time-consuming data processing

Figure 9: RetinaNet training timeline for the first 4 epochs.
Cachew picks the right caching mode and number of workers.

operation. Figure 8 plots the time it takes to process a batch of
elements as a function of the injected processing time, for the
three different execution modes we consider. The experiment
is designed such that the compute, source cache, and full cache
execution modes are each optimal in a particular regime and
verify that Cachew makes the optimal choice.

At low data processing intensity, reading data from the
cloud data lake (GCS) is an I/O bottleneck and Cachew recog-
nizes the service should store and read source data from the
cluster cache. When sleep exceeds 350ms, Cachew recognizes
that data processing intensity is high enough that GCS I/O is
no longer the bottleneck. Reading and transforming data on-
the-fly from GCS (i.e., compute mode) becomes optimal until
400ms. When source cache mode reaches a similar through-
put as compute mode (as in the 350-400ms regime), Cachew
prefers compute mode as it saves storage costs. When sleep
time exceeds 400ms, storing and reading the transformed
dataset from cache minimizes batch time compared to other
modes. Cachew chooses full caching in this regime.

6.4 Autocaching & Autoscaling over Time

We demonstrate how Cachew jointly optimizes elastic scal-
ing and caching to maximize epoch time and cost. Figure 9
plots the scaling and caching decisions that Cachew makes
over time. As an example, we show the first four epochs of
RetinaNet training, where we place two autocache ops: one
after the reading ops, and one at the end of the input pipeline.
The red curve shows the number of workers used for the job
and orange vertical lines show when Cachew makes a scaling
decision. Cachew starts by processing the pipeline in compute
mode with a single worker (highlighted in yellow), first block-
ing scaling and profiling the worker. During the single-worker
profiling phase, Cachew collects metrics to make a caching
policy decision and decides on caching at the end of the input
pipeline. This decision takes place at the time marked by the
green vertical dashed line. The caching decision is applied
at the end of the first epoch, when we enter the put epoch

698    2022 USENIX Annual Technical Conference USENIX Association



(a) ResNet50 (b) RetinaNet (c) SimCLR

Figure 10: Total training cost (and training time) for Cachew vs. Kubernetes HPA worker scaling policy decisions.

(highlighted in blue) which writes the dataset to the cluster
cache and takes longer as a result. Due to prefetching, splits
are exhausted in the first two epochs before the autoscale com-
pletes. The other two epochs presented are in cache get mode
(highlighted in green). In the third epoch, Cachew scales the
number of workers up to 5, where no more improvements
are observed. At this point Cachew removes the superfluous
worker and converges to 4 workers. Cachew will continue
to run the pipeline in get mode with 4 workers for the re-
maining epochs, and only adjust this number if input pipeline
characteristics evolve, requiring less or more workers.

6.5 End-to-end performance and cost
6.5.1 Time to Accuracy and Training Cost

Figure 10 shows the total training cost (bars on y-axis) and
total training time (annotations) for the input data worker con-
figurations that Kubernetes and Cachew select in the compute
and source cache execution modes. As we saw in Figure 6,
Kubernetes under-provisions input data workers for ResNet-
50 compute mode, while Cachew picks the optimal worker
count, allowing it to reduce training time by 4.1× and cost
by 3.8×. For SimCLR, Kubernetes over-provisions workers,
slightly reducing training time but Cachew still saves overall
cost by 12-20% by optimizing the number of workers based
on its relative improvement threshold in the scaling policy.

6.5.2 Service Overhead

We compare the performance and resource overhead of run-
ning tf.data pipelines with the service versus locally on
training nodes. The service requires additional CPU resources
to achieve the same input pipeline throughput, due to the extra
network hop (i.e., gRPCs) between data workers and training
nodes. Since local tf.data workers fetch source data over
the network and transform data on the training node, whereas
Cachew clients fetch transformed data over the network, the
service overhead also depends on the difference between the
source and transformed dataset sizes. In our experiments, we
find that the service should provision 30% to 50% more CPU

Figure 11: Multi-tenancy: Cachew detects cache hits across
jobs while scaling workers for each job separately.

cores compared to the CPU cores we observe being heav-
ily utilized when running the same input pipeline locally on
training nodes. Note that this overhead is not an artifact of
Cachew’s scaling or caching policies, but rather a measure-
ment of the overhead Cachew inherits from the distributed
data processing mechanisms in tf.data service [25]. Data
marshaling is known to consume significant cycles in data-
centers [35]. Networking overheads can be reduced (e.g., by
using RDMA), though this is not the focus of our work. The
cost of using extra CPUs for data processing is justified as
it allows keeping expensive GPUs/TPUs highly utilized and
reducing end-to-end training time (see Figure 10).

6.6 Multi-tenancy

We show that Cachew can optimize input data processing
across jobs. We run two jobs with the ResNet input data
pipeline but different model ingestion rates (simulated with
different sleep times in the dataset iteration loop on the
clients). The second job has double the ingestion rate of the
first. We again place autocache ops after reading the data
and at the end of the input pipeline. Figure 11 shows how the
batch processing time varies over time for each job as Cachew
makes its scaling and execution mode decisions. The red

USENIX Association 2022 USENIX Annual Technical Conference    699



curve shows the first job’s number of workers over time. The
epoch boundaries are highlighted by the red dotted vertical
lines. This job progresses through a compute epoch (yellow
highlight) with profiling, a put epoch (blue highlight), where
it caches the data of the autocache at the end of the input
pipeline and a get stage (green highlight), which consists of
two get epochs. The job ultimately converges to two workers.

We show that the dispatcher detects a cache hit after the first
job has written to cache and selects the cache get execution
mode for the second job in all of its four epochs. The epochs
are separated by blue dotted vertical lines. The blue curve
shows the number of workers for the second job over time.
As this job has double the ingestion rate requirements of the
first job, it converges to four workers.

7 Discussion

Data access control: Our current prototype of Cachew as-
sumes that clients have permission to access each other’s data
(e.g., tenants are all members of the same organization). The
implementation can be extended with Access Control Lists
(ACLs) to prevent unauthorized access to the data. Workers
can check/set permissions before reading/writing datasets. If
a job attempts to read from a dataset for which the client does
not have read permission, the worker’s request will fail and
the client will get a permission error.

Model training dynamics: Though reusing the output of
random data augmentations can negatively impact model ac-
curacy, prior works have found that negative impacts can be
mitigated by tuning the extent to which caching is applied
in an input pipeline. Choi et al. showed that reusing data af-
ter random transformations has a small negative impact on
the final accuracy trained models, reaching highly compet-
itive out-of-sample error rates with fewer non-cached data
instances than a model with no echoing [16]. Revamper [40]
demonstrated that partially caching random transformations,
while leaving some to be applied after reading from cache,
has negligible accuracy penalties, as long as the downstream
random transformations provide sufficient sample diversity.
Hence, a good rule of thumb is to cache expensive random
transformations, while applying highly diverse and inexpen-
sive random transformations after the cache. For instance, in
tasks such as image classification, inexpensive random trans-
formations, such as random crop and flip, generally provide
sufficient sample diversity [40].

Leveraging local resources on training nodes: Although
our autoscaling policy has focused on leveraging remote CPU
workers for data processing, tf.data service also supports
running data processing on local workers, which execute on
client training nodes. Adapting Cachew’s autoscaling policy
to leverage a mix of local and remote workers would ensure
that the extra cost of remote workers is only incurred if the
CPU/memory resources for data processing on client training
nodes are not sufficient to avoid data stalls.

8 Related Work

§ 2.3 discussed existing mechanisms in input data frameworks,
which serve as the foundation for Cachew’s autoscaling and
autocaching policies. We discuss other related work below.

Automated resource provisioning: Cluster management
systems aim to automate resource allocation decisions, which
are notoriously difficult for users [8, 20, 37, 45]. Generic clus-
ter managers treat workloads as black boxes, making them
unsuitable for jointly optimizing data caching and resource
scaling decisions. Cachew is able to jointly optimize caching
and scaling by using metrics that are tailored to the ML in-
put data processing domain. Several resource management
systems have been developed specifically for deep learning
jobs [28, 44, 65]. However, they assume GPUs are the domi-
nant resource for ML training, whereas recent work has shown
that allocating resources for input data processing is equally
important yet not well addressed by existing systems [64].

Caching vs. recomputing intermediate data: Caching
data and memoizing data transformations is a common tech-
nique [10,41,52]. Trade-offs of caching vs. recomputing data
arise in various contexts [7, 32, 33, 51]. We draw particular
inspiration from Nectar [30], a datacenter-scale caching sys-
tem that treats computations and their intermediate results as
interchangeable. We address ML-specific challenges, where
estimating the benefit of caching on training time is non-trivial
since the model may be the bottleneck or the (transformed)
dataset may be prohibitilely large to cache. We also jointly
optimize caching and resource scaling.

9 Conclusion

We proposed Cachew, a system architecture, to enable input
data processing as a service for machine learning. To avoid
input data stalls while minimizing cost, Cachew dynamically
scales distributed data processing resources to match the rate
at which each job’s training nodes can ingest data, while
avoiding over-provisioning. Cachew leverages its centralized
view of data processing pipelines across mutually trusted
jobs to reduce the overall compute power required for data
processing, by transparently reusing (transformed) datasets
within and across jobs when performance and cost efficient.

Acknowledgements

We thank our anonymous reviewers and shepherd for their
valuable comments. We acknowledge Jiří Šimša, Andrew Au-
dibert, Gustavo Alonso, Petros Maniatis, Paul Barham, and
Julia Bazińska for discussions that helped strengthen this
work. We also thank Oto Mraz for his help with artifact evalu-
ation. We are grateful for access to the Google TPU Research
Cloud and generous support from a Google Research Award.

700    2022 USENIX Annual Technical Conference USENIX Association



References

[1] Kubernetes Horizontal Pod Autoscaler. https:
//kubernetes.io/docs/tasks/run-application/
horizontal-pod-autoscale/, 2021.

[2] SimCLR reference code. https://github.com/
google-research/simclr, 2021.

[3] TensorFlow Model Garden. https://github.com/
tensorflow/models, 2021.

[4] TF Model Garden: ResNet50 reference code.
https://github.com/tensorflow/models/
tree/master/official/vision/image_
classification/resnet, 2021.

[5] TF Model Garden: RetinaNet reference code.
https://github.com/tensorflow/models/tree/
master/official/legacy/detection, 2021.

[6] Data preprocessing for machine learning:
options and recommendations. https:
//cloud.google.com/architecture/
data-preprocessing-for-ml-with-tf-transform-pt1,
2022.

[7] Sanjay Agrawal, Surajit Chaudhuri, and Vivek
Narasayya. Automated selection of materialized views
and indexes in sql databases. In In Proceedings of
VLDB ’00, pages 496–505, 2000.

[8] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen,
Shivaram Venkataraman, Minlan Yu, and Ming Zhang.
CherryPick: Adaptively unearthing the best cloud con-
figurations for big data analytics. In USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 17), pages 469–482, Boston, MA, 2017.

[9] Amazon Web Services. AWS EC2 Instance Types.
https://aws.amazon.com/ec2/instance-types/,
2021.

[10] Ganesh Ananthanarayanan, Ali Ghodsi, Andrew
Warfield, Dhruba Borthakur, Srikanth Kandula, Scott
Shenker, and Ion Stoica. Pacman: Coordinated memory
caching for parallel jobs. In Proc. of Symposium on
Networked Systems Design and Implementation (NSDI
12), pages 267–280, 2012.

[11] Andrew Audibert and Rohan Jain. tf.data Service RFC.
https://github.com/tensorflow/community/
blob/master/rfcs/20200113-tf-data-service.
md, 2019.

[12] Leon Bottou. Curiously Fast Convergence of some
Stochastic Gradient Descent Algorithms. In Proceed-
ings of the Symposium on Learning and Data Science,
2009.

[13] Paul Castro, Vatche Ishakian, Vinod Muthusamy, and
Aleksander Slominski. The rise of serverless computing.
Commun. ACM, 62(12):44–54, 2019.

[14] Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In Hal Daumé III and
Aarti Singh, editors, Proc. of the 37th International Con-
ference on Machine Learning, volume 119 of Proceed-
ings of Machine Learning Research, pages 1597–1607.
PMLR, 13–18 Jul 2020.

[15] Ting Chen, Simon Kornblith, Kevin Swersky, Moham-
mad Norouzi, and Geoffrey E Hinton. Big self-
supervised models are strong semi-supervised learners.
In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Bal-
can, and H. Lin, editors, Advances in Neural Informa-
tion Processing Systems (NeurIPS), volume 33, pages
22243–22255. Curran Associates, Inc., 2020.

[16] Dami Choi, Alexandre Passos, Christopher J. Shallue,
and George E. Dahl. Faster Neural Network Training
with Data Echoing, 2019.

[17] Torch Contributors. PyTorch Docs: torch.utils.data.
https://pytorch.org/docs/stable/data.html,
2021.

[18] Ekin D. Cubuk, Barret Zoph, Dandelion Mané, Vijay
Vasudevan, and Quoc V. Le. Autoaugment: Learning
augmentation strategies from data. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR,
pages 113–123, 2019.

[19] Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc
Le. Randaugment: Practical automated data augmen-
tation with a reduced search space. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, ed-
itors, Advances in Neural Information Processing Sys-
tems, pages 18613–18624, 2020.

[20] Christina Delimitrou and Christos Kozyrakis. Quasar:
Resource-efficient and qos-aware cluster management.
In Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’14, pages 127–144, 2014.

[21] Jia Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. ImageNet: A Large-Scale Hierarchical Image
Database. In Proceedings of CVPR, 2009.

[22] Frank Chen and Rohan Jain. tf.data Snapshot RFC.
https://github.com/tensorflow/community/
blob/master/rfcs/20200107-tf-data-snapshot.
md, 2020.

USENIX Association 2022 USENIX Annual Technical Conference    701

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://github.com/google-research/simclr
https://github.com/google-research/simclr
https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://github.com/tensorflow/models/tree/master/official/vision/image_classification/resnet
https://github.com/tensorflow/models/tree/master/official/vision/image_classification/resnet
https://github.com/tensorflow/models/tree/master/official/vision/image_classification/resnet
https://github.com/tensorflow/models/tree/master/official/legacy/detection
https://github.com/tensorflow/models/tree/master/official/legacy/detection
https://cloud.google.com/architecture/data-preprocessing-for-ml-with-tf-transform-pt1
https://cloud.google.com/architecture/data-preprocessing-for-ml-with-tf-transform-pt1
https://cloud.google.com/architecture/data-preprocessing-for-ml-with-tf-transform-pt1
https://aws.amazon.com/ec2/instance-types/
https://github.com/tensorflow/community/blob/master/rfcs/20200113-tf-data-service.md
https://github.com/tensorflow/community/blob/master/rfcs/20200113-tf-data-service.md
https://github.com/tensorflow/community/blob/master/rfcs/20200113-tf-data-service.md
https://pytorch.org/docs/stable/data.html
https://github.com/tensorflow/community/blob/master/rfcs/20200107-tf-data-snapshot.md
https://github.com/tensorflow/community/blob/master/rfcs/20200107-tf-data-snapshot.md
https://github.com/tensorflow/community/blob/master/rfcs/20200107-tf-data-snapshot.md


[23] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao
Carreira, Sangjin Han, Rachit Agarwal, Sylvia Rat-
nasamy, and Scott Shenker. Network requirements for
resource disaggregation. In Symposium on Operating
Systems Design and Implementation (OSDI 16), pages
249–264, November 2016.

[24] Google. gRPC: a high performance, open source univer-
sal RPC framework. https://grpc.io/, 2021.

[25] Google. Module: tf.data.experimental.service.
https://www.tensorflow.org/api_docs/python/
tf/data/experimental/service, 2021.

[26] Google Cloud. Cloud TPU pricing. https://cloud.
google.com/tpu/pricing, 2021.

[27] Google Cloud. Google Cloud Storage. https://cloud.
google.com/storage, 2021.

[28] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin,
Yibo Zhu, Myeongjae Jeon, Junjie Qian, Hongqiang Liu,
and Chuanxiong Guo. Tiresias: A GPU cluster manager
for distributed deep learning. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 19), pages 485–500, February 2019.

[29] Joaquin Anton Guirao, Krzysztof Łęcki, Janusz Lisiecki,
Serge Panev, Michał Szołucha, Albert Wolant, and
Michał Zientkiewicz. Fast AI Data Preprocessing with
NVIDIA DALI. https://devblogs.nvidia.com/
fast-ai-data-preprocessing-with-nvidia-dali,
2019.

[30] Pradeep Kumar Gunda, Lenin Ravindranath, Chan-
dramohan A Thekkath, Yuan Yu, and Li Zhuang. Nectar:
Automatic management of data and computation in dat-
acenters. In Proc. of Symposium on Operating Systems
Design and Implementation (OSDI 10), 2010.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of CVPR, pages 770–778. IEEE Computer
Society, 2016.

[32] Allan Heydon, Roy Levin, and Yuan Yu. Caching func-
tion calls using precise dependencies. In Proc. of
Programming Language Design and Implementation
(PLDI’00), page 311–320, 2000.

[33] Alekh Jindal, Konstantinos Karanasos, Sriram Rao, and
Hiren Patel. Selecting subexpressions to materialize at
datacenter scale. Proc. VLDB Endow., 11(7):800–812,
March 2018.

[34] Aarati Kakaraparthy, Abhay Venkatesh, Amar Phan-
ishayee, and Shivaram Venkataraman. The case for

unifying data loading in machine learning clusters. In
11th USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 19), Renton, WA, July 2019. USENIX
Association.

[35] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood,
Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon
Wei, and David Brooks. Profiling a warehouse-scale
computer. In Proc. of the 42nd Annual International
Symposium on Computer Architecture, ISCA ’15, page
158–169, New York, NY, USA, 2015. Association for
Computing Machinery.

[36] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu
John, and Sanjeev Kumar. Flash storage disaggregation.
In Proc. of European Conference on Computer Systems,
EuroSys ’16, pages 29:1–29:15, 2016.

[37] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Se-
lecta: Heterogeneous cloud storage configuration for
data analytics. In 2018 USENIX Annual Technical Con-
ference (USENIX ATC 18), pages 759–773, Boston, MA,
July 2018. USENIX Association.

[38] Michael Kuchnik, Ana Klimovic, Jiri Simsa, George
Amvrosiadis, and Virginia Smith. Plumber: Diagnos-
ing and removing performance bottlenecks in machine
learning data pipelines. CoRR, abs/2111.04131, 2021.

[39] Abhishek Vijaya Kumar and Muthian Sivathanu. Quiver:
An informed storage cache for deep learning. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20), pages 283–296, Santa Clara, CA, February
2020. USENIX Association.

[40] Gyewon Lee, Irene Lee, Hyeonmin Ha, Kyunggeun Lee,
Hwarim Hyun, Ahnjae Shin, and Byung-Gon Chun. Re-
furbish your training data: Reusing partially augmented
samples for faster deep neural network training. In
USENIX Annual Technical Conference (ATC’21), pages
537–550, 2021.

[41] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker,
and Ion Stoica. Tachyon: Reliable, memory speed stor-
age for cluster computing frameworks. In Proceedings
of the ACM Symposium on Cloud Computing, SOCC
’14, page 1–15, 2014.

[42] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollár. Focal loss for dense object detection.
In IEEE International Conference on Computer Vision
(ICCV), pages 2999–3007, 2017.

[43] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft coco: Common objects
in context. In Proceedings of ECCV, 2014.

702    2022 USENIX Annual Technical Conference USENIX Association

https://grpc.io/
https://www.tensorflow.org/api_docs/python/tf/data/experimental/service
https://www.tensorflow.org/api_docs/python/tf/data/experimental/service
https://cloud.google.com/tpu/pricing
https://cloud.google.com/tpu/pricing
https://cloud.google.com/storage
https://cloud.google.com/storage
https://devblogs.nvidia.com/fast-ai-data-preprocessing-with-nvidia-dali
https://devblogs.nvidia.com/fast-ai-data-preprocessing-with-nvidia-dali


[44] Kshiteej Mahajan, Arjun Balasubramanian, Arjun
Singhvi, Shivaram Venkataraman, Aditya Akella, Amar
Phanishayee, and Shuchi Chawla. Themis: Fair and effi-
cient GPU cluster scheduling. In 17th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 20), pages 289–304, February 2020.

[45] Ashraf Mahgoub, Alexander Michaelson Medoff,
Rakesh Kumar, Subrata Mitra, Ana Klimovic, Somali
Chaterji, and Saurabh Bagchi. OPTIMUSCLOUD: Het-
erogeneous configuration optimization for distributed
databases in the cloud. In USENIX Annual Technical
Conference (USENIX ATC 20), pages 189–203, 2020.

[46] Jayashree Mohan, Amar Phanishayee, and Vijay Chi-
dambaram. CheckFreq: Frequent, Fine-Grained DNN
checkpointing. In 19th USENIX Conference on File
and Storage Technologies (FAST 21), pages 203–216.
USENIX Association, February 2021.

[47] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala,
and Vijay Chidambaram. Analyzing and mitigating data
stalls in DNN training. In VLDB 2021, January 2021.

[48] Derek G. Murray, Jiri Simsa, Ana Klimovic, and Ihor
Indyk. tf.data: A machine learning data processing
framework. In VLDB 2021, volume 14, 2021.

[49] Daniel S. Park and William Chan. SpecAugment: A
New Data Augmentation Method for Automatic Speech
Recognition. https://ai.googleblog.com/2019/
04/specaugment-new-data-augmentation.html,
2019.

[50] Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D. Cubuk, and Quoc V. Le.
Specaugment: A simple data augmentation method for
automatic speech recognition. Interspeech 2019, Sep
2019.

[51] Lana Ramjit, Matteo Interlandi, Eugene Wu, and Ravi
Netravali. Acorn: Aggressive result caching in dis-
tributed data processing frameworks. In Proceedings of
the ACM Symposium on Cloud Computing, SoCC’19,
page 206–219, 2019.

[52] K. V. Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion
Stoica, and Kannan Ramchandran. Ec-cache: Load-
balanced, low-latency cluster caching with online era-
sure coding. In Proc. of Symposium on Operating Sys-
tems Design and Implementation (OSDI 16), pages 401–
417, 2016.

[53] Red Hat. Gluster: scalable data filesystem. https:
//www.gluster.org/, 2021.

[54] Red Hat. Setting up GlusterFS Volumes. https:
//docs.gluster.org/en/v3/Administrator%
20Guide/Setting%20Up%20Volumes/, 2021.

[55] Johann Schleier-Smith, Vikram Sreekanti, Anurag
Khandelwal, Joao Carreira, Neeraja J. Yadwadkar,
Raluca Ada Popa, Joseph E. Gonzalez, Ion Stoica, and
David A. Patterson. What serverless computing is and
should become: The next phase of cloud computing.
Commun. ACM, 64(5):76–84, April 2021.

[56] Amazon Web Services. Amazon Simple Storage Ser-
vice. https://aws.amazon.com/s3, 2021.

[57] Connor Shorten and Taghi M. Khoshgoftaar. A survey
on image data augmentation for deep learning. J. Big
Data, 6:60, 2019.

[58] Patrice Y. Simard, Dave Steinkraus, and John C. Platt.
Best practices for convolutional neural networks applied
to visual document analysis. In Proceedings of ICDAR,
page 958. IEEE Computer Society, 2003.

[59] Mingxing Tan and Quoc Le. Efficientnetv2: Smaller
models and faster training. In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139, pages
10096–10106. PMLR, 2021.

[60] TensorFlow. TensorFlow Graph Optimizations. https:
//research.google/pubs/pub48051.pdf, 2019.

[61] Tensorflow. Better performance with the tf.data
API. https://www.tensorflow.org/guide/data_
performance#caching, 2021.

[62] Tensorflow. tf.data.experimental.snapshot.
https://www.tensorflow.org/api_docs/python/
tf/data/experimental/snapshot, 2021.

[63] Jason Van Hulse, Taghi M. Khoshgoftaar, and Amri
Napolitano. Experimental perspectives on learning from
imbalanced data. In Proceedings of the 24th Interna-
tional Conference on Machine Learning, ICML ’07,
page 935–942, 2007.

[64] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang,
Cheng Wang, Jian He, Liping Zhang Yong Li, Wei Lin,
and Yu Ding. MLaaS in the wild: Workload analysis
and scheduling in Large-Scale heterogeneous GPU clus-
ters. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), April 2022.

[65] Wencong Xiao, Romil Bhardwaj, Ramachandran Ram-
jee, Muthian Sivathanu, Nipun Kwatra, Zhenhua Han,
Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang,
Fan Yang, and Lidong Zhou. Gandiva: Introspective
cluster scheduling for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 595–610, October 2018.

USENIX Association 2022 USENIX Annual Technical Conference    703

https://ai.googleblog.com/2019/04/specaugment-new-data-augmentation.html
https://ai.googleblog.com/2019/04/specaugment-new-data-augmentation.html
https://www.gluster.org/
https://www.gluster.org/
https://docs.gluster.org/en/v3/Administrator%20Guide/Setting%20Up%20Volumes/
https://docs.gluster.org/en/v3/Administrator%20Guide/Setting%20Up%20Volumes/
https://docs.gluster.org/en/v3/Administrator%20Guide/Setting%20Up%20Volumes/
https://aws.amazon.com/s3
https://research.google/pubs/pub48051.pdf
https://research.google/pubs/pub48051.pdf
https://www.tensorflow.org/guide/data_performance#caching
https://www.tensorflow.org/guide/data_performance#caching
https://www.tensorflow.org/api_docs/python/tf/data/experimental/snapshot
https://www.tensorflow.org/api_docs/python/tf/data/experimental/snapshot


[66] Doris Xin, Litian Ma, Jialin Liu, Stephen Macke,
Shuchen Song, and Aditya Parameswaran. Helix: Ac-
celerating human-in-the-loop machine learning. Proc.
VLDB Endow., 11(12):1958–1961, August 2018.

[67] Sangdoo Yun, Dongyoon Han, Seong Joon Oh,
Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cut-
mix: Regularization strategy to train strong classifiers
with localizable features. In International Conference
on Computer Vision (ICCV), 2019.

[68] Matei Zaharia, Ali Ghodsi, Reynold Xin, and Michael
Armbrust. Lakehouse: A new generation of open plat-
forms that unify data warehousing and advanced ana-
lytics. In 11th Conference on Innovative Data Systems
Research, CIDR 2021, 2021.

[69] Mark Zhao, Niket Agarwal, Aarti Basant, Bugra Gedik,
Satadru Pan, Mustafa Ozdal, Rakesh Komuravelli, Jerry
Pan, Tianshu Bao, Haowei Lu, Sundaram Narayanan,
Jack Langman, Kevin Wilfong, Harsha Rastogi, Carole-
Jean Wu, Christos Kozyrakis, and Parik Pol. Under-
standing and co-designing the data ingestion pipeline for
industry-scale recsys training. CoRR, abs/2108.09373,
2021.

[70] Barret Zoph and Quoc V. Le. Neural architecture search
with reinforcement learning. In Proceedings of ICLR,
2017.

704    2022 USENIX Annual Technical Conference USENIX Association



A Artifact Evaluation README

A.1 Abstract
The artifact consists of the source code of Cachew2, the
Cachew client binaries3, as well as scripts for building wheel
files and Docker images. We also provide reference scripts
for deploying GCE VMs for evaluation and for running the
some representative experiments4. Do note that these scripts
might not work as they depend on resources that might not
be public. In these cases, experiment VMs will have to be
manually set up.

The evaluation focuses on reproducing key experiments
and their respective results which demonstrate how the main
contributions of Cachew work:

• Autoscaling (Figure 6a, compute curve): show how in-
put pipeline resources affect training time, how Cachew’s
autoscaling policy finds the right number of workers
automatically, and how the Kubernetes Horizontal Pod
Autoscaler fails to find the right scale.

• Autocaching (Figure 8): Show how Cachew’s auto-
caching policy behaves under various execution sce-
narios, and how the most efficient execution mode is
selected by Cachew.

• Multi-tenancy with autoscaling and autocaching (Fig-
ure 11): Show how Cachew behaves in multi-worker
scenarios, selecting the most efficient execution mode,
as well as the right scale for each job. Furthermore this
experiment should also show how caching can be used
in cross-job settings.

A.2 Artifact check-list
The artifact with the components listed below is available at:
https://github.com/eth-easl/cachew_experiments.

• System to deploy: Cachew service (dispatcher, input data
workers, remote cache cluster)

• Algorithms to evaluate: Cachew’s autoscaling and auto-
caching policies

• Workloads to run:

– Figure 6a: ResNet50 model and its open-source
canonical input pipeline.

– Figure 8: Synthetic input pipeline

– Figure 11: Canonical ResNet50 input pipeline

• Binary: Cachew Docker image for workers and dis-
patcher, Cachew wheel file for client, GCE VM image.

2https://github.com/eth-easl/cachew
3gs://cachew-builds/tensorflow-2.8.0-cp39-cp39-linux_x86_64.whl
4https://github.com/eth-easl/cachew_experiments

• Model: ResNet50 and its canonical input pipeline

• Data Sets: ImageNet 2012 (stored in GCS bucket)

• Output: CSV files with metrics, text-based logs, and plots
to compare with figures in the paper.

• Experiments: Experiments and deployment are fully
scripted. See §A.4.

• Publicly available?: yes

• Code licenses: Apache 2.0

• Data licenses: ImageNet 3-Clause License

• Archived (provide DOI)? 10.5281/zenodo.6543943

A.3 Prerequisites
Hardware dependencies: The experiments require a cluster
of x86 CPU servers with hardware virtualization support, with
4 Nvidia V100 GPUs on one of the servers. We recommend
(and our scripts assume that you are) conducting experiments
on Google Cloud. Some of the VM deployment scripts might
not work out of the box as they can require access to resources
which are no longer private. In this case, the scripts will either
have to be modified or the deployment will have to be done
manually.

Software dependencies: Our scripts make extensive use
of the gcloud CLI tool. As a consequence, this tool is a pre-
requisite for setting up VMs and running experiments. Please
follow this tutorial to install it. We additionally make use of
the gsutil tool. To install it, please follow this tutorial. We also
suggest to use Python 3.9 with PyEnv as a means to install and
manage multiple python versions and virtual environments.
The software requirements for the Google Cloud service de-
ployment are installed on the VM images we provide.

Estimated time and cost: The estimated time needed to
prepare the workflow is 30 minutes. The estimated execution
time of experiments is approx. 15 hours in total. We pro-
vide an estimated breakdown of the time and cost for each
experiment5.

A.4 Instructions
Detailed instructions are provided in the artifact repos-
itory README. The evaluator will need to git clone

https://github.com/eth-easl/cachew_experiments.git lo-
cally, then use the scripts provided in the deploy folder to
spin up a VM, and later tear it down. Once the VM is spun up,
one needs to ssh into the VM and use the scripts in the rel-
evant experiment directory. Once the experiment is finished,
the VM can be torn down. Note that as mentioned before,
some of the scripts might not work due to private dependen-
cies. In such cases, use the scripts as reference.

5Time and cost estimate sheet: https://tinyurl.com/52mwtccn

USENIX Association 2022 USENIX Annual Technical Conference    705

https://github.com/eth-easl/cachew_experiments
https://github.com/eth-easl/cachew
gs://cachew-builds/tensorflow-2.8.0-cp39-cp39-linux_x86_64.whl
https://github.com/eth-easl/cachew_experiments
https://cloud.google.com/sdk/docs/install
https://cloud.google.com/storage/docs/gsutil_install
https://github.com/pyenv/pyenv
https://github.com/eth-easl/cachew_experiments#software-prerequisites-for-full-service-deployment
https://github.com/eth-easl/cachew_experiments/blob/main/README.md
https://github.com/eth-easl/cachew_experiments/blob/main/README.md
https://docs.google.com/spreadsheets/d/1rEDdn2CCyz6irt_nthHyWYOcPwZ-f35vp71Efps5sYs/edit?usp=sharing


A.4.1 Getting Started

Please see the artifact repository Getting Started section of the
README for instructions on how to write a simple Cachew
input data pipeline and execute it locally.

A.4.2 Reproducing Experiment Results

We provide scripts to automate the deployment, execution,
and result plotting for the three key experiments listed in
§A.1. See the Artifact Evaluation section of the README
for instructions to run the scripts. Please follow the following
steps for each experiment:

1. Deploy a VM for artifact evaluation using
deploy/deploy.sh <vm-name> <gpu-count>

2. Use the gcloud compute ssh <vm-name> command
to ssh into the VM

3. Use cd ${HOME}/cachew_experiments/experiments/<ename>

where <ename> is the experiment name, and follow the
README there and the associated scripts to run the
experiments.

4. Use gcloud compute scp to collect whatever resource
you find relevant after the experiment is done.

5. Exit the ssh session, and tear down the VM using the
deploy/terminate.sh script.

For Figure 6a (compute curve) experiment, which required
4 GPUs, see the experiments/autoscaling directory. For
Figure 8, see the experiments/autocaching directory. For
Figure 11, see the experiments/multi-tenancy directory.

A.5 Evaluation and Expected Results
Each of the three experiments produces a plot which should
be comparable with the associated plot in the paper.

A.5.1 Experiment Metrics

• Figure 6a: Epoch time in seconds, number of workers
chosen by Cachew’s autoscale policy and number of
workers chosen by Kubernetes HPA

• Figure 8: Batch time, Cachew’s autocache policy deci-
sions

• Figure 11: Epoch time, autocache policy decision, au-
toscale policy decision

A.5.2 Expected Results and Possible Variations

• Figure 6a: Epoch time can vary depending on cloud
conditions. Decay may or may not be more or less ag-
gressive due to this. Consequently, autoscale decision
might vary around 4 workers (at most ±1 worker). While
it is rare, it can happen that the Kubernetes HPA scaling
also changes from one worker to two.

• Figure 8: Epoch times might vary due to cloud condi-
tions. Shape of curves should still be the same (although
compute might change as it depends heavily on GCS).
Note that the points on the curves, and Cachew’s de-
cisions are recorded separately (i.e. in different runs).
Consequently, conditions might change, and metrics
could potentially vary leading Cachew to make a seem-
ingly ’wrong’ decision at points where the three options
have similar throughput. Otherwise, Cachew decision
expected to follow lowest batch time option.

• Figure 11: Job 1’s first two epochs are not always ex-
pected to converge during autoscale phase (as Cachew
prefers to move to next epoch in those compute modes),
but it could happen at 3 workers (both epochs). Job 1’s
third epoch expected to converge around 2 workers. Job
2 is expected to converge around 4 workers. Epoch times
for Job 1 should be around [366s, 363s, 266s, 253s] while
for Job 2 around 158s initially then around 129s in the
later epochs. The expected sequence of execution modes
for Job 1 is [PROFILE, PUT, GET] and for Job 2 is only
GET. Both jobs can have epoch extensions towards the
end of a run. A reasonable amount of variability in the
worker count (±1 worker) and epoch times is expected.
This experiment is expected to be the relatively volatile,
and emphasis should be placed on epoch time conver-
gence and the autocache decisions. On rare occasions
the autoscaling decisions can converge to a wrong scale
due to the short and synthetic nature of the experiment
and the implicit noise this causes on the scaling metrics.
As this is a short job, Cachew cannot correct the scale in
good time. We have also recently identified a bug caused
by the merge with the recent TensorFlow 2.8 codebase
which affects our cache store. More detailed informa-
tion regarding this experiment’s expected outcome and
variability can be found in its README.

A.5.3 Experiment customization

It should be possible to modify some of the parameters per-
taining to each experiment. For instance, for the Figure 6a
experiment, it is possible to change the number of workers
across which clusters are deployed. These parameters can be
changed in the experiment scripts themselves or for some as
command line parameters. Please see the experiment scripts
for further details.

706    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/eth-easl/cachew_experiments#getting-started
https://github.com/eth-easl/cachew_experiments#getting-started
https://github.com/eth-easl/cachew_experiments#artifact-evaluation


CoVA: Exploiting Compressed-Domain Analysis to Accelerate Video Analytics

Jinwoo Hwang
KAIST

Minsu Kim
KAIST

Daeun Kim
KAIST

Seungho Nam
KAIST

Yoonsung Kim
KAIST

Dohee Kim
KAIST

Hardik Sharma
Google

Jongse Park
KAIST

Abstract
Modern retrospective analytics systems leverage cascade

architecture to mitigate bottleneck for computing deep neural
networks (DNNs). However, the existing cascades suffer from
two limitations: (1) decoding bottleneck is either neglected
or circumvented, paying significant compute and storage cost
for pre-processing; and (2) the systems are specialized for
temporal queries and lack spatial query support. This paper
presents CoVA, a novel cascade architecture that splits the
cascade computation between compressed domain and pixel
domain to address the decoding bottleneck, supporting both
temporal and spatial queries. CoVA cascades analysis into
three major stages where the first two stages are performed in
compressed domain, while the last one in pixel domain. First,
CoVA detects occurrences of moving objects (called blobs)
over a set of compressed frames (called tracks). Then, using
the track results, CoVA prudently selects a minimal set of
frames to obtain the label information and only decode them
to compute the full DNNs, alleviating the decoding bottleneck.
Lastly, CoVA associates tracks with labels to produce the final
analysis results on which users can process both temporal
and spatial queries. Our experiments demonstrate that CoVA
offers 4.8× throughput improvement over modern cascade
systems, while imposing modest accuracy loss.

1 Introduction

Every day, a massive corpus of video data is produced, which
is only growing (9.4 exabytes per day, as of 2021 [1]). Extract-
ing insights and actionable semantics from the captured video
can enable a variety of applications in healthcare, smart cities,
security, customer behavior analysis, etc. Prior works [2–7]
have built retrospective analytics systems that allow analysts
to interactively query over a large corpus of accumulated
video data stored in disk.

Modern retrospective analytics heavily rely on deep neural
networks (DNNs). Although DNNs are effective, they come

(b)

Video Storage

Compressed
Video

720
 DNN

Tracks Label
Prop.

Compressed Domain Analysis Pixel Domain Analysis

Proposed Cascade Architecture

 Results

Track
Detection

Video 
Decoder

Frame
Selection

(a)

480720

360 240

Decoded
Video

1

Transcoded
Multi-resol.

Video

2

Video Storage
Existing Cascade Architecture

Fi
lte

r #
1

Fi
lte

r #
2

 DNN  Results
Video 

Decoder

Figure 1: (a) Existing state-of-the-art cascade systems [2, 3],
excluding video decoding from the end-to-end setting with
two costly assumptions; (b) the proposed cascade architecture
that addresses the decoding bottleneck and supports spatial
queries, exploiting the compressed domain analysis.

at the cost of significant compute complexity, even for an
image. Evidently, passing all the frames of a video through
DNN inferencing is computationally prohibitive. To address
this challenge, recent works [2–4, 6–13] have focused on cas-
cade architectures. They stage processing as (relatively) in-
expensive predicates to filter the incoming frames of video
by trading analysis accuracy for higher throughput. As such,
only a handful of frames arrive at the last stage that performs
the full DNN inferencing.

While effectively resolving the DNN throughput bottle-
neck, the existing cascade systems have two limitations.
First, as shown in Figure 1(a), these systems either ignore or
sidestep a new bottleneck stage, video decoding, by making
one of the two costly assumptions: (1) input video is decoded
a priori and the raw frames are stored in storage [2, 3, 5, 7],
or (2) input video is pre-transcoded and stored in multiple
lower resolutions at ingest time to facilitate the query time
decoding [4, 6]. However, in practice, decoding (or transcod-
ing) the entire video corpus and storing the uncompressed (or

USENIX Association 2022 USENIX Annual Technical Conference    707



duplicate) data in disk is often infeasible due to the significant
compute and storage cost.

Second, to achieve otherwise-unachievable throughput, the
existing cascade systems often exclusively support temporal
queries. More specifically, many cascade systems [2, 3, 5, 11]
only support binary predicate query, which is to get times-
tamps of frames that contain the queried object. However, re-
cent studies in video analytics [7, 15] propose spatial queries
(e.g., car in upper right region) and demonstrate their useful-
ness, which cannot be supported by the current cascades.

To tackle the two limitations, this paper sets out to devise
CoVA1, an alternate cascade architecture. As illustrated in
Figure 1(b), the key contribution of CoVA is to split cascade
computation between compressed domain and uncompressed
pixel domain, which collaboratively alleviate the decoding
bottleneck at query time without requiring any pre-processing
and support both temporal and spatial queries. To design this
cascade architecture, we leverage the following two insights:

(1) A small set of encoding metadata, commonly used by
modern video codecs, provides noisy, yet rich, informa-
tion to accurately locate potential objects and track them
across frames in compressed video, while decoded pixel
data is only necessary to classify objects.

(2) Video analytics queries can be fulfilled by answering
the following three questions: (1) where and when are
interesting objects present in the video (i.e., spatiotem-
poral information); (2) what are the object classes (i.e.,
label information); and (3) what specific information do
queries ask about these objects?

With these insights, CoVA divides video analytics over com-
pressed footage into three major stages. The first stage (Track
Detection) detects occurrences of moving objects (called
blobs) over a collection of consecutive compressed frames
(called tracks). To realize this objective, we devise a novel
compressed-domain blob tracking technique, refitting a neural
network based segmentation algorithm and a multiple object
tracking algorithm, both of which are originally designed for
pixel domain. Our second stage (Frame Selection) avoids
decoding the whole track and selects a minimal set of frames
that are representative and yet minimize the decoding load.
CoVA passes only this subset through the full DNN object de-
tection. The third stage (Label Propagation) takes the labels
and the coordinates of the detected objects in the subset and
uses spatiotemporal information from the first stage to propa-
gate labels across all the frames of the track. Altogether, these
approaches offer a novel cascade architecture that performs
its first and second stages in the compressed domain, while
the third stage is in the pixel domain.

Finally, the three stages produce a collection of analysis
results for each frame, which include a list of present objects,

1CoVA: Compressed Video Analytics.

their pixel coordinates, their labels (e.g., car), and all other
properties associated with the objects (e.g., color). Note that
the results are query-agnostic and not specific to a certain
query. Therefore, CoVA runs the three stages only for the
initial query and stores the analysis results along with the
video in database. When other queries are requested over the
same video in a future, CoVA simply retrieves the results and
process the queries without reprocessing the video.

We prototype a CoVA system2 on NVIDIA’s streaming
analytics framework, DeepStream [16]. We evaluate the ef-
fectiveness of CoVA using five video streams and four queries.
Compared to existing cascade systems for query time ret-
rospective analytics, CoVA offers 4.8× throughput improve-
ment, while compromising only modest accuracy loss. We
also show that CoVA is capable of serving spatial queries
without having significant accuracy loss, compared to the full
DNN analytics baseline.

Contributions. Our key contributions are as follows:

• We show that encoding metadata is sufficiently rich to
identify objects of interest along with their spatiotempo-
ral information for retrospective video analytics.

• To extract the spatiotemporal information, we devise
a novel compressed-domain blob tracking technique,
refitting the pixel-domain video segmentation and object
tracking algorithms.

• We present the design of CoVA, a mixed-domain retro-
spective analytics system that leverages the track infor-
mation to alleviate the decoding bottleneck, and support
both temporal and spatial queries.

• Our experiment shows that CoVA offers significant
throughput improvement over conventional cascade sys-
tems, while compromising modest accuracy loss.

2 Background and Motivation

CoVA aims to tackle limitations of existing retrospective ana-
lytics systems. Below, we first provide background on state-
of-the-art retrospective analytics and discuss their limitations.
We also discuss common compression mechanisms of modern
video codecs, which drive the design of proposed techniques.

2.1 Retrospective Analytics

Modern retrospective analytics systems [2–8, 10–14] share
two common properties: (1) heavy reliance on DNNs, and (2)
cascade architecture to resolve the DNN compute bottleneck.

2Our prototype is available at https://github.com/casys-kaist/CoVA.

708    2022 USENIX Annual Technical Conference USENIX Association



Th
ro

ug
hp

ut
 (F

PS
) 73.7K

Cascade+Decode

(720p)
Cascade+Decode

(1080p)
Cascade+Decode

(2180p)DNN Only
Cascade

0.2K
1.4K

0.7K 0.2K
0K
1K
2K
3K
4K
5K

Figure 2: Throughput comparison among various system en-
vironments of cascade video analytics.

While they have these common properties, there are two differ-
ent dimensions that categorize the instances of retrospective
analytics systems.
Time of analysis – query time vs. ingest time. Retrospective
analytics systems are categorized into two groups, depending
on whether the analysis occurs at query time [2, 3, 11] or
ingest time [4, 6, 8, 13]. While ingest time analysis leverages
offline pre-processing to facilitate and expedite the query time
analysis, it requires to scan the entire video data corpus and
consume compute resources on it, even though a significant
portion of the data is not queried. This approach is not only
cost-inefficient but also environmentally suboptimal since
it would consume a massive amount of energy for mostly
unnecessary computations. In contrast, query time analysis
performs the full analysis at query time without having any
pre-processing. Therefore, it does not touch raw video data
unless it is queried, which allows analysts to prevent the waste
of resources. To this end, this work focuses on the query time
analysis and aims to address its limitations.
Supported query – temporal vs. both temporal and spatial.
Most, if not all, of query time cascade systems [2, 3, 11] limit
the types of supported queries to be only the temporal ones
and specialize the cascade stages for a specific temporal query
to achieve high throughput. However, recent work [7] points
out that spatial information can enable richer capabilities for
video analytics. CoVA is a novel cascade architecture that
leverages compressed-domain analysis to address both spatial
and temporal queries.

2.2 Video Decoding: the New Bottleneck

Decoding for end-to-end cascade. With the volume of video
data growing at an explosive rate, the use of compression
is imperative to keep storage costs in check. Video codecs
such as H.264 strike a balance between quality and storage
size, being used as the de facto way of storing large cor-
pus of video data. As such, the first step in an end-to-end
system for processing video queries is to decode the video
data before further processing. However, even with hardware-

acceleration for standard codecs baked-in to modern CPUs
and GPUs, video decoding can be up to orders-of-magnitude
slower than the capabilities of cascade systems to process raw
video frames.
Bottleneck analysis. To quantify this bottleneck, we examine
the performance impact of video decoding for an existing
state-of-the-art cascade system, Tahoma [3], using NVIDIA
RTX 3090 GPU, and present the results in Figure 2. The de-
tailed methodology is provided in Section 8.1. The cascade
system is effective in addressing the DNN-execution bottle-
neck and offers up to 327× improvement in performance
compared to a native DNN-only solution. However, even with
decoding accelerator hardware NVDEC [17], the decoding
throughput is significantly lower than the throughput of cas-
cade system, which curtails most performance gains.

Further, as video resolution increases, the decoding
throughput almost linearly decreases, exacerbating the decod-
ing bottleneck. Considering the trend that even IoT devices
such as surveillance cameras produce HD (1080p) or higher
resolution video, we believe that this decoding bottleneck
will become increasingly severe and significantly hinder the
usefulness of video analytics in interactive applications. Mo-
tivated by these insights, the objective of CoVA cascade is to
address the decoding bottleneck in query time retrospective
analytics.

2.3 Block-based Video Coding

To alleviate the decoding bottleneck, CoVA leverages the
unique characteristics of block-based compression, used in
many modern video codecs. Below, we provide background
on block-based compression and discuss opportunities that it
opens for compressed-domain analysis.
Video codecs. Many video codecs, such as H.264, HEVC,
VP8, VP9, and AV1, use block-based compression algorithm.
In this paper, we primarily focus on the H.264 format since it
is one of the most widely used codecs in various applications
as of publication date [18]. However, CoVA is compatible with
other block-based codecs since all of them compress video,
generating the same set of metadata we use for compressed-
domain analysis in CoVA.
Block-based compression. Block-based codecs compress
(or encode) video frames by splitting each frame into a two-
dimensional array of fixed sized blocks, called macroblocks
(e.g., 16x16 pixels). There are three macroblock types – I,
P, and B – depending on the way how the macroblocks are
compressed. An I-macroblock is independently compressed,
while P- and B-macroblocks are compressed referring to one
and two other macroblocks, respectively. To maximize com-
pression ratio, the codecs select dependent macroblocks for P
and B-macroblocks with the highest similarity and store the
spatial offsets as metadata called motion vectors. Depending

USENIX Association 2022 USENIX Annual Technical Conference    709



Frame
Selection

Compressed 
Frames

Selected
Compressed

Frames

Video 
Decoder

DNN-based
Object 

Detection

Label 
Propagation

Partial
Decoding

Macroblock
Type & Mode

Motion
Vectors

Decoded
Frames

1

2

3

Compressed Domain Analysis Pixel Domain Analysis

Label 
Results

Analysis 
Results

Video
Storage

 uncompressed frames
 unselected frames
 dependent frames
 anchor frames

Track
Results

Blob
Tracking

Figure 3: Overview of CoVA.

on the composition of macroblocks, frames are again cate-
gorized into three types, I, P, and B. An I-frame, also known
as a keyframe, is only composed of I-macroblocks, while a
P-frame contains I/P-macroblocks and a B-frame has all of
the I/P/B-macroblocks.

To maximize the compression rate, codecs can partition
macroblocks (e.g., 16x16) into smaller sub-macroblocks
(e.g., 4x4). This optimization allows codecs to achieve
a higher compression rate but at the expense of stor-
ing larger metadata. Modern codecs employ multiple
macroblock partitioning modes. For instance, H.264 uses six
modes from no partitioning (i.e., 1 macroblock of size
(16×16)) to 16-way partitioning (i.e., 16 sub-macroblocks of
size (4×4)).

CoVA leverages the insight that the encoding metadata – (1)
macroblock types, (2) motion vectors, and (3) macroblock
partitioning modes – in the compressed video is sufficiently
rich to detect potential objects and track them across frames.

Compression rate optimization. Due to the higher com-
pressibility, codecs tend to prefer P/B-macroblocks over I-
macroblock. However, the preference for P/B macroblocks
ends up creating long dependency chains among the mac-
roblocks, which cause compression errors to propagate across
the chains and hinder random access to frames in the video.
To resolve the problems, the codecs insert I-frames at regular
intervals, typically every 250 frames, to create independent
sets of consecutive video frames, called Groups of Pictures
(GoP). Within a GoP, the number of dependent frames that
need to be decoded grows linearly, with zero for the first
I-frame and maximum for the last frame.

CoVA exploits the inter-frame dependencies and object track
information extracted from compressed-domain analysis to
prudently select the frames with the least number of depen-
dencies in each GoP that enable to identify all the objects
present and minimize decoding effort.

3 Overview of CoVA

CoVA divides video analytics over compressed footage into
three major stages, as illustrated in Figure 3.

1 First Stage: Track Detection. First, CoVA detects occur-
rences of moving objects over a collection of consecutive
compressed frames, which we call tracks. The track detection
stage further breaks down into two steps: (1) blob detection:
CoVA spatially detects whether and where moving objects
(called blobs) are present in each compressed frame; and (2)
blob tracking: CoVA temporally associates the blobs across
frames to identify unique blob tracks. For the blob detection,
we devise a novel compressed-domain blob detection model,
refitting a neural network architecture originally designed for
pixel-domain video segmentation. The neural network only
takes as input three encoding metadata commonly used by
modern codecs, recognizes movements as masks, and spatially
associates the masks clustered in a region as blobs. While the
neural network architecture is fixed, CoVA trains the model
individually for each video to learn the data-specific patterns
of blobs and specialize for the target video. Finally, the found
blobs are fed into the blob tracking step that employs an ob-
ject tracking algorithm, SORT [19], which was also originally
developed for pixel domain. Note that the blob track results
still lack the object class labels.

2 Second Stage: Frame Selection. To attain the object
labels for the detected blobs, CoVA needs to perform DNN-
based object detection for the frames where tracks appear,
which ordinarily require decoding all the frames. However,
as frames on a track most likely contain the same object, it
is enough to perform the object detection on a subset of the
frames in the track, which we call anchor frames. Thus, CoVA
only decodes frames required to decode the anchor frames,
which improves the effective decoding throughput. The chal-
lenge is how to prudently select the anchor frames so as to
minimize the decoding cost and at the same time acquire the
accurate label information. We develop a frame selection al-
gorithm that leverages a common property of video codecs
where compressed frames are encoded in dependency chains.
Thus, anchor frames are the ones that are located on the max-

710    2022 USENIX Annual Technical Conference USENIX Association



imal number of tracks and at the same time have the short
dependency chain with respect to the decoding algorithm.
Note that while the anchor frames are the only ones that are
inferred upon for object detection, all the frames in the track
need to be labeled to handle various video analytics queries.

3 Third Stage: Label Propagation. In the third stage, CoVA
takes the approximate positions of potential objects (or blobs)
from the first stage and labels for the anchor frames from
the second stage to temporally propagate the labels across all
the frames of the tracks. To merge the spatial and temporal
results, CoVA first spatially correlates blobs with objects on
anchor frames using the intersection ratios of their bounding
boxes. Then, CoVA uses the tracking information to identify
the same objects across the frames and propagates the labels,
while populating bounding boxes around the corresponding
blobs in the temporally consecutive frames.

Finally, when a video passes through the three stages, CoVA
produces a collection of analysis results for each frame, the
examples of which are a list of present objects, their pixel
coordinates, their labels (e.g., car), and all other properties
associated with the objects (e.g., color). Note that the results
are created only once when CoVA receives the initial query
over a video and they are permanently associated with the
video in the database. After then, analysts can use the same
results to process various future queries without reprocessing
the video.

4 Compressed Domain Blob Tracking

In this section, we describe the track detection mechanism
that is the first stage of CoVA’s cascade architecture. Figure 4
depicts the overall workflow.

4.1 Learning to Detect Blobs

Limitations of existing compressed domain video process-
ing techniques. Detecting objects or blobs from compressed
video is a traditional research problem in the computer vision
community [20–25]. However, the following two limitations
prevent the simple adoption of these techniques. First, the
techniques often require human-crafted parameters that need
to be tuned for each input video, which makes automated
analytics impossible. Secondly, the techniques are not suffi-
ciently robust to be applied to arbitrary video data, producing
inadequately accurate tracking results for video analytics. To
overcome such limitations, recent works [26, 27] explored to
use neural networks for vision tasks over compressed video.
Unfortunately, we could not employ the neural networks for
CoVA since they not only still require pixel-domain data for a
subset of frames, but also offer insufficient throughput that is
significantly lower than the decoder.

Macroblock 
Type & Mode

Motion Vectors

BlobNet
Blob 

Tracking

Blob 
Masks

Blob
Tracks

Compressed
Frame

Figure 4: Track detection.

Macroblock 
(MB)

Compressed
Frame

Decoder

Decoded 
Frame

Mixture of 
Gaussians

Blob Mask

Em
be

dd
in

g

MBH

MBW

MBH

12

2

MBH

MBW

1

Compressed
Domain

Pixel 
Domain

Concat

Labeled 
Dataset

MBH

MBW

3

Input

Output

MB Type 

MB Mode 

Motion 
Vector 

(MVw, MVh)

(a)

(b)

MBW

18

Figure 5: (a) Feature engineering that transforms three com-
pression metadata into a tensor of input features; (b) labeled
data collection using the Mixture of Gaussians (MoG) model.

Leveraging the similarity between video segmentation and
blob detection. To address these limitations, we exploit an
observation that blob detection using compression metadata
is akin to the problem of the semantic image segmentation
using pixel data. Blob detection task aims to find potential
objects and their approximate position within video frames.
Image (or video) segmentation task, on the other hand, aims
to semantically split an image (or frames of a video) and clas-
sify each segment into one of the predetermined labels. When
there are only two classes – blob and non-blob – the image
segmentation task can be reduced to the approximate blob
detection task. This observation allows us to tap into the vast
range of techniques, including Deep Neural Network (DNN)
based image and video segmentation, that can be geared to-
wards compressed domain blob detection.

4.2 BlobNet

To this end, we devise a lightweight DNN-based blob detec-
tion model, called BlobNet, building upon the state-of-the-art
Temp-UNet [28] model for video segmentation. Unlike the
Temp-UNet model, which operates on pixel frames, BlobNet
operates on compression metadata.
Feature engineering. Figure 5(a) depicts the feature engi-
neering, which converts the three metadata into a tensor of
input features. BlobNet takes the three types of metadata as
input – macroblock types, macroblock partitioning modes,
and motion vectors. To obtain the metadata, CoVA performs

USENIX Association 2022 USENIX Annual Technical Conference    711



only a few early stages of the decoding process required to
extract metadata, called partial decoding. CoVA encodes the
first two metadata, macroblock types and partitioning modes,
by mapping each of their combinations into an one-hot vector
(e.g., total 12 combinations for H.264). These one-hot vectors
are fed into an embedding layer, which converts each one-hot
vector into a scalar weight value. This weight value is concate-
nated to the motion vector (MVw, MVh) for each macroblock,
which finally results in a 3D tensor (MBW ×MBH ×3). CoVA
temporally stacks these tensors from consecutive frames and
constructs a 4D tensor, which is the input for BlobNet.

BlobNet architecture. Similar to the architecture of Temp-
UNet3, BlobNet has three major components: (1) encoder
that extracts the presence and approximate location of blobs
from noisy metadata; (2) decoder that reconstructs the shapes
of blobs from the blob presences; (3) skip connections that
offer spatial information to the decoder for assisting the shape
reconstruction process. While this overall composition is the
same as that of Temp-UNet architecture, we maximally re-
duce the depth of encoder and decoder modules such that the
resulting model still offers high accuracy while maximizing
the inference throughput.

Video-specialized model training. Pixel video segmentation
models typically train once during a training phase, followed
by inference on unseen video data. However, CoVA trains
BlobNet at query time for every video data to specialize the
model for the specific data. This design choice is derived from
our empirical observation that without such model specializa-
tion, the model cannot capture the variations of data-specific
encoding parameters and fails to reach sufficient accuracy.
Note that once training is completed for a video data, no fur-
ther training is required for additional video if the video is
recorded from the same angle of view with the trained one.
We empirically observe that ≈ 3% of the video is sufficient to
train the model for the evaluated video (see Table 2). The train-
ing process, including data collection and training, takes only
a few minutes, which can be amortized for multiple queries
on the same video data. Such training cost amortization is
inspired by existing query-time cascade systems [2, 3, 6, 8]
that train specialized neural networks for each video.

Labeled data collection for supervised learning. As CoVA
aims for large-scale video analytics, manually labeling the
video data is infeasible. As such, CoVA needs a method to
automatically label the video data. Similar to prior works [2,
3, 8, 29], using pixel domain object detection is a possible
option. However, object detection models are not only compu-
tationally expensive but also produces labels for non-moving
objects, which should not be used to train BlobNet, designed
to detect only moving objects. Instead, we exploit the con-
ventional Mixture of Gaussians (MoG) based background

3We omit the detailed architecture and refer to the paper [28].

249

0N
um
be
r o
f 

D
ep
en
de
nt
 F
ra
m
es

Frames in Time
(a)
(b)
(c)

2

1 3

GoPn-1 GoPn GoPn+1

Anchor Frames
Dependent Frames

t t+1 t+2

Figure 6: Example scenario of track-aware frame selection.

subtraction technique since it is lightweight and only looks
for the moving objects.

4.3 Tracking Blobs

Blob detection results. The output of BlobNet is merely a
collection of 1’s on the resulting bitmap, which lacks the
notion of objects. CoVA uses connected-component labeling
algorithm to uniquely identify the interesting regions in com-
pressed frames as potential objects, called blobs. Once the
blob identification process is completed, CoVA obtains the
spatial information of blobs on each frame. However, the
blobs existing across consecutive frames are not yet tempo-
rally associated with each other, which necessitates the next
stage of CoVA, blob tracking.
SORT-based blob tracking. The end objective of blob track-
ing in compressed domain is to minimize the number of
frames to be decoded to mitigate the decoding bottleneck.
Hence, the tracking algorithm must (1) offer high through-
put that significantly outperforms the decoder throughput, (2)
while accurately tracking the inter-frame blobs to minimize
the accuracy loss at the label propagation stage. We exten-
sively explore existing object tracking techniques in pixel do-
main [19, 30–36], and choose the SORT object tracking algo-
rithm [19], which satisfies the above two requirements. SORT
offers the near-best tracking accuracy among the state-of-the-
art tracking techniques and keeps the computation lightweight
by exploiting conventional optimization algorithms, Kalman
filter and Hungarian assignment.

5 Track-aware Frame Selection

Leveraging the track information, CoVA prudently select a
small subset of frames to decode, called anchor frames, so
as to maximize the decoding throughput. The key idea be-
hind the anchor frame selection algorithm is to pick the ones
that require to decode the least number of frames and thus
maximize the effective decoding throughput.
Dependency between compressed frames. As described in
Section 2.3, block-based compression uses a combination of
(1) independent frames that are self-contained (i.e., I-frame),
and (2) dependent frames (i.e., P/B-frames) that depend on

712    2022 USENIX Annual Technical Conference USENIX Association



Input :efs: compressed frames in a GoPt
tracks: blob tracks that maintain across GoPs

Output :dfs: compressed frames chosen to be decoded
afs: anchor frames

1 cur_tracks = tracks that terminate in GoPt
2 with no anchor frames assigned
3 dfs = afs = /0

4 if cur_tracks ̸= /0 then
5 start_timestamps = sorted(cur_tracks.starts())
6 end_timestamps = sorted(cur_tracks.ends())
7 sidx = eidx = 0
8 for ef in efs do
9 while start_timestamps[sidx] == ef.timestamp do

10 candidate_af = ef
11 sidx = sidx + 1
12 end
13 while end_timestamps[eidx] == ef.timestamp do
14 afs.add(candidate_af)
15 dfs.add_dependants(candidate_af, efs)
16 eidx = eidx + 1
17 end
18 end
19 end
20 dfs.output()
21 afs.output()

Algorithm 1: Track-aware frame selection algorithm.

either preceding frames, subsequent frames, or both. Due
to the presence of P-frame and B-frame within a GoP, the
number of dependent frames that need to be decoded to fully
decode a frame follows a saw-tooth structure, as depicted in
Figure 6. The number of dependent frames is zero for I-frame
at a GoP boundary and grows linearly until it resets to zero at
the end of GoP4.
Selecting anchor frames for decoding. To minimize the de-
coding load, we leverage two insights: (1) CoVA can find the
consecutive frames where an object keeps appearing in the
video, and (2) the computations load to decode a frame is pro-
portional to its number of dependent frames. Within each GoP,
CoVA identifies a set of anchor frames, which can identify all
objects present in the GoP and perform the least computation
for decoding, by minimizing the number of dependent frames.
The selected anchor frames are the only ones that are passed
to the DNN object detector to produce the label information.
Example. Figure 6 presents an example where CoVA identi-
fies three unique objects, (a), (b), and (c), as well as the range
of frames where each object stays in the video. In this exam-
ple, the best choice of anchor frame would be Frame 2 since
(1) all the objects are present in Frame 2 , and (2) Frame
2 has the least number of dependent frames among frames

where all the objects are present.

4For brevity, we simplify Figure 6 by only visualizing dependency chains
for P-frames since the number of dependent frames for B-frames is similar
to that of the nearby P-frames.

Label = “unknown” Label = “car”

“car”
DNN

Object 
Detector

IoU > threshold

Framet

Framet+2

Framet+1

(Anchor Frame)

Time

…
…

…
…

Figure 7: Label propagation.

Algorithm. Algorithm 1 describes the frame selection algo-
rithm in detail. Line 1: When a GoP arrives at the frame
filtering, to select the anchor frames, CoVA only considers
tracks that (1) terminate in that particular GoP and (2) do not
have any anchor frames yet (e.g., object (a)/(b) at time t). Line
9: Then, as CoVA visits frames in order, it first checks if a
track starts appearing in the visiting frame. Line 10: If it does,
the visiting frame is marked as “candidate” anchor frame
(e.g., Frame 1 at t). Later on, if a new track starts appearing
in a successive frame, the frame becomes the new candidate
(e.g., Frame 2 at t+1). Line 14–15: When a track ends, CoVA
adds the current candidate frame into the anchor frame list
(e.g., Frame 2 ) and inserts all the dependent frames into the
dependent frame list (e.g., all frames between Frame 1 and
Frame 2 ). The intuition behind this algorithm is that, if a
track started but did not terminate, any frame in between can
be an anchor frame. However, when a track ends, an anchor
frame for the track must be selected, because otherwise, we
may not have any anchor frame for the terminating track.

6 Label Propagation

In the last stage, CoVA takes the blob tracks and labels for the
anchor frames to temporally propagate the labels across all the
frames on the tracks. Figure 7 illustrates the example work-
flow of label propagation. When the selected anchor frames
and their dependent frames are decoded, CoVA takes only an-
chor frames to perform the DNN object detection and obtain
the labels (e.g., “car”) as well as their spatial information. To
associate the labels with blobs, CoVA first spatially correlates
blobs with the detected objects using the intersection over
union (IoU) between their bounding boxes (e.g., bounding
boxes of blobs and detected objects are denoted using green
and blue boxes, respectively). When the IoU is larger than a
threshold, CoVA associates the detected objects with blobs
and propagates the labels to all frames in the tracks.
Multiple-objects overlapping problem. One challenge with
the label propagation mechanism is that when BlobNet fails
to separately identify multiple objects clustered together and
creates a large single blob, CoVA cannot correctly propagate
the multiple labels. To overcome the challenge, we prepend

USENIX Association 2022 USENIX Annual Technical Conference    713



an additional step to the label propagation. When a multitude
of detected objects are spatially overlapped with a single blob,
CoVA splits the blob into multiple blobs, proportionally pro-
jecting the locations of objects in the anchor frame to the blob.
The proportional projection is also applied to other frames in
the same track, populating multiple tracks from a single track.
This way, CoVA is able to propagate the multiple labels to the
separated tracks, instead of giving a single erroneous label to
the clustered objects.
Static object handling mechanism. As CoVA relies on the
compressed domain analysis to detect blobs, it is impossi-
ble to detect static objects from the compression metadata.
Therefore, our BlobNet focuses on detecting moving objects,
intentionally excluding the static object information from
the training data through the use of MoG. However, CoVA
still performs full-fledged object detections on anchor frames.
Therefore, the static objects can be detected at least on the an-
chor frames. As the static objects stay still at the same location
across subsequent anchor frames, CoVA is able to associate
them as the same object and produce the corresponding track.

7 Implementation

System architecture and constituent software modules. We
prototype a CoVA system using DeepStream, which is built
upon GStreamer, for constructing the skeleton pipeline of
video analytics. As described in Section 4, the initial stage
of CoVA is the partial decoding, which extracts the metadata.
Hardware-accelerated decoder (e.g., NVDEC) does not sup-
port partial decoding and only generates the fully decoded
frames. Thus, we modify an open-source video codec, libav-
codec, such that it only produces the three types of metadata.
In addition, CoVA performs two neural network inferences,
one for the blob detection and the other for the full DNN infer-
ence (YOLOv4). We use on a TensorRT-based DNN inference
plugin on DeepStream, nvinfer [37].
Parallelization in CoVA. Our prototype system distributes
the computations of pipeline stages over CPU and GPU, while
exploiting their parallelism. Initially, CoVA scans the entire
video and splits it into chunks at the I-frame boundaries to
parallelize the computation on CPU threads. This scanning
takes just a few seconds even for hours of video data, which
imposes negligible overhead. Such parallelization results in
cutting tracks at the chunk boundaries, but its impact on accu-
racy is negligible since there are only a few dozens of chunks.
For a chunk, the first two stages, track detection and frame
selection, should be pipelined in the same thread since these
algorithms rely on the temporal dependencies of frames. For
object detection, anchor frames are independently computed,
which can be fully parallelized. Therefore, CoVA maintains
only a single thread for object detection and anchor frames
from different chunks are batched together for inference.

Table 1: Descriptions of example video analytics queries.

Query Abbr. Description Metric
Binary

Predicate
BP

Return frames where
querying object appears

Accuracy

Count CNT
Return the average count
of querying object in
frames

Absolute
Error

Local
Binary

Predicate
LBP

Return frames where
querying object appears
in a certain region of
frames

Accuracy

Local
Count

LCNT
Return the average count
of querying object in a
certain region of frames

Absolute
Error

8 Evaluation

8.1 Methodology

Queries. To demonstrate the effectiveness of CoVA, we eval-
uate four example queries, two queries widely used in prior
work [2, 3, 8], and their spatial variants supported by CoVA.
Table 1 reports the list of evaluated queries with their descrip-
tions and accuracy metrics:

(1) Binary Predicate. Binary predicate (BP) query finds
frames where queried objects appear. Collecting frames
with queried objects is an initial step of advanced anal-
ysis, which makes BP an important query for evalua-
tion despite the simplicity. Many retrospective analyt-
ics systems evaluate their solutions only using the BP
query [2, 3].

(2) Count. The count (CNT) query is introduced by a prior
work, BlazeIt [8], which is an aggregate query that counts
the number of queried objects appearing in the whole
video. As the aggregated count is largely dependent on
the length of each dataset, the number is normalized by
dividing it by the number of frame counts.

(3) Local Binary Predicate and Local Count. The local
binary predicate (LBP) and local count (LCNT) queries
are spatial variants of BP and CNT queries, respectively;
however, the only difference is that they exclusively look
for objects located in a certain region of interest. For
instance, users can query northbound traffic in highway
monitoring video by annotating the corresponding region
of video as “northbound”. Serving these queries not only
requires the temporal query results, but also needs spatial
information to determine the object locations.

Metrics. Table 1 also reports metrics used for each query. We
use the same metrics that prior works use to evaluate their

714    2022 USENIX Annual Technical Conference USENIX Association



Table 2: Descriptions of video datasets, queried objects, ground truth results, and region of interest used for spatial queries. Note
that we use the Yolov4 DNN model applied frame-by-frame to the original video to get ground truth.

Video Name Num of
Frames Length Object in

Interest
Object

Occupancy
Object
Count

Local
Occupancy

Local
Count

Region of
Interest

amsterdam [38] 3,580K 33H Car 70.07% 1.40 29.05% 0.44 Lower Right
archie [8] 3,567K 33H Bus 10.48% 0.17 6.63% 0.11 Upper Left

jackson [39] 2,921K 27H Car 31.91% 0.56 18.28% 0.29 Lower Left
shinjuku [40] 1,782K 16H Car 82.29% 2.19 19.91% 0.38 Lower Left

taipei [41] 3,564K 33H Car 84.48% 5.03 22.16% 0.64 Lower Right

solutions. For BP and LBP, as in prior works [2,3], we use ac-
curacy, which is a traditional metric for binary classification
that evaluates how many observations, both positive and neg-
ative, are correctly classified. Similarly, for CNT and LCNT,
we use absolute error as used in BlazeIt [8].

Datasets. Table 2 reports the video datasets used for the
evaluation. Taking a similar approach with prior works [2,
3, 6–9, 42], we collect the video datasets from YouTube live
streams [38–41]. They are recorded from statically installed
cameras, which is a widely used setup in various applications
domains such as traffic monitoring [43–45], security [46, 47],
surveillance [48], and healthcare [49]. Video contents involve
various kinds of scenarios, which include traffic circle, high-
way, harbor, city streets, and park. As the datasets have dif-
ferent resolutions ranged from 720p to 2160p, we transcode
them to 720p and evaluate the throughput and accuracy for
ease of comparison. Note that higher resolutions (e.g., 2160p)
create more severe decoding bottleneck, so using them would
be favorable to CoVA, producing higher throughput gains and
therefore, to be conservative, we choose to use 720p for all
video datasets. The rightmost five columns report the ground
truth results for the four queries and the region of interest that
spatial queries focus on. Getting the ground truth results by
manually labeling the hours of video data is infeasible, so we
apply a full DNN model (YOLOv4) to the entirety of video
in a frame-by-frame manner.

Hardware specifications. Our CoVA prototype is built on a
server with two 16-core Intel Xeon Gold 6226R CPU (2.9
GHz), 192 GB of DRAM, and an NVIDIA RTX 3090 GPU
(24 GB GDDR6 DRAM). We turn off hyperthreading to avoid
interference among threads.

Decoder. For all experiments, we use NVIDIA’s hardware
accelerated decoder, NVDEC, for both baseline and CoVA
systems to make a fair comparison. We choose not to use the
CPU decoder, libavcodec, since it shows lower throughput
than NVDEC even with 32-core parallelization.

Baseline cascade system. As the baseline, we use existing
cascade systems for query time retrospective analytics. As
discussed in Section 2, cascade systems such as Tahoma [3]

taipei gmeanshinjukujacksonarchieamsterdam0K

2K

4K

6K

8K

10K

Th
ro

ug
hp

ut
 (F

PS
) 5.76x

3.69x

7.09x

4.47x
3.75x

4.79x

Decode-bound Cascade CoVA

1,431

Figure 8: End-to-end system throughput of the baseline
decode-bound cascade and CoVA. The throughput of decode-
bound cascade is equivalent to the throughput of NVDEC (i.e.,
1,431 FPS), which is marked with a red line.

are significantly bottlenecked by video decoding. Therefore,
for a conservative comparison with these decode-bound cas-
cade systems, we assume that the cascade systems are only
bottlenecked by the decoder, not by any other stages. With
this assumption, the throughput of cascade systems is equiv-
alent to the decoder throughput. We refer to this baseline as
decode-bound cascade in this paper.

8.2 Performance Implication of CoVA

Throughput improvement. Figure 8 compares the end-to-
end system throughput of the baseline decode-bound cascade
system and CoVA across five video datasets. CoVA achieves
on average 4.8× throughput improvement, which ranges from
3.7× for archie to 7.1× for jackson. The significant speedup
shows that CoVA effectively pushes a large proportion of anal-
ysis to the compressed domain, unclogging the decoding bot-
tleneck that prevents the existing cascades to achieve beyond
the constant NVDEC throughput. The results also suggest that
depending on the datasets, CoVA sees different speedups. The
datasets, jackson and amsterdam, see relatively larger gains,
while archie and taipei datasets show lower benefits. These
gaps can be attributed to the unique content properties of each
evaluated video dataset that deliver varying throughput for the

USENIX Association 2022 USENIX Annual Technical Conference    715



Table 3: (1) Filtration rate at decoder stage (decode filtration
rate) and (2) filtration rate at DNN inference stage (inference
filtration rate).

Dataset Decode Filtration
Rate (%)

Inference Filtration
Rate (%)

amsterdam 87.16 99.60
archie 72.94 99.15

jackson 94.81 99.79
shinjuku 77.18 99.26

taipei 74.03 99.81

Partial Decoder BlobNet
DNN-based Object DetectorDecoder (NVDEC)

archie jackson shinjuku taipeiamsterdam
0K

5K

10K

15K

20K

Eff
ec

tiv
e

Th
ro

ug
hp

ut
(F

PS
)

Bottleneck

Figure 9: Effective throughput of CoVA stages. The lowest bar
represents the bottleneck of CoVA pipeline, which is marked
with hatching lines.

CoVA pipeline stages, which eventually engenders a different
bottleneck point. To better understand the throughput implica-
tion of these stages, we delve into the interplay of algorithms
and system in the CoVA pipeline below.

Effectiveness of frame selection. Frame selection is the key
to alleviate the decoding bottleneck since it determines the
computational load for decoder. Table 3 reports the filtration
rates at decoding stage (decode filtration rate) and DNN in-
ference stage (inference filtration rate). The decode filtration
rate is calculated based on the number of decoded frames that
include both anchor frames and their dependent frames, while
the inference filtration rate only considers the anchor frames
that are passed to the DNN object detection stage. Intuitively,
various semantics of datasets cause different filtration rates.
If video contains many objects having lots of motions, blob
tracking would produce numerous tracks, which would re-
quire many anchor and dependent frames to proceed to the
decoder. For crowded video streams such as archie, CoVA sees
lower decode filtration rate of 72.94%, while the uncongested
ones like jackson capture less activity and provide higher de-
code filtration rate of 94.81%. Across all datasets, CoVA filters
out over 73% to deliver over 3.7× (=100/(100-73)) throughput
boost for decoder. At the same time, the inference filtration
rate closely reaches 100%, which addresses the DNN bottle-
neck since the object detector only sees a handful of frames.

Bottleneck analysis. To understand the throughput variation

Table 4: Accuracy results of the four evaluated queries for
the video datasets. The acronyms for accuracy metric are
specified below.

Dataset Object BP CNT LBP LCNT
(ACC) (AE) (ACC) (AE)

amsterdam Car 85.79 0.15 81.61 0.09
archie Bus 86.96 0.04 90.06 0.01

jackson Car 86.13 0.10 92.01 0.05
shinjuku Car 90.15 0.30 91.31 0.05

taipei Car 87.74 1.10 83.98 0.37
average - 87.34 N/A 87.69 N/A

* ACC: Accuracy (%), AE: Absolute Error

of CoVA stages across different datasets, we measure the per-
formance of individual stages. Figure 9 reports the effective
throughput of each stage by starting from the first partial de-
coding stage and adding successive stages one by one to the
system. The effective throughput is defined as the product of
the absolute throughput of stage and the accumulated filtra-
tion rates. Note that since we measure the throughput from the
pipelined system, the effective throughput of a stage cannot be
larger than that of the previous stage. The results suggest that
different datasets experience bottleneck at different stages.
The datasets that attain lower decode filtration rate than the
others (i.e., archie, shinjuku, and taipei) are still bottlenecked
at the decoder, while the other two datasets are bounded by
the DNN object detector. We observe that the inference of
BlobNet never becomes a bottleneck and always matches the
throughput of the preceding partial decoding stage.

8.3 Accuracy Implication of CoVA

Table 4 reports the accuracy results of evaluated queries. For
the BP query, CoVA achieves on average 87.3% accuracy. For
the CNT query, CoVA experiences absolute errors from 0.04
(archie) to 1.10 (taipei), respectively. For spatial queries (LBP
and LCNT), we do not observe a noticeable difference in
accuracy with the temporal queries. The lack of difference is
intuitive since CoVA processes the spatial queries by simply
restricting the focus of analysis to a certain region of frames.
Therefore, the results of spatial variants are merely a subset
of temporal query results.

The results show that the approximate nature of compressed
domain analysis introduces accuracy loss. However, we argue
that such modest level of accuracy degradation (10∼20%) is
tolerable to retrospective video analytics, which aims to pro-
cess large corpus of video data interactively at query time. The
video analytics also inherently produce approximate results
due to the nature of noisy analog video data and predictive
object detection models. Moreover, our accuracy results are
conservatively calculated by treating the YOLOv4 detection
results as ground truth and marking the CoVA results as error

716    2022 USENIX Annual Technical Conference USENIX Association



Table 5: Raw throughput of four different video codecs on the
libavcodec and NVDEC decoders.

Codec Full Decoding (FPS) Partial Decoding
NVDEC libavcodec (FPS)

VP8 1,590 1,802 32,774
H.264 1,431 1,230 16,761
VP9 3,249 1,179 35,349

H.265 3,888 2,026 25,862

if they do not match. However, we empirically observe that
there are many cases where YOLOv4 misses small objects
when the objects are faraway from the shooting point, while
CoVA can correctly detect them by successfully tracking blobs
even for the small objects and propagating the correct labels
to the tracks. In this case, the correct results of CoVA would be
marked as false positives due to the erroneous ground truth.

Discussion. As discussed above, approximation is fundamen-
tally inevitable for video analytics, because even the best
effort results are still imperfect. Thus, our goal in designing
CoVA is to achieve acceptable approximation accuracy loss
for video analytics. According to a study [50], the level of ac-
ceptable approximation accuracy loss is higher when the users
consider contexts such as application purpose and cost. We
believe that CoVA could be a useful tool where analysts can
quickly and cost-efficiently extract high-level insights from a
large corpus of videos. For instance, consider an application
that monitors traffic in a harbor in Amsterdam (see Table 2).
For binary predicate query, it suffers from 15% accuracy loss.
However, CoVA does not miss the cars completely from the
video in most cases since the cars stay in the video for at
least several tens of frames (only 2% of cars are eventually
missed). Hence, if analysts merely wanted to estimate traffic,
CoVA would be able to offer sufficiently precise results. We
also believe that if an application requires more accurate re-
sults, CoVA could serve as an initial scanning tool that quickly
identifies “worth-to-be-further-analyzed” video clips.

8.4 Sensitivity Study

Implication of video codecs. We implement the CoVA system
based on H.264, one of the most widely used video codecs.
However, to demonstrate applicability of CoVA to other block-
based compression standards, we take three alternatives, VP8,
VP9, and HEVC (i.e., H.265), and develop metadata extrac-
tion in their partial decoding implementations. Table 5 reports
throughput results when using the four different codecs with
720p videos and 32 cores. The throughput of NVDEC for the
four codecs ranges from 1,431 FPS to 3,888 FPS, which is
significantly lower than the effective throughput of existing
cascade systems and thus our problem statement regarding
decoding bottleneck still holds true. In addition, we observe

4cores 8cores 16cores 24cores 32cores

NVDEC
(1.4K)

BlobNet
(39.5K)

10K10K

20K
30K
40K

Th
ro

ug
hp

ut
 (F

PS
)

(L
og

 S
ca

le
)

8.3K
11.6K 13.7K

2.3K

0.8K
1.1K 1.2K 1.2K1.2K

Full Decoding (libavcodec)
Partial Decoding

1K

4.4K

Figure 10: Throughput of partial and full video decoding
(libavcodec) on CPU, as the number of cores changes from
4 to 32. For comparison, we also report the throughput of
BlobNet and NVDEC, while they have constant throughput
since they run on GPU.

that for all codecs, the full decoding throughput in both soft-
ware and hardware significantly falls short of throughput of
the partial decoding. This throughput gap allows CoVA to
construct a cascade architecture that enables blob tracking
to run at a higher throughput than the vanilla decoder and
effectively lowers the full decode workload.
Implication of CPU parallelism. To further analyze the scal-
ability of our parallelization scheme, Figure 10 compares the
throughput of partial and full decoding as we parallelize them
using the varied number of cores from 4 to 32. We also show
the throughput of BlobNet and NVDEC for comparison. Note
that these results are averaged across the datasets. The results
show that the parallelized partial decoder not only scales sig-
nificantly better than the full decoder when using the same
number of cores (i.e., 1.5× vs. 5.9×), but also largely out-
performs the throughput of NVDEC. Currently, we use all
the available cores (32) for partial decoding to optimize for
throughput. However, one may be able to revise the objective
function such that it also takes into account resource utiliza-
tion and energy efficiency, which we leave as a future work.

9 Related Work

A growing body of literature [2–9, 14, 15, 29, 51–57] aims to
address the computational challenges in video analytics. CoVA
differentiates itself by addressing video decoding bottleneck,
exploiting compressed-domain analysis. Further, CoVA does
not require pre-processing, transcoding, or profiling to obtain
the benefits.
Cascade architectures for binary predicate queries. No-
Scope [2] and Lu et al. [5] use a series of approximate pixel-
domain filtering stages to build their cascade. Tahoma [3]
and Shen et at. [29] use multiple pipelined neural networks
to build their cascade architecture. BlazeIt [8] builds on top

USENIX Association 2022 USENIX Annual Technical Conference    717



of NoScope to support Aggregate and Limit Queries. All five
works aim to increase the effective throughput of the system
for raw video frames by filtering a majority of the frames us-
ing pixel-domain operators. Alternatively, Thia [51] splits up
the DNN-inference model using exit points for early termina-
tion, similar to the stages of cascade architecture. In contrast,
CoVA splits the cascade computation between compressed
domain and pixel domain to alleviate the decoding bottleneck.
Spatial queries for video analytics. An emerging class of
video analytics systems aim to enable queries based on spatial
relationship between labeled objects. Koudas et al. [7] accel-
erate spatial queries using separate stages for inexpensive
DNN-based classification followed by expensive DNN-based
object detection. TASM [15] dynamically adapts the layout of
tiles, which partition compressed video frames, based on the
spatial location of objects to improve performance. Unlike the
above works, CoVA uses compressed domain blob tracking
to accelerate spatial queries. Unlike TASM, CoVA does not
need to update the compression to gain performance benefits.
Storage-accuracy trade-off for decoding bottleneck. VS-
tore [4] uses a search space of fidelity and encoding/decoding
knobs (frame sampling rate, resolution, etc) to optimize for
query performance and storage cost. SMOL [6] jointly opti-
mizes complexity of the reference DNN for inference and the
resolution of data (360p, 720p, etc), for accuracy-performance
trade-off. VSS [52] proposes optimizations for video storage
to yield higher read rates and compression ratios. CoVA takes
an orthogonal approach of performing approximate blob track-
ing using compression metadata at query time. Nevertheless,
CoVA is complementary to the above approaches.
Ingest time analysis. Focus [9] generates approximate labels
using an inexpensive DNN and Boggart [53] tracks objects
at ingest time to generate additional metadata. At query time,
both Focus and Boggart use the stored metadata to yield im-
proved performance. Scanner [54] identifies sampling frames
offline for pixel domain analysis and skips decoding for all
other frames. In contrast, CoVA does not require additional
metadata and can operate on standard video compression for-
mats. VideoStorm [55] uses offline profiling data for dynamic
load balancing and Chameleon [14] uses inexpensive online
profiling to improve accuracy-resource tradeoff at query time.
These two profiling approaches are orthogonal and comple-
mentary to compressed-domain query processing in CoVA.
Compressed domain object detection. Many prior
works [23, 25, 58, 59] have proposed object detection from
compression metadata using classical approaches such as pre-
defined kernels [24] and statistical models [20,60,61]. Further,
the prior works impose restrictions on the compression-time
parameters (e.g., 4 frames per GoP), which limit their
applicability [20,23–25]. Liu et al. [62], Wang et al. [27], and
Wu et al. [26] employ DNNs to detect moving objects using
both pixel and compressed domain data, training a single

model for all datasets. BlobNet differs from prior works
in the following aspects: (1) BlobNet does not require any
pixel data; (2) BlobNet does not impose restrictions on the
compression parameters; and (3) BlobNet is trained for given
video to compensate the accuracy.

10 Conclusion

Existing cascade systems for video analytics assume to pay
significant compute and storage cost for addressing the de-
coding bottleneck. Further, the systems are specialized for
temporal query to achieve otherwise-unachievable throughput.
To tackle the two limitations, this paper proposes CoVA, which
splits cascade computation between compressed and uncom-
pressed pixel domain. Leveraging the unique characteristics
of video analytics and video compression algorithm, CoVA
effectively unclogs the decoding bottleneck while additionally
supporting spatial queries. Our experiments demonstrate that
CoVA reduces the decoding workload by 83.6% and offers
4.8× system speedup compared to state-of-the-art query-time
retrospective video analytics systems, while compromising
modest accuracy.

11 Acknowledgements

We thank the anonymous reviewers and our shepherd
for their comments and feedback. This work was sup-
ported by National Research Foundation of Korea (NRF-
2020R1A2C1103088) and Information Technology Research
Center (ITRC) support program (IITP-2022-2020-0-01795),
both of which are funded by the Ministry of Science and
ICT, Korea. This work was also partly supported by Samsung
Electronics Co., Ltd.

References

[1] Mark Nowell. Cisco VNI Forecast update. https:
//www.ieee802.org/3/ad_hoc/bwa2/public/
calls/19_0624/nowell_bwa_01_190624.pdf,
2021.

[2] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis,
and Matei Zaharia. NoScope: Optimizing Neural Net-
work Queries over Video at Scale. In PVLDB, 2017.

[3] Michael R Anderson, Michael Cafarella, German Ros,
and Thomas F Wenisch. Physical Representation-Based
Predicate Optimization for a Visual Analytics Database.
In ICDE, 2019.

[4] Tiantu Xu, Luis Materon Botelho, and Felix Xiaozhu
Lin. VStore: A Data Store for Analytics on Large
Videos. In EuroSys, 2019.

718    2022 USENIX Annual Technical Conference USENIX Association

https://www.ieee802.org/3/ad_hoc/bwa2/public/calls/19_0624/nowell_bwa_01_190624.pdf
https://www.ieee802.org/3/ad_hoc/bwa2/public/calls/19_0624/nowell_bwa_01_190624.pdf
https://www.ieee802.org/3/ad_hoc/bwa2/public/calls/19_0624/nowell_bwa_01_190624.pdf


[5] Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, ,
and Surajit Chaudhuri. Accelerating Machine Learning
Inference with Probabilistic Predicates. In SIGMOD,
2018.

[6] Daniel Kang, Ankit Mathur, Teja Veeramacheneni, Peter
Bailis, and Matei Zaharia. Jointly Optimizing Prepro-
cessing and Inference for DNN-Based Visual Analytics.
In PVLDB, 2020.

[7] Nick Koudas, Raymond Li, and Ioannis Xarchakos.
Video Monitoring Queries. In ICDE, 2020.

[8] Daniel Kang, Peter Bailis, and Matei Zaharia. BlazeIt:
Optimizing Declarative Aggregation and Limit Queries
for Neural Network-Based Video Analytics. In PVLDB,
2019.

[9] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik,
Shivaram Venkataraman, Paramvir Bahl, Matthai Phili-
pose, Phillip B. Gibbons, and Onur Mutlu. Focus: Query-
ing Large Video Datasets with Low Latency and Low
Cost. In OSDI, 2018.

[10] Ioannis Xarchakos and Nick Koudas. SVQ: Streaming
Video Queries. In SIGMOD, 2019.

[11] Jingjing Wang and Magdalena Balazinska. Deluceva:
Delta-Based Neural Network Inference for Fast Video
Analytics. In SSDBM, 2020.

[12] Yuhao Zhang and Arun Kumar. Panorama: A Data
System for Unbounded Vocabulary Querying over Video.
In PVLDB, 2020.

[13] Favyen Bastan, Oscar Moll, and Sam Madden. Vaas:
Video Analytics At Scale. In PVLDB, 2020.

[14] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodík,
Siddhartha Sen, and Ion Stoica. Chameleon: Scalable
Adaptation of Video Analytics. In SIGCOMM, 2018.

[15] Maureen Daum, Brandon Haynes, Dong He, Amrita
Mazumdar, and Magdalena Balazinska. TASM: A Tile-
Based Storage Manager for Video Analytics. In ICDE,
2021.

[16] NVIDIA. DeepStream SDK. https://developer.
nvidia.com/deepstream-sdk, 2021.

[17] NVIDIA. Video Codec SDK. https://developer.
nvidia.com/nvidia-video-codec-sdk, 2021.

[18] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard,
and Ajay Luthra. Overview of the H.264/AVC Video
Coding Standard. TCSVT, 2003.

[19] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos,
and Ben Upcroft. Simple online and realtime tracking.
In ICIP, 2016.

[20] Mohammadsadegh Alizadeh and Mohammad Shar-
ifkhani. Compressed Domain Moving Object Detection
Based on CRF. TCSVT, 2020.

[21] Wei Zeng, Jun Du, Wen Gao, and Qingming Huang.
Robust Moving Object Segmentation on H.264/AVC
Compressed Video Using the Block-Based MRF Model.
Real-Time Imaging, 2005.

[22] R. Babu, Kalpathi Ramakrishnan, and S.H. Srinivasan.
Video Object Segmentation: A Compressed Domain
Approach. TCSVT, 2004.

[23] Marcus Laumer, Peter Amon, Andreas Hutter, and An-
dré Kaup. Moving Object Detection in the H.264/AVC
Compressed Domain. APSIPA, 2016.

[24] Chris Poppe, Sarah De Bruyne, Tom Paridaens, Peter
Lambert, and Rik Van de Walle. Moving Object Detec-
tion in the H.264/AVC Compressed Domain for Video
Surveillance Applications. Journal of Visual Communi-
cation and Image Representation, 2009.

[25] Dien Van Nguyen and Jaehyuk Choi. Toward Scalable
Video Analytics Using Compressed-Domain Features
at the Edge. Applied Sciences, 2020.

[26] Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R Man-
matha, Alexander J Smola, and Philipp Krähenbühl.
Compressed Video Action Recognition. In CVPR, 2018.

[27] Shiyao Wang, Hongchao Lu, Pavel Dmitriev, and Zhi-
dong Deng. Fast Object Detection in Compressed Video.
In ICCV, 2019.

[28] Radu Sibechi, Olaf Booij, Nora Baka, and Peter Bloem.
Exploiting Temporality for Semi-Supervised Video Seg-
mentation. In ICCV, 2019.

[29] Haichen Shen, Seungyeop Han, Matthai Philipose, and
Arvind Krishnamurthy. Fast Video Classification via
Adaptive Cascading of Deep Models. In CVPR, 2017.

[30] Seung-Hwan Bae and Kuk-Jin Yoon. Robust Online
Multi-Object Tracking Based on Tracklet Confidence
and Online Discriminative Appearance Learning. In
CVPR, 2014.

[31] Min Yang and Yunde Jia. Temporal Dynamic Appear-
ance Modeling for Online Multi-Person Tracking. CVIU,
2016.

USENIX Association 2022 USENIX Annual Technical Conference    719

https://developer.nvidia.com/deepstream-sdk
https://developer.nvidia.com/deepstream-sdk
https://developer.nvidia.com/nvidia-video-codec-sdk
https://developer.nvidia.com/nvidia-video-codec-sdk


[32] Yu Xiang, Alexandre Alahi, and Silvio Savarese. Learn-
ing to Track: Online Multi-Object Tracking by Decision
Making. In ICCV, 2015.

[33] Alex Bewley, Vitor Guizilini, Fabio Ramos, and Ben
Upcroft. Online Self-Supervised Multi-Instance Seg-
mentation of Dynamic Objects. In ICRA, 2014.

[34] Wongun Choi. Near-Online Multi-Target Tracking with
Aggregated Local Flow Descriptor. In ICCV, 2015.

[35] Ju Hong Yoon, Ming-Hsuan Yang, Jongwoo Lim, and
Kuk-Jin Yoon. Bayesian Multi-Object Tracking Using
Motion Context from Multiple Objects. In WACV, 2015.

[36] Alex Bewley, Lionel Ott, Fabio Ramos, and Ben Upcroft.
Alextrac: Affinity Learning by Exploring Temporal Re-
inforcement within Association Chains. In ICRA, 2016.

[37] NVIDIA. Gst-nvinfer. https://docs.nvidia.com/
metropolis/deepstream/dev-guide/text/DS_
plugin_gst-nvinfer.html, 2021.

[38] Webcam Lemmer. Binnenhaven lemmer,
youtube. https://www.youtube.com/watch?
v=NyzxJMWxDeo, 2019.

[39] See Jackson Hole. Jackson hole wyoming usa town
square live cam, youtube. https://www.youtube.
com/watch?v=1EiC9bvVGnk, 2018.

[40] KABUKICHO. Shinjuku kabukicho, youtube. https:
//www.youtube.com/watch?v=EHkMjfMw7oU, 2020.

[41] StarDot Technologies. Taiwan new taipei city,
youtube. https://www.youtube.com/watch?v=
INR-B7FwhS8, 2020.

[42] Yuanqi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei
Wang, Guoqing Harry Xu, and Ravi Netravali. Reducto:
On-Camera Filtering for Resource-Efficient Real-Time
Video Analytics. In SIGCOMM, 2020.

[43] M. Kilger. A Shadow Handler in a Video-Based Real-
Time Traffic Monitoring System. In WACV, 1992.

[44] Kostia Robert. Video-Based Traffic Monitoring at Day
and Night Vehicle Features Detection Tracking. In ITSC,
2009.

[45] Tariq Abdullah, Ashiq Anjum, M. Fahim Tariq, Yusuf
Baltaci, and Nikos Antonopoulos. Traffic Monitoring
Using Video Analytics in Clouds. In UCC, 2014.

[46] L. Snidaro, C. Micheloni, and C. Chiavedale. Video
Security for Ambient Intelligence. SMC, 2005.

[47] Minghu Wu, Xiang Li, Cong Liu, Min Liu, Nan Zhao,
Juan Wang, Xiangkui Wan, Zheheng Rao, and Li Zhu.
Robust Global Motion Estimation for Video Security
Based on Improved K-Means Clustering. JAIHC, 2019.

[48] Niels Haering, Péter L. Venetianer, and Alan Lipton.
The Evolution of Video Surveillance: An Overview.
MVA, 2008.

[49] P. Chung, Yung-Ming Kuo, Chin-De Liu, and Chun-
Rong Huang. Video Analysis Boosts Healthcare Effi-
ciency and Safety. Spie Newsroom, 2011.

[50] Jongse Park, Emmanuel Amaro, Divya Mahajan,
Bradley Thwaites, and Hadi Esmaeilzadeh. AxGames:
Towards Crowdsourcing Quality Target Determination
in Approximate Computing. In ASPLOS, 2016.

[51] Jiashen Cao, Ramyad Hadidi, Joy Arulraj, and Hyesoon
Kim. THIA: Accelerating Video Analytics using Early
Inference and Fine-Grained Query Planning. arXiv,
2021.

[52] Brandon Haynes, Maureen Daum, Dong He, Amrita
Mazumdar, Magdalena Balazinska, Alvin Cheung, and
Luis Ceze. VSS: A Storage System for Video Analytics.
In SIGMOD, 2021.

[53] Neil Agarwal and Ravi Netravali. Boggart: Accelerat-
ing Retrospective Video Analytics via Model-Agnostic
Ingest Processing. In arXiv, 2021.

[54] Alex Poms, Will Crichton, Pat Hanrahan, and Kayvon
Fatahalian. Scanner: Efficient Video Analysis at Scale.
TOG, 2018.

[55] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik,
Matthai Philipose, Paramvir Bahl, and Michael J. Freed-
man. Live Video Analytics at Scale with Approximation
and Delay-Tolerance. In NSDI, 2017.

[56] Ran Xu, Jinkyu Koo, Rakesh Kumar, Peter Bai, Subrata
Mitra, Sasa Misailovic, and Saurabh Bagchi. VideoChef:
Efficient Approximation for Streaming Video Process-
ing Pipelines. In ATC, 2018.

[57] Mengwei Xu, Tiantu Xu, Yunxin Liu, and Felix Xiaozhu
Lin. Video Analytics with Zero-streaming Cameras. In
ATC, 2021.

[58] Orachat Sukmarg and Kamisetty R Rao. Fast Object
Detection and Segmentation in MPEG Compressed Do-
main. In TENCON, 2000.

[59] Fatih Porikli, Faisal Bashir, and Huifang Sun. Com-
pressed Domain Video Object Segmentation. TCSVT,
2009.

720    2022 USENIX Annual Technical Conference USENIX Association

https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_plugin_gst-nvinfer.html
https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_plugin_gst-nvinfer.html
https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_plugin_gst-nvinfer.html
https://www.youtube.com/watch?v=NyzxJMWxDeo
https://www.youtube.com/watch?v=NyzxJMWxDeo
https://www.youtube.com/watch?v=1EiC9bvVGnk
https://www.youtube.com/watch?v=1EiC9bvVGnk
https://www.youtube.com/watch?v=EHkMjfMw7oU
https://www.youtube.com/watch?v=EHkMjfMw7oU
https://www.youtube.com/watch?v=INR-B7FwhS8
https://www.youtube.com/watch?v=INR-B7FwhS8


[60] Fernando Bombardelli, Serhan Gül, Daniel Becker,
Matthias Schmidt, and Cornelius Hellge. Efficient Ob-
ject Tracking in Compressed Video Streams with Graph
Cuts. In MMSP, 2018.

[61] Sayed Hossein Khatoonabadi and Ivan V. Bajic. Video
Object Tracking in the Compressed Domain Using
Spatio-Temporal Markov Random Fields. TIP, 2013.

[62] Qiankun Liu, Bin Liu, Yue Wu, Weihai Li, and Neng-
hai Yu. Real-Time Online Multi-Object Tracking in
Compressed Domain. IEEE Access, 2019.

[63] Mark Zhao, Niket Agarwal, Aarti Basant, Buğra Gedik,
Satadru Pan, Mustafa Ozdal, Rakesh Komuravelli, Jerry
Pan, Tianshu Bao, Haowei Lu, Sundaram Narayanan,
Jack Langman, Kevin Wilfong, Harsha Rastogi, Carole-
Jean Wu, Christos Kozyrakis, and Parik Pol. Understand-
ing Data Storage and Ingestion for Large-Scale Deep
Recommendation Model Training: Industrial Product.
In ISCA, 2022.

USENIX Association 2022 USENIX Annual Technical Conference    721





SOTER: Guarding Black-box Inference for General Neural Networks at the Edge

Tianxiang Shen1†, Ji Qi1†, Jianyu Jiang1∗, Xian Wang1, Siyuan Wen1, Xusheng Chen1, Shixiong Zhao1,
Sen Wang2, Li Chen2, Xiapu Luo3, Fengwei Zhang4, Heming Cui1

1The University of Hong Kong 2Huawei Technologies Co., Ltd.
3The Hong Kong Polytechnic University 4Southern University of Science and Technology

Abstract
The prosperity of AI and edge computing has pushed more

and more well-trained DNN models to be deployed on third-
party edge devices to compose mission-critical applications.
This necessitates protecting model confidentiality at untrusted
devices, and using a co-located accelerator (e.g., GPU) to
speed up model inference locally. Recently, the community
has sought to improve the security with CPU trusted execu-
tion environments (TEE). However, existing solutions either
run an entire model in TEE, suffering from extremely high
inference latency, or take a partition-based approach to hand-
craft partial model via parameter obfuscation techniques to
run on an untrusted GPU, achieving lower inference latency at
the expense of both the integrity of partitioned computations
outside TEE and accuracy of obfuscated parameters.

We propose SOTER, the first system that can achieve model
confidentiality, integrity, low inference latency and high ac-
curacy in the partition-based approach. Our key observation
is that there is often an associativity property among many
inference operators in DNN models. Therefore, SOTER auto-
matically transforms a major fraction of associative operators
into parameter-morphed, thus confidentiality-preserved op-
erators to execute on untrusted GPU, and fully restores the
execution results to accurate results with associativity in TEE.
Based on these steps, SOTER further designs an oblivious
fingerprinting technique to safely detect integrity breaches of
morphed operators outside TEE to ensure correct executions
of inferences. Experimental results on six prevalent models
in the three most popular categories show that, even with
stronger model protection, SOTER achieves comparable per-
formance with partition-based baselines while retaining the
same high accuracy as insecure inference.

1 Introduction
Driven by the remarkable success of AI [25] and edge com-
puting [11,17], giant companies are increasingly shifting their
well-trained Deep Neural Network (DNN) models from the
cloud to enormous edge devices, to compose mission-critical
applications such as autopilot navigation [8, 15], home mon-
itoring [20] and visual assistance [49]. By employing accel-
erators (e.g., GPU), clients of edge devices can conduct low-
latency inferences without connecting with a remote server

†Tianxiang Shen and Ji Qi contribute equally.
∗Jianyu Jiang is the corresponding author.

with high latency and network instability, and clients do not
have to transfer their sensitive data to the cloud.

Since obtaining accurate models requires model providers
to pay substantial resources to train parameters with private
datasets [10, 45], in order to preserve their competitive advan-
tages, model providers usually require their offloaded models
to keep black-box (confidential) with traditional semantic se-
curity guarantee [7]: a client can query the local model for
results, but will learn nothing about the parameters’ plaintexts.

To preserve model confidentiality, a pragmatic approach is
to use the publicly available Trusted Execution Environments
(TEE), in particular Intel SGX [14], a pervasively used CPU
TEE product. SGX provides both code integrity and data con-
fidentiality for enclaves [5,33], and avoids severe performance
downgrading caused by using traditional cryptographic tools
(e.g., Homomorphic Encryption [36,44]), making it attractive
for model providers to protect their offloaded models while
retaining high inference service quality.

Much prior work has explored using SGX for secure model
inference, and these approaches can be summarized into two
categories. First, the TEE-shielding approach, which runs the
entire unmodified model in enclaves, achieves both model
confidentiality and high accuracy same as the original model,
but suffers from extremely high latency due to the limited
computing resources on CPU’s enclave and the lack of pub-
licly available secure GPU devices [3, 65]. As a typical TEE-
shielding work, MLcapsule [27] incurs dramatically higher
latency (up to 36.1X) than insecure GPU inference for diverse
workloads (§6.1).

In order to mitigate the high latency issue, the second cate-
gory of work, including eNNclave [56] and AegisDNN [68],
takes a partition-based approach to manually select a portion
of sensitive model layers to run in an enclave, and partition
the rest of the layers to run on an untrusted GPU for accelera-
tion, achieving lower inference latency than TEE-shielding
approaches by utilizing the strong GPU computing power.

Unfortunately, existing partition-based approaches face a
fundamental confidentiality-accuracy dilemma: some of the
approaches replace the partitioned layers’ parameters with
public parameters from other models composed by the same
layers, which effectively protects model confidentiality but
trades off the accuracy. This is because the original parame-
ters are usually trained by model provider’s private datasets
tailored for a specific task [10, 45]; hence the parameters are

USENIX Association 2022 USENIX Annual Technical Conference    723



exclusive to achieve the original high accuracy. In contrast,
some partition-based approaches preserve the original high
accuracy by holding plaintexts of partitioned operators’ pa-
rameters on an untrusted GPU, which partially compromises
the confidentiality by revealing a fraction of parameters’ plain-
texts to the adversary outside an enclave.

Our key observation to resolve this dilemma is the asso-
ciativity property of many inference operators. Associativity
means that the way that factors are grouped in an operator’s
computation does not change the final result [43]. With asso-
ciativity, we can securely transform an associative operator
into parameter-morphed, thus confidentiality-preserved op-
erator by scaling its parameters with a hidden scalar in an
enclave, run that morphed operator on the GPU and fully
restore the execution result of that operator with the scalar
hidden in an enclave. Since associative operators (e.g., Convo-
lution, Fully-connected) widely exist in general DNN models,
and these operators represent a major fraction of computa-
tion in a DNN model (e.g., 93.5% of the computation on
VGG19 [61] is spent on convolution), we can achieve dra-
matically increased performance by partitioning morphed,
computationally expensive operators to run on a GPU.

Based on this observation, we present SOTER1, the first
partition-based approach that achieves model confidentiality,
low latency and high accuracy simultaneously. SOTER car-
ries a Morph Then Restore (MTR) protocol for cooperative
executions between kernels (enclave and GPU). Specifically,
SOTER randomly selects a major fraction of associative op-
erators, morphs their parameters with randomly generated
blinding coins (scalars) in the enclave, and partitions these
parameter-morphed operators to run on a GPU. For each
client’s input, SOTER executes each operator (either in an
enclave or GPU) in order, transfers intermediate execution
results (IR) across kernels when needed, and restores the final
execution result with reciprocal coins in the enclave. A subtle
case is that, under special partition cases, an adversary who
observes IRs transmitted across kernels can reveal the value of
coins hidden in an enclave (§4.1). Hence, SOTER additionally
morphs the value of IRs before they are transmitted across
kernels to hide the blinding coins, thus protecting the model
confidentiality.

However, even with these steps, SOTER still faces an in-
herent integrity hazard in the presence of an adversary at the
edge side, who can observe and manipulate any components
(e.g., morphed parameters on GPU) outside the enclave to
mislead the offloaded model to produce wrong output, ruining
the model provider’s inference service quality.

To tackle the integrity hazard, SOTER’s MTR protocol gen-
erates oblivious fingerprints at runtime to detect integrity
breaches outside the enclave in a challenge-proof man-
ner [71]. Our key idea is that the associativity property can
be used to efficiently generate integrity challenges at run-

1SOTER is an ancient Greek god, guards safety against cosmic chaos.

System
Model GPU High Inference General

Confidentiality Acceleration Accuracy Integrity Functionality

∗MLcapsule [27] √
×

√ √ √

∗ Privado [26] √
×

√ √ √

∗Occlumency [41] √
×

√ √ √

• Serdab [21] ×
√ √

× ×
•Darknight [28] ×

√
×

√ √

• eNNclave [56] √ √
× × ×

•AegisDNN [68] ×
√ √

×
√

• SOTER
√ √ √ √ √

Table 1: Comparison of SOTER and related systems. "∗ / •"
means that the system uses either a TEE-shielding approach
(∗), or a partition-based approach (•).

time. Specifically, before running inferences, SOTER collects
fingerprints of partitioned operators in enclave, which hold
the ground-truth of these operators’ execution results; during
the inference, SOTER challenges partitioned operators with
fingerprint input to ask them for execution proofs. By com-
paring the returned proofs with expected fingerprint output in
enclave, SOTER learns whether integrity breaches occur.

To prevent an adversary from distinguishing fixed finger-
print challenges thus bypassing the detection, inspired by
traditional steganography techniques [34, 52], SOTER dynam-
ically derives new fingerprints by using existing fingerprints
in enclave based on the associativity property. The new fin-
gerprints statistically share the same distribution as client’s
normal input (§4.2), making fingerprints oblivious to the at-
tacker. Therefore, by leveraging the same key observation of
associativity, SOTER achieves both model confidentiality and
integrity in a unified manner.

We implemented SOTER with Graphene-SGX [63], a ma-
ture framework that supports developing neural network appli-
cations with Intel SGX. We evaluated SOTER with six popular
DNN models covering three popular categories, including
Multi-layer Perception (MLP) [40], Convolution Neural Net-
work (CNN) [24] and Transformer [64]. We compared SOTER
to three notable TEE-based secure inference systems, cov-
ering both the TEE-shielding approach and partition-based
approach. Our evaluation shows that:

• SOTER is secure. For confidentiality, SOTER effectively
hid parameters’ plaintexts, and achieved comparable model
protection as TEE-shielding baseline under powerful model
stealing attacks (§6.3); for integrity, SOTER detected any in-
tegrity breaches within ten fingerprint challenges with an
overwhelmingly high probability of 99.9% (§6.4).
• SOTER is efficient. SOTER achieved up to 72.6% lower
latency than the TEE-shielding baseline, and had moderate
latency (up to 1.2X) compared to partition-based baselines,
while the baselines do not have integrity protections (§6.1).
• SOTER is accurate. SOTER retained the same high accuracy
as insecure inference, while the most efficient partition-based
baseline caused 1.1%∼5.5% accuracy drops.

Our major contribution is the MTR protocol, the first work
that achieves model confidentiality, low latency and high ac-

724    2022 USENIX Annual Technical Conference USENIX Association



curacy with integrity protection for secure model inference.
Compared to existing relevant baselines, SOTER achieved
comparable strong confidentiality as the TEE-shielding ap-
proach, comparable low-latency as the partition-based ap-
proach, high accuracy same as insecure inference, and over-
whelming high probability of detecting integrity breaches
outside an enclave. This makes SOTER unique to greatly
promote the prosperity of AI on edge devices, encouraging
enormous model providers to develop powerful models and
deploy them on third-party edge devices. Also, our MTR
protocol can generally protect model inference on the cloud
when the model provider does not trust the owner of cloud
servers that host the model. SOTER’s source code is released
on github.com/hku-systems/SOTER.

In the rest of this paper: §2 introduces background; §3
gives an overview of SOTER; §4 describes SOTER’s design;
§5 covers SOTER’s implementation; §6 shows our evaluation;
§7 discusses related work and §8 concludes.

2 Background
2.1 Deep Neural Network
A DNN model (in short, model) can be represented as a se-
quence of connected layers with each layer assigned a set of
operators, as shown in Figure 1. An operator is either a linear
operator or a nonlinear operator where a linear operator is
weighted by parameter matrices (in short, parameters).
Inference workflow. Figure 1 shows the inference workflow.
A model M passes an input X (e.g., an image) through layers
of operators to compute logits [30], normalizes logits with
softmax function to produce a probability vector, and assigns
a class with the highest probability to input X as the class
label. Without losing generality, we use image classification
as an example to illustrate model composition in the following
discussions.
Associativity of DNN operators. Operators are the basic
building blocks of a DNN model, among which linear opera-
tors have been proven to take up the majority of computation
resources in general model inferences [1, 70].

Many DNN models deployed at the edge are built on top
of associative operators. Suppose we have an input X and a
scalar µ, a DNN operator F is associative if

(µ−1 ∗µ) ·F(X) = µ−1 ·F(µ∗X) (1)

Linear operators, including computationally expensive con-
volution and fully-connected, have the associativity property
as they conduct linear transformation on input data. For in-
stance, take the convolution operator as an example: as shown
in Figure 1, if we multiply each element in the convolution
kernel by 2−1 (i.e., µ = 2−1), we will get the output 2−1R,
while it always holds (2∗2−1)∗R = 2∗ (2−1R) in Equation 1.
This property applies to other linear operators as well.

For nonlinear operators that conduct nonlinear transforma-
tion on data, most of them do not have an associativity prop-
erty (e.g., Sigmoid). However, interestingly, under specific

R
eL

U

M
ax

Po
ol

C
on

v

Non-linear Op

Si
gm

oi
d

M
ea

nP
oo

l

C
on

v

So
ftm

ax

Linear Op

Input Image Output label

Inference Computation Flow

Baby

DNN Layer

a b c

d e f

g h i

A B
C D

Input Conv  
Kernel

Output

R = aA + bB + dC + eDConvolution:
Input Weight Output

R = aA + bB + cCFully Connected:

a b c A

B

C

R

Layer 1 Layer P

Fu
lly

C
on
ne
ct
ed

R

( Ci * Hj * Wk )

ReLU

Sigmoid
X

Y = ReLU(X)

Y = Sigmoid(X)

Activation:
Max Pool

Mean Pool

MAX (a, ,b, c, d)

(a+b+c+d) / 4

a b
c d

Pooling:

Figure 1: An overview of the DNN model.

constraints, some nonlinear operators can also be associative.
Take the most commonly used ReLU as an example: the ReLU
function, F(x) = Max{0,X}, is scale-invariant when µ > 0,
i.e., F(µx) = Max{0,µX}= µF(X). Hence, given a scalar µ,
Equation 1 applies to ReLU. Similar to ReLU, the pooling
function is associative as well.

Operators that satisfy Equation 1 also meet a variant of the
associativity property. Given that

F(X1) = y1,F(X2) = y2, ...,F(Xn) = yn

it always holds

F(
n

∑
i=1

µi ∗Xi) =
n

∑
i=1

µi ∗ yi (2)

SOTER leverages Equation 1 as the key weapon to produce
parameter-morphed, thus confidentiality-preserved operators
to run on GPU for acceleration, and restore accurate results
in enclave. SOTER uses Equation 2 to efficiently generate
oblivious fingerprints for integrity checking at runtime. We
illustrate our detailed designs in §4.

2.2 Intel SGX and Related Work
Intel Software Guard eXtension (SGX) [14] is a pervasively
used hardware feature on commodity CPUs. SGX provides a
secure execution environment called enclave, where data and
code execution cannot be seen or tampered with from outside.

As shown in Table 1, there are two categories of SGX-based
work that provides secure inference service. The first category
is the TEE-shielding approach that runs all inference compu-
tations within enclave (e.g., MLcapsule [27], Privado [26],
Occlumency [41]). Such an approach shields the entire model
in enclave to hide parameters’ plaintexts, but fails to achieve
low inference latency owing to the computational bottleneck
of CPU and the lack of publicly available trusted GPU [3,65].

The second category is the partition-based approach that
runs a portion of model layers in enclave and runs the rest of
the layers on a GPU for acceleration. AegisDNN [68] only
shields partial critical model layers in enclave and accelerates
other plaintext layers on GPU. To decide which layers should

USENIX Association 2022 USENIX Annual Technical Conference    725

github.com/hku-systems/SOTER


be partitioned, AegisDNN takes a user-specified argument
(i.e., deadline for an inference task), uses silent data corrup-
tion mechanism [23] to learn each layer’s criticality, and parti-
tions uncritical (plaintext) layers to GPU to meet the stringent
deadline. eNNclave [56] argues that the feature extraction
operators (e.g., convolution) of different models are generally
transferable, hence it replaces partitioned operators’ parame-
ters with pre-trained parameters of other models, which sac-
rifices inference accuracy. This is because, model providers
usually train their models with private datasets tailored for
a specific task, thus each parameter in the trained model is
exclusive to achieve high accuracy [10, 45, 72]. Also, such
an approach is only applicable to specific models where pub-
lic parameters are available. Serdab [21] and Darknight [28]
assume the model is deployed on a trusted cloud. Instead of
protecting model confidentiality, they have an orthogonal goal
of protecting users’ data privacy on the cloud.

3 Overview
3.1 System setup
We consider a client-side inference scenario shown in Fig-
ure 2. Different from a cloud-side inference scenario (e.g.,
Delphi [44], Gazelle [36]) where the model is hosted on the
trusted cloud server, we consider the model provider offloads
its model to the client’s untrusted edge device to run model
inferences. The device constantly takes sensitive queries from
the client and sends inference results back to the client.

3.2 Security model
We consider an honest model provider that provides the cor-
rect model requested by the client, and the model is offloaded
to run on an SGX-equipped third-party edge device. We trust
the hardware and firmware of Intel SGX, which ensure that
code and data in enclave can not be seen or tampered with
from outside. However, any components outside the enclave
are untrusted.

We consider a malicious edge-side attacker outside the
enclave that aims to (1) steal the parameters of the offloaded
model, and (2) perturb any components outside the SGX to
modify the inference results. An edge-side attacker could
be a business competitor who wants to steal the model for
competitive advantages and ruin the inference service to screw
up the model provider’s reputation [12, 13, 54]. Even worse,
the integrity attack against edge-side model inference could
pose severe threats to edge users. For instance, an attacker
may hack into a self-driving system running with an obstacle
detection model, and perturb the model parameters to produce
incorrect navigation instructions to the car [9].
Semantic security. Similar to prior secure inference systems,
namely the MLcapsule [27] and eNNclave [56], SOTER aims
to achieve model confidentiality with the semantic security
guarantee: knowing only ciphertexts, it must be infeasible
for a computationally-bounded adversary to derive signifi-
cant information about the plaintexts [7]. In the secure infer-

Model 

Edge Device
(e.g., Samsung)

Sensitive Query

Inference ResultClient Model provider at the
cloud (e.g., Google)

TEE GPU

M1 M2

Figure 2: The client-side inference scenario.

ence scenario, it captures the requirement that the parameters’
plaintexts cannot be derived from any data observed by the
adversary.

Note that, we do not hide information that is revealed by
the results of inference queries, and we focus just on pro-
tecting the parameters’ plaintexts. Protecting against attacks
that exploit the leakage of inference results is a complemen-
tary problem to that solved by SOTER. We give a detailed
illustration of these attacks and potential mitigations in §7.

3.3 System overview
SOTER’s two-phase design. SOTER’s protocol consists of an
offline preprocessing phase, and an online inference phase.
Specifically, the preprocessing phase is independent of the
client’s query input which changes regularly. We assume the
offloaded model from the server is static, if the model changes,
then both parties should re-run SOTER’s preprocessing phase.
After preprocessing, during the inference phase, the client
sends query input to get the eventual result. Note that, SOTER
is best suited for applications whose inference is latency-
sensitive, but is usually not performed frequently enough to
take up all computational resources needed for preprocessing.
SOTER’s workflow. In Figure 3, we show how SOTER lever-
ages the general associativity property of DNN operators to
automatically partition a DNN model.

In the preprocessing phase: during P1∼P3, a SOTER client
conducts standard SGX attestation to the server for obtaining
the model M and decryption keys KEYM , and then loads the
encrypted model M in a layer-wise manner by decrypting
with KEYM locally. In P4 and P5, SOTER extracts the model
architecture, statically filters out all associative operators that
meet Equation 1, and then invokes SOTER’s MTR protocol
for model partitioning.

Specifically, in P5, SOTER’s MTR protocol runs as follows:
With a given partition ratio θ, SOTER randomly selects θ%
associative operators, and generates (1) fingerprints of the se-
lected operators for integrity checking (used in the inference
phase), and (2) random scalars for all operators. These scalars
serve as the blinding coins to hide the parameters [44] and are
always kept secret in enclave. With the associativity property
(Equation 1), SOTER morphs every selected associative oper-
ator by multiplying each element in the operator’s parameter
matrices with a blinding coin (the computation result can
be restored by using the reciprocal coin), and then partitions
the selected operators with morphed parameters to GPU. In
Figure 3, the selected operators (in green) are morphed with

726    2022 USENIX Annual Technical Conference USENIX Association



TEE

Profiler

Cloud server 

SOTER client C

Untrusted

GPUP1. Attest

P2.1 Offload
Encrypted Model

Model (M)

Inference Manager

M

P2.2 Deliver Secret Key 

P3. Load &  
Decrypt

Plaintext 
Model 

P4.
Extract

P5.  
Slicing &  
Morphing 

OP1

OPx

Phase 1: Preprocessing Phase Phase 2: Inference Phase

OP1

Untrusted

KEYM

M 's partition plan (Eq. 1)

Skeleton 

OP3

SOTER client C

(E.g., VGG)

. Query
Input

Integritry Monitor

TEE

m1

m2

mx

 .X1

Integrity 
Monitor 

Integrity 
Check

Inference Manager

. Restore by

. Morph by
OP2

M1

Normalize 
(e.g., softmax()) 

Mx

 Class Label 
(E.g., Cat or Dog) 

GPU

OP1

OPx

OP3

Shuffle

Profiler

OPiTrusted Untrusted SOTER
module Blinding Coin Operator 

in enclave 
OPi

Operator (morphed)
partition to GPU

Sensitive 
Intermediate results

Fingerprint 
Derive 
(Eq. 2) 

. Restore by

Inference dataflow Fingerprint dataflow
Disabled SOTER

module Preprocessing flow Partition flow

OP2 OP3 OPx

Figure 3: The architecture of SOTER in a modular manner. SOTER’s secure inference protocol has three modules (shielded in
green) running in an enclave. An adversary can observe and manipulate any components outside the enclave.

corresponding coins, e.g., the parameters of the third operator
OP3 are morphed with its coin µ3 and partitioned to GPU,
while the second operator (in blue) is kept within an enclave.

Note that, we choose to run the preprocessing procedures
(P1∼P5) at the client-side because client C might select his θ

according to his GPU capability, e.g., choose a smaller θ if
the GPU has limited usable memory.

In the inference phase, there are two types of data flows:
the inference flow (black dotted line) and the fingerprint data
flow (green dotted line). The life-cycle for the inference data
flow is: (I1) The client C sends a query input (i.e., data for
inference) to the trusted inference manager module and shuf-
fles with the fingerprint input (introduced below). (I2) The
inference manager forwards C’s input X1 to the GPU, and the
first morphed operator OP1 takes X1 as input and computes
the output m1. (I3) Since the next operator OP2 is expected to
run within enclave according to the plan made in the prepro-
cessing phase, the inference manager takes the computation
result of previous partitioned operators (i.e., m1) as the input,
restores m1 with all previous partitioned operators’ blinding
coins since the last kernel switch (in Figure 3’s circumstance,
SOTER restores with only OP1’s blinding coin µ1), and gets
the restored result M1. (I4) After that, the second operator
OP2 computes with M1 and gets an intermediate result (IR),
then morphs IR with the OP2’s blinding coin µ2 and forwards
the result m2 to the partitioned operator OP3 in GPU.

The above procedures (I2∼I4) repeat until all partitioned
operators in GPU are computed. In (Ix), with the last compu-
tation result mx from OPx, SOTER restores the real result with
all partitioned operators’ coins since the last kernel switch
(same as I3). In this case, SOTER restores with µ2 ∼ µx and
gets the real inference result Mx. Last, SOTER runs a standard
normalization to get the class label for client C.

The fingerprint data flow is used to detect integrity breaches
of partitioned operators outside an enclave. Specifically, with
a set of fingerprints produced in the preprocessing phase (P5),
SOTER dynamically derives new fingerprints by utilizing the
general associativity of Equation 2, injects these fingerprints
into the inference data flow to check whether the partitioned
parameters have been maliciously modified by an adversary
outside the enclave.
SOTER’s generality. SOTER supports general neural net-
works. SOTER’s key insight into partitioning neural networks
lies in the broad associativity of common inference opera-
tors (§2.1), including all linear operators (e.g., convolution
and fully-connected) and typical nonlinear operators (e.g.,
ReLU, Max-pool, and Mean-pool). Hence, SOTER theoreti-
cally supports all neural networks (including recurrent neu-
ral networks [69]), but exhibits varying performance gains
(compared with running the entire neural network in TEE)
depending on the ratio of associative operators in neural net-
works (§6.1). SOTER also supports general TEEs (e.g., ARM
TrustZone [53] and AMD SEV [58]) as long as the TEE pro-
vides data confidentiality and code integrity guarantees that
SOTER’s MTR protocol requires.

4 Protocol Description

This section describes SOTER’s MTR protocol. At a high
level, MTR utilizes the general associativity property of DNN
operators to automatically profile a model (with Equation 1),
randomly selects a portion of associative operators, and then
morphs these operators’ parameters with hidden blinding
coins in enclave to hide parameters’ plaintexts (§4.1). Besides,
to tackle the integrity threat (described in §3.2), stemming
from the same observation of the general associativity prop-
erty, MTR dynamically derives oblivious fingerprints (with

USENIX Association 2022 USENIX Annual Technical Conference    727



Table 2: SOTER’s protocol variables.

Variable Description

Θ(de f ault = 0.8) Portion of associative operators partitioned to GPU.
Og | Oe Partitioned operators in GPU / maintained in TEE.
O(Og∪Oe) The whole set of model M’s operators.
Para(Oi) Parameters of operator Oi.
FPOi Fingerprint of operator Oi.
µi Blinding coin of operator Oi.

Equation 2) and uses fingerprints to check the integrity of par-
titioned operators in a challenge-proof manner (§4.2). Table 2
shows the variables used in the MTR protocol.

4.1 Morph Then Restore (MTR) protocol
The MTR protocol is divided into two stages: a morphing
stage and a restore stage. In the morphing stage, SOTER first
makes blinding coins for every operator (including both as-
sociative and non-associative operators), and then makes a
partition plan with a given partition ratio θ. Then, in the re-
store stage, SOTER runs inference across GPU and enclave,
and restores inference results in enclave when needed. Algo-
rithm 1 and 2 show the MTR protocol.
Stage 1-1: Morphing with blinding coins. SOTER assigns
every operator with a randomly generated scalar, which serves
as the blinding coin to hide the plaintext value of parameters.
Given an operator Oi (the partition plan is described in Stage
1-2), SOTER morphs Para(Oi) by multiplying each element
in Para(Oi) with the corresponding coin µi. Note that, SOTER
requires periodically updating of the coins to avoid potential
chosen plaintext attacks [6,37], as the morphing is completely
linear. According to the hill cipher theory [48], each coin can
tolerate up to n2 attacks (i.e., n2 inferences) where n is the
parameter matrix’s size of the operator that the coin applies to.
Hence, SOTER updates a morphed operator with matrix size
n every n2 inferences. Notably, this updating can be done off
the critical path when the inference tasks are not busy (§5).

• Protect coins during kernel switches. One subtle case is
that, SOTER assigns random coins to every operator (rather
than selected operators for partitioning) to avoid potential
information leakage during kernel switches, i.e., when inter-
mediate results (IRs) are transmitted between the enclave and
GPU. We illustrate our design by giving a running example.
• Running example. We demonstrate our idea with the ex-
ample in Figure 4, which is a common architecture in typical
DNN models. SOTER selects a portion of model operators to
run in the TEE enclave (green portion), and partitions the re-
maining operators to run on the untrusted GPU (red portion).
An adversary outside the enclave is attempting to deduce the
blinding coins used to morph the GPU operators according to
the attacker-visible IRs (Y1 and Y2).

We begin with the Before case, in which only the parti-
tioned GPU operators are protected by SOTER’s blinding
coins. OP1 (on the GPU) is a linear operator and OP2 (in

Algorithm 1: MTR protocol at client c (offline) (§4.1).
O Preprocessing Phase (within enclave).

1 Function partition(O) do
2 foreach operator op in O do
3 op.partition← False; op.index← O.index(op);
4 if op.index >W then
5 if 0 < normalize(sgx_read_rand())< Θ then
6 op.partition← True;
7 if op is associative & op.partition then
8 foreach element e in para(op) do
9 e← µindex× e ; // Morph

10 Og.add(op) ; // GPU operators

11 else
12 Oe.add(op) ; // TEE operators

13 Og.copyTo (“cuda") ; // Partition to GPU

enclave) is a non-linear ReLU operator. If we only morph
OP1 with µ1 and do not assign a coin to OP2, then, with a
client input X , OP1 outputs y1 = X(µ1 ∗OP1) and OP2 out-
puts y2 = ReLU(y1/µ1) = ReLU(X ∗OP1). However, since
the ReLU operator only filters out negative values in parame-
ter matrices and does not transform a scalar, an adversary who
observes both y1 and y2 will directly infer the value of coin
µ1, violating the confidentiality of the partitioned OP1 (con-
cretely, Para(Oi)). To tackle this problem, we assign coins
to all operators rather than partitioned GPU operators only.
As demonstrated in the After case of Figure 4, by assigning
coin µ2 to OP2, OP2 will output y2 = µ2 ∗ReLU(X ∗OP1). An
adversary observes µ1 ∗µ2 but has no way of inferring either
µ1 or µ2.

Overall, by morphing both the enclave and the partitioned
GPU operators with blinding coins stored in TEE enclave, an
attacker cannot deduce the blinding coins from the IRs, en-
suring the confidentiality of the model parameter’s plaintexts.
Stage 1-2: Partitioning model with hidden operators. With
all coins prepared, given a partition ratio θ, we automatically
partition a portion of associative operators (that are morphed)
to GPU for inference acceleration. The partition function in
line 1∼13 of Algorithm 1 shows the pseudo-code.

Specifically, in the preprocessing phase, SOTER iterates
every operator in model M and randomly selects a portion of
associative operators and adds them to the partition set Og.
For instance, with θ = 0.8, an associative operator would have
an 80% chance to be partitioned to GPU. After all operators
are iterated, all operators in Og are partitioned to GPU for
inference acceleration.

Note that, SOTER always keeps top-W (W=2 by default)
operators in enclave even if these operators are associative
(Line 4). This design choice is made to ensure the input to
the first several partitioned operators on GPU (e.g., X1 in
Figure 3) are always unknown to the adversary, such that we
can stealthily check the integrity of all partitioned operators
by injecting fingerprint challenges (more details in §4.2).
Stage 2: Guarded black-box inference. Next, we present the

728    2022 USENIX Annual Technical Conference USENIX Association



Linear 
{ }

Convolution 
{ }

TEE GPU

Before

Linear 
{ }

Convolution 
{ }

{ }

TEE GPU

After

Figure 4: Morphing only partitioned operators’ parameters
can leak the blinding coins in some partition cases.

end-to-end black-box inference process given that we have
prepared coins and partitioned a portion of operators to GPU.

As shown in Algorithm 2, SOTER first computes the re-
served top-W operators in enclave, and then iterate I2∼I4 as
follows. I2: SOTER finds the longest length of consecutively
partitioned operators in Og and computes the inference result
by forwarding the input through these operators (line 6∼11).
I3: Then SOTER copies the result back to enclave, restores
the real inference result by multiplying the reciprocal coins
of all operators in the last step (line 13), and then forwards
the result to operators maintained in enclave (before the next
copy to GPU). I4: SOTER morphs the forwarding result with
all coins of enclave operators in the last step (line 18), and
then copies back to GPU. This procedure terminates when
all partitioned operators on GPU are iterated. Then SOTER
normalizes the final result and returns the result to the client.

4.2 Integrity checking with fingerprints
Obliviousness requirement. To detect integrity breaches out-
side an enclave (as described in §3.2), a straw man approach
could be using a fingerprint (with ground-truth input/output
pair) to challenge the partitioned operator on GPU to recom-
pute the fingerprint input to provide proof, and report a crime
if the proof is different from the expected output.

However, such an approach needs to be oblivious. Since
the adversary can continuously monitor the inference process
and observe every intermediate result (IR) transmitted from
enclave to GPU, if using only a fixed set of fingerprints, the
adversary can easily distinguish those fixed challenges among
all IRs, and bypass our detection by returning correct proofs.
The timeliness-obliviousness dilemma. Unfortunately, triv-
ially using different fingerprints for integrity checking brings
a timeliness-obliviousness dilemma.

Specifically, generating new fingerprint input and pre-

Algorithm 2: MTR protocol at client c (online) (§4.1).
O Inference Phase (cross enclave & GPU).

1 Function secure_inference() do
O I1.

2 every client input X do
3 X .copyTo(“enclave”);
4 foreach index i ∈ normalize(W) do
5 X ← Oi(X) ; // Top-W Inference

6 start← next op in Og; end← next op in Oe;
7 while start < |O| do

O I2.
8 X .copyTo(“cuda”);
9 foreach index i ∈ range(start,end) do

10 X ← Oi(X) ; // GPU Inference

O I3.
11 X .copyTo (“enclave”);
12 X ←∏

end−1
start µ−1

i ×X ; // Restore
13 start ← end;
14 end ← start from Oend find the next op in Og;
15 foreach index i ∈ range(start,end−1) do
16 X ← Oi(X) ; // TEE Inference

O I4.
17 X ←∏

end−1
start µi×X ; // Morph

18 X ← normalize(X);
19 return Top1(X) ; // Final result

computing expected output in CPU would cause late detection,
because CPU computation for an operator is extremely slow
(up to 30x slower inference speed for linear operation); on the
other hand, if we use a fixed set of fingerprints for challenging
the integrity, we could timely detect breaches. However, the
detection would be easily bypassed by the adversary because
all fingerprints are now distinguishable.
SOTER’s insight and approach. Stemming from the same
observation of parameter morphing (§2.1), we tackle this
challenge by efficiently generating new fingerprints in CPU
without re-computing operators. At a high level, we take two
steps by first making a set of cornerstone fingerprints for each
partitioned operator, and then encapsulating new fingerprints
from these cornerstone fingerprints with a constant cost at
runtime based on the associativity property.
Step 1: Preparing cornerstone fingerprints. During the pre-
processing phase, SOTER prepares K (by default K=10) cor-
nerstone fingerprints for each partitioned operator. A finger-
print is a two-element tuple: {input, output}, where the input
is a randomly generated matrix and the output is pre-computed
by forwarding the input through a ready-to-partition operator.
The whole preparing procedure is running within enclave,
such that the correctness of each cornerstone fingerprint can
be guaranteed.
Step 2: Efficiently deriving new fingerprints in TEE. Now
with K cornerstone fingerprints for each partitioned operator,
SOTER efficiently derives oblivious fingerprints at runtime
by leveraging the general associativity property. Specifically,
with a fixed set of cornerstone fingerprints FPO[K] for each

USENIX Association 2022 USENIX Annual Technical Conference    729



partitioned operator O, we randomly select T fingerprints
and generate T random coefficients with SGX’s trustworthy
random number generator. Then, by applying the associativity
property (Equation 2), we generate a new fingerprint FPNew
as follows: the input for FPNew is ∑

T
i=1 Ti ∗FPO[i].input, i.e.,

we multiply each selected cornerstone fingerprint’s input with
a corresponding coefficient and add them all as the new input;
For the output, since the associativity property implies that
the corresponding output for a group of associated operators
has the same transformation as the input, thus we can directly
get the expected output as ∑

T
i=1 Ti ∗ FPO[i].out put without

conducting slow CPU inference for a given new input.
Step 3: Challenge-proof fingerprint issuing. For fast detec-
tion of integrity breaches, rather than submitting fingerprint
challenges for random user inference tasks, SOTER submits
fingerprint challenges for every user inference task. By do-
ing so, SOTER can detect any integrity breaches within only
ten fingerprints with an overwhelmingly high probability of
99.9% according to our theoretical analysis and evaluation
results (§6.4).

In detail, SOTER issues a challenge whenever a kernel
switch (an IR transmitted from enclave to GPU) happens.
When an IR (produced by client’s query) is sent to a parti-
tioned operator O, we challenge the integrity of O by send-
ing the IR to O together with a new FPO.input (produced in
Step 2), and compare the returned proof with the expected
FPO.output. Any mismatch reveals an integrity breach of par-
titioned operator O.

Whenever integrity breaches are detected, SOTER can sim-
ply abort the inference process and restart the preprocessing
phase to prepare new blinding coins and re-morph the GPU
operators with the procedures described in §3.3.

5 Implementation
We built SOTER on top of PyTorch C++ [51] with 5.3K LoC.
We chose PyTorch C++ as it incurs less memory footprint
compared to PyTorch, and previous work [63] has shown that
running programs with a high memory footprint within SGX
could incur prohibited overhead due to SGX’s small memory
capacity. SOTER uses Graphene-SGX to run SOTER’s compo-
nents within an SGX enclave (denoted as SOTER-Graphene),
because Graphene-SGX provides a library OS for running
applications within the enclave without any modifications.

Due to SGX’s limitation (§2.2), Graphene-SGX cannot di-
rectly access GPU within the enclave. SOTER tackles this
problem by spawning an extra PyTorch process (SOTER-
GPU) outside the enclave for offloading computations to GPU.
SOTER-Graphene and SOTER-GPU communicate through
shared memory (untrusted and not protected by SGX). We
did not choose to modify Graphene-SGX to forward GPU
computations at the syscall-level (e.g., by modifying ioctl),
because doing so results in frequent enclave transitions for
each GPU task. This is because launching one GPU task
requires multiple system calls (e.g., ioctl and mmap).

Runtime Construction. SOTER builds the runtime accord-
ing to the two-phase design (§3). In the preprocessing phase,
SOTER bootstraps the enclave with the standard SGX attesta-
tion library [14], and decrypts the model (in ONNX format [42])
sent from the server in the client enclave. The enclave boot-
strapping takes 1.84∼2.92 seconds. Then, the decrypted
model is processed by enclave_model_dispatcher, which
randomly selects a major fraction of associative operators
and morphs these operators’ parameters with random scalars
produced by the SGX trustworthy source (sgx_read_rand).

In the inference phase, SOTER-Graphene runs inferences
on DNN layers stored within TEE. When an inference com-
putation needs to be offloaded outside the enclave, SOTER-
Graphene serializes the activation using pickle, pushes the
data to the shared memory and hands over to SOTER-GPU;
SOTER-GPU deserializes the data and the morphed model,
computes the results, and pushes the result to the shared mem-
ory; SOTER-Graphene retrieves the results and continues exe-
cution.
Optimization. First, SOTER reduces the memory footprint by
reusing a single paraheap buffer to store operators’ parame-
ters, and gradually loading and decrypting parameters from
disk when they are required for computations in CPU. Second,
SOTER enables SGX paging [14] to support the execution of
large DNN models. Note that all baseline systems we evalu-
ated were also enabled with these two optimizations. Third,
SOTER takes unused CPU cycles to provision new coins and
produce newly morphed operators in TEE (§4.1), to replace
staled partitioned operators on GPU in a nonstop manner.

6 Evaluation
Testbed. Our evaluation was conducted on a server with
2.60GHZ Intel E3-1280 V6 CPU, 64GB memory, and SGX
support. The partitioned computations were performed on a
co-located Nvidia 2080TI GPU with 11 GB physical memory.
Baseline systems. To evaluate the performance of SOTER,
we compared SOTER with three notable TEE-based secure
inference systems, namely MLcapsule [27], AegisDNN [68]
and eNNclave [56]. MLcapsule is a popular TEE-shielding
open-source project, which shields the entire model within
the CPU enclave without any modification to parameters,
thus achieving model confidentiality, integrity (no partitioned
operators outside enclave) and retaining high accuracy as the
original trained model.

AegisDNN and eNNclave are two state-of-the-art partition-
based systems that empower accelerator-assisted low-latency
inference same as SOTER (Table 1). AegisDNN only shields
partial critical model layers in enclave and accelerates other
plaintext layers on a GPU. To decide which layers should be
partitioned, AegisDNN takes a user-specified argument (i.e.,
deadline for an inference task) and uses a silent data corrup-
tion mechanism [23] to learn each layer’s criticality. Aegis-
DNN is not open-source so we implemented all its protocols.
eNNclave handcrafts a partition plan by manually replacing

730    2022 USENIX Annual Technical Conference USENIX Association



VGG19
0x

10x

20x

30x

No
rm

-la
te
nc
y

45.01

SOTER AegisDNN eNNclave MLCapsule

N/A

Alexnet
0x

5x

10x

15x

2.88

N/A

Resnet152
0x

10x

15x

20x

No
rm

-la
te
nc
y

153.81

N/A

Densenet121
0x

3x

6x

9x

62.97

N/A

MLP
0x

01x

02x

03x

No
rm

-la
te
nc
y 0.28

N/A

Transformer
0x

15x

30x

45x

759.74

Figure 5: Normalized latency of all systems running six preva-
lent models. All systems’ latency results are normalized to
insecure GPU inference latency (red dotted line). The value
on each red bar indicates SOTER’s averaged inference latency.

some layers’ parameters with public insensitive parameters,
and running these parameter-precision downgraded layers on
a GPU. Hence, eNNclave achieves model confidentiality at
the expense of accuracy, and is only suitable for specific mod-
els with publicly available parameters of known layers. We
ran eNNclave based on its open-source implementation.

Note that, both AegisDNN and eNNclave do not provide
integrity protection for a partitioned model. While some ap-
proaches (e.g., Darknight [28]) have integrity protection for
computations on untrusted accelerators, they are not designed
to protect model confidentiality at the untrusted edge; hence
they are orthogonal to the goals of SOTER.
Models and datasets. We evaluated all baseline systems with
six well-studied DNN models in the three most popular cate-
gories that are widely used in the deep learning community,
including a Multi-layer Perception (MLP) model, four Convo-
lution Neural Network models including Alexnet (AN) [38],
Densenet121 (DN) [31], VGG19 (VGG) [61], Resnet152
(RN) [29], and a Transformer (TF) [64]. We used the open-
source release of each model.

We conducted our study on two representative datasets,
ImageNet [16], and WNMT [57], targeting both computer
vision (CV) and natural language processing (NLP) tasks.
ImageNet is a full-scale image dataset that contains 600k
images from 1k classes for CV studies; WNMT is the major
translation dataset that has been used in recent NLP studies.
Default setting. By default, we ran all experiments by sequen-

SOTER’s inference results (in milliseconds)

Model MLP AN VGG RN DN TF
P1: CPU (TEE) 0.19 1.65 25.38 92.18 41.65 439.52
P2: GPU 0.05 0.71 14.24 33.97 13.71 204.93
P3: Kernel Switch 0.01 0.18 0.83 25.98 5.6 41.52
P4: Integrity Check 0.03 0.34 4.56 14.75 6.02 73.77
End-to-end (P1+P2+P3+P4) 0.28 2.88 45.01 153.88 62.97 759.74

Table 3: End-to-end latency breakdown of SOTER.

AegisDNN’s inference results (in milliseconds)

Model MLP AN VGG RN DN TF
P1: CPU (TEE) 0.19 1.54 22.89 88.14 36.75 404.87
P2: GPU 0.07 0.67 19.96 52.3 20.07 198.64
P3: Kernel Switch 0.01 0.12 0.85 7.12 1.81 29.61
End-to-end (P1+P2+P3) 0.27 2.33 43.7 146.56 58.63 633.12

Table 4: End-to-end latency breakdown of AegisDNN.

tially feeding the inference data (i.e., input_batch_size=1).
Unless conducting sensitivity studies, we ran SOTER with
80% probability of partitioning an associative operator to run
on a GPU (i.e., selective partition ratio=0.8 in §4.1).

Our evaluation focuses on the following questions:
§6.1 How efficient is SOTER compared to baselines?
§6.2 How sensitive is SOTER’s performance to different

partition ratio?
§6.3 What could be leaked with and without SOTER?
§6.4 How robust is SOTER under integrity breaches?

6.1 End-to-end inference performance
We first investigated the end-to-end inference latency of
SOTER and three baseline systems with six prevalent models.
All reported measurements are the averaged inference latency
of 10k independent inference input.

Figure 5 shows the comparison of normalized inference la-
tency, where all systems are normalized to the insecure GPU
inference, which was measured by directly running model
inference on GPU without protection. SOTER’s end-to-end
latency (in milliseconds) is reported on its bar. N/A means a
system cannot handle such a case because eNNclave only re-
ports its method on partitioning VGG-series models. Overall,
SOTER’s latency was 1.21X ∼ 4.29X lower than MLcapsule
when running inferences on the same model. This is because
MLcapsule shields the entire model in the CPU enclave with-
out involving GPU, and CPU is at least one order of magnitude
less efficient than GPU in executing inference tasks [62].

Meanwhile, SOTER incurred 1.03X ∼ 1.27X higher latency
compared to AegisDNN for two reasons. First, SOTER addi-
tionally enforces integrity protection of partitioned operators
on GPU (§4.2) while AegisDNN does not support integrity
check. Second, AegisDNN partitions models in a coarse-
grained manner: by packing consecutive layers into blocks
and partitioning these blocks to run on a GPU, AegisDNN re-
duces the number of kernel switches (memory copy) between
enclave and GPU. In contrast, SOTER partitions model in a
fine-grained operator granularity, thus may incur more kernel
switches on some models. Next, we evaluate this moderate
performance downgrading with a detailed latency breakdown.

USENIX Association 2022 USENIX Annual Technical Conference    731



0.0 0.2 0.4 0.6 0.8 1.0
Selective Partition ratio

0

150

300

450

600

In
fe

re
nc

e 
La

nt
en

cy
(m

s) Shape=(1,3,224,224)
Shape=(3,3,224,224)
Shape=(6,3,224,224)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Selective Partition ratio

0

1000

2000

3000

4000

In
fe

re
nc

e 
La

nt
en

cy
(m

s) Token size=512
Token size=1024
Token size=2048

(b)

Figure 6: Running SOTER on (a) VGG19 with different input
shapes (batch_sise, channels, height, weight), and (b) Trans-
former with different token size.

Latency breakdown. To understand SOTER’s low latency
and moderate overhead, we recorded the time taken for each
step of the workflows in SOTER and AegisDNN, as shown in
Table 3 and Table 4.

In addition to the integrity check and kernel switch over-
head, we observed that SOTER took more time for enclave
computations by comparing P1 in both tables. This is because
SOTER provides confidentiality for all model operators by
either shielding plaintext operators in enclave, or selectively
morphing associative operators to run on a GPU and revert-
ing concealed execution results to accurate results in enclave
with preserved blinding coins (§4.1). In contrast, AegisDNN
only protects confidentiality for partial operators in enclave,
and leaves other operators’ plaintext parameters to the un-
trusted GPU. Therefore, SOTER paid additional overhead for
parameter morphing and restoration in enclave.

Besides, when running models with complex dependencies
among operators (Resnet, Transformer), SOTER’s operator-
level partition protocol incurred more frequent kernel switches
than AegisDNN (P3), but such design protects the entire
model architecture from being leaked. As recent work on
AI demonstrates that model architecture has a significant im-
pact on achieving high inference accuracy [2, 22], a complex,
thus potentially well-designed architecture is urgent to get
protected. In contrast, AegisDNN partitions a bunch of con-
secutive layers to GPU thus leaking architecture information
to the adversary outside enclave. We will further investigate
the information leakage in all systems in §6.3.

Overall, compared to the TEE-shielding baseline (MLCap-
sule [27]), SOTER achieves lower inference latency by se-
curely partitioning most associative operators to run on an un-
trusted GPU, and the performance gain brought by GPU com-
putations on associative operators dominates the overhead for
TEE paging and TEE-GPU interaction (Table 3). Typical as-
sociative operators (e.g., convolution and fully connected) are
proven to be the major computational bottleneck in neural net-
works. For example, 93.5% of the computation on the classic
VGG19 model is spent on convolution [61]. However, com-
pared with the partition-based baselines (eNNclave [56] and
AegisDNN [68]), SOTER incurs slightly higher (up to 1.27X)
latency for using fingerprints to detect integrity breaches (la-
tency breakdown in Table 3 and Table 4).

No accuracy loss. SOTER retained high inference accuracy
provided by original models, because SOTER ran either un-
modified operators in enclave or morphed associative opera-
tors in GPU, while concealed execution results of morphed op-
erators can be reverted with the associativity property (§2.1).
MLcapsule directly shields the entire model in enclave with-
out modification so it retained high original accuracy; Aegis-
DNN partitions plaintext model layers to run on a GPU so
it incurred no accuracy downgradation as well; eNNclave
obfuscates partitioned operators’ parameters by replacing
them with public parameters. Since public parameters are
not tailored for a given task, eNNclave incurred 1% ∼ 5.5%
accuracy drops on the evaluated VGG19 model.

In summary, SOTER achieves much lower inference latency
than MLcapsule, but SOTER incurs slightly higher latency
than AegisDNN and eNNclave because SOTER pays addi-
tional effort to provide stronger model confidentiality and
integrity, and retains high accuracy same as original models.

6.2 Sensitivity
We tested different partition ratios (denoted as θ) to look into
the performance sensitivity of SOTER. The experiments were
conducted on VGG19 with different input shapes, and we ran
different values of θ for each input shape; each experiment
was conducted ten times, as shown in Figure 6a.

The shading next to each line is the performance jitter
caused by different computation volumes of randomly se-
lected associative operators partitioned to GPU. With an in-
creased θ, SOTER’s inference latency dropped accordingly
because more associative operators were selected and par-
titioned to a co-located GPU for acceleration. Interestingly,
we observed that when θ is small (0.1∼ 0.2), the latency of
θ = 0.2 could be even larger than θ = 0.1. This instability is
because, with a small partition ratio, the partitioned operators
were fragmented, and GPU’s performance gain could be amor-
tized by the frequent kernel switches between enclave and
GPU. When θ increases, the latency gain became more stable
because the partitioned operators became less fragmented,
thus fewer kernel switches would occur.

Comparing figure 6a with figure 6b, we observed that
SOTER achieved more stable performance on Transformer.
This is because, the number of operators in VGG19 is rela-
tively limited (only 41 associative operators with 18 linear
operators), while the Transformer has a rich set of operators
(360 associative operators with 311 linear operators). Hence,
the randomness of selecting associative operators with differ-
ent computation volumes was downgraded, leading to a more
stable performance. This implies that SOTER is more suitable
for big complex models with a rich set of operators.

6.3 Security analysis
As mentioned in §3.2, SOTER provides semantic security
guarantee for protecting model confidentiality: knowing only
ciphertexts of parameter-morphed operators, it is infeasible

732    2022 USENIX Annual Technical Conference USENIX Association



0.0 0.2 0.4 0.6 0.8 1.0
Selective Partition Ratio

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

eNNclave
AegisDNN

SOTER
MLCapsule

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Selective Partition Ratio

12
14
16
18
20
22
24
26
28

BL
EU

 sc
or

e

AegisDNN
SOTER

MLCapsule

(b)

Figure 7: The model stealing experiments of all baseline sys-
tems running (a) VGG19 and (b) Transformer. The red dotted
line marks the ground-truth accuracy/BLEU score of VGG19
and Transformer respectively.

for a computationally-bounded adversary to learn about op-
erators’ exact blinding coins hidden in enclave. It is notable
that increasing the number of partitioned morphed operators
(with a larger θ) does not degrade the confidentiality because
(1) SOTER generates coins for each operator independently
in enclave, and (2) an execution result of a morphed operator
is concealed to ensure that it reveals neither the coin of that
operator, nor the coins of all previous operators (§4.1).
Quantifying information leakage. To evaluate whether our
confidentiality analysis given above has a meaningful effect
in practice, we applied model stealing attacks [35, 47] on all
baseline systems to quantify how much information could
leak with that system. A model stealing attack feeds synthetic
data to a victim model to get an output, and trains a substitute
model (depicted as SubM) with these new samples to mimic
the inference behavior of the victim model.
• Setup. We targeted two popular models, VGG19 and Trans-
former, running on all baseline systems. We did not run Trans-
former on eNNclave because eNNclave does not support such
a case. We conducted the state-of-the-art Wang’s attack [67]
for model stealing. Concretely, for the training dataset, with
the bounded computational capability assumption [35], we
generated synthetic data which composes 10% of total train-
ing samples; for the backbone of the substitute model, we
adopted VGG13 as the architecture for VGG19 and the stan-
dard encoder/decoder architecture for Transformer. We initial-
ized all unknown parameters using a truncated normal distri-
bution with std of 0.02 and learning rate of 0.0001. By training
on one Nvidia 2080TI GPU, SubV GG converged within 150
epochs and SubT F converged within 13 epochs.
• Results. Figure 7 depicts the inference results of the trained
substitute model on all baselines. MLcapsule, which shields
the entire model within enclave (i.e., θ = 0), achieved the
minimum accuracy through the stealing attack. The accuracy
results of AegisDNN grew as θ increased, because AegisDNN
only runs partial model layers in enclave and exposes other
layers with plaintexts to the adversary. With more plaintext
revealed in AegisDNN, the accuracy of SubV GG and BLEU
of SubT F increased dramatically. SOTER, however, achieved
comparable results as eNNclave, which directly replaces par-
titioned operators’ parameters with insensitive public parame-

0 10 20 30 40
Distance

0.0
0.4
0.8
1.2

Pr
op

or
tio

n 
(%

) 1e−1
Random

(a) w oblivious fingerprint.

0 10 20 30 40
Distance

0
1
2
3

Pr
op

or
tio

n 
(%

) 1e−1
Fixed

(b) w/o oblivious fingerprint.

Figure 8: The l2 distance distribution of randomly sampled fin-
gerprints with or without oblivious fingerprinting technique.

ters. Notably, this implied that SOTER’s MTR protocol with
semantic security guarantee is effective to provide sufficient
model confidentiality.

6.4 Robustness to integrity breaches
In this subsection, we begin by investigating the obliviousness
of SOTER-generated fingerprints for obfuscating the adversary.
Then we evaluated SOTER’s robustness to integrity breaches
of partitioned operators outside enclave.

Figure 8 shows that, when running with SOTER’s oblivious
fingerprinting technique, the l2 distance between randomly
sampled fingerprints shares the same form of normal distribu-
tion as normal query input (Figure 8a). Hence the fingerprints
are oblivious to the adversary. Whereas, when running with
fixed fingerprints (Figure 8b), the distribution dramatically
changed, hence those fixed fingerprints are observable to the
adversary. We evaluated the robustness of SOTER under 10K
random perturbation attacks, which randomly perturbs the
parameters of partitioned operators. All attacks were success-
fully detected, and 99.9% attacks were detected with less than
ten fingerprints while we incurred zero false positives.

7 Discussion
Model leakage from black-box attacks. Modern black-box
attacks [4, 35, 47, 50] use inference APIs of an inference
service to learn private information of an offloaded model
or even the training dataset, by using the inference results of
perturbed input queries. These attacks widely exist in either
cloud-side or client-side inference systems [27, 36, 44, 56], as
inference systems inevitably open access to arbitrary queries.

Currently, there is no general defense against black-box at-
tacks other than query authentication and rate limiting [35,47].
But fortunately, defenses against specific attacks are emerg-
ing. For instance, Prada [35] uses query distance auditing to
mitigate model extraction attacks with adversarial examples;
Shokroi et al. [60] use differential privacy to train DNNs that
do not leak model owner’s sensitive training datasets.

The guarantees of SOTER, like all prior secure inference
systems targeting at protecting the model at the edge or the
cloud, are complementary to those provided by any defenses.
With sufficient engineering effort, these mitigations can be
integrated into SOTER to provide even stronger privacy guar-
antees, and we leave it to future work.
Computation overflow. Multiplying the model parameter
with SOTER’s blinding coin (§4.1) may, in rare cases, causes

USENIX Association 2022 USENIX Annual Technical Conference    733



potential computation overflows (we did not find any compu-
tation overflow in our experiments in §6). However, even if
an overflow occasionally happens, SOTER can immediately
detect such overflow by checking if the computed result is
INF or -INF [39]. Then, SOTER can simply re-morph the
overflowed GPU operator by replacing the blinding coin with
a smaller new coin, which can be prepared offline (§4.1).
Trusted GPU. Although there are some promising trusted
GPU research systems [3, 32, 46, 65] that can protect model
confidentiality and accelerate inference with the strong GPU
computing power, these systems are not publicly available
as they either require extensive hardware modifications [65]
or support only hardware simulators [3, 32, 46]. Thus, in this
paper, we consider only publicly available (untrusted) GPU
deployments.
Limitation. SOTER requires clients at the edge to be equipped
with TEE (e.g., Intel SGX) due to the lack of commonly
available trusted GPUs [3,65]. SGX has been pervasively used
in existing secure inference systems [27,56] and is commonly
available in modern Intel CPUs. While the inherited SGX
vulnerabilities of sophisticated side-channel attacks based on
timing or cache access patterns still exist [18, 59, 66], we
do not consider these attacks currently, and we believe these
attacks can be mitigated by integrating with state-of-the-art
defenses [18, 19, 55].

8 Conclusion
We present SOTER, the first secure inference system that en-
sures model confidentiality, low latency, high accuracy with
integrity protection for general DNN models. SOTER’s MTR
protocol carries out cooperative executions between the TEE
and GPU. Specifically, SOTER morphs a fraction of associa-
tive operators’ parameters to run on a GPU, SOTER conceals
the execution results on GPU and then restores the real execu-
tion results in TEE. SOTER efficiently generates fingerprints
to check the integrity of partitioned operators. Evaluation on
notable client-side secure inference systems and all preva-
lent types of DNN models shows that, compared to exist-
ing relevant baselines, SOTER achieved comparable strong
confidentiality as the TEE-shielding approach, comparable
low-latency as the partition-based approach, high accuracy
same as insecure inference, and overwhelming high probabil-
ity of detecting integrity breaches of any partitioned operators.
These features make SOTER unique in encouraging enormous
model providers to develop powerful models and deploy them
on third-party edge devices.

Acknowledgments
We thank the anonymous shepherd and all anonymous review-
ers for their helpful comments. This work is supported in part
by a Huawei Flagship Research Grant in 2021, a HKU-SCF
FinTech Academy R&D Funding Scheme in 2021, HK RGC
GRF (17202318, 17207117), HK ITF (GHP/169/20SZ), the
Pujiang Lab (Heming Cui is a courtesy researcher in this lab),

the HKU and IS-CAS Joint Lab for Intelligent System Soft-
ware, Hong Kong RGC Project No. PolyU15223918, the Sci-
ence, Technology and Innovation Commission of Shenzhen
Municipality under Grant No.SGDX20201103095408029,
and National Natural Science Foundation of China under
Grant No.62002151.

References
[1] Abien Fred Agarap. Deep learning using rectified linear

units (relu). arXiv preprint arXiv:1803.08375, 2018.

[2] Anshul Aggarwal, Trevor E Carlson, Reza Shokri, and
Shruti Tople. Soteria: In search of efficient neu-
ral networks for private inference. arXiv preprint
arXiv:2007.12934, 2020.

[3] Aref Asvadishirehjini, Murat Kantarcioglu, and Bradley
Malin. Goat: Gpu outsourcing of deep learning training
with asynchronous probabilistic integrity verification
inside trusted execution environment. arXiv preprint
arXiv:2010.08855, 2020.

[4] Buse Gul Atli, Sebastian Szyller, Mika Juuti, Samuel
Marchal, and N Asokan. Extraction of complex dnn
models: Real threat or boogeyman? In International
Workshop on Engineering Dependable and Secure Ma-
chine Learning Systems, pages 42–57. Springer, 2020.

[5] J Aumasson and L Merino. Sgx secure enclaves in
practice–security and crypto review. Black Hat, 2016.

[6] Gregory V Bard. The vulnerability of ssl to chosen
plaintext attack. IACR Cryptol. ePrint Arch., 2004:111,
2004.

[7] Mihir Bellare, Stefano Tessaro, and Alexander Vardy.
Semantic security for the wiretap channel. In Annual
Cryptology Conference, pages 294–311. Springer, 2012.

[8] Mariusz Bojarski, Davide Del Testa, Daniel
Dworakowski, Bernhard Firner, Beat Flepp, Pra-
soon Goyal, Lawrence D Jackel, Mathew Monfort, Urs
Muller, Jiakai Zhang, et al. End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316,
2016.

[9] Adith Boloor, Karthik Garimella, Xin He, Christopher
Gill, Yevgeniy Vorobeychik, and Xuan Zhang. Attack-
ing vision-based perception in end-to-end autonomous
driving models. Journal of Systems Architecture,
110:101766, 2020.

[10] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas:
Direct neural architecture search on target task and hard-
ware. arXiv preprint arXiv:1812.00332, 2018.

734    2022 USENIX Annual Technical Conference USENIX Association



[11] Xusheng Chen, Haoze Song, Jianyu Jiang, Chaoyi Ruan,
Cheng Li, Sen Wang, Gong Zhang, Reynold Cheng, and
Heming Cui. Achieving low tail-latency and high scal-
ability for serializable transactions in edge computing.
In Proceedings of the Sixteenth European Conference
on Computer Systems, pages 210–227, 2021.

[12] Xusheng Chen, Shixiong Zhao, Ji Qi, Jianyu Jiang,
Haoze Song, Cheng Wang, Tsz On Li, TH Hubert Chan,
Fengwei Zhang, Xiapu Luo, et al. Efficient and dos-
resistant consensus for permissioned blockchains. Per-
formance Evaluation, 153:102244, 2022.

[13] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He,
Nicholas Hynes, Noah Johnson, Ari Juels, Andrew
Miller, and Dawn Song. Ekiden: A platform for
confidentiality-preserving, trustworthy, and performant
smart contracts. In 2019 IEEE European Symposium on
Security and Privacy (EuroS&P), pages 185–200. IEEE,
2019.

[14] Victor Costan and Srinivas Devadas. Intel sgx explained.
IACR Cryptol. ePrint Arch., 2016(86):1–118, 2016.

[15] Piali Das, Nikita Ivkin, Tanya Bansal, Laurence Roues-
nel, Philip Gautier, Zohar Karnin, Leo Dirac, Lakshmi
Ramakrishnan, Andre Perunicic, Iaroslav Shcherbatyi,
et al. Amazon sagemaker autopilot: a white box automl
solution at scale. In Proceedings of the Fourth Interna-
tional Workshop on Data Management for End-to-End
Machine Learning, pages 1–7, 2020.

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee,
2009.

[17] Shuiguang Deng, Hailiang Zhao, Weijia Fang, Jianwei
Yin, Schahram Dustdar, and Albert Y Zomaya. Edge
intelligence: The confluence of edge computing and
artificial intelligence. IEEE Internet of Things Journal,
7(8):7457–7469, 2020.

[18] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza
Sadeghi. Hybcache: Hybrid side-channel-resilient
caches for trusted execution environments. In 29th
USENIX Security Symposium (USENIX Security 20),
pages 451–468, 2020.

[19] Anuj Dubey, Rosario Cammarota, Vikram Suresh, and
Aydin Aysu. Guarding machine learning hardware
against physical side-channel attacks. arXiv preprint
arXiv:2109.00187, 2021.

[20] S Durga, Esther Daniel, and S Deepakanmani. Dnn-
based decision support system for ecg abnormalities.

In 2nd EAI International Conference on Big Data In-
novation for Sustainable Cognitive Computing, pages
331–338. Springer, 2021.

[21] Tarek Elgamal and Klara Nahrstedt. Serdab: An iot
framework for partitioning neural networks computa-
tion across multiple enclaves. In 2020 20th IEEE/ACM
International Symposium on Cluster, Cloud and Internet
Computing (CCGRID), pages 519–528. IEEE, 2020.

[22] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.
Neural architecture search: A survey. The Journal of
Machine Learning Research, 20(1):1997–2017, 2019.

[23] David Fiala, Frank Mueller, Christian Engelmann, Rolf
Riesen, Kurt Ferreira, and Ron Brightwell. Detection
and correction of silent data corruption for large-scale
high-performance computing. In SC’12: Proceedings
of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pages
1–12. IEEE, 2012.

[24] Alessandro Giusti, Dan C Cireşan, Jonathan Masci,
Luca M Gambardella, and Jürgen Schmidhuber. Fast
image scanning with deep max-pooling convolutional
neural networks. In 2013 IEEE International Confer-
ence on Image Processing, pages 4034–4038. IEEE,
2013.

[25] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep learning. MIT press, 2016.

[26] Karan Grover, Shruti Tople, Shweta Shinde, Ranjita
Bhagwan, and Ramachandran Ramjee. Privado: Prac-
tical and secure dnn inference with enclaves. arXiv
preprint arXiv:1810.00602, 2018.

[27] Lucjan Hanzlik, Yang Zhang, Kathrin Grosse, Ahmed
Salem, Maximilian Augustin, Michael Backes, and
Mario Fritz. Mlcapsule: Guarded offline deployment
of machine learning as a service. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3300–3309, 2021.

[28] Hanieh Hashemi, Yongqin Wang, and Murali An-
navaram. Darknight: An accelerated framework for pri-
vacy and integrity preserving deep learning using trusted
hardware. In MICRO-54: 54th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, pages 212–
224, 2021.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[30] David A Hensher and William H Greene. The mixed
logit model: the state of practice. Transportation,
30(2):133–176, 2003.

USENIX Association 2022 USENIX Annual Technical Conference    735



[31] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian Q Weinberger. Densely connected convolutional
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4700–
4708, 2017.

[32] Insu Jang, Adrian Tang, Taehoon Kim, Simha Sethu-
madhavan, and Jaehyuk Huh. Heterogeneous isolated
execution for commodity gpus. In Proceedings of the
Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, pages 455–468, 2019.

[33] Jianyu Jiang, Xusheng Chen, TszOn Li, Cheng Wang,
Tianxiang Shen, Shixiong Zhao, Heming Cui, Cho-Li
Wang, and Fengwei Zhang. Uranus: Simple, efficient
sgx programming and its applications. In Proceedings
of the 15th ACM Asia Conference on Computer and
Communications Security, pages 826–840, 2020.

[34] Neil F Johnson and Sushil Jajodia. Exploring steganog-
raphy: Seeing the unseen. Computer, 31(2):26–34,
1998.

[35] Mika Juuti, Sebastian Szyller, Samuel Marchal, and
N Asokan. Prada: protecting against dnn model stealing
attacks. In 2019 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 512–527. IEEE, 2019.

[36] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha
Chandrakasan. Gazelle: A low latency framework for se-
cure neural network inference. In 27th USENIX Security
Symposium (USENIX Security 18), pages 1651–1669,
2018.

[37] Eike Kiltz, Adam O’Neill, and Adam Smith. Instantiabil-
ity of rsa-oaep under chosen-plaintext attack. In Annual
Cryptology Conference, pages 295–313. Springer, 2010.

[38] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural
networks. Advances in neural information processing
systems, 25:1097–1105, 2012.

[39] Ignacio Laguna. Fpchecker: Detecting floating-point
exceptions in gpu applications. In 2019 34th IEEE/ACM
International Conference on Automated Software Engi-
neering (ASE), pages 1126–1129. IEEE, 2019.

[40] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[41] Taegyeong Lee, Zhiqi Lin, Saumay Pushp, Caihua Li,
Yunxin Liu, Youngki Lee, Fengyuan Xu, Chenren Xu,
Lintao Zhang, and Junehwa Song. Occlumency: Privacy-
preserving remote deep-learning inference using sgx. In

The 25th Annual International Conference on Mobile
Computing and Networking, pages 1–17, 2019.

[42] Wei-Fen Lin, Der-Yu Tsai, Luba Tang, Cheng-Tao Hsieh,
Cheng-Yi Chou, Ping-Hao Chang, and Luis Hsu. Onnc:
A compilation framework connecting onnx to propri-
etary deep learning accelerators. In 2019 IEEE Interna-
tional Conference on Artificial Intelligence Circuits and
Systems (AICAS), pages 214–218. IEEE, 2019.

[43] Xiaolong Ma, Fu-Ming Guo, Wei Niu, Xue Lin, Jian
Tang, Kaisheng Ma, Bin Ren, and Yanzhi Wang. Pconv:
The missing but desirable sparsity in dnn weight pruning
for real-time execution on mobile devices. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 5117–5124, 2020.

[44] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srini-
vasan, Wenting Zheng, and Raluca Ada Popa. Delphi:
A cryptographic inference service for neural networks.
In 29th USENIX Security Symposium (USENIX Security
20), pages 2505–2522, 2020.

[45] Robert C Moore and Will Lewis. Intelligent selection
of language model training data. 2010.

[46] Lucien KL Ng, Sherman SM Chow, Anna PY Woo,
Donald PH Wong, and Yongjun Zhao. Goten: Gpu-
outsourcing trusted execution of neural network training.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 14876–14883, 2021.

[47] Tribhuvanesh Orekondy, Bernt Schiele, and Mario
Fritz. Prediction poisoning: Towards defenses
against dnn model stealing attacks. arXiv preprint
arXiv:1906.10908, 2019.

[48] Jeffrey Overbey, William Traves, and Jerzy Wojdylo. On
the keyspace of the hill cipher. Cryptologia, 29(1):59–
72, 2005.

[49] Daniele Palossi, Antonio Loquercio, Francesco Conti,
Eric Flamand, Davide Scaramuzza, and Luca Benini.
A 64-mw dnn-based visual navigation engine for au-
tonomous nano-drones. IEEE Internet of Things Jour-
nal, 6(5):8357–8371, 2019.

[50] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow,
Somesh Jha, Z Berkay Celik, and Ananthram Swami.
Practical black-box attacks against machine learning. In
Proceedings of the 2017 ACM on Asia conference on
computer and communications security, pages 506–519,
2017.

[51] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep
learning library. arXiv preprint arXiv:1912.01703, 2019.

736    2022 USENIX Annual Technical Conference USENIX Association



[52] Benny Pinkas and Tzachy Reinman. Oblivious ram
revisited. In Annual cryptology conference, pages 502–
519. Springer, 2010.

[53] Sandro Pinto and Nuno Santos. Demystifying arm trust-
zone: A comprehensive survey. ACM Computing Sur-
veys (CSUR), 51(6):1–36, 2019.

[54] Ji Qi, Xusheng Chen, Yunpeng Jiang, Jianyu Jiang,
Tianxiang Shen, Shixiong Zhao, Sen Wang, Gong Zhang,
Li Chen, Man Ho Au, et al. Bidl: A high-throughput,
low-latency permissioned blockchain framework for dat-
acenter networks. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, pages
18–34, 2021.

[55] Sajin Sasy, Sergey Gorbunov, and Christopher W
Fletcher. Zerotrace: Oblivious memory primitives from
intel sgx. In NDSS, 2018.

[56] Alexander Schlögl and Rainer Böhme. ennclave: Offline
inference with model confidentiality. In Proceedings of
the 13th ACM Workshop on Artificial Intelligence and
Security, pages 93–104, 2020.

[57] Jean Senellart, Dakun Zhang, Bo Wang, Guillaume
Klein, Jean-Pierre Ramatchandirin, Josep M Crego, and
Alexander M Rush. Opennmt system description for
wnmt 2018: 800 words/sec on a single-core cpu. In
Proceedings of the 2nd Workshop on Neural Machine
Translation and Generation, pages 122–128, 2018.

[58] AMD SEV-SNP. Strengthening vm isolation with in-
tegrity protection and more. White Paper, January, 2020.

[59] Tianxiang Shen, Jianyu Jiang, Yunpeng Jiang, Xusheng
Chen, Ji Qi, Shixiong Zhao, Fengwei Zhang, Xiapu Luo,
and Heming Cui. Daenet: Making strong anonymity
scale in a fully decentralized network. IEEE Transac-
tions on Dependable and Secure Computing, 2021.

[60] Reza Shokri and Vitaly Shmatikov. Privacy-preserving
deep learning. In Proceedings of the 22nd ACM SIGSAC
conference on computer and communications security,
pages 1310–1321, 2015.

[61] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[62] Florian Tramer and Dan Boneh. Slalom: Fast, verifi-
able and private execution of neural networks in trusted
hardware. arXiv preprint arXiv:1806.03287, 2018.

[63] Chia-Che Tsai, Donald E Porter, and Mona Vij.
Graphene-sgx: A practical library os for unmodified
applications on sgx. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17), pages 645–658, 2017.

[64] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Ad-
vances in neural information processing systems, pages
5998–6008, 2017.

[65] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno.
Graviton: Trusted execution environments on gpus. In
13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 681–696, 2018.

[66] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian
Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu
Tang, and Carl A Gunter. Leaky cauldron on the dark
land: Understanding memory side-channel hazards in
sgx. In Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages
2421–2434, 2017.

[67] Wenxuan Wang, Bangjie Yin, Taiping Yao, Li Zhang,
Yanwei Fu, Shouhong Ding, Jilin Li, Feiyue Huang, and
Xiangyang Xue. Delving into data: Effectively substi-
tute training for black-box attack. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4761–4770, June 2021.

[68] Yecheng Xiang, Yidi Wang, Hyunjong Choi, Mohsen
Karimi, and Hyoseung Kim. Aegisdnn: Dependable and
timely execution of dnn tasks with sgx. In 2021 IEEE
Real-Time Systems Symposium (RTSS), pages 68–81.
IEEE, 2021.

[69] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
Recurrent neural network regularization. arXiv preprint
arXiv:1409.2329, 2014.

[70] Chao Zhang and Philip C Woodland. Parameterised
sigmoid and relu hidden activation functions for dnn
acoustic modelling. In Sixteenth Annual Conference of
the International Speech Communication Association,
2015.

[71] Jiliang Zhang, Wuqiao Chen, and Yuqi Niu. Deepcheck:
A non-intrusive control-flow integrity checking based on
deep learning. arXiv preprint arXiv:1905.01858, 2019.

[72] Shixiong Zhao, Fanxin Li, Xusheng Chen, Xiuxian
Guan, Jianyu Jiang, Dong Huang, Yuhao Qing, Sen
Wang, Peng Wang, Gong Zhang, et al. v pipe: A virtu-
alized acceleration system for achieving efficient and
scalable pipeline parallel dnn training. IEEE Transac-
tions on Parallel and Distributed Systems, 33(3):489–
506, 2021.

USENIX Association 2022 USENIX Annual Technical Conference    737





IPLFS: Log-Structured File System without Garbage Collection

Juwon Kim Minsu Jang Muhammad Danish Tehseen Joontaek Oh Youjip Won
Department of Electrical Engineering, KAIST

Abstract
In this work, we develop the log-structured filesystem
that is free from garbage collection. There are two key
technical ingredients: IPLFS, a log-structured filesys-
tem for infinite partition, and Interval Mapping, a space-
efficient LBA-to-PBA mapping for infinite filesystem
partition. In IPLFS, we separate the filesystem partition
size from the physical storage size and set the size of the
logical partition large enough so that there is no lack
of free segments in the logical partition during SSD’s
lifespan. This allows the filesystem to write the updates
in append-only fashion without reclaiming the invalid
filesystem blocks. We revise the metadata structure of
the baseline filesystem, F2FS, so that it can efficiently
handle the storage partition with 264 sectors. We develop
Interval Mapping to minimize the memory requirement
for the LBA-to-PBA translation in FTL. Interval Map-
ping is a three level mapping tree. It maintains mapping
only for actively used filesystem region. With Interval
Mapping, the FTL can maintain the mapping for the 264

sector range with almost identical memory requirement
with the page mapping whose LBA range is limited by
the size of the storage capacity. We implement the IPLFS
on Linux kernel 5.11.0 and prototype the Interval Map-
ping in OpenSSD. By eliminating the filesystem level
garbage collection, IPLFS outperforms F2FS by up to
12.8× (FIO) and 3.73× (MySQL YCSB A), respectively.

1 Introduction
Log-structured filesystem [49] has become a popular

storage management system due to its unique append-
only nature. This append-only nature brings signifi-
cant performance advantage against the journaling-based
counterparts in practically all types of storage devices
including hard disk [49,50], flash storage [35], shingled
magnetic recording (SMR) drive [44] and even persistent
memory [55].

The append-only nature of the log-structured filesys-
tem brings another dimension of complexity to the filesys-
tem: the garbage collection. As the log-structured filesys-
tem ages, the filesystem runs out of free segments and
needs to reclaim the obsolete filesystem blocks to make

more free segments. The activity of reclaiming the invalid
blocks is called garbage collection. When the filesystem
performs the garbage collection in the foreground, it
freezes the entire filesystem till it completes [2]. The
garbage collection exposes the underlying log-structured
filesystem under excessive tail latency and lowers the
throughput of the filesystem. The garbage collection also
generates extra write traffics that increase flash wears.

A fair amount of works have been dedicated to mitigate
the overhead of garbage collection in the log-structured
filesystem. They include performing the garbage collec-
tion in the idle period [10,43,47], performing the garbage
collection in a preemptive way [37], selecting the right
victim segment to maximize the garbage collection effi-
ciency, e.g. greedy, cost-benefit, age, etc [27,41]. Some
works proposed to cluster the file blocks with a sim-
ilar lifespan together to improve the efficiency of the
garbage collection [31, 35, 48]. The overhead of device-
level garbage collection is also of serious concern. A large
body of works are dedicated to mitigate the overhead of
the device-level garbage collection [12,36, 61]. When the
log-structured filesystem is used with flash storage, the
overhead of garbage collection may compound due to the
garbage collection activities at the filesystem as well as
at the device [58]. A number of works proposed to enable
the host filesystem to directly manage the flash pages
in the storage and eliminate the device-level garbage
collection [39, 59, 60]. Recently proposed ZNS (zoned
name space) treats the storage device as append-only
log so that address mapping and device-level garbage
collection become much simpler [5, 20]. Despite all these
efforts, the root cause of garbage collection still remains
neglected; the filesystem needs to reclaim the invalid
filesystem blocks to make the free segments.

For several decades, the operating systems have been
separating the logical entity from the associated physical
entity for various types of physical resources. The typical
examples include virtualizing the CPU [13], virtualizing
the memory [15] or virtualizing the entire computer sys-
tem [11,17]. Unlike the other physical resources, modern
operating system still tightly couples the logical stor-
age partition from the physical storage and the size of
the logical partition is bounded by the capacity of the

USENIX Association 2022 USENIX Annual Technical Conference    739



physical storage.
In this work, we design the log-structured filesystem

without garbage collection. We separate the logical par-
tition from the physical storage and allow the filesystem
to define very large logical partition independent of the
capacity of the physical storage. We make the size of
the logical partition large enough so that the filesystem
never runs out of free segments during the lifespan of
the flash storage. With very large logical partition, the
filesystem does not have to reclaim the invalid filesystem
blocks and therefore can eliminate the critical drawbacks
of the log-structured filesystem, the garbage collection.
In the absence of the garbage collection, we can greatly
simplify the log-structured filesystem design.

Our work consists of two key ingredients. First is Log-
structured filesystem for Infinite Partition, IPLFS. The
second is the space-efficient LBA-to-PBA mapping, In-
terval Mapping. For IPLFS, we use F2FS as the baseline
filesystem. Modern IO subsystem uses 64 bit unsigned
long to represent the sector number. IPLFS allows that
the logical storage partition for the log-structured filesys-
tem can grow as large as 264 sectors. When the filesys-
tem writes the disk block in an append-only manner, the
lifespan of flash storage is going to expire long before
it reaches the end of the filesystem partition. IPLFS
ensures that the number of valid blocks does not exceed
the physical storage partition. IPLFS eliminates the al-
location bitmap and the reverse mapping information
from the log-structured filesystem. We develop Discard
Bitmap and Discard Logging to discard the invalid filesys-
tem blocks. To support prohibitively large LBA space,
we develop a space efficient LBA-to-PBA mapping, In-
terval Mapping FTL. Interval Mapping maintains the
LBA-to-PBA mapping information only for the actively
used filesystem regions. The contribution of our work
can be summarized as follows.

• We successfully eliminate the key complication,
garbage collection, from the log-structured filesys-
tem. We analyze the metadata structures of the log-
structured filesystem and redesign the log-structured
filesystem to handle very large filesystem partition.

• In the absence of garbage collection, we greatly simplify
the log-structured filesystem design. We eliminate the
block allocation bitmap and reverse mapping from the
log-structured filesystem. We develop space-efficient
and crash-safe data structures to represent the invali-
dated filesystem blocks that need to be discarded at
the storage, Discard Bitmap and Discard Log.

• We develop space efficient mapping scheme, Interval
Mapping. With tree-based structure, Interval Map-
ping maintains the mapping only for the actively used
filesystem region and can handle the LBA-to-PBA
mapping for 8 ZByte logical storage partition.

• We develop fixed-region mapping and map node com-
paction to reduce the size of the mapping tree. With
map node compaction, the fixed-region mapping peri-
odically reorganizes the structure of the map node in
the Interval Mapping tree to exclude the invalidated
filesystem blocks from the map node.

Via eliminating the garbage collection overhead from
the log-structured filesystem, IPLFS increases the bench-
mark performance by up to 12.8× (FIO) and 3.7×
(MySQL YCSB-A) against F2FS, respectively. With
fixed-region mapping, the memory overhead of Inter-
val Mapping is limited by the size of the physical storage,
not by the logical partition size. The memory overhead
of Interval Mapping is similar to that of page mapping.

2 Background
2.1 Flash Translation Layer

Flash Translation Layer is mainly responsible for three
tasks: LBA-to-PBA mapping, the garbage collection, and
the wear-leveling. All these three features are for hiding
the physical characteristics of the flash storage media: in-
ability to overwrite, asymmetry between the read latency
and write latency and limited erase/write cycles. FTL
maintains a table that holds the physical locations of
the individual logical blocks in the storage device. This
data structure is called mapping table. The size of the
mapping table is proportional to the number of LBA’s
which it needs to map and again it is linearly propor-
tional to the capacity of the storage device visible to the
host. Page mapping maintains mapping information in
page granularity [7]. While it exhibits superior random
write performance [34], it suffers from excessive memory
pressure for the mapping table. Block mapping main-
tains a mapping in the granularity of the flash block,
e.g. 2 MByte. It reduces the memory pressure for the
mapping table but it leaves the SSD under block thrash-
ing [28,34,38]. Hybrid mapping applies block mapping
for data blocks and page mapping for log blocks to reduce
the mapping table size and to avoid block thrashing in
the block mapping [18,28,29,42,45].
DISCARD (or TRIM) command [52] informs the SSD

that a given set of blocks in the storage are no longer
needed by the filesystem. It is proposed to prohibit the
garbage collection module of FTL from blindly migrating
the flash pages whose contents are invalid [25].

2.2 Lifespan of the Flash Storage
Flash storage can be erased and programmed only a

limited number of times [23]. Table 1 illustrates the TBW
(TeraBytes Written) of flash storage products released
between 2019 to 2020. TBW is the amount of data that

740    2022 USENIX Annual Technical Conference USENIX Association



Manufacturer Model Release TBW

Adata XPG Gammix S50 2019 3,600
Samsung 970 EVO Plus 2019 1,200
Patriot Viper VPR100 2019 3,115
Sabrent Rocket Q 2019 1,800
Samsung S980 PRO 2020 600
Samsung 870 QVO 2020 2,880
T-Force Cardea Zero Z340 2020 1,665

WD Black SN850 2020 1,200
SK hynix Gold P31 2020 750

Table 1: TBW(terabytes written) of the SSD products

Dataset Write volume
(GB/day)

Time to exhaust
address space (M year)

YCSB SSD [56] 1,159 20
Systor [51] 57 422

Nexus 5 [21] 13 1,853

Table 2: Daily write volume and estimated SSD lifespan,
traces are from SNIA open dataset [4]

can be written to the SSD over the lifespan of the drive.
In Table 1, the largest TBW corresponds to 3.6 PByte.

The actual amount of data that is written to the
storage device is much smaller than what the storage
device can sustain. We compute the per-day write volume
from the real IO traces [4](Table 2). They correspond to
IO traces in the Key-value storage [56], SYSTOR [51],
and smartphone [21]. Key-value storage engine generates
the largest amount of write among the three traces; it
writes 1.13 TByte per day to the storage.

The modern OS uses 64 bit, unsigned long type,
variable to represent the sector number (LBA). With
unsigned long type variable, the host can create the
logical partition of 264 sectors. The size of the logical
partition corresponds to 8 ZByte. With 8 ZByte logi-
cal storage partition, the log-structured filesystem can
keep appending the updated blocks at the end of the
active filesystem region without reclaiming the invalid
filesystem blocks. The lifespan of the underlying SSD
will expire long before the filesystem reaches the end of
the logical partition of 8 ZByte. For YCSB-A workload
in Table 2, it will take 20 million years to exhaust the 8
ZByte filesystem partition.

2.3 F2FS, a log-structured file system
F2FS is the log-structured filesystem specifically devel-

oped for the flash storage. Despite the promising charac-
teristics, the preceding log-structured filesystems [49,50]
have failed to be widely deployed in the commodity
hardware with the prime cause for the failure being the
overhead of reclaiming the invalid blocks. F2FS is the
first log-structured filesystem that has gained the pub-
licity successfully. It is the default filesystem for wide
variety of Android devices ranging from smartphone to

automotive [1].
F2FS divides the filesystem partition into two areas:

metadata area and data area. F2FS updates the contents
in the metadata area in an in-place manner and writes
the data area in an append-only manner. The meta-
data area contains the filesystem metadata such as a
superblock, a checkpoint pack, a block allocation bitmap
for each segment (a segment information table, SIT),
and reverse mapping information (the file id and the file
offset) for each segment (segment summary area, SSA).
To avoid the wandering tree problem of the out-of-place
update associated with the log-structured filesystem [8],
F2FS clusters the file index blocks for all files in the
filesystem together in the metadata area (a node address
table, NAT) and updates it in an in-place manner. F2FS
organizes the data area as a set of zones. A zone consists
of a set of sections and a section consists of a set of
segments. The segment is the unit of disk write and the
section is the unit of garbage collection. In most (if not
all) deployment of F2FS, a zone and a section consist of
a single segment.

F2FS defines two block types (node and data) and
three hotness levels (hot, warm, and cold) to represent
the update frequency of a filesystem block. The node
block corresponds to the inode or the index block of
the file. There are total six combinations of block type
and hotness level pair. F2FS maintains the six active
segments in memory for each combination. F2FS places
the blocks of the same type and temperature at the same
active segment. When the active segment is full, it is
flushed to the storage device. F2FS clusters the filesystem
blocks with the same type and hotness level together at
the flash storage. This is to reduce write-amplification
caused by the device level garbage collection.

F2FS reclaims the invalid filesystem blocks either when
the filesystem is idle (background garbage collection) or
when there runs out of free segments (foreground garbage
collection). In background and foreground garbage col-
lection, F2FS uses cost-benefit policy [41] and greedy
policy [27], respectively, in selecting the victim section.

For crash recovery, F2FS reads the most recent check-
point pack from the disk and recovers the filesystem
state with respect to the time of the most recent check-
point. Then, F2FS scans the node area of the filesystem,
and identifies the files that have been made durable via
fsync() after the most recent checkpoint. For each such
file, F2FS compares the node block at the time of check-
point and the node block synchronized to the disk via
fsync() and identifies the newly allocated blocks and
the invalidated blocks in the file. For the newly allo-
cated blocks, F2FS updates the associated filemap. For
invalidated blocks, F2FS invalidates the block allocation
bitmap in the segment information table in memory. Af-
ter reconstructing the allocation bitmap, the recovery

USENIX Association 2022 USENIX Annual Technical Conference    741



LBAs in use

Unallocated

w

0 Time

Time

discardedInvalidated

Figure 1: Active Region w in the logical partition

module creates the discard commands for the invalidated
blocks.

When a filesystem operation invalidates one or more
blocks, e.g. truncate(), or unlink(), F2FS updates
the associated bitmap in the segment information table.
F2FS checkpoints the filesystem state either periodically
or when the garbage collection is triggered. In check-
point, F2FS constructs the discard commands for the
invalidated filesystem blocks. When the checkpoint fin-
ishes, F2FS wakes up the discard thread. The discard
thread dispatches the discard commands in a regular
interval (default = 50 msec). It limits the number of
dispatch commands that are sent at a time (default =
8). It dispatches the discard command only when the
system is idle.

3 Design Overview
3.1 Design Philosophy

The fundamental design philosophy behind IPLFS is
the separation of the logical storage partition from the
physical storage. The log-structured filesystem [49] offers
natural ground to separate the logical partition from the
physical partition due to its level of indirection inherent
in the out-place update filesystem. In the legacy in-place
update filesystems, a file block is bound to the fixed
location in the physical storage when the file block is
allocated. It is non-trivial to separate the logical partition
size from the physical partition size [24]. On the other
hand, the log-structured filesystem dynamically updates
the file mapping information to keep track of the location
of the most recent version of the file block.

The existing log-structured filesystem [32, 35] limits
the size of the logical partition to the size of the associ-
ated storage device and reclaims the invalid filesystem
blocks when it runs out of free blocks in the logical parti-
tion. In this work, we set the size of the logical partition
large enough so that there is no lack of free LBAs during
SSD’s lifespan. Fig. 1 visualizes the usage pattern of the
log-structured filesystem in the very large logical parti-
tion. X and Y axes denote time and LBA, respectively.
As the filesystem ages, file blocks get invalidated. The
window of actively used filesystem region, w, moves to-
wards the higher end of its filesystem partition. Actively

Host

Device

IPLFS

: In-place update : Append-only log

Interval 

Mapping

Tree

Meta

Data

Hot

Data

Cold

Data

Warm

Data

Hot

Node

Warm

Node

Cold

Node

FTL

Hot

Data

Cold

Data

Hot

Node

Warm

Node

Cold

Node

Warm

Data

Meta

Data

61 bit LBA space

Flash Memory

Figure 2: Concept: Log-structured filesystem for Infinite
Partition, IPLFS, and Interval Mapping

used filesystem region starts at the lowest valid LBA and
ends at the highest valid (allocated) LBA. Within the
actively used filesystem region, w, some blocks are invalid
and discarded at the storage device. When the size of the
logical partition is very large, only a small fraction of the
logical partition, w, is being accessed by the filesystem.
The storage controller needs to maintain LBA-to-PBA
mapping only for the actively used filesystem region, w.

3.2 Organization
Fig. 2 illustrates the main components of our system.

Eliminating the garbage collection in the log-structured
filesystem is achieved by two ingredients: Log-structured
filesystem for Infinite Partition, IPLFS and FTL for
very large logical partition, Interval Mapping. The first
component is IPLFS. IPLFS uses F2FS as a baseline
filesystem. The in-memory and on-disk structures of
F2FS are carefully trimmed and modified so that it can
handle the logical partition of 261 blocks and that it can
dispense with filesystem level garbage collection.

The second component is a space-efficient FTL, In-
terval Mapping. In most existing LBA-to-PBA mapping
techniques, the number of entries in the mapping table
corresponds to the number of blocks in the logical storage
partition. These techniques become practically infeasible
due to its prohibitive mapping table size when it needs
to map 261 blocks. Interval Mapping maintains an LBA-
to-PBA mapping only for the actively used region in the
logical storage partition. Interval Mapping is multi-level
tree based mapping. By using the multi-level mapping,
Interval Mapping tries to avoid allocating the mapping
table entries for the invalid filesystem blocks.

4 IPLFS
IPLFS never recycles the blocks in the filesystem par-

tition. This very nature enables IPLFS to dispense with
garbage collection at the filesystem layer and yet can

742    2022 USENIX Annual Technical Conference USENIX Association



Node Address Table

(NAT)

Super

Block

(SB)

Checkpoint 

(CP)

Segment
Sec!on

…

…

Logging . . .

-
� �LBA space

LBA space

Hot

Data

Warm

Data

Cold

Data

Hot

Node

Warm

Node

Cold

Node

Meta

Data

Figure 3: Multi-area Partition of IPLFS

maintain its append-only update nature. IPLFS consists
of three key design ingredients: (i) multi-area partition
layout, (ii) garbage collection-less metadata design, and
(iii) discard map and discard logging.

4.1 Multi-area Partition Layout
We partition the entire filesystem partition of IPLFS

into seven areas of the same size (Fig. 3). One area (the
first one) is used for hosting the metadata of IPLFS.
It holds the filesystem metadata information such as
superblock and the node address table. Existing log-
structured filesystems treat the filesystem partition as
a single log [49,50] or two logs [35]. IPLFS has six logs
each of which accommodates the filesystem blocks of the
same type and hotness level. Via clustering the filesystem
blocks with similar update frequency together, IPLFS
maintains the size of the actively used filesystem region
small. We use MSB 3 bits of the LBA address as the area
identifier. The size of each area is 258 blocks, 1 ZByte.

4.2 Metadata Design
We carefully design the metadata structure of IPLFS

so that it can handle the very large filesystem parti-
tion. Particular care has been taken to minimize any
changes in the on-disk layout of its baseline filesystem,
F2FS. Log-structured filesystem provides two essential
metadata: reverse mapping and block allocation bitmap.
These data structures have two main usages: the filesys-
tem level garbage collection and the block discard. These
two data structures are no longer used for the filesystem-
level garbage collection because IPLFS does not per-
form garbage collection. IPLFS cannot use the reverse
mapping and block allocation bitmap for block discard
purpose, either, due to the prohibitively large logical
partition. The size of the block allocation bitmap and
the size of the reverse mapping information are linearly
proportional to the size of the filesystem partition. Given
the filesystem partition of 264 sectors, 8 ZByte, the size
of the block allocation bitmap and the reverse mapping
corresponds to 512 PByte and 8 EByte, respectively.
IPLFS cannot afford the storage space for block alloca-
tion bitmap and reverse mapping.

...

...

S

0

M-1

01

Hash Table

Section: N Segments

0 100 0

S: Start block number of Section

Dirty flags

...

Seg 0

... 01 0

Seg 1

... 00 1

Seg N-1

... 0

Section bitmap

...

Figure 4: Discard Bitmap

IPLFS retains the node address table (NAT) in F2FS
as is. The number of entries of the node address table
corresponds to the maximum number of inodes in the
filesystem partition. The number of inodes in the filesys-
tem is limited by the capacity of the physical storage,
not by the size of the logical filesystem partition. The
size of node address table does not increase even though
the size of the logical partition is very large.

In IPLFS, we remove the block allocation bitmap
(Segment Information Table) and reverse mapping in-
formation (Segment Summary Area) from its baseline
filesystem, F2FS and develop a new metadata structure
for discarding the filesystem blocks, Discard Bitmap and
Discard Log.

4.3 Discarding the Invalid Blocks
The log-structured filesystem maintains the block al-

location bitmap for two reasons: to represent the space
utilization of the individual segments and to keep track
of the newly invalidated filesystem blocks. Former is for
the filesystem-level garbage collection purpose and the
latter is for discarding the filesystem blocks. In IPLFS,
the former reason for maintaining the allocation bitmap
disappears but the latter reason remains outstanding.

Eliminating the block allocation bitmap, we develop
a new data structure, discard bitmap, that represents
the newly invalidated filesystem blocks since the last
checkpoint. IPLFS maintains the discard bitmap in per-
section basis. In IPLFS, a section consists of more than
one segments. A discard bitmap consists of two com-
ponents: the start LBA of the section and the bitmap
itself. When the filesystem invalidates the block, it sets
the associated discard bit at the discard bitmap. IPLFS
organizes a set of the discard bitmaps using the hash
table. Fig. 4 illustrates the structure of the set of discard
bitmaps. M and N correspond to the number of hash
buckets in the hash table and the number of segments
in a section. The hash table uses the section number as
a hash key.

When a filesystem block is invalidated, IPLFS searches
the hash table for the associated discard bitmap. If the
discard bitmap is found, IPLFS updates the discard

USENIX Association 2022 USENIX Annual Technical Conference    743



bitmap with the newly invalidated block. If the associ-
ated discard bitmap does not exist, IPLFS allocates the
discard bitmap for the section which the newly invalid
block belongs to, and sets the associated bit of the block
that needs to be invalidated. Then, IPLFS inserts the
newly created discard bitmap at the hash table.

There is a trade-off between the section size and the
filesystem performance. With a larger section size, the
hash table for the discard bitmaps becomes larger. With
a smaller section size, there exists more discard bitmaps
in the hash table and the latency for searching the hash
table becomes longer. Through experiment, we find that
the section size of 1 GByte renders the reasonable balance
between the filesystem performance and the memory
pressure. In the later part of this paper, the section size
is set as 1 GByte, i.e. 512 segments.

In each checkpoint, IPLFS scans the hash table and
constructs the discard commands for each discard bitmap.
After constructing the discard commands, it removes the
discard bitmap from the hash table. IPLFS issues the
discard commands periodically, e.g. in 50 msec inter-
val. As in F2FS, IPLFS allocates a separate thread for
dispatching the discard commands. IPLFS issues the dis-
card commands in a more aggressive fashion than F2FS
does. IPLFS dispatches the discard commands no mat-
ter whether there is a pending I/O or not. In F2FS, the
dispatch thread issues the discard commands only when
there is no pending I/O. In IPLFS, the dispatch thread
issues up to sixteen discard commands each time when
it wakes up. F2FS takes particular care to prohibit the
discard command from interfering with the foreground
IO requests [3]. We find in our platform (OpenSSD),
the aggressive discard policy renders better benchmark
performance since it makes the SSD garbage collection
more efficient and reduces the write amplification.

4.4 Discard Logging
In the absence of the block allocation bitmap, IPLFS

is subject to the Storage Leak. Storage Leak denotes the
situation where the flash page contains invalid filesystem
block and the filesystem never reclaims the associated
flash page. Assume that the system crashes while there
are outstanding discard commands. As a result of the
system crash, the outstanding discard commands are
lost. In F2FS, the recovery routine creates the discard
commands based upon the recovered allocation bitmap.

Discard Log AreaHeader Footer

Discard logStart LBA

Checkpoint Pack

. . .. . .. . .

Size

Figure 5: Checkpoint Pack with Discard Logs

checkpoint

SA SB SC

Roll-forward Recovery

b

c

a a

b’

at checkpoint at SB

b

c

(fsync for file B)

log

Crash

file B file B

Figure 6: Roll-forward Recovery in IPLFS

Unlike F2FS, IPLFS does not have allocation bitmap
and cannot reconstruct the discard commands that are
lost due to crash. The flash pages associated with the
lost discard commands will remain valid permanently
even though they will no longer be used.

To save IPLFS from Storage Leak, we develop a mech-
anism called Discard Logging. In Discard Logging, IPLFS
checkpoints the information associated with the discard
commands prior to issuing the discard commands to the
storage. With discard logging, IPLFS guarantees that
discard command is made durable at the storage before
it is issued to the storage. With Discard logging, IPLFS
can recover the outstanding discard commands when the
system crashes unexpectedly.

IPLFS allocates a certain region, Discard Log Area at
the checkpoint pack (Fig. 5). At each checkpoint, IPLFS
scans the discard bitmap and creates the discard com-
mands. After it finishes creating the discard commands,
IPLFS logs the information associated with the discard
commands, [startLBA, Length], at the discard log area of
the in-memory checkpoint pack. After it finishes prepar-
ing the checkpoint pack, it synchronizes the checkpoint
pack to the disk. After the checkpoint, IPLFS wakes up
the discard thread for issuing the discard commands.

When the system crashes, IPLFS recovers the discard
commands in two phases. In roll-backward recovery, the
recovery module reads the most recent checkpoint pack
and reconstructs the discard commands with respect to
the discard logs. In roll-forward recovery, IPLFS identifies
the fsynced files after the most recent checkpoint. IPLFS
compares the node block that is found at the roll-forward
recovery phase and the node block at the time of the
checkpoint. IPLFS then identifies the changes in the
block allocation and updates the filemap with respect
to the newly allocated node blocks. Based upon the
difference on the block allocation, IPLFS identifies the
invalidated filesystem blocks and constructs the discard
commands for the invalidated blocks. Fig. 6 illustrates
how IPLFS reconstructs the discard commands. At the
time of the checkpoint, the node block of file B consists
of three file blocks, a, b and c. After the checkpoint, the
file block b is updated to b’ and file block c is truncated
in file B. Then, file B is synchronized to disk through

744    2022 USENIX Annual Technical Conference USENIX Association



Time

LBA

Figure 7: active region of the filesystem, Ij : active region
at time tj

fsync(). After fsync(), node block of file B refers to
two blocks, a and b’. Block b’ is newly allocated and block
b and block c are invalidated. In roll-forward recovery,
IPLFS updates the filemap of file B to refer to a and b’
and creates the discard command for discarding b and c.

5 Interval Mapping

5.1 Design
We develop a space-efficient LBA-to-PBA mapping,

called Interval Mapping. It is similar to interval tree
[16] in that each leaf node has an interval of LBA’s
associated with it. Unlike interval tree, the height of
the interval mapping tree is fixed to three. Limiting the
height of the tree, the interval mapping increases the
fan-out degree of the root node to accommodate the
new leaf nodes. In designing the LBA-to-PBA mapping,
we exploit the fact that in IPLFS, the actively used
filesystem region moves towards the higher end of the
logical storage partition as the filesystem ages. Fig. 7
illustrates how the active region moves with time. At
t1, the active region corresponds to I1. At t2, the active
region corresponds to I2.

In IPLFS, there are 261 blocks in the logical storage
partition. With 16 KByte flash page size, the page map-
ping table size for this storage partition corresponds to
4EByte. None of the existing mapping techniques such as
block mapping [18], hybrid mapping [29,34,38,40,46], or
superblock-based mapping [26] can reduce the mapping
table size for LBA space of 261 blocks to a manageable
one. Interval Mapping addresses the prohibitive map-
ping table size requirement in IPLFS. Flash storage for
IPLFS uses the page mapping for the metadata area
and Interval Mapping for each of six data areas. Storage
controller identifies the interval mapping tree for the
incoming LBA using the most significant three bits of
LBA.

Interval Mapping is organized as three level
tree (Fig. 8). We limit the height of the mapping tree
to three to reduce the number of memory accesses as-
sociated with the address translation. Interval Mapping
organizes a storage area as an array of zones. The zone is
an array of mapping segments. The size of the zone and
the size of mapping segment correspond to 16 GByte
and 16 MByte, respectively.

Active Interval

[Mapping Interval, Active Interval]

Mapping Interval

Mapping segments (1024)

[Start LBA, Region size]

Region Mapping 1

16MB

UnusedActive Invalid

RnR2 R3

[Start LBA]

Root node

Zone node

Map node

region

Figure 8: Structure of Interval Mapping Tree

A root node has a number of zone nodes as children.
The sub-tree rooted at each zone node maintains a map-
ping for a single zone. When the interval tree is first
created, the fan-out degree of the root node is set to 32.
We increase the root node size to accommodate more
child nodes when it is necessary. The maximum size of
the root node is currently set to 1 MByte. With 1 MByte
root node, the root node can have 218 child nodes and
can map up to 4 PByte of logical storage partition. It
can be increased if the root node needs to map larger
LBA region.

A single Zone node has 1024 Map Nodes as its child
nodes. A map node maintains the LBA-to-PBA mapping
for a single mapping segment. In map node, we avoid
using plain table based mapping structure. Instead, for
the compact mapping organization of the map node, we
develop a new technique, fixed-region mapping, for the
LBA-to-PBA mapping.

5.2 Mapping Interval and Active Inter-
val

Interval Mapping defines two important concepts as-
sociated with mapping: the Mapping Interval and the
Active Interval. Mapping Interval is a region of the log-
ical partition that the interval mapping tree needs to
map. Mapping interval is represented by the start LBA
of the first zone and the start LBA of the last zone in
the mapping interval, respectively. When the storage
partition is created, Interval mapping creates six interval
mapping trees for individual data areas of the IPLFS
filesystem partition. Mapping interval is initialized when
the mapping tree is first created. The start LBA of each
mapping interval corresponds to the first LBA of asso-
ciated filesystem area. Initially, each mapping interval
consists of thirty-two zones, 512 GByte.

Active Interval is a window of actively used zones
within the associated mapping interval. Active interval

USENIX Association 2022 USENIX Annual Technical Conference    745



Active interval 

Mapping interval 

>

=

= 2

Figure 9: Updating the Mapping Interval

is similar to the active region in Fig. 7. The active inter-
val starts at the first valid zone of the mapping interval
and ends at the last valid zone of the associated mapping
interval. If all filesystem blocks in a zone become invalid,
the zone becomes invalid. The start of the active interval
is updated to the following valid zone in the active in-
terval when the first zone of the active interval becomes
invalid. The end of the active interval is extended to the
newly allocated zone if the new zone is appended to the
active interval to accommodate more blocks.

As the filesystem ages, active interval moves towards
the higher end of the logical partition. When the end
of active interval nearly reaches the end of the mapping
interval and there is little room to grow, Interval Mapping
creates the new root node with the new mapping interval
which can better accommodate the current active interval.
The details of updating the mapping interval are as
follows. First, we compute the mapping interval for the
newly created root node. If the length of the current
active interval is less than 1024 zones, the length of the
new mapping interval is set as twice the length of the
current active interval. Otherwise, it is initialized as the
length of the current active interval plus sixteen zones.
Second, we allocate the new root node with updated
mapping interval. Third, we copy the child pointers of
the old root node to the new root node.

The start of the mapping interval of the newly created
root node is initialized to the start of the current active
interval. The active interval of the new root node inherits
the current active interval. Fig. 9 illustrates an example
of creating the new root node with updated mapping
interval. σ is the minimum number of free zones which
the interval tree needs to maintain. If the number of
free zones in the mapping interval becomes less than σ,
Interval Mapping updates the mapping interval creating
the new root node. For an interval mapping tree, the
mapping interval can be updated multiple times. When
the mapping interval is updated, IPLFS allocates the
new root node each time. Let i be the number of times
when the mapping interval is updated for the associated
mapping tree. zi

m and zi
a denote the number of zones

in the mapping interval and the number of zones at
the active interval of the ith version of the root node,
respectively. The new mapping interval starts at the
same zone as the start of the current active interval. The
length of the new mapping interval is twice the length
of the current active interval, zi+1

m = 2zi
a. The length of

the new active interval is the same as the length of the

current active interval, zi+1
a = zi

a.
FTL creates the new root node and updates the map-

ping interval in non-blocking way so that it can minimize
the interference with the foreground IO request for ad-
dress translation or for allocating the new zone. When
a new zone node needs to be inserted at the root node
while the new root node is being created, the newly
created zone node is appended at the new root node
and the active interval of the new root node is updated
accordingly. For address translation, FTL uses the old
root node if the incoming LBA belongs to the active
interval of the old root node. Otherwise, it uses the new
root node for address translation.

5.3 Fixed-Region Mapping
A Map Node maintains the mapping for single map-

ping segment, 16 MByte by default. The total size of the
map nodes accounts for 99.9% of the entire mapping tree.
It is critical that map node data structure is carefully
designed to minimize the memory requirement as well
as the mapping latency in Interval Mapping. To address
the two objectives, we develop a new mapping technique
called fixed-region mapping. Fixed-region mapping parti-
tions a mapping segment into the same size regions with
a given region size. Map node maintains the LBA-to-
PBA mapping in per-region basis. Fixed-region mapping
allocates the mapping table only for the valid regions,
i.e. the region that has one or more valid blocks. Map
node maintains a region directory which has the location
of the per-region mapping tables. If the region is invalid,
the associated entry in the region directory is NULL. To
reduce the size of mapping table, each mapping table
specifies the start LBA of the active region and excludes
the mapping for invalid blocks at the beginning of the
associated region.

The region size plays a key role in the mapping effi-
ciency of the map node. Mapping efficiency is the ratio
of the number of the valid mapping entries against the
total number of mapping entries. As the region size gets
smaller, the mapping segment is partitioned into smaller
regions and the number of invalid regions is likely to in-
crease. As the region size becomes smaller, the mapping
efficiency improves but the region directory becomes
larger. As the region size becomes larger, the mapping
segment consists of smaller number of regions. With
larger size region, the region directory becomes smaller
but the mapping efficiency becomes worse. We need to
find the right region size that can maximize the map-
ping efficiency and minimizes the map node size. Interval
Mapping sets the region size as the size of the smallest
hole in the mapping segment. To avoid that the region
size becomes too small, we set the minimum region size,
256 KByte. When the region size corresponds to the size
of the smallest hole, it is guaranteed that there can be

746    2022 USENIX Annual Technical Conference USENIX Association



0xE0x0

0 1 2 3 4 5

Region Directory

Region (size 6)

0 1 2 4

Invalid

Valid
Region 

Mapping

3 5

Hole (size 10) Hole (size 6)

0x1A

0x0E 0x1A

LBA region

Map Node

LBA 0x0

Figure 10: Mapping Segment and Map Node

only one active region in the associated region. Active
region is a consecutive array of valid blocks in a region.

A map node consists of the three components: the
range of the mapping segment, the region directory, and
the array of mappings for individual regions. The num-
ber of entries in the region directory corresponds to the
number of regions of the map node. The mapping infor-
mation for each region consists of the start address of
the active region and associated LBA-to-PBA mapping.
Fig. 10 illustrates the mapping segment and the organi-
zation of the associated map node. There are 32 blocks
in the mapping segment. There are two holes with 10
blocks and 6 blocks, respectively. The region size of this
map node is set to 6. Map node partitions the mapping
segment into six regions. In Region 0, there are four valid
blocks. Region 1 does not have any valid blocks. The
directory entry for region 1 is NULL since it does not
have any valid blocks. There are three active regions in
the mapping segment. The second active region spans
across region 2 and region 3. The map node allocates a
single region map for the active region that spans region
2 and region 3.

Interval Mapping periodically reorganizes the map
node. We call it map node compaction. It updates the
region size for the mapping segment and reconstructs the
per-region mapping tables with respect to the updated
regions. This is to reduce the map node size by eliminat-
ing the mappings for the invalid flash pages. When the
map node is first created, the region size is set to size
of the mapping segment. When the FTL invalidates the
mapping table entry at the map node, it examines the
mapping efficiency. If the mapping efficiency becomes
smaller than a certain threshold, (50%), the FTL inserts
the map node to the compaction candidate list. The
compaction thread periodically scans the compaction
candidate list (default 30s), and estimates the size of the
reorganized map node with the updated region size. If
the map node can become smaller by more than 30%
after compaction, FTL reorganizes the map node. Fig. 11
illustrates the map node compaction. Before the com-
paction, the original map node has a single region that
has 16 mapping entries and three active regions. There
are two holes of four blocks and five blocks. For com-
paction, the region size is updated to four (the minimum

62##-(5+K$5C$(. 62#+L'D$

4$5-'(+>

J(:2;-D

I2;-D

>

>

6-(-C"C+?';$

7 8 9

4M7

4$5-'(+62##-(5+7

4M8 4M9

> 7 8 9

62##-(5 K$5C$(. 62#+L'D$

Figure 11: Reorganizing the Map Node

hole size). The mapping region is partitioned into four
regions based upon the new region size, four. After com-
paction, the map node has three region mappings, each
of which includes two, two and three mapping entries,
respectively. As a result of map node compaction, the
map node size decreases by approximately half.

The memory overhead of Interval mapping is almost
the same as the memory overhead for page mapping.
Assume that the storage size is 512 GByte and flash
page size is 16 KByte. The page mapping consists of a 4
KByte block bitmap (for subpage mapping [30]) and a
mapping table. The page mapping requires 144 MByte
(16 MByte for bitmap and 128 MByte for mapping table).
The interval mapping consists of a root node, 32 zone
nodes, and 215 map nodes with sizes 128Byte, 4096Byte,
and 4624Byte, respectively. The size of Interval Mapping
corresponds to 144.6 MByte.

6 Evaluation
We implement IPLFS on F2FS (Linux 5.11.0) and In-

terval Mapping on OpenSSD (230GByte, 8 channels) [33],
respectively. A default FTL in OpenSSD uses page map-
ping and maps LBA to PBA of different channels in a
round-robin way. So does Interval Mapping FTL. We
use a PC server with Intel CPU i7-4770K (3.50GHz, 4
cores), and 8 GByte DRAM for the experiment.

6.1 Eliminating the Garbage Collection

FIO 1. We examine the performance benefit of elim-
inating the filesystem-level garbage collection. We use
FIO [6]. The logical storage partition is 30 GByte. In
this experiment, four threads perform random write on
28GByte file. We measure the throughput in every 2 sec.
Since the F2FS partition is almost full at the beginning
of the experiment, it quickly runs out of free segment.
On the other hand, the logical partition size is set to be
much smaller than the physical storage size. This is to
prohibit the storage device from running FTL garbage
collection. The effect of eliminating the filesystem level
garbage collection is substantial. In Fig. 12a, the perfor-
mance of F2FS drops to 1/10 when it starts to perform
garbage collection. IPLFS performance remains steady
at its full speed till the experiment finishes.

USENIX Association 2022 USENIX Annual Technical Conference    747



0 200 400 600 800 1000 1200
Time (s)

0

25

50

75
Th

ro
ug

hp
ut

 (k
iop

s)

total=48GiB

total=168GiB

F2FS GC
starts.

IPLFS
F2FS

(a) Only with F2FS garbage collection. Time: 600s, file
size: 28GByte, partition size: 30GByte

0 200 400 600 800 1000 1200
Time (s)

0

25

50

75

Th
ro

ug
hp

ut
 (k

iop
s)

total=284GiB

total=239GiB

F2FS GC and 
device GC starts.IPLFS

F2FS

(b) F2FS garbage collection and FTL garbage collec-
tion. Time: 1200s, file size: 210GByte, partition size:
230GByte.

Figure 12: FIO (random write) Throughput: IPLFS vs.
F2FS. The number indicates the total write volume.

FIO 2. We examine the performance impact of
filesystem-level garbage collection as well as device-level
garbage collection. Fig. 12b illustrates the result. We set
the size of the logical partition to 230 GByte, which is
the physical storage capacity of OpenSSD. We perform
the random write on 210 GByte file. When F2FS starts
garbage collection, the throughput decreases to nearly
1/10. While IPLFS is free from filesystem level garbage
collection, the underlying flash storage is not. When
OpenSSD starts device-level garbage collection, the FIO
performance of IPLFS decreases to 60%. The filesystem-
level garbage collection bears more significant impact
on the benchmark performance than the device-level
garbage collection does.

MySQL. We run YCSB-A workload with MySQL and
examine how database operations are interfered by the
filesystem garbage collection. YCSB A workload [14]
consists of the same amount of reads and updates. To

Read/Avg. Update/Avg. Update/95% Update/99%0

100

200

La
te

nc
y (

m
s)

3.6 12.6 23.3 41.5
6.6

38.2

121.5

207.5IPLFS F2FS

(a) Latency

0 100 200 300 400 500
Time (s)

0

5

Th
ro

ug
hp

ut
(k

iop
s)

IPLFS F2FS

(b) Throughput

Figure 13: MySQL latency and throughput: YCSB-A,
record size: 1KB, record count: 5M, operation count: 1M
(read:update=1:1), threads: 50, partition size: 18GB.

0.6 0.7 0.8 0.9
Disk Utilization

1.0

1.2

1.4

W
rit

e 
Am

pli
fic

at
ion

 F
ac

to
r

IPLFS
F2FS

(a) WAF

0.6 0.7 0.8 0.9
Disk Utilization

0

50

100

150

Th
ro

ug
hp

ut
 (M

B/
s)

IPLFS
F2FS

(b) Throughput

Figure 14: IPLFS vs. F2FS: fileserver benchmarks under
varying disk utilization, file size: 2 MByte, partition size:
230GByte

quickly trigger the filesystem level garbage collection, the
filesystem is 90% full at the beginning of the experiment.
Fig. 13a illustrates the average read and update laten-
cies of IPLFS and F2FS, respectively. The average read
latency and the average update latency of IPLFS are 1/2
and 1/3 of those of F2FS, respectively. The absence of
garbage collection improves the tail latency of the filesys-
tem significantly. The tail latencies of update at 95%
and at 99% in IPLFS are 5.2× and 5× lower than those
of F2FS. Fig. 13b illustrates the throughput. IPLFS’s
throughput remains steady throughout the experiment.
F2FS renders the similar performance to IPLFS at the
beginning but the performance decreases substantially
when it starts running the garbage collection.

6.2 Discard Policy of IPLFS
We examine how the more aggressive discard policy af-

fects the FTL garbage collection and the application per-
formance. We use fileserver workload in Filebench [53],
where 50 threads create, update and delete 2 MByte
files. Fig. 14a shows the write amplifications in IPLFS
and F2FS. IPLFS exhibits lower write amplification than
F2FS in all disk utilizations. Fig. 14b depicts the through-
put under varying disk utilization. IPLFS improves the

(a) IPLFS

(b) F2FS

Figure 15: Block trace: Filebench fileserver workload,
Partition size: 30GB

748    2022 USENIX Annual Technical Conference USENIX Association



throughput by as much as 24% against F2FS. Aggressive
discard policy of IPLFS saves the FTL garbage collec-
tion from migrating the invalid filesystem blocks. As a
result, IPLFS renders substantial improvement in write
amplification and the benchmark performance.

We examine the IO traces in IPLFS and F2FS, re-
spectively. In IPLFS and F2FS, the logical partition
sizes correspond to 1 ZByte and 30 GByte, respectively.
Fig. 15a and 15b illustrate the results. IPLFS never re-
cycles the filesystem blocks and keeps appending the
blocks throughout the experiment. On the other hand,
F2FS recycles the invalid filesystem blocks in round-
robin manner. We observe that IPLFS issues the discard
command a lot more frequently than F2FS does. This is
because F2FS issues discard command only when there
is no pending IO. In this experiment, F2FS rarely finds
that there is no pending IO.

6.3 Address Translation Overhead

Address Translation Latency. We examine the over-
head of address translation in Interval Mapping and page
mapping (Fig. 16a). We run FIO with four threads. They
perform random write on 10 GByte file. Interval Map-
ping yields 88% longer mapping latency than the page
mapping. This is because Interval Mapping performs
multiple index lookups for address translation. When
creating a new mapping entry, Interval Mapping exhibits
3.3× longer latency than the page mapping.
End-to-end Latency. We measure the micro-
benchmark performance under Interval mapping and
the page mapping. Fig. 16b shows the latencies of read
and write (direct IO) in FIO benchmark. The read la-
tency and the write latency of Interval Mapping and
page mapping are almost identical. This result shows
that the overhead of accessing the NAND flash and the
overhead of transferring the data blocks between the
host and storage device account for dominant fraction
of IO latency and FTL overhead is not significant.

6.4 Map Node Size
We examine the memory overhead of fixed-region map-

ping. We run fileserver workload with 50 threads. Each
thread creates, updates and deletes 2 MByte files.

Get Set0.00

0.25

0.50

0.75

Av
er

ag
e 

La
te

nc
y (

us
)

0.32

0.65

0.17 0.2

Interval
Page

(a) FTL mapping latency
read write0

200

400

600

IO
 L

at
en

cy
 (u

s)

308

676

306

671Interval
Page

(b) Direct I/O latency.

Figure 16: FTL Overhead: Interval Mapping vs. page
mapping

 0

 25

 50

 75

 100

 0  2  4  6  8  10  12  14  16

P
(X

<
x

) 
(%

)

Region Size (MB)

WARM DATA
WARM NODE

HOT DATA
HOT NODE

Figure 17: CDF of region size

 0
 10
 20
 30
 40
 50
 60

64K 256K 512K Min. Hole 1M 4M 8M 16M

T
r
e

e
 S

iz
e

 (
M

B
)

Region Size (Byte)

Figure 18: Mapping Tree size under varying region sizes

Region Size. We examine the IO volume associated
with write and discard. We also examine the size of holes
for each filesystem area (Table 3). The median hole size
varies widely subject to the area type. Median hole size
of the warm data area is 2860 KByte while that of the
hot data area is 8 KByte. IO’s for warm data area (write
and discard) account for dominant fraction of all IO’s
(99% of write, 99% of discard).

We examine the region size distribution (Fig. 17). Re-
gion size is set as the size of the smallest hole in the
associated mapping segment. For the warm data are,
3/4 of the region sizes are greater than 1 MByte. Sub-
sequently, most of the map nodes have sixteen or less
number of regions. Recall that the size of mapping seg-
ment is 16 MByte. The size of region directory accounts
for approximately 1% of the map node size. In map node
design, the size of the region directory is negligible.
Minimum Hole Size for region size. We compare
the sizes of the mapping trees when the region size is
fixed and when the region size is chosen dynamically to
the size of the smallest hole in mapping segment. Fig. 18
shows results. The mapping tree becomes the smallest
when we use the the minimum hole size as the region
size. For small region size (64 KByte), the tree size is
13% larger than the tree size when we use the minimum
hole size as region size. This is due to the increase in
the region directory size. In a map node with 64 KByte
region size, the region directory accounts for 13% of
the total size of the mapping tables. The mapping tree
size becomes larger when we use large fixed region size

Log type W/D volume (GB) Median (KB) 75% (KB) 90% (KB)

Warm Node 1.99 / 1.69 32 32 80
Warm Data 305.9 / 170.4 2860 6352 11764
Hot node 0.4 / 0.38 48 232 816
Hot Data 0.87 / 0.36 8 24 40

Table 3: Statistics on the hole size, Filebench fileserver
workload. Average file size: 2MByte, runtime: 1600s,
W/D volume: total volume of Write/Discard

USENIX Association 2022 USENIX Annual Technical Conference    749



 0

 40

 80

 0  200  400  600  800  1000  1200  1400  1600

T
re

e
 S

iz
e

 (
M

B
)

Time (s)

Compaction On Compaction Off

Figure 19: Mapping Tree size

(1 MB or larger) than when we use the minimum hole
size as a region size. This is because with the larger
region size, the fixed-region mapping fails to exclude
the mappings for invalid flash pages and the mapping
efficiency becomes worse.
Reorganizing the Map Node. We examine the ef-
fectiveness of map node compaction. We configure the
compaction period to 30s and a compaction ratio thresh-
old to 0.7. Total size of the files is 160GByte. When
the benchmark finishes, the active interval in the filesys-
tem partition corresponds 305GByte. Fig. 19 illustrates
the sizes of mapping trees in two cases: when the In-
terval Mapping periodically reorganizes the map node
and when it does not. Without compaction, the map-
ping tree size increases as the filesysem ages and reaches
over 80 MByte. This is because the active interval be-
comes larger and the Interval Mapping allocates new
map nodes as the active interval expands. With map
node compaction, the mapping tree size stays at around
40 MByte. Mapping table size remains almost the same
as the mapping table size for 160 GByte even though
the active interval expands to 305 GByte.

7 Related Works
IO stack largely consists of two layers: the host (filesys-

tem and block device layer) and the device (SSD). A
body of works try to migrate the FTL overhead from
the storage device to the host. They include DFS [24],
ParaFS [60], Application Managed Flash [39], and Or-
cFS [59]. In these works, the software overhead at the
host side increases; the host side software directly man-
ages the flash pages and performs essential managerial
activities such as garbage collection and wear-leveling.
Nameless Write eliminates the address translation layer
from the IO stack [62]. Migrating the device’s functional-
ity to the host has its cost. Flash storage needs expose its
physical nature, e.g. physical flash page location, page
size or block size, to the host. ZNS saves the device
from the FTL overhead [9, 20]. On the contrary to these
works, IPLFS aims at reducing the host side overhead,
the filesystem level garbage collection with reasonable
increase in the device firmware complexity.

IPLFS shares the same idea with DFS [24] in that
IPLFS separates the logical filesystem partition from the
physical storage capacity and fully exploits 264 logical
partition size. Despite of the similarity, the underlying

philosophies and the approaches of the two lie at the
other ends of spectrum. DFS migrates the garbage collec-
tion from the device to the host whereas IPLFS migrates
the garbage collection from the host to the device. DFS
introduces new indirection layer to separate the logi-
cal partition from the physical storage. Host side’s IO
stack becomes heavier to handle LBA-to-PBA mapping,
garbage collection, and etc. It requires the flash device
to expose physical details to the host. IPLFS does not re-
quire new layer nor any physical information of the flash
storage. Separating the logical partition from the physi-
cal storage, IPLFS becomes simpler and lighter-weight
than its original counter part, F2FS.

A number of works proposed to make the garbage
collection more efficient. Kim et al. [31] proposed to
distinguish the hot data and the cold data according
to the program context. Wu et al. [54] proposed to op-
timize background segment cleaning scheduler based
on Q-learning algorithm. Gwak et al. [19] optimized a
foreground segment cleaning. A few works proposed to
trigger background segment cleaning during system idle
time. [10, 22, 47] Lee et al. [37] proposed preemptive
garbage collection. Yan et al. [57] proposed copying valid
pages in victim block to another block so that the copies
handle IO operations to victim block.

To reduce the mapping table size, Kang et al. proposed
to use larger granularity mapping [26]. Zhou et al. [63]
increased the cache hit ratio of the page-level mapping
information by employing a two-level LRU list. Liu et
al. [42] proposed the FTL, which enables partial erase
operation in 3D NAND flash storage.

8 Conclusion
In this work, we propose IPLFS, a log-structured

filesystem for infinite partition. Separating the logical
filesystem partition size from the physical storage size
and making the logical filesystem partition size virtu-
ally infinite, we free the log-structured filesystem from
recycling the invalid filesystem blocks. To maintain the
mapping information for the prohibitively large logical
filesystem partition, we develop Interval-Mapping which
maintains the LBA to PBA mapping only for the actively
used filesystem region. With IPLFS and Interval map-
ping combined together, we relieve the log-structured
filesystem from the overhead of reclaiming the invalid
blocks, the garbage collection.
Acknowledgements We are deeply indebted to our
shepherd Youyou Lu for helping us to shape the final ver-
sion of this paper. We are also grateful to the anonymous
reviewers for their valuable comment and feedback. We
like to thank Jay Hyun for his inspiring comment at the
inception stage of this work. This work was supported
by IITP, Korea (grant No. 2018-0-00549), and by NRF,
Korea (grant No. NRF-2020R1A2C3008525).

750    2022 USENIX Annual Technical Conference USENIX Association



References

[1] crosshatch: switch userdata filesystem from ext4 to
f2fs. https://android.googlesource.com/dev
ice/google/crosshatch/+/a0d74ba2c0b943c637
0288b13ade0cf6c4868da2.

[2] Garbage collection semaphore in f2fs. https://
elixir.bootlin.com/linux/latest/source/fs/
f2fs/f2fs.h#L1706.

[3] Idle checking code in the f2fs discard procedure.
https://elixir.bootlin.com/linux/v5.11/s
ource/fs/f2fs/segment.c#L1548.

[4] SNIA Block I/O Traces. http://iotta.snia.org
/traces/block-io.

[5] Zoned Namespaces (ZNS) SSDs. https://zoneds
torage.io/introduction/zns/.

[6] Jens Axboe. Fio-flexible i/o tester synthetic bench-
mark. https://github.com/axboe/fio, 2005.

[7] Amir Ban. Flash file system, U.S. Patent 5404485,
Apr. 1995.

[8] Artem B Bityutskiy. JFFS3 design issues, 2005.
http://www.linux-mtd.infradead.org.

[9] Matias Bjørling, Abutalib Aghayev, Hans Holm-
berg, Aravind Ramesh, Damien Le Moal, Gregory R
Ganger, and George Amvrosiadis. ZNS: Avoiding
the Block Interface Tax for Flash-based SSDs. In
Proc. of 2021 USENIX Annual Technical Confer-
ence (ATC), 2021.

[10] Trevor Blackwell, Jeffrey Harris, and Margo Seltzer.
Heuristic cleaning algorithms in log-structured file
systems. In Proc. of 1995 USENIX Technical Con-
ference Proceedings, 1995.

[11] Edouard Bugnion, Scott Devine, Kinshuk Govil,
and Mendel Rosenblum. Disco: Running commod-
ity operating systems on scalable multiprocessors.
ACM Transactions on Computer Systems (TOCS),
15(4):412–447, November 1997.

[12] Li-Pin Chang, Tei-Wei Kuo, and Shi-Wu Lo. Real-
Time Garbage Collection for Flash-Memory Stor-
age Systems of Real-Time Embedded Systems.
ACM Transactions on Embedded Computing Sys-
tems, 3(4):837–863, November 2004.

[13] Melvin E Conway. A multiprocessor system de-
sign. In Proc. of the fall joint computer conference
(AFIPS), 1963.

[14] Brian F Cooper, Adam Silberstein, Erwin Tam,
Raghu Ramakrishnan, and Russell Sears. Bench-
marking cloud serving systems with YCSB. In Proc.
of the 1st ACM symposium on Cloud computing,
2010.

[15] Robert C Daley and Jack B Dennis. Virtual memory,
processes, and sharing in Multics. Communications
of the ACM, 11(5):306–312, 1968.

[16] H. Edelsbrunner. Dynamic Rectangle Intersection
Searching. Forschungsberichte: Institut für Informa-
tionsverarbeitung. Inst., 1980.

[17] Robert P. Goldberg. Survey of virtual machine
research. IEEE Computer, 7(6):34–45, 1974.

[18] Aayush Gupta, Youngjae Kim, and Bhuvan Ur-
gaonkar. DFTL: a flash translation layer employ-
ing demand-based selective caching of page-level
address mappings. ACM Sigplan Notices, 44(3):229–
240, 2009.

[19] Hyunho Gwak, Yunji Kang, and Dongkun Shin. Re-
ducing garbage collection overhead of log-structured
file systems with GC juornaling. In Proc. of 2015
International Symposium on Consumer Electronics
(ISCE), 2015.

[20] Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and
Jooyoung Hwang. ZNS+: Advanced zoned names-
pace interface for supporting in-storage zone com-
paction. In Proc. of 15th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI), 2021.

[21] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
Slacker: Fast distribution with lazy docker contain-
ers. In Proc. of 14th USENIX Conference on File
and Storage Technologies (FAST), 2016.

[22] Martin Jambor, Tomas Hruby, Jan Taus, Kuba Kr-
chak, and Viliam Holub. Implementation of a Linux
Log-Structured File System with a Garbage Collec-
tors. In Proc. of ACM Special Interest Group on
Operating Systems (SIGOPS), 2007.

[23] Jaeyong Jeong, Sangwook Shane Hahn, Sungjin Lee,
and Jihong Kim. Lifetime improvement of NAND
flash-based storage systems using dynamic program
and erase scaling. In Proc. of 12th USENIX Con-
ference on File and Storage Technologies (FAST),
2014.

[24] William K. Josephson, Lars A. Bongo, David Flynn,
and Kai Li. DFS: A file system for virtualized flash
storage. In Proc. of 8th USENIX Conference on
File and Storage Technologies (FAST), 2010.

USENIX Association 2022 USENIX Annual Technical Conference    751

https://android.googlesource.com/device/google/crosshatch/+/a0d74ba2c0b943c6370288b13ade0cf6c4868da2
https://android.googlesource.com/device/google/crosshatch/+/a0d74ba2c0b943c6370288b13ade0cf6c4868da2
https://android.googlesource.com/device/google/crosshatch/+/a0d74ba2c0b943c6370288b13ade0cf6c4868da2
https://elixir.bootlin.com/linux/latest/source/fs/f2fs/f2fs.h#L1706
https://elixir.bootlin.com/linux/latest/source/fs/f2fs/f2fs.h#L1706
https://elixir.bootlin.com/linux/latest/source/fs/f2fs/f2fs.h#L1706
https://elixir.bootlin.com/linux/v5.11/source/fs/f2fs/segment.c#L1548
https://elixir.bootlin.com/linux/v5.11/source/fs/f2fs/segment.c#L1548
http://iotta.snia.org/traces/block-io
http://iotta.snia.org/traces/block-io
https://zonedstorage.io/introduction/zns/
https://zonedstorage.io/introduction/zns/
https://github.com/axboe/fio
http://www.linux-mtd.infradead.org


[25] Dong Hyun Kang and Young Ik Eom. iDiscard:
enhanced Discard () scheme for flash storage devices.
In Proc. of IEEE International Conference on Big
Data and Smart Computing (BigComp), 2018.

[26] Jeong-Uk Kang, Heeseung Jo, Jin-Soo Kim, and
Joonwon Lee. A superblock-based flash transla-
tion layer for NAND flash memory. In Proc. of
the 6th ACM & IEEE International conference on
Embedded software (EMSOFT), 2006.

[27] Atsuo Kawaguchi, Shingo Nishioka, and Hiroshi Mo-
toda. A flash-memory based file system. In Proc.
of USENIX Technical Conference (TCON), 1995.

[28] Bum Soo Kim and Gui Young Lee. Method of driv-
ing remapping in flash memory and flash memory
architecture suitable therefore, U.S. Patent 6381176,
Apr. 2002.

[29] Jesung Kim, Jong Min Kim, S.H. Noh, Sang Lyul
Min, and Yookun Cho. A space-efficient flash trans-
lation layer for CompactFlash systems. IEEE Trans-
actions on Consumer Electronics, 48(2):366–375,
August 2002.

[30] Jung-Hoon Kim, Sang-Hoon Kim, and Jin-Soo Kim.
Subpage programming for extending the lifetime of
NAND flash memory. In Proc. of 2015 Design, Au-
tomation & Test in Europe Conference & Exhibition
(DATE), 2015.

[31] Taejin Kim, Duwon Hong, Sangwook Shane Hahn,
Myoungjun Chun, Sungjin Lee, Jooyoung Hwang,
Jongyoul Lee, and Jihong Kim. Fully automatic
stream management for multi-streamed ssds using
program contexts. In Proc. of 17th USENIX Con-
ference on File and Storage Technologies (FAST),
2019.

[32] Ryusuke Konishi, Yoshiji Amagai, Koji Sato, Hisashi
Hifumi, Seiji Kihara, and Satoshi Moriai. The
linux implementation of a log-structured file sys-
tem. ACM Special Interest Group on Operating
Systems (SIGOPS), 40(3):102–107, July 2006.

[33] Jaewook Kwak, Sangjin Lee, Kibin Park, Jinwoo
Jeong, and Yong Ho Song. Cosmos+ OpenSSD:
Rapid Prototype for Flash Storage Systems. ACM
Transactions on Storage (TOS), 16(3):1–35, July
2020.

[34] Hunki Kwon, Eunsam Kim, Jongmoo Choi, Donghee
Lee, and Sam H Noh. Janus-FTL: Finding the opti-
mal point on the spectrum between page and block
mapping schemes. In Proc. of the 10th ACM interna-
tional conference on Embedded software (EMSOFT),
2010.

[35] Changman Lee, Dongho Sim, Jooyoung Hwang, and
Sangyeun Cho. F2FS: A new file system for flash
storage. In Proc. of 13th USENIX Conference on
File and Storage Technologies (FAST), 2015.

[36] Junghee Lee, Youngjae Kim, Galen M. Shipman,
Sarp Oral, and Jongman Kim. Preemptible I/O
Scheduling of Garbage Collection for Solid State
Drives. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 32(2):247–
260, 2013.

[37] Junghee Lee, Youngjae Kim, Galen M Shipman,
Sarp Oral, Feiyi Wang, and Jongman Kim. A semi-
preemptive garbage collector for solid state drives.
In Proc. of IEEE International Symposium on Per-
formance Analysis of Systems and Software (IS-
PASS), 2011.

[38] Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung,
Dong-Ho Lee, Sangwon Park, and Ha-Joo Song. A
log buffer-based flash translation layer using fully-
associative sector translation. ACM Transactions on
Embedded Computing Systems (TECS), 6(3), 2007.

[39] Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu,
Jihong Kim, and Arvind. Application-managed flash.
In Proc. of 14th USENIX Conference on File and
Storage Technologies (FAST), 2016.

[40] Sungjin Lee, Dongkun Shin, Young-Jin Kim, and
Jihong Kim. LAST: locality-aware sector transla-
tion for NAND flash memory-based storage systems.
ACM Special Interest Group on Operating Systems
(SIGOPS), 42(6):36–42, 2008.

[41] Henry Lieberman and Carl Hewitt. A real-time
garbage collector based on the lifetimes of objects.
ACM Communications, 26(6):419–429, 1983.

[42] Chun-yi Liu, Jagadish Kotra, Myoungsoo Jung, and
Mahmut Kandemir. PEN: Design and evaluation
of partial-erase for 3d nand-based high density ssds.
In Proc. of 16th USENIX Conference on File and
Storage Technologies (FAST), 2018.

[43] Jeanna Neefe Matthews, Drew Roselli, Adam M
Costello, Randolph Y Wang, and Thomas E Ander-
son. Improving the performance of log-structured
file systems with adaptive methods. ACM Special
Interest Group on Operating Systems (SIGOPS),
31(5):238–251, 1997.

[44] A. Palmer. SMR in Linux Systems. In Proc. of
2020 Linux Storage and Filesystems Conference
(VAULT), 2020.

752    2022 USENIX Annual Technical Conference USENIX Association



[45] Yubiao Pan, Yongkun Li, Huizhen Zhang, Hao
Chen, and Mingwei Lin. GFTL: Group-level
mapping in flash translation layer to provide ef-
ficient address translation for NAND flash-based
SSDs. IEEE Transactions on Consumer Electronics
(TCE), 66(3):242–250, April 2020.

[46] Chanik Park, Wonmoon Cheon, Jeonguk Kang,
Kangho Roh, Wonhee Cho, and Jin-Soo Kim. A
reconfigurable FTL (flash translation layer) archi-
tecture for NAND flash-based applications. ACM
Transactions on Embedded Computing Systems
(TECS), 7(4):1–23, July 2008.

[47] Dongil Park, Seungyong Cheon, and Youjip Won.
Suspend-aware segment cleaning in log-structured
file system. In Proc. of 7th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStor-
age), 2015.

[48] Eunhee Rho, Kanchan Joshi, Seung-Uk Shin,
Nitesh Jagadeesh Shetty, Jooyoung Hwang,
Sangyeun Cho, Daniel DG Lee, and Jaeheon Jeong.
FStream: Managing flash streams in the file system.
In Proc. of 16th USENIX Conference on File and
Storage Technologies (FAST), 2018.

[49] Mendel Rosenblum and John K Ousterhout. The
design and implementation of a log-structured file
system. ACM Transactions on Computer Systems
(TOCS), 10(1):26–52, February 1992.

[50] Margo I Seltzer, Keith Bostic, Marshall K McKu-
sick, Carl Staelin, et al. An Implementation of a
Log-Structured File System for UNIX. In Proc. of
USENIX Winter, 1993.

[51] Amir Ali Semnanian, Jeffrey Pham, Burkhard En-
glert, and Xiaolong Wu. Virtualization technology
and its impact on computer hardware architecture.
In Proc. of IEEE 8th International Conference on
Information Technology: New Generations (ITNG),
2011.

[52] Frank Shu. Data set management commands pro-
posal for ata8 acs2. https://studylib.net/doc
/7497677/non-volatile-cache-command-prop
osal-for-ata8-acs.

[53] Vasily Tarasov, Erez Zadok, and Spencer Shepler.
Filebench: A flexible framework for file system
benchmarking. USENIX Login, 41(1):6–12, 2016.

[54] Chao Wu, Cheng Ji, and Chun Jason Xue. Reinforce-
ment learning based background segment cleaning
for log-structured file system on mobile devices. In
Proc. of 2019 IEEE International Conference on
Embedded Software and Systems (ICESS), 2019.

[55] Jian Xu and Steven Swanson. NOVA: A log-
structured file system for hybrid volatile/non-
volatile main memories. In Proc. of 14th
USENIX Conference on File and Storage Technolo-
gies (FAST), 2016.

[56] Gala Yadgar, MOSHE Gabel, Shehbaz Jaffer, and
Bianca Schroeder. SSD-based Workload Character-
istics and Their Performance Implications. ACM
Transactions on Storage (TOS), 17(1):1–26, 2021.

[57] Shiqin Yan, Huaicheng Li, Mingzhe Hao,
Michael Hao Tong, Swaminathan Sundarara-
man, Andrew A. Chien, and Haryadi S. Gunawi.
Tiny-Tail Flash: Near-Perfect Elimination of
Garbage Collection Tail Latencies in NAND SSDs.
In Proc. of 15th USENIX Conference on File and
Storage Technologies (FAST), 2017.

[58] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Ta-
lagala, and Swaminathan Sundararaman. Don’t
Stack Your Log On My Log. In Proc. of USENIX
2nd Workshop on Interactions of NVM/Flash with
Operating Systems and Workloads (INFLOW), 2014.

[59] Jinsoo Yoo, Joontaek Oh, Seongjin Lee, Youjip Won,
Jin-Yong Ha, Jongsung Lee, and Junseok Shim. Or-
cFS: Orchestrated file system for flash storage. ACM
Transactions on Storage (TOS), 14(2):1–26, 2018.

[60] Jiacheng Zhang, Jiwu Shu, and Youyou Lu. ParaFS:
A log-structured file system to exploit the inter-
nal parallelism of flash devices. In Proc. of 2016
USENIX Annual Technical Conference (ATC), 2016.

[61] Qi Zhang, Xuandong Li, Linzhang Wang, Tian
Zhang, Yi Wang, and Zili Shao. Lazy-RTGC: A Real-
Time Lazy Garbage Collection Mechanism with
Jointly Optimizing Average and Worst Performance
for NAND Flash Memory Storage Systems. ACM
Transactions on Design Automation of Electronic
Systems (TODAES), 20(3):1–32, 2015.

[62] Yiying Zhang, Leo Prasath Arulraj, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. De-
indirection for flash-based SSDs with nameless
writes. In Proc. of 10th USENIX Conference on
File and Storage Technologies (FAST), 2012.

[63] You Zhou, Fei Wu, Ping Huang, Xubin He, Chang-
sheng Xie, and Jian Zhou. An efficient page-level
FTL to optimize address translation in flash mem-
ory. In Proc. of the 10th European Conference on
Computer Systems (EuroSys), pages 1–16, 2015.

USENIX Association 2022 USENIX Annual Technical Conference    753

https://studylib.net/doc/7497677/non-volatile-cache-command-proposal-for-ata8-acs
https://studylib.net/doc/7497677/non-volatile-cache-command-proposal-for-ata8-acs
https://studylib.net/doc/7497677/non-volatile-cache-command-proposal-for-ata8-acs


A Artifact Appendix

Abstract
Our artifact consists of two parts: IPLFS and Interval

Mapping FTL. IPLFS is a log-structured filesystem with
Infinite logical partition. Interval Mapping FTL is flash
translation layer that maintains mapping for Infinite
logical partition.

Scope
This artifact can be used to validate all experiments

that measure throughput, latency and block trace in the
paper.

Contents
IPLFS artifact is implemented on the top of F2FS

in Ubuntu 5.11.0. The IPLFS artifact does not con-
duct garbage collection, and does not have metadata for
garbage collection, such as a block allocation bitmap (a
segment information table) and reverse mapping infor-
mation (segment summary area). To replace the block
allocation bitmap, discard bitmap is implemented in the
IPLFS artifact. The IPLFS artifact also conducts discard
logging to prevent storage leak. As specified in the paper,
the IPLFS artifact partitions infinite logical space into
seven areas.

Interval Mapping artifact is implemented on the top of
OpenSSD. The design of the Interval Mapping artifact
is three level tree, as written in the paper. The root
node, zone node, and map node are all implemented in
the artifact. We implement Expansion of root node and
Compaction of map node in the artifact. In the artifact,
there are total seven Interval Mapping trees to support
for multi-area partition layout of IPLFS.

Hosting
The IPLFS artifact is uploaded in Github reposi-

tory, https://github.com/ESOS-Lab/IPLFS. A branch
named ’IPLFS-stable’ contains IPLFS source code, and
IPLFS format utility (f2fs-tools). A branch named ’orig-
inal_kernel’ is vanilla kernel which is compared with
IPLFS for experiment in the paper.

The Interval Mapping artifact is uploaded in
Github repository, https://github.com/ESOS-
Lab/Interval_Mapping. A branch named ’main’
is the artifact mainly used for the experiments in the
paper. If you try measuring ’get’ and ’set’ latencies
of Interval Mapping FTL, please use branches named
‘exp-getlatency’ and ‘exp-setlatency’, which print out
the latencies of ’get’ operation and ’set’ operation,
respectively. A branch named ’expansion+compaction’

is Interval Mapping that conducts root node expansion
and map node compaction in the foreground.

Requirements
Interval Mapping FTL is built on Cosmos+ OpenSSD,

the PCIe-based SSD platform on which open source
SSD firmware can be developed. To operate the Interval
Mapping artifact, OpenSSD is required.

754    2022 USENIX Annual Technical Conference USENIX Association



Vigil-KV: Hardware-Software Co-Design to Integrate Strong Latency Determinism
into Log-Structured Merge Key-Value Stores

Miryeong Kwon1, Seungjun Lee1, Hyunkyu Choi1, Jooyoung Hwang2, Myoungsoo Jung1

Computer Architecture and Memory Systems Laboratory,
Korea Advanced Institute of Science and Technology (KAIST)1, Samsung2

http://camelab.org

Abstract
We propose Vigil-KV, a hardware and software co-designed
framework that eliminates long-tail latency almost perfectly
by introducing strong latency determinism. To make Get la-
tency deterministic, Vigil-KV first enables a predictable la-
tency mode (PLM) interface on a real datacenter-scale NVMe
SSD, having knowledge about the nature of the underlying
flash technologies. Vigil-KV at the system-level then hides
the non-deterministic time window (associated with SSD’s
internal tasks and/or write services) by internally scheduling
the different device states of PLM across multiple physical
functions. Vigil-KV further schedules compaction/flush oper-
ations and client requests being aware of PLM’s restrictions
thereby integrating strong latency determinism into LSM KVs.
We implement Vigil-KV upon a 1.92TB NVMe SSD proto-
type and Linux 4.19.91, but other LSM KVs can adopt its
concept. We evaluate diverse Facebook and Yahoo scenar-
ios with Vigil-KV, and the results show that Vigil-KV can
reduce the tail latency of a baseline KV system by 3.19×
while reducing the average latency by 34%, on average.

1 Introduction

Log-structured Merge Key-Value stores (LSM KVs) such as
RocksDB [1] and LevelDB [2] are widely adopted in diverse
computing domains to handle large-scale data thanks to their
simplicity, scalability, and high-performance [3–10]. LSM
KVs are also used in many production environments to offer
large-scale storage whose capacity is beyond main memory
subsystems to latency-sensitive applications. For example,
Facebook uses RocksDB as the storage engine of an SQL
database, which is used for social graph processing [11–14].
This type of application considers the query latency (e.g., Get)
of each social action (e.g., view profile, list friends, etc.) as a
first-class citizen. In particular, managing long-tail latency of
reads (and latency consistency) is a matter of meeting diverse
user demands and service-level agreements (SLA) [15–17].

However, we observe that the long-tail read latency of the
Facebook scenario is 10.4× worse than normal read oper-

ations, making the user experience inconsistent. The main
contributor to this long-tail latency is device-level SSD la-
tency, not software or operating system (OS); the execution
times of all the software, including storage stack and user
application, account for only 13% of the long-tail latency
(99.9th percentile). We will give a detailed analysis of this
in Section 3.1. The long-tail latency mainly comes from I/O
interferences caused by two different levels of internal tasks:
i) LSM KV’s internal tasks and ii) SSD’s internal tasks. LSM
KVs periodically perform internal tasks such as compaction
and flushing for their persistence and effectiveness [18–21].
The compaction merges data from the lower to a higher level
of their LSM tree, whereas the flush writes the in-memory
buffer back to the underlying storage in securing more space
to buffer and making the buffered data persistent. Since the
write operations of these internal tasks exhibit long latency
and often stall all incoming requests, many prior studies (e.g.,
TRIAD [22], PebblesDB [23], and SILK [24]) reschedule
additional writes of the internal tasks and serve them at fu-
ture idle times. These LSM KVs would reduce the latency
inconsistency imposed by the internal tasks to some extent,
but we observe that they lead to serious side-effects, which
deteriorate read services and increase memory footprints sig-
nificantly (cf. Section 3.2).

Even with an ideal case of abolishing all the LSM KV’s
internal tasks, the long-tail read latency cannot be eliminated
because of SSD’s internal tasks such as DRAM caching/flush-
ing [25–30], garbage collections [31–39], and read-reclaiming
[40–44]. For example, even in cases where LSM KV solely
reads the underlying SSD at a certain period, it exhibits long
latency on the reads since the SSD internally flushes the
buffered/cached data to its backend storage. Similarly, at any
given time, a garbage collection or read-reclaiming can intro-
duce a set of reads and writes, which also prevent the incoming
requests from being serviced. Note that these internal tasks
are scheduled by the underlying SSD firmware, which makes
the read latency behaviors non-deterministic at the user-level
and increases the latency significantly (cf. Section 2.2).

In this work, we propose Vigil-KV, a hardware and soft-

USENIX Association 2022 USENIX Annual Technical Conference    755



ware co-design to eliminate the long-tail latency of LSM KVs
and make their read services consistently deterministic. Vigil-
KV hardware offers a scheduling interface to remove SSD’s
internal tasks, whereas its software is designed toward elim-
inating the overhead imposed by LSM KV’s internal tasks
without delaying compaction or flushing in-memory buffer
at idle times. To this end, we advocate a predictable latency
mode (PLM) interface, which is recently added to the stan-
dard NVMe protocol [45]. We enable the brand-new interface
on a high-performance NVMe SSD and enforce the read la-
tency deterministic on a specific time window. Obviously,
PLM cannot deliver the latency consistency indefinitely since
SSD’s internal tasks are essential to managing the reliabil-
ity and persistence of the backend’s storage media. For the
host’s finer PLM scheduling, Vigil-KV hardware also imple-
ments NVMe’s NVM set features by internally partitioning
the storage volume into multiple functions.

While PLM has great potential to eliminate the long-tail la-
tency of LSM KVs by having a closer collaboration between
a host and storage, there are several constraints that have not
been analyzed in the literature yet. Specifically, PLM relies
two essential scheduling components, deterministic window
(DTWIN) and non-deterministic window (NDWIN). DTWIN
is the time window to offer predictable latency, whereas ND-
WIN is not. This work reveals three important characteristics
of PLM, which should be considered when the host commu-
nicates with the underlying SSD to achieve the latency con-
sistency: i) write-free on DTWIN ii) fair-scheduling for PLM
windows, iii) device lockdown constraint. First, DTWIN can
be guaranteed only if there is no write request in a DTWIN
period. The reason behind this DTWIN’s write-free con-
straint is that, even though PLM supports the latency con-
sistency by removing SSD’s internal tasks at DTWIN, it can-
not completely eliminate the stalls caused by online write
requests coming from clients. Second, as SSD’s internal tasks
should be performed at some point, the longest-serving time
of DTWIN is determined at design time, and NDWIN should
be preserved and appropriately scheduled before jumping in
DTWIN. Lastly, the host curbs I/O requests when the under-
lying SSD transits from NDWIN to DTWIN. This is because
the transition requires a make-ready time, which must not be
interrupted by any other I/O activities (i.e., device lockdown).

Based on the restrictions that we observe, the software part
of Vigil-KV classifies the requests of LSM KVs at runtime
and carefully assigns them to appropriate PLM time windows
through our device state scheduling. This device state and
request scheduling can make the latency of client-side I/O
requests deterministic and have no long-tail all the time. To
this end, we introduce a PLM driver atop Vigil-KV hardware,
which manages all the device states across different NVM
sets but makes them visible as a single storage volume. This
driver makes sure that there are always n−1 NVM sets having
DTWIN (where n is the total number of data NVM sets) while
allowing an NVM set to schedule SSD’s internal task via ND-

WIN. During the device state management, it also takes into
account the fair-scheduling and lockdown constraints such
that a kernel-level scheduler can focus on assigning the I/O
requests based on the condition of given PLM time windows.
Specifically, Vigil-KV’s kernel-level scheduler packs all I/O
activities coming from LSM KV’s internal tasks into NDWIN
(scheduled by the PLM driver), which takes the overhead of
all the internal tasks off the critical path in I/O services. In
addition, it makes all the incoming read requests (heading to
the NDWIN-scheduled set) non-blocking, inspired by a novel
memory/storage array-level technique [46–49]. The kernel-
level scheduler detects the read requests targeting an NVM
set (configured with NDWIN) and directly serves the corre-
sponding data without touching it at all. Since there are n−1
NVM sets with DTWIN at an any given time (invisible to the
host clients), the scheduler can collect data from them within
the deterministic time window and reconstruct the requested
data (with the help of the PLM driver) thereby making the
target SSD latency consistent constantly.

Even though the Vigil-KV driver and thread can put all
the internal tasks into NDWIN and isolate them from the
client reads, they unfortunately fail to meet the write-free
constraint. This is because of additional writes for providing
atomicity and durability at the system-level (e.g., journaling).
Since these writes can interfere with the reads on DTWIN, we
dedicate an NVM set for the metadata management dealing
with the write-ahead log (WAL) and file system journaling. To
this end, we have a minor modification of RocksDB (but other
LSM KVs can adopt its concept) to give a different priority
to each process based on their nature of I/O activities. This
technique can address the write-free constraint and make the
target SSD be in all DTWIN for client requests consistently.

We prototype Vigil-KV hardware on a 1.92TB Datacenter-
scale NVMe SSD, while implementing Vigil-KV software
using Linux 4.19.91 and RocksDB 6.23.0. To the best of our
knowledge, this is the first paper that implements the PLM
interface in a real SSD and makes the read latency of LSM
KVs deterministic in a hardware-software co-design manner.
We evaluate six Facebook and Yahoo scenarios, and the results
show that Vigil-KV can reduce the tail latency of a baseline
KV system by 3.19× while reducing the average latency on
Get services by 34%, on average.

2 Preliminaries

We will explain RocksDB as representative of LSM KVs in
this section. We will also explain the internal tasks of LSM
KV and SSD in detail and analyze the challenges imposed by
those two different levels of internal tasks.

2.1 Log-Structured Merge KV Stores
Figure 1a explains the major data structure and corresponding
operations of RocksDB. RocksDB maintains all information

756    2022 USENIX Annual Technical Conference USENIX Association



�

�

�

�

�

�

�

�

�

	

�

�




���

���

��	
�

���

��	
�

����
�

���

���

���

��

����

���

���

��

���

���

�����

����

������

���	


������

��	
����
�

����������

������

���������
�

����

����

����	


��������

(a) Structure. (b) Internal tasks. (c) Example.

Figure 1: Log-Structured Merge KV Stores.

in the log-structured merge (LSM) tree consisting of two
separate structures, each of which is optimized to volatile
memory and block storage. The in-memory data structure,
called Memtable, holds data before turning their state into per-
sistent in an unsorted manner. Memtables allow users/clients
to quickly update by serving the requests from the memory
(rather than storage). The storage data structure manages key
and value (KV) pairs, which are managed in an immutable
form of sorted string table files (SSTFiles). SSTFiles are
maintained in hierarchical levels, each being denoted by L0
(level-0), L1 (level-1), ..., LK (level-K).
Client operations. RocksDB supports various query services
such as Put (writes), Get (reads), Delete, and Scan. Since the
majority of the queries are Put and Get, this work focuses
on those two operations. Users’ Put requests are inserted to
a Memtable as a KV pair by RocksDB if the Memtable is
mutable, meaning that it has available room to update. In de-
fault, RocksDB maintains two Memtables, each taking 64MB
spaces, which are the same as the size of logfiles; we will
explain this in detail with LSM KV’s internal tasks (i.e., flush
and compaction) shortly. If there is no available space in a
Memtable, RocksDB locks down and changes its state from
mutable to immutable, which does not allow further updates.
RocksDB then places another Memtable for the next Put re-
quests while writing the data of the immutable Memtable to
L0 by converting the Memtable to an SSTFile in the back-
ground. Since it is important to secure Memtable(s) in mem-
ory as soon as possible, turning a Memtable into L0 is per-
formed in an unsorted and out-of-order manner. Thus, L0 can
contain multiple SSTFiles associated with the same key. Later,
the SSTFiles at L0 are migrated into a lower level of storage
space (L1) by LSM KV’s internal tasks.

On the other hand, Get requests accompany a series of reads
the value associated with a given key. RocksDB first searches
the key in Memtables and serves the value if there is. In cases
where it fails to find the key in the Memtables, RocksDB scans
all the SSTFiles residing in L0 and searches for the key. This
is because the files are stored in an unsorted way, and it can
be possible for L0 to have multiple SSTFiles corresponding
to the given key. If RocksDB cannot find the key at L0, it goes
L1 and searches again. Since L1’s SSTFiles are compacted
from L0, each file contains a unique key, making RocksDB
faster to search the target KV pair. Note that the unsorted data
structure of L0 allows RocksDB to quickly secure in-memory

(a) DRAM flush. (b) Garbage collection. (c) Read reclaim.

Figure 2: SSD internal tasks.

buffers, thereby preventing Put against stalls, but it introduces
many storage accesses (reads) on Get services.
Internal tasks. Figure 1b illustrates the detailed procedure
of LSM KV’s internal tasks and major software components
associated with the tasks. While Memtables are well designed
toward taking performance advantage of volatile memory
media, their data can be lost when there is a power failure.
To make the KV pairs in the buffer persistent and durable,
RocksDB writes the KV pair as a form of logfiles to a desig-
nated area in the underlying storage, called write-ahead log
(WAL) before its Memtable update. Writing WAL (per re-
quest) is performed as a synchronous operation bypassing the
page cache of the underlying file system for crash consistency
control. Since it is a time-consuming task, RocksDB employs
another internal buffer, called write group existing in front
of Memtables. In the meantime, it checks the space utiliza-
tion of Memtables and L0, and if there is no available space,
Rocks DB enqueues flush and/or compaction tasks item to
reclaim a Memtable and an L0 SSTFile, respectively. These
items include an appropriate pointer for the space reclaiming,
which is all performed by RocksDB’s background threads.
For a Memtable flush, the internal task checks all the keys in
a Memtable, builds an SSTFile, and flushes the SSTFile to L0.
In cases of an L0 compaction, its internal task selects a target
SSTFile. Consider Figure 1c as an example, the SSTFile’s
key ranges from 60 to 120. The task also picks L1’s SSTFiles
whose keys are associated with the compaction target’s keys
(e.g., two L1 SSTFiles, each having 80∼90 and 100∼140,
in the figure). It then performs a merge sort by checking up
all entries of three SSTFiles and letting only the latest infor-
mation remain, which generates a new L1’s SSTFile. Lastly,
RocksDB synchronously writes the new SSTFile and removes
the three old SSTFiles from the underlying SSD.

2.2 SSD Internal Tasks and Challenges

Internal DRAM flush. Since flash writes are slower than its
reads by order of magnitude, high-performance SSDs employ
a large size of internal DRAM, and their firmware buffers
the writes [25–27, 50]. For example, our baseline NVMe
hardware has 3GB DRAM buffering/caching data. These
buffered writes are periodically flushed to the storage backend
with a specific access pattern in favor of increasing bandwidth.
Thus, even though there is no write at all for a certain period,

USENIX Association 2022 USENIX Annual Technical Conference    757



0 2 4 6p0
p90
p99

p99.9
p99.99

CD
F

Latency (ms)

 UserDB  ZippyDB
 YCSB-A   YCSB-B
 YCSB-D  YCSB-F

55
%

69
%

75
%

87
%

92
%

59
%

60
%

59
%

54
%

54
%

54
%

52
%

50
%

52
%

50
%

48
%

50
%

48
%

47
%

48
%

p5
0

p9
0

p9
9

p9
9.

9
p9

9.
99

0

25

50

75

100

La
te

nc
y 

Br
ea

kd
ow

n

 S
Q

L
R

oc
ks

D
B

Ke
rn

el
St

or
ag

e

(a) CDF. (b) Breakdown. (c) Time series.
Figure 3: Long tail analysis.

(a) Compaction. (b) Flush.
Figure 4: Limitations internal tasks.

draining the data (buffered previously) can interfere with
incoming read operations. Figure 2a shows the read latency
interfered by SSD’s internal flush; we write a block (64MB) to
SSD before the test and only issue 4KB-sized read requests (in
sequential) without any writes for the test period. As shown in
the figure, the baseline NVMe hardware suffers from massive
latency spikes, which are higher than the typical latency by
7.75× at most, and its latency significantly fluctuates during
the read-only time. This is because the writes introduced by
the internal flush stall the reads until their service completes.

Note that, since the internal flushes are solely managed by
the firmware, host software components cannot unfortunately
control the latency consistency of reads. To remove the latency
fluctuation analyzed above, it requires a tight collaboration
between the host and firmware.
Garbage collection. Flash also has unique device-level char-
acteristics such as erase-before-write and asymmetric I/O
granularity for read/write and erase [51–54]. Because of this
nature, SSD’s firmware writes incoming data into a free block
(erased in advance) instead of its actual location. While this
address remapping (translation) for out-of-updates makes
flash compatible with the existing block devices, it needs
to perform a garbage collection (GC) if there is no free block
[31, 38, 55, 56]. Since GCs are performed on the basis of a
flash block containing hundreds of pages, the valid data resid-
ing in the target block(s) should be safely migrated into a new
location of a block. This internal task introduces block erase
operations even longer than the flash writes and many read-
s/writes for the migration. It exhibits long latency and stalls
many incoming requests before completing the task. Figure
2b shows the read latency while performing GCs (from 195
sec). In this test, reads exhibit sustainable latency (16.2 us),
but their latency sharply increases and reaches as high as 9.8
ms once GCs begin.

While these internal tasks significantly hamper the read
performance, all their activities are essential to secure more
available rooms for further requests and manage the reliability
of the storage backend, which cannot be simply removed or
scheduled by host-side software modules.
Read-reclaiming. Flash is very well optimized for read ser-
vices at the low-level [57–60], but a read-only scenario can
also introduce additional data migration and block erase oper-
ations in certain circumstances. Specifically, when one keeps

reading out a set of pages in a block without an erase, it
stresses the block even without any writes and affects all data
residing in the block together. This read disturbance unfor-
tunately increases error rates often beyond the coverage that
parity-check codes (e.g., ECC [61–64] and LDPC [65–68])
can correct [69–72]. To address the read disturbance issue,
the underlying firmware needs to periodically reset (erase)
the block(s) being intensively touched over the past period.
Once the firmware erases the block, its internal state returns
back to the nominal state, such that the block can endure the
stress imposed by subsequent reads again. To erase the block,
it requires reading the existing data on the target and copy-
ing all of them to a new block. As shown in Figure 2c, this
internal task, called read reclaiming [69], can deteriorate the
read performance seriously. In this test, we intensively read
a set of specific blocks four times as a precondition and read
them again in a random I/O pattern. One can observe from
the figure that the read latency affected by the read reclaim-
ing reaches as high as 2.5 ms, which is 32× longer than the
typical cases.

Even with the ideal situation that only utilizes the under-
lying SSDs as read-dedicated storage, this long-tail latency
imposed by the read reclaiming are inevitable, and thus, it is
necessary to devise new interface and firmware assistance to
get them off the critical path in LSM KV’s read services.

3 Motivation and Related Work

3.1 Long-tail Latency on Reads
Figure 3a shows the cumulative distribution function (CDF) of
Get latency for diverse RockDB usage scenarios of Facebook
[12, 73] and Yahoo [74]. In this evaluation, we use RocksDB
6.23 [1] on a baseline 1.92TB NVMe hardware that we will
modify in Section 4.1 and use for all the remaining tests.
This baseline employs 3GB internal DRAM and includes 64
TLC NAND flash (64 layers), which are connected to eight
different channels. The detailed environment descriptions are
the same as what we used for Section 7.
Significance of long-tail latency. Thanks to the low device-
level latency of flash, the nominal performance trend of them
is similar to each other; all their Get latencies are under 200us.
However, the Get latencies reach a few ms from three nine

758    2022 USENIX Annual Technical Conference USENIX Association



(P99, 99.9th percental), and all their latencies increase com-
pared to the normal Get latency as high as 15.7×. The main
reason why this long-tail latency is observed across all the
RockDB usage scenarios that we test does not stem from
database or kernel computation but heavy storage accesses.
To be precise, we also decompose the execution time of
UserDB, Facebook’s social graph data processing workload
[12, 73], into Get’s storage latency (Storage), client compu-
tation times (App), database latency (RocksDB), and kernel
latencies (Kernel). As shown in Figure 3b, the computation
of LSM KV’s software stack does not sit on a critical path in
the Get long-tail latency, but Storage takes 87% of the total
execution time thereby dominating Get service times at the
tails. While the computation of latency of software stack is
well balanced with Storage (taking half of the total execu-
tion time), LSM KV’s heavy I/O requests sharply increase the
faction of Storage when it should reclaim Memtables and/or
SSTFiles.
Internal tasks’ performance impacts. Figure 3c shows a
time series analysis for the UserDB workload and compares
its read characteristic with an ideal Get-only workload, which
exhibits I/O patterns the same as UserDB but removes all Put
queries from its execution. One can observe from this analysis
that, when RocksDB flushes Memtable (at 596K index), the
baseline read latency increases from 147us to 2.97ms, and
the read latency does not return for a while. Similarly, once
RocksDB begins to compact SSTFiles, it introduces many
reads and writes to merge KV pairs, which unfortunately
block incoming Get requests thereby exhibiting 30× longer
latency than the normal cases. Note that the latency of reads
being performed in parallel with WAL is not that significant
(compared to flush and compaction), but WAL also makes the
Get latency 10.6× worse than the usual cases.

3.2 Scheduling Internal Tasks

Challenges of system-level approaches. There are many
studies [4, 5, 7–10, 15, 16, 18–20, 22–24] that try to address
the performance degradation imposed by RocksDB’s internal
tasks, such as TRIAD [22], PebblesDB [23], and SILK [24].
There are variant optimization points across these approaches,
but their proposals in general reschedule or delay flush and
compaction into idle or other available times, thereby remov-
ing the long-tail latency. While these system-level approaches
can hide the read/write overhead imposed by LSM KV’s in-
ternal tasks to some extent, they cannot remove the long-tail
latency on Get services because of unavailability to handle
SSD’s internal tasks and side-effects raised by their schedul-
ing. Specifically, postponing the compaction removes the
suspending time for incoming Put services, but it enforces
LSM KV’s L0 accumulatively accommodate SSTFiles with-
out a data migration to L1, thereby increasing the Get latency.
Figure 4a compares two tail latency trends on Gets, each be-
ing served with and without compaction rescheduling. The

Get tail latency is sustainably managed when RocksDB com-
pacts SSTFiles at the right time (lower than 1 ms), but its
tail latency served with the delayed compaction keeps in-
creasing and reaches 3.1 ms, which is 3.6× longer than the
no-scheduling case of RockDB compactions. This is because
Get services require searching the appropriate values (paired
with input keys) from the beginning to the end of RocksDB’s
L0. Since the SSTFiles on L0 are not sorted, the KV searching
introduces many outstanding reads thereby increasing the tail
latency.

On the other hand, as shown in Figure 4b, the delayed
flush of RocksDB also increases the Get tail latency as high
as 27.4×. The reason why the Get tail latency looks more
severe than the rescheudled compaction is that delaying
Memtable flush gobbles up all the in-memory spaces, allo-
cated to Memtable management. Thus, the writes of RocksDB
are all stalled until it secures a Memtable, which in turn makes
the read service suspended seriously.
Device-level latency determinism and limits. The afore-
mentioned SSD’s internal tasks are well-known challenges to
exhibit serious performance drop and long latency [31–44, 75–
77]. Since the internal tasks are invoked in an arbitrary time
period, they render many productions in diverse computing
domains difficult to deploy latency-critical applications in the
environment. Recently, the standard NVMe protocol intro-
duces the predictable latency mode (PLM) interface in an
attempt to make the latency predictable and deterministic.
PLM proposes that SSDs operate in either a deterministic
performance window (DTWIN) or a non-deterministic perfor-
mance window (NDWIN). Based on the NVMe specification
[45], NDWIN is the time period to prepare the next DTWIN.

Note that PLM interface is simply a part of interface proto-
col, which does not enforce specific requirements or design
details for the guarantee of deterministic latency. While this
young interface presents blueprints on how to handle the un-
predictable SSD behaviors in a well-managed manner, PLM
is in practice a just best-effort contract, which only supports
soft latency determinism. For example, we cannot make the
underlying SSD always appropriately work with DTWIN be-
cause SSD’s internal tasks for hiding the flash characteristics
are inevitable to invoke. Even in the ideal case where the
underlying hardware hides all the SSD’s internal tasks with
its maximum efforts, the latency determinism can be easily
broken according to how the host-side LSM KV behaves at
anytime. To support strong latency determinism, it is neces-
sary to have a close collaboration between the host-side LSM
KVs and the underlying storage.

4 High-level View of Vigil-KV

The main goal of this work is to secure an LSM KV system
that has no long-tail latency on Get services to make their
read performance deterministic and consistent. As this strong
latency determinism is infeasible to achieve by scheduling

USENIX Association 2022 USENIX Annual Technical Conference    759



either only LSM KV’s or SSD’s internal tasks alone, Vigil-KV
takes a hardware and software co-design approach. Specifi-
cally, Vigil-KV hardware is designed towards offering basic
scheduling blocks that allow the host to integrate strong la-
tency determinism into the LSM KV. On the other hand, the
software part of Vigil-KV classifies the requests of LSM KVs
at runtime and carefully assigns them to appropriate by fully
utilizing the scheduling blocks that the underlying hardware
provides. This hardware and software co-design approach
can make the latency of client-side Get queries consistently
deterministic and have no long-tail all the time.

4.1 Hardware Support for Fine-Granular Per-
formance Windows

PLM interfaces. As shown in Table 1, Vigil-KV hardware
implements and provides a set of PLM interfaces that allow
the host-side Vigil-KV software to precisely schedule the de-
vice states. The functionalities that our PLM interfaces offer
are largely classified into three: i) PLM setup (PLMConfig()),
ii) NDWIN and DTWIN configuration (PLMWindow()), and
iii) device log queries (GetLogPage()). The table also in-
cludes how the host-side kernel driver can implement those
three semantics using NVMe feature commands. For exam-
ple, a LSM KV system’s kernel driver can turn on or off the
target storage’s PLM mode by configuring a feature ID (PLM
configuration) and enable flag (on/off) through NVMe’s set-
feature [45]. In similar way, it can simply configure the
performance window of Vigil-KV hardware using PLMWin-
dow(). To query the device state/condition information (that
we will reveal in Section 5.2), the LSM KV system can com-
municate with Vigil-KV hardware through GetLogPage()
simply returning the results into 512B data package, called a
log page. Based on a given performance window information,
Vigil-KV hardware prioritizes NDWIN to perform SSD’s in-
ternal tasks as much as possible, and it guarantees that the
internal tasks are not scheduled in DTWIN. As discussed
in Section 3.2, SSD’s internal tasks cannot permanently be
postponed, we regulate the longest-serving time of DTWIN
and reports it to the host through GetLogPage. In addition,
Vigil-KV hardware defines the minimum time of NDWIN
that should be secured to handle SSD’s internal tasks and
exposes the configuration time to the host via the log page.
Thus, Vigil-KV software can utilize this information by re-
ferring into the log page to schedule performance windows
appropriately.
NVM multi-set architecture. To offer a variety of perfor-
mance scheduling options to the host, our hardware also intro-
duces NVM multi-set, which splits the backend storage into
multiple volumes, each being exposed to the host as a sepa-
rate PCIe physical function. Vigil-KV hardware then enables
the PLM interface to each physical function, called NVM set
and makes them work independently by allocating different
internal logic/cores across the sets. This NVM multi-set archi-

PLM
semantics

NVMe
cmd

Field name
OP

CODE
Feature ID
(CDW10)

NVM Set ID
(CDW11)

Feature Enable
(CDW12)

PLMConfig()

Arg1: SetID
Arg2: Enable

Set
Features

PLM
Config

SetID
Enable
(0: Off,
1: On)

PLMWindow()

Arg1: SetID
Arg2: Enable

Set
Features

PLM
Window

SetID
Enable

(0: NDWIN,
1: DTWIN)

GetLogPage()

Arg1: SetID
Get

Features

Return values
Longest-serving time of DTWIN,

Preserved NDWIN, Device lockdown

Table 1: Vigil-KV hardware.

�������

�������

������	


�������

�������

����	�
��

�����������������	�
��

�

�

��

��

� � ��

� �� �

�� � �

��

��

������

Figure 5: Vigil-KV
software.

tecture can grant maximum flexibility to the host-side LSM
KV’s software components, such that they schedule the under-
lying device states (DTWIN and NDWIN) in a finer granular
manner. For example, the LSM KV system can configure
different performance windows within a single NVMe device
by configuring the NVM Set ID of NVMe’s set-feature
(i.e., the codeword 11 of NVMe’s command) differently.

4.2 Software-Defined Strong Latency Deter-
minism for Get services.

Figure 5 shows how Vigil-KV software achieves strong la-
tency determinism by utilizing the finer-granular performance
windows that Vigil-KV hardware provides. It consists of three
major logical components: i) metadata separation, ii) device
state scheduling, and iii) request scheduling.
Managing data, devices, and requests. Vigil-KV software
excludes a physical function from the storage volume and in-
ternally allocates it for metadata management, called meta-set.
PLM of this meta-set is disabled by PLMConfig(), and Vigil-
KV software isolates all WAL and journaling activities from
LSM KV’s regular queries by forwarding the metadata-related
requests to the meta-set. This metadata separation allows the
kv-sets not to be interfered with by the heavy internal writes
for crash consistency management, such that our device state
and request scheduling mechanisms can mainly focus on of-
fering strong latency determinisms for Get services.

On the other hand, the remaining physical functions that
Vigil-KV hardware exposes are allocated to handle incom-
ing LSM KV’s query requests at the kernel-level, which is
referred to as kv-sets. Vigil-KV software then schedules
all the kv-sets device states (i.e., performance windows) to
make n− 1 kv-sets be in DTWIN at any given time (using
PLMWindow()) while allowing NDWIN to be granted to the
underlying kv-sets in a fairly scheduled aspect (round-robin).
n is the total number of physical functions that Vigil-KV can
assign to the SSTFile management. Vigil-KV software classi-
fies LSM KV’s internal tasks and client requests at runtime
and schedules them differently by knowing the underlying de-
vice’s configured performance windows. Specifically, all the
client requests are scheduled to be served from the n−1 kv-
sets, configured with DTWIN. In contrast, Vigil-KV software

760    2022 USENIX Annual Technical Conference USENIX Association



(a) Partitioning. (b) Prototype.

Figure 6: Vigil-KV hardware prototype.

schedules all the requests coming from LSM KV’s internal
tasks with a kv-set, scheduled by NDWIN (if there is), but
regulates the number of the internal tasks’ requests not to
make NDWIN be too much long, thereby having always n−1
kv-sets configured with DTWIN. We will explain the details
of this device state and request scheduling in Section 6.2.
Data reconstruction for NDWIN. Vigil-KV pushes all the
LSM KV’s and SSD’s internal tasks into NDWIN, which are
scheduled across different kv-sets in a round-robin manner.
While handling requests over NDWIN is essential for both
the LSM KV and SSD, the client requests, particularly Get
services, targeting the kv-set scheduled with NDWIN can be
blocked, thereby exhibiting the long-tail latency. To address
this, Vigil-KV encodes parity bits and writes them with inter-
nal tasks at NDWIN. Specifically, when Vigil-KV stores an
SSTFile, it splits the file into multiple chunks and stripes those
chunks across kv-sets at NDWIN. Since we ensure that there
are n−1 kv-sets configured DTWIN at any given moment,
Vigil-KV reads out the data from other kv-sets, reconstructs
the original data, and serves them without touching the ND-
WIN kv-set. This data reconstruction inspired by emerging
“array-level” memory and storage techniques [48, 78–81] can
obviously remove the long tail latency on Get services, but
its reconstruction time can increase the average latency com-
pared to ideal storage making all kv-sets DTWIN consistently.
Thus, Vigil-KV also minimizes NDWIN to avoid unnecessary
data reconstruction at the physical function level. Note that,
as the parity bits are generated per chunk (not per SSTFile) in
our scheme, it does not need to recalculate the parities after
compaction. The details of this technique and implementation
will be described in Section 6.2.

5 Hardware Prototype and Characterizations

5.1 Enabling PLM with NVM Multi-Sets
Partitioning an SSD. Modern SSDs employ many flash
packages, which are connected to multiple embedded cores
through multiple memory buses, called channels. All flash
packages per channel are managed by a specific micro-coded
controller, called flash memory controller (FMC). For exam-
ple, our baseline hardware (SSD) contains eight flash pack-
ages, each containing eight flash memory banks, and all of
them are connected to four cores through eight channels and
FMCs. Since each FMC manages the underlying flash pack-

�����

����	
���

�����

�	���������

�����

����	
���

����� �����

�

�

�

�

�

�

����

����	

�

�

�

�


����

���������

���

������

��		��

�

�

�

�

	

�

8KB
128KB 4MB

128MB
5

10
15
20

D
ev

ic
e 

Lo
ck

do
w

n

Written Data

(m
s)

max=
20ms

0 2 4 6 810

(a) Firmware. (b) Device lockdown.

Figure 7: PLM and its constraint.

ages in a self-governing manner, we modify the baseline hard-
ware to partition the single storage space into multiple spaces.
Specifically, as shown in Figure 6a, we allocate each core to
every two FMCs and make all the cores work independently
as a (separate) physical function. As each physical function
should not interfere with each other, we also evenly split the
internal DRAM space into multiple spaces, each being allo-
cated to a different physical function. Figure 6b shows our
prototype of Vigil-KV hardware. There are four physical func-
tions, each being able to be indicated by a different identifier
from the host (cf. Table 1’s NVMSet ID). Flash firmware is in-
stantiated per core, such that a physical function performance
is not interfered with by other physical functions.
Integrating PLM. To implement DTWIN, each firmware
of Vigil-KV hardware employs multiple queues, each being
associated with the host command control and internal task
management (Figure 7a). Specifically, the internal job queue
(IJQ) is dedicated to a firmware module that manages address
translation while legacy I/O queues (LIQ) are allocated to the
firmware part that manages the host (NVMe) interface. The
requests in Vigil-KV hardware can be therefore classified into
legacy and internal tasks and served differently using IJQ and
LIQ. Specifically, if a physical function is configured with
DTWIN (using PLMWindow()), our firmware only handles
the requests coming from LIQ and suspends all the requests
of IJQ in both foreground and background. This device can
immediately serve the incoming (client) read requests without
an interruption of SSD’s internal tasks. However, the firmware
cannot suspend the requests of IJQ if there is no room, which
enforces the host schedule DTWIN appropriately. We will
explain this constraint in detail shortly.

5.2 PLM Constraint and Behavior Analysis
DTWIN/NDWIN conditions. While resource partitioning
and queue isolation (IJQ/LIQ) can remove the read latency
spikes imposed by SSD’s internal tasks, unfortunately, mak-
ing deterministic latency consistent is not that simple; it
needs a strong collaboration with the host. First, read ser-
vices on DTWIN suffer interference from a write, which was
buffered in a previous NDWIN state. To eliminate this inter-
ference, Vigil-KV’s firmware explicitly flushes the internal
buffer before jumping into DTWIN and disables the buffer
for further writes in DTWIN. Note that offering DTWIN with
fewer restrictions is the mission that our hardware targets to

USENIX Association 2022 USENIX Annual Technical Conference    761



(a) vs. Baseline (b) Fair-scheduling. (c) Isolation.

Figure 8: Performance characterization of prototype.

achieve, but it should not lose any data during I/O services
with DTWIN. Thus, it is necessary to clear the internal buffer
and bypass it before DTWIN and in the middle of DTWIN,
respectively. During the internal buffer flush, the host should
not further write data in order to clearly wipe it out, which
is called device lockdown condition. Figure 7b analyzes the
device lockdown times varying based on how much data were
written in the previous NDWIN. All the workloads that we
tested [12, 74] write tens of MB during NDWIN. it is suffi-
cient for the host to hold the data (if there is) by under 20
ms. Similarly, when there is a write on DTWIN, our hardware
returns the performance window from DTWIN to NDWIN
in order to guarantee strong durability and consistency of the
written data. The host therefore makes sure that there is no
write on DTWIN, called DTWIN’s write-free condition.

DTWIN must also not hurt the current level of reliability
management that the existing flash firmware provides. Specif-
ically, the underlying flash media can be stressed only with
reads even though there is no write or internal task because of
the read disturbance issue (Section 2.2). Thus, Vigil-KV hard-
ware regulates the most extended time window for DTWIN,
called maxDTWIN, by considering the worst case where the
heavy reads on a specific block can corrupt all the page data
therein. Similarly, NDWIN should be continued for a cer-
tain level of the time duration, called minNDWIN, which is
the shortest time to complete SSD’s internal tasks (data mi-
gration and block erases) and the accumulated requests in
IJQ during maxDTWIN. Obviously, these maxDTWIN and
minNDWIN periods are strongly correlated because IJQ is
limited to queue SSD’s internal tasks. By considering this,
the host should schedule DTWIN and NDWIN fairly, called
fair-scheduling condition. Based on preliminary profiles, we
configure maxDTWIN and minNDWIN as 60 and 4 seconds,
respectively.

Note that all these information such as the device lockdown
time, maxDTWIN, and minNDWIN are exposed to the host
through GetLogPage() (cf. Table 1).
Performance characterization and validation. Figure 8a
compares the read latency trends between the baseline device
and our Vigil-KV hardware prototype. While the baseline
device exhibits multiple latency spikes (∼402us), the reads
with Vigil-KV hardware are all served by 74us, on average,
and it is guaranteed for the latency to be under 200us. Note
that, when we change DTWIN to NDWIN by calling PLMWin-
dow() at 128 seconds, the read latency reaches as high as 736

����������

�	
 �	
 �	


������������

�� ��� ���

���

�
�����

�������

������

�	�	�������	���

����

�������	��

����

���
�� ��� 

��
�����!��

��"����	���

�	�	��������

������

��� ��� ���

	� 	� 	


����	


Figure 9: Implementation of Vigil-KV software stack.

us as SSD’s internal tasks are scheduled in that performance
window correctly. When we schedule DTWIN and NDWIN
one by one (by satisfying the fair-scheduling), as shown in
Figure 8b, the performance behaviors mentioned above are
all guaranteed across multiple DTWINs. At the same time,
the hardware is busy handling the accumulated internal tasks
in NDWIN. Lastly, Figure 8c compares the baseline device
that collocates reads and writes within a single storage space
and Vigil-KV hardware isolating the interference across mul-
tiple physical functions. One can observe from this figure that
the read latency of the baseline device severely fluctuates and
reaches as high as 2 ms. In contrast, the read latency on a phys-
ical function of Vigil-KV hardware is not interfered with by
the writes heading to other physical functions even though we
turned off the PLM interface for the physical function. This is
because we partition each physical function with completely
different resources. Note that Vigil-KV software utilizes this
performance isolation for metadata management, which can
make kv-sets free from managing the write-free condition
in cases of writing WAL and journaling to the underlying
storage.

6 Details of Vigil-KV Software

While there are constraints for PLM management, Vigil-KV
hardware opens the opportunity to schedule performance win-
dows across different physical functions being mapped to
NVM sets in a finer granule manner. Vigil-KV software sep-
arates LSM KV’s internal tasks, including metadata man-
agement from client Get services, and schedules them with
NDWIN having SSD’s internal tasks together. In addition, the
software part of Vigil-KV reconstructs data in cases where it
cannot serve the data because NDWIN services, which can in
turn allow LSM KVs to have DTWIN consistently, providing
strong latency determinism.

6.1 Vigil-KV Stack Implementation

Figure 9 shows the implementation of our Vigil-KV soft-
ware stack. RocksDB connects Vigil-KV hardware through
existing file system interfaces and performs SSTFile-related
services on /dev/kv. Underneath the file systems, we locate
our Vigil-KV driver operating with two kernel threads, reqd
and devd, each scheduling block I/O (bio) requests and our
hardware’s device states, respectively. Vigil-KV driver maps

762    2022 USENIX Annual Technical Conference USENIX Association



��������

������ ������ ���	
���

���

���

���

���

���

���

����

��������	��� �
������

��������	��� �
������

����������������������

����������������������������������� ����

	�������

	��������� �

�����������

���	
���������������������������������������������������
����������������������������������������������������������������������������

����������������������������������������������������������������
��������������������������
��������������������������

�������
�������
������� ����

������
	����������

�

�

�

�

�

�

�

�

�

��������

���������	�
��

���	
���������

�

�

�

�

�

�

�

�

�

	

�




�

�

�

	






�

�

�

����

�������	
���������


�
�������

�������


�����
��


����
	����

�� �� �� ��

(a) Timeline. (b) Equations. (c) Under/Overflow. (d) Dynamic schedule. (e) Example.

Figure 10: Performance window management.

multiple physical functions that Vigil-KV hardware exposes
to different NVM sets (meta-set and kv-sets) at the system’s
initialization. reqd is similar to Linux existing multiple de-
vice md driver for striping data chunks and bios across differ-
ent kv-sets, but it schedules them being aware of underlying
device states. Specifically, reqd ensures the scheduled bio re-
quests satisfy the write-free condition on DTWIN. In addition,
it makes sure that the client’s read requests are not stalled due
to LSM KV’s internal tasks by performing the data reconstruc-
tion on-the-fly. On the other hand, devd schedules the device
states for kv-sets by considering the fair-scheduling condition
and device lockdown time. More details of this device state
scheduling will be explained shortly.

To make read latency predictable, the Vigil-KV driver also
bypasses Linux page cache and block layer, which can make
the read latency fluctuate and/or be difficult to manage to
some extent. For example, Since kv-sets are only managed
internally, the bio structures for kv-sets (e.g., logical block
address and offsets) are different from the bio requests that the
page cache manages. Instead, the Vigil-KV driver employs an
internal buffer, called plm_cache, which buffers bio requests
of kv-sets in a form of Linux stripe list. The plm_cache size
can be configured by the user as a kernel parameter at the boot
time. When reqd schedules the including bio requests to un-
derlying kv-sets, it thus uses stripe requests. Since the Vigil-
KV driver bypasses the page cache, it also offers plm_sync
system call (a variant of file system’s fsyc) to RocksDB. This
plm_sync makes sure that the Vigil-KV driver completely
flushes plm_cache before Memtables, WAL, and SSTFiles
are deleted because of LSM KV’s internal tasks. The reason
why our Vigil-KV driver bypasses the block layer and directly
communicates with the nvme driver is that the block layer’s
bio merging and ordering can break determinism. For exam-
ple, the requests of LSM KV’s internal tasks are scheduled for
NDWIN, but they can be issued at DTWIN by the block layer.
Note that as reqd schedules LSM KV’s internal tasks and
client requests differently, it is required to deliver the priority
information from LSM KV to the Vigil-KV driver. To this end,
we have a minor modification on RocksDB and journaling
block device daemon (jbd2), which can be easily applied to
other LSM KVs. When RocksDB creates background threads,
it calls a system call, ioprio_set that configures I/O priority
as ‘internal task’. ioprio_set delivers the priority by storing
its information into io_context of process control block,

task_struct. Since Get queries and WAL are managed by
all the same thread of RocksDB, we modify WriteImpl()
such that it configures I/O priority as ‘WAL’ by calling io-
prio_set before performing WriteToWAL(). Journaling is
also classified by ioprio_set before committing a transac-
tion (e.g., jbd2_log_do_checkpoint()).

6.2 Performance Window Management

Device state scheduling. As shown in Figure 10a, devd
schedules DTWIN and NDWIN to make sure that there are
always n−1 kv-sets, configured with DTWIN. Therefore, all
the client requests are served from DTWIN or reqd’s data
reconstruction. When devd schedules performance windows
to meet the fair-scheduling and device downtime constraints,
there are two more technical challenges. Even though reqd
reads the data from kv-sets configured with DTWIN, the read
request can be delayed because of the outstanding reads issued
previously and not yet completed. These delayed reads can
be served at NDWIN, which cannot in turn offer the strong
latency determinism. Similarly, the writes issued to NDWIN
can be practically served at DTWIN because of the outstand-
ing writes as well as the time delay caused by SSD’s internal
tasks to some extent. This situation is less desirable than the
former as it can break the write-free condition on DTWIN.

We classify DTWIN and NDWIN more specifically by
considering those two unavailabilities further. DTWIN is
split into ADT (available DTWIN) and UDT (unavailable
DTWIN), and similarly, NDWIN is also separate into avail-
able/unavailable NDWIN (AND/UND). Since UDT and UND
can have such outstanding operations on reqd, devd sched-
ules NDWIN and DTWIN with a time unit as long as
nonDTWIN. nonDTWIN includes UDT, AND, UND, and
the device lockdown time windows (Lockdown), and each
of the windows should satisfy the condition described by
Equations 10b. devd profiles kv-sets’ bandwidth and then
estimates UDT and UND by dividing the total amount of data
volume for the outstanding requests with the read and write
bandwidth of kv-sets, respectively. Note that, in contrast to
the read bandwidth, the write bandwidth on DTWIN can vary.
We thus use the worst-case bandwidth of writes for the UND
estimation.
Dynamic adjustment for NDWIN. When devd controls per-
formance windows of the underlying kv-sets per nonDTWIN

USENIX Association 2022 USENIX Annual Technical Conference    763



(=ADT), there are two challenges that it needs to address as
shown in Figure 10c: NDWIN underflow and overflow. In
cases where the amount of internal tasks of LSM KV and/or
SSD at NDWIN, reqd wastes computation for data recon-
struction and can increase the read latency when there is
heavy read traffic; we observed that, when one increases QPS
(queries per second) from 60K to 150K, the read latency in-
creases by 26%, on average. While minimizing the data recon-
struction involvement (NDWIN) is the matter, NDWIN can
break determinism if too many the internal tasks are issued.
We also preliminary evaluated all our workloads and observed
that 48.3% of compaction scheduled at NDWIN (excluding
UDT, UND, and Lockdown) are executed at DTWIN.

As shown in Figure 10d, devd adjusts NDWIN at runtime
to address the underflow and overflow situation. Specifically,
devd begins scheduling NDWIN (per ADT) by setting it as
long as minNDWIN to minimize the involvement of reqd’s
data reconstruction and spreads buffered bio requests (stored
on plm_cache) across different minNDWIN. If the outstand-
ing requests are accumulated more than a threshold, it maxi-
mizes NDWIN to serve LSM KV internal tasks’ I/O as fast as
possible. For example, as shown in Figure 10e, devd exam-
ines reqd’ queues containing outstanding bio requests at the
time epoch 1 (t1). In this case, all the outstanding requests
are served/completed before t2. However, since the requests
associated with LSM KV internal tasks at t3 are not resolved
by t4, devd maximizes NDWIN. Note that, Vigil-KV applies
dynamic NDWIN adjustment for plm_cache by using the
user-defined memory limits as adjustment threshold.

7 Evaluation

7.1 Experimental Setup

Prototype and environments. We implement a prototype
of Vigil-KV hardware on a 1.92TB datacenter-scale NVMe
SSD for research purposes. Vigil-KV hardware employs four
physical functions, and they equally divide the hardware re-
sources such as 3GB LPDDR4 DRAM, eight channels, and
64 TLC NAND flash dies into four. Note that the baseline
hardware is not that different from the Vigil-KV hardware. It
has hardware resources the same as Vigil-KV hardware, but

Short
description.

Get
(%)

Put
(%)

Get
$ hit (%)

Flush
write (GB)

Compaction
write (GB)

FB

UserDB All social graph actions 54 46 25 2.4 8.8
ZippyDB Read ObjStorage meta 42 58 86 8.9 17.5

Y
C

SB

A Log user action 66 34 17 3.6 19.2
B Update/read photo tag 95 5 23 0.2 1.3
D Read latest record 95 5 83 0.5 1.8
F Update user record 74 26 45 3.1 15.6

Table 2: Important characteristics of evaluated workloads.

it only employs a single physical function. We perform the
evaluation on a 12-core AMD Ryzen 9 5900X, 96GB DRAM,
and Vigil-KV hardware by running Vigil-KV software im-
plemented on RocksDB 6.23.0 and Linux 4.19.91. For the
evaluation, we set the size of plm_cache as 2GB.
Workloads. We evaluate six workloads that use an LSM KV
as their backend storage engine. (two from Facebook [12] and
four from Yahoo [74]) For social network services, Facebook
uses UserDB and ZippDB workloads that serve social graph
data and object (e.g., image or video) storage metadata as a
form of key-value, respectively. The key-value cache hit ratio
of UserDB is only 25% due to its irregular key access pattern,
whereas that of ZippyDB is 86% because of its read-latest
characteristics of social contents. Yahoo also provides repre-
sentative LSM KV access patterns of various cloud services,
such as write-intensive (YCSB-A), read-intensive (YCSB-B),
read-latest (YCSB-D), and read-modify-write intensive (YCSB-
F). In the table, also analyze the amount of writes caused by
internal tasks (compaction) during our evaluations.
Configurations. We evaluate six different LSM KV hardware
and software combinations.

• Base [1]: the representative conventional LVM KV (e.g.,
RocksDB) with the baseline hardware.

• SILK [24]: the state-of-the-art software supports of LSM
KV with the baseline hardware.

• PLM: Vigil-KV hardware with a simple driver, which utilizes
the PLM interfaces (cf. Section 4.1).

• I-PLM: based on PLM, we add the metadata isolation support
(cf. Section 6.1).

• R-Vigil: based on I-PLM, we add the device state schedul-
ing support (cf. Section 6.2).

• O-Vigil: based on R-Vigil, we add the dynamic non-
determinism scheduling support (cf. Section 6.2).

(a) p99.9 tail latency.
Figure 11: Tail latency.

(a) Base and SILK. (b) PLM and I-PLM. (c) R-Vigil. (d) O-Vigil.
Figure 12: Time series analysis of representative workload (UserDB).

764    2022 USENIX Annual Technical Conference USENIX Association



0 3 6 9
p0

p90
p99

p99.9
p99.99

0 2 4 6
p0

p90
p99

p99.9
p99.99

0 1 2 3
p0

p90
p99

p99.9
p99.99

Get Latency (ms)

UserDB YCSB-A YCSB-D

Get Latency (ms) Get Latency (ms)

 Base  SILK  PLM  I-PLM  R-Vigil   O-Vigil

UserDB
ZippyDB

YCSB-A
YCSB-B

YCSB-D
YCSB-F

0

100

200

N
or

m
al

 L
at

en
cy

 (u
s)  Base  SILK  PLM

 I-PLM  R-Vigil   O-Vigil

(a) UserDB. (b) YCSB-A. (c) YCSB-D.
Figure 13: CDF graphs.

(a) Average latency.
Figure 14: Normal cases.

Since Vigil-KV adopts the concept of array-level memory
and storage techniques making three NVM sets as a single
storage volume, we use conventional multiple device (md)
driver for Base and SILK as well to satisfy the fair perfor-
mance comparison among the configurations that we tested.

7.2 Long-tail Latency Analaysis

We analyze the long-tail latency on Get services by executing
all the Facebook and Yahoo workloads atop the six configura-
tions. As shown in Figure 11, UserDB, YCSB-A, and YCSB-F
show longer p99.9 tail latency than others due to their high
Put service ratio, which increases the LSM KV and SSD in-
ternal tasks. Meanwhile, ZippyDB and YCSB-D further exhibit
shorter tail latency than YCSB-B thanks to their high key-value
cache hit ratio, which can reduce the number of reads inter-
fered with by internal tasks. To understand how six different
configurations impact long-tail latency, Figure 12 analyzes
time series by selecting UserDB as a representative workload.
It shows both storage read latency (left axis with black line)
and write throughput (right axis with red line), which allow us
to infer how much LSM KV and SSD internal tasks interfere
with Get queries and when the internal tasks occur.
Base vs. SILK. As shown in Figure 11, SILK only reduces
5% of the tail compared to Base, on average. Even though
UserDB can capture the user idle behaviors while YCSB work-
loads cannot, still there was not an enough idle time to sched-
ule LSM KV internal tasks as shown in Figure 12a. Thus, the
delayed compaction starts to interfere with Get services from
2600 seconds in SILK, and the storage read latency spikes.
SILK vs. PLM. PLM experiences the tail similar to Base (5.4%
longer than SILK), which indicates that Vigil-KV hardware
cannot guarantee latency determinism without Vigil-KV soft-
ware. As shown in the top of Figure 12b, Vigil-KV hardware
is in NDWIN most of the time (red background) since WAL
or journaling breaks the DTWIN’s write-free condition.
PLM vs. I-PLM. Therefore, I-PLM isolates WAL and jour-
naling to dedicated meta-set and securing NDWIN (white
background) as shown in the bottom of Figure 12b. Since
UserDB has a higher Put service ratio than others, it experi-
ences 24.4% shorter long-tail latency compared to PLM, while
others achieve 12% shorter long-tail latency, on average.
I-PLM vs. R-Vigil. As shown in Figure 12c, R-Vigil

schedules NDWIN across three kv-sets and guarantees latency
determinism as much as possible by reconstructing reads
with DTWIN kv-sets. Thus, it can reduce long-tail latency by
48.2% compared to I-PLM, on average. As shown in Figure
11, especially for high Put service workloads (YCSB-A and
YCSB-C), they exhibit 70% shorter long-tail latency than I-
PLM. However, R-Vigil still exhibits long-tail latency due to
NDWIN overflow (cf. 736 ∼ 809 seconds in Figure 12c).
R-Vigil vs. O-Vigil. Therefore, O-Vigil strongly guar-
antees the latency determinism with out dynamic NDWIN ad-
justment. O-Vigil reduces long-tail latency by 33.5% than R-
Vigil, on average, while high Put service workloads (UserDB,
YCSB-A and YCSB-F) can achieve shorter long-tail latency
59%. As shown in Figure 12d, O-Vigil dynamically sched-
ules LSM KVs internal tasks.

Note that O-Vigil not only reduces the long-tail latency
of the Base by 3.19×, on average, but also guarantees under
500us Get service latency across all the workloads.

7.3 Analysis of Different-level Latency

Tail latency distribution. To understand the impact of Vigil-
KV for the different levels of tail-latency, we analyze the CDF
of Get latency for three representative workloads, such as
UserDB, YCSB-A, and YCSB-D. Since UserDB and YCSB-A are
high Put service ratio workloads, the long-tail of Get latency
start from p99 as shown in Figures 13a and 13b. On the other
hand, as YCSB-D has higher Get service ratio workloads and
most of the Get is serviced from the key-value cache, the
long-tail of Get latency start from p99.9 as shown in Figure
13c. Thus, for the YCSB-D workload, O-Vigil achieves 78%
shorter p99.99 long-tail latency than Base, while only 11% of
the long-tail is reduced at p99.9 latency. Not only for YCSB-D,
O-Vigil can further mitigates the p99.99 long-tail latency of
UserDB and YCSB-A by 69% and 94%, respectively.

Note that Vigil-KV can also guarantee the strong latency
determinism (us-scale latency of Get service) more than four
nines long-tail latency (p99.99) as shown in Figure 13.
Normal cases. Since Vigil-KV adds more software supports
than conventional LSM KV, it is important to analyze the Get
service latency of normal cases to check whether Vigil-KV
slows down the average Get latency or not. Figure 14 shows
the average latency of Get services for all the workloads and

USENIX Association 2022 USENIX Annual Technical Conference    765



200 400 600 800
0

250

500

750

M
em

or
y 

U
sa

ge
 (M

B)

Timeline (s)

 RocksDB   PLM Cache

Compaction
Memory limit

Memory Limit (MB)
50 100 200 400 800

1600
0

20
40
60
80

100

Av
g 

La
te

nc
y 

(u
s)

(a) Usage. (b) Limit.

Figure 15: Memory consumption.

configurations, and we observed that Vigil-KV (O-Vigil) re-
duces the average Get latency by 34% compared to Base (not
increases the average Get latency). This is because of two
reasons: 1) Vigil-KV isolates the write I/O traffic of meta-
data (e.g., WAL and filesystem journaling) from the read I/O
traffic of Get service, and 2) Vigil-KV minimizes the data
reconstruction as much as possible. Note that, the reason why
ZippyDB and YCSB-D show shorter average Get latency com-
pared to other workloads is that they have a high key-value
cache hit ratio (which is not related to Vigil-KV solutions).

7.4 Memory Consumption and Scan Service
Time series analysis. Figure 15a shows memory consump-
tion of application-level (e.g., RocksDB’s Memtable) and
kernel-level (e.g., Vigil-KV driver’s plm_cache) during work-
load execution. We select ZippyDB as a representative work-
load since there is a large amount of storage writes by com-
paction internal tasks (cf. Table 2). While RocksDB period-
ically flushes Memtables to the underlying storage to main-
tain a certain threshold (e.g., 64MB) of the application-level
write buffer, Vigil-KV has to cache/buffer write requests until
the target kv-set reaches NDWIN. Thus, the memory usage
of plm_cache increases when LSM KV internal tasks (e.g.,
Memtable flush and compaction) occur. However, Vigil-KV
supports dynamic adjustment for NDWIN being aware of the
memory limits of plm_cache which can regulate the maxi-
mum memory consumption.
Sensitivity test. To understand the impact of plm_cache’s
memory limits to the average latency of Get services, we
perform sensitivity tests by increasing the memory limits from
50MB to 1.6GB as shown in Figure 15b. While extremely low
memory limit (e.g., 50MB) exhibits long normal latency of
more than 80us, a few hundreds of MB plm_cache is enough
to serve normal Get latency without performance degradation.

Note that, although Vigil-KV delays LSM KV internal
tasks until target kv-sets reach NDWIN, it does not increase
memory footprints or degrade the Get latency, unlike prior
studies (e.g., TRIAD [22], PebblesDB [23], and SILK [24]).
Performance with Scan. Vigil-KV mainly considers improv-
ing the performance of Get queries as a first-class citizen.
This is because Get of most large-scale workloads (Facebook
[12] and Yahoo [74]) account for 78% of the total queries in
the workloads that we tested. While Scan in contrast accounts

p
p90
p99

p99.9
p99.99

p99.999

0 1 2
Average p99.90.0

0.2

0.4

0.6

Sc
an

 L
at

en
cy

 (m
s)

 SILK
 O-Vigil

1.6x

Scan Latency (ms)

C
D

F

 SILK
 O-Vigil

4x

(a) SILK vs. O-Vigil. (b) CDF analysis.

Figure 16: Performance analysis of Scan queries.

for 3% of the total queries, its query latency may also be im-
portant for a specific workload such as scanning many posts
in parallel (e.g., YCSB-E).

In this subsection, we compare the latency behaviors of
Vigil-KV (O-Vigil) with those of SILK by evaluating YCSB-
E as the representative of Scan-sensitive workloads (95% and
5% for Scan and Put, respectively). Figure 16a shows the
comparison for the average (p50) and p99.9 latency. Since
RocksDB performs readahead and prefetch in default, the se-
quentially of Scan exhibits many cache hits. Similar to YCSB-
D, this in turn benefits the average latency marginal as Scan
operations of both O-Vigil and SILK from memory than de-
vices in most cases. However, such readahead and prefetch
techniques cannot avoid every I/O request and hide all the
read latency that the underlying SSD exposes. Vigil-KV can
support deterministic latency for such cases, thereby offering
1.6× shorter p99.9 latency of SILK. This performance benefit
becomes more promising as the degree of the long-tail latency
gets higher. As shown in Figure 16b, even though there are
few Put operations, they lead LSM KV internal tasks, which
can make p99.9∼p99.999 tail-latency much longer. Vigil-KV
can remove such long-tail latency with hardware/software
co-designed strong latency determinism, thereby improving
the tail latency by 1.6× ∼ 4×.

8 Conclusion

In this paper, we propose Vigil-KV, a hardware and software
co-designed framework that eliminates long-tail latency by
introducing strong latency determinism into LSM KVs. We
evaluate diverse Facebook and Yahoo scenarios with Vigil-
KV, and our empirical evaluation shows that Vigil-KV can
reduce the tail latency of the baseline KV system by 3.19×
while reducing the average latency by 34% as well.

Acknowledgement

The author thanks to anonymous reviewers for their con-
structive feedback. This work is mainly supported by Sam-
sung (G01200447) and Samsung HiPER. This work is also
in part supported by NRF’s 2021R1A2C4001773, IITP’s
2021-0-00524 & 2022-0-00117, KAIST start-up package
(G01190015), and KAIST IDEC. Myoungsoo Jung is the
corresponding author.

766    2022 USENIX Annual Technical Conference USENIX Association



References

[1] Facebook. Rocksdb: A persistent key-value store for
fast storage environments. https://rocksdb.org.

[2] Sanjay Ghemawat and Jeff Dean. Leveldb. https:
//github.com/google/leveldb.

[3] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael
Stumm. Evolution of development priorities in key-
value stores serving large-scale applications: The
rocksdb experience. In 19th USENIX Conference on
File and Storage Technologies (FAST 21), 2021.

[4] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.
Monkey: Optimal navigable key-value store. In Pro-
ceedings of the 2017 ACM International Conference on
Management of Data, 2017.

[5] Kai Ren, Qing Zheng, Joy Arulraj, and Garth Gibson.
Slimdb: A space-efficient key-value storage engine for
semi-sorted data. Proceedings of the VLDB Endowment,
2017.

[6] Siying Dong, Mark Callaghan, Leonidas Galanis,
Dhruba Borthakur, Tony Savor, and Michael Strum. Op-
timizing space amplification in rocksdb. In CIDR, 2017.

[7] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Har-
iharan Gopalakrishnan, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. Wisckey: Separating keys
from values in ssd-conscious storage. ACM Transac-
tions on Storage (TOS), 2017.

[8] Alexander Conway, Abhishek Gupta, Vijay Chi-
dambaram, Martin Farach-Colton, Richard Spillane,
Amy Tai, and Rob Johnson. Splinterdb: Closing the
bandwidth gap for nvme key-value stores. In 2020
USENIX Annual Technical Conference (USENIXATC
20), 2020.

[9] Yongkun Li, Zhen Liu, Patrick PC Lee, Jiayu Wu, Yin-
long Xu, Yi Wu, Liu Tang, Qi Liu, and Qiu Cui. Dif-
ferentiated key-value storage management for balanced
i/o performance. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21), 2021.

[10] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy
Zwaenepoel. Kvell: the design and implementation of
a fast persistent key-value store. In Proceedings of the
27th ACM Symposium on Operating Systems Principles,
2019.

[11] Yoshinori Matsunobu, Siying Dong, and Herman Lee.
Myrocks: Lsm-tree database storage engine serving face-
book’s social graph. Proceedings of the VLDB Endow-
ment, 2020.

[12] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC
Du. Characterizing, modeling, and benchmarking
rocksdb key-value workloads at facebook. In 18th
USENIX Conference on File and Storage Technologies
(FAST 20), 2020.

[13] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman,
Jens Axboe, Siying Dong, Kim Hazelwood, Chris Pe-
tersen, Asaf Cidon, and Sachin Katti. Reducing dram
footprint with nvm in facebook. In Proceedings of the
Thirteenth EuroSys Conference, 2018.

[14] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael
Stumm. Rocksdb: Evolution of development priorities
in a key-value store serving large-scale applications.
ACM Transactions on Storage (TOS), 2021.

[15] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam,
Sam H Noh, and Young-ri Choi. Slm-db: single-
level key-value store with persistent memory. In 17th
USENIX Conference on File and Storage Technologies
(FAST 19), 2019.

[16] Russell Sears and Raghu Ramakrishnan. blsm: a general
purpose log structured merge tree. In Proceedings of
the 2012 ACM SIGMOD International Conference on
Management of Data, 2012.

[17] Hyeontaek Lim, Bin Fan, David G Andersen, and
Michael Kaminsky. Silt: A memory-efficient, high-
performance key-value store. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, 2011.

[18] Niv Dayan and Stratos Idreos. Dostoevsky: Better space-
time trade-offs for lsm-tree based key-value stores via
adaptive removal of superfluous merging. In Proceed-
ings of the 2018 International Conference on Manage-
ment of Data, 2018.

[19] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, An-
drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Re-
designing lsms for nonvolatile memory with novelsm. In
2018 USENIX Annual Technical Conference (USENIX-
ATC 18), 2018.

[20] Junsu Im, Jinwook Bae, Chanwoo Chung, Sungjin Lee,
et al. Pink: High-speed in-storage key-value store with
bounded tails. In 2020 USENIX Annual Technical Con-
ference (USENIXATC 20), 2020.

[21] Hao Chen, Chaoyi Ruan, Cheng Li, Xiaosong Ma, and
Yinlong Xu. Spandb: A fast, cost-effective lsm-tree
based kv store on hybrid storage. In 19th USENIX
Conference on File and Storage Technologies (FAST
21), 2021.

USENIX Association 2022 USENIX Annual Technical Conference    767

https://rocksdb.org.
https://github.com/google/leveldb.
https://github.com/google/leveldb.


[22] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy
Zwaenepoel, Huapeng Yuan, Aashray Arora, Karan
Gupta, and Pavan Konka. Triad: Creating synergies be-
tween memory, disk and log in log structured key-value
stores. In 2017 USENIX Annual Technical Conference
(USENIXATC 17), 2017.

[23] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. Pebblesdb: Building key-value stores
using fragmented log-structured merge trees. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles (SOSP), 2017.

[24] Oana Balmau, Florin Dinu, Willy Zwaenepoel, Karan
Gupta, Ravishankar Chandhiramoorthi, and Diego Di-
dona. Silk: Preventing latency spikes in log-structured
merge key-value stores. In 2019 USENIX Annual Tech-
nical Conference (USENIX ATC 19), 2019.

[25] Hyojun Kim and Seongjun Ahn. Bplru: A buffer man-
agement scheme for improving random writes in flash
storage. In FAST, 2008.

[26] Ping Huang, Pradeep Subedi, Xubin He, Shuang He,
and Ke Zhou. Flexecc: Partially relaxing ecc of mlcssd
for better cache performance. In 2014 USENIX Annual
Technical Conference (USENIXATC 14), 2014.

[27] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Yang-
Suk Kee, and Moonwook Oh. Durable write cache in
flash memory ssd for relational and nosql databases. In
Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, 2014.

[28] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar.
Dftl: a flash translation layer employing demand-based
selective caching of page-level address mappings. Acm
Sigplan Notices, 2009.

[29] Heeseung Jo, Jeong-Uk Kang, Seon-Yeong Park, Jin-
Soo Kim, and Joonwon Lee. Fab: Flash-aware buffer
management policy for portable media players. IEEE
Transactions on Consumer Electronics, 2006.

[30] Sooyong Kang, Sungmin Park, Hoyoung Jung, Hyoki
Shim, and Jaehyuk Cha. Performance trade-offs in us-
ing nvram write buffer for flash memory-based storage
devices. IEEE Transactions on Computers, 2008.

[31] Arash Tavakkol, Mohammad Sadrosadati, Saugata
Ghose, Jeremie Kim, Yixin Luo, Yaohua Wang,
Nika Mansouri Ghiasi, Lois Orosa, Juan Gómez-Luna,
and Onur Mutlu. Flin: Enabling fairness and enhancing
performance in modern nvme solid state drives. In 2018
ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2018.

[32] Myoungsoo Jung, Wonil Choi, Shekhar Srikantaiah,
Joonhyuk Yoo, and Mahmut T Kandemir. Hios: A
host interface i/o scheduler for solid state disks. ACM
SIGARCH Computer Architecture News, 2014.

[33] Myoungsoo Jung, Wonil Choi, Miryeong Kwon,
Shekhar Srikantaiah, Joonhyuk Yoo, and Mahmut Tay-
lan Kandemir. Design of a host interface logic for gc-
free ssds. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 2019.

[34] Jaeho Kim, Kwanghyun Lim, Youngdon Jung, Sungjin
Lee, Changwoo Min, and Sam H Noh. Alleviating
garbage collection interference through spatial separa-
tion in all flash arrays. In 2019 USENIX Annual Techni-
cal Conference (USENIXATC 19), 2019.

[35] Li-Pin Chang, Tei-Wei Kuo, and Shi-Wu Lo. Real-time
garbage collection for flash-memory storage systems
of real-time embedded systems. ACM Transactions on
Embedded Computing Systems (TECS), 2004.

[36] Pan Yang, Ni Xue, Yuqi Zhang, Yangxu Zhou, Li Sun,
Wenwen Chen, Zhonggang Chen, Wei Xia, Junke Li, and
Kihyoun Kwon. Reducing garbage collection overhead
in ssd based on workload prediction. In 11th USENIX
Workshop on Hot Topics in Storage and File Systems
(HotStorage 19), 2019.

[37] Narges Shahidi, Mahmut T Kandemir, Mohammad Ar-
jomand, Chita R Das, Myoungsoo Jung, and Anand
Sivasubramaniam. Exploring the potentials of parallel
garbage collection in ssds for enterprise storage systems.
In SC’16: Proceedings of the International Conference
for High Performance Computing, Networking, Storage
and Analysis. IEEE, 2016.

[38] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber,
John D Davis, Mark S Manasse, and Rina Panigrahy.
Design tradeoffs for ssd performance. In USENIX An-
nual Technical Conference. Boston, USA, 2008.

[39] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao
Tong, Swaminathan Sundararaman, Andrew A Chien,
and Haryadi S Gunawi. Tiny-tail flash: Near-perfect
elimination of garbage collection tail latencies in nand
ssds. ACM Transactions on Storage (TOS), 2017.

[40] Yu Cai, Saugata Ghose, Erich F Haratsch, Yixin Luo,
and Onur Mutlu. Error characterization, mitigation, and
recovery in flash-memory-based solid-state drives. Pro-
ceedings of the IEEE, 2017.

[41] Yu Cai, Saugata Ghose, Erich F Haratsch, Yixin Luo,
and Onur Mutlu. Errors in flash-memory-based solid-
state drives: Analysis, mitigation, and recovery. arXiv
preprint arXiv:1711.11427, 2017.

768    2022 USENIX Annual Technical Conference USENIX Association



[42] Yu Cai, Yixin Luo, Saugata Ghose, and Onur Mutlu.
Read disturb errors in mlc nand flash memory: Charac-
terization, mitigation, and recovery. In 2015 45th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 2015.

[43] Bryan S Kim, Jongmoo Choi, and Sang Lyul Min. De-
sign tradeoffs for ssd reliability. In 17th USENIX Con-
ference on File and Storage Technologies (FAST 19),
2019.

[44] Keonsoo Ha, Jaeyong Jeong, and Jihong Kim. An in-
tegrated approach for managing read disturbs in high-
density nand flash memory. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 2015.

[45] NVM Express, Inc. NVM express specification. https:
//nvmexpress.org/specifications.

[46] Gyuyoung Park, Miryeong Kwon, Pratyush Mahapatra,
Michael Swift, and Myoungsoo Jung. Bibim: A proto-
type multi-partition aware heterogeneous new memory.
In 10th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage 18), 2018.

[47] Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon
Koh, Nam Sung Kim, Mahmut Taylan Kandemir, and
Myoungsoo Jung. Revamping storage class memory
with hardware automated memory-over-storage solu-
tion. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). IEEE,
2021.

[48] Jie Zhang, Gyuyoung Park, David Donofrio, John Shalf,
and Myoungsoo Jung. Dram-less: Hardware acceler-
ation of data processing with new memory. In 2020
IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2020.

[49] Huaicheng Li, Martin L Putra, Ronald Shi, Xing Lin,
Gregory R Ganger, and Haryadi S Gunawi. loda: A
host/device co-design for strong predictability contract
on modern flash storage. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Princi-
ples, 2021.

[50] Shucheng Wang, Ziyi Lu, Qiang Cao, Hong Jiang, Jie
Yao, Yuanyuan Dong, and Puyuan Yang. Bcw: Buffer-
controlled writes to hdds for ssd-hdd hybrid storage
server. In 18th USENIX Conference on File and Storage
Technologies (FAST 20), 2020.

[51] Stan Park and Kai Shen. Fios: a fair, efficient flash i/o
scheduler. In FAST, 2012.

[52] Yu Cai, Onur Mutlu, Erich F Haratsch, and Ken Mai.
Program interference in mlc nand flash memory: Charac-
terization, modeling, and mitigation. In 2013 IEEE 31st
International Conference on Computer Design (ICCD).
IEEE, 2013.

[53] Xavier Jimenez, David Novo, and Paolo Ienne. Wear
unleveling: Improving nand flash lifetime by balancing
page endurance. In 12th USENIX Conference on File
and Storage Technologies (FAST 14), 2014.

[54] Jeong-Uk Kang, Heeseung Jo, Jin-Soo Kim, and Joon-
won Lee. A superblock-based flash translation layer for
nand flash memory. In Proceedings of the 6th ACM &
IEEE International conference on Embedded software,
2006.

[55] Bryan S Kim, Hyun Suk Yang, and Sang Lyul Min. Au-
tossd: an autonomic ssd architecture. In 2018 USENIX
Annual Technical Conference (USENIXATC 18), 2018.

[56] Myoungsoo Jung, Ramya Prabhakar, and Mahmut T.
Kandemir. Taking garbage collection overheads off the
critical path in ssds. In Middleware 2012 - ACM/I-
FIP/USENIX 13th International Middleware Confer-
ence, Montreal, QC, Canada, December 3-7, 2012. Pro-
ceedings, volume 7662 of Lecture Notes in Computer
Science, pages 164–186. Springer, 2012.

[57] Guanying Wu and Xubin He. Reducing ssd read latency
via nand flash program and erase suspension. In FAST,
2012.

[58] Sungjoon Koh, Changrim Lee, Miryeong Kwon, and
Myoungsoo Jung. Exploring system challenges of ultra-
low latency solid state drives. In 10th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage
18), 2018.

[59] Sungjoon Koh, Junhyeok Jang, Changrim Lee,
Miryeong Kwon, Jie Zhang, and Myoungsoo Jung.
Faster than flash: An in-depth study of system chal-
lenges for emerging ultra-low latency ssds. In IEEE
International Symposium on Workload Characterization,
IISWC 2019, Orlando, FL, USA, November 3-5, 2019.
IEEE, 2019.

[60] Jie Zhang, Miryeong Kwon, Donghyun Gouk, Sungjoon
Koh, Changlim Lee, Mohammad Alian, Myoungjun
Chun, Mahmut Taylan Kandemir, Nam Sung Kim, Ji-
hong Kim, and Myoungsoo Jung. Flashshare: Punching
through server storage stack from kernel to firmware for
ultra-low latency ssds. In Andrea C. Arpaci-Dusseau
and Geoff Voelker, editors, 13th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
2018, Carlsbad, CA, USA, October 8-10, 2018, pages
477–492. USENIX Association, 2018.

USENIX Association 2022 USENIX Annual Technical Conference    769

https://nvmexpress.org/specifications
https://nvmexpress.org/specifications


[61] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant.
Flash reliability in production: The expected and
the unexpected. In 14th USENIX Conference on
File and Storage Technologies (FAST 16), pages
67–80, Santa Clara, CA, February 2016. USENIX
Association. ISBN 978-1-931971-28-7. URL
https://www.usenix.org/conference/fast16/
technical-sessions/presentation/schroeder.

[62] Yu Cai, Erich F Haratsch, Onur Mutlu, and Ken Mai.
Error patterns in mlc nand flash memory: Measurement,
characterization, and analysis. In 2012 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE).
IEEE, 2012.

[63] Alaa R Alameldeen, Ilya Wagner, Zeshan Chishti, Wei
Wu, Chris Wilkerson, and Shih-Lien Lu. Energy-
efficient cache design using variable-strength error-
correcting codes. ACM SIGARCH Computer Archi-
tecture News, 2011.

[64] Chun-Yi Liu, Jagadish B Kotra, Myoungsoo Jung, Mah-
mut T Kandemir, and Chita R Das. Soml read: Rethink-
ing the read operation granularity of 3d nand ssds. In
Proceedings of the Twenty-Fourth International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, 2019.

[65] Qiao Li, Liang Shi, Chun Jason Xue, Kaijie Wu, Cheng
Ji, Qingfeng Zhuge, and Edwin H-M Sha. Access charac-
teristic guided read and write cost regulation for perfor-
mance improvement on flash memory. In 14th USENIX
Conference on File and Storage Technologies (FAST 16),
2016.

[66] Kai Zhao, Wenzhe Zhao, Hongbin Sun, Xiaodong
Zhang, Nanning Zheng, and Tong Zhang. Ldpc-in-ssd:
Making advanced error correction codes work effec-
tively in solid state drives. In 11th USENIX Conference
on File and Storage Technologies (FAST 13), 2013.

[67] Hongbin Sun, Wenzhe Zhao, Minjie Lv, Guiqiang Dong,
Nanning Zheng, and Tong Zhang. Exploiting intracell
bit-error characteristics to improve min-sum ldpc de-
coding for mlc nand flash-based storage in mobile de-
vice. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 2016.

[68] Meng Zhang, Fei Wu, Xubin He, Ping Huang, Shunzhuo
Wang, and Changsheng Xie. Real: A retention error
aware ldpc decoding scheme to improve nand flash read
performance. In 2016 32nd Symposium on Mass Storage
Systems and Technologies (MSST). IEEE, 2016.

[69] M Jung and M Kandemir. Revisiting widely-held expec-
tations of ssd and rethinking implications for systems.
SIGMETRICS’13, 2013.

[70] Yu Cai, Erich F Haratsch, Onur Mutlu, and Ken Mai.
Threshold voltage distribution in mlc nand flash mem-
ory: Characterization, analysis, and modeling. In 2013
Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2013.

[71] Neal Mielke, Todd Marquart, Ning Wu, Jeff Kessenich,
Hanmant Belgal, Eric Schares, Falgun Trivedi, Evan
Goodness, and Leland R Nevill. Bit error rate in nand
flash memories. In 2008 IEEE International Reliability
Physics Symposium. IEEE, 2008.

[72] Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur
Mutlu, and Erich F Haratsch. Vulnerabilities in mlc
nand flash memory programming: Experimental analy-
sis, exploits, and mitigation techniques. In 2017 IEEE
International Symposium on High Performance Com-
puter Architecture (HPCA). IEEE, 2017.

[73] Timothy G Armstrong, Vamsi Ponnekanti, Dhruba
Borthakur, and Mark Callaghan. Linkbench: a database
benchmark based on the facebook social graph. In Pro-
ceedings of the 2013 ACM SIGMOD International Con-
ference on Management of Data (MOD), 2013.

[74] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, 2010.

[75] Wonil Choi, Myoungsoo Jung, Mahmut Kandemir, and
Chita Das. Parallelizing garbage collection with i/o to
improve flash resource utilization. In Proceedings of
the 27th International Symposium on High-Performance
Parallel and Distributed Computing, 2018.

[76] Benny Van Houdt. A mean field model for a class of
garbage collection algorithms in flash-based solid state
drives. ACM SIGMETRICS Performance Evaluation
Review, 2013.

[77] Ming-Chang Yang, Yu-Ming Chang, Che-Wei Tsao,
Po-Chun Huang, Yuan-Hao Chang, and Tei-Wei Kuo.
Garbage collection and wear leveling for flash memory:
Past and future. In 2014 International Conference on
Smart Computing. IEEE, 2014.

[78] Sangwon Lee, Miryeong Kwon, Gyuyoung Park, and
Myoungsoo Jung. Lightpc: hardware and software co-
design for energy-efficient full system persistence. In
Proceedings of the 49th Annual International Sympo-
sium on Computer Architecture, pages 289–305, 2022.

[79] Mahesh Balakrishnan, Asim Kadav, Vijayan Prab-
hakaran, and Dahlia Malkhi. Differential raid: Rethink-
ing raid for ssd reliability. ACM Transactions on Storage
(TOS), 2010.

770    2022 USENIX Annual Technical Conference USENIX Association

https://www.usenix.org/conference/fast16/technical-sessions/presentation/schroeder
https://www.usenix.org/conference/fast16/technical-sessions/presentation/schroeder


[80] Bo Mao, Hong Jiang, Suzhen Wu, Lei Tian, Dan Feng,
Jianxi Chen, and Lingfang Zeng. Hpda: A hybrid parity-
based disk array for enhanced performance and reliabil-
ity. ACM Transactions on Storage (TOS), 2012.

[81] Tianyang Jiang, Guangyan Zhang, Zican Huang, Xi-

aosong Ma, Junyu Wei, Zhiyue Li, and Weimin Zheng.
Fusionraid: Achieving consistent low latency for com-
modity ssd arrays. In 19th USENIX Conference on File
and Storage Technologies (FAST 21), 2021.

USENIX Association 2022 USENIX Annual Technical Conference    771





Pacman: An Efficient Compaction Approach for Log-Structured Key-Value Store
on Persistent Memory

Jing Wang† Youyou Lu† Qing Wang† Minhui Xie† Keji Huang‡ Jiwu Shu∗†

†Department of Computer Science and Technology, BNRist, Tsinghua University
‡Huawei Technologies Co., Ltd

Abstract
Recent persistent memory (PM) key-value (KV) stores adopt
the log-structured approach to reap PM’s full potential. How-
ever, they fail to sustain high performance at high capacity uti-
lization due to inefficient compaction. The inefficiency results
from the unawareness of PM’s characteristics. This paper pro-
poses Pacman, an efficient PM-aware compaction approach
for log-structured KV stores on PM. Pacman (1) offloads ref-
erence search during compaction to service threads, so as to
mitigate the onerous index traversal overhead, (2) leverages
tagged pointer and DRAM-resident compaction information
to avoid excessive PM accesses introduced by garbage collec-
tion, (3) redesigns the compaction pipeline based on the PM
peculiarities to lower the persistence overhead, and (4) sepa-
rates hot and cold objects in a lightweight manner to reduce
PM data copying in compaction. We apply Pacman to state-
of-the-art PM-based log-structured KV stores and evaluate
Pacman using various benchmarks. Our evaluations show that
Pacman curtails the performance degradation at high capac-
ity utilization, increases the compaction bandwidth by 2-4×,
and boosts the performance of the state-of-the-art systems by
1.5-1.8× under write-intensive workloads.

1 Introduction

The log-structured approach has been adopted in key-value
(KV) stores on PM [8, 12, 30, 44] for benefits like high capac-
ity utilization (low fragmentation), small device-level write
amplification on PM, and low failure atomicity overhead. De-
spite having these benefits, the log-structured approach needs
to reclaim free space (i.e., garbage collection or compaction)
by dedicated background threads (called cleaners), which
contributes to the major bottleneck, especially under a high
capacity utilization [39].

Over-provisioning can alleviate this problem but is not
cost-efficient. Datacenters place more emphasis on space
utilization in recent years [15] and try hard to fully utilize their
storage to reduce the total cost of ownership (TCO) [40]. Thus,
∗Jiwu Shu is the corresponding author (shujw@tsinghua.edu.cn).

it is important for storage systems to keep high performance
under high space utilization, especially for PM that has a
much higher cost than traditional storage devices.

The compaction overhead is already severe in DRAM-
based log-structured KV stores. For example, RAMCloud’s
throughput could drop by up to 50% at high capacity uti-
lization [39]. Nibble, a concurrent log-structured KV store,
enables 8 compaction threads to carry out the compaction
work per socket which has only 15 cores; even so, its through-
put drops to nearly a quarter in dynamic workloads [35].

Worse still, we observe that PM’s idiosyncrasies exacer-
bate the bottleneck of compaction. Our evaluation on state-of-
the-art PM-based log-structured KV stores1 (including Flat-
Store [12] and Viper [8]) shows that their performance drops
significantly at high capacity utilization. With abundant CPU
resources for compaction (foreground thread count to back-
ground cleaner thread count is 3:1), when the capacity utiliza-
tion increases from 50% to 80%, the system throughput drops
by up to 75% under write-intensive workloads. Unfortunately,
simply adding more CPU resources for compaction is inef-
ficient, because the performance of PM does not scale well
with high thread count [46]; in our experiment, the decline is
still up to 60% even with doubling cleaner threads.

We analyze that there are four deficiencies in the conven-
tional compaction approaches of these KV stores accounting
for the performance degradation. First, after copying valid
objects from the log segment being reclaimed, cleaners need
to update object references in the index, which incurs a huge
overhead, especially when the index resides on PM due to
PM’s high access latency (3× of DRAM in terms of random
read [46]). Second, service threads (i.e., threads performing
user requests, such as Get and Put) generate quantities of
small random PM accesses for compaction (e.g., marking
deleted flags). These small random accesses result in I/O am-
plification of PM, wasting PM’s limited bandwidth (1/3 and
1/6 of DRAM in terms of read and write, respectively [46]).
Third, cleaners need to perform many expensive persistence

1Note that this paper targets PM-based log-structured KV stores but not
LSM-tree-based KV stores.

USENIX Association 2022 USENIX Annual Technical Conference    773



instructions to guarantee crash consistency. Fourth, excessive
data copying in compaction contends limited PM bandwidth
with service threads. All these deficiencies boil down to un-
awareness of PM’s characteristics.

To solve the problems above, this work proposes Pacman, an
efficient PM-aware compaction approach for log-structured
KV stores on PM. Pacman comprises a series of techniques
to improve the compaction efficiency of log-structured KV
stores on PM. ➀ Pacman introduces a technique called short-
cut, which offloads reference search operations during com-
paction to service threads. Therefore cleaners can locate and
update references without traversing the index. ➁ Pacman
reduces excessive PM random accesses. Specifically, Pacman
leverages tagged pointer to reduce high-latency PM reads,
and stores frequently-accessed metadata in DRAM to avoid
small random PM writes. ➂ Pacman redesigns the compaction
pipeline in a batch pattern and leverages several optimizations
according to the characteristics of PM, which accelerates the
compaction and reduces the persistence overhead. ➃ Pacman
adopts a lightweight hot-cold separation method to reduce
the amount of valid data copying on PM and corresponding
reference updates. Consequently, Pacman boosts compaction
efficiency, decreases CPU resources for compaction, and en-
hances system performance at high capacity utilization.

We apply Pacman to state-of-the-art PM-based log-
structured KV stores, FlatStore [12] with different indexes and
Viper [8], and evaluate Pacman using a variety of benchmarks.
Our evaluation shows Pacman enhances the compaction band-
width by up to 4× and system performance by 2.4-4.6× under
write workloads at high capacity utilization. Besides, Pacman
has nearly no side-effects under read-intensive workloads and
has little overhead on recovery.

In summary, this paper makes the following contributions:

• We analyze the deficiencies of existing compaction ap-
proaches for log-structured KV stores on PM.
• We propose Pacman, an efficient PM-aware compaction

approach for PM-based log-structured KV stores, which
enables them to achieve high performance even at high
capacity utilization.
• We apply Pacman to state-of-the-art PM-based log-

structured KV stores and conduct a series of experiments
to show the efficiency of Pacman.

2 Background and Motivation

2.1 Log-Structured KV Stores on PM
Benefits of the log-structured approach on PM. The log-
structured approach has been adopted by state-of-the-art KV
stores on PM [8, 12, 30, 44] for the following benefits. First,
a log-structured approach to memory management supports
high capacity utilization (i.e., the percentage of space used by
alive data) of 80-90%, which is unfeasible for non-copying
allocators having great memory fragmentation [39]. Second,

D
RA

M
 / 

PM
P

M

Index

Core 0

append …

Free SegmentsUsed Segments

free valid garbage

Core 1

append

Core N

append

Figure 1: Overview of a log-structured KV store.

due to the mismatch of access granularities between cache
lines and PM media (64 bytes vs. 256 bytes of Optane DIMM,
the only available PM production for now), small random
writes would cause write amplification. The log-structured
approach adopts a sequential write pattern, thus alleviating the
write amplification and improving the write throughput. Third,
in comparison with update-in-place approaches which need
expensive logging operations, the log-structured approach
makes it easy to commit an arbitrarily-sized persistent write.
Storage structure. Figure 1 shows the basic structure of log-
structured KV stores on PM. The whole log space locates
on PM and is divided into small-sized (e.g., 4 MB) pieces
called segments. Each service thread maintains a thread-local
segment to append KV objects. Compared to writing to a
global log tail, using per-thread segments not only avoids
contention but also limits the number of concurrent threads
accessing an Optane DIMM [8,46]. Once a service thread has
run out of its local segment, it requests a new free segment
from the free segments pool. A global index stores references
which point to the actual address of KV objects in the log.
The index is put in DRAM or PM for different requirements.
A volatile index in DRAM delivers better performance but
needs more time to restore after a restart. On the contrary, a
persistent index in PM provides instant usability after a restart
but relatively lower performance.
Garbage collection. Despite having numerous benefits, log-
structured systems are obliged to tackle garbage collection
by compaction, the main culprit of performance degradation.
Update or delete operations make prior objects stale in the log.
These stale objects occupy the memory space until being re-
claimed. When there is no free space left, service threads stall
and wait for new free space produced by compaction. In other
words, the system’s throughput at high capacity utilization is
nearly limited to the compaction throughput.

A qualified compaction process is described as follows.
When the fraction of free space is low, the compaction is
triggered, and candidate segments are selected to compact
through a certain strategy such as cost-benefit score2. During

2score = (1−u)×age
u , where u is the segment’s utilization (fraction of data

alive), and age is the time since the segment running out [39].

774    2022 USENIX Annual Technical Conference USENIX Association



4 cleaners 8 cleaners

(a) FlatStore-H0

5

10

15

50 70 90
(b) FlatStore-PH0

2
4
6
8

50 70 90
(c) FlatStore-M0

5

10

50 70 90
(d) FlatStore-FF0

2

4

6

50 70 90
(e) Viper0

2
4
6
8

50 70 90

(f) volatile
     FlatStore-H0

10

20

30

50 70 90Th
ro

ug
hp

ut
 (M

op
s/

s)

Capacity Utilization (%)

Figure 2: Throughput decline at different capacity utilizations. FlatStore-H: with CCEH in DRAM. FlatStore-PH: with CCEH
in PM. FlatStore-M: with Masstree in DRAM. FlatStore-FF: with FastFair in PM. Viper: with CCEH in DRAM. volatile
FlatStore-H: both the index (CCEH) and log in DRAM.

compaction, cleaners copy all alive objects from the old seg-
ment to a reserved segment and update references to these
objects in the index. There are two methods to identify the
liveness of each object in the segment. One method is check-
ing whether the object is still pointed by the reference in
the index (e.g., FlatStore [12]). Another one is checking the
deleted flag (usually 1 bit) in the metadata header of objects;
the deleted flag is set when the corresponding object is up-
dated or deleted (e.g., Viper [8]). Both of the two methods
have shortcomings on PM, which we will analyze in §2.2.
After all valid objects in the old segment have been copied to
the reserved segment and their references have been updated,
the old segment is cleaned and turned into a free segment.

2.2 Compaction Overhead Analysis on PM
The compaction overhead already matters in DRAM-based
log-structured KV stores [35,39]. Worse still, the compaction
overhead becomes more severe on PM, as cleaner threads
need to contend PM’s limited bandwidth with foreground
service threads. Further, necessary but expensive persistence
instructions and PM’s high access latency make the overhead
of copying objects and updating references higher, especially
when the index is persistent.
Experiments. To analyze the compaction overhead of PM-
based log-structured KV stores in depth, we evaluate state-of-
the-art systems including FlatStore [12]3 and Viper [8]4.

We evaluate four versions of FlatStore, including FlatStore-
H (FlatStore with CCEH [37], a hash table, in DRAM
as a volatile index), FlatStore-PH (FlatStore with CCEH
in PM as a persistent index), FlatStore-M (FlatStore with
Masstree [34], a trie-like concatenation of B+-trees, in
DRAM), and FlatStore-FF (FlatStore with FastFair [20], a
B+tree, in PM) to show different cases. Like FlatStore-H,
Viper also uses CCEH in DRAM as its volatile index. We
measure the performance with a YCSB-A workload, where
200 million KV objects are randomly loaded first, then ser-
vice threads perform a write-intensive workload (50% Get

3As the original FlatStore is a networked system, we implement it as an
embedded KV store, and remove the network-related features for simplicity.

4We use the variable-sized object version of Viper and enhance it with
multi-threaded compaction.

and 50% Put) with Zipfian distribution (skewness parameter
0.99) until the system throughput converges to a stable value.
The value size is 48 bytes, a representative value of small
objects according to recent real-world workloads analysis [9].
We restrict the capacity utilization from 50% to 90% (the per-
centage of space occupied by alive data). We set the service
thread count to 12, and the cleaner thread count to 4 or 8. All
threads are bound to a single socket, which is equipped with
three Intel Optane DCPMMs.

Figure 2 shows their throughput at different capacity utiliza-
tions. From the results we observe that: (1) The throughput of
all systems drops significantly at high capacity utilization, es-
pecially for systems with a tree-based or persistent index. (2)
Simply augmenting more CPU resources for compaction (8
cleaner threads) has limited improvements for log-structured
KV stores on PM, and also intensifies the contentions. Note
that the garbage collection overhead will be much larger under
uniform workloads; see detailed results in §4.2.3.

We also evaluate the situation that both index and log locate
on DRAM (volatile FlatStore-H, Figure 2(f)) to simulate an
in-DRAM log-structured KV store. The throughput decline
is mitigating than the PM-based KV stores. Using 8 cleaners
has obvious improvements on DRAM because DRAM has
abundant bandwidth. However, adding more threads on com-
paction is not cost-effective and has less benefit in PM-based
systems as PM does not scale well with multiple threads due
to PM’s idiosyncrasies [46]. This shows that PM’s peculiari-
ties aggravate garbage collection overhead.

Overhead analysis. Taking test cases with 4 cleaners and
80% capacity utilization above as examples, we analyze the
compaction overheads and find out that there exist four ineffi-
ciencies on compaction.

(1) The high latency of random access in the index. Lots
of random accesses are introduced by two operations on the
index, checking references for identifying liveness and up-
dating references after copying alive objects. These two op-
erations require multiple random accesses in the index and
these accesses have no cache locality since alive objects in
compaction are usually cold.

Viper sidesteps checking references with deleted flags in
PM; yet, updating references costs half of the compaction

USENIX Association 2022 USENIX Annual Technical Conference    775



time. FlatStore identifies the liveness of each object by check-
ing the reference instead of using the deleted flag to avoid
small random writes. Thus, cleaners in FlatStore need to ac-
cess the index twice for each alive object, one for checking
liveness and one for updating the reference. FlatStore spends
60% of compaction time on the index in FlatStore-H. The
overhead becomes more severe when it comes to tree-based or
persistent indexes, which reach about 80% and 90% of com-
paction time in FlatStore-M and FlatStore-FF, respectively.
The latency of a search or an update operation in FastFair
reaches several microseconds due to PM’s high latency.

(2) Excessive small random access on PM. Service threads
perform excessive PM accesses for garbage information. To
maintain the size of garbage data of each candidate segment,
service threads read the metadata of the stale object to get its
size when the object is updated or deleted. These reads on PM
not only incur high latency but also pollute cache. In addition,
marking deleted flags in segments would introduce extra small
random PM writes. Though marking deleted flags facilitate
garbage collection, it is harmful to limited PM bandwidth.

(3) Expensive persistence instructions. Though copying
alive objects conducts sequential reads and writes, it still
costs heavier than copying on DRAM, not only due to the
low bandwidth but also because of necessary but expensive
persistence instructions (i.e., flush and fence).

(4) A large amount of data copying on PM. The perfor-
mance slowdown presents superlinear scaling with capacity
utilization. Cleaners have to do compaction much promptly
at high utilization, and segments to compact have less time to
accumulate stale objects. Accordingly, at high capacity utiliza-
tion, cleaners have to copy bulk of data in segments to reclaim
free space. The large amount of data copying contends the
limited PM bandwidth with service threads.

To summarize, traditional compaction approaches do not
consider the peculiarities of PM, hence squandering limited
PM bandwidth. On the other hand, existing log-structured
KV stores completely decouple the index and log. Therefore,
there has little room to facilitate garbage collection without
particular assistance from the index.

3 Design

Motivated by the analysis above, we propose Pacman, a PM-
aware compaction approach for log-structured KV stores on
PM. Pacman solves the deficiencies in conventional com-
paction approaches according to the characteristics of PM,
boosting the system performance at high capacity utilization.
Pacman introduces several core design principles to realize
efficient compaction.
• Avoid onerous index traversal. Pacman offloads reference

search operations during compaction to foreground service
threads without extra effort. With the information offered
by service threads, cleaner threads can locate and update
references effortlessly (§3.1).

• Reduce excessive small PM accesses. Pacman removes
avoidable PM accesses by leveraging tagged pointer and
storing frequently-accessed metadata in DRAM (§3.2).
• Redesign the compaction pipeline to cater to peculiari-

ties of PM. Pacman divides the compaction pipeline into
two major phases, copying valid objects and updating ref-
erences. For each phase, cleaner threads process objects in
a batched manner. Subsequently, Pacman can reduce the
number of persistence orderings and leverage non-temporal
stores and software prefetching (§3.3).
• Separate hot and cold objects to reduce excessive data

copying on PM. Pacman uses a hotspot set to distinguish
hot and cold objects and stores them in different segments
to facilitate compaction. Pacman can also replace the set
silently to handle hotspot shift without blocking foreground
service threads (§3.4).

3.1 Traversing Index with Shortcut

Traversing the index has expensive overhead due to the ran-
dom access pattern, especially for persistent index. Pacman
introduces a technique called shortcut to alleviate this over-
head in compaction. In this section, we take tree-based (in-
cluding trie-based) indexes as an example.

In existing compaction approaches, after copying a valid
object from an old segment to a new segment, the cleaner
needs to traverse the index, locate and update the reference.
When locating an entry, the cleaner starts from the root node
and then traverses multiple internal nodes to the deepest leaf
node. The pointer-chasing path contains several random ac-
cesses, and has much higher latency on PM. According to our
analysis (§2.2), these reference update operations constitute
the most considerable part of overhead in compaction.

However, we observe that the root-to-leaf path was already
traversed when the object was created or updated. To pre-
vent the cleaner from traversing the high latency path again,
Pacman leverages the traversal that was done before.

When creating or updating an object, in addition to insert
or update of the reference in the index, service threads also
record the address of leaf node which contains the reference
in the log. We name this additional information shortcut.
Objects thereupon have a shortcut to their reference in the
index. During compaction, cleaners could take the shortcut to
quickly locate the leaf node in the index. Then, cleaners still
need to search the exact entry in the leaf node. To accelerate
the last mile, Pacman also records the position number of
the entry in the shortcut. In this way, the reference search
operation is offloaded to service threads but without extra
effort. Figure 3 shows an example of a shortcut. The Node
Addr points to the node, and the KV Pos records the entry
position number of the array.

Handling shortcut invalidation. In addition, Pacman needs
to handle the possible invalidation of the shortcut in two sit-
uations. ➀ The address of an index entry may change (e.g.,

776    2022 USENIX Annual Technical Conference USENIX Association



Header Entry Array

KV0 KV1 KV2 … KVn

Node Addr KV Pos Shortcut

…

Index

Figure 3: Structure of shortcut (taking a tree-based index as
an example). The value in an index’s KV pair is a reference
which points to the object in the log. KV Pos is the position
number of the associated KV pair (i.e., 2 in this figure).

caused by shift operations in a sorted tree-based index) and
thus the shortcut may not point to the original reference. ➁
The original node pointed by shortcut may have been deal-
located, and the original address space may be reclaimed or
re-allocated for other usages. Accessing the address wrongly
could result in program crash.

The first situation (i.e., Node Addr points to a valid node,
but KV Pos is wrong) can be handled easily by conduct-
ing some checks. The cleaner will check the header of the
node and compare the key indicated by KV Pos to infer that
whether the shortcut is correct. These checks are identical
as in a normal insert operation. Pacman attempts to reduce
penalty of an incorrect shortcut. For example, in a tree-based
index, the cleaner will check if the key still exists in the origi-
nal leaf node or the sibling node. Thus, shortcuts can tolerate
shift operations to a certain extent. If the shortcut is com-
pletely invalid, the cleaner updates the reference by falling
back to the normal update operation. The penalty of an invalid
shortcut is about one or several useless memory accesses and
can be further reduced by prefetch technique (§3.3).

To avoid the second situation (i.e., Node Addr does not
point to a valid node), instead of directly freeing the space
of deleted nodes, Pacman reserves the deallocated space for
future allocations. The deleted nodes are marked as deleted
by some means (e.g., a deleted bit in node header or all bytes
of the header are set to 0). When creating a new node, Pacman
first attempts to re-use a reserved and same-typed node space.
Generally, an index typically has only one or a few fixed types
of nodes (e.g., 4 types of nodes in ART [29]), so it is easy
to realize the re-allocation. In this way, Pacman guarantees
that the address space of deleted nodes is still valid and this
situation turns into the first situation.

Optimizing space overheads. Pacman stores shortcuts inside
the same log segment with their associated objects, which

squeezes the available space and increases compaction pres-
sure. Thus, the benefits of shortcuts are overshadowed espe-
cially when the capacity utilization is extremely high and the
average object size is small.

Pacman reduces the space overheads of shortcuts to mini-
mize the punishment of storing shortcuts. First, the size of a
shortcut is compressed to 48 bits, including 43-bit Node Addr
and 5-bit KV Pos. The Node Addr is compressed based on
two opportunities: 1) Current virtual address only uses 47
bit (for user-space virtual address, the 47-63th bits are 0);
2) Memory allocators (e.g., malloc [1], PMDK [4]) allocate
objects with at least 16-byte alignment by default. The size of
Node Addr can be further reduced according to the specific
alignment of nodes in the index (e.g., 512-byte leaf nodes
in FastFair). Second, Pacman doesn’t store shortcuts for ob-
jects reclaimed in compaction and hot objects with the help
of hot-cold data separation (§3.4). The objects reclaimed in
compaction are almost coldest, and the reserved segment are
less likely to be compacted again. Hot objects tend to be up-
dated soon and become stale, and shortcuts are useless for
stale objects. Besides, shortcut should be disabled when its
acceleration cannot cover the punishment of sacrificing more
space (e.g., for a hash table-based index and at an extremely
high capacity utilization).

Limitation. Shortcut is unsuitable for KV stores with a LSM-
based index (e.g., ChameleonDB [50]). Since KV entries
in the LSM-based index are moved frequently due to LSM
compactions, shortcuts can only stay valid for a transient time.

3.2 Reducing Excessive PM Accesses

Existing garbage collection approaches do not fit persistent
memory management as they take no notice of random mem-
ory accesses. The introduced small random accesses will
cause I/O amplification in PM. To address this issue, Pacman
1) embeds size information in the reference to reduce PM
read, and 2) stores frequently-accessed metadata in DRAM
to reduce small random writes on PM.
Embedding size information in the reference. When updat-
ing an object, the service thread needs to update the size of
total garbage data of each segment for compaction candidate
selection. However, getting the size of the stale object needs
to read its metadata from PM. To avoid these random PM
reads, Pacman embeds the size of an object in the upper 16
bits of its reference. Therefore, the address and size of the
object’s stale version can be acquired from the index together.
Because 16 bits can express 64 KiB at most (or larger if ob-
jects are allocated obeying to some alignments), Pacman sets
the upper bits of reference to 0 for objects larger than 64 KiB
and has to read their metadata when updated or deleted. For-
tunately, most objects have small size according to the recent
real-world workloads analysis [9].
DRAM-resident garbage information. Since checking ref-
erences to distinguish the liveness of objects has significant

USENIX Association 2022 USENIX Annual Technical Conference    777



overhead, especially when the index is on PM, Pacman turns
to deleted flags to store the liveness information. Marking
deleted flags in objects’ headers on PM will introduce numer-
ous small random writes. To eschew the detrimental effects
of small random writes on PM, Pacman adopts a bitmap on
DRAM for each segment. Pacman locates the corresponding
bit of a variable-sized object with its reference directly. We
denote the minimum size of an object as MIN_SIZE (8 bytes
of key, 8 bytes of value, plus the size of metadata header).
Pacman reserves one bit per MIN_SIZE. The position of the
deleted flag is calculated by dividing the offset within the
segment by MIN_SIZE. Though this approach leaves some
bits unused thereby wasting a small amount of DRAM space,
Pacman can quickly locate the corresponding deleted flags
for variable-sized log items. Even in the most extreme case,
where the size of the key, value, and header are both 8 bytes,
the bitmaps consume DRAM about 0.5% of the log space.

Besides bitmaps, Pacman stores the size of garbage data of
each segment in DRAM which is frequently updated.

3.3 Redesigning the Compaction Pipeline
Traditional compaction algorithms (e.g., memory compaction
in RAMCloud and Viper) update the reference right after
copying a valid object. Nevertheless, this pattern has several
shortcomings on PM without consideration of PM’s idiosyn-
crasies. Pacman reorganizes the pipeline in a batch pattern as
shown in Figure 4. The new algorithm separates the phases
of copying objects and updating references, and processes
objects in a batched pattern. The cleaner first collects all valid
objects from the old segment to a volatile buffer (step ➀),
and then copies them together to PM (step ➁). After that, the
cleaner updates their references. Different from using a nor-
mal index update operation, the cleaner updates references by
a special index update operation (update_pacman, lines 43-
52) that takes the object’s shortcut to locate the reference. Be-
sides, to handle race condition on the index, update_pacman
carries an extra old value of the reference (old_addr) to
update the reference in a compare-and-swap semantics (ex-
plained later). Subsequently, Pacman applies the following
three optimizations to cater to PM’s idiosyncrasies.
(1) Reducing ordering and launch concurrent flushes. In
traditional algorithms, for each relocated object, an ordering
point is required to ensure that the object has been flushed to
PM before updating its reference. These fences are expensive
as they stall CPU pipelines.

However, after separating the copying phase and the updat-
ing phase, only one fence instruction is needed between the
two phases (line 15). Pacman eliminates the ordering points
(fence) after update references (step ➃). Doing so will not
break crash consistency. This is because the old segment is
still available until the compaction is finished. Even if an
inopportune crash happens before reference updates being
flushed to PM (during step ➄), after restart, for those objects
whose references have not been updated or persisted, they can

1 NUM_BATCH_FLUSH = 32; // number of concurrent flushes
2 void compact_pacman(Segment segment) {
3 Buffer buffer; // temporal buffer in DRAM
4 vector<ObjectMeta> meta_vec;
5 // iterate objects in this segment
6 for (valid object old_obj : segment) {
7 // ➀. generate temporal new object into buffer
8 tmp_new_obj = make_object(old_obj, buffer.offset);
9 buffer.append(tmp_new_obj);

10 meta_vec.push_back(ObjectMeta(old_obj, tmp_new_obj));
11 }
12

13 // ➁. copy buffer to reserved segment by ntstore
14 ntstore(reserved_segment, buffer);
15 fence();
16

17 vector<EntryAddr> entry_addr_vec; // for batch persist
18 // iterate valid objects in buffer
19 for (size_t i = 0; i < meta_vec.size(); i++) {
20 // ➂. prefetch next object’s entry in index
21 prefetch(meta_vec[i + 1].shortcut);
22

23 // ➃. update reference
24 (shortcut, key, old_addr, new_addr) = meta_vec[i];
25 EntryAddr entry_addr;
26 index.update_pacman(shortcut, key, new_addr, old_addr,
27 &entry_addr);
28

29 // ➄. batch persist
30 entry_addr_vec.push_back(entry_addr);
31 if (entry_addr_vec.size() >= NUM_BATCH_FLUSH) {
32 // launch concurrent flushes
33 for (entry_addr : entry_addr_vec) {
34 persist(entry_addr);
35 }
36 fence();
37 entry_addr_vec.clear();
38 }
39 }
40 }
41

42 // customized index update operation
43 bool Index::update_pacman(Shortcut shortcut, KeyType key,
44 ValueType new_addr, ValueType old_addr,
45 EntryAddr *entry_addr) {
46 // find entry by key with the help of shortcut
47 ...
48 *entry_addr = &entry; // record entry address
49 // update only if old_addr matched, e.g., using CAS
50 bool success = CAS(&entry.value, old_addr, new_addr);
51 return success;
52 }

Figure 4: Pseudo-code of the Pacman compaction algorithm
and customized index update operation.

still be acquired from the old segment.
Furthermore, Pacman adopts lazy and batched flushes on

reference updates to take advantage of concurrent asyn-
chronous flushes [17], such as clwb and clflushopt. Pac-
man records addresses of updated entries in the index, and
launches multiple asynchronous flushes on them, which re-
duces the average flush latency (step ➄).
(2) Using non-temporal store to copy valid objects. In copy-
ing phase, Pacman first collects valid objects in volatile seg-
ments (step ➀), then uses non-temporal store (ntstore) to
copy them to PM (step ➁) for three benefits. First, ntstore

778    2022 USENIX Annual Technical Conference USENIX Association



has higher bandwidth for large (over 256 B) write than normal
store [46]. Second, ntstore bypasses the cache and avoids
unnecessary cache pollution. Third, ntstore can also avoid
repeated flushes on the same cache line due to non-aligned
writes, which incurs dramatical delay [12].

Though flushes are not necessary for data persistence in
new generation CPUs with support of eADR [2], sequential
writes (e.g., copying objects) without flushes will turn into
random writes on PM due to the random eviction of CPU
cache [23]. Therefore, the batch pattern is still beneficial on
new CPUs with eADR for adopting ntstore.
(3) Leveraging prefetching on PM. Since most valid ob-
jects being collected are cold, their references in the index
are less likely to stay in cache, which results in high memory
access latency, especially for PM indexes. Fortunately, with
the shortcut, Pacman can easily prefetch the index node or en-
try of the next valid object when updating the current object’s
reference (step ➂), hiding the high access latency with update
operation. Thanks to shortcuts and the redesigned pipeline,
the reference update operations are quite lightweight, which
makes prefetching’effect much more evident.

Handling race condition on the index. The contention be-
tween cleaner threads and service threads should be handled
properly. A service thread may update an object while a
cleaner thread copies the old version of this object and up-
dates its reference. In such a case, the new version of the
object updated by the service thread will be covered by the
old version of the object. The batched compaction pipeline
increases the possibility of this race condition.

One naive approach is holding a lock and blocking service
threads during the whole time of relocating an object (lookup
reference, copy object, and update reference) [39]. Pacman
minimizes the critical section on updating references, which
updates references in a compare-and-swap pattern. Specif-
ically, cleaner threads update references via a customized
index update operation (i.e., update_pacman) that carries
an extra old value of the reference (old_addr in step ➃).
In update_pacman, only when the original value of the in-
dex entry matches the old value old_addr, which means no
race condition has happened, the reference can be updated
to new_addr. If the update fails, the reclaimed object in new
segment is marked as stale.

Comparing with FlatStore’s compaction pipeline. Though
FlatStore [12] also optimize the compaction pipeline by sep-
arating the copying phase and the reference updating phase
to reduce the fence instructions, it suffer from severe perfor-
mance issue. Specifically, as FlatStore conducts the index
traversal twice for each valid object (i.e., check the liveness
and update the reference), the batch pattern exacerbates the
overhead on the index. Results in a long reuse distance be-
tween the two index traversals for each alive object, causing
updating reference not to take the benefit of cache brought by
checking reference. By contrast, Pacman eliminates the first in-

dex traversal by checking in-DRAM deleted flags and reduces
the second traversal overhead by prefetching and shortcuts.

3.4 Separating Hot-Cold Data

Pacman leverages hot-cold data separation to reduce the
amount of valid data copying on PM and corresponding refer-
ence updates during compaction. Specifically, service threads
append hot objects in their per-thread segment and cold ob-
jects in another per-thread cold segment. Though hot-cold
data separation is a well-known technique to improve garbage
collection efficiency [10,18,36], we elaborately design how to
1) identify hotspots and 2) handle hotspots shift in the context
of the low-latency key-value store on PM.

Identifying hotspots in a lightweight pattern. Pacman uses
a small read-only hash set of hot objects for service threads
to distinguish hotspots. The identification of hotspots should
be lightweight enough to not increase too much extra latency.
Previous work could distinguish the hotspots without main-
taining the hotness of objects, such as by data type [28] or
hash-based partition [10]. However, these methods are not
feasible for Pacman due to the lack of type semantics or the
per-thread logs. Dynamically maintaining hotspots set is not
ideal, because it introduces extra operations to another index,
resulting in contention and crash thrashing.

Handling hotspots shift and generating new hotspots set.
As the access patterns keep changing in real-world workloads,
Pacman uses a lightweight mechanism to detect hotspots and
generate new hotspots set. First, service threads keep counting
the hit ratio of the old hotspots set to detect whether a hotspots
shift has happened. Second, if the hit ratio is lower than a
customized threshold which means the hotspots have shifted
and the original hot set is stale, service threads record the keys
of updated objects in their local circular buffers by sampling.
A background thread collects the keys recorded by service
threads, sorts these keys using a heap, and generates a new
hot set. Third, the background thread changes the pointer of
hot set to the new one using CAS. After waiting for a grace
period through an RCU-like barrier, the background thread
confirms that no service threads are accessing or will access
the old hot set, then frees the old hot set safely. Note that the
background thread consumes negligible CPU resources as the
hotspots shift in real-world workloads is not frequently (at
least second-level) [9, 21]. It doesn’t matter if service threads
identify hot keys inaccurately since it only determines the
location of objects. Moreover, cold objects get another chance
to be separated from hot objects by compaction.

Though checking the read-only hash set is lightweight, it
would bring no benefit but extra overheads in uniform work-
loads. In the second step above, if the occurrence of the hottest
key is close to the occurrence of the coldest key (e.g., less
than 3×), the background thread clears the new hot set.

USENIX Association 2022 USENIX Annual Technical Conference    779



w/o Pacman w/ Pacman

(a) FlatStore-H0

10

20

50 70 90
(b) FlatStore-PH0

5

10

50 70 90
(c) FlatStore-M0

5

10

50 70 90
(d) FlatStore-FF0

2

4

6

50 70 90
(e) Viper0

5

10

50 70 90Th
ro

ug
hp

ut
 (M

op
s/

s)

Capacity Utilization (%)

Figure 5: Impact of capacity utilization.

3.5 Recovery
The recovery of the log and the index is similar to existing
work [12]. We mainly discuss recovery related to Pacman.
Shortcut. For KV stores with a volatile index, all shortcuts
are invalid after a restart. However, since all segments have
to be scanned to rebuild the index, new valid shortcuts are
rebuilt in the meantime. For KV stores with a persistent index,
to make shortcuts still valid after a restart, Pacman stores the
offset from the base address of the PM pool for the index (e.g.,
PMEMobjpool in PMDK [4]) in the Node Addr instead of
the virtual address of the node.
DRAM-resident information. Though the DRAM-resident
information is unavailable after recovery, the loss of this in-
formation has no impact on service threads.

For KV stores with a volatile index, since the index needs
to be recovered by scanning all segments, the bitmaps are
recovered together with the index at the same time. To dis-
tinguish the latest and stale objects, Pacman compares their
version number and retains the latest reference in the index.
For KV stores with a persistent index, the volatile bitmaps and
metadata only cripple the garbage collection after recovery
for a while. Cleaner threads scan the segments and recover
the bitmaps by checking references in the index. Then the
scanned segments become candidates for compaction.
Crash of compaction. After a restart, unfinished compaction
does not need to resume. If a crash happens before the ref-
erence updating phase (before line 16 in Figure 4), after a
restart, the new segment is still marked as a free segment as
nothing has happened. If a crash happens in the middle of
the reference updating phase (after line 16 in Figure 4), after
a restart, background threads will scan these segments and
distinguish redundant objects as described above.

4 Evaluation

In this section, we use a series of experiments to evaluate
Pacman. After describing our setup (§4.1), we first conduct
experiments to show the overall performance of Pacman on
PM-based log-structured KV stores under various workloads
(§4.2). Then, we analyze the benefit of each optimization of
Pacman with different cases (§4.3). Last, we compare log-
structured KV stores with Pacman against other KV stores on
PM with a production workload (§4.4).

4.1 Experimental Setup
All experiments are conducted on a server with Intel Xeon
Gold 6240 CPUs. Each CPU has 18 physical cores (36 logical
cores with hyper-threading). Each socket is equipped with
three 128 GB Intel Optane DC Persistent Memory (DCPMM)
DIMMs and 96 GB DRAM. We bind all threads to a single
socket to avoid NUMA effect [25, 46]. The Optane DIMMs
are configured in App Direct mode.

We apply Pacman to four versions of FlatStore [12] and
Viper [8] we have evaluated in §2.2. FlatStore adopts a
log batching technique to reduce the persisting overhead.
Viper leverages PM-specific access patterns and employs
CCEH [37] in DRAM as its index.

We set the upper limit of the hotspot set size (§3.4) to
128K in all experiments. We co-locate the background thread
for generating new hotspot set (§3.4) with a random cleaner
thread. The MIN_SIZE (§3.2) is set to 32, which means that
the deleted flag bitmaps use 1 bit in DRAM for every 32
bytes in segments, which is 0.4% of the whole log size. We
use 8-byte keys in all evaluated systems. Unless otherwise
stated, we restrict the capacity utilization to 80%. Also, the
value size is fixed at 48 for simplicity, because performance
mainly depends on the average object size but not the exact
size distribution [39] and the value size is corresponding to
the recent real-world workloads [9].

4.2 Overall Performance

4.2.1 Impact of Capacity Utilization
We show how Pacman mitigates the performance decline at
high capacity utilization with the same experiments as in §2.2,
in which 12 service threads perform write-intensive (50% Put,
Zipfian distribution with parameter 0.99) workloads and 4
cleaners conduct the compaction work. Figure 5 shows the
results, from which we make three observations.

First, Pacman obviously curtails the performance decline at
high capacity utilization. FlatStore-M with Pacman maintains
throughput above 90% even at extremely high capacity utiliza-
tion (90%). Due to the huge overhead of compaction, original
systems can not fully utilize their performance at high utiliza-
tion. Pacman improves the efficiency of compaction according
to PM’s peculiarities, and therefore reduces the compaction
overhead. Though the performance declines of FlatStore-PH

780    2022 USENIX Annual Technical Conference USENIX Association



w/o Pacman w/ Pacman
(a) FlatStore-H

0

20

40

A B C

(b) FlatStore-PH

0

10

20

A B C

(c) FlatStore-M

0

10

20

30

A B C E

(d) FlatStore-FF

0

5

10

15

A B C E

(e) Viper

0

10

20

A B CTh
ro

ug
hp

ut
 (M

op
s/

s)

Figure 6: YCSB workloads performance. (FlatStore-H, FlatStore-PH, and Viper don’t support scan operations in YCSB-E.)

and FlatStore-FF with Pacman at 80% utilization still exceed
20%, they are much better than the original systems.

Second, Pacman also enhances the performance at low ca-
pacity utilization, which is because Pacman reduces small
random accesses on PM and saves PM’s limited bandwidth.
The improvement on Viper is more evident since Viper marks
deleted flags and modifies locks on PM.

Third, systems using Pacman with 4 cleaners also outper-
form the original systems with 8 cleaner threads (see §2.2).
Pacman saves CPU resources for compaction but brings more
improvements, which is not only due to the efficient com-
paction, but also because of the reduction in contentions on
both the index and PM resources [46].

4.2.2 YCSB Benchmark
In this section, we evaluate the basic performance with
YCSB [13] benchmark. Table 1 shows the characteristics
of workloads. We omit the YCSB-D as it has similar traits
to YCSB-B. We set 24 threads to perform workloads after
random prefilling 200 million objects, and 4 cleaners for all
evaluated systems. Each service thread performs 20 million
operations. The capacity utilization is restricted to 80%.

Workload Feature Read-Write-Scan %
A write-intensive 50-50-0
B read-intensive 95-5-0
C read-only 100-0-0
E scan-intensive 0-5-95

Table 1: YCSB workloads description.

The experimental results are presented in Figure 6, from
which we have two observations.

First, under write-intensive workload (YCSB-A), Pacman
improves the performance of each system by 1.5-1.8×. Pac-
man improves Viper most among these systems, which is
because Pacman on Viper not only increases the compaction
efficiency but also reduce small random writes on PM.

In this workload, 4 cleaner threads are insufficient for sys-
tems without Pacman. The cleaner threads’ CPU utilizations
are all above 95%. For evaluated systems with Pacman, there
are a few unused CPU cycles. For example, with Pacman the
cleaner threads’ CPU utilization is 81% in FlatStore-H and
92% in FlatStore-FF. The random prefilling phase invalidates
a part of shortcuts. For example, the invalidation ratio of short-

cuts is about 25% in FlatStore-FF and 58% in FlatStore-M.
FlatStore-FF has lower invalidation ratio because FastFair has
larger leaf node than Masstree and can tolerate more shift
operations. Note that we regard the shortcut as valid if the
entry can be found the in the node indicated by the shortcut
or its sibling node.

Second, under read-dominated workloads (YCSB-B, C, and
E), systems with Pacman have similar performance with the
original systems. This is because Pacman does not directly
influence read and scan operations, their performance under
read-dominated workloads is similar.

4.2.3 Sensitivity Analysis
In this section, we evaluate how workload characteristics
affect Pacman. The default configurations are the same as
in §4.2.1. We only show results of FlatStore-H with Pacman
in Figure 7 as a representative sample.
Uniform workloads. In uniform workloads, the system’s per-
formance drops compared with that in skewed workloads
(Figure 5(a)), which is because of poor locality and much se-
vere garbage collection overhead. The raw FlatStore-H drops
more than half at 80% capacity utilization. However, Pac-
man still curtails the throughput decline within 15% at 80%
utilization and 50% at 90% utilization.
Thread scalability. Due to the compaction overhead, the raw
FlatStore-H can not scale well with multiple threads. On the
contrary, with only 4 cleaners, FlatStore-H with Pacman can
scale linearly up to about 20 threads.
Value size. The throughput of both systems drops with the
value size getting larger because larger objects consume more
bandwidth. Pacman enhances the throughput of FlatStore-H
by 50-70% as the value size varies from 32 to 512, which
shows that value size has little impact on Pacman.
Write ratio. Since the compaction overhead increases with
write ratio, the improvement of Pacman on FlatStore-H is
more significant with higher write ratio, reaching to 2.3×
when the write ratio is 100%. A strange phenomenon is that
FlatStore-H with Pacman has higher throughput when the
write ratio is 80% than 60%. We find that cold segments have
shorter ages due to the faster write rate. Thus, cleaners are
more likely to select hot segments to compact according to
the cost-benefit strategy, which has lesser overhead.
Number of objects. With the capacity utilization fixed at 80%,
we vary the number of objects to prefill. The number of ob-

USENIX Association 2022 USENIX Annual Technical Conference    781



w/o Pacman w/ Pacman

(a)

0

5

10

50 70 90

(b)

0

10

20

0 6 12 18 24 30

(c)

w/o Pacman w/ Pacman

0

5

10

15

32 64 128 256 5121024

(d)

0

10

20

0 20 40 60 80 100

(e)

0

5

10

15

50 100 200 400 800Th
ro

ug
hp

ut
 (M

op
s/

s)

Capacity Utilization (%) # of Threads Value Size (Bytes) Write Ratio (%) # of objects (M)

Figure 7: Sensitivity Analysis (on FlatStore-H). (a) Uniform workloads. (b) Thread scalability. (c) Different value sizes. (d)
Different write ratios. (e) Different numbers of objects.

jects has two effects on the performance. On one hand, the
CPU cache miss rate gets higher with the larger memory
footprint (both the index and the log space). On the other
hand, as the log space gets larger, the system writes more
segments when compaction is triggered and has more time
to accumulate stale objects. Thus, the candidate segments
for compaction have less live data and the compaction is
less expensive. For different numbers of objects, Pacman can
improve the performance by 35-60%.

4.3 Analysis of Techniques

In this section, we analyze the performance benefit of each
technique by applying them one by one. To differentiate re-
sults more obviously, we stress the system with an artificial
workload at a high capacity utilization level (80%) modeled
after prior work [39], in which the system throughput is heav-
ily limited by compaction. After loading 200 million KV
objects, 12 service threads overwrite these objects following a
Zipfian access distribution with skewness parameter 0.99, and
2 cleaner threads perform the compaction work. The work-
load proceeds for a while until the system throughput and
compaction overhead converge to a stable value.

We only show results of Pacman on FlatStore-H and
FlatStore-FF since their results are representative.

Figure 8 shows the contribution of each technique to the
throughput and corresponding compaction bandwidth (bytes
of cleaned segments per second). The applying order is deter-
minded by the dependencies between these techniques (e.g.,
the shortcut relies on hot-cold separation to reduce its space
overhead). Specifically, we gradually apply to the raw sys-
tems with reducing avoidable PM accesses (§3.2), hot-cold
data separation (§3.4), shortcut (§3.1), and the redesigned
batching compaction pipeline (§3.3).

The results show that all techniques contribute to the im-
proved performance more or less in some cases.
➀ Reducing. Storing garbage information in DRAM and em-
bedding size information in reference eschew the avoidable
PM random accesses. Especially in FlatStore, this technique
avoids checking references in the index for identifying live-
ness of objects. Therefore, it brings about 80% improvements
on FlatStore with a tree-based index (i.e., FlatStore-FF and

(a) FlatStore-FF
Throughput Compaction Bandwidth

0

1

2

3

0.1

0.2

0.3

raw +reducing

+separation

+shortcut

+batching

(b) FlatStore-H

0

5

10

0.2
0.4
0.6
0.8
1.0

raw +reducing

+separation

+shortcut

+batching
Th

ro
ug

hp
ut

 (M
op

s/
s)

Th
ro

ug
hp

ut
 (M

op
s/

s)

C
om

pa
ct

io
n 

BW
 (G

B/
s)

C
om

pa
ct

io
n 

BW
 (G

B/
s)

Figure 8: Contributions of techniques to throughput and com-
paction bandwidth.

FlatStore-M), and about 50% on FlatStore-H.
➁ Separation. Hot-cold data separation improves the system
performance about 30%. The improvement of system through-
put is more than the compaction bandwidth. This is because
that hot-cold data separation alleviates the mixture of stale
and valid objects in a segment, thus decreasing the amount of
valid objects moving and compaction time.
➂ Shortcut. Though Pacman trades some available log space
for storing shortcuts, shortcuts still boost the system perfor-
mance by about 70% for FlatStore-FF and about 45% for
FlatStore-M (not shown in the figure) even at high capac-
ity utilization. Moreover, since we do not store shortcuts for
hot objects, the rate of successfully using shortcuts to update
references is 55% in FlatStore-FF in this experiment. The ef-
fect is not obvious for systems with a hash table-based index,
since the benefit brought by shortcuts is overshadowed by the
additional overhead of storing shortcuts. Since Pacman only
stores shortcuts for inserted cold objects, and we assume that
about half of inserted objects are cold, the space overhead is
less than 4% for 64B objects. Note that this space overhead
has been paid by Pacman.
➃ Batching. The batching compaction pipeline and corre-
sponding optimizations bring another 40% improvement on
FlatStore-M and FlatStore-H. However, batching has smaller
effect on FlatStore with a persistent index, which is because
the main overhead of compaction comes from operations on
the persistent index.

Put them together, Pacman increases the compaction band-
width, and improves the system throughput by about 3× for

782    2022 USENIX Annual Technical Conference USENIX Association



PMem-RocksDB pmemkv ChameleonDB FlatStore-PH FlatStore-FF FlatStore-PH-Pac c
(a) Throughput

0

2

4
(b) P50 Get Lat.

0

2

4

6
(c) P50 Put Lat.

0

10

20 (d) P99 Get Lat.

0

20

40

60 (e) P99 Put Lat.

1
10

100
1000

Th
ro

ug
hp

ut
 (M

op
s/

s)

La
te

nc
y 

(μ
s)

FlatStore-FF-Pac

Figure 9: Facebook ETC throughput and latency. (Y axis in P99 Put Lat. is in log scale.)

FlatStore-H and 4.6× for FlatStore-FF.
The results of Pacman on Viper are similar to FlatStore-

H, except for reducing and batching. As Viper uses deleted
flags in objects, reducing on Viper has smaller effect than
FlatStore. However, due to the inefficiency of Viper’s original
compaction, the batching compaction algorithm significantly
improves Viper’s performance.

4.4 Comparison with Other KV Stores
In this section, we compare FlatStore with Pacman (denoted
by suffix -Pac in Figure 9) against other three representa-
tive KV stores on PM, ChameleonDB [50], pmemkv [6], and
PMem-RocksDB [3, 5]. ChameleonDB adopts a LSM-based
hash index tracking KV objects in the log. We implement
ChameleonDB since it is not open-source. Our implementa-
tion can achieve approximate performance in its paper when
not considering garbage collection. As ChameleonDB does
not provide their garbage collection approach, we implement
its garbage collection like WiscKey [33] for their similar struc-
tures, but with a hot-cold data separation (§3.4). pmemkv
internally leverages PMDK [4] for object allocation, which is
a non-copying allocator. We set pmemkv’s storage engine to
cmap, a persistent concurrent hash map. PMem-RocksDB is
based on RocksDB [16], a LSM-tree-based key-value store.
PMem-RocksDB locates SSTables and write ahead log (WAL)
on PM. We follow the recommended configurations [5] except
for enabling the key-value separation of PMem-RocksDB,
since it offloads the object management to PMDK, which is
similar to pmemkv. Note that we do not restrict the capacity
of pmemkv and PMem-RocksDB.

We compare these systems with a production workload
from Facebook ETC memcached pool [7]. Specifically, the
workload has trimodal object size distribution, where the size
of an object can be small (1-13 bytes), median (14-300 bytes)
and large (larger than 300 bytes). This distribution is rep-
resentative in real-world productions, as it also resembles
the workloads of UP2X at Facebook [9]. We use skewed
distribution (Zipfian parameter 0.99) for small and median
objects, and uniform distribution for large objects as prior
work [12, 14]. After random prefilling each system with 200
million objects, each thread performs 20 million operations
of write-intensive workload (50% Get and 50% Put).

For a fair comparison, 1) we only include FlatStore-PH
and FlatStore-FF as all compared systems have a persistent

index; 2) we disable the log batching in FlatStore as a normal
embedded KV store. All systems use 24 service threads and 4
background threads (for compaction and PMem-RocskDB’s
flush) except for pmemkv. As pmemkv does not need garbage
collection, we set pmemkv with 28 service threads. We report
their throughput and latency in Figure 9.
Throughput. From the throughput results, we have the fol-
lowing observations.

The log-structured approach has great performance ad-
vantages. Even without Pacman, FlatStore-PH outperforms
pmemkv as unordered KV stores, and FlatStore-FF outper-
forms PMem-RocksDB as ordered KV stores. However, the
garbage collection overhead overshadowed this advantage.
Due to the efficient compaction, Pacman improves the perfor-
mance of original systems, especially for FlatStore-FF as it
has more severe compaction overheads.

PMem-RocksDB has the lowest throughput even though
efforts have been endeavoured to optimize RocksDB with
persistent memory. This is because RocksDB was born for
SSD, and some design is not suitable for PM. For example,
the memtable, WAL, software caching, and file-based man-
agement are less effective when the storage device changes
from disk or flash to PM.

Though pmemkv does not need garbage collection, it has a
low performance. Since the value size varies in this workload,
pmemkv needs to allocate new object by PMDK’s pmemobj
allocator if the size exceeds previous allocated size.

ChameleonDB has much lower performance than expec-
tation. We also evaluate ChameleonDB with unlimited log
space (i.e., no compaction) that can achieve similar perfor-
mance to a KV store with a volatile hash table-based index
(not shown in the figure). However, the garbage collection of
ChameleonDB is much difficult due to its LSM-based index.
The LSM-based index inserts a new KV pair to memtable
directly without looking for the former entry of the same key.
Therefore, cleaners are unaware of the garbage information
and have to copy bulk of cold data. Its performance decreases
sharply at higher capacity utilization due to the inefficient
garbage collection. ChameleonDB requires a more elaborate
garbage collection approach which considers both KV sepa-
ration [10, 41] and PM’s peculiarities.
Latency. The median Get latency of each system accords with
their index’s overhead. ChameleonDB has the lowest latency
due to its efficient DRAM-PM-hybird index.

USENIX Association 2022 USENIX Annual Technical Conference    783



For PMem-RocksDB, the notorious write stalls in LSM-
trees [49] result in high Put tail-latencies. The dilatory flush
and compaction not only block foreground write operations,
but also lead to multiple SSTable levels, which makes Get op-
erations inefficient. Besides, for low-latency devices like PM,
bloom filters aimed at reducing storage I/Os can introduce
non-negligible latencies in Get operations.

As pmemkv turns to transaction and logging for atomic
in-place updates, it has the highest median Put latency and tail
latency among all evaluated systems with a high thread count.
First, transactions are more likely to be aborted with a high
thread count. Second, the low-performance crash consistency
mechanism of pmemkv makes index access inefficient.

4.5 Recovery
We evaluate the recovery with FlatStore-H and FlatStore-
FF. We randomly prefill 200 million objects of 256B value
size with 80% capacity utilization, in which the log space is
63.3 GB. Then we perform 100 million update operations to
disorder all segments. We set 8 threads for the recovery.

For FlatStore-H, garbage information and shortcuts are
restored with the volatile index in the meantime. It takes
14 seconds to recover all these things in FlatStore-H. For
FlatStore-FF, it takes 102 ms to recover the states of segments.
Note that the system is ready for service at this moment. Then,
the 8 threads recover information for garbage collection (e.g.,
deleted flag bitmaps) in background, which takes 37 seconds.

5 Related Work

PM-based KV stores. There has been plenty of research on
high-performance KV indexes [11, 20, 26, 27, 32, 37, 38, 43,
50, 51] and KV storage systems [8, 12, 22, 24, 30, 42, 49]. In
this paper, we focus on log-structured KV stores on PM.
Log-structured memory storage systems. The log-
structured design has been widely adopted in storage sys-
tems. RAMCloud [39] is a distributed KV store that uses
log-structured memory to achieve high memory utilization.
It uses memory to serve requests from clients and disk to
store backup copies of data. FASTER [20] designs a hybrid
log that spans main memory and storage. Nibble [35] is a
concurrent log-structured in-memory KV store that uses a
scalable multi-head log allocator with a concurrent index. It
can scale up to hundreds of cores with ultra-large volumes
of memory. MICA [31] and Segcache [47] are in-memory
caching systems using the log-structured approach.

The log-structured approach is also embraced by many
persistent memory systems. FlatStore [12], RStore [30], and
Viper [8] are all DRAM-PM hybrid KV stores that lever-
age a volatile index on DRAM and log-structured storage
on PM. To reduce small writes on PM, FlatStore proposes
pipelined horizontal batching to batch small-sized requests
from multiple cores, achieving high throughput without sac-
rificing low latency. Viper assigns threads to different PM

regions to minimize the thread-to-DIMM ratio, and stores
data in DIMM-aligned storage segments. NOVA [45] is a
scalable persistent memory file system that maintains sepa-
rate logs for each inode. LSNVMM [19] is a log-structured
transactional memory system that takes advantage of copy-
on-write to avoid redo/undo logging.
Optimizations on garbage collection. The main overhead of
log-structured storage systems comes from garbage collection.
RAMCloud designs an elaborate garbage collection approach
to enable high memory utilization. RAMCloud decouples the
garbage collection on the memory logs and backups. Hence,
memory can have higher utilization and backup disks bear
less garbage collection work. In-place updates can reduce the
pressure of garbage collection [20, 31]. However, the in-place
updates could lead to internal memory fragmentation. Fur-
thermore, for persistent memory, in-place updates without ex-
pensive logging cannot guarantee crash consistency. Hot-cold
separation is beneficial to garbage collection. Log-structured
file systems such as F2FS [28] separate data by their types.
HashKV [10] partitions KV objects by hashing. They separate
hot and cold objects to some extent. Yang et al. [48] propose a
PM-aware garbage collector in JVM. They separate the read-
mostly phase and the write-only phase to fully utilize PM
bandwidth. However, they adopt PM for merely increasing
memory capacity and do not provide persistence guarantee.

The peculiarities of persistent memory make the problem
of memory compaction more severe. To the best of our knowl-
edge, Pacman is the first work that optimizes compaction for
log-structured key-value store on PM.

6 Conclusion

Garbage collection overhead in log-structured KV stores be-
comes more severe on PM. We summarize that the culprit
is that existing approaches are unawareness of PM’s char-
acteristics. In this paper, we analyzed the inefficiencies of
existing compaction approaches in log-structured KV stores
on PM. According to the analysis, we design, implement,
and evaluate Pacman, an efficient PM-aware compaction ap-
proach for log-structured KV store on PM. Pacman intro-
duces several techniques to streamline garbage collection
with the consideration of PM idiosyncrasies. Pacman signif-
icantly boosts the compaction bandwidth and improves the
performance of state-of-the-art systems at high capacity uti-
lization. Our implementation of Pacman is publicly available
at https://github.com/thustorage/pacman.

Acknowledgements

We sincerely thank our shepherd Changwoo Min and the
anonymous reviewers for their valuable feedback. We also
thank Junru Li and Zhe Yang for their help on this work. This
work is funded by the National Natural Science Foundation
of China (Grant No. 62022051, 61832011), and Huawei.

784    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/thustorage/pacman


References

[1] Aligned memory blocks (the gnu c library). https:
//www.gnu.org/software/libc/manual/html_n
ode/Aligned-Memory-Blocks.html, 2021.

[2] eADR: New Opportunities for Persistent Memory Ap-
plications. https://www.intel.com/content/ww
w/us/en/developer/articles/technical/eadr-
new-opportunities-for-persistent-memory-
applications.html, 2021.

[3] How Intel Optimized RocksDB Code for Persistent
Memory with PMDK. https://software.intel
.com/content/www/us/en/develop/articles/
how-intel-optimized-rocksdb-code-for-per
sistent-memory-with-pmdk.html, 2021.

[4] Persistent Memory Development Kit. https://pmem
.io/pmdk/, 2021.

[5] PMem-RocksDB, A version of RocksDB that uses per-
sistent memory. https://github.com/pmem/pmem
-rocksdb, 2021.

[6] pmemkv: Key/value datastore for persistent memory.
https://pmem.io/pmemkv/, 2021.

[7] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload analysis of a
large-scale key-value store. In Proceedings of the
12th ACM SIGMETRICS/PERFORMANCE Joint Inter-
national Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’12, page 53–64,
New York, NY, USA, 2012. Association for Computing
Machinery.

[8] Lawrence Benson, Hendrik Makait, and Tilmann Rabl.
Viper: An efficient hybrid pmem-dram key-value store.
Proceedings of the VLDB Endowment, 14(9):1544–
1556, 2021.

[9] Zhichao Cao, Siying Dong, Sagar Vemuri, and
David H.C. Du. Characterizing, modeling, and bench-
marking rocksdb key-value workloads at facebook.
In 18th USENIX Conference on File and Storage
Technologies (FAST 20), pages 209–223, Santa Clara,
CA, February 2020. USENIX Association.

[10] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and
Yinlong Xu. Hashkv: Enabling efficient updates in KV
storage via hashing. In 2018 USENIX Annual Techni-
cal Conference (USENIX ATC 18), pages 1007–1019,
Boston, MA, July 2018. USENIX Association.

[11] Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang,
and Jiwu Shu. uTree: A Persistent B+-Tree with Low
Tail Latency. Proc. VLDB Endow., 13(12):2634–2648,
July 2020.

[12] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang
Wang, and Jiwu Shu. Flatstore: An efficient log-
structured key-value storage engine for persistent mem-
ory. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’20, page
1077–1091, New York, NY, USA, 2020. Association for
Computing Machinery.

[13] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10, page
143–154, New York, NY, USA, 2010. Association for
Computing Machinery.

[14] Diego Didona and Willy Zwaenepoel. Size-aware shard-
ing for improving tail latencies in in-memory key-value
stores. In 16th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 19), pages 79–
94, Boston, MA, February 2019. USENIX Association.

[15] Siying Dong, Andrew Kryczka, Yanqin Jin, and Michael
Stumm. Evolution of development priorities in key-
value stores serving large-scale applications: The
RocksDB experience. In 19th USENIX Conference on
File and Storage Technologies (FAST 21), pages 33–49.
USENIX Association, February 2021.

[16] Facebook. Rocksdb. https://rocksdb.org.

[17] Swapnil Haria, Mark D. Hill, and Michael M. Swift.
Mod: Minimally ordered durable datastructures for per-
sistent memory. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’20, page 775–788, New York, NY, USA, 2020.
Association for Computing Machinery.

[18] Jen-Wei Hsieh, Tei-Wei Kuo, and Li-Pin Chang. Effi-
cient identification of hot data for flash memory storage
systems. ACM Trans. Storage, 2(1):22–40, February
2006.

[19] Qingda Hu, Jinglei Ren, Anirudh Badam, Jiwu Shu, and
Thomas Moscibroda. Log-structured non-volatile main
memory. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17), pages 703–717, Santa Clara, CA,
July 2017. USENIX Association.

[20] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and
Beomseok Nam. Endurable Transient Inconsistency in
Byte-Addressable Persistent B+-Tree. In 16th USENIX
Conference on File and Storage Technologies (FAST 18),
pages 187–200, Oakland, CA, February 2018. USENIX
Association.

USENIX Association 2022 USENIX Annual Technical Conference    785

https://www.gnu.org/software/libc/manual/html_node/Aligned-Memory-Blocks.html
https://www.gnu.org/software/libc/manual/html_node/Aligned-Memory-Blocks.html
https://www.gnu.org/software/libc/manual/html_node/Aligned-Memory-Blocks.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://software.intel.com/content/www/us/en/develop/articles/how-intel-optimized-rocksdb-code-for-persistent-memory-with-pmdk.html
https://software.intel.com/content/www/us/en/develop/articles/how-intel-optimized-rocksdb-code-for-persistent-memory-with-pmdk.html
https://software.intel.com/content/www/us/en/develop/articles/how-intel-optimized-rocksdb-code-for-persistent-memory-with-pmdk.html
https://software.intel.com/content/www/us/en/develop/articles/how-intel-optimized-rocksdb-code-for-persistent-memory-with-pmdk.html
https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://github.com/pmem/pmem-rocksdb
https://github.com/pmem/pmem-rocksdb
https://pmem.io/pmemkv/
https://rocksdb.org


[21] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. Netcache: Balancing key-value stores with fast
in-network caching. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, SOSP ’17, page
121–136, New York, NY, USA, 2017. Association for
Computing Machinery.

[22] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam,
Sam H. Noh, and Young ri Choi. SLM-DB: Single-
Level Key-Value Store with Persistent Memory. In 17th
USENIX Conference on File and Storage Technologies
(FAST 19), pages 191–205, Boston, MA, February 2019.
USENIX Association.

[23] Anuj Kalia, David Andersen, and Michael Kaminsky.
Challenges and solutions for fast remote persistent mem-
ory access. In Proceedings of the 11th ACM Symposium
on Cloud Computing, SoCC ’20, page 105–119, New
York, NY, USA, 2020. Association for Computing Ma-
chinery.

[24] Sudarsun Kannan, Nitish Bhat, Ada Gavrilovska, An-
drea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Re-
designing LSMs for nonvolatile memory with Nov-
eLSM. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 993–1005, Boston, MA, July
2018. USENIX Association.

[25] Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn.
Exploring the design space of page management for
multi-tiered memory systems. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21), pages 715–
728. USENIX Association, July 2021.

[26] Wook-Hee Kim, R. Madhava Krishnan, Xinwei Fu,
Sanidhya Kashyap, and Changwoo Min. PACTree: A
High Performance Persistent Range Index Using PAC
Guidelines. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP ’21,
page 424–439, New York, NY, USA, 2021. Association
for Computing Machinery.

[27] R. Madhava Krishnan, Wook-Hee Kim, Xinwei Fu,
Sumit Kumar Monga, Hee Won Lee, Minsung Jang, Ajit
Mathew, and Changwoo Min. TIPS: Making volatile
index structures persistent with dram-nvmm tiering. In
2021 USENIX Annual Technical Conference (USENIX
ATC 21), pages 773–787. USENIX Association, July
2021.

[28] Changman Lee, Dongho Sim, Jooyoung Hwang, and
Sangyeun Cho. F2FS: A New File System for Flash Stor-
age. In 13th USENIX Conference on File and Storage
Technologies (FAST 15), pages 273–286, Santa Clara,
CA, February 2015. USENIX Association.

[29] Viktor Leis, Alfons Kemper, and Thomas Neumann. The
adaptive radix tree: Artful indexing for main-memory
databases. In 2013 IEEE 29th International Conference
on Data Engineering (ICDE), pages 38–49, 2013.

[30] Lucas Lersch, Ivan Schreter, Ismail Oukid, and Wolf-
gang Lehner. Enabling low tail latency on multicore key-
value stores. Proc. VLDB Endow., 13(7):1091–1104,
March 2020.

[31] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. MICA: A holistic approach to fast
in-memory key-value storage. In 11th USENIX Sym-
posium on Networked Systems Design and Implementa-
tion (NSDI 14), pages 429–444, Seattle, WA, April 2014.
USENIX Association.

[32] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric
Lo. Dash: Scalable Hashing on Persistent Memory.
Proc. VLDB Endow., 13(10):1147–1161, April 2020.

[33] Lanyue Lu, Thanumalayan Sankaranarayana Pillai,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. WiscKey: Separating Keys from Values in
SSD-conscious Storage. In 14th USENIX Conference
on File and Storage Technologies (FAST 16), pages 133–
148, Santa Clara, CA, February 2016. USENIX Associ-
ation.

[34] Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache craftiness for fast multicore key-value storage. In
Proceedings of the 7th ACM European Conference on
Computer Systems, EuroSys ’12, page 183–196, New
York, NY, USA, 2012. Association for Computing Ma-
chinery.

[35] Alexander Merritt, Ada Gavrilovska, Yuan Chen, and
Dejan Milojicic. Concurrent log-structured memory
for many-core key-value stores. Proc. VLDB Endow.,
11(4):458–471, December 2017.

[36] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-
Won Lee, and Young Ik Eom. SFS: Random write con-
sidered harmful in solid state drives. In 10th USENIX
Conference on File and Storage Technologies (FAST 12),
San Jose, CA, February 2012. USENIX Association.

[37] Moohyeon Nam, Hokeun Cha, Young ri Choi, Sam H.
Noh, and Beomseok Nam. Write-Optimized Dynamic
Hashing for Persistent Memory. In 17th USENIX Con-
ference on File and Storage Technologies (FAST 19),
pages 31–44, Boston, MA, February 2019. USENIX
Association.

786    2022 USENIX Annual Technical Conference USENIX Association



[38] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas
Willhalm, and Wolfgang Lehner. FPTree: A Hybrid
SCM-DRAM Persistent and Concurrent B-Tree for Stor-
age Class Memory. In Proceedings of the 2016 Interna-
tional Conference on Management of Data, SIGMOD
’16, page 371–386, New York, NY, USA, 2016. Associ-
ation for Computing Machinery.

[39] Stephen M. Rumble, Ankita Kejriwal, and John Ouster-
hout. Log-structured memory for dram-based storage.
In Proceedings of the 12th USENIX Conference on File
and Storage Technologies, FAST’14, page 1–16, USA,
2014. USENIX Association.

[40] Denis Serenyi. Cluster-level storage at google. In
Keynote at the 2nd Joint International Workshop on
Parallel Data Storage and Data Intensive Scalable In-
tensive Computing Systems, 2017.

[41] Chen Shen, Youyou Lu, Fei Li, Weidong Liu, and Jiwu
Shu. Novkv: Efficient garbage collection for key-value
separated lsm-stores. 2020.

[42] Jiwu Shu, Youmin Chen, Qing Wang, Bohong Zhu,
Junru Li, and Youyou Lu. TH-DPMS: Design and Imple-
mentation of an RDMA-Enabled Distributed Persistent
Memory Storage System. ACM Trans. Storage, 16(4),
oct 2020.

[43] Qing Wang, Youyou Lu, Junru Li, and Jiwu Shu. Nap: A
Black-Box approach to NUMA-Aware persistent mem-
ory indexes. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21), pages
93–111. USENIX Association, July 2021.

[44] Xingbo Wu, Fan Ni, Li Zhang, Yandong Wang, Yufei
Ren, Michel Hack, Zili Shao, and Song Jiang. Nvm-
cached: An nvm-based key-value cache. In Proceedings
of the 7th ACM SIGOPS Asia-Pacific Workshop on Sys-
tems, APSys ’16, New York, NY, USA, 2016. Associa-
tion for Computing Machinery.

[45] Jian Xu and Steven Swanson. NOVA: A log-structured
file system for hybrid volatile/non-volatile main memo-
ries. In 14th USENIX Conference on File and Storage

Technologies (FAST 16), pages 323–338, Santa Clara,
CA, February 2016. USENIX Association.

[46] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. An empirical guide
to the behavior and use of scalable persistent memory.
In 18th USENIX Conference on File and Storage Tech-
nologies (FAST 20), pages 169–182, Santa Clara, CA,
February 2020. USENIX Association.

[47] Juncheng Yang, Yao Yue, and Rashmi Vinayak. Seg-
cache: a memory-efficient and scalable in-memory key-
value cache for small objects. In 18th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 21), pages 503–518. USENIX Association, April
2021.

[48] Yanfei Yang, Mingyu Wu, Haibo Chen, and Binyu Zang.
Bridging the Performance Gap for Copy-Based Garbage
Collectors atop Non-Volatile Memory, page 343–358.
Association for Computing Machinery, New York, NY,
USA, 2021.

[49] Ting Yao, Yiwen Zhang, Jiguang Wan, Qiu Cui, Liu
Tang, Hong Jiang, Changsheng Xie, and Xubin He. Ma-
trixKV: Reducing write stalls and write amplification
in LSM-tree based KV stores with matrix container in
NVM. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 17–31. USENIX Association,
July 2020.

[50] Wenhui Zhang, Xingsheng Zhao, Song Jiang, and Hong
Jiang. Chameleondb: A key-value store for optane per-
sistent memory. In Proceedings of the Sixteenth Euro-
pean Conference on Computer Systems, EuroSys ’21,
page 194–209, New York, NY, USA, 2021. Association
for Computing Machinery.

[51] Pengfei Zuo, Yu Hua, and Jie Wu. Write-Optimized and
High-Performance Hashing Index Scheme for Persistent
Memory. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages
461–476, Carlsbad, CA, October 2018. USENIX Asso-
ciation.

USENIX Association 2022 USENIX Annual Technical Conference    787





Towards Latency Awareness for Content Delivery Network Caching

Gang Yan
SUNY-Binghamton University

Jian Li
SUNY-Binghamton University

Abstract
Caches are pervasively used in content delivery networks
(CDNs) to serve requests close to users and thus reduce
content access latency. However, designing latency-optimal
caches are challenging in the presence of delayed hits, which
occur in high-throughput systems when multiple requests for
the same content occur before the content is fetched from the
remote server. In this paper, we propose a novel timer-based
mechanism that provably optimizes the mean caching latency,
providing a theoretical basis for the understanding and design
of latency-aware (LA) caching that is fundamental to content
delivery in latency-sensitive systems. Our timer-based model
is able to derive a simple ranking function which quickly
informs us the priority of a content for our goal to minimize
latency. Based on that we propose a lightweight latency-aware
caching algorithm named LA-Cache. We have implemented
a prototype within Apache Traffic Server, a popular CDN
server. The latency achieved by our implementations agrees
closely with theoretical predictions of our model. Our experi-
mental results using production traces show that LA-Cache
consistently reduces latencies by 5%-15% compared to state-
of-the-art methods depending on the backend RTTs.

1 Introduction

Content delivery networks (CDNs) carry more than 50% of
today’s Internet traffic [17] by caching a variety of contents
such as videos, music, software downloads, etc. and delivering
thousands of millions of user requests each day. CDNs deploy
hundreds of thousands of servers across the world to serve
user requests. If the requested content is available in the server
near the user, a cache hit occurs and the user experiences a
quicker response with a lower latency. Otherwise, a cache
miss occurs and the requested content has to be fetched from
the remote server with a dramatically increased latency. As a
result, there has been a renewed focus on increasing cache hits
[11, 16, 31, 40], which can significantly improve the content
delivery of the Internet.

The recent trends of improving caching efficiency in terms
of maximizing caching hits mostly focus on designing dif-
ferent content caching algorithms, including but not limited
to GDSF [15], ARC [44], CAR [6], LHD [7], A-LRU [37],
AdaptSize [11], CACA [29], LRB [53], RL-Cache [35], RL-
Bélády [58], DeepCache [45] and LHR [59]. However, most
of these algorithms assume that the user-perceived latency
upon a cache hit is negligible (i.e., zero delay). Though this
assumption has been widely used in the caching literature,
some recent efforts start linking it to the potential perfor-
mance degradation when minimizing the end-user latency
in the presence of delayed hits [27, 55]. Notably, the latest
series of works [4, 42] reveals that a delayed hit can occur
in real-world systems, especially in high-throughput systems
when multiple requests to the same content occur before the
requested content is fetched from the remote server. As a
result, the aforementioned caching algorithms fail to minimiz-
ing user-perceived latency in the presence of delayed hit since
they are designed under the assumption that delayed hits does
not exist. See Section 2 for more detail.

Despite the insightful findings in [4, 42], there remains a
major gap between the delayed hits observation and the goal
of efficient online latency-aware caching algorithm design.
This is due to the fact that delayed hits were only identified
and overcome through a hard offline optimization problem
assuming that all contents are the same size, and the fetch-
ing latency from remote server upon a cache miss is uniform
across different contents. However, it is well-known that con-
tent sizes often vary widely in production CDNs from a few
bytes [46] to several gigabytes [31]. Additionally, the fetching
latencies upon cache misses in production systems may vary
over time due to the network conditions (e.g., bandwidth), and
differ across content sizes since large contents often require
longer fetching latencies (e.g., multiple RTTs). These facts
introduce an additional layer of complexity in the design of
online algorithms for minimizing latency in the presence of
delayed hits, which largely remain elusive in the literature.

This paper closes this gap by developing a novel and
lightweight timer-based mechanism to account for the impact

USENIX Association 2022 USENIX Annual Technical Conference    789



of delayed hits for contents with variable sizes and different
fetching latencies that provably optimizes the mean caching
latency. This provides a theoretical basis for the understand-
ing and design of latency-aware caching that is fundamental
to content delivery in latency-sensitive systems. In this ap-
proach, each content is associated with a timer indicating the
fetching latency between the cache and remote server, which
can be variable across different contents and systems. Upon
a cache miss, all requests (i.e., delayed hits) arriving at the
cache during a certain time period dictated by its timer suffer
a corresponding latency before these requests are truly served.
This approach is able to explicitly characterize the expected
average latency of a caching system in the presence of de-
layed hits. This further enables us to derive a simple ranking
function which can quickly prioritize contents for the purpose
of minimizing latency.

This paper makes the following research contributions:

• To the best of our knowledge, our proposed timer-based
model is the first to provide a theoretical basis for under-
standing the impact of delayed hits in latency-sensitive
caching systems in an online manner. This enables us
to design a lightweight online latency-aware caching al-
gorithm which can capture the variable fetching latency
and different content sizes in real-world systems.

• Using this timer-based model, we explicitly character-
ize the mean latency of each content in the presence
of delayed hits and derive a simple ranking function to
prioritize contents so as to minimize the mean latency.
We then propose a lightweight latency-aware caching
algorithm named LA-Cache.

• We have implemented the LA-Cache prototype within
Apache Traffic Server, a popular CDN server, and eval-
uate the performance of LA-Cache using production
traces. Our empirical results are in close alignment with
our theoretical model predictions. Furthermore, we show
that LA-Cache consistently outperforms conventional
caching algorithms by reducing the latency by 5%-15%
depending on the backend RTTs.

The rest of the paper is organized as follows. We introduce
the motivations and opportunities in designing latency-aware
caching in Section 2. We present the model for delayed hits
and explicitly characterize the mean latency in Section 3. We
propose the latency-aware algorithm LA-Cache in Section 4,
and present its prototype design in Section 5. Evaluation
results are shown in Section 6. We discuss related work in
Section 7 and conclude the paper in Section 8. Additional
results are presented in the supplementary material.

2 Background and Motivation

We begin by motivating the existing of delayed hits in latency-
sensitive systems and showing the fundamental limitations of

Figure 1: A motivating example for latency-aware caching
where delayed hits occur. Suppose that the remote server
stores all three contents named A, B, and C, the cache size
is 1, and the miss latency (i.e., the Round-trip Time (RTT))
between the cache and the remote server is 2 ms. We also have
a request sequence of A,A,A,B,B,B, ... with a new request
arriving at the cache every 1 ms.

existing algorithms.

2.1 A Motivating Example
As a motivating example, we consider a basic delayed hit
scenario in real-world systems as shown in Figure 1. Upon
the first request to content ‘A’, a cache miss occurs and the
cache must fetch content ‘A’ from the remote server with a
latency of 2 ms. The next two requests to content ‘A’ can
be directly served from the cache and experience a latency
corresponding to a cache hit, which is assumed to be zero in
conventional caching algorithms. Similar process happens
for the requests to content ‘B’. Since it takes 2 ms to fetch
content ‘A’ from the remote server, how is it possible for the
second request to content ‘A’ that arrived just 1 ms after the
miss was served with a zero latency? Clearly, something is
wrong.

Contrast to the ideal assumption in conventional caching
algorithm design, the following actually happens. Upon the
first request to content ‘A’, a cache miss is claimed and a fetch
is triggered with a latency of 2 ms. Since the RTT is 2 ms,
content ‘A’ will only arrive in the cache at time t=2 ms. As
a result, the request at t=1 ms is queued behind the original
miss, and must wait (at least) 1 ms to be served. At time t=2
ms, content ‘A’ arrives at the cache and all queued requests
(including the one just arrived) are resolved. Similar process
happens for the requests to content ‘B’. These requests (e.g.,
requests to content ‘A’ at t=1 ms and to content ‘B’ at t= 4 ms)
are called delayed hits since they neither suffer the latency
of a cache miss1 nor that of a true cache hit (e.g., requests to

1We interchangeably use the terms of “miss latency”, “fetching latency”

790    2022 USENIX Annual Technical Conference USENIX Association



10
0

10
1

10
2

10
3

10
4

10
5

10
6

L (μs)

−150

−100

−50

0

La
te

nc
y 

im
pr

ov
em

en
t

 re
la

tiv
e 

to
 B
él
ád

y 
(%

)

(a) Synthetic

10
0

10
1

10
2

10
3

10
4

10
5

10
6

L (μs)

−150

−100

−50

0

(b) Bilibili

LRU LHD LRU-4 2Q Delay

Figure 2: Conventional caching algorithms fail to minimize
latency: As the fetching latency (the value of L) increases,
conventional caching algorithms outperform the Bélády’s
offline MIN algorithm in term of mean latency on a 256GB
cache. For example, LRU-4 outperforms Bélády when L is
greater than 50 ms in the Bilibili trace.

content ‘A’ at t=2 ms and to content ‘B’ at t= 5 ms).
In general, delayed hits occur in high-throughput systems

when multiple requests to the same content occur before the
requested content is fetched from the remote server [4, 27,
42, 55]. This phenomenon has become increasing perceptible
due to the growing ratio between system throughputs and
latencies in a wide range of systems. For example, the wide-
area latency between a CDN forward proxy and a central data
center is only marginally improving, while newer technologies
boast order-of-magnitude throughput improvement with the
network links moving from 10 Gbps to 400 Gbps [24]. The
fundamental problem is that latencies are closer and closer
to limits imposed by the speed of light, while throughputs
keep growing unboundedly. Hence, minimizing the impact of
delayed hits is a key performance objective in latency-aware
caching systems.

2.2 Limitations of Existing Algorithms
The above example indicates that conventional caching algo-
rithms fail to capture the impact of delayed hits, which can
be significant especially in systems with high latency to the
remote server. One reason contributes to this failure is that
conventional caching algorithms are designed to maximize
cache hits under the assumption that all cache hits result in
zero delay, i.e., they equally treat delayed hits and true hits. To
that end, the latency measured by conventional caching algo-
rithms significantly underestimate true latency in the presence
of delayed hits. Some so-called “cache hits” will experience
latencies closer to the high latency of a cache miss than the
low latency of a true hit in practice.

As a consequence of this discrepancy, conventional caching
algorithms fail to minimize latency although some caches
were deployed for this purpose, which were actually treated
equivalently to maximize cache hits regardless of delayed hits.

and “RTT” in this paper.

Figure 3: The illustration of our proposed timer-based model
for a particular content i in the presence of delayed hits.

For example, the Bélády’s offline MIN algorithm2 [8] is the
well-known optimal algorithm in maximizing cache hits and
minimizing latency when all contents are of the same size
and delayed hits are treated as true hits. However, Bélády is
no longer optimal in minimizing latency in the presence of
delayed hits, as illustrated in Figure 2 (More details in Sec-
tion 6). Therefore, the goal of maximizing cache hits for most
conventional caching algorithms and the goal of minimizing
latency are not equivalent, in the presence of delayed hits3.
We need to design new online algorithms for latency-sensitive
caching systems.

3 Model for Latency Minimization

We consider the problem of minimizing latency for content
delivery given delayed hits in latency-sensitive systems. In
particular, we aim at designing a latency-aware caching policy
that minimizes the mean latency of all requests. For ease of
exposition, we denote the latency to fetch a particular content
i from the remote server as Li, which can vary across contents
and servers. Therefore, the latency is (a) Li upon a cache miss,
(b) between 0 and Li upon a delayed hit, and (c) 0 upon a true
cache hit.

3.1 Modeling Delayed Hits
Our key insight is to build a novel connection between de-
layed hits and the timer-based caching policy. Figure 3 shows
such a novel connection for a particular content i. More specif-
ically, each content i has a timer value Li which represents the
latency to retrieve the content from the remote server upon
a cache miss. In other words, upon a cache miss at time t,
a request is sent to the remote server and content i will be

2The Bélády’s offline MIN algorithm always evicts the content with the
furthest next request.

3It has been shown [42] that the latency objective is not antimonotone for
caching problems with delayed hits. In other words, a caching algorithm that
improves average caching latency under delayed hits might even lower the
true hit rate. Hence optimizing caching latency is fundamentally different
from optimizing cache hits.

USENIX Association 2022 USENIX Annual Technical Conference    791



fetched and inserted into the cache after Li time slots, i.e., at
time t+Li. The timer counts down and until the timer expires,
any new requests for content i during [t, t + Li) are called
delayed hits. These requests are queued behind the original
cache miss occurred at time t, and resolved at time t +Li with
a corresponding latency of t +Li− t ′ for the request occurred
at time t ′. The request arrives at time t +Li is satisfied im-
mediately with a latency of 0, and hence is called the true
hit.

3.2 Mean Latency of All Requests

Suppose that the requests for content i arrive at the cache
according to a Poisson process4 with rate λi. Let Di be the
expected aggregated latency experienced by the arrival of
requests for content i (i.e., delayed hits) upon a cache miss.
The probability of not finding content i in the cache is the
cache miss probability mi, which satisfies mi =

1
1+λiLi

derived
in the context of timer-based caches [25].

Proposition 1. The expected latency experienced by the re-
quest arrival of content i is

(
1+ 1

1+λiLi

)
Li
2 .

Proof. We first compute the expected aggregated latency for
content i. Upon a cache miss, the request is sent to the remote
server and content i is fetched and inserted into the cache
after Li time slots. Thus, the latency of a cache miss is Li. A
delayed hit occurs for every arrival of content i during time
[t, t +Li) since the content i has not been inserted into the
cache yet, and the corresponding latency for request at time
t ′ ∈ [t, t + Li) is t + Li − t ′. Thus the expected aggregated
latency by all delayed hits in the interval of [t, t +Li) is

Di :=
∫ t+Li

t
λi(t +Li− x)dx =

λiL2
i

2
. (1)

Since the requests for content i follow a Poisson process,
the expected number of requests, i.e., the expected number
of delayed hits is λiLi. Hence, the expected latency for each

delayed hit is λiL2
i

2 /λiLi =
Li
2 . Then the mean latency experi-

enced by the requests of content i is a weighted sum of the
latency from the cache miss and the latency from delayed hits,
which satisfies

D̄i = miLi +(1−mi)
Li

2
=

(
1+

1
1+λiLi

)
Li

2
. (2)

4Poisson arrivals are widely used in the literature, e.g., [32, 36, 38, 41, 43].
However, our model holds for general stationary process [5] at the cost of
complicated notations [25, 26]. We relax the Poisson arrivals assumption for
our algorithm design, implementation and empirical evaluation.

Corollary 1. The mean latency experienced by all requests
to N distinct contents satisfies

D̄ :=
N

∑
i=1

λiD̄i =
N

∑
i=1

λiLi

2

(
1+

1
1+λiLi

)
. (3)

Remark 1. The main advantage of our proposed timer-
based model for delayed hits is that it can be easily de-
ployed in latency-sensitive systems to provide a precise and
theoretically-validated latency. Although real-world systems
do not have strict Poisson arrivals for any content (see Sec-
tion 6), we will show in Section 6 that our proposed theoretical
model with Poisson assumptions works well in practice.

Remark 2. Timer-based caches have been extensively stud-
ied in the community [9, 14, 23, 25, 26, 33, 48–50] which are
used to store frequently requested contents in computer sys-
tems. In a timer-based cache, a timer value is set when a
content is first cached and evict the content when the timer
expires. While our timer-based delayed hits model serves a
different purpose, some of the theoretical analysis of timer
caches directly apply (e.g., the decoupling nature of contents
in timer cache analysis). This novel connection between timer-
based delayed hits and traditional timer-based caches allows
us to bring to bear the analytical work done in the conven-
tional caching domain into latency-sensitive systems.

4 Latency-Aware Cache

Our novel and lightweight timer-based model for delayed hits
provides us an opportunity to design a latency-aware (LA)
caching policy that achieves optimal latency for any given
request sequence with variable content fetching latency from
remote server.

Having characterized the mean latency experienced by all
requests (see Corollary 1), we turn to derive a simple ranking
function that can quickly prioritize contents so as to minimize
latency5. Ranking function has been widely used in the design
of conventional caching algorithms. For example, the clas-
sic Least Recently Used (LRU) [18] (or its variants) which
are employed in major CDNs today, is based on a ranking
function of content request recency, while Least Frequency
Used (LFU) ranks contents by how frequently they have been

5We build a novel connection between delayed hits and timer-based
caches for the sake of characterizing the mean latency of each content in
the presence of delayed hits. See Remark 2. In particular, the fetching la-
tency upon a cache miss is analogous to a timer. Need to mention that
we are not considering the conventional timer-based caches, where each
content is decoupled by the timer. Instead, our timer-based model serves a
different purpose. For our latency-aware caching policy design, all contents
are coupled by the cache capacity constraint and hence a ranking function
(which is derived using the timer-based model, see equation (4)) is needed to
make caching decisions. We use the term “timer-based model” since we can
bring some analytical results from traditional timer-based cache domain into
latency-minimization analysis, such as the expression of mi.

792    2022 USENIX Annual Technical Conference USENIX Association



requested. However, all these ranking functions prioritize con-
tents for maximizing cache hits whereas we seek a ranking
function so as to minimizing latency.

Our ranking function is inspired by the theoretically-
sounded latency derived from the timer-based model for de-
layed hits, which in particular the following two intuitions.
First, we consider the metric of aggregated latency computed
in (1), which is the sum of latency due to a cache miss and
any delay hits in the next Li time slots which occur before the
corresponding content is fetched and inserted into the cache.
Intuitively, a content with a higher latency cost increases the
average latency more than a content with a lower latency cost,
and hence should be prioritized. Second, we consider the met-
ric of mean latency for each request of a content, which is
computed in (2). It is clear that a burst of requests to a content
can contribute more to the average latency than a sparse of re-
quests to a content. Following these two intuitions, we derive
a ranking function based on both the aggregated latency and
the mean latency for each content i as

f̃ (i) =
Aggregated latency

Mean latency for each request
=

Di

D̄i
=

λiLi(1+λiLi)

2+λiLi
.

(4)

Now we introduce the latency-aware policy based on the
above ranking function, abbreviated as LA-Cache. LA-Cache
always places in the cache the C contents with the largest
value of their corresponding ranking functions, i.e., if f̃ (1)≥
f̃ (2)≥ ·· · ≥ f̃ (N), then contents 1,2, · · · ,C are cached given
that the cache size is C.

Proposition 2. LA-Cache achieves the minimum mean la-
tency experienced by all requests compared to any other on-
line policies.

Proof. This is clear from the definition of LA-Cache policy
since both the ranking function (4) and the expected latency
for each content i in (2) (resp. (3)) are monotonically increas-
ing in λiLi.

Remark 3. Given (3) (resp. (2)), it can be easily shown that
D̄ (resp. D̄i) is increasing in λiLi, which can be interpreted
as the expected number of delayed hits upon a cache miss for
content i. Since our ranking function (4) is also increasing
in λiLi, it is clear that LA-Cache prioritizes caching bursty
contents (We will formally define and evaluate the burstiness
of a content using a burstiness measure [34] in Section 6).
Intuitively this is correct since a busty content usually refers to
a large number of requests in a shorter time period. This will
result in a larger aggregated latency for the content upon a
cache miss. As a result, prioritizing such a content can reduce
the latency.

4.1 From Theory to Practice
The above ranking function is defined under the assumption
that the content sizes in the system are equal. However, the

Figure 4: The architecture of our ATS prototype.

content sizes in production system usually vary significantly
from a few bytes [46] to several gigabytes [31]. To overcome
this drawback, we redefine the ranking function by incorpo-
rating the content size si, satisfying

f (i) =
f̃ (i)
si

=
λiLi(1+λiLi)

(2+λiLi)si
. (5)

For the notation abuse, we call the policy using this refined
ranking function as LA-Cache in the rest of the paper.

To compute the ranking function and obtain the ranking
function based policy LA-Cache, the content arrival rate λi is
needed6. This is straightforward for synthetic workload; how-
ever, the content arrival rate is usually unknown and varying
over time in real-world systems. To this end, we use esti-
mation techniques to approximate the request rates. For any
content i, let X i

j denote the random variable corresponding to
the inter-arrival times for the requests for content i, and X̄ i be
its mean. We can approximate the mean inter-arrival time as
ˆ̄X i = ∑

K
j=1 X i

j/K. It can be easily shown that ˆ̄X i is an unbiased
estimator of 1/λi. However, keep tracking of all X i

j’s for each
content j from the very beginning will increase the overhead.
As it is well-known that content request processes in pro-
duction systems are highly dynamic and non-stationary, we
further consider a sliding time window, and only use the X i

j’s

within the window to estimate ˆ̄X i. In Section 6, we will use
this estimator to compute the ranking function for evaluating
our algorithm.

5 Implementation

We implement the LA-Cache prototype within Apache Traffic
Server (ATS) [2], a popular CDN server. An LA-Cache cache
simulator has also been implemented for the sake of compari-
son with a wide range of state-of-the-art caching algorithms.
The two implementations are written in C++.

5.1 LA-Cache Prototype
ATS is a multi-threaded and event-based CDN caching server
with a space-efficient in-memory lookup data structure as

6Again, Li indicates the content retrieval latency upon a cache miss (re-
lated to RTTs of the system). In our experiments, we evaluate the impact of
its value on the system performance. See Section 6.

USENIX Association 2022 USENIX Annual Technical Conference    793



Description
LRU Recency-based heuristic.
LRU-K Recency-based heuristic. Evict content with

the oldest K-th reference in the past.
LHD [7] Using a ranking function of the content ex-

pected hit density.
2Q [52] Manage caching decisions through a FIFO

queue and a LRU queue.
Delay An offline heuristic knows future request

latency caused by evicting a content from
cache now.

LRU-
MAD [4]

Calculate content average latency from his-
tory and then combine with LHD as a rank-
ing function.

LHD-
MAD [4]

Calculate content average latency from his-
tory and then combine with LRU as a rank-
ing function.

Table 1: Overview of state-of-the-art caching algorithms.

an index to the cache. A typical ATS configuration consists
of a disk/SSD cache and a memory cache. To achieve high
performance, ATS is accessed using asynchronous I/Os. The
overview of our LA-Cache prototype is presented in Figure 4.

Upon a new request, ATS implements the following steps.
Based on the URL, it looks up the local caches to check
whether the corresponding content is available. If the re-
quested content is already in the caches (i.e., a true hit), then
the request is immediately satisfied by replaying a response
back to the user. Otherwise, the request is sent to the kernel,
which mains the request history received from users, i.e., a
separate queue for each cache miss (see Section 1). If the
current request belongs to one queue, then it will be added
to the queue (i.e., a delayed hit). Otherwise, the kernel sets
up a new queue for the content (i.e., a miss), and the request
is forwarded to the original remote server. To deal with real
traces, the requests are sent to a proxy sever in the recorded
order (via the trace replayer). All users and the master sever
communicate with each other by the TCP protocol.

We implement LA-Cache on top of ATS. To do so, we
replace the lookup data structures for ATS cache with the
LA-Cache described in Section 4. The content admission7

and look-up processes can be implemented asynchronously.
These two processes are used to update parameters so as to
make eviction decision8. In particular, the eviction process
is run by scheduling cache admissions in a lock-free queue.
It implements eviction rule to select one eviction candidate
when the cache is full. But as for the flash abstraction layer
which is very important in production system (i.e., we have

7Content admission decides whether to cache the content upon a cache
miss.

8Eviction process determines which content to evict when the cache is
full.

Dataset CDN-A CDN-B Bilibili Wiki
Duration
(Hours)

24 9.9 18.7 0.1

Unique
contents

330,446 162,104 4,852 407,919

Total re-
quests
(Millions)

0.97 1 1 1

Mean con-
tent size
(MB)

25.5 68.4 563.5 69.8

Max con-
tent size
(MB)

7,790 38,392 565.8 3,840

Table 2: Key characteristics of the production traces used
throughout our evaluation spanning different CDNs.

10
0

10
1

10
2

10
3

10
4

10
5

Content Order

0.00

0.25

0.50

0.75

1.00

1.25
P

op
ul

ar
ity

1e−2

(a) Popularity

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Logical Time

0

1

2

3

P
er

ce
nt

ag
e 

of
 re

qu
es

ts
 (%

) 1e−1

(b) Inter-arrival Time

CDN-A CDN-B Bilibili Wikipedia

Figure 5: The production traces used in our evaluation comes
from different CDNs and thus exhibit different request pat-
terns.

no access, e.g., RIPQ [56]), we only emulate the workings
due to some difficulties, reading offsets randomly and writing
sequentially to the disk. Since the memory cache is usually
small which has little impact on hit probability [11], we keep
this part of ATS unchanged. In summary, we implement the
framework by only modifying about 100 lines of codes in
ATS. The LA-Cache framework library contains about 600
lines of codes.

5.2 LA-Cache Simulator

We implement an LA-Cache simulator that includes a wide
range of conventional caching algorithms. For ease of expo-
sition, we only report the results for the “best-performing”
algorithms as summarized in Table 1. Finally, our implemen-
tation benefits from existing caching simulators such as lib-
CacheSim [39] and LRB simulators [53].
Availability. The code for the prototype design, the cache
simulator as well as all evaluations in Section 6 are available
at https://github.com/GYan58/la-cache.

794    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/GYan58/la-cache


0.00 0.25 0.50 0.75 1.00
Normalized Inter-arrival Time

0.2

0.4

0.6

0.8

1.0

C
D

F 
V

al
ue

(a) CDN-A

0.00 0.25 0.50 0.75 1.00
Normalized Inter-arrival Time

0.2

0.4

0.6

0.8

1.0

(b) CDN-B

0.00 0.25 0.50 0.75 1.00
Normalized Inter-arrival Time

0.4

0.6

0.8

1.0

(c) Bilibili

0.00 0.25 0.50 0.75 1.00
Normalized Inter-arrival Time

0.2

0.4

0.6

0.8

1.0

(d) Wikipedia

Synthetic Real

Figure 6: CDF of inter-arrival times for real trace and synthetic trace for two representative contents.

10
0

10
1

10
2

10
3

10
4

L (μs)

0

2

4

6

A
ve

ra
ge

 la
te

nc
y 

(μ
s)

1e3

(a) CDN-A

10
0

10
1

10
2

10
3

10
4

L (μs)

0

2

4

6

8 1e3

(b) CDN-B

10
0

10
1

10
2

10
3

10
4

L (μs)

0

2

4

6 1e3

(c) Bilibili

10
0

10
1

10
2

10
3

10
4

L (μs)

0

2

4

6

8 1e3

(d) Wikipedia

Theory E-synthetic E-real

Figure 7: Comparison between theoretical and empirical results of mean latency for production traces. The mean latency graph
for the Theory, the E-real and the E-synthetic is slightly offset for ease of visualization.

6 Evaluation

In this section, we evaluate our LA-Cache prototype. We also
conduct simulations to compare LA-Cache to a wide range
of state-of-the-art algorithms using production traces. Our
results address the following questions:
• How accurate is our timer-based model for delayed hits

given that real-world systems do not have strict Poisson ar-
rivals (Section 6.2)?
• What is the benefit of using our LA-Cache prototype

compared to existing CDN production systems in terms of
latency and implementation overhead (Section 6.3)?
•What is the performance of LA-Cache compared to state-

of-the-art algorithms on a wide range of production CDN
traces under various cache settings (e.g., different fetching
latency and cache sizes) (Section 6.4)?

6.1 Methodology
Traces. We consider production traces from four CDNs, two
of which chose to remain anonymous. (1) CDN-A collected
from several nodes in one continent serves a mixture of web
and video traffic; (2) CDN-B captures mobile video behaviors
collected from one live streaming system; (3) Bilibili [12,
29], collected from a Video-on-Demand (VoD) provider with
millions of HTTP requests; and (4) a Wikipedia (Wiki) trace
[53] collected on a west-coast node serving photos and other

media content. We summarize the trace characteristics in
Table 2 and present two key distributions of these traces in
Figure 5. The traces typically span several tens to hundreds of
thousands of requests, and tens of thousands of contents with
sizes varying from 10KB to 104MB. The total bytes requested
are on the order of TBs; however, the active bytes9 are on
average on the order of GBs. As a result, we choose the cache
size in the range of 128GB to 1,024GB for different traces in
our evaluation. For ease of readability, we only present results
using a 256GB cache and a 512GB cache for each trace in the
rest of this section. Similar observations hold for other cache
sizes and hence are omitted. Finally, the average inter-request
time is 6.5 ms for CDN-A, 9.1 ms for CDN-B, 1.1 ms for
Bilibili and 5.4 ms for Wikipedia.
Baselines. We compare LA-Cache with a wide range of state-
of-the-art algorithms. For ease of exposition, we only show
the few “best-performing” algorithms (see Table 1) in the
following figures.
Performance evaluation. We evaluate the performance of
these algorithms using four production workloads described
above with different fetching latencies and cache sizes. All
results are generated by running on Ubuntu 18.04 with an
Intel(R) Core(TM) i7-6700HQ processor and a 8GB RAM.

9A content is said to be active at time t in a trace if t lies between its first
and last requests. The total size of active contents at time t is defined as active
bytes [35].

USENIX Association 2022 USENIX Annual Technical Conference    795



CDN-A CDN-B Bilibili Wikipedia0

50

100

150

200

250

La
te

nc
y 

(m
s)

(a) Average Latency

CDN-A CDN-B Bilibili Wikipedia0

100

200

300

400

(b) P90 Latency

CDN-A CDN-B Bilibili Wikipedia0

100

200

300

400

500

(c) P99 Latency

LA-Cache Unmodified ATS

Figure 8: The latencies of LA-Cache and unmodified ATS using a 256GB cache.

CDN-A CDN-B Bilibili Wikipedia
Metric Experiment LA-Cache ATS LA-Cache ATS LA-Cache ATS LA-Cache ATS

Throughput (Gbps) max 8.64 8.28 11.16 10.73 11.93 11.88 9.98 9.36
Overall CPU (%) average 27.4 2.8 28.2 3.7 27.1 2.8 28.5 4.0
Peak Mem (GB) max 2.6 2.3 2.7 2.5 2.3 2.2 2.3 2.2
P90 Latency (ms) normal 234.2 235.6 378.8 381.6 390.7 403.7 239.0 247.3
P99 Latency (ms) normal 247.6 248.2 474.1 474.6 435.5 436.5 323.7 324.0

Overall Latency (ms) average 137.2 150.6 215.0 236.7 223.5 239.4 156.4 188.9

Table 3: Resource usage for LA-Cache and ATS in max (throughput-bound) and normal (production-speed) experiments.

6.2 Accuracy of Timer-based Model

We first show that our proposed timer-based model for delayed
hits (see Sections 3 and 4) is accurate.
Non-Poisson arrivals in production traces. We first show
that production traces do not have strict Poisson arrivals for
any content. To that end, we generate a synthetic trace based
on the real trace, where each content follows Poisson arrivals
with the same average arrival rate as in the corresponding
trace. We analyze the distribution of the inter-arrival times
for the corresponding contents from the real and synthetic
traces. It is clearly shown in Figure 6 that they are visibly
different. Similarly trends hold for other contents in all pro-
duction traces considered in this paper, i.e., production traces
do not have strict Poisson arrivals for any content.
Comparison between theoretical and empirical results.
We now show that despite the fact that production traces may
not be strictly Poisson, our proposed timer-based model with
Poisson assumption works well in practice. To this end, we
compare the theoretically computed average latency (calcu-
lated using Equation (3)) to the empirically computed latency.
In particular, we compare three results: (i) Theory: theoretical
latency for the trace; (ii) E-real: empirical latency for the
trace; and (iii) E-synthetic: empirical latency for the synthetic
Poisson trace with same content arrival rates as the trace as
described earlier. Figure 7 compares the curves for all three
cases in four production traces. We observe that the theoreti-
cal latency matches very well with the empirical latency for

the synthetic trace while the empirical latency for the real
trace only differs slightly with the other two.

6.3 Latency Reduction of LA-Cache Proto-
type

We first compare our LA-Cache prototype to the ATS produc-
tion systems in mean latency and implementation overhead as
shown in Figure 8 and Table 3. The average RTT is 200 ms.
Latencies. Figure 8 compares the mean latency, the 90-th
percentile latency (P90 latency) and the 99-th percentile la-
tency (P99 latency) of LA-Cache and unmodified ATS using
four production traces with a 256GB cache. LA-Cache con-
sistently reduces the latency compared to ATS by 5%-20%
on average10.
Implementation overhead. We then compare the implemen-
tation overhead of our LA-Cache prototype against unmod-
ified ATS. We measure the throughput, CPU and memory
utility under the “max” experiments, as shown in Table 3. We
see that LA-Cache has no measurable throughput overhead
but the peak CPU utilization increases to 27.4% from 2.8%
for ATS under CDN-A, 28.2% from 3.7% for ATS under

10P90 (resp. P99) latency is the value of top 10% (resp. 1%) latency.
Though P90 (resp. P99) latencies of LA-Cache are not significantly better
than ATS, it only means that the largest latency values are similar. More
importantly, it is obvious that the mean latency, a key metric for real system,
of LA-Cache significantly outperforms ATS, i.e., LA-Cache improves mean
latency greatly for most content requests.

796    2022 USENIX Annual Technical Conference USENIX Association



10
1

10
3

10
5

L (μs)

−10

0

10

La
te

nc
y 

im
pr

ov
em

en
t

 re
la

tiv
e 

to
 L

R
U

 (%
)

(a) CDN-A

10
1

10
3

10
5

L (μs)

0

10

20

(b) CDN-B

10
1

10
3

10
5

L (μs)

0

10

20

(c) Bilibili

10
1

10
3

10
5

L (μs)

−10

0

10

20

(d) Wikipedia

LHD LRU-4 2Q LRU-MAD LHD-MAD LA-Cache

Figure 9: Comparison of mean latency improvement between LA-Cache and state-of-the-art algorithms relative to LRU using a
256GB cacahe.

10
1

10
3

10
5

L (μs)

−10

0

10

La
te

nc
y 

im
pr

ov
em

en
t

 re
la

tiv
e 

to
 L

R
U

 (%
)

(a) CDN-A

10
1

10
3

10
5

L (μs)

−10

0

10

20

(b) CDN-B

10
1

10
3

10
5

L (μs)

0

10

20

(c) Bilibili

10
1

10
3

10
5

L (μs)

−10

0

10

20

(d) Wikipedia

LHD LRU-4 2Q LRU-MAD LHD-MAD LA-Cache

Figure 10: Comparison of mean latency improvement between LA-Cache and state-of-the-art algorithms relative to LRU using a
512GB cache.

CDN-B, 27.1% from 2.8% for ATS under Bilibili and 28.5%
from 4.0% under Wikipedia. However, we note that most pro-
duction servers, even at their busiest mode, have sufficient
CPU headroom.

We replay our traces using its original timestamps and mea-
sure the latencies corresponding to cache misses, delayed hits
and true hits. We call this “normal” experiments as shown in
Table 3. It is clear that LA-Cache leads to significant latency
reduction compared to ATS. More specifically, LA-Cache re-
duces the 90-th percentile latency (P90 latency) by 4%, the
99-th percentile latency (P99 latency) by 3%, and the overall
average latency by 10% compared to ATS.

Finally, we measure the peak memory overhead for all
traces and cache sizes, we observe that LA-Cache uses at
most 1.1% of the cache size to store metadata. As we will
show later, such a small loss in available caching space is
more than offset by LA-Cache’s significant latency reduction.

From our above experiments in ATS, we believe that
LA-Cache is a practical design for today’s CDNs and can
be easily implemented in existing production CDN servers
with modest resource overhead.

6.4 LA-Cache vs. State-of-the-art Algorithms

We further compare LA-Cache to a large number of state-of-
the-art caching algorithms using four production traces with

a wide range of fetching latencies and cache sizes.

Latency. Figures 9 and 10 compare the mean latency improve-
ment of LA-Cache and state-of-the-art caching algorithms
with respect to LRU with different fetching latencies using a
256GB and a 512GB cache, respectively. We choose LRU as
the baseline since major CDNs today still employ LRU or its
variants for content caching. The comparisons with respect to
the offline Bélády are relegated to the supplementary material
for ease of readability.

Our LA-Cache consistently outperforms the best state-of-
the-art algorithms, i.e., “the best-performing” algorithms in
Table 1. Overall, LA-Cache reduces the latency by 5%-15%
on average. Note that LA-Cache is robust across all traces
in latency reduction whereas no existing state-of-the-art al-
gorithms could robustly reduce the latency across all traces.
In particular, LA-Cache outperforms LHD-MAD and LRU-
MAD, two recently proposed latency-aware caching algo-
rithms [4]. Our interpretation is that our LA-Cache naturally
offers a variable fetching latency for different contents as
well as fully captures the varying content sizes whereas LHD-
MAD or LRU-MAD are designed under the assumption that
contents are of equal size, which is not the case in production
systems (see Figure 5).

Impact of cache size. We further characterize the impact of
cache size on the latency reduction of LA-Cache compared
to state-of-the-art algorithms. Based on the results above,

USENIX Association 2022 USENIX Annual Technical Conference    797



2
3

2
5

2
7

2
9

Cache Size (GB)

0

2

4

6

La
te

nc
y 

im
pr

ov
em

en
t

 re
la

tiv
e 

to
 L

R
U

 (%
)

(a) CDN-A

2
3

2
5

2
7

2
9

Cache Size (GB)

10

20

(b) CDN-B

2
3

2
5

2
7

2
9

Cache Size (GB)

10

20

(c) Bilibili

2
3

2
5

2
7

2
9

Cache Size (GB)

0

10

20

30

(d) Wikipedia

LRU-MAD LHD-MAD LA-Cache

Figure 11: Comparison of the mean latency improvement between LA-Cache and state-of-the-art algorithms relative to LRU as a
function of cache sizes.

0-1 1 0-1 1 0-1 1
Burstiness

−100

−50

0

50

100

La
te

nc
y 

im
pr

ov
em

en
t

 re
la

tiv
e 

to
 L

R
U

 (%
)

(a) CDN-A

0 1 0-1 1 0-1 1
Burstiness

−50

0

50

100

(b) CDN-B

0-1 1 0-1 1 0-1 1
Burstiness

0

25

50

75

100

(c) Bilibili

0-1 1 0-1 1 0-1 1
Burstiness

−50

0

50

100

(d) Wikipedia

LRU-MAD LHD-MAD LA-Cache

Figure 12: Improvement from the burstiness of content requests relative to LRU using a 256GB cache.

we only focus on the comparison with two latency-aware
algorithms LRU-MAD and LHD-MAD. We compute the
latency reduction compared to LRU for all traces while using
a fixed value of L=1 ms. From Figure 11, we observe that
LA-Cache’s improvement is between 4% and 30% compared
to the widely deployed LRU. Finally, we see that LA-Cache
outperforms LRU-MAD and LHD-MAD between 3% and
13% across different cache sizes.
Impact of burstiness. As motivated earlier in Section 2 as
well as the design of our LA-Cache in Section 4, it is clear that
a burst of requests to a content could contribute to the average
latency more than a sparse of requests to a content. Now we
turn to the question of whether our intuition of burstiness
indeed maps on the latency reduction of LA-Cache compared
to state-of-the-art algorithms?

To answer this question, we first need a measure to quantify
the burstiness of a trace. A widely used metric is called the
Goh-Barabasi score11 [28]. However, it does not capture the
impact of inter-arrival times, which play a significant role
in delayed hits. To this end, we use a new burstiness mea-
sure [34] that not only captures the mean, variance of request
sequences but also the inter-arrival times. The large the bursti-
ness value, the busty the requests are. We refer interested
readers to [34] for a detailed discussion12.

11The value of Goh-Barabasi score is between -1 to 1, with -1 being a
regular request sequence, 0 being a random request sequence and 1 being a
bursty request sequence.

12The Goh-Barabasi score is a statistical measure of burstiness in a se-

Using this measure, we show that CDN-A has the largest
burstiness value13, which means that the inter-arrival times
for most contents are completely random. On the other hand,
CDN-B has the smallest burstiness value. These observations
are consistently with the trace characteristics (e.g., the inter-
arrival time distribution) in Figure 5, where about 25%-30%
contents account for more than 80% requests in CDN-A,
while the requests in CDN-B are more uniform.

We characterize the burstiness of each content and the cor-
responding latency improvement of this content due to the
latency-aware caching algorithms in Figures 12 and 13, where
we consider the setting as above with a fixed value of L=1
ms. We observe that bursty contents (with a large burstiness
value) incur a lower latency compared to LRU in general. Fur-
thermore, we indeed observe that LA-Cache prioritizes more
bursty requests compared to other state-of-the-art algorithms,
which contributes to the latency reduction of LA-Cache. As
a result, the overall mean latency is reduced. For example,

quence of events and is defined as B = r−1
r+1 , where r = σ/µ is the coefficient

of variation, σ and µ denote the standard deviation and the mean of inter-
arrival times, respectively. However, the behavior of this score may not be
robust with respect to finite-size request sequence. [34] redefined the busti-
ness score as

√
n+1r−

√
n−1

(
√

n+1−2)r+
√

n−1
where n is the sample size (i.e., number of

requests in the sequence). This new score has been shown to quantify the
burstiness in the empirical dataset without finite-size effects.

13We compute a weighted average burstiness score over all requests in
the trace using the new burstiness measure [34], where the weight for each
content is proportional to the total number of requests for this content.

798    2022 USENIX Annual Technical Conference USENIX Association



0-1 1 0-1 1 0-1 1
Burstiness

−100

−50

0

50

100

La
te

nc
y 

im
pr

ov
em

en
t

 re
la

tiv
e 

to
 L

R
U

 (%
)

(a) CDN-A

0 1 0-1 1 0-1 1
Burstiness

−50

0

50

100

(b) CDN-B

0-1 1 0-1 1 0-1 1
Burstiness

−100

−50

0

50

100

(c) Bilibili

0-1 1 0-1 1 0-1 1
Burstiness

−100

−50

0

50

100

(d) Wikipedia

LRU-MAD LHD-MAD LA-Cache

Figure 13: Improvement from the burstiness of content requests relative to LRU using a 512GB cache.

for Wiki in Figure 12 (d), it is obvious that LA-Cache pri-
oritizes more bursty requests compared to LRU-MAD and
LHD-MAD. This leads to a latency improvement of 22%
for LA-Cache, while the improvements for LRU-MAD and
LHD-MAD are 2% and 9%, respectively, as shown in Fig-
ure 9 (L = 103µs). This phenomenon can also be observed
when compared with the offline Bélády (see supplementary
material). These observations further validate our intuitions
on designing a ranking function to prioritize bursty contents
so as to minimize latency (see Section 4).

7 Related Work

Caching algorithm design has been extensively studied over
years. However, most of the previous works have focused
on improving caching hit probabilities. We classify them by
admission or eviction. The widely used admission algorithms
include AdaptSize [11], TinyLFU [19] and SecondHit [40],
and among others where static features such as content sizes
are used for admission [1, 20]. A large number of works pro-
posed eviction algorithms from classic Least Recently Used
(LRU) [18], RANDOM, FIFO, to more sophisticated ones that
are more difficult to implement in practice, e.g., LRU-K [47],
LFU-DA [3, 51], GDSF [15], ARC [44], CAR [6] and among
others, where recency, frequency or their combinations are
usually used for eviction decision [7, 13, 30].

Recently, machine learning has been used for caching al-
gorithm design. On the one hand, some focus on learning
content popularities for content eviction via deep neural net-
works (DNNs), e.g., DeepCache [45], FNN-Cache [22], Pop-
Cache [54] and PA-Cache [21] or by approximating or imitat-
ing offline optimal Bélády for content eviction, e.g., LFO [10],
LRB [53]. On the other hand, some algorithms learn to de-
cide whether or not to admit a content upon a request (i.e.,
content admission) via reinforcement learning (RL), e.g., RL-
Cache [35], CACA [29], RL-Bélády [58] and among oth-
ers [57, 60]. Again, most of these designs are focusing on
improving cache hits rather than minimizing caching latency.

Closest to to our work is [4,42]. In particular, [42] provides
a lower bound on the performance of caching policies when

delayed hits exist. [4] characterizes the impact of delayed hits
and proposes an online approximation algorithm MAD based
on a hard offline optimization problem. However, MAD fails
to account for variable fetching latency and different content
sizes, which are the cases in production CDNs and are both
captured by our LA-Cache.

8 Conclusion

In this paper, we designed latency-aware caching in the pres-
ence of delayed hits, and proposed a novel timer-based mech-
anism to capture the impact of delayed hits which provably
optimizes the mean caching latency. Furthermore, our model
captured variable fetching latency and different content sizes,
providing a theoretical basis for the understanding and de-
sign of latency-aware caching for content delivery in latency-
sensitive systems. Using our timer-based model, we proposed
a lightweight latency-aware caching algorithm LA-Cache. We
implemented a LA-Cache prototype within Apache Traffic
Sever. Using production traces, we showed that LA-Cache
consistently outperformed state-of-the-art algorithms on la-
tency reduction with modest resource overhead.

Acknowledgements

We would like to thank our anonymous reviewers for their
valuable feedback. We would like to thank our shepherd’s
insightful comments that improved the quality of the paper
immensely. This work was supported in part by the National
Science Foundation (NSF) grants CRII-CNS-NeTS-2104880
and RINGS-2148309, and was supported in part by funds
from OUSD R&E, NIST, and industry partners as specified in
the Resilient & Intelligent NextG Systems (RINGS) program.
This work was also supported in part by the U.S. Depart-
ment of Energy’s Office of Energy Efficiency and Renewable
Energy (EERE) under the Solar Energy Technologies Office
Award Number DE-EE0009341. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the funding agencies.

USENIX Association 2022 USENIX Annual Technical Conference    799



References

[1] Marc Abrams, Charles R Standridge, Ghaleb Abdulla,
Edward A Fox, and Stephen Williams. Removal Policies
in Network Caches for World-Wide Web Documents. In
Proc. of ACM SIGCOMM, 1996.

[2] Apache Traffic Server, 2020. https:
//trafficserver.apache.org/.

[3] Martin Arlitt, Ludmila Cherkasova, John Dilley, Rich
Friedrich, and Tai Jin. Evaluating Content Management
Techniques for Web Proxy Caches. ACM SIGMETRICS
Performance Evaluation Review, 27(4):3–11, 2000.

[4] Nirav Atre, Justine Sherry, Weina Wang, and Daniel S
Berger. Caching with Delayed Hits. In Proc. of ACM
SIGCOMM, 2020.

[5] F. Baccelli and P. Brémaud. Elements of Queueing
Theory: Palm Martingale Calculus and Stochastic Re-
currences, volume 26. Springer Science & Business
Media, 2013.

[6] Sorav Bansal and Dharmendra S Modha. CAR: Clock
with Adaptive Replacement. In Proc. of USENIX FAST,
2004.

[7] Nathan Beckmann, Haoxian Chen, and Asaf Cidon.
LHD: Improving Cache Hit Rate by Maximizing Hit
Density. In Proc. of USENIX NSDI, 2018.

[8] Laszlo A. Bélády. A Study of Replacement Algorithms
for A Virtual-Storage Computer. IBM Systems journal,
5(2):78–101, 1966.

[9] D. Berger, P. Gland, S. Singla, and F. Ciucu. Exact Anal-
ysis of TTL Cache Networks. Performance Evaluation,
79:2–23, 2014.

[10] Daniel S Berger. Towards Lightweight and Robust Ma-
chine Learning for CDN Caching. In Proc. of ACM
HotNets, 2018.

[11] Daniel S Berger, Ramesh K Sitaraman, and Mor
Harchol-Balter. AdaptSize: Orchestrating the Hot Ob-
ject Memory Cache in a Content Delivery Network. In
Proc. of USENIX NSDI, 2017.

[12] Bilibili. https://www.bilibili.com.

[13] Aaron Blankstein, Siddhartha Sen, and Michael J Freed-
man. Hyperbolic Caching: Flexible Caching for Web
Applications. In Proc. of USENIX ATC, 2017.

[14] H. Che, Y. Tung, and Z. Wang. Hierarchical Web
Caching Systems: Modeling, Design and Experimental
Results. IEEE Journal on Selected Areas in Communi-
cations, 20(7):1305–1314, 2002.

[15] Ludmila Cherkasova. Improving WWW Proxies Per-
formance with Greedy-Dual-Size-Frequency Caching
policy. Hewlett-Packard Laboratories, 1998.

[16] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and
Sachin Katti. Cliffhanger: Scaling Performance Cliffs
in Web Memory Caches. In Proc. of USENIX NSDI,
2016.

[17] Cisco. Cisco Visual Networking Index: Forecast and
Trends 2022. Cisco, Tech. Rep, 2019.

[18] Edward Grady Coffman and Peter J Denning. Operating
Systems Theory. Prentice-Hall Englewood Cliffs, NJ,
1973.

[19] Gil Einziger, Roy Friedman, and Ben Manes. TinyLFU:
A Highly Efficient Cache Admission Policy. ACM Trans-
actions on Storage, 13(4):1–31, 2017.

[20] Bin Fan, David G Andersen, and Michael Kaminsky.
MemC3: Compact and Concurrent MemCache with
Dumber Caching and Smarter Hashing. In Proc. of
USENIX NSDI, 2013.

[21] Qilin Fan, Xiuhua Li, Jian Li, Qiang He, Kai Wang,
and Junhao Wen. PA-Cache: Evolving Learning-Based
Popularity-Aware Content Caching in Edge Networks.
IEEE Transactions on Network and Service Manage-
ment, 18(2):1746–1757, 2021.

[22] Vladyslav Fedchenko, Giovanni Neglia, and Bruno
Ribeiro. Feedforward Neural Networks for Caching:
Enough or Too Much? ACM SIGMETRICS Perfor-
mance Evaluation Review, 46(3):139–142, 2019.

[23] A. Ferragut, I. Rodríguez, and F. Paganini. Optimizing
TTL Caches under Heavy-tailed Demands. In Proc. of
ACM SIGMETRICS, 2016.

[24] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, Alireza Dabagh, Mike Andrewartha,
Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. Azure Accelerated Networking: Smartnics
in the Public Cloud. In Proc. of USENIX NSDI, 2018.

[25] N. C. Fofack, M. Dehghan, D. Towsley, M. Badov, and
D. L. Goeckel. On the Performance of General Cache
Networks. In VALUETOOLS, 2014.

[26] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley. Anal-
ysis of TTL-based Cache Networks. In VALUETOOLS,
2012.

[27] Davy Genbrugge and Lieven Eeckhout. Memory Data
Flow Modeling in Statistical Simulation for the Efficient
Exploration of Microprocessor Design Spaces. IEEE
Transactions on Computers, 57(1):41–54, 2007.

800    2022 USENIX Annual Technical Conference USENIX Association

https://trafficserver.apache.org/
https://trafficserver.apache.org/
https://www.bilibili.com


[28] K-I Goh and A-L Barabási. Burstiness and Mem-
ory in Complex Systems. EPL (Europhysics Letters),
81(4):48002, 2008.

[29] Yu Guan, Xinggong Zhang, and Zongming Guo. CACA:
Learning-based Content-Aware Cache Admission for
Video Content in Edge Caching. In Proc. of ACM Mul-
timedia, 2019.

[30] Xiameng Hu, Xiaolin Wang, Yechen Li, Lan Zhou, Ying-
wei Luo, Chen Ding, Song Jiang, and Zhenlin Wang.
LAMA: Optimized Locality-aware Memory Allocation
for Key-value Cache. In Proc. of USENIX ATC, 2015.

[31] Qi Huang, Ken Birman, Robbert Van Renesse, Wyatt
Lloyd, Sanjeev Kumar, and Harry C Li. An Analysis of
Facebook Photo Caching. In Proc. of ACM SOSP, 2013.

[32] Stratis Ioannidis and Edmund Yeh. Adaptive Caching
Networks with Optimality Guarantees. Proc. of ACM
SIGMETRICS, 2016.

[33] J. Jung, A. Berger, and H. Balakrishnan. Analysis of
TTL-based Cache Networks. In IEEE INFOCOM, 2003.

[34] Eun-Kyeong Kim and Hang-Hyun Jo. Measuring Bursti-
ness for Finite Event Sequences. Physical Review E,
94(3):032311, 2016.

[35] Vadim Kirilin, Aditya Sundarrajan, Sergey Gorinsky,
and Ramesh K Sitaraman. RL-Cache: Learning-based
Cache Admission for Content Delivery. IEEE Jour-
nal on Selected Areas in Communications, 38(10):2372–
2385, 2020.

[36] Jian Li, Truong Khoa Phan, Wei Koong Chai, Daphne
Tuncer, George Pavlou, David Griffin, and Miguel Rio.
DR-Cache: Distributed Resilient Caching with Latency
Guarantees. In Proc. of IEEE INFOCOM, 2018.

[37] Jian Li, Srinivas Shakkottai, John CS Lui, and Vijay Sub-
ramanian. Accurate Learning or Fast Mixing? Dynamic
Adaptability of Caching Algorithms. IEEE Journal on
Selected Areas in Communications, 36(6):1314–1330,
2018.

[38] Yuanyuan Li and Stratis Ioannidis. Universally Stable
Cache Networks. In Proc. of IEEE INFOCOM, 2020.

[39] limCacheSim. https://github.com/1a1a11a/
libCacheSim.

[40] Bruce M Maggs and Ramesh K Sitaraman. Algorith-
mic Nuggets in Content Delivery. ACM SIGCOMM
Computer Communication Review, 45(3):52–66, 2015.

[41] Milad Mahdian, Armin Moharrer, Stratis Ioannidis, and
Edmund Yeh. Kelly Cache Networks. In Proc. of IEEE
INFOCOM, 2019.

[42] Peter Manohar and Jalani Williams. Lower Bounds
for Caching with Delayed Hits. arXiv preprint
arXiv:2006.00376, 2020.

[43] Valentina Martina, Michele Garetto, and Emilio
Leonardi. A Unified Approach to The Performance
Analysis of Caching Systems. In Proc. of IEEE INFO-
COM, 2014.

[44] Nimrod Megiddo and Dharmendra S Modha. ARC: A
Self-Tuning, Low Overhead Replacement Cache. In
Proc. of USENIX FAST, 2003.

[45] Arvind Narayanan, Saurabh Verma, Eman Ramadan,
Pariya Babaie, and Zhi-Li Zhang. DeepCache: A Deep
Learning based Framework for Content Caching. In
Proc. of Workshop on Network Meets AI & ML, 2018.

[46] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling
Memcache at Facebook. In Proc. of USENIX NSDI,
2013.

[47] Elizabeth J O’neil, Patrick E O’neil, and Gerhard
Weikum. The LRU-K Page Replacement Algorithm
for Database Disk Buffering. ACM SIGMOD Record,
22(2):297–306, 1993.

[48] Nitish K Panigrahy, Jian Li, and Don Towsley. Hit Rate
vs. Hit Probability based Cache Utility Maximization.
ACM SIGMETRICS Performance Evaluation Review,
45(2):21–23, 2017.

[49] Nitish K Panigrahy, Jian Li, Don Towsley, and Christo-
pher V Hollot. Network Cache Design under Stationary
Requests: Exact Analysis and Poisson Approximation.
Computer Networks, 180:107379, 2020.

[50] Nitish K Panigrahy, Jian Li, Faheem Zafari, Don
Towsley, and Paul Yu. A TTL-based Approach for Con-
tent Placement in Edge Networks. In EAI International
Conference on Performance Evaluation Methodologies
and Tools, pages 1–21. Springer, 2021.

[51] Ketan Shah, Anirban Mitra, and Dhruv Matani. An O(1)
Algorithm for Implementing the LFU Cache Eviction
Scheme. no, 1:1–8, 2010.

[52] D Shasha and T Johnson. 2Q: A Low Overhead High
Performance Buffer Management Replacement Algo-
rithm. In Proc. of VLDB, 1994.

[53] Zhenyu Song, Daniel S Berger, Kai Li, and Wyatt Lloyd.
Learning Relaxed Belady for Content Distribution Net-
work Caching. In Proc. of USENIX NSDI, 2020.

USENIX Association 2022 USENIX Annual Technical Conference    801

https://github.com/1a1a11a/libCacheSim
https://github.com/1a1a11a/libCacheSim


[54] Kalika Suksomboon, Saran Tarnoi, Yusheng Ji, Michi-
hiro Koibuchi, Kensuke Fukuda, Shunji Abe, Naka-
mura Motonori, Michihiro Aoki, Shigeo Urushidani, and
Shigeki Yamada. PopCache: Cache More or Less based
on Content Popularity for Information-Centric Network-
ing. In Proc. of IEEE LCN, 2013.

[55] Edward S Tam. Improving Cache Performance via Ac-
tive Management. University of Michigan, 1999.

[56] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar,
and Kai Li. RIPQ: Advanced Photo Caching on Flash
for Facebook. In Proc. of USENIX FAST, 2015.

[57] Haonan Wang, Hao He, Mohammad Alizadeh, and
Hongzi Mao. Learning Caching Policies with Sub-
sampling. In NeurIPS Machine Learning for Systems
Workshop, 2019.

[58] Gang Yan and Jian Li. RL-Bélády: A Unified Learn-
ing Framework for Content Caching. In Proc. of ACM
Multimedia, 2020.

[59] Gang Yan, Jian Li, and Don Towsley. Learning from
Optimal Caching for Content Delivery. In Proc. of ACM
CoNEXT, 2021.

[60] Chen Zhong, M Cenk Gursoy, and Senem Velipasalar.
A Deep Reinforcement Learning-based Framework for
Content Caching. In Proc. of IEEE CISS, 2018.

A Supplementary Material

A.1 Analysis of Real Request Traces
In this subsection, we provide the detailed analysis of four
production traces used in this paper, as discussed in Section 6.

The content popularity distribution (Figure 5(a)) shows that
most traces follow approximately a Zipf distribution with the
Zipf parameter α between 0.56 and 1.24.

The content inter-arrival time distribution (Figure 5(b)) -
the distribution of the time between two consecutive request
arrivals - further distinguishes these traces. It is clear that the
requested contents in CDN-A have the largest variations since
CDN-A contents have the smallest inter-arrival times, i.e.,
most contents are only requested over a shorter time period.
In contrast, CDN-B, Bilibili and Wikipedia serve millions
of different customers and hence exhibit largely independent
requests with random inter-request times, which is consistent
with the content popularity distribution.

A.2 Comparison with Offline Optimum
Bélády

We also compare the performance in term of latency reduc-
tion to the offline optimum Bélády. From Figures 14 and 15,

10
1

10
3

10
5

L (μs)

−40

−20

0

La
te

nc
y 

im
pr

ov
em

en
t

 re
la

tiv
e 

to
 B
él
ád

y 
(%

)

(a) CDN-A

10
1

10
3

10
5

L (μs)

−40

−20

0

(b) CDN-B

10
1

10
3

10
5

L (μs)

−80

−60

−40

−20

0

(c) Bilibili

10
1

10
3

10
5

L (μs)

−40

−20

0

(d) Wikipedia

LHD LRU-4 2Q LRU-MAD LHD-MAD LA-Cache

Figure 14: Comparison of the mean latency improvement
between LA-Cache and state-of-the-art algorithms relative to
Bélády using a 256GB cache.

10
1

10
3

10
5

L (μs)

−40

−20

0

La
te

nc
y 

im
pr

ov
em

en
t

 re
la

tiv
e 

to
 B
él
ád

y 
(%

)

(a) CDN-A

10
1

10
3

10
5

L (μs)

−60

−40

−20

0

(b) CDN-B

10
1

10
3

10
5

L (μs)

−100

−50

0

(c) Bilibili

10
1

10
3

10
5

L (μs)

−40

−20

0

(d) Wikipedia

LHD LRU-4 2Q LRU-MAD LHD-MAD LA-Cache

Figure 15: Comparison of the mean latency improvement
between LA-Cache and state-of-the-art algorithms relative to
Bélády using a 512GB cache.

we observe again that LA-Cache outperforms other state-of-
the-art algorithms, and importantly LA-Cache can outper-
form Bélády as the fetching latency increases. For example,
LA-Cache outperforms Bélády when L is greater than 0.8 ms
in CDN-B, and when L is greater than 60 ms in Bilibili.

Finally, we characterize the impact of cache size when
compared with the offline optimum Bélády. From Figure 16,
we observe that LA-Cache consistently outperforms LRU-
MAD and LHD-MAD across a wide range of cache sizes.
More interestingly, LA-Cache outperforms Bélády.

Impact of burstiness. Complementary to the results pre-
sented in Figure 12, the burstiness of each content and the
corresponding latency improvement of this content due to the
latency-aware caching algorithms with respect to the offline
Bélády with 256GB and 512GB cache are presented in Fig-
ure 17 and Figure 18, respectively. Again, we observe that
LA-Cache prioritizes more bursty requests compared to other
state-of-the-art algorithms, which contributes to the latency
reduction of LA-Cache.

2
3

2
5

2
7

2
9

Cache Size (GB)

−30

−20

−10

La
te

nc
y 

im
pr

ov
em

en
t

 re
la

tiv
e 

to
 B
él
ád

y 
(%

)

(a) CDN-A

2
3

2
5

2
7

2
9

Cache Size (GB)

−40

−30

−20

−10

0

(b) CDN-B

2
3

2
5

2
7

2
9

Cache Size (GB)

−80

−60

−40

−20

0

(c) Bilibili

2
3

2
5

2
7

2
9

Cache Size (GB)

−30

−20

−10

0

(d) Wikipedia

LRU-MAD LHD-MAD LA-Cache

Figure 16: Comparison of the mean latency improvement
between LA-Cache and state-of-the-art algorithms relative to
Bélády as a function of cache sizes.

802    2022 USENIX Annual Technical Conference USENIX Association



0-1 1 0-1 1 0-1 1 0-1 1
Burstiness

−100

−50

0

50

100

La
te

nc
y 

im
pr

ov
em

en
t

 re
la

tiv
e 

to
 B
él
ád

y 
(%

)

(a) CDN-A

0-1 1 0-1 1 0-1 1 0-1 1
Burstiness

−100

−50

0

50

100

(b) CDN-B

0-1 1 0-1 1 0-1 1 0-1 1
Burstiness

−100

−50

0

50

100

(c) Bilibili

0-1 1 0-1 1 0-1 1 0-1 1
Burstiness

−100

−50

0

50

(d) Wikipedia

LRU LRU-MAD LHD-MAD LA-Cache

Figure 17: Improvement from the burstiness of content re-
quests relative to the offline Béládyusing a 256GB cache.

0-1 1 0-1 1 0-1 1 0-1 1
Burstiness

−100

−50

0

50

100

La
te

nc
y 

im
pr

ov
em

en
t

 re
la

tiv
e 

to
 B
él
ád

y 
(%

)

(a) CDN-A

0-1 1 0-1 1 0-1 1 0-1 1
Burstiness

−100

−50

0

50

100

(b) CDN-B

0-1 1 0-1 1 0-1 1 0-1 1
Burstiness

−100

−50

0

50

100

(c) Bilibili

0-1 1 0-1 1 0-1 1 0-1 1
Burstiness

−100

−50

0

50

(d) Wikipedia

LRU LRU-MAD LHD-MAD LA-Cache

Figure 18: Improvement from the burstiness of content re-
quests relative to the offline Bélády using a 512GB cache.

A.3 Hit Rate Comparison
Although we focus on designing latency-optimal caching in
the presence of delayed hits, in which the goal of maximizing
cache hits and the goal of minimizing latency are not equiva-
lent (see Section 2.2), we argue that the latency improvements
in turn also contribute to the cache hits performance. In most
of existing works, the user-perceived latency upon cache hits
is negligible, which is not true in the presence of “delayed
hits” due to network latency. As a result, a content request
results in three outcomes, i.e., miss, delayed hit, and true hit
(see Introduction and Fig. 1). We observe that LA-Cache im-
proves the true hit ratio up to 7% as shown in Figures 19
and 20, and “all hits” (true hit plus delayed hit) up to 9% as
shown in Figures 21 and 22.

10
1

10
3

10
5

L (μs)

10

20

30

40

Tr
ue

 H
it 

R
at

io
 (%

)

(a) CDN-A

10
1

10
3

10
5

L (μs)

20

30

40

50

(b) CDN-B

10
1

10
3

10
5

L (μs)

35

40

45

50

55

(c) Bilibili

10
1

10
3

10
5

L (μs)

20

30

40

50

(d) Wikipedia

LHD LRU-4 2Q LRU-MAD LHD-MAD LA-Cache

Figure 19: Comparison of true hits between LA-Cache and
state-of-the-art algorithms using a 256GB cache.

10
1

10
3

10
5

L (μs)

20

30

40

50

Tr
ue

 H
it 

R
at

io
 (%

)

(a) CDN-A

10
1

10
3

10
5

L (μs)

20

30

40

50

(b) CDN-B

10
1

10
3

10
5

L (μs)

50

55

60

65

70

(c) Bilibili

10
1

10
3

10
5

L (μs)

20

30

40

50

(d) Wikipedia

LHD LRU-4 2Q LRU-MAD LHD-MAD LA-Cache

Figure 20: Comparison of true hits between LA-Cache and
state-of-the-art algorithms using a 512GB cache.

10
1

10
3

10
5

L (μs)

30

40

50

60

To
ta

l H
it 

R
at

io
 (%

)

(a) CDN-A

10
1

10
3

10
5

L (μs)

20

30

40

50

60

(b) CDN-B

10
1

10
3

10
5

L (μs)

40

60

80

100

(c) Bilibili

10
1

10
3

10
5

L (μs)

20

30

40

50

(d) Wikipedia

LHD LRU-4 2Q LRU-MAD LHD-MAD LA-Cache

Figure 21: Comparison of all hits between LA-Cache and
state-of-the-art algorithms using a 256GB cache.

10
1

10
3

10
5

L (μs)

40

45

50

55

60

To
ta

l H
it 

R
at

io
 (%

)

(a) CDN-A

10
1

10
3

10
5

L (μs)

30

40

50

60

(b) CDN-B

10
1

10
3

10
5

L (μs)

60

70

80

90

100

(c) Bilibili

10
1

10
3

10
5

L (μs)

30

35

40

45

50

(d) Wikipedia

LHD LRU-4 2Q LRU-MAD LHD-MAD LA-Cache

Figure 22: Comparison of all hits between LA-Cache and
state-of-the-art algorithms using a 512GB cache.

USENIX Association 2022 USENIX Annual Technical Conference    803





Hashing Design in Modern Networks: Challenges and Mitigation Techniques

Yunhong Xu†, Keqiang He‡, Rui Wang‡, Minlan Yu§‡, Nick Duffield†,

Hassan Wassel‡, Shidong Zhang‡, Leon Poutievski‡, Junlan Zhou‡, Amin Vahdat‡

†Texas A&M University §Harvard University ‡Google, Inc.

Abstract

Traffic load balancing across multiple paths is a critical task

for modern networks to reduce network congestion and im-

prove network efficiency. Hashing which is the foundation of

traffic load balancing still faces practical challenges. The key

problem is there is a growing need for more hash functions

because networks are getting larger with more switches, more

stages, and increased path diversity. Meanwhile, topology and

routing become more agile in order to efficiently serve traf-

fic demands with stricter throughput and latency SLAs. On

the other hand, current generation switch chips only provide

a limited number of uncorrelated hash functions. We first

demonstrate why the limited number of hashing functions is a

practical challenge in today’s datacenter network (DCN) and

wide-area network (WAN) designs. Then, to mitigate the prob-

lem, we propose a novel approach named color recombining

which enables hash functions to reuse via leveraging topol-

ogy traits of multi-stage DCN networks. We also describe a

novel framework based on coprime theory to mitigate hash

correlation in generic mesh topologies (i.e., spineless DCN

and WAN). Our evaluation using real network trace data and

topologies demonstrate that we can reduce the extent of load

imbalance (measured by the coefficient of variation) by an

order of magnitude.

1 Introduction

Traffic load balancing is critical to the reliability and efficiency

of modern datacenter and wide-area networks [16, 34, 37].

One widely deployed technique for traffic load balancing is

Equal-Cost Multi-Path (ECMP) routing [16], where packets

forwarding to a destination are load-balanced over multiple

paths based on hashing of the packet header that takes place in

switch hardware. ECMP and its variant Weighted-Cost Multi-

Path (WCMP) [37] allow proper utilization across abundant

paths available in modern networks. Hashing on header fields

allows packets of the same flow to follow the same path

without incurring packet reordering. As ECMP/WCMP offers

a number of nice properties, including stateless operation

and no reordering, it is the de facto standard for traffic load

balancing in large IP networks [1, 28, 37].

Switch hashing is the foundation of traffic load balancing in

modern multi-path networks. To optimally load balance traffic

and utilize full available bandwidth in multi-path networks

using ECMP/WCMP, hash function allocation across a net-

work should adhere to the following rule: no correlated hash

functions should appear on the same forwarding path in the

absence of color recombining (§3). Unfortunately, commodity

switch chips only support a limited number of hash functions.

For example, the software development kit for Broadcom

switches supports RTAG7 [9], a hashing scheme utilizing

seven hash functions; the Cisco Nexus 5500 Series offers

eight versions of CRC8 [8]; the switches deployed in our dat-

acenters have six independent hash functions. It is difficult to

implement a large set of complex hash functions because hash

computation becomes a bottleneck at high line rates [17, 19]

and switch chip architects often need to trade-off between

high line rate and hash function complexity.

Because of the limited number of hash functions provided

in switch chips, a challenge in network design is that the reuse

of correlated or even identical hash functions in different

different switches along the same end-to-end path for a flow

causes traffic polarization and inherent load imbalance. Many

network operators have observed this problem before [7, 11,

14, 18, 25]. One example is the Cisco Express Forwarding

(CEF) Polarization phenomenon [7], where different switches

repeatedly use the same hashing algorithm, resulting in a

switch selecting a small portion of links for all traffic destined

for one prefix, while other links were underutilized. Another

example is the hashing imperfection problem observed by a

large cloud provider [18,25], where correlated hash functions

lead to network congestion and even high priority traffic losses

which directly impact application performance. In this paper,

we use the term hash correlation to describe the association

between hash functions in different switches that leads to

traffic polarization.

Researchers and network operators have proposed a few

USENIX Association 2022 USENIX Annual Technical Conference    805



approaches to mitigate hash correlations. One class of meth-

ods uses variations of available hash functions. The most

common approach uses hash functions with different seeds

to avoid hash correlation. However, contrary to conventional

wisdom, seeds are not as effective as expected as we will

show theoretically and experimentally in this paper. Another

approach uses Time-To-Live (TTL) in the packet header for

hashing. There are two ways of using TTL: a) using TTL as

part of hashing input, which has the following limitations in

production: 1) it breaks traceroute because probe packets are

hashed/pathed differently at the same hop; 2) IP in IP tun-

neling [12] (a common technique for network virtualization

in the cloud) commonly uses the inner IP headers because

they have more entropy than the outer IP headers, but the

inner headers’ TTL does not change. It’s also hard to select

outer header TTL and inner headers because switches do not

have enough bit vectors. b) choosing a different hash function

based on TTL [14], in addition to 1) and 2) mentioned in

a), the challenges are: 3) it also requires modifying switch

hardware, which presents administrative and commercial bar-

riers to implementation since switch chips deployed in most

datacenters do not support this operation currently; and 4) it

is still constrained by the limited number of hash functions

implemented in ASIC.

This paper focuses on fixed-function switches which are

still the majority of devices in datacenters in the industry

today. Hyperscalers cannot replace all switches with pro-

grammable ones in the near future. In this paper, we first

demonstrate that the limited number of hash functions in

commodity switch chips poses a practical challenge in mod-

ern DCNs and WANs and hinders the development of more

advanced network topology and routing designs. To over-

come this challenge, we propose two novel techniques that

improve hashing, the cornerstone of traffic load balancing,

substantially while respecting the limited number of indepen-

dent hash functions available in commodity switches– 1) for

widely adopted, multi-stage Clos DCNs, we propose a color

recombining approach by comparing the effect of hash func-

tions on traffic to light passing through multiple triangular

prisms: the color recombining technique leverages the trait of

multi-stage Clos topology where polarized traffic gets recom-

bined to color white after passing through a multi-stage Clos.

Color recombining enables us to reuse certain hash functions

along the forwarding path without causing hash correlations.

We discuss hashing design for one of the multi-stage Clos

DCNs, Jupiter [26], and how the color recombining technique

helps reduce the required number of independent hash func-

tions; 2) for non-hierarchical mesh networks such as spineless

DCN [13,32] and WAN, we propose a novel framework resid-

ing in the Software Defined Networking (SDN) [20] controller.

The framework mitigates the effect of hash correlations by

the selection of the divisors n (n is also known as group size

in ECMP/WCMP routing) used to map a flow’s hash value h

to the output port over which a packet is forwarded, i.e., h%n.

Specifically, we establish that when ECMP/WCMP group

sizes at different switches are coprime, then the effects of

underlying correlations between hash functions are reduced

significantly. We add a small amount of logic to the SDN con-

troller to ensure the group sizes of switches with correlated

hash functions are coprime. As a software-only approach,

this coprime-based approach is compatible with commodity

switch chips.

To summarize, the contributions of our work are as follows:

1. Details the hashing design in multi-stage Clos DCN and

proposes a color recombining method to allow hash func-

tion reuse and to reduce the number of hash functions

needed in multi-stage Clos DCNs;

2. Identifies an approach based on the coprime theory to

mitigate hash correlations for generic mesh networks

such as spineless DCN and WAN that require a large

number of independent hash functions, and proposes

algorithms to coprime group sizes for both ECMP and

WCMP routing;

3. Evaluation results based on real network trace data and

topologies demonstrate color recombining and coprime

techniques’ effectiveness in mitigating hash correlation –

they can reduce the extent of load imbalance (measured

by the coefficient of variation, CV) by approximately an

order of magnitude.

The color-recombining approach uses topology and for-

warding structures that are common in Clos networks and

requires no hardware or software changes except hash func-

tion reconfiguration. The coprime-based method works with

any topologies (e.g., mesh networks) but it requires controller

software changes and only resolves polarization when the

conditions described in §4 are met.

In addition to the technical contributions, we also would

like to call for switch vendors’ attention to offer better hashing

support in future generations of chips to facilitate flexible

network designs.

2 Background and Motivation

In this section, we first motivate why hashing is an important

problem in modern DCNs and WANs. Then, we provide the

background of ECMP and WCMP. Finally, we introduce the

traffic polarization issue caused by hash correlation and reveal

the fact that the current generation of switch chips only pro-

vides a limited number of independent hash functions which

poses a practical challenge to traffic load balancing in modern

networks.

The implications of bad hashing are twofold. First, bad

hashing leads to traffic polarization that endangers reliability

(due to reduced path diversity), wastes network bandwidth,

cancels efficiency gains of traffic engineering, and inevitably

806    2022 USENIX Annual Technical Conference USENIX Association



Middle Block 

(MB)

Spine Block

ToR

Server Block 1 Server Block 2

Stage 𝑆!

Stage 𝑆"

Stage 𝑆#

Stage 𝑆$

Stage 𝑆%

x8

x8

x8

x8

Figure 1: Illustration of Jupiter DCN (5-stage Clos). For sim-

plicity, only one Middle Block of each Server Block and one

Spine Block of the spine layer is shown.

x16

x32

A supernode (SN) with 5.12Tbps 

to WAN, DC and sidelinks. 

Sidelinks are links that mesh 

connect the supernodes in a site

SN1 SN2

SN3 SN4

sidelinks

A stargate site

To WAN

To DC

Figure 2: Illustration of a Stargate site in the mesh-connected

B4 WAN. Figure is adapted from [15].

increases network cost. Second, bad hashing causes inherent

traffic load imbalance and leads to network congestion that

affects application performance.

2.1 Hashing is a Practical Challenge in Net-

work Designs

There are several trends that make hashing an increasingly

important problem in modern networks: 1) both datacenter

and wide-area networks are getting bigger with more switches

and stages; 2) modern networks are very dense and have a

large number of paths between any two nodes; 3) topology

and routing become more agile and flexible in order to im-

prove network efficiency and availability, e.g., the move from

spinefull DCN to reconfigurable spineless [13, 32] and the

use of non-shortest path routing to improve availability and

performance [15]; and 4) emerging applications (such as dis-

tributed machine learning) are becoming more throughput

hungry while demanding stricter network SLA guarantees.

These new trends pose challenges to commodity switches’

hashing capability, which is the cornerstone of traffic load

balancing.

2.1.1 Multi-stage Clos DCN

Modern DCN connects a massive amount of compute/storage

nodes, runs critical services, such as Search Serving, Video

Serving, Geo & Map, Cloud, and Gaming, etc, and has very

large path diversity; therefore, hashing and traffic load bal-

ancing are crucial. We use the Jupiter topology [26, 35] (as

illustrated in Figure 1) as the case study of multi-stage Clos

DCNs. We denote a Server Block (aka Pod) as SB and the

Middle Block (MB)

Server 

Block 1

Server 

Block 2

Server 

Block 3

128

MB1 MB2 MB3 MB4

x64

Top of Rack Switches

Server Block

x8

x8

Figure 3: Spineless DCN [32] to simulate hash correlation’s

impact on traffic load balancing.

5 switch stages as S1 to S5. So the longest forwarding path

is when a packet is routed from a ToR in SBi to another

ToR in SB j and the hop sequence is S1(SBi) → S2(SBi) →
S3(SBi)→ S4 → S5 → S4 → S3(SB j)→ S2(SB j)→ S1(SB j)
where i, j are server block indices. To achieve optimal load

balancing performance, hashing needs to follow the follow-

ing property: no correlated hash functions should appear on

the same forwarding path. Naively we need O(2L) (more

precisely, max_number_o f _hops−1) independent hash func-

tions, where L is the number of layers (or stages) of the fabric.

In the case of Jupiter, 8 hash functions are needed. Unfortu-

nately, there are only 6 uncorrelated hash functions provided

by the switch chips deployed in our datacenters and the re-

quirement of 8 independent hash functions already makes

the commodity switch’s hashing capacity stretched. We will

discuss how we reduce the number of hash functions needed

for multi-stage Clos DCN in Section 3.

2.1.2 Spineless DCN

Recently, there are new spineless DCN topologies [13, 32]

which reduce cost and enable faster tech refresh, but require

more hash functions. Figure 3 is an example of spineless

DCN topology. In spineless DCN, server blocks are directly

connected via a mesh and the spine blocks are completely

removed to reduce network cost (including the cost of both

spine switches and the associated optics) significantly and

to enable faster switch generation evolvement. Also, non-

shortest path routing is used to improve routing path diversity

for high availability and enable traffic engineering to optimize

network link utilization.

While spineless DCNs are cost-effective and efficient, hash-

ing design becomes more challenging because the number of

hash functions required depends on the number of server

blocks instead of the number of layers as in multi-stage

DCNs. Taking the Gemini [32] spineless DCN as an exam-

ple, assuming that we only allow at most one transit server

block in routing, then the longest forwarding path of a packet

is: S1(SBi)→ S2(SBi)→ S3(SBi)→ S3(SB j)→ S2(SB j)→
S3(SB j) → S3(SBk) → S2(SBk) → S1(SBk) where i, j,k are

the indices of three randomly chosen server blocks. The key

challenge is that we need to make sure there are no correlated

hash functions for any i, j,k combinations. So spineless DCN

requires O(N) hash functions where N is the number of server

USENIX Association 2022 USENIX Annual Technical Conference    807



blocks. N ranges from 10s to 100s in a typical fabric, so it

is very challenging to design hashing with the limited hash

functions provided by current-generation switch chips.

2.1.3 WAN

Traffic engineering and load balancing are critical to im-

proving WAN’s performance and reducing operational costs.

Mesh-connected WANs have the same hashing design chal-

lenge where the number of uncorrelated hash functions re-

quired is subject to the scale of the network. For example,

Figure 2 shows the topology of a Stargate site of the B4

WAN [15]. Each site is composed of up to 4 supernodes

where a supernode is a 2-stage Clos with links to WAN, Data

Center, and other supernodes in the same site. B4 site-level

topology is a partially connected mesh and non-shortest path

routing is employed for both availability and efficiency (i.e.,

traffic engineering) purposes. Similar to spineless DCNs, to

ensure optimal load balancing performance, we need O(N)
hash functions, where N is the number of sites in the WAN.

Note that B4 grew 7× larger from 2012 to 2017 [15]. We will

discuss the hash correlation mitigation technique for mesh

networks such as spineless DCNs and WANs in Section 4.

2.2 ECMP/WCMP Traffic Load Balancing

Equal-Cost Multiple-Path (ECMP) [16] – a routing and traffic

load balancing strategy that allows traffic between a source

and destination node to be transmitted across multiple paths –

identifies a set of routes, each of which is equal-cost towards

the destination. The routes identified are referred to as an

ECMP group. An ECMP group is defined at flow-level. When

forwarding a packet, the routing strategy decides which next-

hop path to use based on a hashing algorithm. That is, the

route of a packet is determined by the mapping from the hash

value to an egress port, i.e., h % n, where h is the hash value,

and n is the number of output ports in the ECMP group. The

typical IP packet header fields used for hashing input are:

source IP, destination IP, transport protocol, TCP/UDP ports,

and IPv6 flow label.

Each route in an ECMP group has an equal chance for

traffic forwarding. For example, Figure 4a shows the traffic

from source IP prefix to destination IP prefix uses four equal-

cost paths, which are labeled in four colors, where H1 and H2

are two independent hash functions.

When switch hashes packets across multiple paths ac-

cording to customized weights instead of uniform ones,

this variant of ECMP is called Weighted-Cost Multi-Pathing

(WCMP) [37]. And the set of routes identified for a flow is

referred to as a WCMP group. WCMP can be implemented

via replicating ECMP table entries in the switch to approxi-

mate the intended WCMP weights. For example, if there are 2

output ports of a flow f , denoted by p1, p2, and the intended

weights are 2:1, then the WCMP group can be implemented

as p1, p1, p2 (p1 is duplicated as 2 entries to achieve the 2:1

traffic split).

2.3 Hash Correlation Causes Traffic Polariza-

tion and Load Imbalance

2.3.1 Limited Number of Hash Functions Leads to

Hash Correlation

ECMP/WCMP is widely deployed in modern DCNs and

WANs which have a large path diversity to improve traffic

load balancing performance and reduce network congestion.

Switches are configured with hash functions that compute

hash values based on packet headers and forward packets via

selecting one out of multiple next-hops based on the hash

value and the ECMP/WCMP group size.

However, current-generation switch chips were designed

for small-scale DCNs or large but sparse ISP networks and

only provide a handful of independent hash functions. For

example, the switch chips used in our datacenters provide

six independent hash functions. The software development

kit for Broadcom switches supports RTAG7 [9], a hashing

scheme utilizing seven hash functions. The Cisco Nexus 5500

Series offers eight versions of CRC8 [8]. CRC and XOR are

two popular hashing algorithms because these two algorithms

have been used in communication systems with mature and ef-

ficient ASIC implementation, which includes plenty of circuit

optimization [33]. As discussed in Section 2.1, the number of

independent hash functions needed is far beyond (orders of

magnitude difference) what is provided today, especially for

spineless DCN and WAN.

In fact, it is difficult to implement a large set of uncorrelated

hash functions because complex hash functions become a bot-

tleneck at high line rates [17, 19]. For example, the authors

in [19] discovered that the generation of Cyclic Redundancy

Codes (CRCs) represents the main bottlenecks in iSCSI proto-

col processing. Switch chip architects often need to trade-off

between high line rate and hash function complexity and we

are not aware of any switch chips with cryptographic hash

functions today due to computation complexity concerns.

In an ideal world where all the switches on the forwarding

path are configured with completely independent hash func-

tions, there would be no hash correlation. Due to the limited

hash functions, we have to reuse them, which leads to hash

correlation and traffic polarization. Polarization is a term used

to describe what happens to light as it travels through a filter.

Only light rays that have a certain characteristic get through

the filter. We can take the same term and apply it to network

traffic. Traffic polarization is the effect when a set of packets

choose a particular path and the redundant paths remain com-

pletely unused [7]. Traffic polarization reduces path diversity

and causes sub-optimal use of redundant paths and results in

traffic load imbalance and network congestion. For example,

Figure 4b shows that switches s1, s2 and s3 employ the same

808    2022 USENIX Annual Technical Conference USENIX Association



𝑆!

𝑆"

𝑆#

𝑆$

𝑆%

𝑆&

𝑆'

10.0.1.

0/24 𝑆(
10.0.2.

0/24

𝐻! 𝐻"

path1path2

path3

pa
th
4

(a) Illustration example of

ECMP.

𝑆!

𝑆"

𝑆#

𝑆$

𝑆%

𝑆&

𝑆'

10.0.1.

0/24 𝑆(
10.0.2.

0/24

𝐻! 𝐻!

path1

pa
th
4

(b) ECMP with hash correla-

tion.

Figure 4: ECMP with and without hash correlation.

In (b), two out of four paths are unused due to hash

correlation.

𝐻!

index

Switch 𝑆!

Switch 𝑆"

E
C

M
P

 g
ro

u
p

port

0 𝑆#

1 𝑆"

𝐻!

index port

0 𝑆$

1 𝑆%

𝐻!

index port

0 𝑆&

1 𝑆'

Switch 𝑆#

Figure 5: Hash correlation leads to

correlated load balancing decisions.

0.7 0.8 0.9 1.0
Normalized link utilization

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Perfect hash
Per-stage hash

Figure 6: Normalized link uti-

lization for perfect hashing and

per-stage hashing

hash function (H1). The hash correlation between switches

s2 (s3) and s1 causes traffic polarization. Figure 5 explains

the problem: hash value on s2 (s3) is the same as s1, and thus

flows are only forwarded to s4 from s2 and s7 from s3. As a

result, traffic from source to destination only uses two rout-

ing paths instead of four as in Figure 4a. Traffic polarization

endangers reliability, wastes network capacity, and leads to

hot links and network congestion under high traffic loads.

2.3.2 Random Seeds Are Not Effective

Since the shortage of independent hash functions available in

switches prevents simply assigning independent hash func-

tions to different switches, switch vendors suggest deriving

multiple hash functions from one via using a switch-specific

seed [7]: a seed is an initial value to start the CRC com-

putation via XORing the input data. Because switch chip’s

port count is powers of 2 and ports are typically divided into

two equal-size directions (e.g., up-facing and down-facing)

in modern networks, ECMP groups with an even number of

ports are prevailing. However, we found that seeds do not

work for an ECMP group of an even number of ports. For

example, based on Theorem 1, all packets on switch s2 (Fig-

ure 4b) from switch s1 have the same routing choice even

if they use different seeds for the same CRC; the proof of

Theorem 1 can be found in the appendix.

Theorem 1 If crcb(x ⊕ z1)%2 = crcb(y ⊕ z1)%2, crcb(x ⊕
z2)%2 = crcb(y⊕ z2)%2, where x and y denote the data with

the same size in bytes, z1 and z2 are two seeds of b bits, and b

is the integer to denote the number of bits of the CRC, and ⊕

denotes eXclusive OR (XOR).

The above theorem indicates that choosing two random

seeds does not create two independent hash functions from

one CRC polynomial. Please note CRC polynomials are the

most widely implemented hash functions in switch hardware,

e.g., Broadcom’s RTAG7 is a hash family with 6 CRC16s and

1 CRC32. Applying a random seed is a linear operation and it

can not decorrelate a hash function’s output effectively.

To confirm our theoretical analysis, we also build a spine-

less DCN topology (shown in Figure 3) to simulate traffic

load balancing performance with hash functions provided

by a switch vendor. The topology is composed of three

Server Blocks and each server block contains 64 ToRs (each

ToR is assigned a /24 IP prefix). All these three server blocks

have the same radix of 256. The three server blocks are con-

nected in a full mesh (i.e., this is a spineless DCN [32]), so

there are exactly 128 links between each server block pair. To

simplify the analysis, we generate flows (the source IP and

destination IP of a flow is randomly chosen from the source

ToR and destination ToR’s IP prefix range respectively) fol-

lowing a uniform traffic pattern, i.e., all the server block pairs

have the same amount of flows and the flow size distribution

follows empirical datacenter flow size measurement in [4].

We compare two hashing schemes: one is perfect hash-

ing1 on each switch; and the other is per-stage hashing with

random seed where the switches in different stages are config-

ured with different functions provided by the switch vendor

and each switch in the network is provided a completely inde-

pendent and random seed. We measure the amount of traffic

landed on the links between server blocks and show the nor-

malized link utilization distribution in Figure 6. We can see

from Figure 6 that the link utilization is close to uniform

when using perfect hashing (which is expected) while per-

stage hashing with random seeds leads to considerable traffic

imbalance (max/min link utilization is 1.33). This experiment

confirms that random seed does not solve the hash correlation

problem.

3 Hashing Design in Multi-stage Networks

In this section, we describe the hashing design for multi-stage

Clos DCNs. We first start with a strawman solution, per-stage

hashing with random seed, then introduce per-port hashing

scheme which requires more hashing functions than what is

provided by commodity switches. In order to reduce the num-

ber of independent hash functions needed, we propose a novel

approach named color recombining by leveraging topology

traits of multi-stage Clos networks where polarized traffic

is recombined into non polarized traffic and hash function

reuse is allowed. We use Jupiter topology [26] as the case

study here but the techniques proposed in this section can

1Using the Mersenne Twister pseudo-random number generator in C++.

USENIX Association 2022 USENIX Annual Technical Conference    809



Traffic

Separated Recombined Separated again

Figure 7: Illustration of color recombining concept.

be generalized to other multi-stage Clos DCNs. At the end

of this section, we will provide details on why the hashing

design for multi-stage Clos does not work in spineless DCNs

and WANs.

One naive hashing design for Jupiter is per-stage hashing

with random seed which means we assign a different hash

function to each stage of switches and each switch is fed

with a random seed. However, as we revealed in §2, random

seed does not solve the hash correlation problem. Instead,

we propose per-port hashing which means we apply hash

function based on the input port of the switch. In total, there

are 5 stages of switches in Jupiter as shown in Figure 1 and

we apply two hash functions (one for upward traffic and the

other for downward traffic) per switch except S1 and S5. S1 is

ToR so only upward traffic requires a hash function; there is

no need to have two hash functions in S5 because we do not

need to distinguish upward and downward traffic. Therefore,

we need 8 independent hash functions to implement per-port

hashing in Jupiter. And we can prove that for any routing path,

there is no hash correlation. Taking the longest forwarding

path as an example: a flow is routed from a ToR in the source

server block to another ToR in the destination server block. So

the forwarding path is S1(source ToR)→ S2 → S3 → S4 →

S5 → S4 → S3 → S2 → S1(destination ToR). At each hop, a

unique hash function is used so there is no hash correlation.

𝑆!

(ToR)

𝑆"

𝑆#

S1 

(ToR)

𝑆"

𝑆#

𝑆$% 𝑆$&

𝑆'%

ℎ!

ℎ"

ℎ#

ℎ$

ℎ$

ℎ'

ℎ(

ℎ"

Source Server Block Destination Server Block

Spine Block

𝑆'&

𝑆"

𝑆#

𝑆

𝑆

Figure 8: Per-port hashing with color recombining in Jupiter.

Per-port hashing design is clean and elegant (i.e., hash func-

tion allocation is static and easy to configure) for multi-stage

Clos networks such as Jupiter, but the number of hash func-

tions required is larger than what is provided by commodity

switch chips. To reduce the number of hash function needed

by per-port hashing, we identify and propose the color re-

combining technique via exploiting topology properties of

𝑆!

(ToR)

𝑆"

𝑆#

𝑆!

(ToR)

𝑆"

𝑆#

ℎ!

ℎ"
ℎ$

ℎ%

Source Server Block Destination Server Block

ℎ#

Figure 9: Per-port hashing works if only direct path (i.e.,

shortest path) routing is allowed in spineless DCN.

multi-stage Clos to enable hash function reuse. We compare

traffic going through a hash function to light passing through

a triangular prism: light passes through prism and gets sep-

arated to its component colors; analogously, network traffic

goes through the hash function and gets forwarded to multi-

ple paths. For example, Figure 7 shows that H1 can be reused

in switch s2 because traffic becomes color white after pass-

ing through the middle triangular prism, where color white

denotes the combined traffic before splitting or after recom-

bining. We use the term color recombining to denote the

recombining of polarized/dispersed traffic. Our key insight is

that in multi-stage Clos networks, certain stages of switches

serve as the middle triangular prism in Figure 7 and combine

polarized traffic to color white.

As shown in Figure 8, there are two places traffic becomes

"color white" in Jupiter – a) after passing the spine block

and bouncing back to S4b switches and b) after reaching the

destination server block’s S2 switches. For a), h4 is applied

on S4a towards the S5a and S5b direction. S5a and S5b apply an

orthogonal hash function h5, and therefore, the same portion

(50%) of S4a → S5a and S4a → S5b goes to S4b. Effectively, the

traffic of S4a → S5a and S4a → S5b towards S4b recombines

and h4 can be reused. We define “polarized traffic w.r.t h4” as

the unequally bucketized traffic through S4a → S5a and S4a →

S5b respectively due to h4. For b), traffic gets polarized w.r.t h2

on S2, however, after traffic reaching destination server block’s

S2 chips, each S2 is designed to receive the same portion of

polarized traffic w.r.t h2, therefore h2 can be reused on S2 for

downward traffic hashing. The sufficient condition of color

recombining is there exists a "color recombining stage" such

that each switch in this stage receives the same portion of

polarized traffic w.r.t Hx and after this color recombining

stage, Hx can be reused without incurring hash correlation.

With color recombining, we effectively reduce the number of

independent hash functions needed in Jupiter from 8 to 6 and

all of the switch chips we use can meet this number.

Per-port hashing with color recombining inherits the pros

of per-port hashing while requiring less hash functions from

commodity switches. However, we found that this scheme

breaks for the emerging spineless DCN topology [32]. In

spineless DCN, both direct paths and transit paths are em-

ployed to route traffic because network architects want to

a) increase path diversity to improve availability and b) per-

810    2022 USENIX Annual Technical Conference USENIX Association



𝑆!

(ToR)

𝑆"

𝑆#

𝑆!

(ToR)

𝑆"

𝑆#

ℎ!

ℎ" ℎ$

ℎ%

Source Server Block Destination Server Block

𝑆"

𝑆#

Transit Server Block 1

𝑆#

𝑆!

h1

ℎ# ℎ#

ℎ$ ℎ%

ℎ"

h5 is used for traffic from up facing ports; 

h2 is used for traffic from down facing 

ports on S2 chips. 

𝑆"

𝑆#

Transit Server Block 2

𝑆#

𝑆!

h1

ℎ$ ℎ%

ℎ"

Hash 

Correlation

Figure 10: Per-port hashing breaks (h3 appears twice on the

forwarding path) in spineless DCN with non-shortest path

routing.

form traffic engineering to hedge against unpredictable traffic

spikes. Figure 9 shows that if we restrict routing to direct

paths only, the per-port hashing scheme still works. However,

as shown in Figure 10, we need to use h3 twice for the flows

traversing through a transit server block where the packet

forwarding path is S1(sourceToR)→ S2 → S3 → S3 → S2 →

S3 → S3 → S2 → S1(destinationToR). Please note that traffic

traversing through the transit server block bounces through

S2 chips for load balancing purposes. As mentioned in Sec-

tion 2, we need O(N) independent hash functions where N

is the number of server blocks. N is a large number in our

fabrics, so we need to identify more generic techniques to

mitigate hash correlation. In Section 4, we will discuss the co-

prime technique for mesh topologies such as spineless DCN

or WAN.

4 Mitigating Correlation for Mesh Networks

In this section, we describe a generic approach based on co-

prime theory to mitigate hash correlations in mesh networks.

We first provide a theory about coprime in §4.1. Following it,

we describe how the coprime theorem can be used to mitigate

hash correlations for both ECMP and WCMP, in §4.2 and

§4.3, respectively.

4.1 The Coprime Theorem

The key idea of the coprime theory is the modulo operation on

coprime numbers (e.g., 127 and 128 are two coprime numbers)

makes a hash function’s output uncorrelated. Considering one

hash function H hashed to {0,1, ..., Ĥ}, we propose to apply

the modulo operation of two coprime values to derive two

independent hash functions H1 and H2 from H, where Ĥ is

the highest hash value.

Below we explain how we use the coprime theory to miti-

gate hash correlation between two switches. In a switch, we

use a hash function to choose the next hop via performing a

modulo operation, i.e., H(x)%m, where H(x) is a hash value

on a packet x, and m is the number of next hops in the ECMP

or WCMP group. Considering a scenario where two switches

on a forwarding path both use H to choose the next hop, there

exists hash correlation and traffic polarization as described

in Figure 4b. Instead of using the same hash function H in

these two switches, as denoted in Equation 1, we can use

the derived H1 (H1 = H%q1) on the first switch to choose a

next hop among m1 next hops and H2 (H2 = H%q2) on the

second switch, hashed to m2 next hops. q1 and q2 are coprime

numbers. The theorem 2 shows the two hash functions have

no correlations.

Hi = H%qi, i ∈ {1,2} (1)

where q1 and q2 are two coprime values, and qi < Ĥ.

Theorem 2 ∀i,∀ j,Pr(H2(x)%m2 = j|H1(x)%m1 = i) ≃

Pr(H2(x)%m2 = j) if the following two conditions are sat-

isfied:

Condition 1: q1 ≫ m1 or q1%m1 = 0, and q2 ≫ m2 or

q2%m2 = 0;

Condition 2: Ĥ ≫ q1q2.

where q1 and q2 are two coprime values, m1 and m2 are

the number of next hops, and x is a packet.

The theorem shows that the hash value of H2%m2 is inde-

pendent with the hash value of H1%m1 for an input x when

choosing proper coprimes q1 and q2 (q1 and q2 should be

chosen to meet condition 1 and 2 of Theorem 2). The proof

of Theorem 2 can be found in the appendix.

4.2 Coprime for ECMP

Based on Theorem 2, we propose a coprime-based approach

to mitigate hash correlations along a routing path. When two

hash functions are correlated, we just choose two coprimes

and apply an extra modulo operation to derive two indepen-

dent hash functions as in Equation 1.

While it may seem to be intuitive and easy to add an extra

modulo operation to the hash value in a switch, but this re-

quires switch hardware modification and no switch chips we

are using provide this functionality. Even if switch vendors

provide this functionality in their next generation chips, we

have to replace all our existing switches, which is daunting

and costly.

Instead, we propose to duplicate the ECMP group entries

to match the coprime value in the SDN controller and inter-

act with the switch flow and group tables via the existing

OpenFlow [21] interface. Figure 11 shows the procedure of

the method. We explain this using an example. Assuming

that there are two egress ports in the ECMP group for IP

prefix 10.1.2.0/24. Suppose one hash correlation occurs, we

choose a coprime value of 5 to mitigate the hash correlation.

Instead of modifying switch hardware to achieve two modulo

operations h%5%2 (h is a hash value returned from the hash

function) to choose an egress port, we duplicate 2 physical

USENIX Association 2022 USENIX Annual Technical Conference    811



egress ports into 5 logical ports in the ECMP group which are

mapped to 2 physical egress ports. In this way, we only need

one modulo operation, that is, h%5, to determine the logical

port and finally the physical egress port. Duplicating ECMP

group entries to match the coprime value is supported by to-

day’s commodity switches and we only need to add a small

amount of logic into the SDN controller. Note that Figure 11

shows that one flow table contains many IP prefixes/flows

sharing the same group (multi-path) table in the switch, so

we need to use an offset added to hash value%group size to

index each IP prefix/flow.

Data plane

Controller
Choose a Coprime Value

IP Prefixes
Multipath 

Table  

offset

Group 

size

... ... ...

10.1.2.0/24 2 5

Logical 
port

Port

0 1

1 2

2 1

3 2

4 1

5 2

6 1
+

ECMP 
Group

Duplicated 

ECMP 

Group

9 4Hash
Packet 
Header

5

2 6

Flow table in a 

switch Multi-path table in 

a switch

Mod

5

Duplicate ports

Figure 11: The procedure of applying a coprime number to

mitigate hash correlation without requiring an extra modulo

operation.

There are two technical challenges of the copriming ECMP

group size method mentioned above: 1) increased switch mem-

ory usage, especially for large coprime values. The memory

usage is increased by O(q/m) times, where q and m is the

coprime and original ECMP group size, respectively; and 2)

ECMP precision loss – i.e., the difference between intended

weights and actual weights of different egress ports of an

ECMP group. In order to save switch memory, we may want

to choose small coprime values. However, small coprime

value contradicts condition 1 in Theorem 2; furthermore, we

also need to tolerate the ECMP precision loss introduced by

a small coprime value. When copriming ECMP group size,

some ports are duplicated for ⌊q/m⌋ times, and others are

duplicated for ⌊q/m⌋+1 times. So when q/m is small, this

introduces ECMP precision loss.

We use the coefficient of variation (CV) to measure how

effective a coprime value is. Suppose we have m links, and the

expected portion of traffic is pi = 1/m per link. After using co-

prime q, the actual traffic distribution is p̂i = (⌊q/m⌋+ I(i ≤
q%m))/q, where I(.) is an indicator function, i ∈ {0,m−1}

is the port id, and when i ≤ q%m, I(.) = 1. The CV is com-

puted for p̂i. In our implementation of the coprime method,

we minimize CV while obeying the ECMP table size limit

offered by switch chips.

A WCMP group

Duplicate ECMP group to 
match the coprime value

Treat the WCMP group 
as an ECMP group

WCMP 

port
Weight

1 3

2 1

WCMP 

port
Weight

1 3

2 1

Logical 

port

ECMP 

port

WCMP 

port

1 1 1

2 2 1

3 3 1

4 4 2

5 1 1

6 2 1

7 3 1

ECMP 
port

WCMP 
port

1 1

2 1

3 1

4 2

WCMP 
port

Actual 
Weight

1 6

2 1

CV

0.33

(a) Naive coprime: the WCMP

group is treated as an ECMP group

with 4 ECMP ports.

Spliting Coprime to two parts

Logical 

port

WCMP 

port

1 1

2 1

3 1

4 2

WCMP 
port

Actual 
Weight

1 5

2 2

Logical 

port

WCMP 

port

5 1

6 2

7 1

CV

0.09

a*W=4 r=3

(b) Split coprime: The coprime

value 7 is split into the first q̂ =
a∗W = 4 and the remaining r =
3, where a = ⌊q/W⌋= 1.

Figure 12: Illustration and comparison of the naive and im-

proved algorithm to coprime WCMP groups.

4.3 Coprime for WCMP

As discussed in [37], topology asymmetry introduced by

link or switch failures requires Weighted-Cost Multi-Path

(WCMP) to distribute traffic in proportion to downstream

hops’ capacities. In this section, we extend the coprime-based

method from ECMP to WCMP.

One straightforward method, denoted by naive coprime, is

to treat a WCMP group as an ECMP group of W ECMP ports,

where W is the sum of the weights, i.e., W = ∑i wi and wi is

the weight of port i. We duplicate the W ECMP ports to q

logical ports just as an ECMP group, where q is a coprime

value. However, the weights after duplication could deviate

significantly from the intended WCMP weights. One example

is shown in Figure 12a: there are two ports in the WCMP

group, and their weights are 3 and 1, that is, w1 = 3 and w2 = 1.

This WCMP group can be treated as an ECMP group with

W = 4 ECMP ports. Suppose, we choose a coprime value

7, and after duplication, the actual weights are ŵ1 = 6 and

ŵ2 = 1, which are significantly different from the intended

WCMP weights. We use the CV of {ŵi/wi} to quantify the

difference. As shown in Figure 12a, the CV is 0.33.

To reduce the difference between the actual weights af-

ter copriming WCMP group size and the expected WCMP

weights, we propose an improved algorithm to duplicate en-

tries in the WCMP group, denoted by split coprime. Sup-

pose the WCMP group has m ports, the weight is wi for port

i, W = ∑i wi, and the chosen coprime value is q. We split

the coprime value to two parts: q̂ = a ∗W and r = q%W ,

where a = ⌊q/W⌋. It is intuitive to duplicate the ports to q̂

logical ports, that is, each WCMP port are duplicated for

exactly wi ∗ a times. We duplicate m ports to left r en-

tries in the following manner: each port i is replicated for

⌊r/m⌋+I(i< r%m) times, where I(.) is an indicator function,

and when i < r%m, i ∈ {0,1, ...,m−1}, I(.) = 1. Figure 12b

illustrates the procedure of co-priming an WCMP group: the

812    2022 USENIX Annual Technical Conference USENIX Association



coprime value q = 7 is split into q̂ = 4 and r = 3; for q̂, the

two WCMP ports are duplicated for wi times, and w1 = 3 and

w2 = 1; For r, port 1 is replicated for two times and port 1 for

once. With this improved algorithm, the CV is much smaller

than the naive way of simply treating a WCMP group as an

ECMP group.

For WCMP, the memory cost of coprime is negligible be-

cause even without coprime, we need to do WCMP quanti-

zation (i.e., approximating fractional weights via duplicating

ECMP table entries) [37] to ensure the number of WCMP

entries in a group doesn’t exceed a pre-defined limit.

5 Evaluation

We conducted simulations using three types of network topolo-

gies and real-world traffic traces. We also evaluated on a

hardware testbed with hundreds of switches and large-scale

production fabrics.

5.1 Experiment Setup

Traffic traces We use CAIDA trace dataset [5] from a high-

speed Chicago monitor on a commercial backbone link: each

1-second segment has 475.37k packets and 12.91k 5-tuple

flows on average. Hashing is the foundation of traffic load

balancing in multi-path networks and it is applied at the flow-

level in ECMP/WCMP routing, therefore we focus on flow-

level statistics rather than packet-level in our simulation to

quantify the goodness of a hashing design. To map a traffic

trace to a network topology we evaluate, we randomly assign

each IP in the traffic trace to one host in our topology.

Network topologies We employ three types of topologies

in our evaluation (Table 1): 1) the simplified multi-stage Clos

(Jupiter) DCN topology as depicted in Figure 1; 2) a spineless

DCN which has eight server blocks and the connection among

server blocks is DRing [13]. Each server block contains 8 S3

chips and 8 S2 chips (each chip has 16 ports). Every server

block is directly connected to 4 neighboring server blocks

and each server block pair has 16 direct links; 3) two ISP

topologies [27]. The routing strategy for the ISPs is k-shortest

(k = 4) path routing [31] in our simulation.

1 2 3 4 5 6 7 8
Link ID

0.0

0.5

1.0

No
rm

al
ize

d 
lin

k 
ut

iliz
at

io
n Per-stage hashing

Color recombining

Figure 13: The normalized link utilization of eight links from

one ECMP group for color recombining and per-stage hash-

ing.

Topology #Nodes #Links

Spinefull DCN (Figure 1) 2 server blocks 128

Spineless DCN (DRing [13]) 8 server blocks 512

ISP1 (small) 69 146

ISP2 (large) 122 371

Table 1: The topologies used in our simulation.

Hash functions We use one of the most widely used hash

function family, RTAG7 [10], which includes seven hash func-

tions (6 CRC16s and 1 CRC32) in our simulation.

Metrics We employ the Coefficient of Variation (CV),

which is defined as δ/µ (δ is the standard deviation and µ

is the mean of a set of data points), to quantify the goodness

of hashing. CV is a commonly used statistical measure of

the dispersion of data points around the mean. For an ECMP

group with m output ports and the associated link utilization

set {xi}, 1 ≤ i ≤ m, CV is computed against set {xi} directly.

For a WCMP group with m output ports whose weighs are wi,

1 ≤ i ≤ m, CV is computed against set {xi/wi}.

5.2 Color Recombining for Multi-stage DCN

We first study the traffic load-balancing performance of the

proposed per-port hashing with color recombining (denoted as

color recombining below) scheme for multi-stage DCN and

compare with per-stage hashing with random seed (denoted

as per-stage hashing). For per-stage hashing, we assign an

independent hash function for each stage and initialize each

hash function with a random seed.

We present normalized link utilization of eight links from

one ECMP group in Figure 13. It shows that all eight links

have similar link utilization of around 0.67 for color recom-

bining, but the per-stage hashing approach shows severe non-

uniformity. In color recombining, we only reuse hash func-

tions when color recombining happens, which eliminates hash

correlation; but in per-stage hashing, certain hash functions

are reused without considering correlations and random seeds

are linear operations that can not decorrelate the reused hash

functions.

We also compute the CV for each ECMP group and draw

the CDF of CVs in Figure 14. All the CVs are under 0.05 for

color recombining, but per-stage hashing’s CV can be above

0.6 (note that a CV of 1 means the standard deviation is equal

to the mean). In other words, per-port hashing with the color

recombining approach reduces CV by approximately an order

of magnitude compared with per-stage hashing with random

seeds. Large CV value means links in the same ECMP group

are not properly utilized and results in wasted network capac-

ity and unnecessary hot links that lead to network congestion

under heavy traffic load.

USENIX Association 2022 USENIX Annual Technical Conference    813



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
CV

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Per-stage hashing
Color recombining

Figure 14: The CDF plot of CVs of

each ECMP group. Compare color re-

combining with per-stage hashing.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
CV

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Per-stage hashing
Coprime

Figure 15: The CDF plot of CVs of

each ECMP group. Compare coprime

with per-stage hashing.

0.0 0.1 0.2 0.3 0.4
CV

0.0
0.2
0.4
0.6
0.8
1.0

CD
F coprime=9

coprime=25
coprime=41
coprime=57
coprime=73

Figure 16: The CDF plot of CVs of

each ECMP group. Compare different

coprime values.

0.00 0.05 0.10 0.15
CV

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Naive coprime
Split coprime

Figure 17: The CDF plot of CVs for

each WCMP group. Compare two al-

gorithms of copriming WCMP group.

0.0 0.2 0.4 0.6 0.8 1.0
CV

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Random
Coprime

Figure 18: CDF plot of CV of each

ECMP group for ISP 1.

8 12 16 20 24 28 32 36 40
Num of hash functions

0
200
400
600
800

1000
1200
1400

Nu
m

 o
f c

or
re

la
tio

ns

Small ISP
Large ISP

Figure 19: The number of ECMP

groups of CV > 0.1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Link ID

0.0

0.5

1.0

No
rm

al
ize

d 
lin

k 
ut

iliz
at

io
n

Per-stage hashing
Coprime

Figure 20: The normalized link utilization of 16 links con-

necting two server blocks.

5.3 Coprime for Spineless DCN

In the spineless DCN, all eight server blocks are connected

in a DRing topology [13]. We choose two coprime values

for every server block pair to mitigate the hash correlation

between them. We compare coprime with the per-stage hash-

ing where each server block uses 3 randomly chosen hash

functions from the RTAG7 hash family and each function is

supplied a random seed. We conduct experiments to evaluate

the coprime-based approach for both ECMP and WCMP.

5.3.1 Coprime for ECMP

We show the normalized link utilization from 16 links con-

necting two server blocks in Figure 20. All links have the

utilization of around 0.75 for the coprime-based approach,

where the coprime values are 8 (note each ECMP group has 8

ports because each S3 chip of a server block has 8 up-facing

ports) and 57 for the two server blocks, respectively. However,

using per-stage hashing, the max/min link utilization ratio is

above 2. Due to the shortage of independent hash functions,

per-stage hashing has to reuse certain identical hash functions

(even though they are provided with random seeds), and this

raises traffic polarization as shown in Figure 20.

For quantification, the coprime-based approach outper-

forms per-stage hashing by reducing the CV by about 80%.

For the coprime-based approach, all CVs are under 0.1, but

for per-stage hashing, the CV can be as high as 0.5, as shown

in Figure 15.

The coprime value matters when mitigating hash correla-

tion: a large coprime value is more effective than a small

one. We evaluate five different coprime values from 9 to 73,

and show the CVs in Figure 16. It shows that the CV can be

close to 0.4 when the coprime value is 9. When increasing

the coprime value to 73, the improvement is not significant

compared to 57. The result is consistent with our analysis in

the end of § 4.2, which describes a trade-off between mem-

ory usage and ECMP precision. How to choose a coprime

value depends on the memory a switch has and the level of

imbalance one can tolerate.

814    2022 USENIX Annual Technical Conference USENIX Association



5.3.2 Coprime for WCMP

To evaluate coprime for WCMP, we simulate a scenario where

the first half links in an ECMP group have 2× capacity, and

therefore, the weights for those links are 2 and the remain-

ing ones are 1. In this evaluation, we focus on two ways to

duplicate the WCMP ports to match the coprime value: one

is the naive coprime where a WCMP group is regarded as

an ECMP as shown in Figure 12a; the other one (denoted as

split coprime) is to split the coprime value into two parts as

described in Figure 12b.

We draw the CDF plot of CVs per WCMP group in Fig-

ure 17. It shows that all CVs are under 0.075 when using the

split coprime algorithm, while CV can reach 0.12 when using

the naive coprime algorithm. We also observe split coprime

reduces CV by approximately 60% for some WCMP groups

compared with naive coprime. Our results indicate that split

coprime should be preferred over naive coprime because it

reduces CV using the same amount of switch memory.

5.4 Coprime for WAN

The coprime-based approach works for WAN topologies. We

use the two ISP networks in Table 1 to evaluate load bal-

ancing performance of the coprime technique. We compare

the coprime method with a random hash allocation approach

(denoted as Random in Figure 18), where each switch ran-

domly chooses an independent hash function from RTAG7

hash family and applies a random seed.

Our result shows that the coprime-based approach reduces

CVs by about one order of magnitude compared with the

random method. We compute all CVs for the link utilizations

in every ECMP group and draw the CDF plot of CVs in

Figure 18. When using the random method, CV can be as

large as 1, which means only one link in the ECMP group

is used, and others are idle. On the other hand, applying a

coprime value to the ECMP group increases load balancing

performance significantly, with CV lower than 0.1.

We also study how many independent hash functions are

enough to eliminate traffic imbalance. We conduct an experi-

ment by increasing the number of hash functions and gather

the number of ECMP groups of CV > 0.1, caused by hash

correlations. For this experiment, we introduce more CRC

hash functions [24] beyond RTAG7, without considering the

hardware implementation limitation. The result is shown in

Figure 19. It shows that the small ISP (ISP 1) requires at

least 40 hash functions to eliminate the correlations. How-

ever, the larger ISP (ISP 2) still has nearly 200 correlations

when using 40 hashes. This result implies that even if chip

vendors provide more hash functions in their next generation

chips, it might be not sufficient for a large topology, e.g., B4

WAN grew 7× larger in 5 years [15]. On the other hand, the

coprime-base algorithm can be commonly used for topologies

of arbitrary sizes.

0 10 20 30 40 50 60
Time/minutes

0.0
0.2
0.4
0.6
0.8
1.0

No
rm

al
ize

d 
lin

k 
ut

iliz
at

io
n

Link-1
Link-2
Link-3
Link-4
Link-5
Link-6
Link-7
Link-8

Figure 21: The normalized link utilization of one S3 switch

over 1-hour time window from the hardware testbed.

0 10 20 30 40 50 60
Time/minutes

0.0
0.2
0.4
0.6
0.8
1.0

No
rm

al
ize

d 
lin

k 
ut

iliz
at

io
n

Link-1
Link-2
Link-3
Link-4

Figure 22: The normalized link utilization of four links from

one spine block towards one server block over 1-hour time

window from the production fabric after applying color re-

combining.

5.5 Hardware Testbed Evaluation and Pro-

duction Fabric Deployment

We constructed a hardware testbed using the spineless DCN

topology (Figure 3). There are 4 server blocks and hundreds

of switches in this hardware testbed. The testbed serves a few

Tbps traffic generated by production-grade applications and

is carried by TCP and UDP. Within each server block, we

apply a per-port hashing scheme as Figure 9 shows and in

total 5 independent hash functions are used. We allow both

shortest path routing and non-shortest path routing, i.e., we

allow traffic to transit through an intermediate server block to

reach a destination server block. To mitigate the hash correla-

tion problem as illustrated in Figure 10, we apply the coprime

scheme to coprime ECMP group size on S3 switches – for

traffic originating a server block, ECMP group size is coprime

to 128; for traffic transiting a server block, ECMP group size

is coprime to 127. Therefore, we can ensure there is no hash

correlation for both shortest and non-shortest routing paths.

We show the normalized link utilization of one S3 switch over

1-hour time window in Figure 21. We observe excellent load

balancing performance with a CV of 0.02.

Color-recombining has been deployed in our production

multi-stage Clos fabrics for several years and significantly

reduced load imbalance due to hash correlation. The deploy-

ment of color-recombining is the following: after deciding

which hash functions can be reused, we simply configure

the switches with the designated hash functions. We studied

the hashing performance result of color-recombining in pro-

USENIX Association 2022 USENIX Annual Technical Conference    815



duction multi-stage Clos fabrics and the normalized link uti-

lization of one representative spine block towards one server

block from S4 to S3 direction is shown in Figure 22. The spine

block’s port speed is 40Gbps. As we discussed in Section 3

(Figure 8), hash function h4 is reused to load balance traffic

leaving spine blocks from S4 to S3 direction. But due to the

color-recombining technique, polarized traffic due to h4 are

merged into color white when leaving S4 chips, as a result,

we observe very nice load balancing performance with a CV

of 0.03.

6 Related Work

Traffic Load Balancing There are many prior works to ad-

dress an important limitation of ECMP/WCMP: load balanc-

ing performance degrades when there is a large traffic entropy,

i.e., when elephant flows collide on the same path, network

congestion arises. For example, previous works [3, 28] pro-

pose to split elephant flows into smaller "flowlets" that can be

load-balanced over different paths; other works [2, 30] pro-

pose to reschedule elephant flows after detecting collisions.

MPTCP [29] is a transport protocol that uses subflows to trans-

mit over multiple paths. These works rely on the assumption

that there is no hash correlation. Our work is complementary

and all load balancing schemes benefit from our improved

hashing design, which is the corner stone of load balancing.

Hashing in Networks The universal algorithm [7] adds

a 32-bit router-specific value to the hash function; however,

as we show theoretically and experimentally in §2.3, ran-

dom seeds do not work well. The paper [36] proposes to

mitigate hash function correlation by randomly setting the

VLAN-id for each switch. However, randomizing the VLAN-

id increases network management complexity. The paper [14]

selects a different hash function for a different value of the

TTL field. However, this approach is still constrained by the

limited number of hash functions and it also requires modi-

fying switch hardware. The novelty of this paper is that our

approaches work with commodity switch hardware without

any hardware modification or switch upgrade, which is costly

and daunting in large-scale networks.

Decorrelate Hashing Researches have already relied on

prime numbers to design independent hash functions. For ex-

ample, the universal hash functions employs the prime num-

ber as the divisor [6, 23], where primes are special case of

coprimes. Our work extends prior theory and applies it to

improve traffic load balancing in modern networks.

The patent by A. Meyer [22] uses co-primes to solve the

storage collision for hash tables, that is, how to insert an item

into the hash table when collision occurs; however, their

method is different from ours where they add a co-prime

offset to the original hash output, and this is similar to choos-

ing an initial value for the hash function. We have proved that

random initial values (including co-prime ones) do not work

for an ECMP group of even size in Theorem 1.

7 Conclusions

This paper tackles a real but underestimated problem in net-

work traffic load balancing, i.e., traffic polarization caused by

hash correlations. This paper proposes two novel approaches

to mitigate hash correlation: 1) a color recombining technique

which exploits topology traits of Clos networks to allow hash

function reuse and to reduce the number of needed indepen-

dent hash functions in multi-stage Clos DCN and 2) a generic

coprime-based technique to mitigate hash correlation for non-

hierarchical mesh networks such as spineless DCN and WAN.

Evaluations results based on real traffic trace and topologies

show that the proposed techniques can reduce the extent of

load imbalance, quantified by coefficient of variance (CV),

by one order of magnitude. The limited hashing capability

offered by current switch silicon reduces network reliabil-

ity, efficiency and poses challenges to modern large-scale

networks. We believe that novel approaches that work with

current switch hardware are valuable. We also hope our use

cases of more flexible topology and routing designs can moti-

vate switch vendors to provide better hashing support in the

future.

8 Acknowledgement

We thank our anonymous shepherd and reviewers for their

helpful suggestions. The authors thank David Wetherall, Ab-

dul Kabbani and Christophe Diot for their insightful feedback

which greatly improves the quality of this paper. This work

was supported in part by the National Science Foundation

(grants CNS-1618030 and CNS-2107078).

References

[1] Venkata Ramana Kiran Addanki. Method and system for

management of flood traffic over multiple 0: N link ag-

gregation groups, April 22 2014. US Patent 8,705,551.

[2] Mohammad Al-Fares, Sivasankar Radhakrishnan,

Barath Raghavan, Nelson Huang, and Amin Vahdat.

Hedera: Dynamic flow scheduling for data center

networks. In NSDI, volume 10, pages 19–19, 2010.

[3] Mohammad Alizadeh, Tom Edsall, Sarang Dharma-

purikar, Ramanan Vaidyanathan, Kevin Chu, Andy Fin-

gerhut, Francis Matus, Rong Pan, Navindra Yadav,

George Varghese, et al. Conga: Distributed congestion-

aware load balancing for datacenters. In ACM SIG-

COMM Computer Communication Review, volume 44,

pages 503–514. ACM, 2014.

[4] Mohammad Alizadeh, Albert Greenberg, David A

Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,

Sudipta Sengupta, and Murari Sridharan. Data center

816    2022 USENIX Annual Technical Conference USENIX Association



tcp (dctcp). In Proceedings of the ACM SIGCOMM

2010 Conference, pages 63–74, 2010.

[5] CAIDA. The CAIDA anonymized internet traces

data access. http://www.caida.org/data/passive/passive

_dataset_download.xml, 2019.

[6] J Lawrence Carter and Mark N Wegman. Universal

classes of hash functions. Journal of computer and

system sciences, 18(2):143–154, 1979.

[7] Cisco. Cef polarization.

https://www.cisco.com/c/en/us/support/docs/ip/express-

forwarding-cef/116376-technote-cef-00.html, 2013.

[8] Cisco. Data center access design with cisco

nexus 5000 series switches and 2000 se-

ries fabric extenders and virtual portchannels.

https://itnetworkingpros.files.wordpress.com/2014/04/c07-

572829-01_design_n5k_n2k_vpc_dg.pdf, 2018.

[9] Broadcom Corporation. Bcm56070 switch program-

ming guide. https://docs.broadcom.com/doc/56070-

PG2-PUB, 2020.

[10] Dell. Dell configuration guide

for the s4048-on system 9.9(0.0).

https://www.dell.com/support/manuals/us/en/19/force10-

s4048-on/s4048_on_9.9.0.0_config_pub-v1/rtag7,

2015.

[11] Dell. Dell networking configuration guide for

the mxl 10/40gbe switch i/o module 9.9(0.0).

http://www.dell.com/support/manuals, 2015.

[12] Network Working Group. Ip in ip tunneling.

https://datatracker.ietf.org/doc/html/rfc1853.

[13] Vipul Harsh, Sangeetha Abdu Jyothi, and P Brighten

Godfrey. Spineless data centers. In Proceedings of the

19th ACM Workshop on Hot Topics in Networks, pages

67–73, 2020.

[14] Ariel Hendel. Mutable hash for network hash polariza-

tion, March 19 2015. US Patent App. 14/026,725.

[15] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-

Fares, Min Zhu, Richard Alimi, Chandan Bhagat,

Sourabh Jain, Jay Kaimal, Shiyu Liang, Kirill Mendelev,

et al. B4 and after: managing hierarchy, partitioning,

and asymmetry for availability and scale in google’s

software-defined wan. In Proceedings of the 2018 Con-

ference of the ACM Special Interest Group on Data

Communication, pages 74–87, 2018.

[16] C. Hopps. Analysis of an equal-cost multi-path algo-

rithm. RFC 2992, RFC Editor, November 2000.

[17] Yuanhong Huo, Xiaoyang Li, Wei Wang, and Dake Liu.

High performance table-based architecture for parallel

crc calculation. In The 21st IEEE International Work-

shop on Local and Metropolitan Area Networks, pages

1–6. IEEE, 2015.

[18] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon

Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata,

Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4: Expe-

rience with a globally-deployed software defined wan.

ACM SIGCOMM Computer Communication Review,

43(4):3–14, 2013.

[19] Abhijeet Joglekar, Michael E Kounavis, and Frank L

Berry. A scalable and high performance software iscsi

implementation. In FAST, volume 5, pages 267–280,

2005.

[20] Nick McKeown. Software-defined networking. INFO-

COM keynote talk, 17(2):30–32, 2009.

[21] Nick McKeown, Tom Anderson, Hari Balakrishnan,

Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott

Shenker, and Jonathan Turner. Openflow: enabling inno-

vation in campus networks. ACM SIGCOMM computer

communication review, 38(2):69–74, 2008.

[22] Alex Meyer. Co-prime hashing, July 28 2020. US Patent

10,725,990.

[23] Mats Näslund. Universal hash functions & hard core

bits. In International Conference on the Theory and

Applications of Cryptographic Techniques, pages 356–

366. Springer, 1995.

[24] Carnegie Mellon University Philip Koopman. Best crc

polynomials. https://users.ece.cmu.edu/ koopman/crc/.

[25] R. Wang, H. Wassel, J. Zhou, B. Felderman and D.

Wetherall. Experiences with multipath forwarding in dc

networks. 2017 Google Networking Research Summit.

[26] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson,

Ashby Armistead, Roy Bannon, Seb Boving, Gaurav

Desai, Bob Felderman, Paulie Germano, et al. Jupiter

rising: A decade of clos topologies and centralized con-

trol in google’s datacenter network. In ACM SIGCOMM

computer communication review, volume 45, pages 183–

197. ACM, 2015.

[27] Neil Spring, Ratul Mahajan, and David Wetherall. Mea-

suring isp topologies with rocketfuel. In ACM SIG-

COMM Computer Communication Review, volume 32,

pages 133–145. ACM, 2002.

[28] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin

Taheri, and Tom Edsall. Let it flow: Resilient asym-

metric load balancing with flowlet switching. In NSDI,

pages 407–420, 2017.

USENIX Association 2022 USENIX Annual Technical Conference    817



[29] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and

Mark Handley. Design, implementation and evaluation

of congestion control for multipath tcp. In NSDI, vol-

ume 11, pages 8–8, 2011.

[30] Xin Wu, Daniel Turner, Chao-Chih Chen, David A

Maltz, Xiaowei Yang, Lihua Yuan, and Ming Zhang.

Netpilot: automating datacenter network failure miti-

gation. ACM SIGCOMM Computer Communication

Review, 42(4):419–430, 2012.

[31] Jin Y Yen. An algorithm for finding shortest routes

from all source nodes to a given destination in general

networks. Quarterly of Applied Mathematics, 27(4):526–

530, 1970.

[32] Mingyang Zhang, Jianan Zhang, Rui Wang, Ramesh

Govindan, Jeffrey C Mogul, and Amin Vahdat. Gem-

ini: Practical reconfigurable datacenter networks with

topology and traffic engineering. arXiv preprint

arXiv:2110.08374, 2021.

[33] Zhehui Zhang, Haiyang Zheng, Jiayao Hu, Xiangning

Yu, Chenchen Qi, Xuemei Shi, and Guohui Wang. Hash-

ing linearity enables relative path control in data cen-

ters. In 2021 USENIX Annual Technical Conference

(USENIX ATC 21), pages 855–862, 2021.

[34] Rui Zhang-Shen and Nick McKeown. Designing a pre-

dictable internet backbone with valiant load-balancing.

Quality of Service–IWQoS 2005, pages 178–192, 2005.

[35] Shizhen Zhao, Rui Wang, Junlan Zhou, Joon Ong, Jef-

frey C Mogul, and Amin Vahdat. Minimal rewiring:

Efficient live expansion for clos data center networks.

In 16th {USENIX} Symposium on Networked Systems

Design and Implementation ({NSDI} 19), pages 221–

234, 2019.

[36] Junlan Zhou and Zhengrong Ji. Hashing technique to op-

timally balance load within switching networks. 2017.

[37] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kab-

bani, Leon Poutievski, Arjun Singh, and Amin Vahdat.

Wcmp: Weighted cost multipathing for improved fair-

ness in data centers. In Proceedings of the Ninth Euro-

pean Conference on Computer Systems, page 5. ACM,

2014.

A Proofs of Theorems

Proof of Theorem 1 (CRC Seed) The CRC seed is also

known as the initial value, where we can initialize the CRC

value via XORing the seed with the input byte. Suppose the

input is denoted by x, and the two random seeds are z1 and

z2. In order to prove random seeds are not effective, we only

need to prove the following two rules:

If crcb(x)%2 = crcb(y)%2, crcb(x ⊕ z1)%2 = crcb(y ⊕
z1)%2;

If crcb(x)%2 = crcb(y)%2, crcb(x ⊕ z2)%2 = crcb(y ⊕
z2)%2.

Let z1 = crcb(t). Based on the rolling property of the CRC

function, we get:

crcb(x⊕ z1) = crcb((t ≪ bx)|x) = crcb(t ≪ bx)⊕ crcb(x).
where bx is the binary length of x,⊕ is XOR and | is bitwise

and. We also have

crcb(y⊕ z1) = crcb(t ≪ bx)⊕ crcb(y).
If crcb(x) and crcb(y) are both even (odd), crcb(t ≪ bx)⊕

crcb(x) and crcb(t ≪ bx)⊕ crcb(y) are both even or odd, that

is, crcb(x⊕ z1) and crcb(y⊕ z1) are both even(odd).

It is the same for crcb(x⊕ z2)%2 = crcb(y⊕ z2)%2

Proof of Theorem 2 (co-primes) Let U , W , U ′ and W ′ de-

note the distribution of the hashing output of H%m1, H%m2,

H%q1%m1 and H%q2%m2, respectively. When Ĥ ≫ q1q2

(condition 2 in Theorem 2), ∀i′ ∈ [0,q1 −1], j′ ∈ [0,q2 −1],
i ∈ [0,m1 −1], and j ∈ [0,m2 −1], we have,

Pr(U ′ = i′,W ′ = j′) = 1/(q1q2)

When condition 1 is not satisfied in Theorem 2, there ex-

ists hash correlation brought by q1%m1 and q2%m2 because

the mapping from q1(q2) to m1(m2) has a remainder. This

mapping causes the non-uniform distribution of q1 integers

over m1 slots, where q1%m1 slots get ⌊q1/m1⌋+ 1 integers

each, and m1 −q1%m1 slots get ⌊q1/m1⌋ integers each. We

denote this non-uniformity by the term the approximation

error. Note that when q1 increases, the difference between

(⌊q1/m1 + 1⌋)/q1 and (⌊q1/m1⌋)/q1 can be reduced, and

thus, we can quantify the approximation error by Equation

(2).

err = (q1%m1)/q1 +(q2%m2)/q2 (2)

where err denotes the approximation error. When condition

1 is satisfied, err ≈ 0. Let S(i) = {i′|i′%i = 0}, and S( j) =
{ j′| j′% j = 0}, we have,

Pr(W = j|U = i) =
∑i′∈S(i), j′∈S( j) P(U ′ = i′,W ′ = j′)

∑i′∈S(i) P(U ′ = i′)

=
(q1/m1)(q2/m2)(1/(q1q2))

(q1/m1)(1/q1)

= 1/m2 = Pr(W = j)

(3)

818    2022 USENIX Annual Technical Conference USENIX Association



Firebolt : Finding Bugs in Programmable Data Plane Generators

Jiamin Cao⋆, Yu Zhou†, Chen Sun†, Lin He⋆, Zhaowei Xi⋆, Ying Liu⋆
⋆Tsinghua University †Alibaba Group

Abstract
Programmable data planes (DP) enable flexible customiza-

tion of packet processing logic with domain-specific lan-
guages such as P4. To relieve developers from lengthy codes
and tedious hardware details, many researches propose DP
program generators that take high-level intents as input and
automatically convert intents into DP programs. Generators
must be correct, otherwise they may produce buggy programs
or DP logic that is inconsistent with intents. Nevertheless, ex-
isting verification tools are designed to verify individual DP
programs, not generators. They either cannot achieve high bug
coverage or cannot debug generators with high scalability.

This paper presents Firebolt , a blackbox testing tool de-
signed to dig out faults in DP program generators, including
security vulnerabilities, intent violations, and generator crash.
Firebolt achieves high bug coverage by using syntax-guided
intent generation to construct a comprehensive, syntactically
correct, and semantically valid intent set. To avoid intent ex-
plosion, Firebolt designs an intent space pruning approach
that eliminates redundant intents while preserving represen-
tative ones. For high scalability, Firebolt automatically for-
malizes DP programs and intents for verification. We apply
Firebolt to three popular open-source DP generators. Evalua-
tion results demonstrate that Firebolt can detect 2× bugs with
0.1% to 0.01% human efforts compared to existing tools.

1 Introduction

Programmable network devices [1, 2] together with domain-
specific programming languages (e.g. P4 [3]) have enabled
many in-data-plane (DP) network functions, such as monitor-
ing [4–6], security [7–9], routing [10–12] and so on. Mean-
while, booming DP functions heavily burden programmers
with lengthy codes (100s to 1000s lines of code, LoC [13]) and
manual consideration of tedious hardware constraints [14].
To this end, a growing body of research proposes DP genera-
tors [14–27], which provide high-level declarative primitives
to easily express intents, and a compiler to convert intents into
platform-specific DP programs and table entries. DP genera-
tors can reduce LoC by 80% [14] with resource optimizations
that would otherwise require manual efforts. Above benefits
encourage researchers and industries to design various DP
generators for network monitoring [16, 17] and even mission-
critical functions like routing [14] or security [21, 22].

Considering the prevalence of DP generators, guaranteeing
their correctness becomes a must-be-solved problem. How-
ever, our study (§2) reveals that three types of mistakes in-
cluding program security vulnerabilities such as out-of-bound
register access, intent-program inconsistency, and generator
crash, may happen to advanced DP generators [16, 17, 21],
which can result in serious mistakes such as missing attacks
and undesired packet processing procedure.

Unfortunately, little attention has been devoted to guaran-
teeing the correctness of DP generators. Existing tools focus
on finding security vulnerabilities in DP programs [28–34],
or verifying the consistency between high-level intents and
DP programs [28–31]. However, these tools are not designed
for debugging DP generators and thus fall short in two as-
pects: (1) Coverage. Existing verification tools aim to verify
individual intent-program pairs instead of finding all bugs in
advanced DP generators. As intents are numerous, even infi-
nite, verification tools can hardly cover all generator faults. (2)
Scalability. To check intent-program consistency, verification
tools require massive human-written specifications of intents
(100s to 1000s of LoC) for one program, which is error-prone
and time-consuming.

This paper presents Firebolt , a blackbox testing tool de-
signed to dig out DP generator faults including security vul-
nerabilities, intent violations, and crash with high coverage
and scalability. The key idea of Firebolt is thoroughly con-
structing intents as test cases to achieve high coverage, and
automatically producing specifications of intents with little
human intervention for verification to achieve high scalability.

However, realizing such a tool is challenging in three as-
pects: intent generation that should contain every reasonable
intent, intent explosion that results in unacceptably long test-
ing time due to numerous intents, and intent diversity that
hampers automatic specification derivation for verification. In
response, Firebolt proposes the following innovative designs.

• Intent generation. Firebolt should generate a comprehen-
sive intent space containing every reasonable intent for high
coverage. However, random composition of intent grammar
symbols can produce infinite intents, which is impractical
for testing. We first generate syntactically correct intents
based on intent grammar in Backus-Naur form (§4.1). We
then identify semantic dependencies between grammar sym-
bols and filter semantically valid intents (§4.2).

USENIX Association 2022 USENIX Annual Technical Conference    819



PacketStream
.filter(…) // Find TCP SYN packets
.map(…).reduce(…) // Count SYN packets of a TCP flow
.filter(filter_vals = (‘count’), func = (‘eq’, 100))

// Report when #SYN of a flow reaches 100

DP generator

table filter {…} // Find TCP SYN packets
counter ++; // Count SYN packets of a TCP flow
if (counter == 1) { // Wrong conversion, should be 100
apply(SYN_flooding_alarm);

}

intent

P4 program

Figure 1: False SYN flooding alarms due to intent violation.

• Intent explosion. Due to wide parameter range and cyclic
symbol reference, there may still exist massive or even in-
finite redundant intents that are syntactically correct and
semantically valid, which compromises testing efficiency.
To handle intent explosion, we design intent space pruning
to eliminate redundant intents while keeping representative
ones (§4.3). Remaining intents are input into generators to
find crash bugs or to generate DP programs for verification.

• Intent diversity. The high diversity of intents and corre-
sponding DP programs for one generator and across gen-
erators makes it challenging to devise a uniform approach
for verification. To achieve high scalability, Firebolt first
formalizes all DP programs into unified Z3 formulas [35]
(§5.1). Next, instead of manually translating (1000s of) in-
tents into specifications, we write specifications for intent
grammar symbols, and automatically compose symbol spec-
ifications into the intent specifications (§5.2). Finally, we
uniformly verify intent specifications and Z3 formulas to
detect intent violations and security vulnerabilities (§5.3).
We apply Firebolt to three popular open-source DP gen-

erators, i.e., Marple [16], Sonata [17], and Poise [21]. In all
test cases of the three generators, Firebolt discovered 19 bugs
including 3 security vulnerabilities, 13 intent violations, and
1 crash bug, while existing verification tools merely cover 10.
Moreover, Firebolt requires 0.1% to 0.01% human-written
LoC compared to existing tools under equal bug coverage.

2 Motivation

If a DP generator fails to faithfully translate programmer
intents (intent violations), or produces logically flawed pro-
grams (security vulnerabilities), or even crashes under reason-
able input intents, it adversely affects production efficiency
and introduces instability into online DP functions. Below we
present two example bugs that have been detected by Firebolt
to reveal the consequences of faulty generators.
#1: False SYN flooding alarm due to intent violation. As
presented in Figure 1, a SYN flooding monitoring function
counts per-flow TCP SYN packet number. If a counter ex-
ceeds a threshold, a SYN flooding alarm is produced. How-
ever, due to a bug in Sonata [17], an advanced monitoring
function generator, the threshold is wrongly configured as 1 in-
stead of the originally intended 100, which results in massive
false alarms that completely violates the monitoring goal.

field_list_calculation hash1 {
…
output_width: 16; // 16-bit hash value

}
register bf1 {

…
instance_count: 86; // 86 slots

}
P4 program

action handle_bf1(){
bf1_stfu.execute_stateful_alu_from_hash(hash1);

// Use hash value as read index
// Read register value to bf1_val

}
table drop_tbl {…} // Drop packets
if (bf1_val == 1 and …) {
apply(drop_tbl);

}

Figure 2: Connection legality misjudgement due to security
vulnerabilities.
#2: Connection legality misjudgement due to security vul-
nerabilities. Poise [21] takes intents as input and generates
context-aware security policies in programmable devices. It
generates an in-DP bloom filter to track illegal connections.
However, the bloom filter has 86 slots but is indexed by a
16-bit variable (0 to 65535), as shown in Figure 2. If the index
exceeds 86, a random value outside the bloom filter will be
returned. Such a vulnerability could incur wrong judgement
of connection legality and lead to potential security leakage.

To eliminate above mistakes, programmers have to review
generated DP programs and check intent-program consistency,
which costs extra human efforts. Some recent tools are de-
signed to find security vulnerabilities in DP programs [28–34]
or verify the intent-program consistency [28–31]. However,
using these tools to debug DP generators requires massive
human efforts to verify each intent-program pair, and cannot
fully cover all intents. Therefore, on modifying the intent or
expressing a new intent, these tools must be repetitively ex-
ecuted to ensure program correctness. Unfortunately, doing
so brings the scalability problem. To verify intent-program
consistency, 100s to 1000s of LoC must be written manually
to convert intents into specifications [16, 31]. Such LoC is
comparable to the DP program, which is error-prone, time-
consuming, and not scalable.

Instead of verifying individual programs, we propose Fire-
bolt to debug generators. Firebolt thoroughly generates in-
tents as test cases to detect generator faults, and automatically
derives specifications from intents to improve scalability.

3 Overview

The key idea of Firebolt is thoroughly constructing intents
as test cases to achieve high coverage, and automatically pro-
ducing verification specifications to achieve high scalability.
Firebolt workflow includes two major steps, i.e., intent gener-
ation and program verification, as shown in Figure 3.

§4 - Intent generation. To thoroughly explore the intent
space and cover all generator faults with little redundancy,
Firebolt takes the intent grammar and semantic constraints of
a DP generator as input and generates all possible and correct
intents. Meanwhile, Firebolt losslessly prunes the generated
intent space to eliminate redundancy and produces final test
cases, which are then input into DP generators to generate DP
programs or to find crash bugs.

820    2022 USENIX Annual Technical Conference USENIX Association



Input

§4 - Intent
Generation

§5 - Program
Verification

Output

Intent
grammar

Semantic
constraints

Per-symbol
specification

Z3 Formula

Specification
DP Generator

Verifier

Security
vulnerability

Intent
violation

Crash
bug

§4.1 §4.2

§4.3

§5.1

§5.2

§5.3

Intent

DP Program

IntentIntent
…

Figure 3: Workflow of Firebolt .
§5 - Program verification. To automatically verify the cor-
rectness of generated DP programs, the key is to derive the
specification of intents for verification. Firebolt provides a
general and high-level specification to express every intent
grammar symbol, and automatically derives the specification
of each intent based on per-symbol specifications. Meanwhile,
Firebolt formalizes the output DP programs using Z3 formu-
las. Finally, Firebolt checks whether the Z3 formulas (1) are
consistent with intent specifications and (2) have security
vulnerabilities.

4 Intent Generation

The design goal of intent generation is producing a group of
intents that (1) thoroughly covers all correct intents so that all
generator faults can be discovered and (2) possesses little re-
dundancy so that generator testing can be efficient. To achieve
the above goals, we start by comprehensive intent generation
with both syntactical correctness (§4.1) and semantic valid-
ity (§4.2) in mind. Next we analyze the source of redundant
intents and propose the intent space pruning approach (§4.3).

4.1 Syntax-Guided Intent Generation
A DP generator must expose the intent grammar for express-
ing intents. For example, as shown in Figure 1, Sonata [17]
provides primitives like filter, map, and reduce and parame-
ters like eq and count. The intent grammar describes lawful
function calls, parameter ranges, and syntax, which serves as
the foundation to generate possible intents from scratch.

We refer to syntax-guided synthesis [36, 37], a common
approach in program synthesis that finds the desired program
by searching the program space described by a grammar. We
leverage its idea and redefine the intent generation problem as:
given the grammar G of a DP generator, we need to explore
the intent space and generate all syntactically correct intents.
Intent grammar formalization. Syntax-guided intent gener-
ation takes grammar as input. However, different generators
can provide grammar in various formats [14,16,17]. We need
to formalize grammars of generators into a unified expression.
We observe that Backus-Naur form (BNF) [38] is the most
common context-free grammar (CFG) [39] for describing the

Algorithm 1 Syntax-Guided Intent Generation
1: function SYGUG(G)
2: Q = Queue(G.nr) ▷ Initialize
3: while Q .size()> 0 do
4: n = Q . f ront()
5: Q .pop()
6: if n.has_nt() then
7: A = n. f irst_nt
8: for A → β ∈ G.R[A] do

9: n = αAγ
A→β−−−→ n1 = αβγ ▷ Grow graph

10: Q .push(n1)
11: end for
12: else
13: OUTPUT(n) ▷ Output generated intent
14: end if
15: end while
16: end function

syntactic structure of programming languages. Most DP gen-
erators [14, 16, 21–23] provide a BNF syntax specification.
Thus, Firebolt uses BNF for grammar formalization.

Note that Firebolt can also work with non-BNF grammars
by adopting the expansion rules of these grammars during
syntax-guided intent generation.
Preliminaries of BNF. Dark rectangle in Figure 4 shows par-
tial BNF expression of Marple [16] intent grammar. A gram-
mar G expressed in the BNF format is a quadruple ⟨N,S,Σ,R⟩,
where (1) N is a finite set of non-terminal symbols that can be
expanded to one or more terminal and non-terminal symbols,
(2) S is the start symbol in N, (3) Σ is a finite set of terminal
symbols that can appear in an intent, (4) R is a finite sub-
set of N × (N ∪Σ)∗, where each member (A,β) ∈ R is called
an expansion rule and is written as A → β. A sequence of
non-terminal and terminal symbols in (N ∪Σ)∗ is called a
sentential form, which represents an intermediate intent.
Syntax-guided intent generation. With a grammar G in BNF
format, a possible intent must start with S and then be replaced
with expansion rules in R until there are no non-terminal sym-
bols that need to be expanded, i.e., it ends with a composition
of terminal symbols in Σ. Therefore, generating all possi-
ble syntactically correct intents can be visioned as growing
a single-rooted (S) graph with one or more rules in R, and
collecting all leaf nodes ended with any one symbol in Σ.

We formalize the above process as follows. We define the
intent generation graph G = ⟨N ,E⟩ as a directed labeled
graph derived from grammar G = ⟨N,S,Σ,R⟩, with the nodes
N ⊆ (N ∪Σ)∗ and the edges E ⊆ N ×N ×R. Each node in
N has a sentential form which can be derived from the start
symbol S. Each edge in E represents a non-terminal symbol
expansion according to an expansion rule. At node n1 whose
sentential form is αAγ, where A is a non-terminal symbol, we
can apply the expansion rule A → β ∈ R and derive a child
node n2 with a new sentential form αβγ. G has a root node nr
with sentential form S, and many (maybe infinite) leaf nodes.

USENIX Association 2022 USENIX Annual Technical Conference    821



Algorithm 1 depicts the procedure of growing graph G
using depth first search. We maintain a queue Q to store
nodes in G . First, Q is initialized with the root node nr (line 2).
Then, in each iteration (line 3-15), we pop the first node n in
Q . If n has no non-terminal symbols in its sentential form, we
output n as an intent (line 13). Otherwise, we find the first non-
terminal symbol A in n, and apply all possible expansion rules
of A to generate child nodes (line 9), which are then appended
to Q for further expansion. We repeat this process until Q is
empty and all syntactically correct intents are generated.

4.2 Semantic Constraint Injection
Syntax-guided intent generation can cover syntactically cor-
rect intents. Nonetheless, some syntactically correct intents
do not make sense, or, say, are semantically invalid [40]. Be-
low we first introduce two types of semantically invalid in-
tents. Next we identify semantic constraints between grammar
symbols, and present the semantic constraint expression and
injection mechanisms to filter semantically valid intents.
Semantically invalid intents. Besides conforming to the
syntax, intents must also comply with semantic constraints.
Below we identify two types of semantically invalid intents.
• Uncompilable intents. Syntactically correct intents cannot

guarantee successful compilation. Typical examples include
a variable that is not declared before it is referenced, a vari-
able reference whose dimension is inconsistent with the
declaration, or a variable that is repeatedly defined. Nu-
merous such intents violate the semantic constraints of the
intent grammar, and therefore should be ruled out.

• Incomplete intents. Some intents are semantically incom-
plete. For example, the map primitive in Marple [16] dis-
tributes incoming data according to certain match fields,
and assigns a computing expression to process a temporary
variable, which is meaningless if it is not referenced later.
Therefore, an intent with a map primitive in the end of a
query is considered incomplete and should be ruled out.

Semantic constraint identification. The existence of se-
mantically invalid intents indicates that the above mentioned
syntax-guided intent generation graph contains unreasonable
leaf nodes (incomplete intents) or even invalid expansion
rules (branches) for intermediate nodes (uncompliable in-
tents). Thus, we should identify semantic constraints of intent
grammar, and leverage the constraints to supervise the intent
generation process. Overall, we classify the constraints into
exclusion constraints and dependency constraints.
• Exclusion constraints: indicate that if an expansion rule r1

on a node n1 exists, the expansion rule r2 on a node n2 is
not valid. We formally express them as:

i f ∃ r1 on n1, then ∄ r2 on n2

A typical example is that one variable name (such as the
name of a packet stream) cannot be defined repeatedly.

• Dependency constraints: indicate that only if an expansion
rule r1 on a node n1 exists, the expansion rule r2 on a node

# Example 1: StreamName cannot be defined repeatedly
𝒊𝒇 ∃ 𝑟1 𝑜𝑛 𝑛1 , ∄ 𝑟2 𝑜𝑛 𝑛2 , 𝑛2 ⟷ 𝑛1
𝑛1 : ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 ,∗
𝑟1 : streamName →∗
𝑛2 : ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 ,∗
𝑟2 : 𝑟1

# Example 2: Map query operates on a stream that has been defined
𝒊𝒇 ∃ 𝑟1 𝑜𝑛 𝑛1 , ∃ 𝑟2 𝑜𝑛 𝑛2 , 𝑛2 → 𝑛1
𝑛1 ∶ ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑄𝑢𝑒𝑟𝑦 𝑚𝑎𝑝 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 ,∗
𝑟1 : 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 ↛ T
𝑛2 : ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 ,∗
𝑟2 : 𝑟1
𝑛1 . 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 ≠ 𝑛2 . 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡

Marple.bnf𝑝𝑟𝑜𝑔 ::= 𝑎𝑔𝑔𝐹𝑢𝑛 ∗ 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 I

𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 ::= 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 = 𝑠𝑡𝑟𝑒𝑎𝑚𝑄𝑢𝑒𝑟𝑦
𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 ::= R 𝑛𝑢𝑚𝑏𝑒𝑟
𝑠𝑡𝑟𝑒𝑎𝑚𝑄𝑢𝑒𝑟𝑦 ::= 𝑚𝑎𝑝 | …
𝑚𝑎𝑝 ::= map ( 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 , 𝑚𝑎𝑝𝐶𝑜𝑙 , [ 𝑚𝑎𝑝𝐸𝑥𝑝𝑟 ])

Figure 4: Semantic constraint examples in Marple [16].
n2 is valid. We formally express them as:

i f ∃ r1 on n1, then ∃ r2 on n2

A typical example is that a Map primitive must operate on
a stream that has been previously defined.

With the above classification in mind, we thoroughly an-
alyze the intent grammar and derive semantic constraints.
Missing constraints can result in some semantically invalid
intents left as test cases and slightly compromise the testing
efficiency, which is considered acceptable. However, wrongly-
written constraints will incur wrong deletion of semantically
valid intents and impair generator fault coverage. Therefore,
we must guarantee the correctness of the constraints. We
have investigated several advanced generators [16, 17, 21]
and observe that each of them corresponds to <20 semantic
constraints, which is acceptable for manual inspection.

Semantic constraint expression and injection. Identified se-
mantic constraints should be uniformly encoded for injection.
To clearly express a constraint, we need to clearly specify the
constraint type (∃ or ∄) and elements (r1, n1, r2, and n2). Next
we showcase two semantic constraints in Marple [16].

Example 1 shown in Figure 4 presents an exclusion con-
straint. A Marple program ⟨prog⟩ includes multiple streams
⟨streamStmt⟩, each with name ⟨streamName⟩. The names of
streams should not be defined repeatedly. n1 and n2 describe
the node where stream names are defined. Naturally, there
exists an expansion trace from the start symbol ⟨prog⟩ to the
current symbol ⟨streamName⟩. We use ↔ to indicate that the
two nodes can appear in any order on the path. We use ∗ to
match any expansion traces in n and any expansion rules in
r. By making r2 = r1, the constraint prevents ⟨streamName⟩
from taking duplicate values of r1 in any other node n2.

Example 2 in Figure 4 presents a dependency constraint. If
a ⟨map⟩ query in Marple operates on a stream with a name
other than T (the name of the original input stream in Marple),

822    2022 USENIX Annual Technical Conference USENIX Association



this stream should be previously defined. We use n2 → n1 to
constrain the ordering between two nodes, i.e., n2 should be
an ancestor node of n1. By making r2 = r1, the constraint
guarantees that a stream is defined before referenced.

We present all identified semantic constraints of Marple
[16], Sonata [17], and Poise [21] in Appendix A. During
intent generation, an expansion rule r on node n is rejected if
it violates exclusion constraints, and a leaf node is rejected if
not all dependency constraints are satisfied on its path.

4.3 Intent Space Pruning
Despite we guarantee the syntactical correctness and semantic
validity of intents, the massive expansion rules and their com-
binations may still build an extremely large or even infinite
intent space, due to two reasons, as illustrated in Figure 5.

• Wide parameter range. A non-terminal symbol may have
many possible expansion rules, which corresponds to a
large node degree. For example, a 16-bit integer has 65536
possible values. Worse still, if a sentential form has multiple
such non-terminal symbols, the exponential combination
can lead to an explosion of the intent space.

• Cyclic symbol reference. A non-terminal symbol may return
to itself after expansion, i.e., the cyclic symbol reference,
which corresponds to an infinite depth of the intent deriva-
tion graph. For example, an arithmetic expression has an
expansion rule of ⟨S⟩ ::= ⟨S⟩+ ⟨S⟩. The circular expansion
leads to an infinite number of possible intents.
For all generated intents of a DP generator, we observe that

most intents would not cause any bugs, while many could
cause the same bug. To strike a balance between coverage and
efficiency, we propose the following two mechanisms to prune
the intent space without loosing intent representativeness.
Method #1: Intra-symbol representativeness. To handle
wide parameter range, we propose to keep representative ex-
pansion rules, which include three categories.

• Boundary rules. Boundary values in numbers, including
minimum and maximum values (e.g., 0 and 65535 for a
16-bit parameter), usually represent some extreme cases or
conditions, and should be included in the test cases.

• Random rules. In addition to boundary values, we should
take random values from values other than boundary values
(e.g. one value from 1 to 65534 for a 16-bit parameter).

• Previously selected rules. When the same non-terminal
symbol is expanded multiple times in a sentential form, the
choices of expansion rules are actually correlated. In this
case, the previously selected random rules should also be
included in the latter non-terminal symbol expansions. For
example, Marple [16] uses the query name to identify a
query. Suppose a former expansion rule defines the name of
a query Q, and a latter expansion rule references the name
of a query (maybe query Q, maybe not), value Q should be
included in the latter rule to keep representativeness.

14

…

𝑆

𝑆 ∷= x | 𝑆 + 𝑆

𝑆 + 𝑆

𝑥 + 𝑆
x

𝑆 + 𝑆 + 𝑆

𝑁 ∷= 0 ~ 65535
𝑆 ∷= 𝑁 + 𝑁

𝑆

𝑁 + 𝑁

…

…

65536* intents

Infinite intents

0 + 𝑁

(a) Wide parameter range.

12

…
𝑆

𝑆 ∷= x | 𝑆 + 𝑆

𝑆 + 𝑆

𝑥 + 𝑆
x

𝑆 + 𝑆 + 𝑆

𝑁 ∷= 0 ~ 65535
𝑆 ∷= 𝑁 + 𝑁

𝑆

𝑁 + 𝑁

…

…

65536* intents

Infinite intents
(b) Cyclic symbol reference.

Figure 5: Two types of intent space explosion.
Method #2: Inter-symbol combination representativeness.
For cyclic symbol reference, we can think of an expansion
circle as a non-terminal symbol returning to itself with zero
to many intermediate non-terminal symbols. To handle cyclic
symbol reference induced intent explosion, we should break
infinite symbol recurrence without losing representativeness.

To this end, we refer to the combinatorial testing (CT) the-
ory [41] for software testing in the software engineering field.
Provided that a software is composed of multiple features, the
CT theory indicates that a minimal set of test cases for the
software should include individual features and combinations
of two distinct features, which are enough to effectively test
the software and find most bugs. If a test case containing three
or more features causes a software bug, the root cause may
still lie in the interaction of two features among them.

Inspired by the CT theory, to effectively test the DP gen-
erator with high efficiency, we can first extract all distinct
features, i.e., combination of non-terminal symbols, accord-
ing to the intent grammar. Then, we prune the intent space
and only keep sentential forms that are either (1) individual
features, or (2) possible combinations of n distinct features,
where n = 2. Our evaluation results in §6.2 reveal that using
a higher combination factor (e.g. n = 3) cannot find more
bugs in the DP generator, which proves the effectiveness of
applying the CT theory for DP generator testing.

Finally, we introduce how we extract distinct features, i.e.,
combinations of non-terminal symbols. Recall that the CT
theory limits the recurrence of the same feature to two times.
Therefore, each feature should only include distinct symbols.
Suppose an intent grammar has k non-terminal symbols. By
picking a random number (1 to k) of distinct symbols and
organizing them in all possible sequences, we can generate
N = ∑

k
i=1 Ai

k features where A stands for the permutation
symbol, i.e., Am

n = n!/(n−m)!. With the combination factor
n = 2, there exist at most (N +A2

N) sentential forms com-
posed of non-terminal symbols. Suppose there are s terminal
symbols and p parameter value options, we produce at most
(N +A2

N)× s× p test cases, which are finite and feasible for
testing. Our evaluation results in §6.2 show that using the

USENIX Association 2022 USENIX Annual Technical Conference    823



above pruning methods, Firebolt will generate <10K intents
for testing three advanced DP generators [16, 17, 21].

So far, we have thoroughly explored the intent space to gen-
erate syntactically correct and semantically valid intents with
little redundancy. We feed these reasonable intents into the
DP generator to find crash bugs or to generate DP programs
for verification, which we will introduce in the next section.

5 Program Verification

In this section, we introduce how Firebolt verifies the cor-
rectness of the generated DP programs from two aspects,
i.e., whether there are potential security vulnerabilities, and
whether the DP programs are consistent with corresponding
intents. We use Z3 [35], a Satisfiability Modulo Theories
(SMT) solver, which can take (1) Z3 formulas and (2) Z3
assertions as input, and formally verify whether the formu-
las satisfy the assertions. In the rest of this section, we first
introduce how we automatically formalize the generated DP
programs as Z3 formulas (§5.1). Next, to avoid manually con-
verting 1000s of intents into Z3 assertions, we provide a gen-
eral and flexible specification to express every symbol of the
intent grammar, and automatically compose symbol specifica-
tions into intent specifications, which will then be converted
into Z3 assertions (§5.2). Finally, we check intent-program
consistency and detect security vulnerabilities (§5.3).

5.1 DP Program Formalization
We use the popular P416 language as an example to illustrate
how to formalize DP programs into Z3 formulas. P414 pro-
grams can be first converted into P416 programs using open-
source P4 compiler suite [13] and then formalized into Z3
formulas by Firebolt . Gauntlet [42] has proposed approaches
to convert partial P4 programs into Z3 formulas, but does not
cover the formalization of P4 table entries and externs, which
are essential to faithfully convert P4 programs. Our formaliza-
tion solution is built atop Gauntlet. Below we first introduce
the idea and capability of Gauntlet, and then introduce how
we formalize externs and table entries.
Formalizing each programmable block. A P416 program is
composed of several programmable blocks (e.g., packet parser,
ingress control flow, egress control flow, packet deparser, etc.).
We provide an example of a P4 match-action table residing in
the control flow block in the head of Figure 6. For each block,
Gauntlet performs the following conversion.

• Input parameter → free Z3 variable. Two special types of
Z3 variables, i.e., Z3_INVALID and Z3_UNDEFINED, are
defined to represent invalid and undefined parameter values.

• Function → Z3 operation that refers to input Z3 variables.
For example, a table lookup function is converted into a ref-
erence to the resulting action index. Operations like param-
eter initialization or invalidation can refer to Z3_INVALID
and Z3_UNDEFINED special variables.

Part of P416 Program: Match-Action Table
action a0 (z) {y = z;}
table t0 {

key = k0 : exact;
actions = {

no_op;
a0;

}
default_action = no_op;

}

Input free Z3 variables:
(_ BitVec 32) k0 // Match key of table t0
(_ BitVec 32) t0_index // Action index of table t0
(_ BitVec 32) a0_z // Parameter of action a0
Output Z3 expressions (with table entries):
(_ BitVec 32) y = (ite (= k0 1) 1 (ite (= k0 2) 2 

Z3_UNDEFINED))
Output Z3 expressions (without table entries):
(_ BitVec 32) y = (ite (= t0_index 1) a0_z Z3_UNDEFINED)

Table entries of t0:
1 => a0(1)
2 => a0(2)

Figure 6: Examples of formalizing match-action tables.
• Output parameter → output Z3 expression that is the result

of executing Z3 operations on the input Z3 variables.

Formalizing table entries. Gauntlet assumes that the con-
tents of the table are unknown, and does not include the con-
figuration of table entries in the output Z3 expressions. How-
ever, generating correct table entries is also critical for the DP
generator, as table entries also reflect intents. For instance,
a filter(ip.src=192.168.1.1) intent segment in Sonata indi-
cates that subsequent operations will operate on special flows,
which corresponds to a table entry in generated DP programs.

To formalize table entries, we use a nested if-then-else
statement to imitate a match-action table call, as shown in
Figure 6. When table entries are provided, for each parameter
modified by the table (parameter y in this example), we use an
if-then branch to express the modification in Z3 expressions
as follows: if the key of incoming data matches a specific
table entry (k0 = 1 or k0 = 2), the corresponding action is
executed (y = 1 or y = 2). If the key does not match any entry,
the default action is executed (y is not assigned an initial value,
and is therefore undefined). When no table entry is specified,
we assume that all actions in the table are executable. We
use a free Z3 variable (t0_index) to indicate the index of the
action to be executed, and a separate free Z3 variable for each
action parameter (a0_z for parameter z). A table call can then
be represented by a nested if-then-else statement with each
branch representing the execution of one action.

Formalizing externs. P4 programs often operate on extern
objects such as stateful memory and hash calculations. Gaunt-
let interprets externs as a function call that returns an arbitrary
value. However, an accurate translation of externs is critical,
since externs can maintain program internal states and may
be modified and referenced. For example, the SYN flooding
alarm program shown in Figure 1 maintains a counter that
will later be compared to a threshold, which should be embed-
ded in the Z3 formula. Below we introduce our approaches to
handle stateful memory and hash calculation, respectively.

824    2022 USENIX Annual Technical Conference USENIX Association



Part of P416 Program: Hash Calculation
// Update hash_table_index with hash value
hash(hash_table_index, HashAlg.crc32, 32w0, inKey, 32w1024);

Input free Z3 variables:
(_ BitVec 32) crc32_hash_value // Hash value
(_ BitVec 96) inKey // Hash key
Output Z3 expressions:
(_ BitVec 32) hash_table_index = crc32_hash_value
(_ BitVec 32) crc32_hash_width = 32w0
(_ BitVec 128) crc32_hash_field = inKey
(_ BitVec 32) crc32_hash_size = 32w1024

Part of P416 Program: Register Reading and Writing
register<bit<32>>(32w1024) reg;
reg.read(r_index, r_value); // r_value = reg[r_index]
reg.write(w_index, w_value); // reg[w_index] = w_value

Input free Z3 variables:
(_ BitVec 32) reg_read_value
(_ BitVec 32) r_index, w_index, w_value
Output Z3 expressions:
(_ BitVec 32) reg_instance_count = 32w1024
(_ BitVec 10) reg_write_index = w_index
(_ BitVec 32) reg_write_value = w_value
(_ BitVec 10) reg_read_index = r_index
(_ BitVec 32) r_value = reg_read_value

(a) Register reads and writes
Part of P416 Program: Hash Calculation
// Update hash_table_index with hash value
hash(hash_table_index, HashAlg.crc32, 32w0, inKey, 32w1024);

Input free Z3 variables:
(_ BitVec 32) crc32_hash_value // Hash value
(_ BitVec 96) inKey // Hash key
Output Z3 expressions:
(_ BitVec 32) hash_table_index = crc32_hash_value
(_ BitVec 32) crc32_hash_width = 32w0
(_ BitVec 128) crc32_hash_field = inKey
(_ BitVec 32) crc32_hash_size = 32w1024

Part of P416 Program: Register Reading and Writing
register<bit<32>>(32w1024) reg;
reg.read(r_index, r_value); // r_value = reg[r_index]
reg.write(w_index, w_value); // reg[w_index] = w_value

Input free Z3 variables:
(_ BitVec 32) reg_read_value
(_ BitVec 32) r_index, w_index, w_value
Output Z3 expressions:
(_ BitVec 32) reg_instance_count = 32w1024
(_ BitVec 10) reg_write_index = w_index
(_ BitVec 32) reg_write_value = w_value
(_ BitVec 10) reg_read_index = r_index
(_ BitVec 32) r_value = reg_read_value

(b) Hash calculation

Figure 7: Examples of converting externs into Z3 formulas.
• Stateful memory. We take register, an indexed array of state-

ful cells, as an example to illustrate our approach, which
also applies to other types of stateful memory such as coun-
ters. A naive method to formalize a register is to define
a free Z3 variable to represent the initial value and gener-
ate an output Z3 expression to represent the new value for
each cell in the register. In this way, register reading can
be converted into referencing the Z3 variable, and register
writing can be converted into updating the Z3 expression.
Then formalizing a register array with n instances requires
2∗n Z3 variables and expressions. Furthermore, we notice
that for most commercial switches, a register array can be
read/written only once in the switch pipeline. Thus, we only
need to maintain the index and values for at most two regis-
ter cells, as shown in Figure 7(a). Besides, we use another
Z3 variable to store the size of the register, which can be
used to detect out-of-bound register access in §5.3.

• Hash calculation. Hash is used to map large data to fixed-
size values. We define a free Z3 variable to represent the
computed hash value. Meanwhile, we store the parameters
that impact the hash value, e.g., the hash key and hash size,
in the output expressions, as shown in Figure 7(b). Then,
we can flexibly adjust the effect of the hash mapping by
imposing the mapping relationship between the hash value
and hash parameters when checking the Z3 expressions. For
example, a conflict-free hash implies the one-to-one map-
ping between the hash key and hash value. In this way, we
can avoid the complex hardware-specific hash calculation
while maintaining the properties of hash operations.

5.2 Intent Formalization

The intent generation process can produce thousands of (§6)
intents for one DP generator. Manually converting intents that
are composed of different symbols of the same generator, or
intents belonging to different generators, is time-consuming
and not scalable. We observe that intents are generated by
expanding non-terminal symbols. Therefore, instead of con-
verting each intent, our key idea is first writing the specifica-
tions of each symbol in the grammar, and then automatically
composing symbol specifications into intent specifications,
which will finally be converted into Z3 assertions.

Symbol specification. To uniformly express highly-
diversified intent grammar symbols across generators, we
need to design an expression format that should be general
enough to specify various symbols, and flexible enough for
composition. The reason why we do not directly use Z3 as-
sertions as the specification is that Z3 assertions are logical
expressions that are low-level and counter-intuitive.

We propose to uniformly express each symbol as a high-
level function written in python-like expressions. The func-
tion specification satisfies above requirements. It is general
enough to specify the format and semantics of input, logic,
and return values of individual symbols, and flexible enough
for composition by sequentially performing function calls and
correlating input and output of different functions.

Specifically, we regulate that one function consists of
two segments, a declaration function DECL_FUNC that de-
fines internal states of symbols, and an execution function
EXEC_FUNC that describes the processing logic of input pa-
rameters, internal states, and output values. Stateless symbols
such as a flow filter maintain no internal states and therefore
can be expressed with only EXEC_FUNC. A typical execution
function often takes network packets as input, and starts by
PARSE-ing input packets into a series of header fields, e.g.,
Ethernet → IPv4 → TCP. For each packet, we also gener-
ate standard metadata fields regulated by the P4 grammar,
such as the output port. Next, symbol logic can operate on
packet headers, metadata fields, and symbol internal states by
packet modification, counting, forwarding, or other actions,
and finally provide return values or return directly.

Figure 8 takes the ⟨groupby⟩ symbol in Marple [16] as
an example to illustrate how to construct a stateful sym-
bol specification. An entire ⟨groupby⟩ symbol is formatted
as ⟨groupby⟩ ::= groupby(⟨stream⟩,⟨columns⟩,⟨aggFunc⟩),
which groups streams according to specific columns with
the aggregation function aggFunc. In the declaration func-
tion DECL_FUNC, a key-value storage is declared for each
possible option ⟨var⟩ in the child symbol ⟨aggFunc⟩. The
EXEC_FUNC updates the internal states with no packet pars-
ing, modification, or forwarding. First, we initialize a variable
tuple with the tuple contained in the input stream whose name
is ⟨streamName⟩. Then we get the aggregation key from the
aggregation field in ⟨columns⟩. Using the aggregation key,

USENIX Association 2022 USENIX Annual Technical Conference    825



# 𝑔𝑟𝑜𝑢p𝑏𝑦 ∷= 𝑔𝑟𝑜𝑢𝑝𝑏𝑦 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 , 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 , 𝑎𝑔𝑔𝐹𝑢𝑛𝑐
# 𝑎𝑔𝑔𝐹𝑢𝑛𝑐 ∷= 𝑑𝑒𝑓 𝑎𝑔𝑔𝐹𝑢𝑛 𝑣𝑎𝑟𝑠 , 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 : 𝑐𝑜𝑑𝑒𝐵𝑙𝑜𝑐𝑘
DECL_FUNC() =

states = []
for var in <aggFunc>.<vars>.exec():

KEY_VALUE_STORAGE REG_NAME_var
states.append(REG_NAME_var)

EXEC_FUNC(stream_list) =
tuple = <streamName>.exec(stream_list)
key = tuple[<columns>.exec()]
old_state = [reg[key] for reg in states]
new_state = <aggFunc>.exec(old_state, tuple)
states.update(key, new_state)
tuple.append(new_state)
return tuple

Figure 8: An example for constructing stateful specifica-
tions of non-terminal symbols: ⟨groupby⟩ in Marple [16].

we read the old states and execute the aggregation function
⟨aggFunc⟩. The output values of the aggregation function are
used to update states of ⟨groupby⟩. Also, the output states are
included in tuple for future usage in subsequent symbols.
Symbol specification composition. For each generated intent,
Firebolt constructs its specification based on its generation
path, i.e., the non-terminal symbol expansion process and the
final terminal symbols. Starting from the semantics of the start
symbol, Firebolt recursively appends the semantics of child
symbols in the expansion rules by sequentially connecting
their FUNCs to automatically construct the final specification.
Specification conversion into Z3 assertions. A Z3 assertion
is a series of algebra expressions connected with logical oper-
ators, e.g. (x > 10)&&(y < 5). We use a special type of Z3
assertions, i.e., implies( f ,g), to verify DP programs. implies
is an implication operator, which assumes a condition expres-
sion f on the input Z3 variables and asserts that the output
satisfies the implication expression g. After expressing intents
as a series of functions, we can identify how each parameter
(e.g., header fields, forwarding port, and internal states) is
modified by the functions. Therefore, we develop a tool that
can automatically convert the functions into the implies Z3
assertions that will be used to verify the DP programs.

5.3 Program Correctness Verification

With the Z3 formulas representing semantics of DP pro-
grams and intents formalized into Z3 assertions, we first check
whether each P4 program is consistent with the corresponding
intent. Then, we summarize security vulnerabilities from the
literature, and introduce how to detect them in each program.
Intent-program consistency. To verify consistency, we take
the Z3 formulas as input and use the Z3 constraint solver [35]
to verify the Z3 assertions, i.e., a set of implies( f ,g). Specifi-
cally, we need to check the following three types of consis-
tency, each with a different set of f and g.
• Packet parsing consistency. It indicates that parsed headers

and header fields are ordered consistently with the original

intent, and each header field is parsed correctly. During DP
program formalization, when formalizing the parser block,
Firebolt treats the entire input packet header as a free Z3
variable, and outputs individual Z3 expressions to represent
different header fields. We verify the parsing consistency
by asserting that for each header field in the parsing part
of the intent specification, (1) there is a corresponding out-
put Z3 expression, (2) a failed parsing implies an invalid
value. For example, the first 16 bits of the Ethernet header
should be 0x800. The parsing of Ethernet fails if an Ether-
net header does not start with 0x800, and (3) a successful
parsing implies a correct parsed value. For example, given
the condition that the first 16 bits of the header are 0x800,
we should be able to obtain the Ethernet.dstAddr field by
extracting specific bits from the input header variable.

• Packet deparsing consistency. It refers to the correct order
and values of headers and header fields in the output packet.
The checking of the deparser block is similar to the parser
block. We omit details here for brevity.

• Packet processing consistency. Packet processing includes
packet modification, forwarding and state updates, and cor-
responds to the behavior of several programmable blocks
of a P4 program, e.g., both the ingress control flow and the
egress control flow. To construct a complete Z3 formula, we
first concatenate the Z3 formulas of individual related pro-
grammable blocks into a complete block. For each output
Z3 expression of a block, if it is an input Z3 free variable of
latter blocks, we replace the corresponding input with the
current output, and recompute the output expressions of lat-
ter blocks. We iterate this process until the output of a block
is no longer referenced by any blocks, which becomes the
final output of the DP program and completes the Z3 for-
mula for packet processing. Then, for each modified packet
field and metadata in the Z3 formula, we extract related
operators and construct an individual Z3 expression, which
can be checked against corresponding intent specifications.

Security vulnerabilities. Security vulnerabilities are intrin-
sic flaws of DP programs without corresponding intents. For
example, out-of-bound register access may cause unexpected
behaviors and even online risks, and is never intended. We
observe that security vulnerabilities can be converted into
special Z3 assertions and verified against DP programs as
introduced above. Therefore, we summarize security vulner-
abilities highlighted by previous literature [28–32, 34], and
introduce how to express them as Z3 assertions.

• Invalid header access may occur when the validity of a
header is not checked before referencing it. To detect this
bug, for each output Z3 expression, we assert that (1) each
referenced header (Z3_h) belongs to a branch in an if-then-
else statement, and (2) the if-condition in this branch in-
cludes a validity check (i.e., Z3_h != Z3_INVALID).

• Implicit packet drops occur when the egress_port is not
specified. To detect this bug, in the output Z3 expression

826    2022 USENIX Annual Technical Conference USENIX Association



Table 1: (1) Bugs detected by Firebolt , and (2) efficiency of Firebolt when debugging the three DP generators.

DP
Generator 
Under Test

# Generated
Intent

# Detected Bugs / # Intents
Causing Bugs Human-written LoC Test-Case Size

(Min / Max)
Running Time

(Total / Average)
Crash
Bug

Security 
Vulnerability

Intent
Violation

Intent 
Grammar

Semantic 
Constraints

Per-Symbol 
Specification

Intent 
LoC

P4 Program 
LoC

# Table
Entries

Intent
Generation

Program 
Verification

Marple 7341 1 / 12 1 / 7329 2 / 23 93 70 323 1 / 32 211 / 481 0 / 0 168s / 23ms 1204s / 164ms
Sonata 7912 0 / 0 2 / 7912 5 / 243 34 10 178 1 / 19 253 / 375 7 / 43 27s / 3ms 926s / 162ms
Poise 2362 0 / 0 2 / 2362 6 / 362 25 25 132 1 / 12 704 / 893 1 / 12 23s / 10ms 355s / 150ms

of egress_port, we assert that no branch results in the unde-
fined special variable, i.e., Z3_UNDEFINED.

• Out-of-bound register access occurs when the read/write
index exceeds the register array size. Since we use separate
output Z3 expressions to record the read/write index and
the array size in §5.1, we can detect this bug by comparing
the array size and the index range. For direct access, where
index is assigned an exact value, we assert that index < size.
For non-direct access, i.e., the index expression includes
symbolic variables, such as hash values, we assert that the
range of the symbolic variables is within the allowed range.

• Decapsulation errors happen when invalid headers are de-
parsed in the deparser. To detect this bug, we assert that
for each output header expression, no branch results in the
invalid special variable (i.e., Z3_INVALID).

• Forbidden writes happen when a P4 program tries to write
certain metadata values which are read-only, but the P4
compiler allows the program to write them. To detect this
bug, we assert that for all read-only metadata fields, the
values remain unchanged, i.e., the output values are the
original undefined values (i.e., Z3_UNDEFINED).

6 Evaluation

We implement Firebolt with ∼1200 lines of Python code for
intent generation, and ∼800 lines of C++ code for program
verification. Our verifier is built atop Z3 [35], and can verify
both P416 and P414 programs with the aid of P4 compiler
suite [13]. All experiments were conducted in a Ubuntu 16.04
virtual machine with 4GB RAM and two 2.3GHz CPU cores.

We use Firebolt to test three popular open-source DP gen-
erators, including two for network telemetry, i.e., Marple [16,
43] and Sonata [17, 44], and one for security policy enforce-
ment, i.e., Poise [21, 45]. Marple and Sonata both use sequen-
tial composition of data flow operators to construct telemetry
queries, while Marple is more complicated by supporting
self-defined variable names in each query and dependencies
between queries. Poise is relatively simpler and enforces se-
curity policies by filtering customized packet header fields.
Finally, we implement two advanced DP program verification
tools (i.e., Aquila [31] and p4v [30]) for comparison.

Our evaluation intends to answer the following questions.
• Bug coverage. We first discuss all discovered generator

bugs by Firebolt . (§6.1) Next, we prove the bug coverage
of Firebolt by (1) showing the intent representativeness of
Firebolt , and (2) comparing the number of bugs discovered

by Firebolt and existing verification tools over open-source
intents and programs of the generators. (§6.2)

• Efficiency. We introduce (1) the human efforts required by
Firebolt to debug the generators, (2) the size of intents, P4
programs, and table entries that are generated and verified
by Firebolt , and (3) the running time of intent generation
and program verification. (§6.3)

• Scalability. We first compare the human efforts, i.e., lines
of hand-written codes, required by Firebolt and existing
verification tools to debug the three generators. Then we
evaluate the time required by Firebolt when verifying larger
programs and more table entries. (§6.4)

6.1 Bug Analysis

As shown in Table 1, we find that all three generators have
bugs, and discover 5 security vulnerabilities, 13 intent vio-
lations, and 1 crash bug in total. Below we introduce the
detected bugs. To the best of knowledge, this is the first effort
that comprehensively analyze and reason DP generator faults.
Security vulnerability. Firebolt finds security vulnerabilities
in all generated programs of all three DP generators.

• Invalid header access is a common bug. All generated pro-
grams refer to some headers without checking validity.

• Out-of-bound register access is found in Poise, which may
use a hash value that exceeds the size of the the register as
the read/write index for the register.

• Implicit drops happen in Sonata. Generated programs never
explicitly specify the egress port of input packets.

Intent violation. Due to the high intent diversity, intent viola-
tions are the most insidious bugs that cannot be easily detected
by the developers of DP generators. Next we introduce intent
violations in the three DP generators, respectively.

For Sonata, Firebolt finds 5 types of intent violation bugs
in 243 generated programs out of 7912 programs in total.

• Bug #1: Incorrect query combination. When a filter query
with the eq (=) function follows a reduce query, Sonata
converts it into comparing the result of reduce and the
default value of 1, regardless of the true value in the filter
query. This bug may lead to false attack alarm (§2).

• Bug #2, #3, #4: Missing/Incomplete table entries. Sonata
designs a filter(k,v,f) symbol to filter packets whose key (k)
fields satisfy function ( f ) of value (v) fields. To implement
a filter query in DP programs, both match-action tables and
table entries should be generated. However, there are three

USENIX Association 2022 USENIX Annual Technical Conference    827



Table 2: The number of detected bugs and generated in-
tents with different intent space pruning methods.

Pruning 
Method

# Detected Bugs # Generated Intents
Marple Sonata Poise Marple Sonata Poise

Intra-
Symbol

None > 50K > 50K > 50K

r=1 7341 7912 2362
r=2 14812 12384 3804

Inter-
Symbol

None > 50K > 50K 2362
n=1 2346 3523 2362

n=2 7341 7912 2362
n=3 > 50K > 50K 2362

Security VulnerabilityCrash Bug Intent Violation

11 2 211

1 2 1 2 3 4 5 61 2 1 2 3 4 51 211
1 2 1 2 3 4 5 61 2 2 31

1 2 1 2 3 4 5 61 2 1 2 3 4 51 211

1 2 1 2 3 4 5 61 2 1 2 3 4 52111

1 2 1 2 3 4 5 61 2 1 2 3 4 51 211

1 2 1 2 3 4 5 61 2 2 3 4 51 211

cases where table entries can be missing or incomplete.
First, when a filter query operates on a variable, e.g., a
counter, table entries are forgotten. Second, when a filter
query has a mask function, Sonata translates it into an LPM
table, but forgets to include the prefix length in table entries.
Third, when a filter query has a geq (≥) function and does
not follow a reduce query, no table entries are generated.

• Bug #5: Incorrect mask translation. Sonata uses bit-wise
AND for mask operations in a map query. It translates the
mask m into 0xFF...F (F occurs m/4 times). When the mask
length is not a multiple of 4, the translation is incorrect.

For Poise, Firebolt finds 6 types of intent violation bugs in
362 generated programs out of 2362 programs in total.

• Bug #1: Incorrect list comparer. Poise provides list com-
parer (in and notin) to check whether a value is in a list.
However, notin is wrongly equated with in when translated.

• Bug #2, #3, #4: Incorrect comparison operator. Poise trans-
lates the comparison operators (> and <) into a match-
action table with range match and a table entry represent-
ing the comparison range. However, this range incorrectly
includes the boundary value that should be excluded. That
is, > and < are translated into ≥ and ≤. Besides, Poise
sets a default range (0∼10000) for comparisons without
considering the real range of variables.

• #5: Missing table entries. Poise provides the monitor ex-
pression count(p) that counts the number of packets satisfy-
ing a predicate p. However, table entries are not generated.
Thus, no packets would satisfy the predicate and be counted.

• #6: Missing action parameters. Poise uses registers to main-
tain states. However, for some registers, the read/write ac-
tions do not specify the index to read or write.

For Marple, Firebolt finds 2 types of intent violations in 23
generated programs out of 7329 generated programs in total.

• Bug #1: Incorrect infinity translation. Marple uses infinity
to represent a variable that exceeds its pre-defined upper
limit. However, it assigns a fixed value 231 −1 to infinity
without considering the actual upper bound.

• Bug #2: Incorrect key storage. Marple uses 32-bit registers
to store keys in the groupby query. When storing a value
with a width greater than 32 bits, e.g., the ingress timestamp,
the stored value would be the truncation of the value.

Table 3: Detected bugs by existing verification tools.
DP

Generator 
Under Test

#
Intents

# Detected Bugs

Crash Bug Security 
Vulnerability

Intent
Violation

Marple 14 0 1 ( ) 0
Sonata 13 0 2 ( ) 1 ( )
Poise 7 0 2 ( ) 4 ( )

1
1 2

1 2

2

2 3 4 6

Crash bug. Firebolt finds one crash bug in Marple, while
Sonata and Poise do not report any crash bugs. Marple con-
verts the division expression (a/2b) into a right-shift operation
(a >> b), but sets the maximum shift width to a fixed value
of 8. According to the code, the generator would crash when
the exponent b satisfies a legal value of 8 < b < log2a.

6.2 Bug Coverage
To evaluate the bug coverage of Firebolt , first, we compare the
bugs detected using different intent space pruning methods to
demonstrate that the intent generation approach of Firebolt is
able to thoroughly cover the intent space to find bugs. Then,
we compare the bugs detected between Firebolt and existing
verification tools to demonstrate that the automatic testing of
Firebolt can detect more bugs, compared to verifying hand-
written test cases using existing tools.
Intent representativeness. We examine whether our two
intent space pruning methods (§4.3) compromise intent rep-
resentativeness by checking the bug coverage of generated
intents. For each type of pruning method, we configure the
extent of the other method as the default value (the number
of random rules r = 1 for intra-symbol and the combination
factor n = 2 for inter-symbol), vary the pruning extent of the
current method, and check the resulting bug coverage. As
there exist infinite possible intents, obtaining all intents is im-
practical. We randomly generate 50K intents (> 10× intents
generated by Firebolt) as the baseline.

We present the results in Table 2. The None row repre-
sents the baseline, where only 6 bugs are discovered (19 by
Firebolt). This is because a limited number of intents (50K)
represent a very small fraction of the entire intent space. Intra-
symbol pruning can greatly reduce the intent space, but in-
creasing the number of random rules (r) from 1 to 2 does not
increase the bug coverage. For inter-symbol pruning, we can
see that a small combination factor (n= 1) can find many bugs,
but misses one interactive bug, i.e., Sonata’s reduce-then-filter
bug, which can be found when n = 2. Further increasing the
combination factor (n = 3) cannot find more bugs, but greatly
increases generated intents from O(1K) to above 50K.

Therefore, compared to random intent generation, Firebolt
intent pruning can maintain representativeness with much
fewer test cases. Moreover, the recommended pruning extent
is r = 1 for intra-symbol pruning and n = 2 for inter-symbol
pruning, which is adequate for comprehensive bug detection.
Comparison with existing tools. We compare the bug cover-
age of Firebolt with that of existing verification tools [30,31].
For existing verification tools, we collect all open-source

828    2022 USENIX Annual Technical Conference USENIX Association



manually-written intents [43–45] as input to find as many
bugs as possible. For each collected intent, we manually write
the corresponding specification for each verification tool and
perform program verification. The results are shown in Ta-
ble 3. With a limited number of O(10) hand-written intents,
the existing verification tools can only discover 10 bugs out
of 19 by Firebolt , and cannot find other bugs undetected by
Firebolt . This highlights the high bug coverage of Firebolt
over existing tools. By delving into these open-source intents,
we find that the developers of DP generator did make an effort
to write different examples, but the hand-written test cases
struggle to efficiently find all bugs in DP generators.

To find more bugs with existing tools, we can use the (1000s
of) intents generated by Firebolt as input for existing tools.
However, doing so requires manually writing specifications
for 1000s of intents, which is time-consuming and error-prone.
We will analyze the scalability issues in §6.3.

6.3 Efficiency
Next, we evaluate the debugging efficiency of Firebolt by
counting the lines of input human-written codes (Figure 3),
the lines of intents that Firebolt generates, the size of gen-
erated test cases (including intents, P4 programs, and table
entries), and the running time for intent generation and pro-
gram verification. We summarize the results in Table 1.
Human-written LoC. In general, Firebolt requires a limited
number of O(10) LoC for intent grammar, O(10) LoC for
semantic constraints, and O(100) LoC for per-symbol specifi-
cations. Although the per-symbol specifications occupy the
majority of human-written LoC, writing specifications is also
required for existing verification tools, and Firebolt is still the
most efficient. We further discuss Firebolt scalability in §6.4.
Test case size. As Firebolt utilizes pruning mechanisms to
generate representative intents, the resulting intents are rela-
tively small, i.e., from one LoC to 10s of LoC. For the same
reason, only a few table entries are generated. Marple even
has no output table entries, since it uses flexible expressions in
the P4 program to implements the intents. Finally, correspond-
ing P4 programs are often with 100s of LoC. This is because
generated programs contain many necessary components for
all intents such as the definition of headers and parsers. Thus,
even the smallest P4 program contains 100s of LoC.
Running time. Firebolt generates O(1K) intents for each DP
generator. Intent generation and program verification in all
scenarios can be done within 25 minutes. DP generators with
more semantic constraints (e.g., Marple) take more time to
generate a correct intent (23ms vs 3ms for Sonata). This is
because relatively more semantically invalid intermediate sen-
tential forms will be detected and rejected during generation.

6.4 Scalability

Manual effort. We compare the manual efforts (i.e., lines of
specifications) required by Firebolt and existing verification

Table 4: Comparing lines of human-written specifications.
DP Generator 

Under Test
Verifying One 

Program
Verifying All

Generated Programs
Finding All Bugs

(1 Bug / 1 Program)

p4v O(1K) O(1M) O(10K)

Aquila O(100) O(100K) O(1K)
Firebolt O(100)

TI
m

e
(s

)

Lo
C

(K
)

Program

LoC
Time

A: fabric
B: stateful
C: simple_switch
D: fabric_tofino
E: switch

6

4

2

0

1000

100

10

1A B C D E

(a) Program

Ti
m

e
(m

in
)

# Table Entries (fabric.p4)

100
80
60
40
20
0

500 1000 1500 2000 2500

(b) Table entries
Figure 9: Time needed to verify larger P4 programs with
more table entries.
tools, Aquila [31] and p4v [30], to debug a DP generator with
equal bug coverage. This means that both Firebolt and verifi-
cation tools take thousands of intents generated by Firebolt as
input. As shown in Table 4, Firebolt requires O(100) of per-
symbol LoC to automatically generate the specifications of
all intents. In comparison, verification tools require O(100) to
O(1K) LoC to convert one intent. Converting all intents means
O(100K) to O(1M) LoC. Under equal bug coverage, Firebolt
consumes merely 0.1% to 0.01% manual efforts compared to
existing tools. Moreover, human-written specifications can be
faulty, which further reflects the scalability of Firebolt .
Scaling to larger test case. We evaluate the scalability of
Firebolt when verifying larger P4 programs with more table
entries. We use several open-source or vendor-supplied P4
programs instead of the small programs generated by Firebolt .

First, we measure the time required by Firebolt to verify P4
programs of different sizes. For each program, we manually
write <3 entries for each table, and also write the correspond-
ing specifications for verification. As shown in Figure 9(a),
Firebolt requires more time for verification as the complex-
ity of the P4 program increases. Nevertheless, even the most
complex switch.p4 can be verified in 8 minutes.

Next, we compare the verification time when installing
different numbers of table entries to the same P4 program
fabric.p4. As shown in Figure 9(b), the number of table
entries has a larger impact on the verification time than the
size of P4 program. When the number of entries does not
exceed 1500, Firebolt can complete the verification in <30
minutes. When the number of entries exceeds 2000, Firebolt
takes >100 minutes for verification. The increase is not lin-
ear because the table entries are converted into if-then-else
branches, resulting in an exponential increase in the size of the
generated Z3 formulas. This non-linear scalability of verifica-
tion time with table entries has also been recognized in other
verification works [31] and solved using encoding optimiza-
tions. Currently, Firebolt by design generates small test cases
without losing bug coverage using intent space pruning. For
upcoming generators, we may encounter larger intents, pro-
grams, and table entries that become more time-consuming

USENIX Association 2022 USENIX Annual Technical Conference    829



to verify. In that case, Firebolt can refer to the optimization
techniques in existing verification tools [30, 31] to accelerate
the verification of individual intent-program pairs.

7 Discussion

Human effort required by Firebolt . Firebolt requires three
inputs, including grammar, semantic constraints, and per-
symbol specification to debug a DP generator. First, the gram-
mar should already be provided by the designers of DP gen-
erators [14, 16, 21–23] so that the DP generator can be used
correctly by others. Second, accurate semantic constraints
also help to better use the DP generator. We summarize the
semantic constraints of three advanced DP generators in Ap-
pendix A. They all have <20 semantic constraints that can
be classified into four types, i.e., banned variable redefini-
tion, necessary variable definition, illegal variable reference,
and special ones. The former three types account for the ma-
jority of the constraints and are closely related to variable
definitions and references. Semantic constraints can shrink
the intent space, and missing some semantic constraints will
not affect the bug coverage but merely produce more intents.
Third, Firebolt requires manually writing per-symbol spec-
ification. However, compared with existing tools, Firebolt
saves significant human efforts by automatically composing
per-symbol specifications into intent specifications.
Cross-platform generality of Firebolt . The formalization
phase of Firebolt considers extern behaviors because they are
critical for the correctness of DP generators. However, the
semantics of extern behaviors are target-specific. Currently,
Firebolt supports two common extern implementations in-
cluding stateful memory and hash calculation. Since externs
can be taken as arithmetic operations on some variables (e.g.,
temporal variable, metadata field, and packet header), they
can always be converted into logical Z3 formulas. As a future
work, we would like to extend Firebolt to support user-defined
extern semantics to improve cross-platform generality.

8 Related Work

Data plane generator. To simplify DP programming, a grow-
ing body of research proposes data plane generators which
convert high-level intents into platform-specific DP programs.
DP generators provide primitives to specify developer intents
in different domains, e.g., query primitives for monitoring
tasks [15–20], measurement and control primitives to specify
security policies [21, 22] and routing policies [23], and some
other intent languages for their own purposes [14,24–27]. DP
generators greatly relieve the burden of DP programming,
but their own correctness is not guaranteed. In this paper, we
design a blackbox-based testing system to debug them.
Data plane program verifier. Several efforts have been pro-
posed to verify DP programs. P4-assert [28] and Vera [29]
translate P4 programs into other language models (SEFL

and C) and rely on existing symbolic execution framework
(SymNet [46] and Klee [47]) to analyze the behavior of the
resulting programs. p4v [30] and Aquila [31] use Dijkstra’s
classic verification approach by formalizing the P4 program
in Guarded Command Language (GCL) and using the Z3
theorem prover [35] to check whether the specifications hold.
Some other tools, such as bf4 [32] and P6 [34], utilize vari-
ous techniques such as static verification, code changes and
runtime checking to ensure that the deployed P4 program is
bug-free. However, using these tools to debug DP generators
cannot cover all generator bugs and requires massive manual
efforts to verify each possible intent-program pair. Different
from all of them, Firebolt can automatically generate represen-
tative intents as test cases for high coverage and automatically
produce intent specifications for high scalability.
Testing in networking. Testing is a popular technique to find
bugs in network systems by generating and running many
test cases. Metha [48] tests network verification tools by gen-
erating network configurations as test cases and comparing
the tool’s output with that of the actual router. p4pktgen [49]
tests P4 programs by generating test cases using symbolic
execution. Gauntlet [42] and P4Fuzz [50] both test the P4
compiler by generating random P4 programs. If the intermedi-
ate representation (IR) of the compiler is accessible, Gauntlet
compares the transformed programs after different compiler
passes, otherwise it generates packets to test the behavior of
the P4 program to debug the compiler. P4Fuzz compares the
output of different compilers to find potential bugs. Firebolt
also uses generation-based testing to debug DP generators.
However, unlike existing work to test specific targets, Firebolt
needs to handle a variety of DP generators. Firebolt adopts
a syntax-guided approach to generate test cases and designs
generic methods to verify the correctness of each test case.

9 Conclusion

This paper presents Firebolt , a blackbox testing tool designed
to debug DP generators. We propose syntax-guided intent
generation with semantic constraint injection and intent space
pruning techniques, and program verification with automatic
intent and program formalization. By evaluating three popular
open-source DP generators, we show the high bug coverage
and scalability of Firebolt compared to existing solutions.

This work does not raise any ethical issues.

Acknowledgement

We sincerely thank our shepherd, Fernando Ramos, and the
anonymous reviewers for their constructive comments. Ying
Liu and Chen Sun are the corresponding authors. This work is
supported by National Key R&D Program of China (Grant No.
2018YFB1800405), National Natural Science Foundation of
China (Grant No. 61772307), and Beijing Natural Science
Foundation (Grant No.4222026).

830    2022 USENIX Annual Technical Conference USENIX Association



References

[1] Barefoot Networks. Tofino. Website, 2019.
https://www.barefootnetworks.com/products/
brief-tofino/.

[2] Cavium. Xpliant ethernet switch product fam-
ily. Website. https://www.cavium.com/
xpliant-ethernet-switch-product-family.
html.

[3] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, et al. P4:
Programming protocol-independent packet processors.
ACM SIGCOMM Computer Communication Review,
44(3):87–95, 2014.

[4] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rot-
tenstreich, Shan Muthukrishnan, and Jennifer Rexford.
Heavy-hitter detection entirely in the data plane. In
Proceedings of the Symposium on SDN Research,
pages 164–176, 2017.

[5] Qun Huang, Patrick PC Lee, and Yungang Bao. Sketch-
learn: relieving user burdens in approximate mea-
surement with automated statistical inference. In
Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, pages
576–590, 2018.

[6] John Sonchack, Adam J Aviv, Eric Keller, and
Jonathan M Smith. Turboflow: Information rich
flow record generation on commodity switches. In
Proceedings of the Thirteenth EuroSys Conference,
pages 1–16, 2018.

[7] Joel Hypolite, John Sonchack, Shlomo Hershkop,
Nathan Dautenhahn, André DeHon, and Jonathan M
Smith. Deepmatch: practical deep packet inspec-
tion in the data plane using network processors. In
Proceedings of the 16th International Conference on
emerging Networking EXperiments and Technologies,
pages 336–350, 2020.

[8] Yehuda Afek, Anat Bremler-Barr, and Lior Shafir.
Network anti-spoofing with sdn data plane. In
IEEE INFOCOM 2017-IEEE Conference on Computer
Communications, pages 1–9. IEEE, 2017.

[9] Jiamin Cao, Ying Liu, Yu Zhou, Chen Sun, Yangyang
Wang, and Jun Bi. Cofilter: A high-performance switch-
accelerated stateful packet filter for bare-metal servers.
In 2019 28th International Conference on Computer
Communication and Networks (ICCCN), pages 1–9.
IEEE, 2019.

[10] Thomas Holterbach, Edgar Costa Molero, Maria Apos-
tolaki, Alberto Dainotti, Stefano Vissicchio, and Lau-
rent Vanbever. Blink: Fast connectivity recovery en-
tirely in the data plane. In 16th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 19), pages 161–176, 2019.

[11] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fi-
etz, and Edouard Bugnion. R2p2: Making rpcs first-class
datacenter citizens. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 863–880, 2019.

[12] Theo Jepsen, Masoud Moshref, Antonio Carzaniga, Nate
Foster, and Robert Soulé. Packet subscriptions for pro-
grammable asics. In Proceedings of the 17th ACM
Workshop on Hot Topics in Networks, pages 176–183,
2018.

[13] The P4.org language consortium. P4_16 reference com-
piler. https://github.com/p4lang/p4c.

[14] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao,
Yu Zhou, Bingchuan Tian, Chen Sun, Dennis Cai, Ming
Zhang, and Minlan Yu. Lyra: A cross-platform lan-
guage and compiler for data plane programming on het-
erogeneous asics. In Henning Schulzrinne and Vishal
Misra, editors, SIGCOMM ’20: Proceedings of the
2020 Annual conference of the ACM Special Interest
Group on Data Communication on the applications,
technologies, architectures, and protocols for computer
communication, Virtual Event, USA, August 10-14,
2020, pages 435–450. ACM, 2020.

[15] Yu Zhou, Jun Bi, Tong Yang, Kai Gao, Jiamin Cao, Dai
Zhang, Yangyang Wang, and Cheng Zhang. Hypersight:
Towards scalable, high-coverage, and dynamic network
monitoring queries. IEEE Journal on Selected Areas in
Communications, 38(6):1147–1160, 2020.

[16] Vikram Nathan, Srinivas Narayana, Anirudh Sivaraman,
Prateesh Goyal, Venkat Arun, Mohammad Alizadeh, Vi-
malkumar Jeyakumar, and Changhoon Kim. Demon-
stration of the marple system for network performance
monitoring. In Posters and Demos Proceedings of the
Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM 2017, Los Angeles, CA,
USA, August 21-25, 2017, pages 57–59. ACM, 2017.

[17] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-
ster, Jennifer Rexford, and Walter Willinger. Sonata:
query-driven streaming network telemetry. In Sergey
Gorinsky and János Tapolcai, editors, Proceedings of the
2018 Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM 2018, Budapest,
Hungary, August 20-25, 2018, pages 357–371. ACM,
2018.

USENIX Association 2022 USENIX Annual Technical Conference    831

https://www.barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-tofino/
https://www.cavium.com/xpliant-ethernet-switch-product-family.html
https://www.cavium.com/xpliant-ethernet-switch-product-family.html
https://www.cavium.com/xpliant-ethernet-switch-product-family.html
https://github.com/p4lang/p4c


[18] Ross Teixeira, Rob Harrison, Arpit Gupta, and Jennifer
Rexford. Packetscope: Monitoring the packet lifecycle
inside a switch. In Proceedings of the Symposium on
SDN Research, pages 76–82, 2020.

[19] Yu Zhou, Dai Zhang, Kai Gao, Chen Sun, Jiamin
Cao, Yangyang Wang, Mingwei Xu, and Jianping Wu.
Newton: intent-driven network traffic monitoring. In
Proceedings of the 16th International Conference on
emerging Networking EXperiments and Technologies,
pages 295–308, 2020.

[20] Yifei Yuan, Dong Lin, Ankit Mishra, Sajal Marwaha,
Rajeev Alur, and Boon Thau Loo. Quantitative net-
work monitoring with netqre. In Proceedings of the
conference of the ACM special interest group on data
communication, pages 99–112, 2017.

[21] Qiao Kang, Lei Xue, Adam Morrison, Yuxin Tang,
Ang Chen, and Xiapu Luo. Programmable in-network
security for context-aware BYOD policies. In 29th
USENIX Security Symposium (USENIX Security 20),
pages 595–612, 2020.

[22] Menghao Zhang, Guanyu Li, Shicheng Wang, Chang
Liu, Ang Chen, Hongxin Hu, Guofei Gu, Qi Li, Ming-
wei Xu, and Jianping Wu. Poseidon: Mitigating volu-
metric ddos attacks with programmable switches. In
27th Annual Network and Distributed System Security
Symposium, NDSS 2020, San Diego, California, USA,
February 23-26, 2020. The Internet Society, 2020.

[23] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rex-
ford, and David Walker. Contra: A programmable sys-
tem for performance-aware routing. In Ranjita Bhagwan
and George Porter, editors, 17th USENIX Symposium
on Networked Systems Design and Implementation,
NSDI 2020, Santa Clara, CA, USA, February 25-27,
2020, pages 701–721. USENIX Association, 2020.

[24] Jiamin Cao, Yu Zhou, Ying Liu, Mingwei Xu, and
Yongkai Zhou. Turbonet: Faithfully emulating net-
works with programmable switches. In 2020 IEEE
28th International Conference on Network Protocols
(ICNP), pages 1–11. IEEE, 2020.

[25] Theo Jepsen, Masoud Moshref, Antonio Carzaniga, Nate
Foster, and Robert Soulé. Packet subscriptions for pro-
grammable asics. In Proceedings of the 17th ACM
Workshop on Hot Topics in Networks, pages 176–183,
2018.

[26] Yu Zhou, Zhaowei Xi, Dai Zhang, Yangyang Wang,
Jinqiu Wang, Mingwei Xu, and Jianping Wu. Hy-
pertester: high-performance network testing driven by
programmable switches. In Proceedings of the 15th
International Conference on Emerging Networking
Experiments And Technologies, pages 30–43, 2019.

[27] Liangcheng Yu, John Sonchack, and Vincent Liu. Man-
tis: Reactive programmable switches. In Proceedings
of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications,
technologies, architectures, and protocols for computer
communication, pages 296–309, 2020.

[28] Miguel C. Neves, Lucas Freire, Alberto E. Schaef-
fer Filho, and Marinho P. Barcellos. Verification of
P4 programs in feasible time using assertions. In
Xenofontas A. Dimitropoulos, Alberto Dainotti, Laurent
Vanbever, and Theophilus Benson, editors, Proceedings
of the 14th International Conference on emerging
Networking EXperiments and Technologies, CoNEXT
2018, Heraklion, Greece, December 04-07, 2018, pages
73–85. ACM, 2018.

[29] Radu Stoenescu, Dragos Dumitrescu, Matei Popovici,
Lorina Negreanu, and Costin Raiciu. Debugging P4 pro-
grams with vera. In Sergey Gorinsky and János Tapol-
cai, editors, Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM 2018, Budapest, Hungary, August 20-25,
2018, pages 518–532. ACM, 2018.

[30] Jed Liu, William T. Hallahan, Cole Schlesinger, Milad
Sharif, Jeongkeun Lee, Robert Soulé, Han Wang, Calin
Cascaval, Nick McKeown, and Nate Foster. p4v: practi-
cal verification for programmable data planes. In Sergey
Gorinsky and János Tapolcai, editors, Proceedings of the
2018 Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM 2018, Budapest,
Hungary, August 20-25, 2018, pages 490–503. ACM,
2018.

[31] Bingchuan Tian, Jiaqi Gao, Mengqi Liu, Ennan
Zhai, Yanqing Chen, Yu Zhou, Li Dai, Feng Yan,
Mengjing Ma, Ming Tang, Jie Lu, Xionglie Wei,
Hongqiang Harry Liu, Ming Zhang, Chen Tian, and
Minlan Yu. Aquila: a practically usable verification
system for production-scale programmable data planes.
In Fernando A. Kuipers and Matthew C. Caesar, edi-
tors, ACM SIGCOMM 2021 Conference, Virtual Event,
USA, August 23-27, 2021, pages 17–32. ACM, 2021.

[32] Dragos Dumitrescu, Radu Stoenescu, Lorina Negreanu,
and Costin Raiciu. bf4: towards bug-free p4 programs.
In Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols
for computer communication, pages 571–585, 2020.

[33] Nuno P Lopes, Nikolaj Bjørner, Nick McKeown, Andrey
Rybalchenko, Dan Talayco, and George Varghese. Au-
tomatically verifying reachability and well-formedness
in p4 networks. Technical Report, Tech. Rep., 2016.

832    2022 USENIX Annual Technical Conference USENIX Association



[34] Apoorv Shukla, Kevin Hudemann, Zsolt Vági, Lily
Hügerich, Georgios Smaragdakis, Artur Hecker, Ste-
fan Schmid, and Anja Feldmann. Fix with p6: Ver-
ifying programmable switches at runtime. In IEEE
INFOCOM 2021 - IEEE Conference on Computer
Communications, pages 1–10, 2021.

[35] Leonardo De Moura and Nikolaj Bjørner. Z3: An effi-
cient smt solver. In International conference on Tools
and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[36] Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur
Naik. Accelerating search-based program synthesis
using learned probabilistic models. In Proceedings of
the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2018,
page 436–449, New York, NY, USA, 2018. Association
for Computing Machinery.

[37] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo
M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia,
Rishabh Singh, Armando Solar-Lezama, Emina Torlak,
and Abhishek Udupa. Syntax-guided synthesis. In
Formal Methods in Computer-Aided Design, FMCAD
2013, Portland, OR, USA, October 20-23, 2013, pages
1–8. IEEE, 2013.

[38] Donald E Knuth. Backus normal form vs. backus naur
form. Communications of the ACM, 7(12):735–736,
1964.

[39] Armin Cremers and Seymour Ginsburg. Context-free
grammar forms. Journal of Computer and System
Sciences, 11(1):86–117, 1975.

[40] Stefan Forstenlechner, David Fagan, Miguel Nico-
lau, and Michael O’Neill. A grammar design pat-
tern for arbitrary program synthesis problems in ge-
netic programming. In James McDermott, Mauro
Castelli, Lukás Sekanina, Evert Haasdijk, and Pablo
García-Sánchez, editors, Genetic Programming - 20th
European Conference, EuroGP 2017, Amsterdam, The
Netherlands, April 19-21, 2017, Proceedings, volume
10196 of Lecture Notes in Computer Science, pages
262–277, 2017.

[41] Changhai Nie and Hareton Leung. A survey of combina-
torial testing. ACM Comput. Surv., 43(2):11:1–11:29,
2011.

[42] Fabian Ruffy, Tao Wang, and Anirudh Sivaraman.
Gauntlet: Finding bugs in compilers for programmable
packet processing. In 14th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
2020, Virtual Event, November 4-6, 2020, pages 683–
699. USENIX Association, 2020.

[43] Marple code. https://github.com/
performance-queries/marple.

[44] Sonata code. https://github.com/
Sonata-Princeton/SONATA-DEV.

[45] Poise code. https://github.com/qiaokang92/
poise.

[46] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and
Costin Raiciu. Symnet: Scalable symbolic execution
for modern networks. In Proceedings of the 2016 ACM
SIGCOMM Conference, pages 314–327, 2016.

[47] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al.
Klee: unassisted and automatic generation of high-
coverage tests for complex systems programs. In OSDI,
volume 8, pages 209–224, 2008.

[48] Rüdiger Birkner, Tobias Brodmann, Petar Tsankov, Lau-
rent Vanbever, and Martin T. Vechev. Metha: Network
verifiers need to be correct too! In James Mickens and
Renata Teixeira, editors, 18th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
2021, April 12-14, 2021, pages 99–113. USENIX Asso-
ciation, 2021.

[49] Andres Nötzli, Jehandad Khan, Andy Fingerhut, Clark
Barrett, and Peter Athanas. P4pktgen: Automated test
case generation for p4 programs. In Proceedings of the
Symposium on SDN Research, pages 1–7, 2018.

[50] Andrei-Alexandru Agape, Madalin Claudiu Danceanu,
Rene Rydhof Hansen, and Stefan Schmid. P4fuzz: Com-
piler fuzzer fordependable programmable dataplanes.
In International Conference on Distributed Computing
and Networking 2021, pages 16–25, 2021.

Appendix A Semantic Constraints of Ad-
vanced DP Program Generators

Table 5 lists the identified semantic constraints for
Marple [16], Sonata [17], and Poise [21]. The semantic con-
straints can be classified into four categories, i.e., banned vari-
able redefinition, necessary variable definition, illegal variable
reference to generate compilable intents, and other special
constraints to generate complete intents. For each category,
we give an example of how the constraint can be expressed
with the formal if-then expressions in §4.2.

USENIX Association 2022 USENIX Annual Technical Conference    833

https://github.com/performance-queries/marple
https://github.com/performance-queries/marple
https://github.com/Sonata-Princeton/SONATA-DEV
https://github.com/Sonata-Princeton/SONATA-DEV
https://github.com/qiaokang92/poise
https://github.com/qiaokang92/poise


Table 5: Summary of semantic constraints of Marple [16], Sonata [17], and Poise [21].

Constraints Description Type Expression

Marple

Banned
Variable

Redefinition
(3)

#1: Each query has a stream name, which
cannot be repeatedly defined.

Exclusion

#1 as an	example:
𝑖𝑓 ∃ 𝑟1 𝑜𝑛 𝑛1, ∄ 𝑟6 𝑜𝑛 𝑛6, 𝑛1 ↔ 𝑛6
𝑛1 : ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 ,∗
𝑟1 : 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 → ∗
𝑛6 ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 ,∗
𝑟6 : 𝑟1

#2: Each aggregation function has a function
name, which cannot be repeatedly defined.

#3: A aggregation function may define
multiple aggregation states. The aggregation
state names cannot be repeatedly defined.

Necessary
Variable

Definition
(8)

#4~7: Each query (map/groupby/filter/zip)
operates on a stream, which should be either
defined or the default input stream T.

Dependency

#4 as an	example:
𝑖𝑓 ∃ 𝑟1 𝑜𝑛 𝑛1, ∃ 𝑟6 𝑜𝑛 𝑛6, 𝑛1 → 𝑛6
𝑛1 : ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑄𝑢𝑒𝑟𝑦 𝑚𝑎𝑝 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 ,∗
𝑟1 : 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 ↛ 𝑇
𝑛6 : ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 ,∗
𝑟6 : 𝑟1

#8: groupby queries take an aggregation
function name as input. The function should
be defined.

#9: groupby queries may include self-defined
variables in the aggregation key. The
variables should be defined.

#10: filter queries may reference self-defined
variables in its predicate. The variables should
be defined.

#11: map queries may reference self-defined
variables. The variables should be defined.

Illegal
Variable

Reference
(2)

#12: map queries assign specified or self-
defined variables to computed expressions,
where the variables should not be assigned
repeatedly. Exclusion

#12 as an	example:
𝑖𝑓 ∃ 𝑟1 𝑜𝑛 𝑛1, ∄ 𝑟6 𝑜𝑛 𝑛6, 𝑛1 ↔ 𝑛6
𝑛1 : ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 streamQuery 𝑚𝑎𝑝 𝑚𝑎𝑝_𝑐𝑜𝑙 ,∗
𝑟1 : 𝑚𝑎𝑝_𝑐𝑜𝑙 → ∗
𝑛6 : ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 streamQuery 𝑚𝑎𝑝 𝑚𝑎𝑝_𝑐𝑜𝑙 ,∗
𝑟6 : 𝑟1

#13: zip queries merge fields in different
streams.

Special 
Semantic 

Constraints 
(1)

#14: An intent should not end with a map
query.

Dependency

#14 as an	example:
𝑖𝑓 ∃ 𝑟1 𝑜𝑛 𝑛1, ∃ 𝑟6 𝑜𝑛 𝑛6, 𝑛1 → 𝑛6
𝑛1 : ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑄𝑢𝑒𝑟𝑦 ,∗
𝑟1 : 𝑠𝑡𝑟𝑒𝑎𝑚𝑄𝑢𝑒𝑟𝑦 → 𝑚𝑎𝑝
𝑛6 : ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑆𝑡𝑚𝑡 𝑠𝑡𝑟𝑒𝑎𝑚𝑁𝑎𝑚𝑒 ,∗
𝑟6 : 𝑠𝑡𝑟𝑒𝑎𝑚𝑄𝑢𝑒𝑟𝑦 → 𝑓𝑖𝑙𝑡𝑒𝑟 | 𝑔𝑟𝑜𝑢𝑝𝑏𝑦 | 𝑧𝑖𝑝

Sonata

Special 
Semantic 

Constraints 
(2)

#1: An intent should not end with a map
query.

Dependency

#1 as an	example:
𝑖𝑓 ∃ 𝑟1 𝑜𝑛 𝑛1, ∃ 𝑟6 𝑜𝑛 𝑛6, 𝑛1 ← 𝑛6
𝑛1 : ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑄𝑢𝑒𝑟𝑦 ,∗
𝑟1 : 𝑠𝑡𝑟𝑒𝑎𝑚𝑄𝑢𝑒𝑟𝑦 → 𝑚𝑎𝑝
𝑛6 : ∗, 𝑝𝑟𝑜𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑄𝑢𝑒𝑟𝑦 ,∗
𝑟6 : 𝑠𝑡𝑟𝑒𝑎𝑚𝑄𝑢𝑒𝑟𝑦 → 𝑓𝑖𝑙𝑡𝑒𝑟 𝑟𝑒𝑑𝑢𝑐𝑒 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡

#2: reduce queries should follow map queries.

Poise

Banned 
Variable 

Redefinition
(2)

#1: Each list has a name, which cannot be
repeatedly defined.

Exclusion Similar	to	the	banned	variable	redefinition	of	Marple.
#2: Each monitor function has a name, which
cannot be repeatedly defined.

Necessary
Variable

Definition
(2)

#3: Each monitor function references a list,
which should be defined.

Dependency Similar	to	the	necessary	variable	variable	definition	of	Marple.
#4: A statement may reference a monitor
function, which should be defined.

834    2022 USENIX Annual Technical Conference USENIX Association



Investigating Managed Language Runtime Performance
Why JavaScript and Python are 8x and 29x slower than C++, yet Java and Go can be faster?

David Lion*†, Adrian Chiu*, Michael Stumm*, Ding Yuan*†
*University of Toronto, †YScope

Abstract

The most widely used programming languages today are
managed languages. They are popular because their vast fea-
tures improve many aspects of code development, including
increased productivity and safety. However, as a product or
service scales in usage, performance issues become a prob-
lem. Developers are then often faced with complex choices
as they must decide whether the desired performance can be
squeezed from existing code, or whether their language has
reached its performance limits, requiring years of code to be
ported to a new more-performant language. To make matters
worse, runtime performance is shrouded in mystery as it in-
volves complex interactions of different components, such
as interpreter, just-in-time (JIT) compiler, thread library, and
Garbage Collection (GC) system.

We present an in-depth performance analysis and com-
parison of Java, Go, JavaScript, and Python, using C++ as a
baseline. We carefully instrumented the different language
runtimes, so that developers can precisely measure the num-
ber of cycles taken to execute any bytecode instruction, or
the overhead of dynamic type checking in JavaScript. This
allows us to accurately identify sources of overhead. We fur-
ther created 6 applications from the ground up to establish
the LangBench benchmark; the applications cover a range of
complexity, and they cover a variety of application scenarios
differing in compute intensity, memory usage, network and
disk I/O intensity, and available concurrency. We comprehen-
sively analyze their completion times, resource usage, and
scalability.

Overall, we found that V8/Node.js and CPython exhibit
excessive overheads, executing applications 8.01x and 29.50x
slower on average than their C++ counterparts, respectively.
Making matters worse, applications on these two runtimes
scale poorly in that they cannot effectively utilize more than
one core. In contrast, OpenJDK and Go applications are per-
formance competitive to C++, running only 1.43x and 1.30x
slower, respectively, and they can easily scale to multiple
cores. There are applications where OpenJDK and Go outper-
form their C++ counterparts.

1 Introduction

Programming languages with integrated run-time environ-
ments have continuously grown in popularity. The three most
popular languages on GitHub since 2015 are JavaScript, Java,
and Python [38]. These languages offer the promise of im-
proved developer productivity and thus faster product cre-
ation and adaptation because of a variety of features they
offer, including easier readability and usability, dynamic type
checking, memory management with garbage collection, and
dynamic memory safety checks. We use the term “managed
languages” to refer to these type of programming languages.

Managed languages are increasingly being used to imple-
ment systems software where performance is critical. Both
Hadoop [54] and Spark [76] run on a Java Virtual Machine
(JVM) [61] as they are implemented in Java and Scala respec-
tively. Kubernetes [21], etcd (a distributed key-value store [4]),
and M3 (a distributed time series database and query engine
built by Uber [14]) are all implemented in Go. Recently, even
an operating system (OS) kernel, Biscuit [52], was imple-
mented in Go [8]. Openstack [18], Paypal [1], Instagram [22],
and Dropbox all heavily utilize Python; Python is Dropbox’s
“most widely used language both for backend services and
the desktop client app” with almost 4 million lines of Python
code in one repository [20]. As a final example, JavaScript
is used in the performance critical path for the Bladerunner
pub/sub system at Facebook [49].

Several factors come into play when selecting a program-
ming language for a new service, including current developer
expertise and experience, constraints imposed by existing
ecosystems (e.g., home-grown libraries, development, debug-
ging tools, performance monitoring and logging systems, etc.),
and developer productivity. Managed languages are an attrac-
tive proposition, precisely because they offer the promise of
higher developer productivity, leading to faster project com-
pletion times. The performance of the language is rarely a
consideration at the outset, in part because of the belief that
performance issues can be addressed later, perhaps through
horizontal scaling by simply adding hardware. Some go as
far as to claim “Choosing a language for your application

USENIX Association 2022 USENIX Annual Technical Conference    835



simply because it’s ‘fast’ is the ultimate form of premature
optimization” [47].

However, performance will ultimately become a priority
as the usage of the service begins to scale and the service
becomes too slow or the cost of hardware becomes too high.
Developers then begin a large sequence of performance opti-
mizations that can grow into herculean efforts. For example,
Twitch.tv and others use tricks and tweaked parameters to
meet desired GC performance in Go [5, 19]; project Tungsten
in Spark goes as far as to bypass the JVM, to squeeze out
performance [23].

But there can come a point where incremental optimiza-
tions (requiring much time and effort) no longer suffice and a
more radical solution must be considered, namely switching
to a “better performing” language. A few examples from in-
dustry: Stream abandoned Python for Go, as Python would
spend 10ms creating objects from data that Cassandra took
1ms to fetch, noting that “We’ve been optimizing Cassandra,
PostgreSQL, Redis, etc. for years, but eventually, you reach
the limits of the language you’re using.” Discord switched
from Go to Rust claiming that “Rust was able to outperform
the hyper hand-tuned Go version.” [43]. Performance issues
are also cited as the main reason Twitter was forced to switch
from Ruby on Rails to Scala and Java [40, 42].

When selecting a new language for performance reasons,
the question is: what language? Understanding the perfor-
mance and scalability implications of a (new) language today
is non-trivial, especially for managed languages. This is for
several reasons.

First, no empirical studies exist that scientifically compare
the different managed languages. The primary source of infor-
mation available today is the blogosphere containing heated
“religious” debates that include tunnel-visioned anecdotes
with few rigorous measurements to back up stated claims. For
example, while many believe programs written in Java run
slower than when written in C/C++ [27], others suggest that
Java programs can be faster than C, because the JIT compiler
produces faster machine code by leveraging a runtime pro-
file [26]. Similarly, there have been polarized debates with re-
spect to the performance of JavaScript [11,39], Go [43,46] and
even Python – for example, sources from Paypal claimed that
Python offered superior performance over other languages and
reported multiple cases where Python outperformed their C++
and Java counterparts while requiring less code [1]. Similarly,
developers reported that Python could outperform both C/C++
and Java when using regular expressions or strings [33–35].

Discussions on scalability are even muddier. For exam-
ple, in a popular blog by the official Node.js Medium ac-
count, developers conclude that by being event-driven and
asynchronous, JavaScript is ideal for scaling to millions of
concurrent connections, despite its event loop only executing
on a single thread [45]. As another example, while it should
be well-known that CPython, the de facto runtime for Python
today, uses a global interpreter lock (GIL) that will serialize

all concurrent thread executions, Paypal’s engineering blog
claims that it scales well, and noted that “Dropbox, Disqus,
Eventbrite, Reddit, Twilio, Instagram, Yelp, EVE Online, Sec-
ond Life, and, yes, eBay and PayPal all have Python scaling
stories that prove scale is more than just possible: it’s a pat-
tern” [1].

Second, no benchmark suite is publicly available today that
enables a meaningful comparison between different managed
languages (and their implementations). Existing benchmark
suites target specific languages or applications. Extending
these benchmarks to other languages is often impossible; for
example, the DaCapo benchmark for Java contains applica-
tions such as Eclipse, a full-featured IDE [50]. As a result, any
comparison on language runtime performance often compares
apples to oranges.

Third, language runtime systems are extremely complex
software systems, providing multiple abstractions that all
affect performance. For example, a developer must under-
stand the interpreter, possibly multiple JIT compilers (e.g.,
the OpenJDK JVM contains 4 levels of JIT compilation), a
memory management subsystem that performs garbage col-
lect, the behavior of thread libraries, etc.

Finally, there are no helpful, publicly available profiling
tools for understanding the overheads of language runtime
systems. The language subsystems themselves expose little
profiling information on their internals. For example, while it
is widely speculated that dynamic type checking adds signifi-
cant overhead [44], V8/Node.js does not expose any perfor-
mance counters to report this overhead.

In this paper, we present an in-depth quantitative perfor-
mance analysis of four of the popular managed languages with
their most widely used runtime systems: CPython, OpenJDK,
Node.js with the V8 engine for JavaScript, and the reference
Go compiler [15, 24, 36, 38]. We compare their performance
characteristics with that of C++ on GCC as the baseline. Our
focus is primarily on understanding their differences with
respect to speed and scalability.1 We chose these languages
not just because of their popularity, but because they represent
different designs along the following three dimensions:

• Typing. JavaScript and Python are dynamically typed,
meaning the runtime must determine the type of objects at
run time, whereas others are statically typed. This allows
us to understand the performance impact of dynamic type
checking.

• Execution modes. Only Go is ahead-of-time compiled. The
other runtimes first interpret bytecode, and compile hot
functions Just-In-Time (JIT). The exception is CPython that
only has an interpreter and no JIT compiler. This enables
us to compare three execution modes: native-only (Go and

1An analysis of resource usage is left to the Appendix, because the find-
ings have largely already been established by prior studies [63], and we did
not need to implement any additional profiling mechanisms.

836    2022 USENIX Annual Technical Conference USENIX Association



C++), a combination of interpreter and JIT-compiled native
(OpenJDK and V8), and interpreter only (CPython).

• Concurrency models. V8/Node.js is event driven where
event handlers are executed sequentially on a single kernel
thread. Similarly, CPython has a global interpreter lock
(GIL) so only one thread can execute Python code at a
time. Go has its own scheduler and provides user threads
as “goroutines.” Its scheduler decides how many kernel
threads to use for the developer’s goroutines. OpenJDK’s
Thread is simply a kernel thread.

Contributions

The contributions of the paper are as follows:
Runtime instrumentations. We are the first to make publicly
available (as artifacts) instrumentations for the three runtime
systems of popular managed languages that are not statically
compiled, namely OpenJDK, V8, and CPython. Implementing
such instrumentations is challenging given the complexity of
these runtimes and the fact that two of them are implemented
in assembly and IR. Our instrumentations enable bytecode-
level profiling of (1) the execution overhead of any target
bytecode in the interpreter and (2) the dynamic type-checking
overhead in Node.js/V8. The profiling information generated,
in turn, can be used to guide optimization efforts at the ap-
plication level and can enable effectual optimizations. The
instrumentations are described in §2.
Benchmark suite. We are the first to make publicly avail-
able (as artifacts) six applications suitable for evaluating
managed languages; these applications were used to cre-
ate twelve benchmarks. The applications, which range from
micro-benchmarks to real applications, cover a variety of sce-
narios, differing in compute intensity, memory usage, I/O
intensity, relative startup time, and the degree of available
concurrency. In particular, we took care to expose the dif-
ferences in the three major design dimensions mentioned
above. Three of the six applications are parallel, and we
parallelize them using both multithreading and multipro-
cessing where applicable. The benchmark suite is called
LangBench and is described in §3. The source code of
our instrumented runtimes and LangBench can be found at
https://github.com/topics/langbench.
Comparative analysis. We quantitatively analyse the perfor-
mance of the benchmarks in our suite and identify how the
individual runtimes improve or hinder performance relative
to the respective C++ implementations. Our objective was to
compare the runtimes of the target managed languages in an
objective, scientific way. Many of our results are not particu-
larly surprising (even if they contradict some views held in the
blogosphere). For example, Go and OpenJDK perform signif-
icantly better than V8/Node.js and CPython, with CPython
performing worst by far, even when compared against V8
and OpenJDK’s interpreter-only execution (§6). CPython and

V8/Node.js do not benefit from parallelism; in fact, increasing
the number of threads systematically decreases performance
(§7). A major source of V8’s relatively poor performance is
its dynamic type checking, even when the JS code only uses
primitive types that never change (§6.1).

Perhaps more surprising is the fact that in many cases, the
abstractions offered by runtimes can actually lead to speedups
over GCC (§8). This contradicts the conventional wisdom that
abstraction comes at the expense of performance [74]. Open-
JDK outperformed GCC in three of the benchmarks, because
the moving garbage collector actually improves cache locality.
This leads to the unintuitive behavior that the more frequently
GC is performed, the better the overall performance. Go ab-
stracts away the usage of kernel threads, reducing the number
of context switches and kernel threads. Finally, abstracting
away low-level I/O operations allows runtimes to use optimal
I/O system call configurations, outperforming the idiomatic
approach in C++.

Limitations

The main limitation of our work is that it does not, and can-
not, comprehensively answer every question one might have
related to the performance of a language runtime. We only
evaluated the runtimes of four languages, and for each lan-
guage we only evaluated the implementation that is the most
widely used. In addition, we only ran our workloads on a
single OS/hardware stack. Our findings pertain to our bench-
marks, which model real-life applications, but may not be rep-
resentative of a vast range of applications. Accordingly, our
study is not meant to determine the best or most performant
programming language for any particular application. Fur-
thermore, our benchmark and analysis do not focus on some
performance aspects. Notably, we do not study the overhead
of garbage collection when under memory pressure (there is
a gap between the working set size of our benchmarks and
the maximum heap size setting). There is a large body of
prior work focusing on this aspect already [51, 63, 79]. Simi-
larly, our benchmark is not meant to measure the various JIT
compiler’s optimizations, as there are also a large number of
existing benchmarks meant to do exactly that [10, 32, 53].

2 Language Runtime Instrumentation

In this section we describe how we instrumented the three run-
times: OpenJDK’s HotSpot JVM, Node.js/V8, and CPython.
Our instrumentations measure two types of information:
(1) the performance of the execution of any bytecode instruc-
tion in the interpreter, and (2) the dynamic type and bounds
checking overhead in V8’s JIT compiled code. Users can
specify a bytecode instruction to measure its overhead, or
any JavaScript (JS) function to measure the type and bounds
checking overhead when executing that function.

USENIX Association 2022 USENIX Annual Technical Conference    837

https://github.com/topics/langbench


Why profile interpreter performance? Some have the view
that interpreter performance is not important as it mostly af-
fects the startup time, which will be amortized by “warm
execution.” We do not share this view. While interpreter
performance may have been irrelevant over a decade ago
when workloads ran in large, long-running monolithic appli-
cations that handle all requests [75], the paradigm shift to
the cloud [65, 69, 77] and data analytics [62] expose the run-
time’s startup performance as being significant. For example,
auto-scaling in the cloud often results in the bringing up of
additional instances in the face of a load spike [65, 69]; the
problem is also exemplified by short-running instances in
Function-as-a-Service platforms [65,77]. In 2020, the median
AWS Lambda invocation ran for only 60 milliseconds [37],
while startup times for the JVM and V8 are on the order of
hundreds of milliseconds or even seconds [62, 65, 77, 80].
Similarly, data analytics systems face a fundamental tension
between parallelizing long running jobs into shorter tasks and
the runtime’s start-up overhead [62].

In practice, instead of ignoring the performance of the in-
terpreter, implementers spend huge efforts in optimizing the
interpreter. For example, OpenJDK has two interpreter imple-
mentations: one in C++ and the other entirely in hand-crafted
x86 assembly; in one benchmark (§6.2), we found that the
C++ interpreter to be 1.93x slower than the assembly one,
which is perhaps why the C++ interpreter is only used on
non-x86 platforms. Similarly, V8’s interpreter is written in
hand-crafted IR, and IBM’s OpenJ9 Java runtime has signifi-
cant optimizations targetting startup time which is featured
as a major advantage over OpenJDK in the cloud [55, 69, 75].

Bytecode-level profiling can guide optimization efforts and
can enable effectual optimizations. For instance, developers
can optimize their programs to avoid the use of bytecode in-
structions with high overheads. Instagram engineers did just
this by instrumenting CPython to identify the bytecode in-
structions with high overheads, and then optimizing their code
to avoid using these expensive instructions [22]. Bytecode-
level profiling also allows us to understand the performance
difference between different runtimes.

Why profile type and bounds checking? As we will show
in §6.1, dynamic type and bounds checking is a major source
of V8’s overhead. Similar to bytecode profiling, programmers
can optimize their JS programs to avoid such overhead once
the source is identified (§6.1). Our instrumentation also en-
ables eliminating type and bounds checking overhead entirely
for those functions where developers know that they are safe.
For instance, say a JS function accesses a[i], the element at
index i of array a, and their types never change (known as
“monotype”). V8 detects that a and i are monotype, and it
speculatively compiles the function: it checks a against the
array type (instead of other types) and i against integer, before
accessing a[i].2 But to ensure safety, it cannot remove the

2It also performs other checks as described in §6.1.

checks because their types could dynamically change in the fu-
ture. In that case, the check will fail, forcing the JIT-compiled
function to exit and be destroyed, and V8 will re-execute the
function in its interpreter before recompiling it.

By disabling the checking logic in V8’s JIT compiler for
any user-specified JS function, we effectively create a signif-
icantly more efficient, albeit unsafe, version of the function.
In the above example, developers could enable this feature to
turn off the checks when they know a and i are monotype, so
the JIT-compiled code will directly access a[i] by indexing
into a without any checks (effectively turning the JS function
into a C function). The difference in execution time of appli-
cations with and without checked functions can be significant:
e.g., in LangBench’s sort benchmark, disabling the checking
in V8 results in 8x speedup (§6.1).

Note that we only instrumented V8’s JIT compiler for iden-
tifying type and bounds checking overheads, but not its in-
terpreter. This is because unlike the JIT compiler that inde-
pendently compiles the different functions, the interpreter’s
checking logic is applied to all functions equally, leaving us
only with the option of either performing checks in all of
an application’s functions or none of them. The latter option
would likely to be too risky to be useful in practice. We fur-
ther note that the checking overhead in the interpreter also
becomes negligible when compared to the other overhead
from the interpreter, whereas their proportion become much
more significant in JIT-compiled code.
Instrumentation Implementation. Conceptually the instru-
mentations we use to profile bytecode execution in the in-
terpreters are simple. We locate the code block in each in-
terpreter that processes a bytecode instruction, and inject in-
strumentation around it to collect metrics from the x86 CPU
performance counters. In practice, however, adding instru-
mentation is challenging. One challenge is the complexity
of the runtimes: JVM, V8, and CPython consist of approxi-
mately 1.2M, 1.0M, and 0.9M lines of code respectively, with
little documentation. Instrumenting JVM and V8 is even more
challenging as their interpreters are not programmed in a high-
level language (e.g., C++) as the other runtimes are, but are
generated dynamically at startup time.

The HotSpot JVM has two interpreters. Its default inter-
preter for x86 is written in hand-crafted assembly (known as
the “assembly interpreter”). It also has a interpreter written
in C++. We instrumented both. Instrumenting the assembly
interpreter brings three challenges. First, one needs to locate
the code blocks that process the different bytecodes by search-
ing the assembly code. Second, one has to carefully ensure
that the instrumented code does not clobber any registers that
are used by the interpreter’s logic. Finally, HotSpot writes the
assembly instructions of the interpreter into memory when
it starts up and then jumps to the memory location of the
beginning of the interpreter. Hence, we need to use the same
mechanism in order to be able to embed our instrumentation
logic (written in assembly) into memory.

838    2022 USENIX Annual Technical Conference USENIX Association



1 push rax
2 push rcx
3 push rdx
4 rdtscp ; saves tsc into EDX and EAX registers
5 shlq rdx,32 ; shift tsc’s higher 32 bits up in rdx
6 orq rax,rdx ; or onto rax
7 movq dst,rax ; output to a scratch register dst
8 pop rdx
9 pop rcx

10 pop rax

Figure 1: The sequence of assembly instructions inlined into the
processing of each bytecode instruction.

Figure 1 shows the instruction sequence we inject as part
of our instrumentation to obtain the CPU’s timestamp counter
(tsc). Line 1-3 saves the registers values.3 The rdtscp in-
struction saves the higher and lower 32 bits of tsc into EDX
and EAX respectively, i.e., the lower 32 bits of RDX and
RAX [68]. It also clears the higher 32 bits of RDX and RAX.
Line 5 shifts the higher 32 bits of tsc, stored in EDX, to the
higher 32 bits of RDX, and line 6 effectively concatenates the
higher and lower 32-bits of tsc, and stores it into RAX. We
embed this instruction sequence at both the beginning and the
end of the processing of the target bytecode instruction, so
that we can measure the latency by computing the difference.4

Similarly, we use rdpmc to read other performance counters,
including those for cycle and instruction counts.

Instrumenting V8 is even more challenging. V8’s inter-
preter is written in hand-crafted intermediate representation
(IR). When the runtime starts up, the interpreter’s binary is
generated dynamically from this IR by the same JIT compiler
used at run time in V8. This required us to instrument both
the IR code of the interpreter and the JIT compiler so that
native instrumentation code is injected correctly.

Specifically, for each target bytecode, we had to locate its
processing logic in the interpreter’s IR and then add a new
type of IR node we introduced. We further had to modify the
JIT compiler, so that when it encounters this new IR node, it
produces the correct assembly instructions that collects the
CPU performance counters. This was challenging because
there is little documentation describing the internals of V8’s
interpreter IR or JIT compiler.

One advantage with JVM and V8 is that developers do
not need to recompile the runtime when they wish to pro-
file a different bytecode instruction, but only need to restart
the runtime. This is because the interpreters are generated
dynamically at startup time. Accordingly, we identify which
bytecode instruction is to be instrumented at startup time,
generate the appropriate instrumentation code so that it is

3We have to manually save the registers because we directly inject code
into the assembly code, in contrast to injecting assembly code into C where
the __asm__ block saves the registers.

4Intel allows tsc to be synchronized across multicore [48], and Linux
enables this synchronization [13]. This ensures a meaningful counter value
even if the interpreter thread is migrated to another core during the processing
of a bytecode instruction. In reality, however, migration is rare given the
processing of bytecode instruction typically only takes tens of cycles.

embedded in the interpreter when written to memory (as with
JVM) or generated by the JIT compiler (as with V8).

Instrumenting CPython is far more straightforward because
it is written in C++. However, the CPython runtime will have
to be recompiled whenever profiling is to be enabled or the
target bytecode instruction that should be instrumented is
changed. In theory, one could, before the execution of each
bytecode, check whether the bytecode is one of the specified
target bytecodes, and conditionally execute the instrumenta-
tion, but this would add too much overhead.
Instrumentation Overhead. Although our instrumentation
could incur noteworthy overhead when enabled on frequently
executed bytecode instructions, we only used them to mea-
sure a specific bytecode instruction, instead of end-to-end
runtime. We only count the number of instructions inside of
the measurement instructions, not including our instrumented
instructions. This is possible as we control the exact assembly
instructions generated, and we verify said assembly using
objdump, gdb, and outputting the JIT-compiled assembly.5

However, our cycle measurements could be skewed by the
measuring instructions limiting the processor’s out-of-order
execution and pipelining capabilities. This is a limitation, and
it is extremely difficult to accurately measure this overhead
due to the fact that the very act of measuring the cycle count
disrupts pipelining (similar to the observer effect in physics).

3 LangBench

Our goal is to compare realistic applications across differ-
ent languages. We cannot reuse existing benchmarks as they
target specific languages, and extending these benchmarks
to other languages is infeasible. For example, porting the
DaCapo benchmark requires us to implement Eclipse, a full-
featured IDE, in four other languages [50]. Therefore, we
chose to build 6 applications from the ground up to cover
a variety of workloads. We implemented these applications
in each of the 5 languages: C++, Go, Java, JavaScript, and
Python. From the six applications, we created twelve bench-
marks by varying degrees of concurrency, and exploring alter-
native implementations of the applications.

We made a best-effort attempt at covering a variety of
different types of workloads. Our applications range from
micro-benchmarks to real world applications, and they stress
three major resource usage categories in different ways, being
one or more CPU-intensive, memory bound, and I/O bound.
Additionally, we implemented parallel versions of the appli-
cations where applicable. They also vary from short running
to long running ones. The applications and their categories
are shown in Table 1.

It was important to ensure that the applications were im-
plemented in a similar and fair manner in each of the five

5There is no overhead for removing the type and bounds checking in V8
as the compiler only removes instructions.

USENIX Association 2022 USENIX Annual Technical Conference    839



Application CPU Memory I/O Parallel
Sudoku solver
String sorting

Graph coloring
Key-Value store

Log analysis
File server

Table 1: The applications and the component(s) they stress.

languages. The design of every implementation of an applica-
tion is conceptually identical: they use the same algorithms
and control flow. Each application is relatively small, so that it
could be built in all languages using the same algorithms and
data structures. This kept the complexity of the application
similar across the languages.

Yet, we fully rewrote the applications in each language, pro-
viding our best effort to make the code idiomatic. We referred
to official language documentation (e.g. [7]). In certain cases
we also implemented different versions of the code. For exam-
ple, in the JavaScript Sudoku implementation we re-wrote the
code multiple times to change the storage of the arrays (see
§6.1 for details). For Python and JavaScript we also tried ver-
sions that create parallelism (e.g. multiprocessing in Python)
and versions that only provide concurrency (e.g. threading in
Python). In general, as we analysed each bottleneck, we also
tried to find any more performant implementations.

The six applications are:
Sudoku Solver. We implemented an exhaustive search su-
doku solver, borrowing from the Spec CPU 2017 bench-
mark [30]. The algorithm recursively labels all empty cells.
At each cell, it verifies the grid state, using the next digit for
the cell if verification fails. If all digits are exhausted for a
cell, it backtracks to the previous cell.
String Sorting. We implemented the in-place merge sort
algorithm described by Katajainen et al. [59] and use it to
sort strings. First, we permute every possible string of length
6 with 18 possible letters, creating 186 strings. These strings
are stored in an array, which are then sorted.
Graph Coloring. Graph coloring labels each vertex in a
graph, such that no two vertices with an edge between them
have the same label. We implemented the algorithm presented
by Wigderson [78] which uses a bounded number of col-
ors with run time complexity polynomial in the number of
vertices, edges, and the chromatic number. The benchmark
colors the YouTube social network and ground-truth com-
munities graph from the Stanford Large Network Dataset
Collection [60]. We implemented both a recursive and an
iterative version of the algorithm.
Key-Value Store. We implemented an in-memory key-value
store based on the general architecture of Redis [28]. We stress
the server with Redis’ packaged benchmark by running a SET

test followed by a GET test. Each test makes 2 million requests,
randomly selecting a key from a space of 500 thousand keys,
using a value size of 64 bytes. The Redis benchmark opens

a configured number of client connections to the key-value
store. Each connection performs an equal number of requests
and is treated as a unit of concurrency (such as a thread). The
clients are run on a machine separate from the one running
the key-value store.

Log Analysis. We implemented the algorithm of CLP that
parses logs by separating highly repetitive static text from
variable values, and stores them in two different indexes [73].
Logs are queried, returning the matching log messages by
searching the index and raw log. We separate the searching
into two separate tests. “Regex” searches the raw logs us-
ing regular expressions, whereas “Indexed” searches using
indexes. Both tests can be run with parallelism, where the
files to be searched are partitioned equally. We process 7000
log files totalling 1.21 GB on disk with an average size of 181
KB. The logs were generated by running various jobs from
HiBench [56, 57]. Each test first indexes the logs and then
performs 7 queries.

File Server. We implemented an HTTP server that serves
static files from a directory. A single C++ client is always
used that spawns a configured number of threads; each thread
connects to the server and requests an equal partition of 1000
real log files with an average size of 16.8 MB. The server
implementations handle these connections concurrently, treat-
ing each connection as a unit of concurrency. The client and
server run on different machines.

4 Methodology

We ran our experiments on two in-house servers, each having
2 Xeon E5-2630V3, 16 virtual cores, 2.4 GHz CPUs, 256 GB
DDR4 RAM and two 7200 RPM hard drives. They are run-
ning Linux 4.15.0 and connected by a 10 Gbps interconnect.
For C++ programs we used GCC 9.3.0 compiling with -O3

against the C++17 standard. For OpenJDK 13 [17], CPython
3.8.1 [25], and Go 1.14.1 [6], we used the reference imple-
mentations for each respective language. We use Node.js
13.12.0 [16] which uses V8 7.9.317.25 [41].

We ran each benchmark 5 times and report the average.
The key-value store, log parser, and file server benchmarks
were run with the number of both client and worker threads
ranging from 1 to 1024. For OpenJDK and V8 the minimum
amount of memory was set by determining the first heap
configuration that did not cause a crash; for Go, GOGC was
set to 5%. We then continuously increased the heap settings
until performance no longer improved. We used the results
from the first setting (i.e., the smallest heap size) that resulted
in optimal performance. For the log parser and file server
benchmarks, the used log files were stored on a distributed
file system with a replication factor of 2. We cleared Linux’s
page cache before running each benchmark.

840    2022 USENIX Annual Technical Conference USENIX Association



Sudoku Sort
Graph

Iterative
Graph

Recursive
Key-Value

Store 1 Thread
Key-Value
Store Best

LA Regex
1 Thread

LA Regex
Best

LA Indexed
1 Thread

LA Indexed
Best

File Server
1 Thread

File Server
Best

Average
Factor

0.1

1

10

100

0.2

0.4
0.6
0.8

2

4
6
8

20

40
60
80

C
o
m

p
le

ti
o
n

 T
im

e

5
1
2

1
6

1
6

6
4

2
5

6 6
4

9
6

6
41
6

0 1
6

6
4

6
4

9
6

1

1

6
4

1

1

1

6
4

GCC (s) 0.715 8.295 19.175 18.572 281.978 38.091 143.319 19.383 44.074 9.231 63.012 16.852

GCC Go OpenJDK Node.js/V8 CPython

Figure 2: Relative completion times for various language implementations normalized to optimized code under GCC. Note the logarithmic
scale of the y axis. “LA” refers to the log analysis application. The numbers at the bottom shows the benchmark’s absolute execution time in the
C++ implementation. For benchmarks with concurrency, the “Best” bars are annotated with the thread count that results in best completion time.
For key-value store and file server it is the number of client threads, not the number of threads used server side. For GCC and OpenJDK, the
server creates 1 (kernel) thread to handle each client thread, so the number of server-side threads is the same as the client. For both Node.js and
CPython, their best completion time in key-value store is achieved when using a single server-side thread (due to their scalability characterstic
described in §7). As for the file server benchmark, both Node.js and CPython’s best performance is achieved when using 64 server-side threads
(§7). The number of server-side threads in Go is automatically determined by the runtime as described in §8.2. The number of threads for log
analysis is the number of worker threads (as there is no client).

5 Overview of Results

Figure 2 shows the run times for the benchmarks in Lang-
Bench. Unsurprisingly, optimized GCC was the fastest on
average, with Go and OpenJDK close behind, being 1.30x
and 1.43x slower than GCC. Impressively, Go and Open-
JDK outperform optimized GCC for 3 out of the 12 bench-
marks. V8/Node.js and CPython performed the worst with
run times 8.01x and 29.50x slower than GCC. At the extreme,
CPython was 129.66x slower than GCC (for the sort bench-
mark). V8/Node.js and CPython were competitive with GCC
only when the workload is bottlenecked by disk I/O, i.e., in
the file server benchmark.

We also found that V8/Node.js and CPython are limited
with respect to achievable parallelism. Their design serializes
the threads’ computation, and requires expensive serialization
for different threads (V8) or processes (CPython) to communi-
cate. This leads to the unintuitive result that adding additional
threads actually slows down parallel applications as more
serialization is required. In fact, for both the key-value store
and parallel log analysis benchmark, the best performance is
achieved using only a single thread. In contrast, both Go and
OpenJDK scale to multicores. Go achieves a 1.02x speedup
over GCC in the multithreaded key-value store benchmark,
despite being slower in the single threaded version.

In the subsequent sections, we use our instrumented run-
times to provide detailed analyses that explain these results.
Specifically, for each runtime, we analyze (at minimum) the
two worst performing benchmarks, considering both single-
threaded (§6) and multi-threaded (§7) variants for those with
parallelism. We further analyzed every case where the runtime
outperforms GCC (§8).

board[x][y]

board[x][y] safe to use

hole value?

int?

hole value?

int?

int?

object?

object?

shape?

shape?

board[x]

board

x

y

bounds check?

bounds check?

1st Array Dimension

Access

2nd Array Dimension

Access

Figure 3: Checks required to access board[x][y] in V8/Node.js.

6 Runtime Overhead (Single-thread)

This section investigates the source of runtime overheads on
the LangBench single-threaded applications that performed
poorly. Specifically, we found (1) type and bounds checking
(§6.1) is the bottleneck for V8 in its slowest benchmarks
(Sudoku and Sort); (2) interpreter performance (§6.2) is the
major cause of CPython’s overhead – despite lacking a JIT
compiler, its interpreter performs much worse compared to
OpenJDK and V8; (3) GC write barrier (§6.3) is the bottleneck
in the Sort benchmark for both OpenJDK and Go, which is
their slowest workload, even when heap usage is small.

6.1 Type and Bounds Checking Overhead
We found that type checking and bounds checking made up
41.83% and 87.43% of V8’s execution time in the default su-

USENIX Association 2022 USENIX Annual Technical Conference    841



Code Version Time (s) Overhead of
Checks (%)

Default 2.369 –
1-2 Remove Obj./Int Checks 2.177 8.105

3 Remove Shape Check 2.219 6.332
4 Remove Bounds Check 2.154 9.076
5 Remove Hole Check 2.051 13.423

1-5 Remove All Checks 1.378 41.832

Table 2: We modified V8’s JIT compiler and removed each of the
checks performed for a 2D array access to board[x][y] shown in
Figure 3. We measured the resulting execution time, and compare it
against the default execution time with all checks. We also show the
execution time when all checks are removed.

doku and sort benchmarks, which are the two single-threaded
benchmarks where V8 showed the worst performance com-
pared to GCC. Note that V8 has other sources of overhead,
such as execution being partially interpreted, when compared
with GCC. For the numbers in this sub-section, we compare
against the default execution time when the runtime binary is
in Linux’s page cache, unlike the results in Figure 2, where
we clear the page cache before each test. Next we zoom into
the Sudoku benchmark to explain this overhead, and how we
can leverage our bytecode profiling information to optimize
our JavaScript code.

For V8/Node.js, Sudoku spends 93% of its time primar-
ily comparing 2D array elements of the sudoku board. The
majority of this time is spent performing 11 type and bound
checks for each 2D array access, as shown in Figure 3. Each
dimension requires 5 checks, and the 11th check is used for
the final value. Table 2 shows the overhead for these checks.

The first check ensures that board is an object pointer, by
checking for a tagged bit to distinguish between an object
pointer and a primitive integer value. (V8 stores both object
pointers and primitive integers in a 8 byte word, so that in-
tegers can be stored inline instead of being allocated on the
heap.) Second, V8 must similarly check that x is an integer,
rather than an object. Omitting these checks made it 8.1%
faster (shown in Table 2) — removing them is safe, as we
know that no incorrect type will be used.

After V8 confirms that board is an object, it checks that the
internal type of board, called a shape, is an array. Fourth, V8
performs a bounds check for the access to board[x]. Finally,
V8 checks if the value accessed is a “hole”. In JavaScript,
arrays may be sparse, meaning not every index has a value. In-
dexes without values are called holes, which V8 must convert
to undefined if accessed. The same checks must be repeated
to access the second dimension of board. To use board[x][y],
a last check is necessary to verify it is an integer.

Profiling enabled optimization. Initially, we preallocated the
fix-size sudoku board. In V8, preallocated arrays are created
sparse as their values are uninitialized, requiring the hole
checks. Even though the array was filled with integers before
being used, sparse arrays never lose their status.

/ / OpenJDK : bounds check board [ x ] . l e n g t h > 8
f o r ( i n t i = 0 ; i < 9 ; i ++) {

/ / Go : bounds check board [ x ] . l e n g t h > i
i n t e l e m e n t = boa rd [ x ] [ i ] ;
. . .

}

Figure 4: Code showing where Go and OpenJDK perform array
bounds checking when accessing board[x][i] in a loop.

Bytecode Insn. Cycles
per BC per BC

OpenJDK

Assembly aaload 12 7.7
Assembly iaload 11 7.1
C++ aaload 33 12.5
C++ iaload 22 11.1

Node.js LdaKeyedProperty 90 26.3
CPython BINARY_SUBSCR 138 41.8

Table 3: Statistics for array access bytecodes (BC) performed by
various interpreters for the sudoku benchmark.

We implemented an optimized version which would cre-
ate arrays without holes, known as “packed” arrays. This
optimized version was 1.48x faster (and is what is shown in
Fig. 2). Our optimized sudoku benchmark for V8/Node.js
starts with an empty array, then appends 9 Int8Arrays to cre-
ate the 2D sudoku board. This allows V8 to recognize that
there are no holes. Using the built in Int8Array, preallocation
initialized it with the default value of 0, rather than a hole.

Unfortunately, these optimizations cannot be applied uni-
versally. First, it presents a trade-off that can only be deter-
mined via profiling: while sparse arrays require hole checking,
building a large packed array requires many internal resizing
operations to grow the array. In addition, typed arrays such as
Int8Array only exist for certain integral types. For example,
it is not possible to preallocate a packed array of strings or
any user defined type.
GCC, Go, and OpenJDK. Compared to GCC, Go and Open-
JDK must also perform similar bounds checks. However, they
avoid the type checking as they are statically typed.

OpenJDK successfully lifts all loop-invariant computa-
tions to outside the loop. In the code of Figure 4, Open-
JDK determines that the maximum value of i used to ac-
cess board[x][i] is 8, and checks if the length of board[x]
is greater than 8 outside the loop. Go performs the bounds
check in each iteration. Further, 2D arrays in OpenJDK con-
tain pointers to 1D arrays, which may be null. However, Open-
JDK has an optimization which eliminates null checks, and
instead catches them using a signal handler for SIGSEGV. On
the other hand, Go does not need to perform null checks as
its 2D arrays are laid out contiguously in memory like in C.

6.2 Interpreter Overhead
CPython is slower than the other runtimes because it lacks a
JIT compiler and so programs are strictly interpreted. There-

842    2022 USENIX Annual Technical Conference USENIX Association



fore we further compare the three runtimes by running sudoku
on each of them only in interpreter mode. OpenJDK’s (assem-
bly) interpreter outperforms both V8 and CPython by 2.59x
and 5.34x respectively. This is because static typing allows
OpenJDK to avoid the type checks that V8 and CPython must
perform. OpenJDK has dedicated bytecodes for accessing dif-
ferent types of arrays (aaload for an array of arrays, iaload
for an integer array). In contrast, V8 and CPython both have
a single bytecode (LdaKeyedProperty and BINARY_SUBSCR, re-
spectively) which must accommodate for any array or dictio-
nary type. Table 3 shows the performance profiling results of
different bytecode executions, using our instrumentations.

CPython is still 2.07x slower than V8, even though both
of them do dynamic typechecking. As shown in Table 3,
CPython uses 138 instructions and 41.8 cycles to execute
each byte code instruction (BINARY_SUBSCR), whereas Node.js
only spends 90 instructions/26.3 cycles to process each byte
code instruction (LdaKeyedProperty). This is due to the opti-
mizations of V8’s interpreter: it is hand-crafted in IR, whereas
CPython is implemented in C. Similarly, we found that Open-
JDK’s assembly interpreter is 1.93x faster than the one imple-
mented in C++.

We found the hand-crafted interpreter implementation
made a few notable optimzations. First, it aggressively in-
lined functions. The CPython bytecode we inspected ended
up containing around 5-6 function calls in the common exe-
cution path. The equivalent bytecode in Node.js had no call
instructions, similar to when all functions are completely in-
lined. This further enables more aggressive optimization. For
example, error handling logic that would be functions in C
code can now be grouped together at the end. This leaves
the instructions in the non-error paths tightly together and
improves cache performance. In addition, developers have a
better understanding than the compiler on what the common
path is, so that they can manually group the basic blocks that
are commonly executed together (and move error handling
logic to the end).

Theoretically GCC could also perform the same level of
inlining, and developers can manually use goto statements to
move all error handling logic to after the common-path logic.
However, performing aggressive inlining unselectively could
hurt performance (increased function size, register pressures,
etc.), and excessive use of goto could hurt the readability,
reliability, and maintainability of the software.

Performance Sensitivity on Interpreters. We observe that
an interpreter may amplify the performance overhead caused
by small code changes that would only incur negligible over-
head in compiled execution. Under CPython, the iterative
version of graph coloring ran 1.66x slower than the recur-
sive version, in contrast to the other interpreters. The func-
tion performing the iterative algorithm contained 1.54x more
bytecodes than the recursive function, resulting in 22% more
instructions recorded by perf. In contrast, for GCC, switching
from recursive to iterative adds only 4% more instructions.

Iterative versions of recursive functions are commonly nec-
essary to avoid stack overflows. Instead of a recursive function
call, the iterative function appends the call arguments to an
array, and later pops the arguments off the array to perform
another iteration of the algorithm. In addition, the iterative
algorithm must check if the array is empty at each iteration of
the loop. These seemingly simple operations significantly in-
crease the bytecode count and execution time. JIT compilers
mitigate these extra operations through optimizations such as
reducing the number of redundant checks.

Startup Overhead for OpenJDK and V8. OpenJDK and
V8 spend 843ms and 788ms, respectively, in startup in the
Sudoku benchmark. Startup is the primary reason for Open-
JDK being slower than GCC when running Sudoku, as it is
the shortest benchmark. Specifically, 708ms is spent loading
the JVM’s large binary from disk, while the rest (135ms) is
spent in classloading and interpreter execution. In compari-
son, OpenJDK’s warm execution time is only 868ms (when
we run the Sudoku benchmark in a JVM that has already been
warmed up by running the same benchmark multiple times),
whereas GCC’s warm execution time is 611ms.

6.3 GC Write Barriers
We were surprised to see that under OpenJDK’s default GC
setting, it was 10.03x slower than GCC for the Sort bench-
mark. Sort is also the benchmark where Go performs the worst
relative to GCC: 2.14x slower. The source of the slowdown
for both OpenJDK and Go is the cost of GC write barriers.
This cost occurs despite GC hardly ever running in Sort, as
write barriers are necessary to maintain data structures needed
to perform GC. Interestingly, for OpenJDK, using the non-
default Parallel GC algorithm drops the slowdown to only
2.07x (shown in Figure 2), as it contains fewer instructions.
Go’s write barrier contains even fewer instructions, and is
slightly faster than OpenJDK with Parallel GC.

Write barriers bring a constant cost to pointer writes re-
gardless of how often GC is actually performed. For our
in-place merge sort, swapping two elements is the primary
source of write barriers. This requires two write barriers, one
for each element being written. OpenJDK’s default GC algo-
rithm, G1 [12], adds 44 instructions for these write barriers,
completely dwarfing the 6 instructions required to swap the
elements and 5 for bounds checking. On the other hand, Par-
allel GC’s write barriers only use 5 instructions, 8.8x fewer
than G1.

Both Go and G1 require a write barrier to ensure every live
object is captured when they perform marking concurrently
with application threads. Furthermore, both G1 and Parallel
GC in OpenJDK divide the heap into regions and move live
objects across regions to compact the heap. For both, write
barriers are used to maintain remembered sets, which are
used to find and update pointers to moved objects. However,

USENIX Association 2022 USENIX Annual Technical Conference    843



G1 performs more checks during its write barrier to avoid
unnecessary updates to the remembered sets. This avoids
work when using the remembered sets to update pointers, and
helps minimize pause time.

7 Scalability Limitations

We found that CPython and Node.js limit the degree of paral-
lelism achievable. We first briefly introduce the background
of the Node.js and CPython concurrency model and then de-
scribe our findings.
Background. Node.js is event driven; by default, it uses a
single Node.js thread to drive an event loop and process all
incoming events. If the processing of an event blocks (e.g., on
I/O), the underlying kernel thread will block, and Node.js’s
event loop continues with another kernel thread to process the
next event. In other words, multiple threads can be blocked at
the same time, but CPU execution is serialized. While Node.js
supports running multiple Node.js threads (known as worker
threads), each runs its own event loop. Hence worker threads
do not share the heap (to avoid data races); data sharing
requires message passing with data being serialized.

In essence, CPython’s concurrency model is the same as
that of Node.js where multiple kernel threads can block on I/O
at the same time, except that it is the programmer’s job to cre-
ate the threads; the threads share the same heap. In CPython’s
case, CPU computation is serialized by the Global Interpreter
Lock (GIL) so that only one thread can use the CPU at a
time. CPython also supports multiprocessing, forking differ-
ent processes to avoid the GIL. However, data sharing and
communication requires serialization.
Node.js and CPython’s scalability on LangBench. We can
now explain the scalability patterns of Node.js and CPython.
We ran three parallel benchmarks, namely log analysis, key-
value store, and file server, under different configurations,
including different number of threads, as well as parallelizing
them with multiple processes in CPython. In log analysis
and key-value store, the best performance is achieved using a
single CPython or Node.js thread, whereas the other runtimes
are able to improve performance by adding more threads.

These two benchmarks, namely log analysis and key-value
store, are bottlenecked by CPU or memory accesses, instead
of blocking I/O. Therefore, creating multiple threads offers
no advantage in Node.js and CPython as their executions
are serialized. In the case of Node.js, performance degrades
significantly when creating additional worker threads due to
the serialization overhead. On indexed search log analysis,
Node.js’s performance drops 4.7x when we use more than one
worker thread. In this benchmark, multiple workers communi-
cate frequently as they share the same dictionaries. Similarly,
serialization overhead slows down CPython when we switch
to multiprocess, resulting in a 4.9x slowdown on the same
benchmark. While multiple CPython threads share the heap,

they still introduce thread management overhead compared
to using a single thread.

Specifically, in key-value store, CPython can only scale to
one client thread (adding additional concurrent client threads
will worsen the completion time). In comparison, Node.js/V8
scales up to 96 client threads, even though it only uses 1
Node.js event-loop thread at server side. However, its com-
pletion time can not keep improving with more client threads,
whereas it still can under GCC, Go, and OpenJDK. Note
that the improvement plateaus when the client thread count
increases to 160. Even though GCC achieved its best com-
pletion time on 512 client threads, the improvement over 160
threads is negligible. This is why in Figure 2, the difference in
best completion times is small between GCC, Go, and Open-
JDK, even though they are achieved on 512, 256, and 160
client threads, respectively.

In comparison, Node.js and CPython scale well on the
file server benchmark. This benchmark is I/O parallel: there
is little communication between different threads, and they
are bottlenecked by disk I/O. Creating multiple threads (or
processes in CPython) thus improves the performance (when
there are concurrent client connections).

8 Runtime Advantages

We found that the high-level abstractions provided by the
runtimes can, in some cases, result in better performance and
scalability. This is counter-intuitive given the conventional
wisdom that abstractions generally come at the expense of
performance [74]. We discuss three findings: (1) object relo-
cations in OpenJDK’s moving GC can result in better cache
locality; (2) Go’s scheduler automatically maps user threads
to kernel threads, and hence abstracts away the direct usage of
kernel threads, reducing the number of context switches and
the number of kernel threads used; (3) abstracting away the
low-level I/O operations allows runtimes to use the optimal
I/O system call configurations.6

8.1 GC Improved Cache Locality
OpenJDK’s moving garbage collector can significantly im-
prove cache locality, resulting in speedups in three bench-
marks: single threaded key-value store and both iterative and
recursive implementations graph coloring. In particular, Open-
JDK was much faster than GCC at the single threaded key-
value store, with 1.46x speedup. This is the largest speedup
any runtime had over GCC.

Key-value store. We found that the source of cache locality
was from iterating over linked lists. Our key-value store im-
plements a hashtable with separate chaining, meaning hash

6There are a few more cases where runtimes demonstrated better perfor-
mance than GCC; they are related to the implementation of libraries. We
discuss them in detail in the Appendix.

844    2022 USENIX Annual Technical Conference USENIX Association



(a) Before GC (b) After GC

B1 B2

N2

N3

N6

N1

N4

N5

B2:N1

B2:N5

B2:N4

B1:N2

B1:N3

B1:N6

B1 B2

N2

N3

N6

N1

N4

N5

B2:N1

B2:N5
B2:N4

B1:N2
B1:N3
B1:N6

Figure 5: The key-value store before and after a GC pause. White
boxes logically represent Java objects, and the shaded boxes repre-
sent the objects’ location in the JVM heap. A ‘B’ denotes a bucket
mapped to by the hash function, and an ‘N’ denotes a node in the
bucket’s linked list. The number of the node represents the order
they are inserted into the hashtable. The memory for the nodes of
the bucket begins scattered, but after GC relocation is ordered by the
traversal of the bucket’s linked lists.

128 MB

256 MB

512 MB

1 GB
2 GB

4 GB
8 GB

16 GB
32 GB

64 GB
128 GB

Heap Size

160

200

240

280

320

360

400

C
o
m

p
le

ti
o
n

 T
im

e
 (

s
)

Figure 6: The OpenJDK single threaded key-value store benchmark
run with increasing heap sizes, corresponding to fewer GC cycles.

collisions are added to a bucket by appending the key-value
(KV) pair to a list. This is shown as the white boxes in Fig-
ure 5. For example, N2, N3, and N6 are different KV pairs
hashed to the same bucket B1.

OpenJDK uses bump pointer allocation. Therefore, nodes
in the hashtable are laid out sequentially in memory based on
their insertion order. Figure 5 (a) shows how the nodes of a
bucket would be initially laid out in memory. There is little
locality, as adjacent nodes of the same linked list are scattered.
Therefore, whenever there is a lookup, insertion, or a deletion
of a key in the linked list, the traversal of the linked list is
expensive due to poor locality.

However, OpenJDK’s moving GC reorders the objects in
memory. It scans for all live objects that are reachable from
the GC roots (e.g., objects on the stack) by following the
pointers, copying them to a different memory region, before
freeing the old region. For the linked list, this means that the
objects will be allocated adjacently, in the same order as in
the linked list, as shown in Figure 5 (b).

In comparison, GCC uses a size segregated allocator
(malloc). Since nodes have the same size, they will be placed
in the same region, resulting in a similar pattern as with bump
pointer allocation, with nodes laid out in insertion order. When
profiling the iteration, we found that GCC actually executed
fewer instructions than OpenJDK, but was still slower. In the
tight loop iteration, the bucket GCC took only 5 assembly
instructions compared to OpenJDK’s 11.

This behavior presents the unintuitive case where the more

frequently GC is performed, the better the performance. Fig-
ure 6 shows that with more frequent GC cycles, objects are
re-ordered in memory more often, leading to improved per-
formance. We control the frequency of GC by using different
heap sizes. The larger the heap, the fewer GC cycles. When
it is 128 GB, performance is the worst because GC is never
triggered; objects are never moved, so there is no locality.

To verify that cache locality was the source of the perfor-
mance gap, we modified OpenJDK to expose a method to
print the virtual address a reference points to. We do this as
GC obfuscates perf cache hit rates, making them impractical
to compare. In one run where no GC was performed, over
99% of the distances between nodes of the linked lists were
different, with a median distance of 724 KB. A run with GC
was 1.86x faster; 57% of nodes were 88 bytes apart, and 41%
were 192 bytes apart. Although the size of a cache line on our
processors is 64 bytes, so two nodes would not be in the same
cache line, it is likely that they are in adjacent cache lines,
opening the opportunity for prefetching.

Graph coloring. We found OpenJDK outperformed GCC
(by 1.37x) on graph coloring, when the C++ program uses
the standard library. Our investigation showed that GC had a
similar effect as for the key-value benchmark given that graph
coloring also uses a hash table. Both hash table implementa-
tions on OpenJDK (HashMap and HashSet) and C++’s standard
libraries (std::unordered_set and std::unordered_map) use
an open hashing design; i.e., it uses separate chaining to con-
nect the elements in a linked list upon collision. As a result,
both GCC and OpenJDK suffer from poor locality initially.
However, OpenJDK quickly gains locality through GC, as
with the key-value store benchmark.7

8.2 Scalability in Go

In the multithreaded key-value store implementation, Go has a
1.02x speedup compared to GCC, despite being 1.16x slower
than GCC in the single threaded version. Go outperforms
GCC by avoiding 2.2 million context switches through the
use of asynchronous networking I/O and significantly fewer
kernel threads. With GCC, network I/O is performed using
synchronous system calls, blocking the kernel thread, result-
ing in a context switch. When goroutines perform I/O, the
work is offloaded to an internal goroutine which uses asyn-
chronous system calls. A goroutine performing I/O is blocked
by Go’s scheduler, but the underlying kernel thread is not
blocked; instead, Go schedules another goroutine on the same
kernel thread. As a result, Go only uses at most 42 kernel
threads, regardless of the number of concurrent client threads.
(The number of kernel threads is automatically chosen by the
Go runtime depending on the workload’s characteristic.)

7We optimized our C++ benchmark by switching to hashtable imple-
mentations from Google’s Abseil library [2], which uses a closed hashing
implementation that achieves better locality.

USENIX Association 2022 USENIX Annual Technical Conference    845



We verified that context switching causes the majority of
the 600 ms gap between the fastest multithreaded Go and
GCC execution times. Using LEBench [72], we measured
the average cost of a context switch on our machine to be
5.84 µs. With 32 cores, perf reports approximately 70K con-
text switches per core, which adds up to 409ms of overhead,
making up the majority of the 600ms performance gap.

8.3 I/O System Calls in the File Server
To read a file in the file server benchmark in C++, we initially
used the more general, idiomatic approach which uses iter-
ators. This results in repeated fixed size read system calls.
Unlike C++, all the managed runtimes abstract away the low-
level system call interfaces when performing I/O, so that they
can transparently issue system calls in an optimal way, by
first calling fstat to get the file size, followed by a single
read for its entire contents. All runtimes use this approach
when reading a file. So any developer using the runtimes will
benefit from the optimizations without any burden of knowl-
edge. In comparison, we have to manually optimize our C++
implementation to switch to fstat and read, leading to a 2x
speedup.

9 Related Work

Ours is the first performance study to analyze and compare
the implementations of multiple widely used runtimes, and
provide the necessary instrumentations to do so. There are
existing benchmarks to evaluate software performance, but
they focus on novel benchmark methodologies. Marr et al.
designed a benchmark suite with the goal of having a method-
ology for evenly comparing a common subset of language
abstractions [64]. They limit their applications to a minimal
set of primitive operations and exclude built-in data structures
such as hashtables to ensure that no language has an advan-
tage. Rather than strictly stressing the compiler on specific
primitive operations, we evaluated all aspects of a runtime on
how they affect performance under different scenarios using
idiomatic code. Both DaCapo [50] and Renaissance [70] cre-
ated benchmark suites consisting only of Java applications
for various workloads. TailBench created a statistically sound
methodology for measuring latency-critical applications in
C++ and Java [58]. SPEC [31] and the Computer Language
Benchmarks Game [3] provide a variety of benchmarks, cov-
ering many languages, but present no analysis. In contrast,
our work focuses on understanding and providing an expla-
nation for the technical details of language implementations
that cause performance differences.

Other studies of languages have had different scopes, focus-
ing tightly on a specific language or aspect. By utilizing the
Rosetta Code [29] repository, Nanz et al. present statistical
findings, such as the fact that scripting languages are more
concise than procedural languages [67]. Nanz et al. further

studied the usability and performance of Chapel, Cilk, and
Go in multicore workloads [66]. Prokopski et al. study inter-
preter code-copying optimizations in the SableVM, OCaml,
and Yarv interpreters [71]. Wade et al. quantify the impact of
profile data on JIT compiled code quality in the HotSpot VM.

Lion et al. instrumented the JVM to measure startup times
(i.e., the total time spent in class loading and interpreter) [62].
However, they did not provide fine-grained instrumentation
to profile the execution of each bytecode instruction.

10 Concluding Remarks

We presented an in-depth performance analysis of runtimes
under a variety of scenarios. We implemented LangBench,
a benchmark suite that enables an objective comparison of
language implementation performance. Our runtime instru-
mentations facilitate understanding why a runtime performs
well or poorly. We demonstrated that our instrumentations pro-
vide valuable profiling information that enables optimizations.
We have open-sourced our instrumentations and LangBench
so that practitioners can use and enhance them to analyze and
optimize their applications.

Acknowledgements

We thank the anonymous reviewers and the shepherd for their
insightful comments. This research was supported by the
Canada Research Chair fund, an NSERC Discovery grant,
and a VMware gift.

References

[1] 10 Myths of Enterprise Python. https:
//medium.com/paypal-engineering/10-myths-
of-enterprise-python-8302b8f21f82.

[2] Abseil. https://abseil.io/.

[3] The Computer Language Benchmarks Game.
https://benchmarksgame-team.pages.debian.
net/benchmarksgame/.

[4] etcd - A distributed, reliable key-value store for the most
critical data of a distributed system. https://etcd.
io/.

[5] Go memory ballast: How I learnt to stop worry-
ing and love the heap. https://blog.twitch.
tv/en/2019/04/10/go-memory-ballast-how-i-
learnt-to-stop-worrying-and-love-the-heap-
26c2462549a2/.

[6] The Go Programming Language. https://golang.
org/.

846    2022 USENIX Annual Technical Conference USENIX Association

https://medium.com/paypal-engineering/10-myths-of-enterprise-python-8302b8f21f82
https://medium.com/paypal-engineering/10-myths-of-enterprise-python-8302b8f21f82
https://medium.com/paypal-engineering/10-myths-of-enterprise-python-8302b8f21f82
https://abseil.io/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://etcd.io/
https://etcd.io/
https://blog.twitch.tv/en/2019/04/10/go-memory-ballast-how-i-learnt-to-stop-worrying-and-love-the-heap-26c2462549a2/
https://blog.twitch.tv/en/2019/04/10/go-memory-ballast-how-i-learnt-to-stop-worrying-and-love-the-heap-26c2462549a2/
https://blog.twitch.tv/en/2019/04/10/go-memory-ballast-how-i-learnt-to-stop-worrying-and-love-the-heap-26c2462549a2/
https://blog.twitch.tv/en/2019/04/10/go-memory-ballast-how-i-learnt-to-stop-worrying-and-love-the-heap-26c2462549a2/
https://golang.org/
https://golang.org/


[7] Go Programming Language Documentation. https:
//go.dev/doc/.

[8] Go Programming Language Specification. https://
golang.org/ref/spec.

[9] Introduction to Intel Advanced Vector Extensions.
https://software.intel.com/content/www/us/
en/develop/articles/introduction-to-intel-
advanced-vector-extensions.html.

[10] Java EE: DayTrader Benchmark. https://github.
com/OpenLiberty/sample.daytrader8.

[11] JavaScript is slow. https://kariera.future-
processing.pl/blog/javascript-is-slow/.

[12] JEP 248: Make G1 the Default Garbage Collector. http:
//openjdk.java.net/jeps/248.

[13] Linux source tsc_sync.c: Check tsc synchronization.
https://github.com/torvalds/linux/blob/
df0cc57e057f18e44dac8e6c18aba47ab53202f9/
arch/x86/kernel/tsc_sync.c.

[14] M3: Uber’s Open Source, Large-scale Metrics Platform
for Prometheus. https://eng.uber.com/m3/.

[15] Most popular languages on GitHub. https://github.
com/oprogramador/github-languages.

[16] Node.js. https://nodejs.org/en/.

[17] OpenJDK 13. https://openjdk.java.net/
projects/jdk/13/.

[18] OpenStack Overview. https://www.openstack.org/
software/.

[19] Optimizing a Golang service to reduce over 40%
CPU. https://coralogix.com/log-analytics-
blog/optimizing-a-golang-service-to-
reduce-over-40-cpu/.

[20] Our journey to type checking 4 million lines of Python.
https://blogs.dropbox.com/tech/2019/09/our-
journey-to-type-checking-4-million-lines-
of-python/.

[21] Production-Grade Container Orchestration - Kubernetes.
https://kubernetes.io/.

[22] Profiling CPython at Instagram. https://instagram-
engineering.com/profiling-cpython-at-
instagram-89d4cbeeb898.

[23] Project Tungsten: Bringing Apache Spark Closer
to Bare Metal. https://databricks.com/blog/
2015/04/28/project-tungsten-bringing-spark-
closer-to-bare-metal.html.

[24] PYPL PopularitY of Programming Language. http:
//pypl.github.io/PYPL.html.

[25] Python Implementations - Python Wiki. https://
wiki.python.org/moin/PythonImplementations.

[26] Quora: In what cases is Java faster than C.
https://www.quora.com/In-what-cases-is-
Java-faster-if-at-all-than-C.

[27] Quora: In what cases is Java slower than C by a big
margin. https://www.quora.com/In-what-cases-
is-Java-slower-than-C-by-a-big-margin.

[28] Redis. https://redis.io.

[29] Rosetta Code. https://rosettacode.org/wiki/
Rosetta_Code.

[30] SPEC CPU 2017 Documentation. https://www.spec.
org/cpu2017/Docs/#benchmarks.

[31] SPEC: Standard Performance Evaluation Corporation.
https://www.spec.org.

[32] SPECjbb 2015 Benchmark. https://www.spec.org/
jbb2015/.

[33] Stack Overflow: C++11 regex slower than python.
https://stackoverflow.com/questions/
14205096/c11-regex-slower-than-python.

[34] Stack Overflow: Why do std::string operations
perform poorly? https://stackoverflow.
com/questions/8310039/why-do-stdstring-
operations-perform-poorly.

[35] Stack Overflow: Why is python faster than c++ in this
case? https://stackoverflow.com/questions/
24895881/why-is-python-faster-than-c-in-
this-case.

[36] The State of Developer Ecosystem 2019. https://www.
jetbrains.com/lp/devecosystem-2019/.

[37] The State of Serverless. https://www.datadoghq.
com/state-of-serverless/.

[38] The State of the Octoverse. https://octoverse.
github.com.

[39] Transducers Speed Up JavaScript Arrays.
https://itnext.io/using-transducers-to-
speed-up-javascript-arrays-92677d000096.

[40] Twitter Shifting More Code to JVM, Citing Performance
and Encapsulation As Primary Drivers. https://www.
infoq.com/articles/twitter-java-use/.

[41] V8 JavaScript engine. https://v8.dev/.

USENIX Association 2022 USENIX Annual Technical Conference    847

https://go.dev/doc/
https://go.dev/doc/
https://golang.org/ref/spec
https://golang.org/ref/spec
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-advanced-vector-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-advanced-vector-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-advanced-vector-extensions.html
https://github.com/OpenLiberty/sample.daytrader8
https://github.com/OpenLiberty/sample.daytrader8
https://kariera.future-processing.pl/blog/javascript-is-slow/
https://kariera.future-processing.pl/blog/javascript-is-slow/
http://openjdk.java.net/jeps/248
http://openjdk.java.net/jeps/248
https://github.com/torvalds/linux/blob/df0cc57e057f18e44dac8e6c18aba47ab53202f9/arch/x86/kernel/tsc_sync.c
https://github.com/torvalds/linux/blob/df0cc57e057f18e44dac8e6c18aba47ab53202f9/arch/x86/kernel/tsc_sync.c
https://github.com/torvalds/linux/blob/df0cc57e057f18e44dac8e6c18aba47ab53202f9/arch/x86/kernel/tsc_sync.c
https://eng.uber.com/m3/
https://github.com/oprogramador/github-languages
https://github.com/oprogramador/github-languages
https://nodejs.org/en/
https://openjdk.java.net/projects/jdk/13/
https://openjdk.java.net/projects/jdk/13/
https://www.openstack.org/software/
https://www.openstack.org/software/
https://coralogix.com/log-analytics-blog/optimizing-a-golang-service-to-reduce-over-40-cpu/
https://coralogix.com/log-analytics-blog/optimizing-a-golang-service-to-reduce-over-40-cpu/
https://coralogix.com/log-analytics-blog/optimizing-a-golang-service-to-reduce-over-40-cpu/
https://blogs.dropbox.com/tech/2019/09/our-journey-to-type-checking-4-million-lines-of-python/
https://blogs.dropbox.com/tech/2019/09/our-journey-to-type-checking-4-million-lines-of-python/
https://blogs.dropbox.com/tech/2019/09/our-journey-to-type-checking-4-million-lines-of-python/
https://kubernetes.io/
https://instagram-engineering.com/profiling-cpython-at-instagram-89d4cbeeb898
https://instagram-engineering.com/profiling-cpython-at-instagram-89d4cbeeb898
https://instagram-engineering.com/profiling-cpython-at-instagram-89d4cbeeb898
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
http://pypl.github.io/PYPL.html
http://pypl.github.io/PYPL.html
https://wiki.python.org/moin/PythonImplementations
https://wiki.python.org/moin/PythonImplementations
https://www.quora.com/In-what-cases-is-Java-faster-if-at-all-than-C
https://www.quora.com/In-what-cases-is-Java-faster-if-at-all-than-C
https://www.quora.com/In-what-cases-is-Java-slower-than-C-by-a-big-margin
https://www.quora.com/In-what-cases-is-Java-slower-than-C-by-a-big-margin
https://redis.io
https://rosettacode.org/wiki/Rosetta_Code
https://rosettacode.org/wiki/Rosetta_Code
https://www.spec.org/cpu2017/Docs/#benchmarks
https://www.spec.org/cpu2017/Docs/#benchmarks
https://www.spec.org
https://www.spec.org/jbb2015/
https://www.spec.org/jbb2015/
https://stackoverflow.com/questions/14205096/c11-regex-slower-than-python
https://stackoverflow.com/questions/14205096/c11-regex-slower-than-python
https://stackoverflow.com/questions/8310039/why-do-stdstring-operations-perform-poorly
https://stackoverflow.com/questions/8310039/why-do-stdstring-operations-perform-poorly
https://stackoverflow.com/questions/8310039/why-do-stdstring-operations-perform-poorly
https://stackoverflow.com/questions/24895881/why-is-python-faster-than-c-in-this-case
https://stackoverflow.com/questions/24895881/why-is-python-faster-than-c-in-this-case
https://stackoverflow.com/questions/24895881/why-is-python-faster-than-c-in-this-case
https://www.jetbrains.com/lp/devecosystem-2019/
https://www.jetbrains.com/lp/devecosystem-2019/
https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/
https://octoverse.github.com
https://octoverse.github.com
https://itnext.io/using-transducers-to-speed-up-javascript-arrays-92677d000096
https://itnext.io/using-transducers-to-speed-up-javascript-arrays-92677d000096
https://www.infoq.com/articles/twitter-java-use/
https://www.infoq.com/articles/twitter-java-use/
https://v8.dev/


[42] Why did Twitter switch from Ruby on Rails? https:
//medium.com/@mittalyashu/why-did-twitter-
switch-from-ruby-on-rails-dac66150044d.

[43] Why Discord is switching from Go to Rust.
https://blog.discord.com/why-discord-is-
switching-from-go-to-rust-a190bbca2b1f.

[44] Why is Dynamic Type Checking Expensive? https:
//stackoverflow.com/questions/41622341/why-
is-type-checking-expensive.

[45] Why the Hell Would You Use Node.js. https://
medium.com/the-node-js-collection/why-the-
hell-would-you-use-node-js-4b053b94ab8e.

[46] Why we switched from Python to Go.
https://getstream.io/blog/switched-python-
go/#reason-performance.

[47] Yes, Python is Slow, and I Don’t Care.
https://medium.com/pyslackers/yes-python-
is-slow-and-i-dont-care-13763980b5a1.

[48] Intel® 64 and IA-32 architectures software developer’s
manual, Volume 3B: System programming guide, part 2,
Section 17.15. https://www.intel.com/content/
dam/www/public/us/en/documents/manuals/64-
ia-32-architectures-software-developer-
vol-3b-part-2-manual.pdf, 2016.

[49] Jeffrey Barber, Ximing Yu, Laney Kuenzel Zamore,
Jerry Lin, Vahid Jazayeri, Shie Erlich, Tony Savor, and
Michael Stumm. Bladerunner: Stream processing at
scale for a live view of backend data mutations at the
edge. In Proc. 28th ACM Symp. on Operating Principles
(SOSP’21), page 708–723. Association for Computing
Machinery, October 2021.

[50] Stephen M. Blackburn, Robin Garner, Chris Hoff-
mann, Asjad M. Khang, Kathryn S. McKinley, Rotem
Bentzur, Amer Diwan, Daniel Feinberg, Daniel Framp-
ton, Samuel Z. Guyer, Martin Hirzel, Antony Hosk-
ing, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish
Phansalkar, Darko Stefanović, Thomas VanDrunen,
Daniel von Dincklage, and Ben Wiedermann. The da-
capo benchmarks: Java benchmarking development and
analysis. In Proc. 21st Conf. on Object-oriented Pro-
gramming Systems, Languages, and Applications (OOP-
SLA’06), pages 169–190. ACM, 2006.

[51] Rodrigo Bruno, Paulo Ferreira, Ruslan Synytsky, Tetiana
Fydorenchyk, Jia Rao, Hang Huang, and Song Wu. Dy-
namic vertical memory scalability for OpenJDK cloud
applications. In Proc. Intl. Symp. on Memory Manage-
ment (ISMM’18), pages 59–70. ACM, 2018.

[52] Cody Cutler, M. Frans Kaashoek, and Robert T. Morris.
The benefits and costs of writing a POSIX kernel in a
high-level language. In Proc. 13th Symp. on Operating
Systems Design and Implementation (OSDI’18), pages
89–105. USENIX Association, October 2018.

[53] Andy Georges, Dries Buytaert, and Lieven Eeckhout.
Statistically rigorous Java performance evaluation. In
Proc. 22nd Annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’07), page 57–76. Association
for Computing Machinery, 2007.

[54] Hadoop. https://hadoop.apache.org.

[55] Handra. Comparing Hotspot and OpenJ9.
https://www.linkedin.com/pulse/comparing-
hotspot-openj9-handra-/.

[56] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie,
and Bo Huang. The HiBench benchmark suite: Char-
acterization of the MapReduce-based data analysis. In
New Frontiers in Information and Software as Services,
pages 209–228. Springer, 2011.

[57] Shengsheng Huang, Jie Huang, Yan Liu, Lan Yi, and
Jinquan Dai. HiBench: A representative and compre-
hensive Hadoop benchmark suite. In Proc. ICDE Work-
shops, ICDEW ’16. IEEE Press, 2010.

[58] H. Kasture and D. Sanchez. Tailbench: a benchmark
suite and evaluation methodology for latency-critical
applications. In Proc. IEEE Intl. Symp. on Workload
Characterization (IISWC’16), pages 1–10. IEEE Press,
Sep. 2016.

[59] Jyrki Katajainen, Tomi Pasanen, and Jukka Teuhola.
Practical in-place mergesort. Nordic J. of Computing,
3(1):27–40, March 1996.

[60] Jure Leskovec and Andrej Krevl. SNAP Datasets:
Stanford Large Network Dataset Collection. http:
//snap.stanford.edu/data, June 2014.

[61] Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buck-
ley, and Daniel Smith. The Java®Virtual Machine Spec-
ification - Java SE 13 Edition. https://docs.oracle.
com/javase/specs/jvms/se13/html/.

[62] David Lion, Adrian Chiu, Hailong Sun, Xin Zhuang,
Nikola Grcevski, and Ding Yuan. Don’t get caught in
the cold, warm-up your JVM: Understand and eliminate
JVM warm-up overhead in data-parallel systems. In
Proc. 12th Symp. on Operating Systems Design and
Implementation (OSDI’16), pages 383–400. USENIX
Association, November 2016.

848    2022 USENIX Annual Technical Conference USENIX Association

https://medium.com/@mittalyashu/why-did-twitter-switch-from-ruby-on-rails-dac66150044d
https://medium.com/@mittalyashu/why-did-twitter-switch-from-ruby-on-rails-dac66150044d
https://medium.com/@mittalyashu/why-did-twitter-switch-from-ruby-on-rails-dac66150044d
https://blog.discord.com/why-discord-is-switching-from-go-to-rust-a190bbca2b1f
https://blog.discord.com/why-discord-is-switching-from-go-to-rust-a190bbca2b1f
https://stackoverflow.com/questions/41622341/why-is-type-checking-expensive
https://stackoverflow.com/questions/41622341/why-is-type-checking-expensive
https://stackoverflow.com/questions/41622341/why-is-type-checking-expensive
https://medium.com/the-node-js-collection/why-the-hell-would-you-use-node-js-4b053b94ab8e
https://medium.com/the-node-js-collection/why-the-hell-would-you-use-node-js-4b053b94ab8e
https://medium.com/the-node-js-collection/why-the-hell-would-you-use-node-js-4b053b94ab8e
https://getstream.io/blog/switched-python-go/#reason-performance
https://getstream.io/blog/switched-python-go/#reason-performance
https://medium.com/pyslackers/yes-python-is-slow-and-i-dont-care-13763980b5a1
https://medium.com/pyslackers/yes-python-is-slow-and-i-dont-care-13763980b5a1
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3b-part-2-manual.pdf
https://hadoop.apache.org
https://www.linkedin.com/pulse/comparing-hotspot-openj9-handra-/
https://www.linkedin.com/pulse/comparing-hotspot-openj9-handra-/
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://docs.oracle.com/javase/specs/jvms/se13/html/
https://docs.oracle.com/javase/specs/jvms/se13/html/


[63] David Lion, Adrian Chiu, and Ding Yuan. M3: End-
to-end memory management in elastic system software
stacks. In Proc. 16th European Conf. on Computer
Systems (EUROSYS’21), page 507–522. Association for
Computing Machinery, 2021.

[64] Stefan Marr, Benoit Daloze, and Hanspeter Mössen-
böck. Cross-language compiler benchmarking: Are we
fast yet? In Proc. 12th Symp. on Dynamic Languages
(DLS’16), pages 120–131. Association for Computing
Machinery, 2016.

[65] Colt McAnlis. Improving cloud function cold
ctart time, Google Cloud Performance Atlas.
https://medium.com/@duhroach/improving-
cloud-function-cold-start-time-2eb6f5700f6.

[66] S. Nanz, S. West, K. S. d. Silveira, and B. Meyer. Bench-
marking usability and performance of multicore lan-
guages. In Proc. Intl. Symp. on Empirical Software
Engineering and Measurement, pages 183–192. IEEE
Press, 2013.

[67] Sebastian Nanz and Carlo A. Furia. A comparative study
of programming languages in Rosetta code. In Proc.
37th Intl. Conf. on Software Engineering (ICSE’15),
page 778–788. IEEE Press, 2015.

[68] Gabriele Paoloni. How to benchmark code execution
times on Intel IA-32 and IA-64 instruction set architec-
tures. Intel Coporation, 2010.

[69] Marius Pirvu. Optimize JVM start-up with Eclipse
OpenJ9. https://developer.ibm.com/articles/
optimize-jvm-startup-with-eclipse-openjj9/.

[70] Aleksandar Prokopec, Andrea Rosà, David
Leopoldseder, Gilles Duboscq, Petr Tůma, Mar-
tin Studener, Lubomír Bulej, Yudi Zheng, Alex
Villazón, Doug Simon, Thomas Würthinger, and Walter
Binder. Renaissance: Benchmarking suite for parallel
applications on the JVM. In Proc. 40th Conf. on
Programming Language Design and Implementation
(PLDI’19), pages 31–47. Association for Computing
Machinery, 2019.

[71] Gregory B. Prokopski and Clark Verbrugge. Analyzing
the performance of code-copying virtual machines. In
Proc. 23rd Conf. on Object-Oriented Programming Sys-
tems Languages and Applications (OOPSLA’08), page
403–422. Association for Computing Machinery, 2008.

[72] Xiang (Jenny) Ren, Kirk Rodrigues, Luyuan Chen,
Camilo Vega, Michael Stumm, and Ding Yuan. An
analysis of performance evolution of Linux’s core oper-
ations. In Proc. 27th ACM Symp. on Operating Systems
Principles (SOSP’19), page 554–569. Association for
Computing Machinery, 2019.

[73] Kirk Rodrigues, Yu Luo, and Ding Yuan. CLP: Effi-
cient and scalable search on compressed text logs. In
Proc. 15th Symp. on Operating Systems Design and
Implementation (OSDI’21), pages 183–198. USENIX
Association, July 2021.

[74] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end
Arguments in System Design. ACM Trans. Comput.
Syst., 2(4):277–288, November 1984.

[75] Hang Shao, Marius Pirvu, Tobi Ajila, and Vijay Sundare-
san. Innovations for Java running in containers. https:
//blog.openj9.org/2021/06/15/innovations-
for-java-running-in-containers/.

[76] Spark. http://spark.apache.org.

[77] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. Re-
playable execution optimized for page sharing for a man-
aged runtime environment. In Proc. 14th European Conf.
on Computer Systems (EUROSYS’19). Association for
Computing Machinery, 2019.

[78] Avi Wigderson. Improving the performance guarantee
for approximate graph coloring. J. ACM, 30(4):729–735,
October 1983.

[79] Ting Yang, Emery D. Berger, Scott F. Kaplan, and
J. Eliot B. Moss. CRAMM: Virtual memory sup-
port for garbage-collected applications. In Proc. 7th
Symp. on Operating Systems Design and Implementa-
tion (OSDI’06), pages 103–116. USENIX Association,
2006.

[80] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu
Zang, Ziqian Lu, Pingchao Yang, Chenggang Qin, and
Haibo Chen. Characterizing serverless platforms with
Serverlessbench. In Proc. 11th ACM Symp. on Cloud
Computing (SOCC’20), page 30–44. Association for
Computing Machinery, 2020.

Appendix

We discuss two additional results in the Appendix: (1) mem-
ory usage analysis of different runtimes on LangBench, and
(2) other speedups from the runtimes over GCC.

Resource Usage: Memory
Figure 7 shows the peak memory usage of the different run-
times. Compared to Figure 2, it also shows the completion
time under the minimum memory usage configuration (e.g.,
the heap size setting in OpenJDK) of each benchmark. Recall
that, for OpenJDK and V8, the minimum amount of memory
was set by determining the first heap configuration that did
not cause a crash; for Go, GOGC was set to 5%. We then

USENIX Association 2022 USENIX Annual Technical Conference    849

https://medium.com/@duhroach/improving-cloud-function-cold-start-time-2eb6f5700f6
https://medium.com/@duhroach/improving-cloud-function-cold-start-time-2eb6f5700f6
https://developer.ibm.com/articles/optimize-jvm-startup-with-eclipse-openjj9/
https://developer.ibm.com/articles/optimize-jvm-startup-with-eclipse-openjj9/
https://blog.openj9.org/2021/06/15/innovations-for-java-running-in-containers/
https://blog.openj9.org/2021/06/15/innovations-for-java-running-in-containers/
https://blog.openj9.org/2021/06/15/innovations-for-java-running-in-containers/
http://spark.apache.org


Sudoku Sort
Graph

Iterative
Graph

Recursive
Key-Value

Store 1 Thread
Key-Value
Store Best

LA Regex
1 Thread

LA Regex
Best

LA Indexed
1 Thread

LA Indexed
Best

File Server
1 Thread

File Server
Best

Average
Factor

0.1

1

10

100

0.2

0.4

0.6
0.8

2

4

6
8

20

40

60
80

C
o
m

p
le

ti
o
n

 T
im

e

5
1
2

1
6

1
6

6
4

2
5
6 6

4

9
6

6
41
6
0 1

6

6
4

6
4

9
6

1

1

6
4

1

1

1

6
4

GCC (s) 0.715 8.295 19.175 18.572 281.978 38.091 143.319 19.383 44.074 9.231 63.012 16.852

GCC Go OpenJDK Node.js/V8 CPython Min Memory Usage

0.1

1

10

0.2

0.4

0.6

0.8

2

4

6

8

P
e
a
k
 M

e
m

o
r
y
 U

s
a
g

e

Figure 7: Relative completion time and peak memory usage for various language implementations as a multiplicative factor compared to
optimized code under GCC. Each benchmark uses the most optimized version for that language implementation.

continuously increased the heap settings until performance
no longer improved. Peak memory was measured using the
reported maximum RSS from getrusage.

The figure shows that all language implementations use
at least 2x more memory than GCC. The more complex run-
times are the worst offenders with V8/Node.js and OpenJDK
using 3.70x and 3.38x more memory than GCC on average.
Go and CPython use less memory, but still use 2.12x and
2.08x more memory than GCC on average. (As an exception,
Go surprisingly manages to use 0.59x less memory than our
idiomatic C++ version of the sudoku benchmark.) It is cru-
cial for these runtimes to trade off increased memory usage
and performance. Optimal performance can require increased
memory usage, which prevents jobs from being scheduled
when datacenters allocate resources to fit peak usage. This
additional memory is also rarely returned to the OS causing
reduced memory utilization.

For both OpenJDK and V8/Node.js, the two runtimes that
require the most memory to achieve optimal performance,
their worst case was the sudoku benchmark with OpenJDK us-
ing 10.94x more memory than GCC. The sort benchmark has
the lowest memory usage with GCC only requiring 3.42MB.
However, OpenJDK and V8/Node.js also had benchmarks
that did not have any memory overhead when compared to
GCC. Both runtimes used the same amount of memory as
GCC for the key-value store benchmark, despite it being the
next smallest benchmark with GCC requiring only 33.43MB.

CPython’s peak memory usage was the closest to that of
GCC, but requiring 2.12x more memory on average. It also
had the lowest worse case, requiring 4.06x more than GCC for
the sort benchmark. Despite being more memory efficient than
the other runtimes in most of the benchmarks, CPython still
used more memory than any other runtimes in the sort bench-
mark. Go was also able to use less memory than CPython for
the sudoku and graph colouring benchmarks.

In fact, Go was the only language implementation able to
use noticeably less memory than GCC, using 0.59x less in the
sudoku benchmark. Upon inspection this stemmed from our
version of the benchmark using the C++ standard library. The
complete C++ version peaks at 3.46MB of RSS, but almost
all of this memory is allocated immediately upon running the
program. We found that using a C++ implementation that did
not use iostreams but instead used open and read reduced the
memory usage to 2.72MB. However, the largest improvement
was from not linking the C++ standard library by removing
the -lstdc++ flag when compiling. This dropped the usage to
1.33MB and well under Go’s 2.05MB.

Runtime Speedup from Library Implementa-
tions

In addition to the cases discussed in §8, there are other cases
where managed runtimes performed better than GCC. Go per-
formed better than GCC on the indexed search log analysis

850    2022 USENIX Annual Technical Conference USENIX Association



benchmarks, taking 0.90x and 0.93x less time for the single
and multithreaded versions, respectively. Further, V8 has the
same performance as GCC on the single-threaded regular
expression based log analysis. In both cases, the good per-
formance comes from the library implementation of pointer
copying (in the case of Go on indexed log analysis) and the
regular expression engine (in the case of V8 on regular ex-
pression based log search).

Surprisingly, whereas Go spends a total of 0.04 seconds
in a critical section in indexed log search, GCC takes 2.49
seconds. In the log analysis benchmarks, each worker thread
returns a list of matched log messages to the main thread by
appending a thread local list of results to the main thread’s
global list, while holding a lock. Inside this critical section,
for the append operation, Go copies more pointers per loop
iteration than GCC.

In Go, appending to a list (referred to as a slice) is done
efficiently because slices are an intrinsic type and appending
is performed by a builtin function, which uses hand written
assembly. Both GCC and Go use 128-bit wide XMM regis-
ters [9] to move two 64-bit pointers at a time with a single
mov instruction. The assembly in Go unrolls the loop as much
as possible, using all 16 XMM registers to move 32 64-bit
pointers per iteration. Furthermore, rather than checking if a
write barrier is required for each pointer, Go checks once if
write barriers are required for all pointers, as they do not need
to be performed when concurrent marking is not active 8.

For the same operation in C++ with std::vector, GCC
only moves 2 64-bit pointers in a single XMM register per
iteration. Therefore, for every 2 pointers (or single XMM
register move) GCC must also execute a compare and jump
instruction to iterate the loop. On the other hand, Go will
only execute these two loop iteration instructions every 32
pointers (16 XMM register moves). Furthermore, because we
use std::unique_ptr, GCC must set the pointers in the thread
local vector to NULL, as ownership has been transferred to the
global vector. GCC stores NULL to 2 pointers each iteration of
the loop using another XMM register.

8Write barriers are explained in more detail in Section 6.3.

USENIX Association 2022 USENIX Annual Technical Conference    851





Automatic Recovery of Fine-grained Compiler Artifacts at the Binary Level

Yufei Du1, Ryan Court2, Kevin Snow2, and Fabian Monrose1

1University of North Carolina at Chapel Hill
2Zeropoint Dynamics

Abstract
Identifying a binary’s compiler configuration enables

developers and analysts to locate potential security is-
sues caused by optimization side-effects, identify binary
clones, and build compatible binary patches. Existing
work focuses on identifying compiler family, version and
optimization level of a binary using semantic features and
deep learning techniques. Unfortunately, in practice, bi-
naries are an amalgamation of objects and functions that
can be compiled at different optimization levels with a
variety of individual, fine-grained, optimizations that may
be applied depending on the structure of the code. Hence,
rather than recovering high-level artifacts, i.e., compiler
family, version, and optimization level, we explore the
recovery of individual, fine-grained, optimization passes
for each function in a binary. To do so, we develop an ap-
proach using specially crafted features alongside intuitive
and understandable machine learning models. Our evalu-
ation on 15 popular open-source repositories shows that
our approach compares favorable with the state-of-the-
art deep learning approach in compiler family, compiler
version and optimization level identification. For fine-
grained optimization passes, our evaluation on 149,814
functions from 552 binaries in four popular open-source
repositories shows that our approach achieves an aver-
age F-1 score of 92.1% for all optimization passes and
an average F-1 score of 89.8% for optimization passes
that could have negative impacts on security. Moreover,
our approach includes experimental support for dynamic
feature extraction via binary emulation, and our results
shows that such features offer promising potential in im-
proving the accuracy of optimization pass identification.

1 Introduction

Modern compilers serve much more than simple trans-
lators that convert human-readable program code to ma-
chine instructions. They are also fully automated opti-
mizers that improve the performance of code via numer-

ous translations, including the removal of unused code,
re-ordering of instructions, replacing expensive compu-
tations with more efficient ones, and merging functions.
Ideally, these optimizations do not change the behavior of
the program in any way, other than making the resulting
code faster and smaller.

However, while compiler optimizations are preformed
in ways that should not interfere with the normal ex-
ecution of a program, some optimizations could have
a negative impact on security. In fact, recent stud-
ies [3, 19, 21, 22, 24] have shown that certain optimiza-
tions could nullify protections and verification of secure
functions as well as introduce timing side channels. For
example, the dead code elimination optimization could
remove instructions that erase sensitive data after using it,
causing the sensitive data to be vulnerable to leakage if
there is a memory error later on in the program. Similarly,
the strength reduction optimization that replaces expen-
sive operations with more efficient ones could open side
channels. Developers are usually unaware of these opti-
mizations because the compiler automatically chooses
the set of optimizations to apply based on the optimiza-
tion level, code structure, target architecture, and target
processor family. Moreover, even subtle changes can cre-
ate additional code reuse gadgets, causing the compiled
program to be more vulnerable to attacks [1].

One way to avoid these pitfalls is by having developers
manually tweak their compilation scripts to avoid apply-
ing potentially risky optimizations to secure functions
that handle sensitive data. However, for large projects,
this would be a daunting and tedious task. In order to
maximize performance while avoiding risky optimiza-
tions, developers need to manually tweak optimization
flags in addition to the optimization level. With hun-
dreds of both architecture-independent and architecture-
dependent flags, manually tweaking optimization flags
is challenging and time-consuming [5]. Moreover, some
compilers also include hidden optimizations that can-
not be manually controlled, and the code base for mod-

USENIX Association 2022 USENIX Annual Technical Conference    853



ern compilers is too large for users to review and study
for the logic behind optimizations [7]. In practice, de-
velopers for security-critical projects, such as OpenSSL
and mbed TLS, take another approach by implementing
workarounds in the source code of secure functions to
“confuse” the compiler such that it does not apply opti-
mizations to the secure code [19, 21, 24].

These workarounds, however, are not always stable. As
compilers introduce more optimizations in each release, a
workaround that successfully tricks one version may not
be effective for a future version, and developers then need
to implement a more complex workaround [19]. There-
fore, a solution that helps identify optimizations applied
to a binary at the function level could offer significant
practical value: developers could use such an approach
to, for example, verify that the program is compiled us-
ing optimizations that do not negatively impact security
before releasing the binary.

In addition to safety verification, compiler optimiza-
tion classification could be beneficial to binary code clone
detection and binary patching. Compiler configurations
can cause significant degradation in the performance of
clone detection techniques [6, 8, 10, 12]. Similarly, in
binary patching [4], locating the vulnerable function to
be patched becomes more difficult in the presence of
certain compiler optimizations.

Facing some of these challenges ourselves when try-
ing to safely perform binary patching at a function level,
we revisited the state of the art in compiler artifact re-
covery. We found that the most comprehensive of these
techniques [2, 16, 17, 20] focus on identifying the com-
piler family, the major compiler version, and the opti-
mization level for a binary, either for individual functions
or for the entire binary — but, we need more detailed
information (i.e., the passes that may have been applied).
Unfortunately, this level of recovery has not been well
explored, and even when it has been mentioned, the au-
thors conclude that “[f]urthermore, some flags would be
challenging, if not impossible to detect, the dead code
elimination flag being one example” [15].

Additionally, we found that contemporary approaches
rely on either semantic features (e.g., the control flow
graph) or employ deep learning. As the interpretability
of the outputs was a key motivating factor for us, we in-
stead opted for the use of shallow learning with specially
crafted features. To our surprise, our approach performed
on par with or better than the state of the art [20] that
uses highly-tuned neural networks for optimization level
identification (e.g, -O1 versus -O3). More importantly,
we take a step further and show that contrary to recent
statements by Pizzolotto and Inoue [15], one can detect
the application of certain optimization passes with good
accuracy. Our approach, coined PassTell, helps identify
optimization passes that affect security for individual

functions, such as different forms of dead code elimina-
tion, code motion, and strength reduction passes.

Our specific contributions include:

1. We designed PassTell, a new approach in compiler
configuration identification that recovers the opti-
mization passes applied at the function level.

2. We explored the effects of using dynamic features
extracted by force-executing each function. We
show that the use of such features offers potential
in improving accuracy, albeit in certain cases.

3. We evaluated our machine learning approach and
compared the results with the state-of-the-art. We
find that our approach performs on par with the state-
of-the-art in identifying compiler family, compiler
version, and coarse-grained optimization level.

4. We evaluated our approach using four variants of
138 programs from four open source repositories
built with the latest development version of the
Clang 14 compiler. Our approach is capable of iden-
tifying most optimization passes with high accuracy.

2 Background

2.1 Compiler Optimization

Modern compilers (e.g., GCC, LLVM, and ICC) offer
complex optimizations that improve the performance and
reduce the code size of the compiled program. In theory,
these compilers provide different levels of optimizations,
and programmers only need to specify an optimization
level for the compiler to automatically apply the corre-
sponding set of optimizations.

In practice, however, optimization is more complicated
than simply applying a fixed set of optimizations passes
for each optimization level. The LLVM compiler [11],
for example, uses pass managers to control the passes
to apply as well as the order of running the passes. The
pass manager considers multiple factors when deciding
the passes to run in addition to the optimization level
specified by the user, including the target architecture, the
target processor generation, and the source code structure.
For example, for programs targeting outdated x86 proces-
sors, the compiler would avoid applying optimizations
that use the AVX instructions that were recently intro-
duced, and for functions without loops, the pass manager
would avoid running optimizations that improve loop
performance. Therefore, knowing the optimization level
of a binary is not enough to determine the exact set of
optimizations applied to the binary.

854    2022 USENIX Annual Technical Conference USENIX Association



2.2 Security Implications

While compilers can take care to ensure that their op-
timizations do not change the behavior of normal pro-
gram execution, fully automated reasoning about the pur-
pose of deliberately ineffective or seemingly useless op-
erations added by the developers is not (yet) possible.
Hence, such instructions are targets for optimization, po-
tentially undermining security assumptions. D’Silva et al.
[3] called this problem the “correctness-security gap” and
defined three types of security violations caused by com-
piler optimization: persistent state, side channel attacks,
and undefined behavior.

A persistent state violation is when data persists out-
side of the scope it is designed to be available. D’Silva
et al. [3] listed three optimizations that could cause this
violation: dead code elimination, function inlining, and
code motion. For example, in a password verification
function where the password is temporarily stored in the
memory during verification, the compiler may consider
the operations that erase the local memory to be dead
code and remove them, causing the password to exist in
the memory after it is used, until it is eventually over-
written by a later function. Similarly, if a trusted security-
sensitive function is inlined in an untrusted function, then
the lifetime of the local variables of the trusted function
would be extended to when the untrusted function returns.
Finally, code motion may switch the order of instructions
to avoid unnecessary computation or to improve local-
ity. This optimization may cause the program to write
sensitive values to memory before verifying that the oper-
ation is needed. Beside these three optimizations, Simon
et al. [19] added that in situations where the entire stack
frame needs to be erased, any optimization that changes
the size or the layout of the stack frame such as tail-call
optimizations may cause the erasure to be incomplete.

Compiler optimizations could also introduce side-
channels that leak information about the program’s ex-
ecution based on its timing or memory usage. To avoid
side-channels, the developer may add unnecessary or in-
efficient operations to functions, but the optimizations
may simplify or remove these operations, thereby re-
introducing the side-channel. D’Silva et al. [3] listed
three optimizations that could introduce side-channels:
common subexpression elimination, which merges mul-
tiple instructions into one instruction to avoid duplicate
computation; strength reduction, which replaces expen-
sive instructions with more efficient ones, and peephole
optimization, which inspects surrounding instructions to
find opportunities to reorder or replace instructions for
simpler computation or better locality.

Our work focuses on identifying optimizations that
could cause persistent state violations or side-channels.
Identifying undefined behavior (i.e, violations caused by

undefined behavior when developers use semantics that
are undefined by the specification) is out of scope.

3 Related Work

Rosenblum et al. [18] presented seminal work in the
area of compiler identification from binary files. Their
approach focuses on identifying only the compiler fam-
ily for code snippets in the IA-32 architecture using a
probabilistic graphical model. Later on, Rosenblum et al.
[17] extended that work and presented Origin, a tool that
identifies compiler family, compiler version, and opti-
mization level for each function in a binary. Origin uses
a linear support vector machine model with features in-
cluding idioms of instructions, sub-graphs of the control-
flow graph, and high-level layout of functions such as
the starting address. However, for optimization level, Ori-
gin could only perform coarse-grained identification with
two options: “low” for -O0, -O1, and “high” for -O2, -O3.

A few years later, Rahimian et al. [16] presented a
different approach (called BinComp) for compiler prove-
nance identification. BinComp focuses on identifying the
compiler family, compiler version, and optimization level
for the entire binary. Different from Origin, BinComp
heavily utilizes features extracted from utility functions
added by the compiler to identify the compiler version
and optimization level. These utility functions include
program initialization, the startup code, and the termina-
tion code. While these functions could be highly indica-
tive of an optimization level, it is impossible to perform
identification for each function in a binary. Therefore,
BinComp could only identify the compiler configuration
used to compile the main routine of a program.

More recent work [2, 15, 20, 23] in compiler prove-
nance identification started using neural networks for
classification. Chen et al. [2] presented HIMALIA, a clas-
sifier using recurrent neural network to identify the opti-
mization level for each function of a binary. HIMALIA
uses vectors of disassembled instructions as features
and uses two recurrent neural networks for classification.
One network classifies the function into one of the four
classes: -O0, -O1, -O2/O3, and -Os; the other network
then differentiates -O2 and -O3. While the evaluation
of HIMALIA includes binaries compiled with different
versions of the LLVM Clang compiler, it only focuses
on identifying the optimization level of each function,
making no distinction of optimizations applied in differ-
ent compiler versions. Yang et al. [23] presented BinEye,
a classifier using convolutional neural network to iden-
tify optimization levels for each object in ARM binaries.
Since each instruction in the ARM architecture is four
bytes, BinEye uses the first 1024 instructions of each
object as raw features and extracts word and position em-
beddings from them. Tian et al. [20] presented NeuralCI,

USENIX Association 2022 USENIX Annual Technical Conference    855



a classifier with either convolutional neural network or
recurrent neural network to identify the compiler family,
compiler version, and optimization level for each function
in a binary. NeuralCI uses Word2Vec [14] embedding to
allow instructions with variable size. Similar to BinEye,
the evaluation of NeuralCI combined -O2 and -O3 into
one coarse-grained optimization level of OH.

Most recently, Pizzolotto and Inoue [15] presented an
approach that uses either a convolutional neural network
or a long-short term memory network to identify the com-
piler family and optimization level for code snippets of
2KB in seven different architectures. This approach in-
cludes either the raw bytes or the opcodes as features
but concluded that raw bytes lead to better results when
large amounts of training data are available. Similar to
HIMALIA, the evaluation of this approach includes five
different optimization levels: -O0, -O1, -O2, -O3, and
-Os. As NeuralCI performed the most in-depth and realis-
tic evaluation, and it was shown to outperform the other
approaches that classify at the function level, we select it
for comparison later on in this paper.

4 Approach

We now present PassTell, an approach for identifying the
set of optimization passes likely applied to each function
in a binary file. Figure 1 shows the overall workflow.

4.1 Dataset Generation
Our dataset used to train the classifier includes functions
compiled with different optimizations. Each function in-
cludes a set of optimization passes that were applied
during compilation and the instructions in the function.
The overall workflow of dataset generation is as follows:
first, we compile programs with different optimization
levels and record the list of optimizations applied to each
function; then, we disassemble the binary to retrieve the
instructions of each function; finally, we sanitize the in-
structions by removing detailed memory addresses, call
targets, and immediate values.

To train and evaluate our classifier, we first need to
gather the optimization passes that modify a function dur-
ing compilation. While the Clang frontend of the LLVM
compiler [11] has an option to list the optimizations ap-
plied to each function during compilation, this option
outputs all passes that run, even the ones that make no
modification. Therefore, we made modifications to ex-
tract the optimization passes that modify a function dur-
ing compilation. Section 5 discusses the modifications
we made to the LLVM compiler.

After disassembling the binary file, we sanitize the
instructions before feature extraction. Specifically, we
replace all memory addresses with the #MEM# label, all

call targets with #TARGET#, and all immediate values with
#IMM#. We make this adjustment because the detailed
memory addresses, immediate values, and call targets
are highly variable across different programs and are
not useful in optimization classification. Tian et al. [20]
applied similar rules to the instructions.

4.2 Dynamic Feature Generation
As an extension, we also present a method to extract
changes of register values (recovered via emulation) and
use these dynamic features in our classifier. At present,
the dynamic features only include register deltas. We use
a binary emulation library to attempt to force-execute
each function in the dataset. After the execution of each
instruction, we record the address of the instruction, the
registers changed, and the deltas of their values. Within
these three types of data, the instruction address is only
used to compute the coverage of the force-execution and
to avoid endless loops.

While it may seem unnecessary to include dynamic
features as the dataset already includes the entire disas-
sembly of the function, we posit that dynamic features
could still contribute to the classification because some
changes in the registers are implicit and not shown in
the disassembly. For example, the FPSW register includes
flags, the stack address, and the current code for floating
point operations. Additionally, floating point operations
may cause this register to change implicitly. Our main
goal of including dynamic features is to explore their
potential to improve classification accuracy. We expect
progress can still be made in future work.

4.3 Feature Extraction

Category Feature Type Example
Static Opcode call

Instruction mov esi ecx
Register rsi
2-gram of opcodes pop | ret
2-gram of instructions pop rbp | ret
First instruction push r15
Last instruction xchg ax ax

Dynamic Register value delta rbp=-248

Table 1: Feature types and examples for each type of
feature used in our approach

By default, we use seven types of static features: op-
code, instruction, register, two-gram of opcodes, two-
gram of instructions, and the first and last instruction of
a function. The register value delta is an optional feature.
Table 1 lists an example of each feature type.

856    2022 USENIX Annual Technical Conference USENIX Association



Disassembler

Binary file

Functions with
sanitized instructions

Feature Extractor

LightGBM 1

Features for
each function

Classifier

…

LightGBM 2

LightGBM 3

LightGBM N Optimizations
applied to each

function

Dynamic Feature 
Generator

Raw register deltas
for each function

Figure 1: Workflow of PassTell for optimization pass classification

We apply feature selection before extracting features.
There are overwhelming amount of different instructions,
two-grams of opcodes, two-grams of instructions, and
changes of register values, so we select 1,000 features
from each of these four feature types, for each optimiza-
tion pass. This means that we use different features for
the classification of each optimization pass. Our feature
selection strategy for each optimization pass is as follows:
first, we filter the dataset such that it is balanced for the
optimization pass (i.e., the number of functions with the
optimization and the number of functions without the op-
timization are the same); second, we sort the features by
the number of functions in the balanced dataset that have
at least one occurrence of the feature; finally, we select
the 1,000 most frequent features of each type. Table 2
shows an example of the selected features for the Early
CSE pass. For the other feature types, including opcode,
register, the first instruction, and the last instruction, we
use all features in these types without applying feature
selection because there are less features in these types.

All features hold binary values. That is, we check
whether the function has this feature or not. For example,
a leaf function (i.e., a function that does not call any other
functions) that performs arithmetic operations in a loop
should have value 0 for the opcode feature call because
it does not include any call, and it may have value 1 for
the opcode feature test because it may use the test
instruction to determine the end condition of the loop.

We decide to use this simple set of binary features
as a result of interpretable feature engineering. Our ap-
proach with interpretable feature importance allows us to
compare and select the most efficient and effective fea-
ture types. We also tested using frequencies as features
instead of binaries but found minimal improvements.

4.4 Classification

After generating the feature set, we then train our classi-
fier for optimization classification. For each optimization,
we train a binary LightGBM classifier [9] that decides if
a function is modified by this single optimization.

LightGBM is an implementation of gradient boosting
decision tree. We select this classifier instead of deep
learning techniques for two reasons. First, modern com-
pilers include a large amount of passes. In our dataset,
for example, we observed a total of 83 unique compiler
passes applied to functions or components inside a func-
tion (e.g., a loop). Each pass requires a separate binary
classifier. Therefore, in order to train the dataset with a
reasonably large dataset, our choice of classifier should
scale well in both training time and memory consump-
tion. Second, classifiers such as support vector machines
and neural networks cannot easily demonstrate the rea-
soning or the importance of features. Decision tree-based
classifiers, on the other hand, can more readily show the
reasoning and the importance of features.

In the training phase, a list of all optimization passes
is generated and a model for each is created. That is, for
each function, we create a list of binary labels for each
pass to indicate if the function was modified by each
of these corresponding passes, then a LightBGM-based
classifier is trained for each of those binary labels (i.e.,
83 classifiers in total) using the extracted features. For
classification, the feature extractor sends each function’s
features to each of the 83 trained models. The trained
model for each optimization pass then decides if that
optimization was applied to (and modified) each function,
and finally the list of all applied optimization passes is
returned for each individual function in the binary.

USENIX Association 2022 USENIX Annual Technical Conference    857



Static Dynamic
Instruction 2-gram of Opcodes 2-gram of Instructions Register Value Delta

Feature Count Feature Count Feature Count Feature Count
ret 2,626 mov; mov 2,577 pop rbp; ret 1,517 ip=3 2,710
call #T# 2,300 pop; ret 2,413 push rbp; mov rsp rbp 1,059 rip=3 2,710
add #I# rsp 1,688 push; mov 2,069 add #I# rsp; pop rbx 841 eip=3 2,710
push rbp 1,572 mov; call 2,059 mov rsp rbp; sub #I# rsp 814 rsp=-8 2,582
pop rbp 1,527 call; mov 1,680 add #I# rsp; pop rbp 788 spl=-8 2,582

Table 2: Top five selected features for feature types with feature selection for optimization pass Early CSE with a
sample set of 2,780 functions, including 1,390 positive samples and 1,390 negative samples. (Sanitized keywords such
as #TARGET# are abbreviated to only the first letter.)

5 Implementation

We now discuss the implementation details of the various
components shown in Figure 1.

Dataset Generation We implemented the dataset gen-
eration component in Python. The technique takes a
source code repository and compiles it with four lev-
els of optimizations (-O0, -O1, -O2, and -O3). During
compilation, it extracts the ground truth of optimization
passes that modified each function from the compiler
log. After compilation, objdump is used to disassemble
the binary in order to retrieve the instructions of each
function. Instructions are sanitized by removing detailed
memory addresses, call targets, and immediate values (as
discussed in Section 4.1).

We modified the legacy pass manager of the LLVM
compiler [11] in order to retrieve the list of optimization
passes that modifies a function. We made modifications
to the latest development version of LLVM 14 at the
time of this writing (commit #c59ebe4). We added an
option to the existing output flag of LLVM’s legacy pass
manager1 to list the optimization passes that modify a
function or components inside a function (e.g., a loop).

Finally, since we use objdump to disassemble the com-
piled binary files into functions, our tool enables debug-
ging symbols during compilation. However, this is not
a hard requirement for classification as one could use
external tools such as IDA Pro to determine function
boundaries of stripped binaries, but prior efforts found
little difference in outcome between the two tactics [20].

Dynamic Feature Generation As mentioned in Sec-
tion 4.2, PassTell also supports register values extracted

1Recent versions of the LLVM compiler contains two pass man-
agers, and by default, the new pass manager is responsible for all opti-
mization passes before code generation. However, the new pass man-
ager does not contain any utility functions to extract the pass names.
Therefore, we use the flag “-flegacy-pass-manager” to use the legacy
pass manager for all passes, including the ones before code generation.

during execution to complement static features. To do
this, we make use of Zelos [25], a python-based binary
emulator platform that supports x86 (both 32 and 64-bit),
ARM and MIPS architecture emulation. Under the hood,
Zelos makes use of QEMU CPU emulation and imple-
ments system call emulation similar to QEMU usermode,
but CPU and syscall-level hooks make comprehensive
binary instrumentation readily available. Using this tool,
we instrument forced emulation of each function in a bi-
nary and record the changes to register values after each
instruction within function boundaries. To do so, we ex-
tended the emulator to execute a binary, then wait until it
has mapped itself in memory and pause execution. Then,
for each function, the instruction pointer is adjusted to the
function start address before execution resumes. While
executing the function, call instructions are skipped
to ensure that recorded register changes reflect only the
target function, while also avoiding recursion and poten-
tially long call chains. Before emulating each function,
we map a page of memory and fill it with the start ad-
dress of the region. The address of this region is used
as the return address for the target function as well as
for all existing register values that appear to be pointers
to memory, to avoid errors related to reading or writing
unmapped memory.

Feature Extraction and Classification As discussed
in Section 4.3, our approach performs feature selection
for each optimization pass. As such, having a dedicated
feature extraction component that saves all features to
files is highly inefficient. Therefore, we combined the fea-
ture extraction phase for both static and dynamic features
and the classifier into one classifier component.

We implemented our classifier using Python and the
LightGBM library [13]. The classifier iterates through
each optimization pass, selecting and extracting features
and then creating a LGBMClassifier. When training,
the classifier first filters the dataset such that the dataset
is balanced, with the same amount of positive and neg-
ative data. Then, the classifier selects the most popular

858    2022 USENIX Annual Technical Conference USENIX Association



features as described in Section 4.3, extracts both static
and dynamic features, and trains the LGBMClassifier.
When classifying, the classifier extracts the static and
dynamic features and uses the LGBMClassifier to pre-
dict whether the function is modified by this optimization
pass. After the classifier extracts features and performs
classification for all optimization passes, it then merges
the results together to generate the final result, the list of
optimizations applied to the function.

6 Evaluation

The evaluation includes experiments in two directions.
First, we evaluate the effectiveness of our features and our
classifier. In this experiment, we compare PassTell with
NeuralCI [20], a state-of-the-art approach to compiler
configuration identification. To ensure a fair comparison,
we first modified our classifier into a multi-class classifier
to identify the same compiler configuration as NeuralCI,
including the compiler family, the major compiler ver-
sion, and the optimization level, where each combination
is a class. Later, we evaluate our approach in identifying
the individual optimization passes. Overall, our experi-
ments seek to answer the following questions:

RQ1 How does our approach compare to the state-of-the-
art in compiler configuration recovery?

RQ2 Can our approach provide meaningful information
regarding feature significance?

RQ3 How well can we infer individual optimization
passes?

RQ4 Does the inclusion of dynamic features help with
classifying individual passes?

6.1 Compiler Configuration Identification
We use the same benchmark programs as in NeuralCI
[20]. To replicate NeuralCI’s experimental setup, we
combine binaries compiled with -O2 and -O3 optimiza-
tion levels into one class, -OH. As our prototype utilizes
objdump to generate the disassembly for each function,
we only use the unstripped binaries. Tian et al. [20] ob-
served no difference in classification performance be-
tween the stripped and unstripped binaries. Our dataset
thus consist of all dynamically linked unstripped exe-
cutables from the dataset, including binutils, busybox,
coreutils, curl, ffmpeg, git, gsl, libpng, openssl,
postgresql, sqlite, valgrind, vim, zlib, and gdb.

While inspecting the dataset, we discovered that the
dataset is highly unbalanced, with some configurations
having significantly less amount of samples than others.
We note that this issue is not limited to NeuralCI, as other

Figure 2: Confusion matrix of our LightGBM model applied to the
NeuralCI formulation of the compiler classification problem

approaches [2, 15] also do not balance their datasets. To
circumvent this issue, we randomly dropped functions
from certain configurations to ensure that all configura-
tions have the same number of functions. In the end, our
dataset consists of 4,400 functions for each configura-
tion. We split the dataset into an 80% training set and a
20% testing set. Appendix A describes the issue in detail
and includes a comparison of the results of NeuralCI
before and after balancing the dataset. Finally, NeuralCI
includes only unique functions in its dataset, so functions
that are identical across configurations are removed. We
apply the same procedure.

Since Tian et al. [20] do not include all the code used
to construct features from the dataset, we re-implemented
the extraction and abstraction of functions. For extraction,
we use objdump instead of IDA Pro to parse the body of
each function. The abstraction for each function is the
same as done by Tian et al. [20], namely, mnemonics and
register operands are unchanged, base memory addresses
in operands are replaced with the symbol #MEM#, and
immediate values are replaced with the symbol #IMM#.

Experiment Results

For the identification of compiler family, compiler ver-
sion, and optimization level, NeuralCI achieves an av-
erage F-1 score of 76.6%, and our approach achieves
an average F-1 score of 83.2%. Our re-implementation
of NeuralCI produces lower results as reported in their
paper [20]. We attribute the variation to be due to the
correctly balanced dataset. Overall, the results show that
our approach performs better than NeuralCI in identify-
ing the compiler family, the major compiler version, and
optimization level.

Interestingly, both the confusion matrix of our ap-

USENIX Association 2022 USENIX Annual Technical Conference    859



Figure 3: Confusion matrix of NeuralCI in classifying the compiler
family, compiler version, and optimization level

proach (Figure 2) and the confusion matrix of NeuralCI
(Figure 3) show that identifying the optimization level
and the compiler version of binaries compiled with Clang
is more challenging. NeuralCI reports similar findings in
its evaluation [20]. For functions built by GCC and ICC,
both approaches achieve high accuracy in identifying the
compiler family, compiler version, and optimization level.
For this reason and the fact that we modified the LLVM
pass manager to extract pass information, we focus on
Clang2 for the remaining experiments.

6.2 Optimization Pass Identification
Satisfied with the performance and simplicity offered
by PassTell, we focused on tackling the more difficult
cases with Clang. Specifically, the compiler pass dataset
consists of functions from binutils (2.37), coreutils
(9.0), httpd (2.4.51), and sqlite (3.36.0) programs
compiled with Clang 14, using each of -O0, -O1, -O2,
and -O3 optimization levels, generating a total of 149,814
functions in 552 binaries. Then, we balance the dataset
for each pass: for each pass, we randomly select an equal
amount of functions with the pass applied (i.e., positive
samples) and functions without the pass applied (i.e.,
negative samples). We also limit the maximum number
of samples for each pass to 5,000 positive samples and
5,000 negative samples.

Experiment Results

Overall, our approach achieves an average F-1 score of
92.1%. All but three of the 83 passes have an F-1 score
higher than 80%, and the three exceptions all have insuffi-
cient amount of samples (<150 functions). If we only con-

2Clang is a front-end of LLVM and is part of the LLVM infrastruc-
ture.

sider the 73 passes that contain more than 500 samples,
the average F-1 score improves to 93.7%. Table 3 depicts
the results of our approach using only static features. For
brevity, we only list the detailed results of 13 of the 83
passes in total. We pick these 13 passes because they are
optimizations that could affect security [3, 19, 21, 24]:
dead store elimination, dead code elimination, code mo-
tion, tail call optimization, common subexpression elimi-
nation, strength reduction, and peephole optimizations.
For these passes, our approach achieves an average F-1
score of 89.8%. The findings further show that, contrary
to Pizzolotto and Inoue [15]’s statement, even passes that
seem unlikely to be detected, such as dead code elimina-
tion, can be identified with high accuracy.

0 5 10 15 20 25 30 35 40 45
Significance

push %rbp | mov %rsp %rbp

edi

al

nopl #MEM# %rax %rax #IMM#

cs #TARGET#

mov | cmpb

mov #IMM# %edx

esi

cmp | je

mov %rdi #MEM# %rbp

mov #IMM# %edi

cmpb | mov

nopl

cmp

rcx

F
ea
tu
re

2-gram Instruction
2-gram Opcode
Instruction
Opcode
Register

Type

Figure 4: Top 15 Features for Aggressive Dead Code Elimination

To understand why our approach works as well as
it does, we inspected the feature significance of some
of the security-affecting passes. We choose to inspect
the feature significance for Aggressive Dead Code
Elimination and Peephole Optimizations because
these two passes offer sufficient descriptions about their
purposes in the code comment of the LLVM compiler’s
source code. Figure 4 shows the top 15 features for
the Aggressive Dead Code Elimination pass and
the feature type of each feature. The description of the
optimization pass in the LLVM compiler’s source code
indicates that this pass considers all code to be dead
unless proven otherwise and removes all the dead in-
structions, especially dead code involving loops. The
top feature in this case checks whether the function up-
dates the function pointer. Clang omits updating the
frame pointer on optimization levels above -O1. Sim-
ilarly, the instruction features nopl #MEM# %rax $rax
#IMM# and cs #TARGET#3 are instructions padding in-
structions without any semantic meaning whose purpose

3This feature is actually a nopw NOP instruction. Due to the dif-
ferent format objdump uses for instructions involving the cs segment
register, this instruction is not parsed correctly. Since segment registers

860    2022 USENIX Annual Technical Conference USENIX Association



Pass Training
Samples

Testing
Samples

Precision
(%)

Recall
(%)

F-1
(%)

Dead Store Elimination 1332 444 86.3 85.8 85.7
Aggressive Dead Code Elimination 1092 364 83.9 83.5 83.4
Bit-Tracking Dead Code Elimination 2512 838 87.6 87.5 87.5
Remove dead machine instructions 7500 2500 88.7 88.6 88.6
Early Machine Loop Invariant Code Motion 7500 2500 93.4 93.3 93.3
Machine Loop Invariant Code Motion 739 247 89.4 89.0 89.0
Loop Invariant Code Motion 7500 2500 90.8 90.6 90.6
Tail Call Elimination 88 30 86.6 86.6 86.6
Machine Common Subexpression Elimination 7500 2500 88.5 88.1 88.1
Early CSE 7500 2500 92.5 92.2 92.2
Early CSE w/ MemorySSA 7500 2500 88.9 88.6 88.6
Loop Strength Reduction 7500 2500 95.4 95.4 95.4
Peephole Optimizations 7500 2500 98.0 98.0 98.0
Average 90.0 89.8 89.8

Table 3: Precision, recall, and F-1 results on security-related passes when using static features.

is to enforce a 16-byte alignment between functions,
and Clang only adds these instructions at -O1 or above.
Since Aggressive Dead Code Elimination is never
applied at -O0, these three features effectively remove
functions with -O0 optimization level.

Four other features among the top 15 features include
various forms of the comp compare instruction, which
commonly appears in loops. This finding matches the
description of the pass. Finally, some of the top features
show significance in the usage of certain registers. Since
this pass is applied before register allocation in the com-
piler pipeline, we speculate that the removal of dead in-
structions reduces the amount of required registers, caus-
ing the register allocator to not use certain registers.

0 20 40 60 80 100 120
Significance

jne #TARGET#

cmpl

cmp | je

cmp | jne

cmpb

cmp

push %rbp | mov %rsp %rbp

ja #TARGET#

cmpq

mov %rsp %rbp

test %eax %eax

jb #TARGET#

rcx

eax

xor | jmp

F
ea
tu
re

2-gram Instruction
2-gram Opcode
Instruction
Opcode
Register

Type

Figure 5: Top 15 Features for Peephole Optimizations

The top features for Peephole Optimizations show
similar patterns. Figure 5 shows the top 15 features.
The description in the code comments suggests that

are rarely used in 64-bit x86 programs, and we did not find any instruc-
tions utilizing that register other than the padding NOP, we conclude
that this small implementation quirk does not impact our results.

this pass performs four types of optimizations: opti-
mization of sign/zero extension instructions, optimiza-
tion of comparison instructions, optimization of loads,
and optimization of copies and bitcasts. The top fea-
tures show that our classifier mainly capture the second
type of optimizations that optimizes comparison instruc-
tions. Six of the 15 features include a variant of the cmp
compare instruction; four other features include a jump
instruction that usually follows a compare instruction,
and one feature includes a test instruction, which is
functionally similar to a compare instruction. Similar
to Aggressive Dead Code Elimination, the top fea-
tures for Peephole Optimizations also include the
feature that saves the frame pointer in order to detect
-O0 functions.

6.3 Case Study on Optimization-induced
Vulnerabilities

Although prior studies [3, 19, 21, 22, 24] have shown
that compiler optimizations can weaken protections put
in place by safe coding practices, it remained unclear
whether the nullification of protections could in fact lead
to information leakage or other attacks for real-world pro-
grams. Thus, we studied three real-world programs and
examined how protections introduced by programmers
are affected by the dead store elimination optimization:
BusyBox (1.35.0), httpd (2.4.52), and crypto++ (5.6.4).

BusyBox BusyBox is a popular embedded program that
combines many UNIX utilities into a single binary. Some
of the utilities included in BusyBox require password
encryption or authentication, such as the passwd utility,
the cryptpw utility, the built-in HTTP server, and the
built-in FTP server. Therefore, BusyBox’s codebase in-
cludes hashing functions such as MD5 and SHA. When a
utility needs to encrypt a password, the utility would call

USENIX Association 2022 USENIX Annual Technical Conference    861



pw_encrypt, which then calls the corresponding MD5,
SHA, or DES encryption functions. The SHA encryption
function, sha_crypt, uses both a local stack object, L,
and heap objects, key_data and salt_data, to store in-
termediate values during the encryption. Listing 1 shows
a snippet of this function. Before the function returns, it
attempts to erase the three objects using memset. How-
ever, at -O3 optimization level, the dead store elimination
optimization removes all three calls to memset. Thus, the
intermediate values remain in the memory after the func-
tion returns even though developers took the necessary
precautions to erase the data.

1 static char * NOINLINE sha_crypt(/*const*/
char *key_data , /*const*/ char *salt_data)

2 {
3 ...
4 struct {
5 ...
6 } L __attribute__((__aligned__(__alignof__

(uint64_t))));
7 ...
8 salt_data = xstrndup(salt_data , salt_len);
9 ...

10 key_data = xstrdup(key_data);
11 ...
12 /* Clear the buffer for the intermediate

result so that people
13 attaching to processes or reading core

dumps cannot get any
14 information. */
15 memset(&L, 0, sizeof(L));
16 memset(key_data , 0, key_len);
17 memset(salt_data , 0, salt_len);
18 free(key_data);
19 free(salt_data);
20 ...
21 return result;
22 }

Listing 1: Code snippet from the sha_crypt function

We tested this program using its cryptpw utility that
prints the hashed password in the format of Linux’s
passwd format from a given password in plain text. The
cryptpw utility calls pw_encrypt to hash the password
text, which calls sha_crypt if SHA mode is selected.
At -O0 optimization level, all three objects that con-
tains intermediate values in sha_crypt (L, key_data
and salt_data) are overwritten to 0 properly at the end
of the function. At -O3 optimization level, however, the
entire value of L is left on the stack at the end of the func-
tion. For the heap objects, the calls to free overwrite the
first 16 bytes of both key_data and salt_data. Since
salt_data is less than 16 bytes, its value cannot be re-
covered. However, in situations where the input plain
text password is longer than 16 characters, the size of
key_data would be larger than 16 bytes. In this case, part
of the intermediate value stored in key_data would per-
sist in the heap memory after its scope. After sha_crypt
returns, pw_encrypt then calls a simple clean up func-

tion and returns to the caller utility. At this point, both the
stack object L and the partial leftover from the heap object
key_data still exist in the memory without being over-
written. This means that if an attacker finds a memory
disclosure vulnerability in the caller utility of BusyBox
before the intermediate values are eventually overwritten
by subsequent functions, then the attacker can recover the
entire value of L and/or the value of key_data after the
first 16 bytes. Since BusyBox includes an HTTP server
and an FTP server that both use pw_encrypt, it would
be possible for an attacker to launch an attack remotely.

We have submitted a bug report for this issue 4.

1 int get_password(struct passwd_ctx *ctx)
2 {
3 char buf[MAX_STRING_LEN + 1];
4 ...
5 else {
6 ...
7 apr_password_get("Re-type new password

: ", buf, &bufsize);
8 if (strcmp(ctx->passwd , buf) != 0) {
9 ctx->errstr = "password

verification error";
10 memset(ctx->passwd , ’\0’, strlen(

ctx->passwd));
11 memset(buf, ’\0’, sizeof(buf));
12 return ERR_PWMISMATCH;
13 }
14 }
15 memset(buf, ’\0’, sizeof(buf));
16 return 0;
17 ...
18 }

Listing 2: Code snippet from the get_password function

Httpd and Crypto++ The HTTP server httpd con-
tains a support utility program, htpasswd, that manages
the files that store usernames and passwords. This pro-
gram includes a function get_password() that reads the
password entered by the user to a local buffer, and stores
the buffer to a passwd_ctx struct. Before it returns, the
function calls memset to erase the buffer such that the
password entered by the user would not stay in the mem-
ory. Listing 2 shows a snippet of this function. Before
any return statement, the function erases the memory of
the buffer, buf, that contains the user-entered password
at line 11 and line 15 in Listsing 2. However, at -O3
optimization level, the dead store elimination optimiza-
tion removes the function call to memset that erases buf,
causing the password in plain text to persist in the stack
memory after get_password() returns, contrary to the
developers’ intention.

We tested this program and discovered that immedi-
ately after the function returns, we could recover the
exact password in plain text in the stack memory. It is

4https://bugs.busybox.net/show_bug.cgi?id=14806

862    2022 USENIX Annual Technical Conference USENIX Association

https://bugs.busybox.net/show_bug.cgi?id=14806


worth noting that after get_password returns to its caller,
mkhash, the caller later calls other functions, overwriting
the stack memory that contains the password as the stack
frame of get_password is smaller than the stack frame
of subsequent functions. Therefore, if an attacker finds a
memory disclosure vulnerability in mkhash between the
call to get_password and the subsequent function call,
then they can retrieve the password in plain text.
Crypto++, a cryptography library written in C++,

contains a similar issue as htpasswd. The function
CAST256::Base::UncheckedSetKey uses a call to
memset to erase its local variable, kappa, which holds
the hashed key. At -O3 optimization, the dead store elim-
ination optimization removes this call, causing the secret
key to remain in stack memory after the function returns.

For validation purposes, we use the entire compiler
pass dataset (discussed in Section 6.2) as our training
set for BusyBox and crypto++. For httpd, our compiler
pass dataset also contains httpd, albeit a different minor
version, so we exclude all functions in httpd from our
training set. Our classifier correctly identifies the Dead
Store Elimination pass for all three functions at -O3
optimization level. At -O0, the classifier mis-identifies
sha_crypt for BusyBox but identifies the missing of the
pass correctly for httpd and crypto++.

6.4 The Effects of the Dynamic Features

Finally, we evaluate the value of including dynamic fea-
tures. For that, we use the same dataset as in Section 6.2,
but apply additional filtering. Specifically, because our
current implementation of our dynamic feature generator
is unable to generate register features for all functions
in the dataset, we filter the dataset to only include func-
tions that our generator achieved a minimum coverage
threshold. Additionally, we only include passes that were
applied to more than 500 functions. Since our goal is to
evaluate the effects of the dynamic features and not the
coverage of the feature generator itself, we view this as
a reasonable way to understand what impact dynamic
features could have on classification performance.

To compare to the baseline, we ran our approach using
both static features and dynamic features. For the latter,
we experimented with coverage thresholds ranging from
30% to 60%. For these configurations, we used the same
filtered dataset and artificially removed dynamic features
to reach the target coverage.

Experiment Results

Table 4 depicts the results. We only show cases where
the difference in F-1 score is greater than 1%. While the
average F-1 score appears similar regardless of the inclu-
sion of dynamic features, the detailed results tell a more

compelling story. Some passes, such as Remove dead
machine instructions, show a notable decrease in F-
1 score, while others (e.g., Early CSE w/ MemorySSA)
improve by almost 4.0%.

0 10 20 30 40 50
Significance

push %rbp | mov %rsp %rbp

mov | add

eip=7

nopl

ecx

add | mov

push | mov

and

rcx

eax

cmp

flags=64

rsp

jmp #TARGET#

flags=4

F
ea
tu
re

Static Dynamic
Type

Figure 6: Top 15 Features for Early CSE w/ MemorySSA with both
static and dynamic features

To better understand the reasons, we examined
the most important featured as deemed by the
LGBMClassifier classifier. Figure 6 shows the top 15
features and the significance of each feature for the Early
CSE w/ MemorySSA pass. The description of this pass
indicates that this pass removes “trivially redundant in-
structions”. The top 15 features include three dynamic
features: eip=7, flags=64, and flags=4. The EIP regis-
ter is the instruction pointer, and the delta of this register
shows information of instruction size, which is not avail-
able in the static features. Similarly, the FLAGS register, as
partial alias of the EFLAGS register, contains various pro-
cessor flags that are implicitly set during arithmetic op-
erations and interrupts. Since this register is only set im-
plicitly as a side effect of instructions, static approaches
cannot extract this information by analyzing the disas-
sembly or the binary code.

An examination of the Rotate Loops pass yields sim-
ilar insights. Here, the top 15 features (Figure 7) include
two dynamic features: flags=-68 and eip=10. These
results indicate that dynamic features, instruction pointer
and processor flags in particular, can provide useful in-
formation in the detection of some optimization passes.

Lastly, we noticed that as we varied the coverage
threshold, a few passes showed a noticeable improve-
ment in F-1 score at higher coverage levels. For these
passes, the result appears to be related to the number of
dynamic features and their significance. For example, for
Early CSE w/ MemorySSA, at 30% coverage, the top 25

USENIX Association 2022 USENIX Annual Technical Conference    863



Pass Training
Samples

Testing
Samples

Static
Only
(%)

Static &
Dynamic

(%)
Early CSE w/ MemorySSA 607 203 82.2 86.1
Rotate Loops 400 134 84.2 86.5
Merge disjoint stack slots 598 200 94.4 96.5
Control Flow Optimizer 2,200 734 95.6 97.1
Canonicalize natural loops 396 132 87.9 89.4
Peephole Optimizations 1,297 433 94.9 96.3
Two-Address instruction pass 3,454 1,152 94.9 96.0
Remove Redundant DEBUG_VALUE analysis 1,515 505 88.1 87.1
PostRA Machine Sink 634 212 90.1 89.1
Live DEBUG_VALUE analysis 3,030 1,010 97.4 95.9
Machine Instruction Scheduler 1,303 435 93.3 91.2
Simplify the CFG 1,912 638 91.2 89.0
Remove dead machine instructions 903 301 91.0 86.7
Average for All Passes with at Least 500 Samples 92.9 93.0

Table 4: F-1 scores using only static versus static and dynamic features. The table list only results where the difference
of F-1 score is >= 1%. The coverage threshold is set to >= 70%. Security-related passes are highlighted in dark grey.

0 10 20 30 40 50
Significance

push %rbp | mov %rsp %rbp

jne #TARGET#

add | cmp

cs #TARGET#

jmp

sub #IMM# %rsp | mov %rdi #…

push %r14 | push %r13

call | mov

nopl | mov

mov | add

test

flags=-68

cmp

rdx

eip=10

F
ea
tu
re

Static Dynamic
Type

Figure 7: Top 15 Features for Rotate Loops with both static and
dynamic features

features include four dynamic features, and at 70% or
higher, the top 25 features include eight dynamic features.
We posit that future improvements in the way dynamic
features are collected could boost the classification for
more passes, without negatively impacting others.

7 Limitations

Our implementation of the data collection component
only records optimization passes applied to functions
or components within a function (e.g., loops and basic
blocks). Optimization passes applied to larger units such
as modules and call graphs are not studied. Therefore, our
analysis does not cover cross-function optimizations such
as the function inlining. This limitation stems from the
fact that the LLVM compiler does not report the specific

functions modified by a module pass or call graph pass.
Similarly, our data collection component does not support
extracting whole-program optimizations applied at link
time, which could also negatively impact security [21].

In addition, our approach targets only binary files di-
rectly generated by the compiler. Thus, it can not be used
in situations where the binaries are modified after compi-
lation, such as obfuscated binaries or binaries with binary
patches applied. This limitation is not unique to us.

8 Conclusion

We presented a light-weighted approach to the problem
of compiler configuration identification. Our approach
combines a novel technique for feature extraction and a
scalable classifier for performing compiler provenance
recovery. To further improve the accuracy of our classi-
fier, we explored the use of dynamic features extracted
by force-executing functions using a binary emulator.
Overall, our approach shows comparable results as the
state-of-the-art in the original problem of identifying the
compiler family, the compiler version, and the optimiza-
tion level, and pushes the field forward by showing that
one can even identify individual optimization passes.

9 Availability

Our coarse-grained compiler configuration classifier
and our fine-grained compiler pass classifier are avail-
able at https://github.com/zeropointdynamics/
passtell. The balanced compiler configuration dataset
(§6.1), the compiler pass dataset (§6.2), and the com-
piler pass dataset with high dynamic feature coverage
(§6.4) are also available. Furthermore, Zelos, our binary
emulator we use to generate dynamic features, is open
sourced [25].

864    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/zeropointdynamics/passtell
https://github.com/zeropointdynamics/passtell


References

[1] M. D. Brown, M. Pruett, R. Bigelow, G. Mururu,
and S. Pande. Not so fast: understanding and miti-
gating negative impacts of compiler optimizations
on code reuse gadget sets. ACM Conference on
Programming Languages, 5:1–30, 2021.

[2] Y. Chen, Z. Shi, H. Li, W. Zhao, Y. Liu, and Y. Qiao.
Himalia: Recovering compiler optimization levels
from binaries by deep learning. In IntelliSys, 2018.

[3] V. D’Silva, M. Payer, and D. Song. The correctness-
security gap in compiler optimization. In IEEE Se-
curity and Privacy Workshops, pages 73–87, 2015.

[4] R. Duan, A. Bijlani, Y. Ji, O. Alrawi, Y. Xiong,
M. Ike, B. Saltaformaggio, and W. Lee. Automat-
ing patching of vulnerable open-source software
versions in application binaries. In NDSS, 2019.

[5] K. Georgiou, Z. Chamski, A. A. García, D. May,
and K. I. Eder. Lost in translation: Exposing hid-
den compiler optimization opportunities. ArXiv,
abs/1903.11397, 2019.

[6] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dol-
stra. Finding software license violations through
binary code clone detection. In Conference on Min-
ing Software Repositories, pages 63–72, 2011.

[7] M. J. Hohnka, J. A. Miller, K. M. Dacumos, T. J.
Fritton, J. D. Erdley, and L. N. Long. Evaluation
of compiler-induced vulnerabilities. Journal of
Aerospace Information Systems, 16(10):409–426,
2019.

[8] Y. Hu, Y. Zhang, J. Li, and D. Gu. Binary code
clone detection across architectures and compiling
configurations. In International Conference on Pro-
gram Comprehension, pages 88–98, 2017.

[9] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen,
W. Ma, Q. Ye, and T.-Y. Liu. Lightgbm: A highly ef-
ficient gradient boosting decision tree. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems, vol-
ume 30, 2017.

[10] D. Kim, E. Kim, S. K. Cha, S. Son, and Y. Kim.
Revisiting binary code similarity analysis using in-
terpretable feature engineering and lessons learned,
2021.

[11] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis & trans-
formation. In International Symposium on Code

Generation and Optimization: Feedback-Directed
and Runtime Optimization, page 75, USA, 2004.

[12] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu.
Semantics-based obfuscation-resilient binary code
similarity comparison with applications to software
plagiarism detection. In ACM SIGSOFT Interna-
tional Symposium on Foundations of Software En-
gineering, pages 389–400, 2014.

[13] Microsoft Corporation. Light gradient boosting ma-
chine. URL https://github.com/microsoft/
LightGBM.

[14] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Ef-
ficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013.

[15] D. Pizzolotto and K. Inoue. Identifying compiler
and optimization level in binary code from multiple
architectures. IEEE Access, 2021.

[16] A. Rahimian, P. Shirani, S. Alrbaee, L. Wang, and
M. Debbabi. Bincomp: A stratified approach to
compiler provenance attribution. Digital Investiga-
tion, 14:S146–S155, 2015.

[17] N. Rosenblum, B. P. Miller, and X. Zhu. Recov-
ering the toolchain provenance of binary code. In
International Symposium on Software Testing and
Analysis, pages 100–110, 2011.

[18] N. E. Rosenblum, B. P. Miller, and X. Zhu. Extract-
ing compiler provenance from program binaries. In
ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, pages
21–28, 2010.

[19] L. Simon, D. Chisnall, and R. Anderson. What you
get is what you c: Controlling side effects in main-
stream c compilers. In IEEE European Symposium
on Security and Privacy, pages 1–15, 2018.

[20] Z. Tian, Y. Huang, B. Xie, Y. Chen, L. Chen, and
D. Wu. Fine-grained compiler identification with
sequence-oriented neural modeling. IEEE Access,
9:49160–49175, 2021.

[21] A. Venkatesh, A. B. Handadi, and M. Mory.
Security implications of compiler optimizations
on cryptography–a review. arXiv preprint
arXiv:1907.02530, 2019.

[22] X. Wang, N. Zeldovich, M. F. Kaashoek, and
A. Solar-Lezama. Towards optimization-safe sys-
tems: Analyzing the impact of undefined behavior.
In ACM Symposium on Operating Systems Princi-
ples, pages 260–275, 2013.

USENIX Association 2022 USENIX Annual Technical Conference    865

https://github.com/microsoft/LightGBM
https://github.com/microsoft/LightGBM


[23] S. Yang, Z. Shi, G. Zhang, M. Li, Y. Ma, and L. Sun.
Understand code style: Efficient CNN-based com-
piler optimization recognition system. In IEEE
Conference on Communications, pages 1–6, 2019.

[24] Z. Yang, B. Johannesmeyer, A. T. Olesen, S. Lerner,
and K. Levchenko. Dead store elimination (still)
considered harmful. In USENIX Security Sympo-
sium, pages 1025–1040, 2017.

[25] Zeropoint Dynamics. Zelos, 2020. URL https:
//github.com/zeropointdynamics/zelos.

A The Unbalanced Dataset

0 5,000 10,000 15,000 20,000 25,000
Functions

clang-3.8_O0

clang-3.8_O1

clang-3.8_OH

clang-5.0_O0

clang-5.0_O1

clang-5.0_OH

gcc-4_O0

gcc-4_O1

gcc-4_OH

gcc-6_O0

gcc-6_O1

gcc-6_OH

icc-19.0.4_O0

icc-19.0.4_O1

icc-19.0.4_OH:

C
on
fi
gu
ra
ti
on

Figure 8: The distribution of samples in compiler configurations in the
NeuralCI dataset (prior to re-balancing).

Figure 8 shows the number of functions for each con-
figuration in the original dataset of NeuralCI [20], for
64-bit dynamically linked and unstripped executables.
Some configurations, such as Clang 3.8 at -OH optimiza-
tion level, contain significantly less functions than others.
This unbalanced dataset could potentially cause bias in
evaluation. Therefore, we balanced this dataset by ran-
domly removing functions such that all configurations
have the same amount of functions (see Section 6.1).

Dataset Precision Recall F-1
Unbalanced 83.5% 83.5% 83.5%
Balanced 76.6% 76.6% 76.6%

Table 5: Comparison of NeuralCI results using the unbal-
anced dataset and the balanced dataset

To replicate the evaluation of NeuralCI as accurately
as possible, we ran an additional experiment using Neu-

Figure 9: Confusion matrix of NeuralCI using the unbalanced dataset

ralCI with the unbalanced dataset. Table 5 shows the
results of NeuralCI using the unbalanced dataset and the
dataset after we balanced the data size. The results using
the unbalanced dataset show roughly the same results as
reported by Tian et al. [20], with a negligible variation
(<1%). Notice, however, that after balancing the dataset,
NeuralCI’s performance declines. Compared to the con-
fusion matrix of NeuralCI using our balanced dataset
(Figure 3), the confusion matrix of NeuralCI using the
unbalanced dataset (Figure 8) shows drastically better
results for identifying the GCC version at -O0 optimiza-
tion level, likely because GCC 6 has significantly more
samples than GCC 4 at -O0 optimization level. Likewise,
the results for Clang functions also differ.

B Artifact Appendix

Abstract
Our artifacts include the dataset for our experiment in
Section 6.1, 6.2 and 6.4, our coarse-grained compiler con-
figuration classifier for Section 6.1, and our fine-grained
compiler pass classifier for Section 6.2 and Section 6.4.
Our artifacts require a Linux machine (or Windows Sub-
system for Linux) with 32GB of RAM and 16GB of
storage. Since our classifiers use only shallow learning,
a discrete GPU is not required. On our machine with
an AMD Ryzen 7 3700X processor, the coarse-grained
classifier requires about two hours to finish, and the fine-
grained classifier takes about an hour.

Scope
The artifacts allow reproducing our quantitative exper-
iments in Section 6, including coarse-grained compiler
configuration identification (Section 6.1), optimization
pass identification using only static features (Section 6.2),

866    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/zeropointdynamics/zelos
https://github.com/zeropointdynamics/zelos


and optimization pass identification using both static and
dynamic features (Section 6.4).

Contents
Our artifacts include the following contents:

1. balanced_dataset.csv: The dataset for coarse-
grained compiler configuration classification. As
discussed in Section 6.1, this dataset is a balanced
subset of the dataset used in NeuralCI [20].

2. config_classifier.py: The coarse-grained com-
piler configuration classifier.

3. data.csv: The dataset for fine-grained compiler
pass classification used in Section 6.2.

4. data_dynamic.csv: The dataset for dynamic fea-
ture evaluation used in Section 6.4. As discussed
in Section 6.4, this dataset is a subset of data.csv
that only includes functions whose dynamic feature
coverage are at least 70%.

5. LICENSE: The license of our artifacts.

6. passtell.py: The fine-grained compiler pass clas-
sifier.

7. README.md: Installation and running instructions.

8. requirements.txt: List of required Python li-
braries.

9. static_opcode_features.py: Library module
required for passtell.py.

Hosting
The classifiers and the datasets are available at https:
//github.com/zeropointdynamics/passtell in the
main branch with commit ID 0c88e8d.

Requirements
Our classifiers have the following requirements:

1. A 64-bit Linux machine with at least 32GB of RAM
and 16GB of storage. We have tested our artifacts on
Arch Linux (rolling release, updated in May 2022)
and Ubuntu 20.04 (Windows Subsystem for Linux).

2. Python 3. For Ubuntu and other Linux distributions
that do not have a default python command, setting
the symbolic link from python to python3 is re-
quired. On Ubuntu, this can be done by installing
the python-is-python3 package.

3. Graphviz.

4. Python libraries listed in requirements.txt.

USENIX Association 2022 USENIX Annual Technical Conference    867

https://github.com/zeropointdynamics/passtell
https://github.com/zeropointdynamics/passtell




JITServer: Disaggregated Caching JIT Compiler for the JVM in the Cloud

Alexey Khrabrov
University of Toronto

Marius Pirvu
IBM

Vijay Sundaresan
IBM

Eyal de Lara
University of Toronto

Abstract
Managed runtimes such as the Java virtual machine (JVM)

rely on just-in-time (JIT) compilers to improve application
performance by converting bytecodes into optimized machine
code. Unfortunately, JIT compilation introduces significant
CPU and memory runtime overheads. JIT compiler disaggre-
gation is a technique that decouples the JIT from the JVM and
ships compilation to a separate remote process. JIT disaggre-
gation reduces overall memory usage; however, its communi-
cation overheads result in higher system-wide CPU usage.

JITServer is a disaggregated caching JIT compiler we im-
plemented in the Eclipse OpenJ9 JVM. It improves system-
wide resource utilization by enabling the caching of compiled
native code and its reuse in JVMs running on different ma-
chines. JITServer is transparent to the application developer,
and supports all the dynamic features in the JVM specification.
In our experiments, JITServer reduced overall CPU cost by
up to 77%, overall memory usage by up to 62%, application
start time by up to 58% and warm-up time by up to 87%.

1 Introduction

Java virtual machines (JVMs) rely on just-in-time (JIT) com-
pilers to improve the performance of Java applications by
converting the bytecodes of the application into optimized
machine code. Since this transformation is done at runtime,
the JIT has the ability to tailor-fit the generated code for a
specific application instance and its execution environment.
On the downside, JIT compilation can introduce significant
runtime overheads in terms of processing power and memory.
The extra CPU cycles needed for compilation can interfere
with applications’ progress, delaying their start-up, increasing
their warm-up time or affecting the response time and qual-
ity of service. Similarly, the data structures allocated by the
JIT compiler create unpredictable spikes in memory usage,
which increase memory footprint and can lead to performance
degradations (due to paging) and out-of-memory failures. In
our experiments, JIT compilation accounted for up to 50% of
CPU time used during the start-up and warm-up phases, and
for up to hundreds of MBs of memory footprint.

The competition for resources between the application and
the JIT is more intense in CPU and memory constrained envi-
ronments such as containers and VMs found in cloud datacen-
ters that maximize resource utilization and application density.

Automatic scaling of cloud applications is done by launching
and shutting down instances based on load. Frequent restarts
of applications pose serious challenges to Java workloads due
to the high start-up overhead of JIT compilation, which needs
to be amortized over a long execution period. The memory
overhead of JIT compilation is more significant for smaller (in
terms of overall memory usage) application instances which
are common in the cloud (e.g. microservices).

JIT compiler disaggregation is a technique that addresses
these overheads by decoupling the JIT from the JVM and run-
ning it in a separate remote process. The JIT no longer steals
CPU cycles from the application, which leads to more pre-
dictable behavior and better quality of service, and improves
application warm-up in CPU constrained environments. Mem-
ory footprint spikes are also eliminated, enabling smaller con-
tainers, higher application density, and reduced costs in the
cloud. Moreover, remote JIT simplifies resource provisioning:
the user only has to consider CPU and memory required for
application execution, while compilation resources can be
scaled independently of the applications.

While JIT disaggregation reduces overall memory usage,
on the downside, it can result in higher system-wide CPU
usage. The CPU cost and latency of each compilation in this
setting is higher compared to local JIT due to communica-
tion overheads. JIT overheads are not eliminated, but rather
transferred to a different host, at the expense of additional
networking and serialization costs.

We argue that in order to achieve the full benefits of disag-
gregated JIT, the compiler server resources must be effectively
shared between multiple client JVMs by making it possible
to reuse compilations of common methods. Unfortunately,
reusing dynamically compiled native code across multiple
JVM instances is a challenging task. JIT-compiled code can-
not be simply plugged into a different JVM in the general
case since it often contains pointers to runtime entities that are
located at different addresses in different JVMs, and relies on
runtime assumptions that might not hold in a different JVM
environment. Due to the dynamic nature of the JVM, locat-
ing runtime entities and verifying assumptions across JVM
processes is more difficult compared to relocating statically-
compiled code in languages like C. The key idea is to use
secure hashes of immutable class metadata to efficiently de-
tect equivalent classes and methods across JVMs.

In this paper, we describe the design and implementation

USENIX Association 2022 USENIX Annual Technical Conference    869



of JITServer - our disaggregated JIT compiler in Eclipse
OpenJ9 [6], a popular open source JVM. JITServer caches
compiled native bodies and reuses them for future compilation
requests for the same methods from other client JVMs. This
enhancement dramatically decreases compilation latency for
cache hits and significantly reduces overall resource usage by
amortizing compilation costs over multiple clients. Caching
compiled code at the server happens transparently and does
not add any complexity to application development. Our main
use case is running multiple application instances in a cloud
datacenter in, e.g., containers with resource limits. Remote
JIT might not be beneficial if the JVM has plenty of resources
for local JIT, or if the network latency is high.

This paper makes the following contributions:
• We propose a novel mechanism that facilitates caching of

compiled native code in a remote JIT compilation system
and enables correct, transparent and efficient reuse of such
code by JVMs running on different machines. We show
that caching is necessary to achieve the full benefits of JIT
compiler disaggregation.

• We describe the design and implementation of JITServer.
Unlike previous work, our solution is compliant with the
JVM specification, does not rely on simplifying assump-
tions, and is implemented in a production grade JVM with a
sophisticated JIT. We provide insight into the challenges of
implementing remote JIT in a dynamic environment such
as the JVM and the ways to solve them.

• We present the first (to the best of our knowledge) study
of remote JIT in the context of cloud computing. We show
that JITServer improves start time, warm-up time, CPU and
memory usage, without trading-off peak throughput, allow-
ing more efficient, higher density deployments of JVM-
based applications in the cloud. In our experiments, JIT-
Server reduced overall CPU cost by up to 77%, overall
memory usage by up to 62%, application start time by up
to 57% and warm-up time by up to 87%.
The rest of the paper is organized as follows: Section 2

provides a survey of related work and motivates our solution;
Section 3 presents the design of JITServer and its novel mech-
anism for reusing compiled code in multiple JVMs; Section 4
evaluates the performance of our system; finally, Section 5
concludes the paper and explores future work directions.

2 Motivation and Related Work

In this section we present a survey of existing solutions for
the JIT overhead problem and discuss their limitations.

2.1 Static AOT Compilation in the JVM
One way to circumvent the negative effects of JIT compilation
is to use static ahead-of-time (AOT) compilation. HotSpot
JVM used to include a (now deprecated [10]) static AOT com-
piler jaotc [9] that compiled the bytecode of an explicitly
specified list of Java classes or .jar files into native code.

GraalVM Native Image [7] compiles a Java application in-
cluding all the classes it uses (determined by static analysis)
into a standalone native executable, and can run parts of the
application initialization code at AOT compile time [31].

However, an inherent limitation of static AOT compilation
is the closed world assumption: all the code that can execute
at runtime must be available at compile time. This assumption
severely limits support for dynamic JVM features such as cus-
tom dynamic class loading, class definition and redefinition
at runtime, and invokedynamic bytecodes. Static AOT only
supports a subset of Java and JVM bytecodes.

On the performance front, static AOT compilers typically
do not take advantage of the latest CPU features, because
the code they produce must be compatible with a wide range
of target machines. Moreover, the lack of runtime profiling
information can lead to suboptimal performance. While it is
possible to use profiling information at build time, it requires
a realistic workload, which makes application development
more difficult. In addition, performance profile of a given
method can change between application phases, and achiev-
ing peak performance in such cases still requires dynamic
recompilation at runtime.

2.2 Sharing Compiled Code between JVMs
JIT overhead can be reduced by caching and sharing compiled
code among JVMs. Examples include ShMVM [20] (based
on HotSpot), ShareJIT [32] (based on Android Runtime), and
the Shared Classes Cache (SCC) [16, 19] and dynamic AOT
compilation in OpenJ9. We focus on the latter as the more
recent and practical implementation of this approach.

SCC in OpenJ9 is a memory mapped file used to cache
compiled code and the internal representation of immutable
class metadata. The SCC is populated in a cold run and is
subsequently consumed by other JVM instances in warm runs.
The SCC improves start-up and warm-up performance in the
warm runs since the class metadata is already available in a
pre-processed format and does not need to be parsed from
the class files, and loading cached compiled methods is much
less CPU-intensive than JIT-compiling them. This approach
is called dynamic AOT compilation: methods are compiled
and stored in the SCC during execution, in contrast with static
AOT where the code is compiled before it runs.

Unfortunately, this approach does not completely eliminate
the need for a JIT compiler for two reasons: (i) the hit rate
in the SCC is not 100% as the set of compiled methods can
vary from run to run; and (ii) dynamic AOT code can be
slower that regular JIT-compiled code since it has to meet
certain constraints in order to be relocatable and usable in
a different JVM instance. Therefore, performance critical
methods are still JIT-recompiled with more optimizations in
order to achieve peak throughput. Since such compilations
are responsible for most of the JIT memory overhead, this
approach cannot effectively reduce peak memory usage.

While it is possible to ship a pre-populated SCC with an ap-

870    2022 USENIX Annual Technical Conference USENIX Association



plication, the complexities involved often make it impractical.
The associated increase in image size can be significant up to
hundreds of MBs (63-128% increase for the applications we
used in our evaluation). A larger image size adds overhead
on the critical path of deployment and contributes to the cold
start latency. Dynamic AOT code makes assumptions about
the execution environment such as target CPU instruction set,
GC algorithm (its reference read and write barriers), and heap
size (determines compressed pointer shift). Shipping a pre-
populated SCC requires either maintaining multiple versions
for all possible combinations of CPU generations and JVM
parameters (which complicates deployment), or generating
suboptimal portable code that works across all configurations.

Managing the pre-populated SCC puts additional burden
on application developers and increases complexity and cost
of continuous integration and deployment. Caching methods
compiled during warm-up requires simulating a realistic work-
load, which can be a complex task. Creating a fully populated
SCC can also increase application build times by up to orders
of magnitude since it can take minutes of application run time
to achieve full warm-up. Anecdotal evidence (e.g. Docker
images for OpenJ9 [2] and Open Liberty [11] - a popular Java
framework optimized for OpenJ9, and the Java runtime in the
OpenWhisk [4] serverless platform) suggests that in practice,
the SCC is typically pre-populated only by starting up and
shutting down an application instance, and does not include
any methods compiled during the warm-up phase.

Another way to leverage the SCC is to share it locally
between JVMs on a given host, populating it dynamically at
runtime instead of pre-populating it at application build time.
However, this approach also has drawbacks. Sharing the SCC
between applications creates the potential for side-channel
attacks and other security issues. Thus if sharing is limited to a
single application, the scheduler is forced to pack instances of
the same application on the same host, which can lead to “hot
spots” during load spikes when multiple instances of the same
application contend for (often oversubscribed) resources. This
approach also increases applications’ exposure to individual
host failures. Managing per-application SCC volumes shared
between containers also complicates deployment.

2.3 Checkpointing and Reusing JVM Processes
Another approach to circumvent JVM slow start is to check-
point the state of a "warm" JVM process and restore it when
starting a new application instance. Cloneable JVM [24], Re-
playableJVM [30], and Catalyzer [22] explored checkpointing
well-defined and deterministic state after the start-up phase
of the application. Such snapshots do not include any meth-
ods compiled during warm-up under load, and still require
JIT compilation to reach peak performance. Checkpointing
also suffers from the same usability issues as shipping a pre-
populated cache of compiled methods: additional developer
effort and having to generate slower portable code or maintain
multiple versions for different CPUs and JVM configurations.

HotTub [27] takes a somewhat different approach of
reusing JVM processes to keep the JVM state “warm” for
the next run of the same or similar application. Photons [23]
co-locates multiple copies of a serverless function as threads
within the same JVM instance. These systems only reuse com-
piled code within the same machine, and can only persist it
across non-concurrent invocations by keeping the pre-warmed
JVMs running, which incurs a significant idle footprint.

2.4 Remote JIT Compilation
Remote JIT has been originally proposed in research that fo-
cused on embedded, mobile, and IoT devices where local JIT
is prohibitively expensive in terms of memory, CPU or energy
consumption [17,18,21,25,28,29]. JCOD [21], MoJo [28] and
VM* [25] are based on simplified JVMs and JIT compilers
that either do not rely on dynamic JVM runtime information,
or only support static AOT compilation of a subset of Java.

Lee et al. [26] describe a JIT compilation server based on
Jikes RVM, a research JVM written in Java. To the best of
our knowledge, their work is the state-of-the-art in the liter-
ature on remote JIT for the JVM. Its design assumes that
all the information needed to compile a method is included
in the compilation request, which becomes impractical in a
complex modern JIT. The authors do not consider overall re-
source usage (including the server), and only use simulations
to evaluate performance with multiple clients.

Foremost, these previous approaches do not reduce, and in
fact can increase, system-wide CPU usage. Each individual
remote compilation consumes more CPU time than its local
equivalent (assuming homogeneous hardware) due to com-
munication overheads, and takes more time overall due to net-
work latency. As we show in our evaluation (see Section 4.2),
remote JIT can increase overall CPU usage, especially for
short-running workloads that are common in modern cloud
computing. In this paper, we leverage caching compiled meth-
ods at the server to reduce the overall CPU cost by amortizing
it over multiple clients. In addition, we show that for cloud
workloads, JITServer significantly reduces overall memory
consumption since the spikes of maximum memory usage
from multiple clients are unlikely to align.

Azul Cloud Native Compiler [5] is a recently released re-
mote JIT for the Azul JVM. Unfortunately, there is only lim-
ited technical information available about the design of this
proprietary closed-source system. In particular, it is not known
if it implements caching, or how it affects system-wide re-
source usage. We are unable to compare performance against
it since its license forbids publishing benchmarking results.

Remote JIT is less susceptible to failures than other disag-
gregated designs (e.g. memory disaggregation) since it has
no shared hard state. Unlike the case of mobile and IoT de-
vices (the main target of previous remote JIT work), network
latencies in cloud datacenters are relatively low, and our evalu-
ation shows that remote JIT performs very well in this setting.
Modern cloud applications themselves are also typically dis-

USENIX Association 2022 USENIX Annual Technical Conference    871



7

App. 
thread

Code
cache

Comp. 
threadVM

1
Generate comp. request

6

2 Process 
comp. 
request

Queue

Relocate 
and install

8

4

5

Listener 
thread

Comp. 
thread

Queue

Add request to
comp. queue

Begin 
compilation

Send remote
comp. request

Return compiled body

Query runtime
environment

3

6

Client Server

Figure 1: Remote compilation mechanism

tributed, thus remote JIT does not exacerbate the reliability
and latency concerns. Remote JIT shifts resource provisioning
complexity from the application to the infrastructure, which
can be arguably beneficial. Local JIT requires application
developers to manage the complexity and extra costs of over-
provisioning memory (which goes unused after warm-up) and
CPU (to maintain QoS despite JIT activity during warm-up)
for each JVM. Instead, the operator’s effort to setup JITServer
autoscaling can be reused many times across applications.

3 Design and Implementation

In this section we present an overview of JITServer design and
implementation. We start with the description of the remote
compilation mechanism, and then explain how we enable
caching compiled methods to be reused by multiple clients.

3.1 Remote Compilation Mechanism
Figure 1 shows the high-level design of remote compilation in
JITServer. The client on the left is a complete JVM running
an application, while the server on the right is a separate,
possibly remote process offering a JIT compilation service
shared by multiple client JVMs connected to it. In this paper,
we focus on the mechanisms. We plan to explore automatic
sizing and scaling of JITServer resources in future work.

Existing remote JIT designs assume that each compilation
is a simple request-reply operation that requires a single net-
work round-trip since all the data required by the server is
either already available there or included with the request [26].
While this was feasible for simple JIT compilers in previous
work, such a design proved difficult to implement in a modern
JVM. The JIT in OpenJ9 has over 100 optimization passes
that use over 100 types of JVM state queries, compared to
~40 optimizations and 12 types of state in [26]. We took a dif-
ferent approach that resulted in lower implementation effort
and complexity: a compilation request only carries data that
is likely to be used by most compilations, and remaining data
is requested from the client on demand, cached at the server,
and invalidated when necessary to ensure correctness.

OpenJ9 runs a number of background threads that perform
JIT compilation concurrently with application threads. It uses
tiered compilation: methods are scheduled for compilation
at lower optimization levels once they reach certain invoca-

tion thresholds, and particularly hot methods that consume a
significant portion of CPU time are scheduled for recompila-
tion at higher optimization levels. The bytecode interpreter
and the sampling thread add compilation requests to a queue
consumed by the compilation threads. The number of active
threads is adjusted dynamically: additional ones are activated
when the JIT is starved of CPU time (e.g. if there is a large
number of application threads) or the queue becomes too
large. Compilation threads compile one method at a time, and
each compilation is a single-threaded task.

JITServer uses the same basic design with compilation
queues and threads on both the client and the server. At Step
1, application threads add requests to the compilation queue.
At Step 2, a client compilation thread dequeues a request and
sends a remote compilation request to the server (Step 3). The
client sends enough data for the server to start the compilation,
such as the bytecodes of the method. A listener thread on the
server accepts the connection and enqueues a compilation
request (Step 4), and a compilation thread reads the request
data from the network and starts the compilation (Step 5).

During remote compilation, the server may issue various
queries to the client requesting information about classes,
methods, fields, execution environment, etc. (Step 6). When
the compilation is complete, the server sends the compiled
body to the client (Step 7) along with metadata that needs to
be instantiated at the client. The client performs necessary
relocations (e.g. fixes up calls to runtime helper methods) and
installs the compiled method in its own code cache (Step 8)
- now it is ready to be executed. As long as the compilation
queue is not empty, the client thread keeps the connection
open and reuses it for subsequent requests.

Each compilation is performed by a dedicated pair of
threads - one on the server and one on the client. The number
of in-progress compilations is limited by the maximum num-
ber of client threads (16 in the current implementation). Our
evaluation shows that this value works well in practice. We
used a maximum of 128 server threads in our experiments.

The server JIT compiler in our current implementation is
identical to the local OpenJ9 JIT compiler and uses the same
set of optimizations and heuristics that control its behaviour.
All compilations are performed remotely. We focus on evalu-
ating the benefits of JIT disaggregation and caching on their
own in this paper, and plan to explore how the compiler can
be improved in the disaggregated setting in our future work.

3.2 Caching JVM Runtime Information
Remote compilation of large or complex methods can require
exchanging a large number of messages between the client
and the server. To reduce the negative effect of network la-
tency on performance, the server aggressively caches runtime
information received from the clients. Note that this is dif-
ferent from caching the resulting compiled code, which we
describe in Section 3.4. Caching is essential for performance:
in an early JITServer prototype that did not implement such

872    2022 USENIX Annual Technical Conference USENIX Association



caching, client threads alone used ~10x more CPU time than
local JIT. Caching reduced the average number of messages
per compilation from over 1000 to ~40.

The server handles requests from multiple clients in paral-
lel and maintains their data in client sessions identified by a
unique client ID included with each compilation request. A
session is created when a client first connects to the server,
and destroyed when the client terminates or stays inactive for
a long time. Most of the information that does not change
throughout the client’s lifetime (e.g. JVM configuration and
class metadata for primitive types) is sent with the first compi-
lation request. Mutable client state needs to be synchronized
with the server as classes are being loaded, unloaded, or rede-
fined, and profiling information is updated. We describe how
we handle caching of important types of client data.
Class Metadata Java classes are represented in OpenJ9
as data structures called ROMClasses, which represent im-
mutable data, including method bytecodes, and RAMClasses,
which contain the mutable data and point to the ROMClasses
they are based on. Multiple RAMClasses can use the same
ROMClass, e.g. if they are loaded by different class loaders.

The server maintains mirrors of the clients’ ROMClasses
and RAMClasses. To reduce memory consumption, it stores a
single copy of each unique ROMClass that is shared by all the
clients using it. To handle class unloading and redefinition, the
client sends with each compilation request the list of classes
unloaded or redefined since the previous compilation request,
which are in turn deleted from the server cache.

Server compilation threads are synchronized with class
unloading and redefinition using a reader-writer lock. Threads
acquire this lock for writing before deleting the entries, and
acquire it for reading while performing a compilation. When
runtime information queries are sent to the client, the lock
is released, and the client’s reply will also indicate whether
class unloading happened during this compilation, in which
case the compilation is aborted and retried.
Class Hierarchy Table CHTable (class hierarchy table) is
an OpenJ9 data structure that captures relationships between
classes and enables fast discovery of such relationships used
for speculative optimizations, e.g. devirtualization. The server
mirrors the client’s CHTable and keeps it up to date with
incremental updates sent along with the compilation requests.

To guarantee functional correctness, the server must pro-
cess class unloading/redefinition and CHTable updates in the
same order as the client. This requirement imposes a partial
order on compilation requests: critical requests that carry up-
dates must be processed in the same order as they originated
at the client, while other non-critical requests between subse-
quent critical requests can be reordered. We use a sequencing
scheme to order critical requests: if the server receives an
update with an out-of-order sequence number, it suspends
the compilation thread until the update with the expected se-
quence number arrives. If the expected message is lost, after a
timeout, the server clears cached data for the client and restarts

the update mechanism by requesting the entire CHTable.
Profiling Data While interpreting Java methods, OpenJ9
collects profiling data about branch direction and targets of
virtual and interface calls and instanceof/checkcast oper-
ations. The optimizer at the server makes extensive use of this
data and issues many queries to the client. To reduce the num-
ber of messages, we batch profiling data requests by sending
the data for all the bytecodes in the method in a single reply.

Unlike class hierarchy information, imprecise profiling data
does not affect functional correctness of generated code. Pro-
filing data for already compiled methods (which can be inlined
into newly compiled ones) has stabilized and can be cached
without significant effect on performance. In contrast, profil-
ing data for interpreted methods continue to be accumulated,
and using a stale version can lead to bad optimization deci-
sions. Thus, the server caches this data only for the duration
of the current compilation.

3.3 Reliability and Security
The client JVM in our design still includes a fully functional
local JIT compiler. Out-of-process compilation makes Java
applications more resilient to JVM crashes caused by inter-
mittent software bugs in the JIT compiler. JITServer only
maintains soft state, allowing transparent failure handling:
after a server crash, the client JVM can switch to a different
JITServer instance or compile the method locally (which is un-
likely to trigger the same bug again) and continue execution,
and the failed JITServer instance can be simply restarted.

We assume a security model where the server instance and
all the client JVMs that connect to it are in the same secu-
rity domain: the clients need to trust the server to generate
correct native code. JITServer supports encrypted communi-
cation using OpenSSL. Encryption adds a relatively small but
non-negligible overhead: it increases start time by up to 9%,
warm-up time (to 90% of peak throughput) by up to 5%, and
CPU time used by the JIT by up to 5%. Unencrypted commu-
nication can be used in settings with an isolated network (e.g.
on-premises cloud deployments) to reduce the overhead.

Even if communication is encrypted, remote JIT can po-
tentially introduce side channels for an in-network attacker
that can observe the timing and sizes of messages exchanged
between the server and the client JVMs. However, the same
issue applies to any distributed or client-server application,
and in practice does not prevent their widespread adoption.

3.4 Reusing Dynamically Compiled Code
OpenJ9 is capable of producing relocatable code (aka dy-
namic AOT code) that can be reused in a different JVM in-
stance running on the same machine. It maintains a Shared
Classes Cache (SCC) - a memory-mapped file shared by
JVMs on the same host that stores immutable class meta-
data and dynamic AOT code. These cached methods include
additional metadata that is used to locate and patch pointers to
JVM runtime entities such as RAMClasses (see Section 3.2)

USENIX Association 2022 USENIX Annual Technical Conference    873



residing at different addresses in different JVMs, and to verify
that assumptions (e.g. about class hierarchies) made during
compilation still hold in a different JVM environment.

Dynamic AOT methods refer to SCC entities in their vali-
dation and relocation records by offset within the SCC. While
this approach is very efficient when running on a single ma-
chine, this means that dynamic AOT code cannot be reused
as-is on a different machine (with a different SCC). Since
the order of class loading and dynamic AOT compilations is
not deterministic, SCC entities will generally reside at differ-
ent SCC offsets on another machine, making dynamic AOT
code generated on another machine invalid. The fundamental
source of this problem is the tight coupling of the dynamic
AOT code with the SCC it is stored in. We propose a new
scheme to store these artifacts independently.

Our caching mechanism is based on the existing OpenJ9
infrastructure for relocating dynamically compiled code, but
uses a different way of identifying runtime entities such as
classes across JVMs. Our novel scheme allows us to decouple
compiled code from class metadata and enable its reuse in
any JVM running on any host. We store compiled methods
in a serialized format that refers to JVM runtime entities by
globally unique identifiers instead of SCC offsets. When an-
other client JVM requests a compilation of the same method,
the server replies with a cached serialized version. The client
then deserializes the method by finding the corresponding
runtime entities, and then relocates and loads the native code.

Some compilations (e.g. hot methods at higher optimization
levels) do not use the relocatable format in order to maximize
the performance of generated code, since relocation limits
optimization opportunities. The resulting hit rate in the JIT-
Server cache is 85-93% during the start phase and 68-76%
during warm-up in our experiments, depending on the appli-
cation. In our future work, we will explore compiling more
methods as relocatable code to increase the cache hit rate.

The performance of JIT-compiled code is affected by the
quality of profiling data, leading to a trade-off between com-
piled code reuse and possible performance degradation due
to differences in profiles across the clients. We focus on the
common use case of sharing between instances of the same
application where profiles are likely similar (e.g. horizon-
tal autoscaling, FaaS, data-parallel computation). In other
cases, we expect the effect to be limited since particularly hot
method compilations most affected by conflicting profiles are
not cached and rely on individual clients’ profiles. We plan
to investigate the effect of profiling data variability on the
performance of reused native code in our future work.

3.5 Method Serialization Mechanism
The main building block of dynamic AOT relocations is identi-
fying equivalent classes and methods across JVMs. Examples
include inlining guards (checking an object’s class before ex-
ecuting the inlined body) and calls to other compiled methods.
Such instruction sequences contain addresses of RAMClasses

and methods that need to be patched in a different JVM.
We add another level of indirection to relocatable code by

effectively serializing relocation and validation records. For
each runtime entity they refer to, the server stores a corre-
sponding serialization record with enough information for a
client JVM to find the entity and verify that it is equivalent
to the one used in the original compilation. Each serializa-
tion record also contains the offset from the start of the AOT
method body to the location of the corresponding SCC offset
field stored in the validation or relocation record.

When the server performs a dynamic AOT compilation in
response to a client request, it serializes the compiled method
and stores it in its in-memory cache. Serialized methods are
self-contained and can be persisted to disk and shared across
multiple JITServer instances. In our future work, this will en-
able efficient autoscaling of JITServer resources by launching
new instances with a warm cache persisted from an existing in-
stance. When a different client JVM receives a serialized AOT
method, it iterates through the serialization records, looking
up the corresponding entities and updating the SCC offsets to
them with their local versions. After successful deserializa-
tion, the client proceeds to store the resulting method body in
its local SCC (so that execution environments that do not get
torn down can take advantage of it in the next run), and loads
the method as regular dynamic AOT code.

If any lookups or validity checks fail, deserialization is
aborted and the client JVM requests a regular non-cached
compilation from the server. Deserialization failures occur
infrequently during normal operation: the failure rate for the
applications we used in our evaluation is 1-5% during the
start phase and less than 1% during warm-up. Such failures
happen because the set of classes loaded by the time a method
is compiled varies from run to run, therefore a small number
of lookups fail as the classes have not yet been loaded.

Relocation and validation records can refer to the following
SCC entities: ROMClass - immutable part of class metadata;
ROMMethod - immutable part of method metadata includ-
ing its bytecodes (part of ROMClass); class chain - a list
of ROMClass SCC offsets for classes and interfaces a given
class extends and implements.
Identifying Classes and Methods We identify a class
across JVMs using a combination of its fully-qualified name
and a secure hash (e.g. SHA-256) of the ROMClass. We use
the hash to efficiently check that a client JVM’s version of the
class is the same as the one used during compilation. Since the
ROMClass contains the full description of the class including
the bytecodes of all methods, a matching hash guarantees cor-
rectness. We identify methods by their defining class, name,
and signature (types of parameters and return value).

We use class chains to verify that the whole inheritance
chain of a given class is the same across two JVMs. For
example, if one of the superclasses or interfaces of a given
class is redefined at runtime in the JVM that loads the method,
the class chain will not match, even though the class itself has

874    2022 USENIX Annual Technical Conference USENIX Association



not changed. The serialization record for a class chain is a list
of class serialization records for each class in the chain.

Identifying Class Loaders Since Java classes can be
loaded by application-defined class loaders, a class lookup in
a running JVM requires a class loader (in addition to class
name). We use the following heuristic for class loader identi-
fication: we associate each class with the identity of the first
class loaded by its class loader. While a regular AOT method
refers to a class loader by the class chain of the 1st class that
it loaded, a serialized AOT method refers to it by the name of
the first class that it loaded. We maintain the 3-way mapping
between a class loader and the name and the class chain of the
first class that it loaded, in each client JVM. We update this
mapping at runtime when the JVM loads or unloads classes
and creates or destroys class loaders.

The identification heuristic can fail in edge cases described
below, however, that does not affect the correctness of com-
piled code. While we observed no class loader identification
failures in our evaluation, they are still possible in rare cases.

Assume that in the compilation environment, RAMClass
C1 is the first one loaded by L1. Cached methods that refer
to L1 identify it by the name of C - the ROMClass that C1 is
based on. In the load environment, RAMClass C2’ is the first
one loaded by L2’ - a different class loader, and then later
RAMClass C1’ is the first one loaded by L1’ (the correct class
loader matching the compilation environment) from the same
ROMClass C. As a result, loading a cached method can result
in using a wrong RAMClass (one loaded by the incorrectly
guessed L2’). However, RAMClass pointers are only used
directly in generated code in guards as described above. A
mismatching RAMClass pointer can only affect performance
(execution will take the slow path of making a virtual call)
while correctness is preserved. In other types of relocations,
RAMClass addresses are not present in the native code, and
are only used to verify class chains and locate RAMMethods,
which are shared by both RAMClasses. Another possibility
is that L1’ might load a different class first, and in this case
cached methods that refer to it simply will not be loaded.

JVM Environment Compatibility Each AOT method is
implicitly associated with an AOT header - a data structure
that describes the compilation environment: CPU features,
JVM configuration, etc. Local SCC stores a single instance of
this structure. All JVM instances that store or load AOT code
in the SCC must have a matching configuration. Serialized
AOT methods store the AOT header of the JVM that it was
originally compiled for. To serve a client compilation request
from the cache, the server looks up a serialized method with
a compatible AOT header.

Storage and Transfer Optimizations In order to make the
serialized AOT method representation more compact for op-
timal storage and transfer, we store serialization records at
the server separately from method bodies, and serialized AOT
methods refer to them by unique IDs. When responding to

a client compilation request with a cached serialized AOT
method, the server sends the serialized method body along
with all the serialization records it refers to that the client has
not yet received. In order to reduce network traffic and dese-
rialization overhead, the client caches serialization records
received from the server, and the server keeps track of the
record IDs that are already cached at the client.

The size of a populated JITServer cache of compiled meth-
ods is ~30-130 MB in our experiments depending on the
application, which is smaller than the pre-populated local
SCC (~65-170MB) since the JITServer cache only stores
ROMClass hashes instead of full class metadata. Since the set
of compiled method varies across multiple clients (even run-
ning the same application), the JITServer cache accumulates a
larger number of methods compared to the local SCC which is
only populated once. The cache size can be reduced by prun-
ing the "tail" of less popular methods, e.g. ones that do not
get reused within a certain time period. In our experiments,
7-12% of cached methods were never reused.
End-to-End Example We provide a simple example that
illustrates how a compiled method body is serialized by the
JITServer and later deserialized and loaded by a client JVM.
Consider the following Java code:
a b s t r a c t c l a s s A {

a b s t r a c t vo id m1 ( ) ;
}
c l a s s B e x t e n d s A {

vo id m1 ( ) { . . . }
}

c l a s s C {
s t a t i c vo id m2(A o ) {

o . m1 ( ) ; / / i n l i n e d
} / / as B . m1 ( )

}

Assume that the JIT has inlined the call to o.m1() in
C.m2() as a devirtualized call to B.m1() as profiling showed
that the runtime class of o is normally B. The inlined body of
B.m1() (see pseudo-assembly below) is preceded by a guard
that checks that the RAMClass of o is indeed B, otherwise it
jumps to the slow path that makes a virtual call.

cmp rax , r amc las s_B ; rax c o n t a i n s RAMClass o f o
j n e s l o w _ p a t h ; ramclass_B i s hard−coded
. . . ; i n l i n e d body o f B.m1 ( )

. s l o w _ p a t h : . . . ; v i r t u a l c a l l t o o.m1 ( )

Figure 2 illustrates the entities described below. The meta-
data of the dynamically AOT-compiled method C.m2() con-
tains a relocation record for class B that will be used to patch
the RAMClass address in the comparison instruction in the
guard when the method is loaded in another JVM. This record
stores the SCC offset of the class chain for B, and the SCC
offset of the class chain identifying its class loader L. This
identifying class chain is the one for the first class that was
loaded by L. Assume that this class was Object, i.e. L is the
bootstrap class loader. The class chain for B is a list of SCC
offsets of ROMClasses B, A, Object. The class chain iden-
tifying L is a single SCC offset of ROMClass Object. The
SCC offsets are only valid for the client JVM that originally
requested this compilation.

To serialize C.m(), the server creates the following records
corresponding to the relocation record for class B:

USENIX Association 2022 USENIX Annual Technical Conference    875



Serialization records

…

Loader record for B

“Object” - 1st class 
loaded by L

Offset to relocation 
record field

…

Class chain record B
Offset to relocation 

record field
“B”

SHA(B)
“A”

SHA(A)
“Object”

SHA(Object)

AOT method C.m2()

Native code

Metadata

Validation records

Relocation records

Record for B

Off. identifying 
loader L

Class chain off.

...

...

Client SCC

…

…

ROMClass Object

ROMClass A

ROMClass B

…

Class chain Object

Offset to Object

Class chain B
Offset to B
Offset to A

Offset to Object

Figure 2: Serialization records for method C.m2()

• Class loader serialization record identifying L by the name
of the first class it loaded - "Object".

• Class chain serialization record for B.
• Class serialization records for B, A, Object. Each record

contains the hash of the ROMClass and its name.
When a different client JVM receives this serialized

method, it performs deserialization as follows:
1. Find the class loader L’ as the one that had a class with

the name "Object" as the first class that it loaded. In this
case it will be the bootstrap class loader.

2. Lookup RAMClass B’ by name "B" in the class loader L’.
3. For each class in the class chain (i.e. B’, A’, Object),

compute the hash of the ROMClass and compare it with
the hash stored in the corresponding serialization record.

4. Update the values of the SCC offset fields in the valida-
tion record. The class chain offset will now point to the
class chain for B’ stored in the local SCC, and the loader
identifying offset will point to the class chain for Object.

Assuming no failures, the method is now deserialized - all
its validation and relocation records point to valid SCC enti-
ties - and can be stored in the local SCC for future reuse. The
client then relocates the method body by patching the RAM-
Class address in the comparison instruction in the inlining
guard so that it points to the RAMClass B’, and installs it in
the JVM code cache. The compiled native code of C.m2()
can now be executed correctly in this JVM.

4 Evaluation

Our evaluation answers the following research questions:
• Is remote JIT compilation efficient without caching?
• How does remote JIT compilation affect start-up and warm-

up times and memory footprint of application instances
with different CPU and memory constraints?

• What is the effect of caching on the overall cluster-wide
resource usage and application density?

• Can remote JIT improve performance if the client JVM
already has a pre-populated local SCC (see Section 2.2)?

• What is the effect of remote JIT and caching on the laten-
cies of compilation requests, compared to local JIT?

Name Framework Database Methods compiled
Start Total

AcmeAir Open Liberty MongoDB ~3,000 ~11,000
DayTrader DB2 ~5,000 ~25,000
PetClinic Spring H2 (in-memory) ~5,000 ~6,000

Table 1: Application benchmarks

Type CPU Memory Storage
A 16-core AMD EPYC 7302P 256 GB 2× NVMe RAID0
B 14-core Intel Xeon E5-2680 128 GB SSD

Table 2: Hardware configuration

• How does caching affect the scalability of JITServer (i.e.
how many clients can it effectively serve at the same time)?

• Does caching allow JITServer to handle higher latency?

Applications We used the following 3 applications in our
experiments: AcmeAir [1] - an airline booking system, Day-
Trader [8] - a stock trading platform, and PetClinic [15] -
an animal hospital information system (the de-facto main
benchmark for the popular Spring framework). All 3 are web
applications; information about them is summarized in Ta-
ble 1. We used Apache JMeter to generate the workload for all
the applications. These applications are multi-tier, end-to-end
benchmarks that are more representative of cloud workloads
than benchmarks like SPECjvm2008 [14], SPECjbb2015 [12],
and SPECjEnterprise2018 [13] typically used for JVM per-
formance evaluation. Individual benchmarks in the SPECjvm
suite are essentially microbenchmarks from the JIT perspec-
tive with a small number of JIT-compiled methods. SPECjbb
and SPECjEnterprise are heavy, long-running (over 2 hours)
workloads unsuitable for analyzing cold start performance.
Moreover, DayTrader is a comprehensive JavaEE benchmark
that uses most of the same technologies as SPECjEnterprise.

Experimental Setup We ran the experiments on a cluster
of 11 machines as described in Table 2: 8 machines of type A
and 3 slightly less powerful machines of type B. All machines
run Ubuntu 18.04 and are connected with a 10 GBit/s Ethernet
network (used in all experiments unless specified otherwise)
and a 100 GBit/s Infiniband network.

Type A machines run the instances of the application, the
database, and the JITServer, while type B machines run JMe-
ter instances (one per application instance) that generate the
load. We use a single JITServer instance running on a ded-
icated machine in all experiments. While co-locating JIT-
Server instances with application JVMs is a viable deploy-
ment option, we evaluate JITServer in the fully remote setting
to show "worst case" performance. Application instances run
in Docker containers with 1 CPU and 1 GB of memory, unless
specified otherwise. This container size is roughly equivalent
to an AWS EC2 t2.micro instance which is commonly used for
modern cloud workloads [3]. The number of JMeter threads is
chosen to saturate the throughput of the application instance.
The number of database instances is chosen for each bench-
mark such that the DB is not a bottleneck. The JVMs are
configured to use the default heap size and GC policy. Each

876    2022 USENIX Annual Technical Conference USENIX Association



XS S M L
AcmeAir cold: Container size

0

10

20

30

St
ar
tt
im

e,
se

c

XS S M L
AcmeAir cold: Container size

0

100

200

W
ar
m
-u
p
tim

e,
se
c

XS S M L
AcmeAir cold: Container size

0

200

400

M
em

or
y
us

ag
e,

M
B

XS S M L
AcmeAir warm: Container size

0

10

20

30

St
ar
tt
im

e,
se
c

Local JIT
Remote JIT
Remote JIT + cache

XS S M L
AcmeAir warm: Container size

0

100

200
W
ar
m
-u
p
tim

e,
se
c

XS S M L
AcmeAir warm: Container size

0

200

400

M
em

or
y
us
ag

e,
M
B

Figure 3: AcmeAir performance: (a) cold; (b) warm

data point is averaged over 5 runs, unless specified otherwise;
the error bars on the graphs represent standard deviation.

We compare application performance in three JIT compila-
tion modes: local; remote without caching, and remote with
caching. Depending on the experiment, we deploy applica-
tion instances without a pre-populated local SCC (cold runs -
default unless specified otherwise), or with an SCC populated
by only starting an application instance (warm-start runs),
or by also applying load to it (warm runs). While JITServer
supports sharing the cache of compiled code across applica-
tions, in this paper we focus on the very common use case of
multiple instances of the same application. We do not com-
pare with static AOT compilation in HotSpot and GraalVM.
Such direct comparison would not be fair since OpenJ9 is a
different JVM, and static AOT only supports a subset of Java.
We are unable to compare against the remote JIT compiler
in [26] since its implementation has not been made available.

4.1 Application Performance and Footprint
We measure how remote JIT compilation (with and without
caching) affects the start-up and warm-up performance and
memory footprint of a JVM instance. We run the applications
in Docker containers of the following sizes: XS (0.5 CPU,
512 MB of memory); S (1 CPU, 1 GB); M (2 CPUs, 2 GB);
and L (4 CPUs, 4 GB). When JITServer cache is enabled, it
is populated by a single run of the application. We define the
performance metrics as follows:
• Memory usage - peak resident set size (RSS) of the JVM.
• Start time - time since the start of the JVM process until

the application is ready to handle client requests.

XS S M L
DayTrader cold: Container size

0

20

40

St
ar
tt
im

e,
se
c

XS S M L
DayTrader cold: Container size

0

500

1000

W
ar
m
-u
p
tim

e,
se
c

XS S M L
DayTrader cold: Container size

0

200

400

600

M
em

or
y
us
ag

e,
M
B

XS S M L
DayTrader warm: Container size

0

20

40

St
ar
tt
im

e,
se
c

Local JIT
Remote JIT
Remote JIT + cache

XS S M L
DayTrader warm: Container size

0

500

1000

W
ar
m
-u
p
tim

e,
se
c

XS S M L
DayTrader warm: Container size

0

200

400

600

M
em

or
y
us
ag

e,
M
B

Figure 4: DayTrader performance: (a) cold; (b) warm

• Warm-up time - time from the moment the load is applied
until the application reaches 90% of its peak throughput.

Figures 3(a), 4(a), and 5(a) show results for cold runs of
AcmeAir, DayTrader, and PetClinic respectively. Remote JIT
without caching reduces memory footprint by up to 68%, start
time by up to 40%, and warm-up time by up to 80% compared
to local JIT. The addition of caching reduces start and warm-
up times even further (especially for smaller container sizes
since they have less CPU available for local JIT): by up to
58% and 87% for start and warm-up respectively. There is still
a non-negligible number of compilations (including heavy
recompilations at high optimization levels) during warm-up
that are not served from the JITServer cache: 24-32% depend-
ing on the application, compared to only 7-15% during the
start phase. As a result, the effect of caching on warm-up time
is relatively smaller compared to start time.

Figures 3(b), 4(b), and 5(b) present results for warm runs
where the local SCC is pre-populated by a previous full run of
the application. JITServer still significantly reduces warm-up
time (up to 79%) and peak memory footprint (up to 61%), but
has no effect on start time since almost all methods compiled
during start-up are stored in the SCC and thus do not need to
be compiled in a warm run.

Remote JIT with caching is more effective than only using
a pre-populated SCC for reducing memory usage and warm-
up time. Moreover, these improvements come "for free" as
JITServer caching is transparent for the application developer,
unlike using the SCC (see section 2.2). Besides, these results
represent the advanced and most optimal way to use the SCC
which requires very significant developer effort and is rarely

USENIX Association 2022 USENIX Annual Technical Conference    877



XS S M L
PetClinic cold: Container size

0

20

40

St
ar
tt
im

e,
se

c

XS S M L
PetClinic cold: Container size

0

50

100

W
ar
m
-u
p
tim

e,
se
c

XS S M L
PetClinic cold: Container size

0

200

400

600

M
em

or
y
us

ag
e,

M
B

XS S M L
PetClinic warm: Container size

0

20

40

St
ar
tt
im

e,
se

c

Local JIT
Remote JIT
Remote JIT + cache

XS S M L
PetClinic warm: Container size

0

50

100
W
ar
m
-u
p
tim

e,
se
c

XS S M L
PetClinic warm: Container size

0

200

400

600

M
em

or
y
us
ag

e,
M
B

Figure 5: PetClinic performance: (a) cold; (b) warm

done in practice. Caching (local or remote) does not eliminate
the need for a JIT compiler. Remote JIT compilation is still a
win even with a pre-populated SCC as not all compilations
can be cached, and JITServer can make better use of resources,
reducing CPU contention and memory footprint.

Application instances reach equivalent peak throughput
with local and remote JIT in all the experiments, which is
expected since JITServer uses the same set of optimizations
and heuristics as the local JIT compiler. The reduction in start
and warm-up times is due to the higher degree of parallelism
of JIT compilations since the server runs on an additional
machine. Arguably, these results do not represent a fair com-
parison to local JIT as the extra CPU and memory resources
used by the JITServer could be used to run other application
JVMs instead. In the next subsection we consider overall
system-wide resource usage, including the JITServer itself.

4.2 Overall System Efficiency
We evaluate the effect of remote JIT compilation (with and
without caching) on the system-wide resource usage by emu-
lating a cloud deployment where many application instances
are brought up and down over a 1 hour period. 64 applica-
tion slots (one per CPU) are spread evenly across 4 machines.
Each slot is used to run a sequence of application instances
that execute for a fixed duration (2, 5, or 10 minutes) and stop
to be replaced by the next instance. The starting moments of
the sequences are staggered with a 10 second interval. We run
a single JITServer instance on a separate machine in remote
JIT experiments. Each experiment is repeated 3 times.

Figure 6 shows total CPU cost and memory usage (lower

is better) in cold runs. We define CPU cost (measured in
milliseconds per request) as the amount of total CPU time
used by all JVM instances and the JITServer, divided by the
number of JMeter requests served (i.e. useful work done) by
all application instances. We use total CPU time instead of e.g.
aggregate throughput to account for the fact that the JITServer
runs on an additional machine that could be used to run more
application instances. Total memory usage includes the peak
RSS of the the JITServer and all concurrent JVM instances.

Remote compilation without caching results in up to 21%
increase in CPU cost compared to local JIT. On the other hand,
caching compiled code at the server effectively amortizes
the CPU cost over many clients and results in up to 77%
reduction compared to local JIT. The effect is larger for shorter
application lifespans since the start-up and warm-up phases
with high JIT activity take a bigger portion of the run time. We
expect application run times in the cloud to be on the lower
end. The CPU cost improvements for PetClinic are relatively
smaller since it has fewer methods compiled during warm-
up (see Table 1). Remote JIT with caching also significantly
reduced start times in these experiments - by 32-58%.

Remote JIT delivers benefits in terms of memory footprint:
it reduces total memory usage by up to 62% compared to local
JIT compilation. Peak total memory footprint is smaller with
JITServer because memory usage spikes caused by heavy
compilations from multiple clients are unlikely to align at the
server. The 2-minute DayTrader runs are the exception; the
extra memory footprint is due to faster heap expansion caused
by higher allocation rates since the application reaches higher
throughput compared to other JIT compilation modes.

The results for warm-start runs (with a pre-populated SCC)
are shown in Figure 7. Remote JIT without caching can still
have higher CPU cost (e.g. by 9% for 2-minute PetClinic
runs) than local JIT with SCC, while JITServer with caching
matches or surpasses the performance of local JIT with SCC.
Remote JIT still achieves lower (by up to 45%) total memory
usage. JITServer not only achieves better resource utilization
than using a pre-populated local SCC, but does it transpar-
ently without the additional developer effort associated with
managing the SCC (see Section 2.2). The two approaches can
be combined, in which case adding JITServer reduces CPU
cost by up to 53% compared to local JIT.

The main implication of these results for cloud computing
is that remote JIT with caching allows to increase application
density, even after accounting for the resources used by the
JITServer. We can fit more application instances into the same
amount of hardware resources since each instance requires
less memory and uses the CPU cycles to do more useful
computation. With caching, JITServer does not simply move
the overhead around - it uses the resources more efficiently.

4.3 Compilation Request Latencies
We measure two compilation latency metrics: (i) compilation
time taken to serve the request either locally or remotely, and

878    2022 USENIX Annual Technical Conference USENIX Association



2 min 5 min 10 min
AcmeAir: Application lifespan

0.0

0.5

1.0

1.5

CP
U

co
st
,m

se
c/
re
q

2 min 5 min 10 min
AcmeAir: Application lifespan

0

10

20

30

To
ta
lm

em
.u

sa
ge

,G
B

2 min 5 min 10 min
DayTrader: Application lifespan

0

5

10

15

CP
U
co

st
,m

se
c/
re
q Local JIT

Remote JIT
Remote JIT + cache

2 min 5 min 10 min
DayTrader: Application lifespan

0

10

20

30

40
To
ta
lm

em
.u

sa
ge

,G
B

2 min 5 min 10 min
PetClinic: Application lifespan

0.0

0.1

0.2

0.3

CP
U

co
st
,m

se
c/
re
q

2 min 5 min 10 min
PetClinic: Application lifespan

0

5

10

15

20

To
ta
lm

em
.u

sa
ge

,G
B

Figure 6: Overall efficiency in cold runs (lower is better)

(ii) total queuing time - from the moment the compilation
is first scheduled by the JVM (e.g. the method reached its
invocation threshold) until its completion. Figure 8 shows the
resulting CDF (using a logarithmic scale on the X axis) for
the AcmeAir benchmark when the JITServer is given all the
resources of its host. Figure 9 represents the configuration
with equal CPU resources: 2 CPUs for local JIT, and 1 CPU
each for the JITServer and the client JVM. The results for
other benchmarks are very similar and thus omitted.

The results show that individual remote compilations take
longer than the local ones, unless the JITServer has more CPU
resources. In the latter case, longer (more CPU-intensive)
compilations take less time at the JITServer thanks to ample
CPU resources, while cheaper compilations take longer than
locally - their latency is dominated by communication. Total
queuing times are still shorter than with local JIT even with
limited JITServer CPU due to increased parallelism: the CPU
work is overlayed with waiting for the network. Caching com-
piled code at the JITServer dramatically reduces compilation
request latencies, thanks to the 68-76% cache hit rate.

4.4 Scalability
In order to determine how caching affects JITServer perfor-
mance with an increasing number of clients, we run a variable
number - between 1 and 64 (80 for PetClinic) - of application
instances that use the same JITServer instance. Application
JVMs start simultaneously and without a pre-populated local
SCC, in order to maximize the load on the server. We mea-
sure the full warm-up time (sum of start and warm-up times)
averaged over all concurrent JVM instances. Remote JIT is

2 min 5 min 10 min
AcmeAir: Application lifespan

0.0

0.5

1.0

1.5

CP
U

co
st
,m

se
c/
re
q

2 min 5 min 10 min
AcmeAir: Application lifespan

0

10

20

30

To
ta
lm

em
.u

sa
ge

,G
B

2 min 5 min 10 min
DayTrader: Application lifespan

0

5

10

15

CP
U
co

st
,m

se
c/
re
q Local JIT

Remote JIT
Remote JIT + cache

2 min 5 min 10 min
DayTrader: Application lifespan

0

10

20

30

40

To
ta
lm

em
.u

sa
ge

,G
B

2 min 5 min 10 min
PetClinic: Application lifespan

0.0

0.1

0.2

0.3

CP
U

co
st
,m

se
c/
re
q

2 min 5 min 10 min
PetClinic: Application lifespan

0

5

10

15

20

To
ta
lm

em
.u

sa
ge

,G
B

Figure 7: Overall efficiency in warm-start runs (lower is better)

more efficient than local for a given number of clients only
if the full warm-up time is lower. When the server becomes
overloaded, the clients accumulate a backlog of compilation
requests, which results in slower warm-up.

Figure 10 shows the full warm-up times for each number
of instances (normalized to the local JIT configuration). We
see that JITServer caching dramatically improves scalability:
given the same amount of resources available to the server
instance, it can sustain load from a larger number of clients,
while improving their start-up and warm-up performance. The
cost of JIT compilation is reduced and effectively amortized
over a large number of concurrent clients by avoiding the
majority of repeated compilations with caching.

These results represent JITServer performance in a worst
case scenario. In a real deployment, we expect client JVM
starts to be staggered, providing more opportunities for sta-
tistical multiplexing, which in turn should allow JITServer
to handle an even larger number of clients without saturat-
ing. Additional JITServer instances can be brought up on
demand, allowing linear horizontal scaling since JITServer
only maintains soft state - the cache of compiled methods.

4.5 Effect of Network Latency
To determine how caching affects JITServer performance
with increasing network latency, we run a single application
instance with varying values of round-trip network latency
between the client JVM and the JITServer. We measure the
full warm-up time (start + warm-up) and compare it with
using local JIT compilation: remote compilation improves
performance if it results in faster warm-up. As latency grows,

USENIX Association 2022 USENIX Annual Technical Conference    879



10
−1 10

1
10

3

Compilation time, ms (log scale)

0.00

0.25

0.50

0.75

1.00

CD
F

10
0

10
2

10
4

Total queuing time, ms (log scale)

0.00

0.25

0.50

0.75

1.00

CD
F

Local JIT
Remote JIT
Remote JIT + cache

Figure 8: Compilation latencies: unlimited JITServer resources

10
−1 10

1
10

3

Compilation time, ms (log scale)

0.00

0.25

0.50

0.75

1.00

CD
F

10
0

10
2

10
4

Total queuing time, ms (log scale)

0.00

0.25

0.50

0.75

1.00
CD

F
Local JIT
Remote JIT
Remote JIT + cache

Figure 9: Compilation latencies: equal JIT CPU resources

each compilation request takes more time, and the server
eventually becomes unable to compile methods faster than
the local JIT compiler. We used the 100 Gbit/s Infiniband
network for the smallest latency value - 15 microseconds. The
10 Gbit/s Ethernet network has a latency of 45 microseconds.
We emulate the additional latency for subsequent data points
using the netem module in the Linux kernel.

Figure 11 shows the results for latencies up to over 8 mil-
liseconds. We can see that caching allows JITServer to toler-
ate higher network latencies (~4-8 ms, compared to ~2-4 ms
without caching) since cache hits only incur a single round-
trip. Caching compiled code reduces the average number of
messages per compiled method by ~54% (from ~42-47 to
~19-22 depending on the application), and the total amount
of data transferred per client by ~30% (from ~190-800 MB to
~140-580 MB depending on the application). On the other end
of the spectrum, bringing the latency down to microseconds
only slightly improves performance. JITServer performs very
well for latencies in the hundreds of microseconds which are
typical in cloud datacenters. Performance in high-latency sce-
narios can be further improved by increasing the maximum
number of client compilation threads (see Section 3.1). In our
future work, we plan to investigate using remote JIT compila-
tion in high-latency environments such as edge computing.
Summary of Results Our evaluation shows that:
• Remote JIT cannot be fully efficient without caching - it

often increases total system-wide CPU cost (by up to 21%).
• Caching compiled code allows JITServer to reduce cluster-

wide resource usage (by up to 77% for CPU and up to 62%
for memory) and increase application density.

• JITServer significantly reduces application start-up and
warm-up times (by up to 58% and 87% respectively) and
memory footprint, especially in smaller containers.

• Caching dramatically improves JITServer scalability and
allows it to effectively handle more concurrent clients and
tolerate significantly higher network latency (up to 8 ms).

0 20 40 60
AcmeAir: Number of instances

0.00

0.25

0.50

0.75

1.00

1.25

Fu
ll
w
ar
m
-u
p
tim

e

0 20 40 60
DayTrader: Number of instances

0.00

0.25

0.50

0.75

1.00

Fu
ll
w
ar
m
-u
p
tim

e

0 20 40 60 80
PetClinic: Number of instances

0.00

0.25

0.50

0.75

1.00

Fu
ll
w
ar
m
-u
p
tim

e

Local JIT
Remote JIT
Remote JIT + cache

Figure 10: Scalability
(lower is better)

0 2000 4000 6000 8000
AcmeAir: Latency, microsec

0

100

200

Fu
ll
w
ar
m
up

tim
e,

se
c

0 2000 4000 6000 8000
DayTrader: Latency, microsec

0

200

400

Fu
ll
w
ar
m
up

tim
e,

se
c

0 2000 4000 6000 8000
PetClinic: Latency, microsec

0

50

100

Fu
ll
w
ar
m
up

tim
e,

se
c

Local JIT
Remote JIT
Remote JIT + cache

Figure 11: Effect of network
latency

5 Conclusion and Future Work

In this paper we explored JIT compiler disaggregation as a
means to improve the performance and memory utilization
of JVMs running in the cloud. We described JITServer, our
disaggregated JIT compiler implementation in a production
grade JVM, which supports the caching and reuse of compiled
code across JVMs running on different hosts, and effectively
amortizes JIT compilation costs over many client JVMs.

The experimental results showed excellent improvements
in start-up time, warm-up time and memory footprint: JIT-
Server is able to speed-up JVM start-up by as much as 58%
and to reduce warm-up times by up to 87%, without a degra-
dation in peak throughput. Moreover, the overall system-wide
peak memory footprint is reduced by up to 62%, which should
make it possible to reduce operational costs by increasing ap-
plication density. Caching and reusing compiled code allows
JITServer to reduce overall CPU cost by up to 77%, showing
that JITServer enables cloud users to do more useful compu-
tation with less resources.

Our future work will explore prefetching of server-cached
code and predicting hot methods to hide compilation latency
and further reduce cold start times. We will study the trade-
off between the performance of relocatable code and the JIT-
Server cache hit rate. We will investigate ways to improve
the JIT compiler in the disaggregated setting, e.g. utilizing
profiling data from many clients, efficiently sharing compiled
code across applications, and automatically sizing and scaling
compilation resources. We plan to apply JITServer to other
workloads such as FaaS, microservices, and data analytics.

880    2022 USENIX Annual Technical Conference USENIX Association



A Artifact Appendix

Abstract
We provide the open source implementation of JITServer
(as part of the OpenJ9 project), as well as the automated
benchmarking platform that we used in our experimental
evaluation. Our results have been successfully reproduced in
artifact evaluation.

Scope
Our artifact can be used to run all the experiments described
in Section 4 in order to validate the main claims in our paper,
most importantly:
• JITServer can reduce application start time and warm-up

time and system-wide CPU and memory usage for JVM-
based applications running in containers with limited re-
sources (which are common in the cloud).

• Caching dynamically compiled code at the JITServer is
necessary to fully achieve the reduction in overall CPU
usage and application start time.
Note that the experimental results are expected to be

slightly different from the ones reported in this paper (even
on the same hardware) since the OpenJ9 implementation has
evolved since we conducted those experiments. However, the
main conclusions should still hold.

Contents
The artifact consists of two parts:
1. The open source implementation of our system, which

has been contributed to the OpenJ9 project. JITServer is
implemented in ~25 KLOC of C++. The code is integrated
into the rest of the OpenJ9 code base.

2. A set of scripts (Python, shell scripts, and Docker files)
that automate the benchmark runs used in our evaluation
and generate the resulting graphs. We also provide the logs
generated by running the full set of experiments reported
in this paper.

Hosting
All the parts of our artifact are open source and are hosted on
GitHub. The OpenJ9 code base (including JITServer) is split
across three separate repositories:
• Eclipse OpenJ9:
https://github.com/eclipse-openj9/openj9;

• Eclipse OMR: https://github.com/eclipse/omr;
• OpenJDK extensions for OpenJ9 (we used JDK 8 in our ex-

periments; newer JDK versions are also available): https:
//github.com/ibmruntimes/openj9-openjdk-jdk8.
The source code of our automated benchmarking platform

is available at https://github.com/AlexeyKhrabrov/
jitserver-benchmarks

Stable forks or branches of these repositories based on the
0.32.0 OpenJ9 release (with minor changes required by our

benchmarking platform, e.g. collecting additional statistics)
that were used for artifact evaluation are available as follows:
• OpenJ9:
https://github.com/AlexeyKhrabrov/openj9/
tree/atc22ae (commit 724db2932e5f0abb);

• OMR: https://github.com/AlexeyKhrabrov/omr/
tree/atc22ae (commit ab24b66665961405);

• JDK: https://github.com/AlexeyKhrabrov/openj9-
openjdk-jdk8/tree/atc22ae
(commit 0b8b8af39a5f1f2f);

• Benchmarks: https://github.com/AlexeyKhrabrov/
jitserver-benchmarks/tree/atc22ae
(commit 8360d90b89744ad1)

Requirements
While JITServer supports a wide range of Linux platforms,
our benchmarking setup assumes Ubuntu 18.04 as the OS. It
should be possible (although not necessarily easy) to tweak it
to work on other Linux distributions. Newer Ubuntu versions
might require downgrading to an older GCC version (OpenJ9
currently officially supports GCC 7, but should also support
GCC 10). Different Linux distributions will need more tweaks,
namely different ways of installing prerequisite packages.

Running the largest experiments reported in this paper re-
quires a cluster of 11 machines with 16 CPU cores each,
connected with a 10 Gbit/s network (or at least 1 Gbit/s) with
round-trip latency between machines in the low hundreds of
microseconds or less. Alternatively, the experiments can be
run in a public cloud such as AWS on a cluster of virtual
instances with roughly equivalent resources. The benchmark
setup requires sudo permissions on all the machines. The
required amount of storage space is approximately 30 GB on
each node (not including the OS).

The hardware and software environment that we used in
the experimental setup in our evaluation is described briefly
in Section 4 and in more detail in the README document:
https://github.com/AlexeyKhrabrov/jitserver-
benchmarks/tree/atc22ae#environment-used-in-
our-evaluation.

Usage
Detailed instructions describing how to set up and run the
benchmarks and generate the results can be found in the
README of the artifact repository: https://github.com/
AlexeyKhrabrov/jitserver-benchmarks

Acknowledgements

We thank the anonymous reviewers and the shepherd for their
feedback that helped us improve the paper, as well as the
anonymous AEC members for their help in identifying and
resolving issues in our artifact submission. We are grateful to
the OpenJ9 developer community for their help in contributing

USENIX Association 2022 USENIX Annual Technical Conference    881

https://github.com/eclipse-openj9/openj9
https://github.com/eclipse/omr
https://github.com/ibmruntimes/openj9-openjdk-jdk8
https://github.com/ibmruntimes/openj9-openjdk-jdk8
https://github.com/AlexeyKhrabrov/jitserver-benchmarks
https://github.com/AlexeyKhrabrov/jitserver-benchmarks
https://github.com/AlexeyKhrabrov/openj9/tree/atc22ae
https://github.com/AlexeyKhrabrov/openj9/tree/atc22ae
https://github.com/AlexeyKhrabrov/omr/tree/atc22ae
https://github.com/AlexeyKhrabrov/omr/tree/atc22ae
https://github.com/AlexeyKhrabrov/openj9-openjdk-jdk8/tree/atc22ae
https://github.com/AlexeyKhrabrov/openj9-openjdk-jdk8/tree/atc22ae
https://github.com/AlexeyKhrabrov/jitserver-benchmarks/tree/atc22ae
https://github.com/AlexeyKhrabrov/jitserver-benchmarks/tree/atc22ae
https://github.com/AlexeyKhrabrov/jitserver-benchmarks/tree/atc22ae#environment-used-in-our-evaluation
https://github.com/AlexeyKhrabrov/jitserver-benchmarks/tree/atc22ae#environment-used-in-our-evaluation
https://github.com/AlexeyKhrabrov/jitserver-benchmarks/tree/atc22ae#environment-used-in-our-evaluation
https://github.com/AlexeyKhrabrov/jitserver-benchmarks
https://github.com/AlexeyKhrabrov/jitserver-benchmarks


our code to the OpenJ9 project. This research was supported
in part by IBM CAS Canada and an NSERC CRD grant.

References

[1] AcmeAir sample and benchmark. https://github.
com/blueperf/acmeair-monolithic-java.

[2] AdoptOpenJDK OpenJ9 official image - Docker Hub.
https://hub.docker.com/_/adoptopenjdk.

[3] Amazon EC2 T2 instances. https://aws.amazon.
com/ec2/instance-types/t2/.

[4] Apache OpenWhisk runtimes for Java. https://
github.com/apache/openwhisk-runtime-java.

[5] Azul cloud native compiler. https://www.azul.com/
products/intelligence-cloud/cloud-native-
compiler/.

[6] Eclipse OpenJ9. https://www.eclipse.org/
openj9/.

[7] GraalVM native image. https://www.graalvm.org/
reference-manual/native-image/.

[8] Java EE7: DayTrader7 sample. https://github.com/
wasdev/sample.daytrader7.

[9] JEP 295: Ahead-of-time compilation. https://
openjdk.java.net/jeps/295.

[10] JEP 410: Remove the experimental AOT and JIT com-
piler. https://openjdk.java.net/jeps/410.

[11] Open Liberty official image - Docker Hub. https://
hub.docker.com/_/open-liberty.

[12] SPECjbb2015 benchmark. https://www.spec.org/
jbb2015/.

[13] SPECjEnterprise2018 Web Profile benchmark. https:
//www.spec.org/jEnterprise2018web/.

[14] SPECjvm2008 benchmark. https://www.spec.org/
jvm2008/.

[15] Spring PetClinic sample application. https://github.
com/spring-projects/spring-petclinic.

[16] D. Bhattacharya, K. B. Kent, E. Aubanel, D. Heidinga,
P. Shipton, and A. Micic. Improving the performance of
JVM startup using the shared class cache. In 2017 IEEE
Pacific Rim Conference on Communications, Computers
and Signal Processing (PACRIM), PACRIM, pages 1–6,
2017.

[17] Guangyu Chen, Byung-Tae Kang, Mahmut Kandemir,
Narayanan Vijaykrishnan, Mary Jane Irwin, and Ra-
jarathnam Chandramouli. Studying energy trade offs
in offloading computation/compilation in Java-enabled
mobile devices. IEEE Trans. Parallel Distrib. Syst.,
15(9):795–809, September 2004.

[18] Guilin Chen, Byung-Tae Kang, Mahmut T. Kandemir,
Narayanan Vijaykrishnan, Mary Jane Irwin, and Ra-
jarathnam Chandramouli. Energy-aware compilation
and execution in Java-enabled mobile devices. In 17th
International Parallel and Distributed Processing Sym-
posium (IPDPS 2003), 22-26 April 2003, Nice, France,
CD-ROM/Abstracts Proceedings, page 34. IEEE Com-
puter Society, 2003.

[19] Ben Corrie and Hang Shao. Class sharing in Eclipse
OpenJ9. https://developer.ibm.com/tutorials/
j-class-sharing-openj9/, 2018.

[20] Grzegorz Czajkowski, Laurent Daynès, and Nathaniel
Nystrom. Code sharing among virtual machines. In Pro-
ceedings of the 16th European Conference on Object-
Oriented Programming, ECOOP ’02, page 155–177,
Berlin, Heidelberg, 2002. Springer-Verlag.

[21] Bertrand Delsart, Vania Joloboff, and Eric Paire. JCOD:
A lightweight modular compilation technology for em-
bedded Java. In Proceedings of the Second International
Conference on Embedded Software, EMSOFT ’02, page
197–212, Berlin, Heidelberg, 2002. Springer-Verlag.

[22] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu
Yan, Chenggang Qin, Qixuan Wu, and Haibo Chen. Cat-
alyzer: Sub-millisecond startup for serverless computing
with initialization-less booting. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’20, page 467–481, New York, NY,
USA, 2020. Association for Computing Machinery.

[23] Vojislav Dukic, Rodrigo Bruno, Ankit Singla, and Gus-
tavo Alonso. Photons: Lambdas on a diet. In Proceed-
ings of the 11th ACM Symposium on Cloud Computing,
SoCC ’20, page 45–59, New York, NY, USA, 2020. As-
sociation for Computing Machinery.

[24] Kiyokuni Kawachiya, Kazunori Ogata, Daniel Silva,
Tamiya Onodera, Hideaki Komatsu, and Toshio
Nakatani. Cloneable JVM: A new approach to start
isolated Java applications faster. In Proceedings of
the 3rd International Conference on Virtual Execution
Environments, VEE ’07, pages 1–11, New York, NY,
USA, 2007. ACM.

882    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/blueperf/acmeair-monolithic-java
https://github.com/blueperf/acmeair-monolithic-java
https://hub.docker.com/_/adoptopenjdk
https://aws.amazon.com/ec2/instance-types/t2/
https://aws.amazon.com/ec2/instance-types/t2/
https://github.com/apache/openwhisk-runtime-java
https://github.com/apache/openwhisk-runtime-java
https://www.azul.com/products/intelligence-cloud/cloud-native-compiler/
https://www.azul.com/products/intelligence-cloud/cloud-native-compiler/
https://www.azul.com/products/intelligence-cloud/cloud-native-compiler/
https://www.eclipse.org/openj9/
https://www.eclipse.org/openj9/
https://www.graalvm.org/reference-manual/native-image/
https://www.graalvm.org/reference-manual/native-image/
https://github.com/wasdev/sample.daytrader7
https://github.com/wasdev/sample.daytrader7
https://openjdk.java.net/jeps/295
https://openjdk.java.net/jeps/295
https://openjdk.java.net/jeps/410
https://hub.docker.com/_/open-liberty
https://hub.docker.com/_/open-liberty
https://www.spec.org/jbb2015/
https://www.spec.org/jbb2015/
https://www.spec.org/jEnterprise2018web/
https://www.spec.org/jEnterprise2018web/
https://www.spec.org/jvm2008/
https://www.spec.org/jvm2008/
https://github.com/spring-projects/spring-petclinic
https://github.com/spring-projects/spring-petclinic
https://developer.ibm.com/tutorials/j-class-sharing-openj9/
https://developer.ibm.com/tutorials/j-class-sharing-openj9/


[25] Joel Koshy, Ingwar Wirjawan, Raju Pandey, and Yann
Ramin. Balancing computation and communication
costs: The case for hybrid execution in sensor networks.
Ad Hoc Networks, 6(8):1185–1200, 2008.

[26] Han B. Lee, Amer Diwan, and J. Eliot B. Moss. Design,
implementation, and evaluation of a compilation server.
ACM Trans. Program. Lang. Syst., 29(4):18–es, August
2007.

[27] David Lion, Adrian Chiu, Hailong Sun, Xin Zhuang,
Nikola Grcevski, and Ding Yuan. Don’t get caught in
the cold, warm-up your JVM: Understand and eliminate
JVM warm-up overhead in data-parallel systems. In
Proceedings of the 12th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’16,
pages 383–400, Berkeley, CA, USA, 2016. USENIX
Association.

[28] Matt Newsome and Des Watson. Proxy compilation of
dynamically loaded Java classes with MoJo. In Proceed-
ings of the Joint Conference on Languages, Compilers
and Tools for Embedded Systems: Software and Compil-
ers for Embedded Systems, LCTES/SCOPES ’02, page
204–212, New York, NY, USA, 2002. Association for
Computing Machinery.

[29] Radu Teodorescu and Raju Pandey. Using JIT com-
pilation and configurable runtime systems for efficient
deployment of Java programs on ubiquitous devices.
In Proceedings of the 3rd International Conference
on Ubiquitous Computing, UbiComp ’01, page 76–95,
Berlin, Heidelberg, 2001. Springer-Verlag.

[30] Kai-Ting Amy Wang, Rayson Ho, and Peng Wu. Re-
playable execution optimized for page sharing for a
managed runtime environment. In Proceedings of the
Fourteenth EuroSys Conference 2019, EuroSys ’19, New
York, NY, USA, 2019. Association for Computing Ma-
chinery.

[31] Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jo-
vanovic, Paul Wögerer, Peter B. Kessler, Oleg Pliss, and
Thomas Würthinger. Initialize once, start fast: Applica-
tion initialization at build time. Proc. ACM Program.
Lang., 3(OOPSLA):184:1–184:29, October 2019.

[32] Xiaoran Xu, Keith Cooper, Jacob Brock, Yan Zhang, and
Handong Ye. ShareJIT: JIT code cache sharing across
processes and its practical implementation. Proc. ACM
Program. Lang., 2(OOPSLA):124:1–124:23, October
2018.

USENIX Association 2022 USENIX Annual Technical Conference    883





RIKER: Always-Correct and Fast Incremental Builds from Simple Specifications

Charlie Curtsinger
Grinnell College

Daniel W. Barowy
Williams College

Abstract
Build systems are responsible for building software correctly
and quickly. Unfortunately, traditional build tools like make
are correct and fast only when developers precisely enumerate
dependencies for every incremental build step. Forward build
systems improve correctness over traditional build tools by
discovering dependencies automatically, but existing forward
build tools have two fundamental flaws. First, they are incor-
rect; existing forward build tools miss dependencies because
their models of system state are incomplete. Second, they
rely on users to manually specify incremental build steps,
increasing the programmer burden for fast builds.

This paper introduces RIKER, a forward build system that
guarantees fast, correct builds. RIKER builds are easy to spec-
ify; in many cases a single command such as gcc *.c suf-
fices. From these simple specifications, RIKER automatically
discovers fast incremental rebuild opportunities. RIKER mod-
els the entire POSIX filesystem—not just files, but directories,
pipes, and so on. This model guarantees that every depen-
dency is checked on every build so every output is correct.

We use RIKER to build 14 open source packages including
LLVM and memcached. RIKER incurs a median overhead of
8.8% on the initial full build. On average, RIKER’s incremen-
tal builds realize 94% of make’s incremental speedup with no
manual effort and no risk of errors.

1 Introduction
Build systems specify how code and other assets should be

transformed into executable software. They capture compila-
tion procedures left unstated in the source code itself. Build
systems make the process of building software more reliable,
since they free programmers from having to reproduce long
sequences of build commands after making a change.

To be useful, build systems should satisfy two goals. First,
builds must be correct: running a build should always have
the same effect, whether code was built previously or not. Sec-
ond, builds must be fast: they should perform the minimum
amount of work required to update a build in response to a

change. These goals are often in tension. Builds that are sim-
ple to specify expose few opportunities for fast incremental
updates, while complex incremental builds are more likely
to be incorrect. To illustrate this challenge, we begin with an
example build specification for make, one of the earliest and
most widely-used build tools [8].

program 1 : main.c x.c x.h y.c y.h 2

gcc -o program main.c x.c y.c 3

A make build specification, written in a Makefile, lists a
collection of build rules. The example above shows a rule that
produces a single program from three source files and two in-
clude files. Each target is composed of three parts: 1 a target
name, usually the name of an output file; 2 a list of depen-
dencies, which make calls “prerequisites,” required to produce
the target; and 3 a recipe that includes the build commands
needed to produce the target from the dependencies.

At the start of each build, make compares the last modi-
fication time of every target with its dependencies. When a
dependency is newer than the target, make runs the recipe to
update the target. When a dependency does not exist, make
recursively runs the rule that builds the dependency.

The key insight in make’s design is that developers rarely
change an entire codebase between builds. Rebuilds can run
faster by doing work proportional to the number of changed
dependencies, not the total number of files. In the simplest
case, when no dependencies change, make does nothing at all.

It is easy to see that the example Makefile is correct be-
cause all the dependencies are present and only a single build
command is needed. Unfortunately, this build is also ineffi-
cient. Changing x.c will cause gcc to recompile all three .c
files, even though y.c and main.c are unchanged. The cause
of this inefficiency is that the build is monolithic: there is only
one target that depends on all source files, so make must run
a full build when any source file changes.

Monolithic builds are prohibitively expensive for larger
projects. For example, a full build of LLVM takes nearly
20 minutes when run in parallel on a typical developer
workstation—far too long for a developer to wait to test a

USENIX Association 2022 USENIX Annual Technical Conference    885



small code change. Not surprisingly, large projects often have
incremental build specifications. To produce an incremental
make build, developers must break a specification into smaller
rules, exposing intermediate targets. The following modifies
the original Makefile so that it can be built incrementally.

program: main.o x.o y.o
gcc -o program main.o x.o y.o

main.o: main.c x.h y.h
gcc -c -o main.o main.c

x.o: x.c
gcc -c -o x.o x.c

y.o: y.c y.h
gcc -c -o y.o y.c

The updated specification states how to build a .o file from
each source file, and how those .o files are combined into the
final target, program. The new Makefile describes the same
work that gcc performs internally; internal steps have simply
been exposed so that make can run them or skip them during
an incremental rebuild. With this Makefile, modifying x.c
no longer rebuilds every output. Instead, the build generates a
new x.o, linking it with the other .o files already on disk.

This Makefile also illustrates the dangers inherent in more
complex build specifications: missing dependencies. Suppose
x.c includes x.h. The original Makefile is correct, but the
refactored one is not because changing x.h does not trigger a
rebuild of x.o as it should. The implication of such a bug is
that a developer with a previously-built working copy could
end up with different output than another developer who starts
with a clean copy of exactly the same source code.

An incremental build must be consistent with the full build;
it should always produce output that could have come from a
full build. Make and build tools like it do not guarantee this
property because they do not check for missing dependen-
cies. These errors occur with alarming frequency. A recent
study showed that more than two-thirds of the open-source
programs analyzed had serious build specification errors [28].

To address build errors, recent work proposes the idea of a
forward build system [29]. Build systems like make are “back-
ward” because evaluation proceeds from the final output rules,
recursively building dependencies as needed. A forward build
specification instead lists a sequence of commands, in order,
that perform a full build. Critically, forward build systems
discover dependencies automatically using program tracing
instead of asking users to enumerate dependencies. On re-
build, a forward build system runs only the commands nec-
essary to update the build, just as make does. When correctly
designed and implemented, forward build systems guarantee
correctness because they never miss dependencies.

Unfortunately, prior forward build systems miss dependen-
cies because they fail to account for the complexity of real
builds. Worse, they require users to manually specify incre-
mental build steps. As a result, prior forward build systems
are neither automatically correct nor automatically fast.

This paper introduces RIKER, a forward build system that

delivers the benefits of an incremental build system with the
simplicity of monolithic specifications. RIKER substantially
advances the state of the art in forward build systems by using
a completely different algorithmic approach. With RIKER,
efficient incremental builds can be specified using a single
build command like gcc *.c.

RIKER captures dependencies on directories, pipes, links,
and sockets—not just files—ensuring that builds are correct.
RIKER infers fine-grained steps from monolithic build spec-
ifications, ensuring that builds are fast. In the above exam-
ple, RIKER captures the execution of the C compiler (cc1),
assembler (as), and linker (ld), can run these commands in-
crementally, and in many cases in parallel, to update the build.
In short, RIKER makes it possible for users to specify builds
that are simple, correct, and efficient.

Contributions
Tracing and TraceIR. We present a high-performance sys-
tem call tracing mechanism that generates dependence-
checking programs in the novel TraceIR language (§4). Tra-
ceIR captures all of a build’s state interactions—including,
but not limited to, paths, files, directories, and pipes. Tra-
ceIR facilitates correct handling of circular and temporal
dependencies, complexities that occur in real builds.

RIKER Build Algorithm. The RIKER algorithm performs
efficient incremental builds by mixing emulation of
previously-recorded TraceIR with re-execution of com-
mands whose dependencies have changed (§5).

Implementation and Evaluation. We present an implemen-
tation of RIKER for Linux, and evaluate this implementation
by using it to build 14 real-world software projects (§6). Our
evaluation shows that RIKER is a significant advance over
the previous state of the art in forward build tools, automat-
ically performing incremental builds that are competitive
with manually-written make builds. RIKER is available under
an open-source license at https://rkr.sh.

2 Related Work
Build systems have evolved significantly since make’s in-

troduction in 1976 [8, 21]. However, all build systems share
the two goals we identify in the introduction: builds must be
correct and they must be fast. Build systems differ substan-
tially in their configuration, the precision of their dependency
tracking, how changes are detected, and the level of manual ef-
fort required to use them. These differences, which we discuss
below, are summarized in Table 1.
Backward Build Systems. The make build system and most
of its successors are backward build systems. With a backward
build system, the user writes a rule for each target produced
by the build, lists the dependencies required to produce the
target, and provides the commands required to create the tar-
get from its dependencies. When a target’s dependency does

886    2022 USENIX Annual Technical Conference USENIX Association

https://rkr.sh


Source & Build Language Dependencies Incremental Builds

Build System Language-Agnostic No DSL Precise General Automatic Dynamic Automatic

B
ac

kw
ar

d Make, Ninja, Shake, Tup ✓
Vesta ✓ ✓ ✓⋆ ✓

CMake, Ant/Maven, SCons ✓λ ✓λ

Pluto ✓⋆ ✓λ ✓ ✓λ

Bazel, Buck ✓ ✓⋆ ✓⋆ ✓λ

Fo
rw

ar
d Memoize, Fabricate ✓ ✓⋆ ✓ ✓

Rattle ✓ ✓ ✓ ✓
RIKER ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: A comparison between RIKER and prior build tools. A build system is language agnostic if it can build projects written in any
source language or combination of languages, and has no DSL if builds can be specified in a general-purpose language that is executable
independent of the build system. A build system is precise if it ensures that a specification captures all dependencies. It is general if it allows
cyclic dependencies, anti-dependencies, and dependencies on non-file objects. A build system is automatic if it discovers dependencies or
incremental builds without manual specification. A tool that supports dynamic incremental builds can discover dependencies while a build runs.
A ✓⋆ indicates partial support, and ✓λ indicates that a feature’s support is language-specific.

not exist, a backward build system calls the rule that produces
the dependency. Such build specifications are essentially an
edge-by-edge encoding of a dependence graph.

Make, Tup [27], Shake [22], and Ninja [1] are all examples
of backward build systems that require a dependence graph
encoding. Writing build specifications for these tools can be
burdensome. CMake [4], Ant/Maven [2, 3], SCons [26], and
Pluto [5] reduce this burden by providing standard templates.
Templates encode common build procedures like producing
an executable from a collection of C source files. These tools
automatically discover dependencies and run incremental
builds, but only for supported languages. Users must pro-
vide extensions to these build tools before they can use them
to build projects that use unsupported languages.

The early and innovative Vesta build system specifies builds
in a general-purpose modeling language [12, 13]. Although
users encode dependencies manually, Vesta uses a form of
black-box tracing at the filesystem layer to identify and cache
unspecified build outputs for incremental speedups. As Vesta
is also a source control management tool, it can correctly
reuse cached build objects in a distributed setting. Vesta can
only skip work for explicitly enumerated build steps.

Buck [7] and Bazel [11] focus on ensuring that dependen-
cies are precise by intentionally failing when any dependency
is not explicitly provided. This is in direct contrast to Make,
Tup, and Shake, where missing dependencies can lead to in-
correct builds. Like CMake, Buck and Bazel simplify the
process of specifying incremental builds with templates for
supported languages. Buck, Bazel, and Pluto also offer some
degree of dynamism when building; they can discover some
additional dependencies or prune work as the build proceeds.

RIKER differs from all these tools because it precisely
captures fine-grained dependencies and provides automatic
speedups without manual specification, and it does so for
projects written in any programming language.

Forward Build Systems. Memoize [19], Fabricate [14], and
Rattle [29] use tracing to discover dependencies from a se-
quence of build commands that should run in order. These
systems guarantee precise dependencies while remaining lan-
guage agnostic. However, all of them are limited to modeling
file state. A change to unsupported state, like a directory, does
not trigger a rebuild, producing an incorrect rebuild. As we
discuss in this work, correct builds must model not just files,
but inode metadata, directories, symbolic links, hard links,
pipes, and sockets. Correct build systems must also model
the absence of such state. Existing forward build tools also
have limited ability to produce fast incremental builds. Com-
piler drivers like gcc launch many separate sub-commands
to compile, assemble, and link programs. Prior forward build
systems require users to enumerate incremental build steps,
which makes writing build specifications more difficult.

Like the above tools, RIKER is a forward build system.
RIKER substantially improves the state of the art by automati-
cally inferring fine-grained build steps. RIKER can directly
invoke sub-commands called by wrapper programs like gcc.
Sub-command execution is possible because RIKER’s depen-
dence tracking is both precise and complete.

Separation of Concerns. Many build tools tackle addi-
tional tasks, such as platform detection or compilation in
a distributed setting. For example, Autoconf [9] and Au-
tomake [10] detect characteristics of the local system to gen-
erate build configurations, usually as a precursor to running
make. Buck, Bazel, Vesta, and CloudBuild [6] offer support
for distributing builds on cloud services. We regard these ob-
jectives to be orthogonal to this work. Since a RIKER build
specification is just a program, it can include configuration
steps. And we suspect that RIKER’s precise dependency track-
ing may make it easier to distribute builds across machines,
although we have not explored this topic.

RIKER’s design is strongly influenced by the UNIX philos-
ophy to make each program “do one thing well” [20]. There-

USENIX Association 2022 USENIX Annual Technical Conference    887



fore, we focus this work narrowly on one problem: to build
software correctly and quickly. This paper provides evidence
that the key to building software correctly and quickly is the
accurate detection and handling of changed dependencies,
regardless of language. The fact that RIKER can be used to
orchestrate compilation for any language, using a specifica-
tion written in any language, is a useful property that emerges
from the exclusive pursuit of this sole concern.

3 Overview
RIKER builds software using a simple specification called

a Rikerfile. A Rikerfile is typically a short shell script,
although it can be any executable that performs a full build.
RIKER is designed to spare developers the error-prone work
of specifying dependencies. Instead, RIKER discovers them
automatically as a Rikerfile executes. RIKER uses system
call tracing to capture all of a build’s stateful interactions,
which it records in a novel intermediate representation called
TraceIR. A TraceIR transcript is a program that describes a
build’s dependencies, operations, and effects (see §4).

When a user requests a rebuild, RIKER evaluates the stored
transcript instead of running a full build (see §5). Evaluation
updates an in-memory model of system state; the model cap-
tures the effects that would occur if a full build were run again.
Every statement in the TraceIR language is a predicate: when-
ever the modeled result of a TraceIR statement differs from
the observed outcome of the previous build, a dependency has
changed. Any command whose dependencies change must be
re-executed to update the build.

During TraceIR evaluation, RIKER must decide: should a
command be executed, or can it be skipped? If a command
is executed, RIKER actually runs the command using the
execve system call, tracing its execution and replacing its old
TraceIR statements in the transcript. If a command is skipped,
RIKER instead emulates the command, replaying its effects
(if it has any) in the model and only syncing those effects to
the filesystem at the end of the build or when an executed
command needs to observe them. In general, emulation is
orders of magnitude faster than execution. RIKER runs fast
incremental builds by skipping commands whenever it can;
the number of executed commands is roughly proportional to
the number of changes.

RIKER repeatedly re-evaluates the entire trace until no
changes are found. Re-evaluation is necessary because an
executed command can change a dependency for another
command. Instead of conservatively running all commands
that might observe changes, RIKER defers the decision to
execute until it can prove that a command must execute. Once
no commands must execute, the build is “up to date” and
RIKER saves the updated transcript for use in the next rebuild.

3.1 Examples
In this section, we highlight three scenarios from the work-

ing example (from §1) that illustrate RIKER’s operation. The

Rikerfile

gcc

collect2 ld

main.cx.c y.cx.h y.h

tmp.s tmp.s tmp.s

tmp1.o tmp2.o tmp3.o

program

cc1A cc1B cc1C

asD asE asF

tmp.le

tmp.ld

.Rikerfile z.cz.h

tmp.s

tmp4.o

cc1G

asH

c command a stateful artifact

child command input or output

Legend

Figure 1: A dependency graph for the running example. Dashed
edges show commands launching child commands, and solid edges
indicate inputs and outputs. The grey box contains the modification
induced by adding z.h and z.c to the build in Scenario 2.

following Rikerfile specifies the example build:
#!/bin/sh
gcc -o program *.c

Scenario 1: Running the first build. A user runs rkr to
perform a build. When rkr is invoked with no saved state
RIKER starts a full build by executing Rikerfile.

Figure 1 is a dependence graph for the running example.
Oval vertices represent commands, which correspond to pro-
grams run via exec system calls. Rectangular vertices repre-
sent stateful artifacts such as files or directories. Dashed edges
indicate that a parent command launched a child command.
Solid edges indicate a command’s input or output.

In contrast to many other build systems, RIKER’s build
algorithm does not store build information as a dependence
graph. Dependence graphs lack critical temporal information
needed to disambiguate rebuild logic that arises from circular
dependencies. We show Figure 1 to illustrate that even simple
builds have complex dependence structure that RIKER can
exploit. In fact, for clarity, Figure 1 omits a great deal: depen-
dencies on system includes, shared libraries, the executable
files for each command, and intermediate states of artifacts
written multiple times during the build.

When the Rikerfile command launches gcc, it launches
three instances of cc1 in turn. Each cc1 instance compiles
a .c file (and any included .h files) to a .s assembly file.
gcc also launches three instances of as to produce .o object
files from each .s input. Finally, gcc launches the collect2
command, which launches the linker ld. ld redirects stdout
and stderr to temporary files which can cause collect2 to
rerun the linker with different options. Note the cycle between
collect2 and ld; this dependence cycle is present in every
build that uses gcc. Also observe that gcc repeatedly reuses

888    2022 USENIX Annual Technical Conference USENIX Association



the same tmp.s temporary file, truncating it at the start of
each cc1 execution. File reuse and cyclic dependencies occur
frequently in builds.

Instead of a dependence graph, RIKER operates over a
TraceIR transcript. RIKER translates every intercepted system
call into a sequence of TraceIR statements. The following
transcript excerpt is generated during our example build:

1 sh_0 = Launch(rkr , "sh Rikerfile", [...])
2 r16 = PathRef(sh_0 , CWD, ".", r--)
3 ExpectResult(sh_0 , r16, SUCCESS)
4 MatchMetadata(sh_0 , r16,

[uid=100, gid=100, type=dir, perms=rwxrwxr -x])
5 MatchContent(sh_0 , r16, [dir: {"Rikerfile",

"main.c", "x.c", "x.h", "y.c", "y.h"}])

The transcript above records that RIKER launched the
Rikerfile program (line 1). Linux resolved the current work-
ing directory path (line 2) without error (line 3), and the re-
solved directory has the given metadata and directory entries.
During tracing, RIKER interprets all transcribed information
as what should happen during the normal course of a build.
While Rikerfile’s access of the current working directory’s
path resolved without error in this example, path resolution
failing with ENOENT is a normal occurrence whose outcome
must be recorded. For example, when the user types gcc at
the prompt, UNIX may first try to access gcc in ~/bin, which
will fail if ~/bin does not contain gcc. This behavior is the
result of the fact that UNIX searches the user’s $PATH during
resolution [16]. The observed sequence of failures is a build
dependency, and any change in failures implies that a build
must rerun. We call failing resolutions anti-dependencies.

In the next section, we examine how the above transcript
guides a rebuild after a user makes a code change. We defer
discussion of TraceIR semantics to Section 4.3.

Scenario 2: Adding a file. Suppose a user adds files z.c
and z.h and modifies main.c to include z.h. The user then
runs rkr to update the build. The grey box in Figure 1 shows
the effect of the change on the build’s dependence graph. An
efficient build system should not rebuild files unrelated to
a change. Here, tmp1.o and tmp3.o do not need updating
since they do not depend—even transitively—on any of the
changes. At the very least, cc1 and as should be called to
compile main.c and z.c, and collect2 and ld should be
called to link the output to our preexisting object files. In fact,
the very least is exactly what RIKER does here.

RIKER performs an incremental rebuild of the example by
evaluating the TraceIR from the previous build. We assume
the user does not change ownership or permissions for the cur-
rent directory, so lines 1–4 evaluate just as before. However,
line 5, which depends on directory contents, reports a change
because the current directory contains the new files z.c and
z.h. RIKER therefore reruns and traces the Rikerfile. When
the Rikerfile command is rerun, the Rikerfile’s portion
of the transcript is replaced with newly generated TraceIR.

Although rerunning the Rikerfile might seem to imply

that the entire build will run again, this is not the case. When
Rikerfile launches gcc, RIKER lets the execution proceed
(also under tracing) because gcc’s arguments, which now
include z.c, also change. However, RIKER skips execution
of the commands labeled A, C, D, and F in Figure 1, emulating
them from the trace instead.
Command skipping. Let us examine the first command that
RIKER skips, the instance of cc1 labeled A in Figure 1:
1 cc1_1 = Launch(gcc_0 , "cc1 x -o tmp.s", [...])
2 r71 = PathRef(cc1_1 , CWD, "x.c", r--)
3 ExpectResult(cc1_1 , r71, SUCCESS)
4 MatchMetadata(cc1_1 , r71,

[uid=100, gid=100, type=file , perms=rw-rw-r--])
5 MatchContent(cc1_1 , r71,

[mtime=1619457130 , hash=3c6ea , cached=false])
6 r75 = PathRef(cc1_1 , r3, "tmp.s",

-w- truncate create (rw-rw-rw -))
7 ExpectResult(cc1_1 , r75, SUCCESS)
8 UpdateContent(cc1_1 , r75, [hash=054521])

The key observation is that emulation of this command’s
transcript—which RIKER always does before concluding that
a command must run—detects no changes. cc1 reads x.c
(lines 4–5) and writes to a temporary file, tmp.s (lines 6–8).
The file x.c is unchanged. Although tmp.s was created by
gcc and is reused by every cc1 process started by gcc, there
is no dependency on that file’s content because cc1 truncates
the file without reading it (line 6). Because RIKER detects
no changes, it can emulate rather than execute cc1. Similar
reasoning allows RIKER to skip C, D, and F.
Scenario 3: Making an inconsequential change. Suppose
a comment is added to x.c and the build is run again. This
change has no effect on the final compiled program and an
ideal build system should do almost nothing. Referring again
to the previous trace, RIKER detects a change (line 5) for cc1
because x.c changes. However, RIKER correctly halts the
build without ever running as, collect2, or ld.

Here is an excerpt of the as command’s transcript:
1 as_1 = Launch(gcc_0 , [as -o tmp1.o], [...])
2 r26 = PathRef(as_1 , r3, "tmp1.o",

rw- truncate create (rw-rw-rw -))
3 ExpectResult(as_1 , r26, SUCCESS)
4 r27 = PathRef(as_1 , r3, "tmp.s", r--)
5 ExpectResult(as_1 , r27, SUCCESS)
6 MatchMetadata(as_1 , r27, [uid=100,

gid=100, type=file , perms=rw-------])
7 MatchContent(as_1 , r27, [mtime=1619458806 ,

hash=10732f, cached=true])
8 UpdateContent(as_1 , r26, [mtime=1619458806 ,

hash=3814e7, cached=true])

The as command reads tmp.s and writes to tmp1.o.
RIKER concludes that cc1’s output tmp.s is unchanged
(lines 6–7), even though the mtime is different. In RIKER,
mtimes provide a fast path for change detection: a file’s con-
tent is unchanged if its mtime is unchanged, or if its con-
tent produces the expected hash. Finally, we see as writes to
tmp.o (line 8). Because as is unchanged, RIKER can instead
restore the tmp.o file from its cache and skip as.

USENIX Association 2022 USENIX Annual Technical Conference    889



3.2 Summary
RIKER runs efficient incremental builds from simple speci-

fications, even those with a single command. Throughout this
section we never once needed to change the Rikerfile, even
though the build’s dependencies changed with the addition
of new files; RIKER always ensures that incremental rebuilds
produce the same effect as full builds. Finally, RIKER is lan-
guage agnostic: it can be used to build programs written in
any language using any executable build specification.

4 Tracing and TraceIR
This section defines terms that we use to describe RIKER’s

operation, describes RIKER’s system call tracing mechanism,
and introduces the novel TraceIR language that RIKER uses
to record dependency information.

4.1 Definitions
An artifact represents system state such as a file, a directory,

or a pipe. A version represents an artifact’s state at a point
in time during the build. Every artifact has both content and
metadata versions. Two content versions are identical if and
only if they contain the same bits. Two metadata versions are
identical if and only if their permission bits and ownership
are the same.

A command is a program that accesses or modifies artifacts,
and may launch additional commands. A dependency is any
version made visible to a command through a system call.
A command is changed if its dependencies are not identical
to the versions observed during the previous run, or if the
outcome of an operation like path resolution differs from what
was observed during the previous build (e.g. a file referenced
during the last build no longer exists).

Versions are equivalent if they are identical, or if they could
be written to the same artifact by two executions of a non-
deterministic command given equivalent inputs. Outputs from
different executions of a command given equivalent inputs
are interchangeable, even if those outputs are not identical.

A build specification is any program that encodes a se-
quence of commands to run. A build system is a program that
evaluates a build specification to perform a build. A full build
executes all of the commands in the specification, while an
incremental build produces the same effect while executing
only a subset of commands.

When executing a command, RIKER records the dependen-
cies and effects of each command in the TraceIR language.
RIKER evaluates recorded TraceIR on subsequent builds to de-
termine whether the command has changed. A command can
be skipped if it is unchanged, otherwise it must be executed.

4.2 Tracing Implementation
RIKER executes commands under system call tracing

to gather a complete set of dependencies. RIKER uses
ptrace [17] to intercept system calls. Only calls related

to filesystem interaction, file descriptor management, and
process creation—75 system calls in total—matter for de-
pendency tracking. RIKER combines ptrace with seccomp-
BPF [25] filters to avoid tracing irrelevant system calls. Nev-
ertheless, tracing has high overhead even with filtering. To
reduce overhead, RIKER injects a shared library into each
build command to intercept calls to frequently-used libc
system call wrappers like open and stat without incurring
ptrace overhead. This approach is inspired by RR [24],
with additional support for passing system call arguments
through shared memory. For a build of memcached—a typical
C project built with gcc—RIKER’s injected library handles
95% of system calls (ptrace handles the remaining 5%). For
memcached, shared library tracing reduces RIKER’s full-build
overhead from 1.81s (16.9%) to just 0.84s (7.8%) with no
loss of tracing precision.

The next section describes the TraceIR language. Sec-
tion 4.4 shows how system calls are translated to TraceIR.

4.3 The TraceIR Language
TraceIR is an executable, linear representation of a build’s

behavior. RIKER generates TraceIR from system call traces,
and detects changes by evaluating TraceIR against a model
of the filesystem. The TraceIR language describes the depen-
dencies that are visible to each command during the build, as
well as the side effects of each command’s execution.
Design considerations. The design of TraceIR is guided by
three important requirements. First, tracing must be complete,
capturing dependencies on all artifacts. A missed dependency
could lead to an incorrect build. Second, TraceIR records
events serially, even if those events come from processes that
run in parallel during the build. Recording events serially im-
poses a temporal ordering [15] on filesystem interactions. A
temporal ordering makes the relationship between an access
of an artifact and its corresponding version unambiguous at
any given point in a build, even when that artifact is read and
written concurrently. Finally, a TraceIR program represents a
single observed path of execution for a command. If a com-
mand’s dependency changes, RIKER will execute and trace
the command to discover its new behavior.
Language elements. Table 2 shows the datatypes of the Tra-
ceIR language, and Table 3 shows nearly all of the statements
in the TraceIR language. We omit three low-level operations
for clarity. Return types are BOOL where omitted. A TraceIR
program is a sequence of statements, each associated with a
command c. Statements fall into four logical groups:

Artifact accesses establish a reference to an artifact. A ref-
erence can resolve successfully or result in an error. Some
accesses are side effecting (e.g. to capture the behavior of
open with the O_CREAT flag).

State checks record the state observed by a command c the
last time it executed. If a state check fails, c observes a
change and must re-execute.

890    2022 USENIX Annual Technical Conference USENIX Association



TraceIR Data Types

BOOL, INT, STRING Normal primitive types
[T] A list of elements of type T

OUTCOME Success or a POSIX error code
REF Reference to an artifact or OUTCOME

CMD A build command
FLAGS Flags associated with a file access

METADATAVERSION An artifact’s metadata
CONTENTVERSION An artifact’s content

SPECIALREFID A special artifact ID: ROOT, CWD, . . .

Table 2: TraceIR data types.

State updates record the effect a command had on global
state, such as writes to file content or metadata, or the cre-
ation and removal of directory entries.

Command updates record command creation, termination,
and when a command waits for another to exit. These state-
ments capture the semantics of execve, exit, wait, and
related system calls.

4.4 Generating TraceIR Transcripts
RIKER translates each traced system call to a sequence

of TraceIR statements called a transcript. The transcript
below is generated when command c issues a successful
stat("input", &statbuf) call.

1 r1 = SpecialRef(c, CWD)
2 r2 = PathRef(c, r1, "input", ---)
3 ExpectResult(c, r2, SUCCESS)
4 MatchMetadata(c, r2, [uid=100, gid=100,

type=file , perms=rw-r--r--])

Line 1 is a reference to the command’s current working
directory. Line 2 uses the reference to resolve the path to the
file input. This stat call did not include any special flags so
the fourth parameter is ---. If the file were opened rather than
stated, this field would request read and/or write permission.
For lstat, a nofollow flag would signal that path resolution
should not follow symbolic links.

Because stat succeeds, line 3 records a successful out-
come. If input is removed before a future rebuild, the ob-
served result will be ENOENT and RIKER will detect a change.
Finally, because c observes input’s metadata, line 4 records
the observed metadata. If the file’s metadata is modified, a
rebuild will detect a change.

Importantly, TraceIR also records anti-dependencies. Sup-
posing the stat call originally failed with ENOENT, the gen-
erated TraceIR would have had the same first two lines, but
line 3 would expect ENOENT and line 4 would be omitted. If
input is present on rebuild, RIKER would observe that the
result is not ENOENT and would detect a change.

5 Build Algorithm
The RIKER algorithm, shown in Figure 2, performs two

tasks: it detects changes and updates the build by running com-
mands affected by those changes. RIKER’s build algorithm

TraceIR Statements

A
rt

ifa
ct

A
cc

es
s

PATHREF (c : CMD, b : REF, p : STRING, f : FLAGS) : REF
Command c resolves path p relative to b with flags f

SPECIALREF (c : CMD, id : SPECIALREFID) : REF
Command c references a special artifact (e.g. /, cwd)

FILEREF (c : CMD) : REF
DIRREF (c : CMD) : REF
PIPEREF (c : CMD) : REF, REF
SYMLINKREF (c : CMD) : REF
Command c references new anonymous file, directory, etc.

St
at

e
C

he
ck

s

EXPECTRESULT (c : CMD, r : REF, e : OUTCOME)
Command c expects r to resolve with outcome e

MATCHMETADATA (c : CMD, r : REF, e : METADATAVERSION)
MATCHCONTENT (c : CMD, r : REF, e : CONTENTVERSION)
Command c expects r to have metadata or content e

EXITRESULT (c : CMD, child : CMD, n : INT)
Command c expects child to have exit code n

St
at

e
U

pd
at

es

UPDATEMETADATA (c : CMD, r : REF, v : METADATAVERSION)
UPDATECONTENT (c : CMD, r : REF, v : CONTENTVERSION)
Command c updates r with metadata or content v

ADDDIRENTRY (c : CMD, d : REF, e : STRING, a : REF)
Command c links artifact a as entry e in directory d

REMOVEDIRENTRY (c : CMD, d : REF, e : STRING)
Command c removes entry e from directory d

C
om

m
an

d
U

pd
at

es LAUNCH (c : CMD, cmd : [STRING], rs : [REF]) : CMD
Command c launches child cmd with inherited references rs

JOIN (c : CMD, child : CMD)
Command c waits for child child to exit

EXIT (c : CMD, n : INT)
Command c exits with status n

Table 3: TraceIR Statements.

is always guided by a saved transcript. RIKER’s fixed-point
build algorithm repeatedly evaluates the build transcript, run-
ning changed commands while checking for changes made
visible to other commands. The build terminates when no new
changes are found.

Changes. TraceIR statements are predicates that express ex-
pectations about state at specific points during the build. An
expectation can be in regard to the outcome of path resolution,
the exit code of a child command, or the content or metadata
of artifacts. Predicates are checked against the the filesystem
model M. This model, a set of artifacts, records the effects of
any prior TraceIR statements. The model is lazily populated
with actual filesystem state; predicates that refer to artifacts
that have not been modified during the build are checked
against actual filesystem state. When a command’s TraceIR
predicate fails—that is, the expected state does not match
the model M—the command is changed and must execute to
update the build.

Phases. RIKER’s build algorithm runs in phases. Each phase
is an evaluation of an entire TraceIR build transcript T in
the context of the model M. Trace evaluation, carried out by
EVALTRACE (line 6 of DOBUILD), is repeated until the set
of commands that must run, R, is empty.

USENIX Association 2022 USENIX Annual Technical Conference    891



DOBUILD(trpath)

1 i = 1, M = { }, R = { }
2 T = LOADTRACE(trpath)
3 if |T | = = 0 then T = { LAUNCH (rkr, Rikerfile, ...) }
4 repeat
5 M = { }
6 (M,T,D,R) = EVALTRACE(M, T , R, false)
7 R = PLAN(D, R)
8 i = i+1
9 until |R|== 0

10 SYNCALL (M)
11 if i > 1
12 (_,T,_,_) = EVALTRACE(M, T , R, true)
13 WRITETRACE(T )

EVALTRACE(M,T,R, post)

1 T ′ = nil, D = { }
2 Rbuild = { },Rpost = { }
3 for t in T
4 c = CMDOF(t)
5 if c /∈ R
6 (ts,M,D,δbuild ,δpost) = EVALSTMT(t,M,R,D, post)
7 if δbuild then Rbuild = Rbuild ∪{c}
8 if δpost then Rpost = Rpost ∪{c}
9 T ′ = T ′@ ts

10 return (M, T ′, D, Rbuild ∩Rpost )

Figure 2: RIKER’s build algorithm. DOBUILD repeatedly evaluates
a TraceIR build transcript T in the model M until it observes no new
changes. EVALTRACE evaluates a single pass through T , returning
an updated model and trace, command dependence graph D, and set
of commands that must run, R. @ concatenates two lists. At the end
of the repeat-until loop, the build is up-to-date.

Emulation vs. Execution. RIKER performs incremental
builds by mixing execution and emulation of build commands.
RIKER emulates a command by evaluating its TraceIR to up-
date the in-memory model M, but does not run the command.
RIKER executes a command by running it with exec(3).
RIKER traces the system calls of the executing command
to generate new TraceIR, and evaluates this new TraceIR to
keep the in-memory model M in sync with filesystem state.
Whether a command is emulated or executed depends on
whether it was added to R during a previous phase (see §5.1).
Invariant. RIKER enforces the invariant that any command
whose dependencies have changed will be executed; failing to
do so results in an incorrect build. RIKER emulates all other
commands instead of executing them.

Executing an unchanged command preserves correctness,
but doing so is costly. We avoid unnecessary command exe-
cutions whenever possible because they take orders of magni-
tude longer than emulating a command to recreate its effects.
For example, when a command’s output is missing the file can
be restored from a cached copy (see §5.2) instead of executing
the command to recreate the file. We discuss the correctness
of this approach in Section 5.5.

To avoid over-approximating R (the set of commands that
will run) RIKER evaluates the build transcript T repeatedly
(line 4). Repeated evaluation is necessary because change
detection is a dynamic problem [5]. For example, suppose T
contains two commands, A and B, and that B reads one of A’s
outputs. Suppose A must run; does B need to run? The answer
is “maybe.” If A produces the same output that it produced
previously, then B does not need to run. We saw this exact
situation in the overview’s example when adding a comment
to a source file. It is safe to conservatively run B any time A
runs, but RIKER can potentially save work by deferring the
decision to run B until after A’s effects are observed.

Statement evaluation. At the heart of the build algorithm is
the evaluation of TraceIR statements. The purpose of eval-
uating a statement is twofold: to update state and to detect
changes. When a command is emulated, the only state updated
is M. When a command is executed, both M and the actual
filesystem are updated. The semantics of change detection
depend on the specific TraceIR statement (see §4.3).

EVALSTMT (line 6) evaluates a TraceIR statement. Eval-
uation returns one or more TraceIR statements, an updated
model M, a command dependence map D (see §5.3), and
two flags denoting whether the statement observed a change,
either a build or post-build change (see Post-build checks
below). The returned trace statements are used in the next
build phase. When a command is emulated, its trace steps are
simply echoed back. We describe command execution in §5.1.
After a transcript is evaluated, RIKER calls PLAN (line 7),
which may mark extra commands to run (see §5.3).

Filesystem and model. RIKER begins each phase by initializ-
ing the model M (line 5 in DOBUILD). Emulated updates are
discarded after each phase because those updates are replayed
in subsequent phases, whereas changes resulting from execu-
tion are written directly to the filesystem. SYNCALL (line 10
of DOBUILD) writes all changes in the model M to the filesys-
tem at the end of the build. This operation ensures the outputs
from commands that did not need to run are written to disk.

Post-build checks. Desirable state left behind from a pre-
vious build can look like a change to a command run in an
early part of a build. RIKER finishes every build with a se-
ries of post-build checks to avoid doing unnecessary work in
this scenario. To illustrate, recall our working example from
section 3 which runs the command gcc -o program *.c.
Before performing any compilation steps, gcc will stat the
program file, which does not yet exist. The stat system call
produces the following TraceIR:

1 r8 = PathRef(gcc_0 , CWD, "program", ---)
2 ExpectResult(gcc_0 , r8, ENOENT)

Later in the build, program is created by the linker. As a
result, immediately running the build again after completing
the first full build would detect a change on line 2, and gcc
would run. However, running gcc is unnecessary because the
observed change is a byproduct of the build itself. Post-build

892    2022 USENIX Annual Technical Conference USENIX Association



checks enable RIKER to skip over these changes by encoding
multiple justifications to skip: a command is unchanged if all
of its predicates match what was observed during the build,
or if the predicates match state found immediately after the
conclusion of the build.

The post-build phase (line 12 of DOBUILD) emulates all
commands in T , but adds additional predicates to check post-
build state. After running the post-build phase in the example
build, the above TraceIR excerpt is extended to capture either
outcome of the stat call:
1 r8 = PathRef(gcc_0 , CWD, "program", ---)
2 ExpectResult(gcc_0 , r8, ENOENT) [build]
3 ExpectResult(gcc_0 , r8, SUCCESS) [post -build]

The predicate on line 2 is the same as before, but has been
marked as a build predicate. The new predicate on line 3
describes an alternative. With post-build checks, a command
is only changed if its predicates fail in both the build and post-
build scenarios (line 10 of EVALTRACE). In other words, a
command is changed only when its dependencies are distinct
from both the dependencies observed during the last build
and immediately after the last build.

5.1 Command Emulation and Execution
RIKER begins every build by emulating a root command.

The root command sets up initial references (e.g. the root
directory, working directory, standard streams, etc.) and then
launches Rikerfile. When an emulated command contains
a LAUNCH statement, RIKER will either emulate or execute
the child command depending on whether or not the child is
in R. If the child is in R RIKER will launch the command in
a new process with system call tracing. All statements from
the child command are discarded from the transcript, and
will be replaced with new TraceIR collected from the child’s
execution. If c is not in R, RIKER simply emulates the child
from the build transcript.

Parent commands typically wait for their children to exit
using the wait system call; this system call generates a JOIN
statement in the build transcript. RIKER emulates a JOIN state-
ment by handling traced system calls from build processes
until the child command’s main process exits.

When a command c is executed it may depend on artifacts
modified by emulated commands. The latest state of these
artifacts is in M, not on the actual filesystem. RIKER will write
these changes out to the filesystem as they are needed, either
when c begins execution (when file descriptors are inherited
by the child) or when c first accesses the artifact during its
execution. This mechanism is critical for RIKER’s ability to
incrementalize builds, and relies heavily on caching.

5.2 Caching
Without caching, RIKER’s ability to execute sub-commands

in isolation would be limited because many of the needed
inputs would not be available. gcc and other language tools
routinely create “ephemeral” state—like temporary files—as

communication channels for tools in the toolchain. RIKER’s
caching and TraceIR make it possible to automatically restore
this ephemeral state to run a command whose inputs are
produced by other commands (e.g. the assembler or linker).

The motivating example in Figure 1 illustrates this func-
tionality. Suppose a user edits main.c; RIKER will execute
the compiler and assembler to produce tmp2.o, but does not
need to execute any commands to produce the other .o files.
Instead, these files are simply restored from cache when they
are first accessed by the linker. The fact that gcc reuses tmp.s
is not a problem, as each use of the file is ordered in the build
transcript so RIKER always knows which version of the file
is required for every command.

RIKER caches files, symlinks, and directories. Cached arti-
facts are stored in a .rkr directory, and are garbage collected
when RIKER detects that they are no longer referenced by
the build transcript. RIKER currently does not cache pipes,
sockets, or special files. If a command that reads from a pipe
must run, RIKER will also run commands that write to that
pipe to provide uncached inputs.

5.3 Build Planning
The purpose of build planning (line 7 in DOBUILD of

Figure 2) is twofold: to ensure the build terminates, and to
improve efficiency. PLAN works much like the mark-sweep
garbage collection algorithm [18] and uses the command de-
pendence graph, D, returned by EVALTRACE. D is a digraph
of producer-consumer relationships between commands.

Commands are marked under a few conditions: a) a com-
mand is in R, having directly observed a change in EVAL-
TRACE; b) a command consumes uncached input produced
by a command already marked to run; c) a command pro-
duces uncached output consumed by another command al-
ready marked to run; or d) a command produces uncached
output that should persist after the build.

The above criteria identify commands that subsequent build
phases in a cycle-free build would eventually identify, so for
those builds it reduces the number of phases. However, in
builds with dependence cycles, RIKER may not terminate
without special handling. In D, a cycle appears as a strongly-
connected component (SCC) [31]. Planning ensures that com-
mands in a cycle run atomically. Caching also breaks cy-
cles; RIKER only needs to atomically run SCCs that interact
through uncached artifacts like pipes.

5.4 Exit Code Handling
Unlike prior forward build systems, RIKER can execute a

sub-command without executing its parent. Parent commands
can observe the exit codes of their children, so if a child
finishes with a different exit code the parent must run. Because
exit code changes are rare, RIKER optimistically assumes that
the child’s exit code will not change. In the common case
the child command runs, finishes with the expected exit code,
and the build is complete. If the child finishes with a different

USENIX Association 2022 USENIX Annual Technical Conference    893



exit code, the parent observes a change and will re-execute
in the next phase of the build. Executing the parent may re-
execute the child if the child’s dependencies change again. In
the worst case, RIKER could backtrack on every command,
taking O(n2) time, where n is the number of commands. Even
for builds that contain compilation errors—and thus changed
exit codes—we observed that total work done is close to O(n).

5.5 Correctness
Here we provide a proof sketch for the correctness of

RIKER’s incremental build algorithm. We make the following
assumptions.
A1. The user-provided full build specification does what the

user intends.
A2. The user accepts that equivalent outputs (defined in §4.1)

are interchangeable, an assumption shared by most build
systems.

A3. Intercepting system calls is sufficient to determine all
dependencies.

A4. Our translation from system calls to TraceIR faithfully
captures dependencies and side-effects. Our empirical
evaluation in Section 6 provides evidence that this trans-
lation is accurate.

An incremental build tool that produces outputs that could
not have come from a full build is clearly incorrect. A consis-
tent build produces output that could have come from a full
build, and is therefore correct (A1, A2) [12, 13].

Running an empty build specification produces no output,
so all rebuilds of this specification are by definition consistent.
Given a consistent build with k commands, add command
k+ 1 to the specification. Command k+ 1 may depend on
outputs from any of the preceding k commands. The build
remains consistent when k+1 is executed (A1). On rebuild,
if k + 1 is unchanged, skipping command k + 1 preserves
consistency because RIKER restores cached artifacts (A2).
By induction, a build is consistent as long as all changed
commands are executed.

RIKER executes changed commands in phases. If an exe-
cuted command produces a different output read by another
command, the latter command is changed and will execute
in the next phase. The build terminates when a phase fin-
ishes with no changed commands. Since RIKER’s algorithm
executes all changed commands, it produces consistent builds.

The proof sketch above assumes commands k and j do
not participate in a dependence cycle, but these cycles arise
in real builds. Without loss of generality, assume k writes
output that j accesses, and later j writes output that k accesses;
RIKER’s build transcript captures the temporal order of these
interactions. We allow for such cycles by logically partitioning
k into k′, the portion of k that runs before its dependence
on j, and k′′, the remainder of k. Now j depends on k′ and
k′′ depends on j, so there is no longer a cycle. We add the
constraint that if either k′ or k′′ must run, both will run, as
these are actually two parts of the same command.

6 Evaluation
Our evaluation of RIKER addresses four key questions:
Q1: Are RIKER builds easy to specify?
Q2: Are RIKER builds fast?
Q3: Are RIKER builds correct?
Q4: How does RIKER compare to RATTLE?

We use RIKER to build 14 software packages, including
large projects like LLVM, memcached, redis, and protobuf.
Evaluation was conducted on a typical developer worksta-
tion with an Intel Core i5-7600 processor, 8GB of RAM, and
an SSD running Ubuntu 20.04 with kernel version 5.4.0-80.
Builds use either gcc version 9.3.0 or clang 10.0.0.

6.1 Are RIKER builds easy to specify?
To answer this question, we wrote Rikerfiles for seven

applications: lua, memcached, redis, rkr, sqlite, vim, and xz.
The new builds produce the same targets as the projects’ ex-
isting make or cmake builds. Unlike the default build systems,
the RIKER-based builds do not list any dependencies or in-
cremental build steps. Three of these builds were written by
undergraduate students over the course of a few days; the
students were new to RIKER and unfamiliar with the project
sources they were building. The biggest challenge the students
faced was understanding the existing build specifications, a
task that is likely easier for the project’s own developers.

A key feature of a Rikerfile is its brevity, illustrated by
memcached’s complete Rikerfile:

1 CFLAGS="..."
2 DEBUG_CFLAGS="..."
3 MEMCACHED_SRC="memcached.c hash.c ..."
4 TESTAPP_SRC="testapp.c util.c ..."
5 gcc $CFLAGS -o memcached $MEMCACHED_SRC -levent
6 gcc $DEBUG_CFLAGS -o memcached -debug \
7 $MEMCACHED_SRC -levent
8 gcc $CFLAGS -o sizes sizes.c -levent
9 gcc $CFLAGS -o testapp $TESTAPP_SRC -levent

10 gcc $CFLAGS -o timedrun timedrun.c -levent

This level of simplification is typical; Our largest
Rikerfile—used to build sqlite—is just over 5KB, and con-
sists mostly of a list of source files. Forward builds are eas-
ier to specify because of automatic dependency discovery.
RIKER’s incremental builds are also significantly shorter than
specifications for prior forward build tools (see §6.4).

6.2 Are RIKER builds fast?
The first full build of any software project is usually the

longest build. Full builds are where RIKER incurs the largest
absolute overhead. Importantly, full builds are not the com-
mon case; developers run incremental builds far more often
than full builds. This section shows that even with the extra
delay, full builds are reasonably fast with RIKER.

To measure RIKER’s overhead, we built 14 software
projects with RIKER. Seven of these projects use a
Rikerfile that replaces the default build (see §6.1), while

894    2022 USENIX Annual Technical Conference USENIX Association



0%

25%

50%

75%

au
to

co
nf

ca
lc

co
re

ut
ils

llv
m

ls
of lu

a

m
ak

e

m
em

ca
ch

ed

pr
ot

ob
uf

re
di

s
rik

er

sq
lit

e
vi

m xz

O
v
er

h
ea

d

Riker's Overhead for Full Builds

Figure 3: RIKER runtime overhead for full builds compared to each
project’s default build system. RIKER’s median overhead on full
builds is 8.8%, with a median absolute slowdown of 1.2s.

the other half use a Rikerfile that wraps the default build.
The only requirement for a Rikerfile is that it run a full
build, so a make-based project can be built with a one-line
Rikerfile: make --always-make. Unfortunately, tracing
make itself can lead to spurious dependencies so this approach
is only suitable for evaluating full-build performance.

Figure 3 shows the results of running full builds with
RIKER. These builds are run in serial; we examine the perfor-
mance of parallel builds later in this section. Each project is
built five times with RIKER and its default build system, with
the exception of LLVM which we build three times due to
its long build time. Median full-build overhead for all bench-
marks is just 8.8%; most builds have between 4% and 20%
overhead. TraceIR transcript sizes are roughly proportional
to build time, ranging from 2MB for autoconf (1.2s build)
to 264MB for LLVM (77-minute build). In absolute terms,
RIKER spends a median of just 1.2 seconds longer to per-
form a full build than each project’s default build system.
The longest additional waiting time for a RIKER build is for
LLVM, which takes about three minutes longer than the de-
fault 77 minute build (4% overhead). The worst overheads
appear in projects like autoconf and coreutils that build many
small programs rather than a single large executable. RIKER’s
full-build overhead is less than 25% for all other projects.

Incremental Builds. The most important measure of effi-
ciency for a build system is its ability to perform fast incre-
mental rebuilds. We perform two experiments to measure the
efficiency of RIKER’s incremental builds.

First, we measure the time it takes RIKER to perform a no-
op build—one where no commands need to run—by running
an incremental build immediately after finishing a full build.
The median RIKER no-op build time over the 14 benchmarks
is just 220ms, compared to 5ms for the default build system.
The longest additional wait is for the LLVM build, which takes
11.3s with RIKER compared to 4.8s with make. More than
half of the no-op builds with RIKER take just 162ms longer
than the default build system, an imperceptible difference.

Second, we use real developer commits to measure the effi-
ciency of performing incremental builds with RIKER versus a
project’s default build system. We run this experiment on six
projects—memcached, redis, rkr, sqlite, vim, and xz—all of
which have custom Rikerfiles and public version control

memcached
redis
riker

sqlite
vim

xz

0% 25% 50% 75% 100%
Incremental Build Time Over Full Build Time (lower is better)

Build Tool

Riker

Default

Incremental Build Performance

Figure 4: Time to run 100 incremental builds as a percentage of the
time to run a full build at every commit using the project’s default
build system. Excluding sqlite, RIKER’s incremental builds save 235
minutes compared to 250 minutes saved by the default build system.

histories. We perform a full build of each project, and then
measure the time required to update the build at each of the
next 100 commits in the project’s git repository. This exper-
iment simulates a developer performing incremental builds
after editing a subset of the project’s source files.

Figure 4 shows the results of this second experiment. The
graph shows the total time required for all 100 incremental
builds as a percentage of the time it would take to run a full
build at each commit. Note that we compare RIKER’s incre-
mental build times to the time it would take to run a full build
with the project’s default build system. This ensures RIKER’s
overhead on the full build does not give it an advantage com-
pared to the slightly faster default build system.

95% of RIKER’s incremental builds complete within 3.8s
of the default build system. In every benchmark except one
(sqlite), RIKER is able to reduce build time by at least 63%
relative to a full build. Over 5000 incremental builds of these
five benchmarks, the default build system reduces build time
by 74.7%, saving 250 minutes compared to full builds at each
commit. RIKER saves 70.1% of total build time—a total of
235 minutes. Building with RIKER yields 94% of the benefit
of a manually-specified incremental build, but with no manual
effort and no risk of errors.

RIKER is able to save more time than the default build
system for memcached because the case study includes sev-
eral commits that edit the build specification itself. These
edits generally require a full build for make-based projects,
but RIKER is still able to perform a safe incremental build
when the specification changes.

Neither RIKER nor make saves any work when building
sqlite. This is because sqlite’s build concatenates all of its
source files together before compiling them so the project can
be distributed as a single source file. RIKER’s overhead adds
less than three seconds (4.2%) to each “incremental” build.
Parallel Builds. Our evaluation has so far focused on serial
builds, but parallel builds are also a useful mechanism for
reducing build times. There are two concerns when it comes
to RIKER’s support for parallel builds. First is scalability:
how does RIKER’s tracing impact the performance of parallel
builds? The second concern is expressiveness: how do users
write a Rikerfile that describes a parallel build?

USENIX Association 2022 USENIX Annual Technical Conference    895



To assess RIKER’s scalability we focus on LLVM, our
largest benchmark. On our evaluation machine, which has
four cores, we see good scalability when adding up to four
parallel jobs to LLVM’s make build. Build time is reduced by
54.3%, 64.4%, and 71.9% when building with two, three, and
four workers respectively. With RIKER, we see reductions in
build time of 47.7%, 63.0%, and 67.0% for the same numbers
of workers. RIKER’s overhead increases from 4.0% for the
serial build to 22.2% with four workers. A likely cause for
this reduction in scalability is that RIKER utilizes a busy-wait
loop that monopolizes a core. Even with this limitation—
which we plan to address—parallel builds with RIKER are
still significantly faster than serial builds.

While the prior experiment examines RIKER’s tracing per-
formance on a parallel make build, it is also possible to write
parallel build specifications directly in a Rikerfile. To make
this as easy as possible, RIKER includes a wrapper around
common C/C++ compilers that launches sub-commands for
compilation in parallel, which is always safe (two .c files can
always be compiled simultaneously). With RIKER’s compiler
wrapper, simple lines like gcc *.c start parallel compilation
tasks for each source file, which RIKER can also run in paral-
lel for later rebuilds. Enabling this wrapper reduces build time
for memcached by about 50%, compared to 60% with mem-
cached’s own parallel make build. RIKER’s compiler wrapper
provides an easy, automatic way to run parallel builds, and
RIKER’s tracing does not significantly limit scalability.

6.3 Are RIKER builds correct?
We run each project’s full test suite for both the default and

RIKER builds. For the six projects in the previous section, the
tested outputs are the product of one full build and 100 incre-
mental builds, one for each commit. The remaining projects
run only full builds. Every RIKER project passes exactly the
same tests as the original build system. This experiment pro-
vides evidence that RIKER correctly updates builds to produce
equivalent final targets.

We have additional confidence that RIKER’s translation
from system calls to TraceIR and its POSIX filesystem model
are correct because RIKER checks the outcomes of operations
in the model against actual system call results. RIKER raises
a warning if the model deviates from actual system behavior;
our experiments and test suite raise no such warnings.

6.4 How does RIKER compare to RATTLE?
To compare against the prior state of the art forward build

system, we ported the memcached build to RATTLE [23]. Our
efforts to port other benchmarks to RATTLE were not success-
ful. RATTLE limits state modeling to files, meaning RATTLE
misses some kinds of changes [29, 30]. We demonstrate with
the following RATTLE build:

main :: IO ()
main = rattleRun rattleOptions $ do

cmd "gcc prog.c"

cmd "mkdir dir"
cmd "mv a.out dir"

The full build runs correctly. However, because RATTLE
does not model directories, changing prog.c leads to an in-
consistent rebuild. A new a.out is placed in the current direc-
tory, leaving the original in dir untouched. RATTLE cannot
build sqlite for precisely this reason. RATTLE also does not
handle circular dependencies. The lua build calls ranlib,
which is used to create library archives. Since ranlib modi-
fies its input, RATTLE fails during the full build.

We were able to build memcached with RATTLE, which
imposes a median overhead of less than 1% for the full build.
This is because RATTLE uses library interposition for tracing,
which is faster than ptrace but will miss system calls not
issued by libc. A straightforward translation of the build speci-
fication from RIKER to RATTLE does not result in good incre-
mental build performance; RATTLE cannot run fine-grained
incremental builds from simple specifications, so it only re-
duces build time by 25% compared to full builds over the 100
commits from our earlier experiment. This is significantly less
than the 78% build time reduction RIKER is able to achieve
from the simple build specification. A RATTLE specification
with comparable incremental build performance requires 63
separate commands, compared to just five for RIKER.

7 Conclusion
RIKER significantly lowers the burden of correctly spec-

ifying fast incremental builds. A RIKER build specification
can be any executable program, like a simple shell script that
performs a full build. In many cases, even a single build com-
mand such as gcc *.c is sufficient. Users do not need to
list dependencies in their build specifications, nor are they
required to break builds into incremental steps. Nevertheless,
RIKER always builds correctly and quickly.

RIKER uses low-overhead system call tracing to automati-
cally discover dependencies as build commands execute, and
on rebuild, runs only the subset of commands required to
bring the build up-to-date. RIKER has a median overhead
of 8.8% across 14 real software packages, and it realizes
94% of make’s incremental build speedup with no manual
effort and no risk of errors. We think these substantial engi-
neering improvements are well worth RIKER’s modest over-
heads. RIKER is available under an open-source license at
https://rkr.sh.

Acknowledgments
This work was supported by National Science Foundation

grants CNS-2008487 and CNS-2008940. We thank Michael
Chovanak, Yolanda Jiang, Alissa Johnson, Philip Ma, Abigail
Munsen, Jonathan Sadun, and Linh Tang, who contributed to
RIKER’s implementation while they were students at Grin-
nell College. We also thank Emery Berger, John Vilk, and
Benjamin Zorn for their feedback and guidance.

896    2022 USENIX Annual Technical Conference USENIX Association

https://rkr.sh


References
[1] The Ninja Build System. https://ninja-build.org/,

November 2020. v1.11.0.

[2] Apache Software Foundation. Apache Ant. https://
ant.apache.org, October 2021. v1.10.12.

[3] Apache Software Foundation. Apache Maven. https://
maven.apache.org/, March 2022. v3.8.5.

[4] CMake Project. CMake. https://cmake.org, May 2022.
v3.23.2.

[5] Sebastian Erdweg, Moritz Lichter, and Manuel Weiel. A
Sound and Optimal Incremental Build System with Dy-
namic Dependencies. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
OOPSLA 2015, pages 89–106, New York, NY, USA,
2015. ACM.

[6] Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomi-
ets, Erica Lan, Erik Mavrinac, Wolfram Schulte, New-
ton Sanches, and Srikanth Kandula. CloudBuild: Mi-
crosoft’s Distributed and Caching Build Service. In Pro-
ceedings of the 38th International Conference on Soft-
ware Engineering Companion, ICSE ’16, page 11–20,
New York, NY, USA, 2016. Association for Computing
Machinery.

[7] Facebook. Buck: A high-performance build tool. https://
buck.build/, January 2021. v2022.05.05.01.

[8] Stuart I. Feldman. Make — a program for maintaining
computer programs. Software: Practice and Experience,
9(4):255–265, 1979.

[9] GNU Project. GNU Autoconf. https://www.gnu.org/
software/autoconf/, January 2021. v2.71.

[10] GNU Project. GNU Automake. https://www.gnu.org/
software/automake/, October 2021. v1.16.5.

[11] Google. Bazel. https://bazel.build/, June 2022. v5.2.0.

[12] Allan Heydon, Roy Levin, Timothy Mann, and Yuan Yu.
SRC Technical Note 1999-001: The Vesta Approach to
Software Configuration Management. Compaq Systems
Research Center, June 1999.

[13] Allan Heydon, Roy Levin, Timothy Mann, and Yuan
Yu. Software Configuration Management System Using
Vesta. Springer Science & Business Media, 2006.

[14] Ben Hoyt and Simon Alford. Fabricate. https://
github.com/brushtechnology/fabricate, October 2020.

[15] Leslie Lamport. Time, Clocks, and the Ordering of
Events in a Distributed System, page 179–196. Con-
currency: The Works of Leslie Lamport. Association for
Computing Machinery, New York, NY, USA, 2019.

[16] Linux man-pages project. path_resolution(7), Linux
User’s Manual, November 2017.

[17] Linux man-pages project. ptrace(2), Linux User’s Man-
ual, March 2021.

[18] John McCarthy. Recursive Functions of Symbolic Ex-
pressions and Their Computation by Machine, Part I.
Communications of the ACM, 3(4):184–195, April 1960.

[19] Bill McCloskey. Memoize: A replacement for make.
http://www.eecs.berkeley.edu/~billm/memoize.html,
June 2008. Archived: 2010-09-05.

[20] M.D. McIlroy, E. N. Pinson, and B. A. Tague. Unix
Time-Sharing System: Forward. The Bell System Tech-
nical Journal, 57(6):1899–1904, 1978.

[21] Peter Miller. Recursive Make Considered Harmful. Jour-
nal of AUUG Inc., 19(1), March 1997.

[22] Neil Mitchell. Shake Before Building: Replacing Make
with Haskell. In Proceedings of the 17th ACM SIGPLAN
International Conference on Functional Programming,
ICFP ’12, pages 55–66, New York, NY, USA, 2012.
ACM.

[23] Neil Mitchell. Rattle. https://github.com/ndmitchell/
rattle, May 2020. v0.2.

[24] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle
Huey, Albert Noll, and Nimrod Partush. Engineering
Record and Replay for Deployability. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17), pages
377–389, Santa Clara, CA, July 2017. USENIX Associ-
ation.

[25] The Linux Kernel Project. Seccomp BPF (SECure
COMPuting with filters). https://www.kernel.org/doc/
html/latest/userspace-api/seccomp_filter.html.

[26] SCons Foundation. Scons. https://scons.org, February
2022. v4.3.0.

[27] Mike Shal. Tup Build System. https://gittup.org/tup/,
May 2021. v0.7.11.

[28] Thodoris Sotiropoulos, Stefanos Chaliasos, Dimitris
Mitropoulos, and Diomidis Spinellis. A Model for De-
tecting Faults in Build Specifications. Proceedings of
the ACM on Programming Languages, 4(OOPSLA),
November 2020.

USENIX Association 2022 USENIX Annual Technical Conference    897

https://ninja-build.org/
https://ant.apache.org
https://ant.apache.org
https://maven.apache.org/
https://maven.apache.org/
https://cmake.org
https://buck.build/
https://buck.build/
https://www.gnu.org/software/autoconf/
https://www.gnu.org/software/autoconf/
https://www.gnu.org/software/automake/
https://www.gnu.org/software/automake/
https://bazel.build/
https://github.com/brushtechnology/fabricate
https://github.com/brushtechnology/fabricate
https://web.archive.org/web/20100905092103/http://www.eecs.berkeley.edu/~billm/memoize.html
https://github.com/ndmitchell/rattle
https://github.com/ndmitchell/rattle
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html
https://scons.org
https://gittup.org/tup/


[29] Sarah Spall, Neil Mitchell, and Sam Tobin-Hochstadt.
Build Scripts with Perfect Dependencies. Proceedings
of the ACM on Programming Languages, 4(OOPSLA),
November 2020.

[30] Sarah Spall, Neil Mitchell, and Sam Tobin-Hochstadt.
Forward Build Systems, Formally. In Proceedings of the
11th ACM SIGPLAN International Conference on Cer-
tified Programs and Proofs, CPP 2022, page 130–142,
New York, NY, USA, 2022. Association for Computing
Machinery.

[31] Robert Endre Tarjan. Depth-First Search and Lin-
ear Graph Algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

A Artifact Appendix
Abstract

The RIKER artifact includes a virtual machine image with
a pre-installed copy of RIKER. RIKER is a build system that
automatically discovers and runs incremental builds from sim-
ple specifications. This artifact makes it easy to reproduce the
experiments described in the paper, which evaluate RIKER’s
performance and effectiveness as a build tool.

Scope
This artifact should be used for two purposes: a) to re-

produce the experiments from the paper, and b) to generate
plots from the new results. The provided scripts reproduce
the full-build overhead plot (Figure 3), the incremental sav-
ings plot (Figure 4), and the summary statistics reported in
the abstract and in Section 6. We expect runtime overhead
numbers will vary across platforms. Running the evaluation
within a virtual machine will also likely have some effect on
overhead. However, the artifact’s overhead should be close to
the paper’s reported 8.8% median overhead on full builds, and
incremental savings should be close to make’s incremental
build performance.

Contents
README: A detailed guide to setting up the artifact and
running experiments from the paper.

Virtual Machine Image: A VM image in OVA format that
contains RIKER’s source code, build dependencies, and
scripts that automatically run the paper’s benchmarks.

Hosting
The artifact is available at https://doi.org/10.5281/

zenodo.6544966. Updated versions of RIKER will be avail-
able at https://rkr.sh. We recommend using the updated ver-
sion for uses other than reproducing experimental results from
the paper. Newer versions are likely to be more stable, support
more kernel versions and architectures, and include bug fixes
and additional features.

Requirements
Hardware Requirements. The virtual machine included with
this artifact requires an x86_64 machine.
Software Requirements. The virtual machine image includes
all build and evaluation dependencies. The OVA file can be
imported into any hypervisor that supports OVA, but it was
developed and tested using VirtualBox. The experimental
evaluation requires network access; other hypervisors may
require changes to network configuration after import.

898    2022 USENIX Annual Technical Conference USENIX Association

https://doi.org/10.5281/zenodo.6544966
https://doi.org/10.5281/zenodo.6544966
https://rkr.sh


FlatFS: Flatten Hierarchical File System Namespace on Non-volatile Memories

Miao Cai†‡§, Junru Shen‡, Bin Tang†‡, Hao Huang§, Baoliu Ye§†‡

Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University †

School of Computer and Information, Hohai University ‡

State Key Laboratory for Novel Software Technology, Nanjing University§

Abstract
The conventional file system provides a hierarchical names-

pace by structuring it as a directory tree. Tree-based names-

pace structure leads to inefficient file path walk and expen-

sive namespace tree traversal, underutilizing ultra-low ac-

cess latency and good sequential performance provided by

non-volatile memory systems. This paper proposes FlatFS, a

NVM file system that features a flat namespace architecture

while provides a compatible hierarchical namespace view.

FlatFS incorporates three novel techniques: coordinated file

path walk model, range-optimized NVM-friendly Br tree, and

write-optimized compressed index key layout, to fully ex-

ploit flat namespace structure to improve file system names-

pace performance on high-performance NVMs. Evaluation

results demonstrate that FlatFS achieves significant perfor-

mance improvements for metadata-intensive benchmarks and

real-world applications compared to other file systems.

1 Introduction
Large, deep directory tree stresses file system namespace per-

formance. For example, Hive, a famous data warehousing

software system, uses a column-based partition technique to

provide efficient query for big database tables [39]. Every

column value represents a path component, and all columns

constitute a file path to index the data. Such a partition tech-

nique causes a large deep directory tree for a wide table,

making data query prohibitively expensive.

The recent advent of ultra-fast non-volatile memories rev-

olutionized file system design, shifting performance bottle-

necks from hardware I/O to the software stack. However,

the current file system namespace structure, which is de-

signed for slow storage devices, encounters severe perfor-

mance issues with high-performance non-volatile memory

systems [1, 20, 30, 36].

The file system provides a hierarchical namespace that

is structured as a directory tree [5, 37], as shown in Fig-

ure 1a. The virtual file system (VFS) unifies multiple volatile

namespace hierarchies to provide a single global namespace

view [40]. For any metadata system calls, the VFS first per-

forms a pathname lookup (i.e., path walk) by walking the

directory tree to find the associated directory entry (dentry),

and then performing metadata operations, e.g., changing file

permissions. Hierarchical namespace structure causes two

major performance problems: inefficient file path walk and

expensive namespace tree traversal.
First, current file path walk is slow and non-scalable. Re-

solving a path component involves costly dentry search and

other coupled system operations like security module enforce-

ment [10, 23, 24, 40]. Moreover, suppose a file path contains

n components, resolving the last component needs to locate

previous n−1 components. The total path walk task is linear

to the number of components in the file path. The path walk

efficiency has a slight performance impact on system calls for

slow storage devices since hardware I/O dominates. In con-

trast, for NVMs offering ultra-low access latency [17, 42, 46],

such high critical-path latency is unacceptable (see §2.1).

Second, traversing the namespace tree recursively is ex-

pensive with the hierarchical namespace structure. Entries

of different directories are physically scattered over the stor-

age device. It results in poor data access locality and indirect

memory addressing during tree traversal. Namespace tree

traversal is prevalent in common system usages such as find,

rm -r and ls -R. Moreover, commercial NVMs like Intel Op-

tane memory provide > 5GB/s memory bandwidth and prefer

sequential memory access behaviors [17, 46]. Unfortunately,

hierarchical namespace structure fails to utilize this important

system characteristic (see §2.2).

Research efforts have been devoted to addressing these

two problems. Tsai et al. [40] propose full-path caching to

reduce path walk latency in the VFS layer. Solaris also incor-

porates a similar path-to-vnode cache [23]. However, caching

is heavily dependent on file access locality. ByVFS [41] by-

passes the VFS directory tree and directly manipulates dentry

from the file system. As NVM devices deliver unbalanced

read/write performance, the dentry write performance is sub-

optimal. A file system level optimization is utilizing efficient

data structures (e.g., radix tree [44], hash table [15, 16], B+

USENIX Association 2022 USENIX Annual Technical Conference    899



tree [5, 34, 37], skip list [13]) or key-value stores (e.g., Lev-

elDB [2,32] and TokuDB [6,18]) to manage and index persis-

tent directory entries. Though these data structures offer good

indexing performance, the data locality problem is not well-

addressed. Moreover, all existing in-kernel file systems are de-

veloped underneath the VFS framework [14,18,26,31,44,48].

Therefore, pathname lookup performance in these file systems

is constrained by VFS path walk efficiency.

This paper revisits namespace structure for ultra-fast, byte-

addressable NVMs and proposes a novel file system named

FlatFS. FlatFS exhibits a flat namespace architecture but still

provides a compatible hierarchical namespace view. File meta-

data are directly indexed by their unique hierarchical paths.

Hierarchical paths are organized without any further structure.

The flat namespace structure brings two performance ad-

vantages for file system design for NVMs. First, file path

walk is fast and scalable as it only requires a single pathname

lookup to flat namespace irrespective of path length. It ef-

fectively shortens the path walk for metadata system calls.

Second, data locality is improved because contiguous direc-

tory entries in the namespace are also stored consecutively

on the storage device. It accelerates file system namespace

traversal and benefits directory range operations.

To exploit flat structure to improve namespace operation

performance on high-performance NVMs, FlatFS incorpo-

rates three core techniques. First, a coordinated path walk is

proposed to orchestrate two distinct path walk models in a

global unified VFS namespace §4.1. FlatFS achieves fast, scal-

able path walk by separating pathname lookup from other in-

tricate system operations, yet preserves the system semantics

as the conventional path walk model. Instead of reconstructing

the existing path walk module, coordinated path walk offers

a flexible and backward-compatible solution to integrate a

distinctive path walk model into the global namespace.

Second, a range-optimized NVM-friendly Br tree is devised

to manage variable-sized index keys §4.2. Br tree provides

efficient data-structure-level range operations (e.g., range in-
sert) in logarithmic time. It effectively remedies the directory

move shortcoming for the flat namespace, as well as facilitates

designing other fast directory range operations §4.3.

Third, a write-optimized compressed (WoC) index key de-

sign is proposed by leveraging NVM byte-addressability to

improve variable-sized key storage efficiency as well as re-

duce expensive small memory writes and data persistence

overheads in key management on NVM systems §4.4.

Finally, FlatFS achieves low-cost metadata crash-

consistency for the flat namespace §4.5. The WoC key design

effectively reduces the performance costs for data consistency

in index key insert and removal. For directory range

operations that involve complex tree structure manipulation,

FlatFS also simplifies namespace tree crash-safety design

based on an insight derived from Br tree structure primitives.

We evaluate FlatFS with extensive experiments using both

benchmarks and three applications (a version control system

Git, a parallel file indexer Psearchy [11], and a data warehouse

software Hive [39]) on Intel Optane DC Persistent Memory §5.

Evaluation results demonstrate that our flat namespace fully

unleashes the high-performance NVM system. FlatFS outper-

forms other file systems by a factor of 4.02× for micro- and

macro-benchmarks and improves metadata-intensive applica-

tion performance by up to 37.5%.

In summary, this paper makes the following contributions:

• We analyze two performance issues in hierarchical names-

pace structure with high-performance NVMs.

• We propose a metadata-optimized file system FlatFS with

three core techniques to flatten the hierarchical namespace

for fast, byte-addressable NVM systems.

• We conduct extensive experiments to demonstrate the per-

formance benefits of FlatFS to both metadata-intensive

benchmarks and applications.

2 Background and Motivation
This section takes Linux kernel as an example to describe

performance issues in the current file system namespace.

2.1 Inefficient File Path Walk
Costly component resolution. We conduct an experiment

to demonstrate path component resolution inefficiency. We

measure the execution latencies of six typical metadata system

calls (creat, open, stat, chmod, unlink, mkdir) in NOVA file

system on our testbed machine. Every system call operates

on a file in a six-depth directory. Figure 1b shows the system

call execution time and performance breakdown.

When the dentry cache (dcache) is hot, profiling results

show that an average 15.87% execution time is spent on the

dcache lookup. The dcache lookup includes filename hash-

ing and hash table lookup. Currently, there is only a central-

ized dcache in the VFS layer. Increasing dentries stresses the

dcache indexing performance. The permission checking takes

8.83% of the execution time on average. The path walk also

spends 11.65% execution time on other system operations

(denoted as Other Walk in Figure 1b), such as mount point

checking and reference counter updating. In summary, when

the dcache is hot, resolving a six-component file path occu-

pies 14.17%-67.19% execution time for five system calls. The

file operations take an average of 31.49% execution time.

On the other hand, when the dcache is cold, the underlying

file system has to search the missing dentry. Dentry lookup

of NOVA file system takes 69.26% of execution time for

cold dcache. The dentry miss penalty is high. Besides the

I/O transfer for the missing dentry, it also includes searching

the dentry in the storage device and inserting this dentry into

various VFS management data structures. Table 1 compares

the block reading and dentry lookup latencies on NVM and

SSD. Relatively slow SSD delivers long I/O latency, which

dominates the overall execution latency. However, the den-

try lookup time percentage increases around 20% when the

storage device shifts from SSD to NVM. It indicates that

900    2022 USENIX Annual Technical Conference USENIX Association



chmod
stat

VFSdentry

Ext4XFS

inode

fetch

missext4xfs

open

...

fetch

(a) File System Namespace (b) Execution Time Breakdown (c) Path Walk Scalability (d) Directory Read Performance

Figure 1: File System Namespace Structure in Linux and Performance Issues

Table 1: Comparing Block Read and Dentry Lookup Latency on

NVM and SSD
SSD: block
reading (%)

SSD: dentry
lookup (%)

NVM: block
reading (%)

NVM: dentry
lookup (%)

Ext4 58.74% 4.12% 27.11% 25.36%

XFS 60.98% 3.34% 29.45% 28.10%

the performance bottleneck transfers from the hardware I/O

latency to software path walk design with ultra-fast NVMs.

Non-scalable path walk. The current component-at-a-

time path walk design is non-scalable with the number of

path components. Such path walk design is widely adopted in

current operating systems as it is convenient to implement the

component resolution. Moreover, many other system function-

alities are implemented upon component resolution [10, 24].

They further increase the latency and exacerbate the path walk

scalability issue. In addition, it is difficult to decouple them

from the path walk.

We perform an experiment to understand the path walk

scalability problem. We measure the stat syscall latency with

different path component numbers on four NVM file sys-

tems. The VFS dcache is cold in the experiment. As shown

in Figure 1c, the stat execution latency of four file systems

increases dramatically as path length increases. The oper-

ation latency of the 50-component file path is nearly 14×
higher than the 1-component file path. The VFS invokes file

system-specific getattr to retrieve the file attributes. However,

getattr only takes 1.01% on average of four file systems for a

50-component path configuration (denoted as FS:other% in

Figure 1c). The rest of the execution time is spent on resolving

the lengthy file path.

Summary. Current slow, non-scalable file path walk design

has a large impact on metadata system call performance. This

is a common problem for all file systems running on different

devices like SSDs or HDDs. However, as commercial NVM

devices offer near-DRAM access latency, the major bottleneck

shifts from long hardware I/O to software path walk design,

motivating us to reduce such software latency.

2.2 Expensive Namespace Tree Traversal
Recent Intel Optane memory studies report that there is an

asymmetry between sequential and random access perfor-

mance [17, 28, 43, 46]. The performance gap between sequen-

tial and random memory bandwidth ranges from 2.3× to 3.5×.

Moreover, the memory access latency is also sensitive to se-

quential and random access patterns [17, 42, 46].

File systems directly persist their directory tree in the NVM

device. Traversing such a hierarchical namespace tree recur-

sively is expensive. The reason is twofold. First, as directories

logically form a tree structure, traversing the hierarchical

tree causes indirect memory accesses. Second, persistent tree

traversal introduces random memory access as dentries of dif-

ferent directories are distributed across the device. Previous

studies show that both these memory access behaviors are

suboptimal [17, 46]. Recursive tree traversal is an important

namespace operation and used by many real-world applica-

tions heavily (e.g., cp -r, git status). Moreover, as page cache

is removed from the NVM storage stack [26,31,44,48], direc-

tory reading operations are directly performed on the NVM

device. Existing persistent namespace tree traversal degrades

directory reading performance.

We perform an experiment to understand the performance

costs of hierarchical namespace tree traversal. We create two

sets of 1024 files. Files in the first set are stored under an

eleven-depth directory hierarchy. All files of the second set

are stored in a one-depth directory. We use ls -R to read these

two directories recursively. The first listing operation walks

a hierarchical namespace and the second listing operation

simulates sequential access in a flat namespace. Figure 1d

shows that sequential directory reading performs 4.08× better

than random directory reading. Traversing the hierarchical

directory tree occupies nearly 80% total execution time.

Summary. The hierarchical namespace structure leads to

low directory reading performance due to expensive tree

traversal. As the page cache is removed from the modern

NVM storage stack, directory reading operations access data

stored on NVM devices directly. How to architect the file sys-

tem namespace structure to exploit the device characteristic to

improve the namespace operation performance still remains

unsolved.

3 Overview
3.1 Design Goals
Through flattening the hierarchical namespace, we build a

high-performance, POSIX-compliant NVM file system. In

particular, we have four design goals.

• Short path walk. File path walk is essential for most of the

metadata system calls. FlatFS aims to reduce such software

latency to minimize performance impacts on system call

execution.

USENIX Association 2022 USENIX Annual Technical Conference    901



Br Tree Inode TableWoC Index KeyFlatFS

/tmp/data/x

Coordinated Path Walk Directory Tree

lookup

system call

2

...

coordination

inopath suffix1
inopath suffix2

CPU0

CPU1

CPU2

CPU3
inopath suffix4

pa
th

pr
ef

ix

inopath suffix3

file path

/src/dir/file join
split

path walk

pathnames 1
...

VFS

Syscall open( /mnt/flatfs/tmp/data/x , O_CREAT|O_RDWR, 0777)
chmod( /mnt/flatfs/src/dir/file ,O_IRUSR|O_IWUSR|O_IXUSR)

Figure 2: FlatFS System Architecture

• Optimizing range operation. As sequential accesses are

optimal in NVMs, FlatFS aims to re-structure namespace

architecture to fully exploit this system characteristic.

• Reducing persistence costs. FlatFS applies write-

optimization techniques to key layout design to reduce data

persistence costs in its index key management.

• Ensuring namespace crash-safety. FlatFS achieves

namespace crash-safety guarantees for conventional meta-

data syscalls and compound directory range operations.

3.2 FlatFS Architecture
FlatFS system architecture is presented in Figure 2. There is

no cached namespace in the VFS. The namespace operation

is directly performed on the device. There are four types of

files in FlatFS: regular file, directory, symbolic link, and hard

link. The file metadata is indexed by its full pathname relative

to the FlatFS mount point.

In the system call layer, FlatFS provides a compatible hier-

archical namespace view. Applications still use hierarchical

file paths to access files and directories in FlatFS namespace.

In the virtual file system layer, we design a coordinated

path walk (§4.1). The FlatFS namespace also appears in the

VFS namespace to preserve a global unified namespace view.

The coordinated path walk incorporates two distinct path walk

models. It cooperates with the VFS directory tree to perform

path walk across distinctive file system namespaces and dis-

patches requests to the corresponding file system instance.

In the file system layer, index keys are managed by a range-

optimized persistent Br tree (§4.2). All index keys are sorted

in an lexicographical order. Br tree is carefully designed with

NVM properties [46]. Besides, Br tree supports data structure

level range operations based on two proposed tree structure

primitives: join and split. It facilitates designing low-cost

directory range operations (e.g., rename) and simplifies their

implementation (§4.3).

In the key storage layer, the idiosyncratic NVM systems

pose severe challenges to index key management. Frequent

index key updates incur a large number of small random mem-

ory writes and cache line flushes, which is especially harmful

to system performance [46]. FlatFS adopts a write-optimized

compressed key layout to avoid most memory writes and

cache line flushes during key inserts and removes (§4.4).

Component ResolutionComponent-at-a-time Path Walk Model

End

pathname

Input: 

pathname 
analyzer 

prefix permission 
checker 

path
dispatcher

End

case I

semantic path 
component finder

Full-path-at-a-time Path Walk Model

case II

1 2 3 4 n-1 n

case III

pathname

Input: pathnames

: path walk model switch: resolution cursor

Figure 3: Two Path Walk Models

4 Design and Implementation
4.1 Coordinated File Path Walk
Coordinated file path walk applies two path walk models

to resolve a pathname. A path component could be in five

different forms: “.” (dot), “..” (dot-dot), normal file, directory,

and symbolic link (symlink). Figure 3 illustrates these two

path walk models. The component-at-a-time path walk model

resolves path component one by one while the full-path-at-a-

time path walk processes the whole pathname at a time. This

section describes how our path walk model correctly handle

different kinds of path components and permission checking

as well as coordination between these two models.

Pathname analyzer. The pathname analyzer generates a

canonical pathname without any dots and redundant slashes

by performing lexical processing on the file path. If FlatFS

adopts the Plan 9 lexical file pathname [29], the analyzer re-

solves a dot-dot component by removing the path component

before it. Otherwise, the dot-dot component is handled by the

semantic path component finder, which will be described later.

After analyzing, FlatFS passes the canonical pathname to the

semantic path component finder.

Semantic path component finder. The pathname analyzer

can only handle non-semantic path components. The seman-

tic components (i.e., symbolic links and mount points) are

identified by the semantic path component finder using a key

indexing approach. Specifically, these two kinds of semantic

components have associated entries <path, ino> in the Br

tree. Besides that, there is another special finder entry with

the key path//xFE for each of these components in the Br

tree 1. The finder entry value denotes component type. Ac-

cording to Br tree lookup policy, if there is no equal entry

for the requested key, the first entry whose key is greater

than the requested key is returned. For example, if the file

path is /a/./b/link/c where link is a symlink, the asso-

ciated finder entry key is /a/b/link//xFE. The pathname

analyzer output is /a/b/link/c. Because /a/b/link//xFE
is the first key that is greater than /a/b/link/c, this finder
entry is returned during Br tree lookup.

Further, there is a remaining problem in finder design:

a symlink following a dot-dot component. Suppose a path

is a/symlink/.. in which symlink points to b/c, and the

symlink element is removed after pathname analyzing. In

1The ASCII character /xFF is reserved for shadow entry, see §4.3

902    2022 USENIX Annual Technical Conference USENIX Association



UID
16bit 16bit 3bit 13bit 16bit

owner other
group

GID 010 reserved depthPPC:

(a) Directory-depth based Prefix Permission Compression

UID 010 reservedGID 4
UID 010 reservedGID 2

UID 010 reservedGID 2

UID 010 reservedGID 2

/usr/src/dir

a/a/1

b/b/2

c/c/3
/usr/src/dir/a/a/1
/usr/src/dir/b/b/2
/usr/src/dir/c/c/3

Path-suffix
PPC

Path-prefix PPC

(b) File-path based Prefix Permission Compression

chmod 770 /usr/src/dir UID 010 reservedGID 2

UID 110 reservedGID 1

UID 010 reservedGID 1

UID 010 reservedGID 4
decompress

/usr/src

dir

a/usr/src/dir/a

(c) Path-prefix PPC Decompression

Figure 4: Two-dimensional Prefix Permission Compression

contrast, the component-at-a-time path walk will follow the

symlink and generate a resolution result a/b. One solution is

using the finder to check whether the current resolved path

contains a symlink whenever meeting a dot-dot component

during pathname analyzing. This approach degrades path

walk performance if there are many dot-dot components in

a file path. Another solution is using Plan 9 lexical file path-

name [29]. It has better performance but causes compatibility

issues. To address this dilemma, FlatFS lets users decide

which file path type during file system mount.

If there are no semantic components in a path, FlatFS di-

rectly uses the pathname to search the namespace Br tree to

find the associated file inode.

Prefix permission checker. When the user accesses a file,

the file system verifies whether the calling process has the

execute permission for each directory listed in the file path.

We call it prefix permission checking. FlatFS separates the

prefix permission checking from the pathname lookup and

adopts two-dimensional prefix permission compression to

reduce checking performance costs.

First, directories in a file path often have same permis-

sion fields [15]: UID, GID, execute permission bit. FlatFS

compresses these directory permission fields into a structure

called prefix permission compressor (PPC for abbreviation),

as shown in Figure 4a. The depth field denotes how many

levels of directories are compressed in this PPC. Second,

PPCs of those directories whose index keys are in the same

Br tree leaf node also can be compressed based on the file

path (depicted in Figure 4b). The permission fields of the

file path prefix are compressed into the path-prefix PPC. The

permission fields of the remaining file path are compressed

into the path-suffix PPC. File-path-based prefix permission

compression is helpful in batching PPC updates.

A directory permission change may cause PPC decompres-

sion. Figure 4c illustrates a path-prefix PPC is decompressed

into three PPCs caused by a chmod. Every new PPC records

compressed permission fields of a sub-file path. Moreover,

this decompression is propagated to PPC of all sub-directories

and associated files under /usr/src/dir directory. Fortu-

nately, the file-path-based compression reduces update costs.

If keys in a leaf node share a prefix /usr/src/dir, only the

path-prefix PPC in tree leaf node is updated. Further, as di-

rectory permission changing are rare operations reported in a

recent research paper [15], the PPC decompression incurs a

slight performance impact on realistic applications.

The PPC allows batching permission checking. When per-

forming a prefix permission checking, the task uses its cre-

dential to verify the UID and GID in both path-prefix and

corresponding path-suffix PPCs. Then, it compares the direc-

tory depth of the file path and total execution bits compressed

in path-prefix and path-suffix PPCs. If they are equal, file

access permission is granted. For a relative file path, FlatFS

extracts associated permission bits in path-prefix and path-

suffix PPCs according to the path to be checked, and then

performs permission checking.

The symlink and dot-dot components require careful con-

sideration to preserve the semantic. If a symlink points to

an absolute path, it may cause a namespace switch. FlatFS

performs prefix permission checking on file path parts which

belong to its namespace. Similarly, when adopting non-lexical

file paths, FlatFS also performs prefix permission checking

on path components before the dot-dot component. Overall,

current POSIX prefix permission checking specification is

more beneficial to the traditional path walk model.

Path dispatcher. Path components like dot-dot, symbolic

link, and mount point could cause namespace switches during

path walk. The path dispatcher performs a namespace switch

and sends the pathname to the path walk model. Although

the destination namespace may be hierarchical or flat (case

I & II in Figure 3), the switch procedure is the same, mainly

including mount point switch, pathname cursor adjustment,

and other environment setups. In addition, If a symlink points

to a relative file path (case III in Figure 3), the path dispatcher

generates a new file path by resolving the symbolic link and

restarts the whole path walk.

Coordination. A file path walk may involve different path

walk models. These different path walk models are coordi-

nated to resolve a pathname correctly. A path walk model can

be viewed as a black box. Feeding a pathname input, it gener-

ates the resolved pathname output. The key to coordination

is ensuring correct path walk model switch. Specifically, the

VFS uses a pair <mnt point,rootdir> to specify a mounted

file system. We also create one for FlatFS instance, which

is used to switch in or out its namespace. Furthermore, we

add a pathname cursor for each path walk model to indicate

the current resolved pathname position. This cursor feeds a

correct pathname input to the path walk model.

4.2 Range-optimized Index Tree
FlatFS uses a persistent range-optimized Br tree as its index-

ing data structure. The index keys of Br tree are full pathname

byte strings. Figure 7 shows the Br tree leaf node layout. The

tree node is aligned to 256 bytes, which is the optimal Optane

USENIX Association 2022 USENIX Annual Technical Conference    903



h1

h2

. . . . . .
. . . . . .

. . . . . .
. . . . . .

m k

2
Node Merge

1 Walk Down

(m+k)/2

max min

T2

T1

. . . . . .
. . . . . .

<

3 Subtree Insert

(m+k)/2

h1-h2

node1 node2

node0

Figure 5: Tree Join Example: T1�T2 = T

memory access granularity [46]. The keys in the Br tree nodes

are unsorted [12]. Two small pieces of metadata (a bitmap and

an offset array) are added into the leaf node. Br tree adopts

a hand-over-hand locking scheme with a top-down locking

order. Every tree node owns a readers-writer lock.

Directory range operations in flat namespace are more ex-

pensive than the hierarchical namespace tree [47]. Br tree

provides range operations at data structure level to overcome

this challenge. The range operations are realized based on two

novel tree structure primitives: join and split. We use symbol

� and ⊖ to denote tree join and split primitive, respectively.

Also, we define tree node fanout f and total tree items N. The

whole tree is locked during range operations.

Tree join. The � primitive concatenates two smaller trees

T1 and T2 and generates a larger tree T : T1 � T2 = T . The

maximum key in T1 must be smaller than the minimum key in

T2. Figure 5 illustrates an example of joining T1 and T2. These

two tree heights are h1 and h2 respectively, where h1 > h2.

The detailed tree join steps are described as follows. First, we

walk downside the T1 from top level to the level h1 −h2 by

always walking the rightmost tree node in each level (Step

1 ). Then, we concatenate these two trees by merging node1

and node2 (Step 2 ). The key numbers of these two nodes

are m and k. If m+k ≤ f , we only need to copy all keys and

children from node2 to node1. Otherwise, the key number of

two nodes is re-balanced as (m+k)/2. These associated keys

and children are moved from node2 to node1. Finally, a new

subtree tree2 is inserted into the parent node node0 (Step 3 ).

The time complexity of tree join � is O(∣h1−h2∣).
Tree split. The ⊖ primitive splits the tree T into two

smaller trees LTree and RTree for split point x: T ⊖ x =
{LTree,RTree}. The maximum key of LTree is less than x
and the minimum key value of RTree is greater than or equal

to x. Figure 6 depicts tree split steps with the split point 9.

At the root node level, we divide all keys in the node1

into two parts. The maximum key of the left part is smaller

than 9. The minimum key of the right part is greater than

or equal to 9. This key division also partitions the tree into

two subtrees L1 and R1. Then, we walk down to the node2

pointed by child C1. The key in node2 is in the range of

[5,20]. Similarly, keys in node2 also can be divided into two

parts. As a result, two subtrees L2 and R2 are generated. This

operation is repeated until reaching the leaf level. Finally,

. . . . .
9

. . . . .
. . . . .

. . . . . .

. . . . . .
9

9

9

9. . . . . . Right Tree Join 

Left Tree Join 

...

Walk Down

LTree

RTree

Lk Lk-1 L1

...

Rk-1 R1Rk

C1

C2

C3

node1

node2

node3

node4

L1 R1
1 3 5 20 23

5 7 17 19 20

R2

L2

9

9 9

Node Split

Figure 6: Tree Split Example: T ⊖9 = {LTree,RTree}

this tree split generates two small tree sets: {L1,L2, ...,Lk}
and {R1,R2, ...,Rk}. Then, we perform tree join operations on

all trees in each tree set in an ascending order of tree height.

For example, the LTree is generated by joining k subtrees:

L1�L2...�Lk. Finally, the tree T is split into two trees: LTree
and RTree. The time complexity of ⊖ operation is O(log f N+
Σ(hi−h j)) =O(log f N).

Range operation. Br tree provides four range operations:

range query, range slice, range insert, range update. The

range query operation workflow is the same as a textbook B+

tree. The range slice operation detaches a subtree t from the

original tree T with a given key range [kl ,kr]. The detailed

range slice steps formulate as follows:

T ⊖kl = {p,q}⇒ q⊖kr = {t,r}⇒ p� r = T ′ (1)

First, we split the tree T into two parts {p,q} for kl using

a ⊖ operation. All keys in tree q are greater than kl . Thus, the

tree q is split again with the key kr. Keys of tree t locate in the

range [kl ,kr]. Consequently, the tree t is the range slice result.

However, the original tree T structure is destroyed by two

split operations. We heal the tree T by using a � operation to

concatenate the p and r. The tree range slice operation is use-

ful in the directory remove and move operation because it can

remove a bunch of indexes for targeted files and directories

from the Br tree at a time.

The tree range insert operation inserts a small tree into

a large tree at a time. There are two cases for a tree range

insert. To insert a tree T2 into another tree T1, if all keys in

T2 are smaller than keys in T1, we can directly join these two

trees: T1�T2 = T ′1 . Otherwise, the tree range insert operation

formulates as follows:

T1⊖keymin = {T ′1 ,Tr}⇒ T ′1 �T2 = T ′′1 ⇒ T ′′1 �Tr = T ′′′1 (2)

The tree T1 is split into T ′1 and Tr with the minimum key

keymin of tree T2. The keys in T ′1 , T2, and Tr are in ascending

order: keyT ′
1
< keyT2

< keyTr . This range insert operation is

achieved by performing two join operations on three trees.

The tree range update modifies the index keys of a specific

range. A naive solution to range update is walking the tree

and updating all index keys in tree nodes. Our Br tree uses

the WoC key design to reduce the key update costs. The WoC

key fetches the common part of all index keys as a key prefix.

Therefore, the range update operation only modifies the key

prefix without updating these keys one by one.

904    2022 USENIX Annual Technical Conference USENIX Association



Leaf node caching. We design a leaf node cache to reduce

tree walk performance costs. Every CPU owns a volatile

in-DRAM node cache structured as a LRU list. The cache

entry stores the leaf node memory address instead of the real

leaf node. Hence, no data synchronization is required among

multiple CPU caches. The Br tree lookup consists of a fast

path and a slow path. The fast path traverses the LRU list,

locks and accesses these real leaf nodes, and searches for the

item with the requested key. If there is a hit, the slow path

that walks the whole tree can be avoided. The leaf node cache

is effective as namespace operations in the real world often

exhibit good locality. For example, creating files in a directory

needs to search the same directory file inode multiple times.

Every leaf node has a reference counter for safe memory

reclamation. Creating a node initializes the counter as one,

and the cache insertion increases the counter. Because the

cache is volatile, no crash safety is needed for counters. They

will be reset as one during remount. A cache entry may refer

to a removed tree node. The removed node with a non-zero

counter is kept in a persistent list for lazy reclamation. Ac-

cessing the removed node is safe since it contains no valid

keys due to the empty bitmap. This node will be recycled

when the associated cache entry is evicted.

4.3 Directory Range System Call
Besides rename, FlatFS designs three new system calls for

directory range operations.

Directory read. FlatFS offers a getdents_recur system

call. This system call lists all files and subdirectories in a

directory recursively (similar to ls -R). To support recursive

range query for a directory, FlatFS introduces two shadow

entries for each directory. Their filenames are the first and

last ASCII character. Keys of all entries in the directory are

delimited by these two shadow entry keys. To perform a

recursive directory reading, FlatFS uses the small shadow

entry key to lookup the tree to find the leaf node. Then, it

repeats this with the other large shadow entry key and fetches

a range of keys at a time. For non-recursive directory reading,

FlatFS uses a directory skip approach. When FlatFS meets the

first shadow entry of a subdirectory during directory scanning,

it skips entries in the subdirectory by performing a tree lookup

with the other shadow entry key.

Directory remove. FlatFS introduces a new system call

rmdir_recur, which is used to remove all files and subdirec-

tories in a directory at a time. In the data structure layer, we

use a range slice to obtain the subtree that contains entries

to be removed from the Br tree. Then, we perform a range

query to this subtree, find inodes of these files and directories,

remove files and directories at the file system layer. To further

reduce the rmdir_recur latency, we also delay freeing the

sliced subtree structure.

Directory copy. FlatFS provides a new system call

cpdir_recur(src, dst), which copies a directory recursively to

another directory. First, the subtree of src directory is sliced

and duplicated. The index key updates of the duplicated tree

are batched. Then, both sliced and duplicated subtrees are

inserted into the Br tree. Then, new metadata are created for

copied files and directories. We follow the default semantic

of cp -r for hard links, i.e., the linking becomes invalid. A

new inode is allocated for the copied hard link and its file

content is the same as the original linked file. Besides, FlatFS

also corrects the inode number of dot and dot-dot of every

directory, making them point to the newly created directory

and its parent directory. Another performance optimization

adopted by cpdir_recur is file data copy-on-write mechanism.

We only duplicate the file mapping of every copied file. The

last level pointers in the file mapping are set as copy-on-write.

Directory move. The directory rename mainly involves

data structure level operation. Similar to directory remove,

the subtree of the src directory is sliced. Then, all index keys

of the subtree are updated with the dst directory. Depicted in

Figure 7, every tree node contains an index key prefix. A key

update traverses the Br tree and iterates over every node. If

the src directory pathname is a substring of the key prefix in

this node, this key update just modifies the key prefix with

the dst directory pathname. Finally, the updated subtree is

inserted into the Br tree.

4.4 Write-optimized Compressed Key
FlatFS uses key compression to reduce storage consumption

and key batch update costs. Every variable-size index key is

divided into a prefix and a suffix. All index keys in the same

tree node share a prefix. However, key compression incurs

performance overheads due to prefix and suffix adjustments.

For example, inserting a key would shrink the prefix and

expand all suffixes, leading to many small data writes, which

causes expensive cache line flushes and write amplification.

Basic idea. We propose WoC key to address this challenge.

WoC key prefetches a number of characters during suffix

expansion. These data are cached in the suffix to avoid future

data movements. Moreover, we also record the prefix size

and the total size of each key. Suppose another key insert

event causes all suffixes to expand and suffix size increasing.

Fortunately, we only need to update the prefix size to represent

all suffix data and size changes.

Furthermore, removing a key may cause all suffixes to

shrink and the prefix to expand. There are no data movements

for suffix shrinking. We append data to the prefix and increase

the prefix size. There is no data prefetch optimization for

the prefix because a tree node only has one prefix, and its

adjustment cost is low. In contrast, every node entry owns a

suffix. Suffix changes lead to high memory write costs.

Detailed Design. Figure 7 shows the key suffix is parti-

tioned into inuse area and cache area. The key suffix addrs
stores suffix memory addresses. The inode number is stored

along with the suffix. The woc-length array contains a set of

eight-bytes woc-length structures. Every index key owns a suf-

fix and a woc-length structure. The total key size key_total_sz

USENIX Association 2022 USENIX Annual Technical Conference    905



offset array

key suffix addrs path-suffix PPC addrs woc-lengths

key_total_sz key_suff_sz
16 bit 16 bit

ino

(a) Br Tree Leaf Node Layout

(b) WoC Index Key Layout

32 bit

valid bitmap dirty bitmap

/ h o m e /

8 / yt x/ d a...
suffix cache area

...d a t

... /

Prefetch 32B

prefix_sz

suffix inuse area

3 l ei... f/d i r

key prefix addr path-prefix PPC

others
woc-length:

prefix_sz

other fields

key_suff_sz

key prefix

key suffix

prefix size

Figure 7: Br Tree Leaf Node and Index Key Layout

T0:

Prefetch 32B

b

a

c

T1:

T2:

T3: c
key prefix

: suffix inuse area: prefix area : suffix cache area

load [c]

load [b,c]

load [a]

c
key suffix

abc

bc

c b

b

a

a

b a

b a

abc
32B

Figure 8: Illustrative Examples of Suffix Prefetch and Caching

and the suffix size key_suff_sz are stored in the woc-length.

The key_suff_sz is the sum of suffix inuse and cache area size.

The inuse area size is key_total_sz− pre f ix_sz. If the cache

area size is smaller than the data to be appended, it indicates

the suffix cache is insufficient and requires another prefetch.

Figure 8 illustrates three examples of how to reduce data

movements with WoC key design. At time T1, one-byte data

a is moved to the suffix area. Instead of moving one char-

acter, we prefetch 32-bytes of data from the prefix memory

area to the suffix memory area. Then we modify prefix_sz
and key_suff_sz and persist these two fields. 32 bytes is the

optimal data prefetch granularity according to evaluation re-

sults. Prefetching 64-bytes data may introduce two cache line

movements if the first byte of prefetched data is not cache-

line aligned. On the other side, a smaller prefetch granularity

introduces more frequent data movements.

The prefetched data are stored in the cache area to avoid

future data movements. For instance, at time T2, two bytes

of data [b,c] are moved to the suffix area. Fortunately, these

two-bytes data are already stored in the suffix cache area. We

only need to update the prefix_sz field to indicate this key

suffix expansion. When the key suffix shrinks at time T3, the

associated data c is appended to the key prefix. There are also

no data movements for this suffix shrinking event.

The key batch update introduces two issues to WoC key

design: (1) if a key batch update modifies the key prefix, the

key_total_sz fields of all key suffixes should be updated; (2)

a key batch update may cause cached data in the suffix to

become stale due to key prefix change. To solve the first

problem, we introduce a Δpre f ix_size field, which denotes

the key size changes to all index keys in a tree node caused by

a batch update. Instead of updating all key_total_sz fields, the

key batch update modifies the Δpre f ix_size. The key suffix

inuse area size is key_total_sz− pre f ix_sz+Δpre f ix_size.

The second problem is addressed by introducing a dirty

suffix bitmap. The bitmap records those key suffixes whose

cached data become stale in the index key batch update. We

query the dirty bitmap before adjust the key suffix. If the

associated suffix cache area is dirty, we clean the suffix cache

area by reseting key_suff_sz as the suffix inuse area size.

4.5 Namespace Crash Consistency
Existing metadata system calls except for rename only in-

troduce tree point operation. The general workflow of these

system calls consists of three steps: (1) pathname lookup; (2)

inode manipulation; (3) tree point operation. Achieving crash

consistency for these system calls is similar. We take creat
system call as an example to describe the approach.

First, the newly allocated inode is logged at the file system

layer. Then, FlatFS inserts a new entry into Br tree. This entry

insert may be a simple leaf node insert or requires a node

split. In the worst case, a leaf node insert causes a key prefix

adjustment, a new key suffix write, a cascade of updates to

other key suffixes, and a valid bitmap update. Thanks to the

WoC key design, we only needs to log 18-bytes data (2-bytes

prefix size, 8-bytes prefix address, and 8-bytes valid bitmap).

Logging key prefix size and address ensures data consistency

for both key prefix and suffix. To be specific, all old suffix

sizes can be restored with logged old prefix size. Then we

reset key_suff_sz as key suffix inuse area size. The key prefix

is also restored using logged old prefix address. In addition,

if there is a node split for this entry insert, the valid bitmaps

of the split node and parent node are also logged.

Ensuring metadata consistency is challenging for directory

range operations as they introduce complicated tree structure

manipulation. We first explain how to ensure crash-safety for

Br tree range operations. Depicted in Figure 5, a tree join

involves three nodes: two merged nodes and a parent node.

The valid bitmaps of these nodes are logged. Ensuring crash

consistency for tree splits is more difficult. Supposing the

tree T height is h, the ⊖ operation splits h nodes at each tree

layer with split point x. The valid bitmap of h nodes is logged.

Next, two new trees L and R are generated by joining these

split trees in two sets separately. It seems difficult to recover

the tree state if a crash occurs during tree joins. A useful

property between � and ⊖ simplifies the crash-consistency

implementation, i.e., ⊖ is the reverse operation of �. The

original tree T can be recovered by joining L and R: L�R =
T . Thus, root node memory addresses of joined trees (i.e.,

{L1, ...,Lk} and {R1, ...,Rk}) are logged. During recovery, we

replay tree join operations with logged root node addresses

and re-generate the namespace tree T with L and R.

The tree range insert and range slice are implemented

based on tree join and split. We already guarantee crash-

906    2022 USENIX Annual Technical Conference USENIX Association



Figure 9: Path Walk Efficiency

safety for tree � and ⊖. Crash consistency of these two tree

operations is achieved based on an important insight. Even

the original namespace tree is temporarily decomposed into

many pieces due to split/join, however, it still can be rebuilt

by joining these subtrees during recovery. Finally, FlatFS also

logs these affected inodes for directory range operations.

5 Evaluation
Our testbed machine has two Intel Xeon Gold 5220R pro-

cessors. Each processor has 24 physical cores running at 2.2

GHz. Every physical core has a private 32 KB L1 cache and

a 1 MB L2 cache. All cores that resided on the same socket

also share a 35.75 MiB last level cache. The hyper-threading

is disabled. Each processor has two integrated memory con-

trollers. The machine has 192 GB (12×16 GB) DRAM, 1.5

TB (12×128GB) Intel Optane DC persistent memory, and a

512 GB Solid State Driver.

We implement FlatFS in Linux kernel 4.15 based on PMFS

file system [31]. FlatFS reuses PMFS data path and journal

mechanism. We compare FlatFS with four NVM file systems

(NOVA [44], PMFS [31], Ext4 [5] and XFS [37]), a full-path-

indexing file system BetrFS [47], a VFS dcache optimized

system (VFS-opt) [40]. BetrFS and VFS-opt work on Linux

3.11.10 and 3.14, respectively. These old kernels do not sup-

port Intel Optane memory. We use Linux brd module to create

a RAM disk for BetrFS and VFS-opt. The RAM disk uses

the fast DRAM to emulate block devices. The device perfor-

mance is better than the Optane memory. We also mount an

Ext4 file system on the RAM disk for VFS-opt.

5.1 Microbenchmark Performance
Path walk efficiency. We evaluate the path walk performance

with different kinds of path components. We stat a file whose

path comprises nine components in the Linux kernel 4.4

source code directory. When dcache is cold, file systems fetch

data from the device, which causes long latency. This prob-

lem is especially serious for BetrFS. BetrFS adopts a stacked

system architecture. A dentry missing event is handled by mul-

tiple software layers. Its path walk latency is 11.93× higher

than FlatFS. The sequential file access results in a hot dcache,

which greatly reduces path walk latency. Fortunately, FlatFS

also achieves low latency thanks to its node cache design. The

VFS-opt delivers the lowest latency (3μs) for its hash-based

full-path-indexing optimization.

VFS and FlatFS handle dot components lexically. Thus, the

(a) Path Walk Scalability (b) Path Walk Sensitivity

Figure 10: Path Walk Scalability and Sensitivity

Table 2: Path Sensitivity to Sequential and Random Access.

H: Br Tree Height; L: File Path Length; N: File Number

Setting H=3, N=104, L=20 H=4, N=105, L=20 H=5, N=106, L=20

System VFS FlatFS VFS FlatFS VFS FlatFS

Seq. 2.05μs 1.63μs 2.04μs 1.63μs 2.05μs 1.63μs

Rnd. 2.11μs 2.19μs 2.24μs 2.54μs 2.26μs 3.66μs

path walk latencies are similar to the cold dcache case. FlatFS

performs semantic path component checking for dot-dot and

symlink components, which incurs an extra namespace tree

query. Even so, FlatFS performs 1.87-28.52× better than oth-

ers for its non-caching namespace design. Finally, we mount

an Ext4 file system under each tested file system. The mount

operation causes a hot dcache for path walk. The performance

results are similar to the hot dcache case. Overall, for a nine-

component path, FlatFS outperforms other file systems sig-

nificantly for the cold dcache and delivers similar latencies

for the hot dcache.

Path walk scalability. We vary path component number

from 1 to 50 to evaluate path walk scalability using stat
syscall. As shown in Figure 10a, when the file path becomes

lengthy, the execution latencies of five file systems (i.e., Be-

trFS, XFS, Ext4, PMFS, NOVA) also increase significantly.

The FlatFS path walk latency (5.1μs) is stable against differ-

ent path lengths. The VFS-opt system achieves a low constant

path walk latency (3μs). We also measure the path walk scal-

ability of hot dcache. When the path component is less than

10, its latency is close to ours. However, its latency increases

5× (10.8μs) varying from 1- to 50- component.

Path walk sensitivity. We evaluate FlatFS path walk sen-

sitivity by changing four variables: Br tree height, Last-Level-

Cache (LLC), path component number, and access pattern.

We create four file sets of different sizes (103, 104, 105, 106)

with tree height H ranging from 2 to 5. We vary the path

length and measure the syscall latency. We make three obser-

vations from Figure 10b. First, hot LLC significantly boosts

FlatFS path walk performance. Second, path walk perfor-

mance is sensitive to tree height, especially for cold LLC.

Resolving a 50-component path in a 5-level Br tree takes

21.61μs, which is 1.64× longer than 1-level Br tree. Third,

path length has a slight impact on FlatFS path walk perfor-

mance. A 50-component path walk is 1.5× longer than 1-

component. In contrast, other file systems deliver 9.8×-16.3×
latency increment in Figure 10a.

USENIX Association 2022 USENIX Annual Technical Conference    907



Table 3: Directory Range Operation Latency (s)

Ext4 XFS NOVA PMFS BetrFS VFS-opt FlatFS
readdir 0.152 0.349 0.208 0.097 0.388 0.157 0.031

rmdir 0.61 1.262 1.131 0.548 3.680 0.736 0.190

cpdir 2.398 2.907 2.334 1.949 4.652 1.829 0.450

mvdir 0.004 0.004 0.004 0.004 0.019 0.004 0.007

Table 2 shows path walk latency of sequential and random

file access. The LLC and VFS dcache is warmed before ex-

periments. FlatFS outperforms VFS for sequential access in

three settings. The reason is batched operations in FlatFS path

walk. To confirm it, we use the perf tool to collect instruction

numbers during syscall execution in setting S3. The profiling

results report that VFS executes 1.43× more instructions than

FlatFS. Random access has a larger impact on FlatFS than

VFS. VFS gains much more benefits from its cached dentries

of the prefix path. Random access causes 3.24× more cache

misses for FlatFS than VFS. As the file size decreases, FlatFS

also achieves better performance for higher LLC hit radio.

Finally, sequential access outperforms random access due to

higher node cache hit radio.

Directory range operation. Table 3 shows four common

directory range operation performance. FlatFS uses four di-

rectory range system calls. For other file systems, we use

ls -R, rm -r, cp -r, and rename instead. All directory range

operations manipulate a Linux kernel 4.4 source code tree.

Reading a directory recursively is well-optimized in FlatFS.

FlatFS reduces directory read latency by up to 12.52× com-

pared to others. These file systems except BetrFS scatter

the dentries in data blocks across the storage device, which

greatly hurts the data locality. For directory removing, FlatFS

obtains performance gains from 2.88× to 19.37× relative to

other file systems. Since namespace traversal is fast in FlatFS,

it benefits directory remove as FlatFS only needs to perform

a simple scan to obtain the entries for de-allocation. Other

file systems require expensive tree traversal to retrieve target

inodes. Also, FlatFS delays freeing the directory subtree to

further reduce the latency.

FlatFS outperforms other file systems by 4.06×-10.34× for

directory copy. Because the directory copy is data I/O dom-

inated. The file data copy-on-write optimization in FlatFS

effectively avoid such performance costs. BetrFS is well-

optimized for HDDs. For ultra-fast NVMs, its stacked archi-

tecture is suboptimal. We find interactions between BetrFS

and the underlying storage device involve many software

layers, which causes high software latencies due to both addi-

tional and duplicated works. Directory move is the only range

operation provided by conventional file systems. Directory

move is cheap for the hierarchical namespace structure, which

only takes 4μs for moving a Linux directory tree. FlatFS also

achieves a low rename latency 7μs using tree-level range op-

eration and batching key update.

5.2 Macrobenchmark Performance
Filebench. We choose two application-level workloads: file-

server and varmail from Filebench [38]. We create a file set

(a) Fileserver (b) Varmail

Figure 11: Performance of Filebench Benchmark

with 100 thousand 4KB files for the fileserver. We stress

the namespace performance by setting the average directory

width as two. Figure 11a shows the fileserver throughput

varying thread number from 1 to 48. FlatFS achieves a 1.79

performance speedup over PMFS. FlatFS and PMFS share the

same file data path but differ in metadata management. When

thread number increases, PMFS suffers from poor scalability

due to its centralized inode table design. NOVA and FlatFS

address this issue with per-CPU inode table design. NOVA

performs worse than FlatFS for its low namespace insert/re-

move performance and fault tolerance costs [45]. NOVA uses

a Radix tree to manage entries in the directory. A create/unlink
inserts/removes the associated entry in the parent directory.

Because a directory only has two files, file creation/removal

incurs high tree management costs.

The centralized journal in Ext4 also causes severe scalabil-

ity issues [19,35]. VFS-opt requires Ext4 to create files, which

accounts for its low scalability. VFS-opt achieves 23% higher

throughput than Ext4 for its dcache optimization. Finally, Be-

trFS exhibits the lowest performance. Since the cache is hot

during execution, we explain it as NVM-unware Bε tree de-

sign. Bε tree adopts big internal (4MB) and leaf nodes (4-11

MB). Moreover, it uses an order maintenance tree (OMT)

to organize entries inside the leaf node. The entry insert or

remove is expensive because it introduces many entry move-

ments and OMT adjustment costs during file create and re-

move. In contrast, FlatFS reduces key management costs dur-

ing tree insert/remove with its write-optimized key design.

In varmail experiment, we create a file set that contains

50 thousand 64-byte files to simulate a large set of small

e-mails in the mailbox. We vary the meandirwidth parame-

ter from 2 to 16. It affects the directory depth of the tested

file set. When the directory depth increases, the path walk

time increases. Therefore, the throughput of all file systems

decreases. FlatFS obtains 14.10%-3.97× higher throughputs

than other file systems due to its fast path walk design. More-

over, varmail workload frequently creates and deletes files.

Besides fast path walk, FlatFS also gains performance benefits

from its high namespace insert/remove performance.

FxMark. We pick MWCM and MWUM benchmarks from

FxMark [25] to measure the file system multicore scalability.

Figure 12a and Figure 12b shows experimental results. We

draw three conclusions from these experiments. First, FlatFS

performs much better than other file systems in file creation

908    2022 USENIX Annual Technical Conference USENIX Association



(a) MWCM (b) MWUM

Figure 12: Scalability of FxMark Benchmark

and removal, which achieves a maximum 2× performance

speedup. Other file systems exhibit low namespace insert/re-

move performance due to inefficient dentry index structure

design. For instance, PMFS uses a linear array to organize

entries in a directory [31]. When there are a large number of

files, searching an entry in the linear array takes long time. We

even fail to run these two benchmarks on PMFS and BetrFS

due to their extremely low dentry search performance.

Second, the inode lock is the major scalability bottleneck

for file creation and removal. All in-kernel file systems includ-

ing FlatFS adopt the same inode locking scheme. Thus, their

performance trends with different thread numbers are similar.

However, FlatFS still outperforms others for its higher names-

pace performance. Third, NUMA impacts greatly affect file

system scalability. Both Figure 12a and Figure 12b show that

all file systems experience a degradation when there exists

remote memory node access beyond 24-threads.

5.3 Factor Analysis of Each Optimization
We analyze the performance benefits of three optimization

techniques in FlatFS.

(a) Node Cache (b) WoC Key

Figure 13: Performance Benefit of Node Cache and WoC Key

Node caching optimization. The node cache design

avoids tree traversal for entries in the same tree node. It is

especially useful for sequential file access. We create four

large directories containing 104, 105, 106, 107 files, respec-

tively. The corresponding Br tree height ranges from three

to six. We create a microbenchmark to access all files in the

directory. Figure 13a shows FlatFS achieves 2.01%-11.07%

performance improvements with node caching optimization.

In addition, when tree height increases, FlatFS obtains more

benefits from tree node caching.

Rename optimization. The rename operation is cheap and

fast in directory tree-based namespace. It takes 0.004s to

move a Linux-4.4 source code repository. We measure two

rename implementations in FlatFS. The slow rename imple-

mentation removes all associated entries in the flat namespace,

updates pathname keys, and then inserts all entries. Its latency

is ten times slower than conventional file systems. Fortunately,

FlatFS improves rename performance with tree range opera-

tion. Its optimized rename takes 0.007s.

WoC key design. We use a microbenchmark to measure

the performance benefits of WoC key design. The microbench-

mark creates a large number of files in a directory. File cre-

ation causes index key prefix and suffix adjustments, which

incurs high data persistence costs. Figure 13b demonstrates

that FlatFS+WoC delivers average 15.94% lower latency than

FlatFS without WoC key optimization. We also use IPMWatch

tool [9] to collect the number of writes received by the mem-

ory controller. Figure 13b shows WoC key design achieves a

nearly 2.64× write reduction.

5.4 Version Control System: Git
We demonstrate FlatFS performance benefits with git appli-

cation. We create a large deep directory tree containing ten

Apache Hadoop 2.10.1 source code repositories [3]. The aver-

age directory depth of all files is 17.71. We use two frequently

used git commands git status and git commit to evalu-

ate file system directory reading and path walk performance.

In the original git status implementation, it traverses the

directory tree of the target repository recursively, reads every

directory entry, validates its state, and puts it into the associ-

ated list according to its state (e.g., untracked). Figure 14a

shows that FlatFS outperforms others by up to 2.21×.

Besides, we also modify the git status implementation

using the getdents_recur syscall in Section 4.3 (denoted as

Git-opt+FlatFS in Figure 14a). The getdents_recur sys-

tem call performs a range query to the target directory and

sub-directories and returns all entries at a time. It greatly

improves git status performance by eliminating expen-

sive hierarchy tree traversal. The optimized git status only

takes 0.6s, which reduces the latency by 4.12× compared to

the unmodified git status command.

The git commit first uses lstat to check the file existence,

then it opens every file and reads its content using a mmap
system call. The massive number of lstat and open syscall in

git commit greatly stresses the path walk efficiency. The ex-

perimental results show that FlatFS reduces the git commit

latency by 13.79%-37.50% compared to others.

(a) Git (b) Psearchy

Figure 14: Git and Psearchy Evaluation Results

USENIX Association 2022 USENIX Annual Technical Conference    909



5.5 File Indexer: Psearchy
Psearchy is a parallel version of searchy [11]. The Psearchy

creates multiple worker threads. Each thread processes a num-

ber of files. Specifically, the thread opens every file, reads file

content, records word positions in a local hash table, sorts

word positions, and persists results in a Berkeley DB file. We

set the local hash table size 16 MB. We also create a dataset

using the taxonomy of known animals from the Catalogue

of Life website [4]. The dataset directory hierarchy is gener-

ated according to the hierarchy of biological classification. It

contains 276,616 files and directories. Because the file size

is small, the psearchy performance is largely dependent on

file open performance. Figure 14b shows that applications

throughput increases as the thread number increases. Among

them, FlatFS always achieves the highest throughputs. How-

ever, scalability issues caused by the glibc qsort function and

VFS inode hash table lock prevent throughput improvements

as thread number increases.

Table 4: Total and stat Syscall Execution Time of Hive

Ext4 XFS NOVA PMFS BetrFS VFS-opt FlatFS
Total 8.44s 8.71s 8.55s 8.50s 8.39s 8.34s 8.28s
Stat 1.46s 1.40s 1.52s 1.34s - - 1.18s
μs/Call 3.07 2.94 3.20 2.81 - - 2.50

Gain 18.4% 15.1% 21.8% 11.0% - -

5.6 Data Warehousing System: Hive
Apache Hive is a data warehousing system that uses database

table partition to improve data query performance [39]. We

use TPC-H benchmark [8] to create a database table for eval-

uation. Then we use table partition technique to generate a

dataset containing 74,090 files and directories. We create a

Hive SQL benchmark to perform queries to all files. The ma-

jor performance bottleneck of Hive is the Java virtual machine.

Therefore, Table 4 shows FlatFS slightly outperforms other

file systems in total execution time.

During Hive execution, We find that stat is the most fre-

quently invoked metadata syscall. To measure the perfor-

mance benefits of our namespace design, we uses the strace
tool [7] to collect the stat syscall execution time. We fail to

profile BetrFS and VFS-opt due to unknown bugs. Table 4

reports that FlatFS achieves 16.58% better performance than

others in stat syscall for its optimized file path walk.

6 Related Works
File Metadata Indexing Optimization. TableFS [32] and

BetrFS [18] share similar idea that utilize existing key-value

stores (LevelDB and TokuDB) to improve metadata index-

ing performance. TableFS [32] aggregates file metadata in

a LevelDB table indexed by a combination of parent direc-

tory inode number and filename string. BetrFS utilizes the

TokuDB to optimize both metadata and data block indexing

performance with their full-path indexing schema [18]. These

two file systems achieve good performance running on hard

disks. However, they introduce new software layers into the

existing storage stack. Our experimental results show that

such stacked system architecture is inefficient for file systems

built for fast NVMs. FlatFS exhibits a non-caching system

architecture to avoid data copy costs for ultra-fast NVMs.

File Path Walk Optimization. ByVFS [41] bypasses the

VFS layer during path component resolution and directly

fetches dentries from the device. Tsai et al. [40] propose

two techniques to improve file path walk performance in the

VFS layer. First, they reduce the pathname lookup latency

using full-path indexing via an in-memory hash table. Second,

they reduce the dcache hit latency by caching the permis-

sion results of file paths. DLFS [21] re-organizes the on-disk

metadata and proposes a hashing-based metadata indexing

solution to improve pathname lookup performance. Directory

range operations (e.g., rename) are expensive in their system.

FlatFS incorporates a full-path-at-a-time path walk model to

accelerate pathname lookup performance.

Namespace Structure Optimization. ReconFS [22] de-

couples the file system namespace as a volatile and a per-

sistent directory tree. It improves system performance and

device endurance by reducing metadata writes to flash mem-

ory. Partition is an efficient solution to improve namespace

scalability. IndexFS [33] proposes a scalable directory service

based on GIGA+ [27] to dynamically partition a large direc-

tory tree across multiple nodes in the distributed environment.

SpanFS [19] is a scalable local file system that distributes

the global namespace into multiple disjoint domains to avoid

contention caused by centralized namespace management.

FlatFS exploits the flat namespace structure to optimize the

namespace lookup and reading operation performance.

7 Conclusion
This paper demonstrates a novel NVM file system FlatFS.

FlatFS exploits flat namespace architecture to improve meta-

data operation performance by proposing three techniques:

a coordinated path walk, a range-optimized Br tree, and a

write-optimized index key layout. Extensive experiments

demonstrate the performance benefits of FlatFS to metadata-

intensive benchmarks and applications. FlatFS is open source

at https://github.com/miaogecm/FlatFS.git.

Acknowledgments
We thank the reviewers for their helpful feedback. We es-

pecially thank our shepherd Haris Volos for the careful,

thorough reading of our paper and valuable suggestions to

improve this paper substantially. This paper is supported

by Fundamental Research Funds for the Central Universi-

ties (No. B220202073, B210201053), National Natural Sci-

ence Foundation of China (No. 61832005, 61872171), CCF-

Huawei Innovation Research Plan (No. CCF2021-admin-270-

202101), Natural Science Foundation of Jiangsu Province

(No. BK20190058), Future Network Scientific Research Fund

Project (No. FNSRFP-2021-ZD-7), Jiangsu Planned Projects

for Postdoctoral Research Funds (No. 2021K635C). Baoliu

Ye is the corresponding author.

910    2022 USENIX Annual Technical Conference USENIX Association



References

[1] Intel 3D XPoint. https://newsroom.intel.com/n

ews-releases/intel-and-micron-produce-brea

kthrough-memory-technology/, 2015.

[2] Google LevelDB. https://github.com/google/le

veldb, 2018.

[3] Apache Hadoop Downloads. https://hadoop.apach

e.org/releases.html, 2021.

[4] Catalogue of Life. https://www.catalogueoflife.

org/data/download, 2021.

[5] Ext4 Disk Layout. https://ext4.wiki.kernel.org

/index.php/, 2021.

[6] Percona TokuDB. https://www.percona.com/soft

ware/mysql-database/percona-tokudb, 2021.

[7] Strace: Trace System Calls and Signals. https://ma

n7.org/linux/man-pages/man1/strace.1.html,

2021.

[8] TPC-H. http://www.tpc.org/tpch/, 2021.

[9] Intel Persistent Memory Watch. https://github.com

/intel/intel-pmwatch, 2022.

[10] Daniel P. Bovet and Marco Cesati. Understand the Linux
Kernel. O’Reilly Media, 2006.

[11] Silas Boyd-Wickizer, Austin T. Clements, Yandong

Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert Tap-

pan Morris, and Nickolai Zeldovich. An Analysis of

Linux Scalability to Many Cores. In USENIX Sympo-
sium on Operating Systems Design and Implementation,

pages 1–16, 2010.

[12] Shimin Chen and Qin Jin. Persistent B+-Trees in Non-

Volatile Main Memory. Proceeding of VLDB Endow-
ment, 8(7):786–797, 2015.

[13] Youmin Chen, Youyou Lu, Bohong Zhu, Andrea C.

Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Jiwu

Shu. Scalable Persistent Memory File System with

Kernel-Userspace Collaboration. In USENIX Confer-
ence on File and Storage Technologies, pages 81–95,

2021.

[14] Jeremy Condit, Edmund B. Nightingale, Christopher

Frost, Engin Ipek, Benjamin C. Lee, Doug Burger, and

Derrick Coetzee. Better I/O through Byte-addressable,

Persistent Memory. In ACM Symposium on Operating
Systems Principles, pages 133–146, 2009.

[15] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and

Haibo Chen. Performance and Protection in the ZoFS

User-space NVM File System. In ACM Symposium on
Operating Systems Principles, pages 478–493, 2019.

[16] Mingkai Dong and Haibo Chen. Soft Updates Made

Simple and Fast on Non-volatile Memory. In USENIX
Annual Technical Conference, pages 719–731, 2017.

[17] Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu. Un-

derstanding the Idiosyncrasies of Real Persistent Mem-

ory. Proceeding of VLDB Endowment, 14(4):626–639,

2020.

[18] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-

tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant

Pandey, Phaneendra Reddy, Leif Walsh, Michael A. Ben-

der, Martin Farach-Colton, Rob Johnson, Bradley C.

Kuszmaul, and Donald E. Porter. BetrFS: A Right-

Optimized Write-Optimized File System. In USENIX
Conference on File and Storage Technologies, pages

301–315, 2015.

[19] Junbin Kang, Benlong Zhang, Tianyu Wo, Weiren Yu,

Lian Du, Shuai Ma, and Jinpeng Huai. SpanFS: A Scal-

able File System on Fast Storage Devices. In USENIX
Annual Technical Conference, pages 249–261, 2015.

[20] Takayuki Kawahara. Scalable Spin-Transfer Torque

RAM Technology for Normally-Off Computing. IEEE
Design & Test of Computers, 28(1):52–63, 2011.

[21] Paul Hermann Lensing, Toni Cortes, and André

Brinkmann. Direct Lookup and Hash-based Metadata

Placement for Local File Systems. In International Sys-
tems and Storage Conference, pages 1–11, 2013.

[22] Youyou Lu, Jiwu Shu, and Wei Wang. ReconFS: a Re-

constructable File System on Flash Storage. In USENIX
conference on File and Storage Technologies, pages 75–

88, 2014.

[23] Jim Mauro and Richard McDougall. Solaris Internals:
Core Kernel Components, volume 1. Prentice Hall Pro-

fessional, 2001.

[24] Marshall Kirk McKusick, George V Neville-Neil, and

Robert NM Watson. The Design and Implementation
of the FreeBSD Operating System. Pearson Education,

2015.

[25] Changwoo Min, Sanidhya Kashyap, Steffen Maass, and

Taesoo Kim. Understanding Manycore Scalability of

File Systems. In USENIX Annual Technical Conference,

pages 71–85, 2016.

[26] Jiaxin Ou, Jiwu Shu, and Youyou Lu. A High Perfor-

mance File System for Non-Volatile Main Memory. In

USENIX Association 2022 USENIX Annual Technical Conference    911



European Conference on Computer Systems, pages 1–

16, 2016.

[27] Swapnil Patil and Garth A. Gibson. Scale and Concur-

rency of GIGA+: File System Directories with Millions

of Files. In USENIX Conference on File and Storage
Technologies, pages 177–190, 2011.

[28] Ivy Bo Peng, Maya B. Gokhale, and Eric W. Green.

System Evaluation of the Intel Optane Byte-addressable

NVM. In International Symposium on Memory Systems,

pages 304–315, 2019.

[29] Rob Pike. Lexical File Names in Plan 9, or, Getting Dot-

Dot Right. In USENIX Annual Technical Conference,

pages 85–92, 2000.

[30] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and

Jude A. Rivers. Scalable High Performance Main Mem-

ory System using Phase-Change Memory Technology.

In International Symposium on Computer Architecture,

pages 24–33, 2009.

[31] Dulloor Subramanya Rao, Sanjay Kumar, Anil S.

Keshavamurthy, Philip Lantz, Dheeraj Reddy, Rajesh

Sankaran, and Jeff Jackson. System Software for Per-

sistent Memory. In European Conference on Computer
Systems, pages 1–15, 2014.

[32] Kai Ren and Garth A. Gibson. TABLEFS: Enhanc-

ing Metadata Efficiency in the Local File System. In

USENIX Annual Technical Conference, pages 145–156,

2013.

[33] Kai Ren, Qing Zheng, Swapnil Patil, and Garth A. Gib-

son. IndexFS: Scaling File System Metadata Perfor-

mance with Stateless Caching and Bulk Insertion. In

International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 237–

248, 2014.

[34] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS:

The Linux B-Tree Filesystem. ACM Transactions on
Storage, 9(3):1–32, 2013.

[35] Yongseok Son, Sunggon Kim, Heon Y. Yeom, and

Hyuck Han. High-Performance Transaction Process-

ing in Journaling File Systems. In USENIX Conference
on File and Storage Technologies, pages 227–240, 2018.

[36] Dmitri B Strukov, Gregory S Snider, Duncan R Stewart,

and R Stanley Williams. The Missing Memristor Found.

Nature, 453(7191):80, 2008.

[37] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Ander-

son, Mike Nishimoto, and Geoff Peck. Scalability in

the XFS File System. In USENIX Annual Technical
Conference, pages 1–14, 1996.

[38] Vasily Tarasov, Erez Zadok, and Spencer Shepler.

Filebench: A Flexible Framework for File System

Benchmarking. Usenix Magazine, 41(1), 2016.

[39] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng

Shao, Prasad Chakka, Suresh Anthony, Hao Liu, Pete

Wyckoff, and Raghotham Murthy. Hive - A Warehous-

ing Solution Over a Map-Reduce Framework. Proceed-
ing of VLDB Endowment, 2(2):1626–1629, 2009.

[40] Chia-che Tsai, Yang Zhan, Jayashree Reddy, Yizheng

Jiao, Tao Zhang, and Donald E. Porter. How to Get

More Value from Your File System Directory Cache.

In ACM Symposium on Operating Systems Principles,

pages 441–456, 2015.

[41] Ying Wang, Dejun Jiang, and Jin Xiong. Caching or

Not: Rethinking Virtual File System for Non-Volatile

Main Memory. In USENIX Workshop on Hot Topics in
Storage and File Systems, 2018.

[42] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michai-

lidis, Steven Swanson, and Jishen Zhao. Characteriz-

ing and Modeling Non-Volatile Memory Systems. In

International Symposium on Microarchitecture, pages

496–508, 2020.

[43] Michèle Weiland, Holger Brunst, Tiago Quintino, Nick

Johnson, Olivier Iffrig, Simon D. Smart, Christian

Herold, Antonino Bonanni, Adrian Jackson, and Mark

Parsons. An Early Evaluation of Intel’s Optane DC

Persistent Memory Module and its Impact on High-

Performance Scientific Applications. In International
Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 1–19, 2019.

[44] Jian Xu and Steven Swanson. NOVA: A Log-structured

File System for Hybrid Volatile/Non-volatile Main

Memories. In USENIX Conference on File and Storage
Technologies, pages 323–338, 2016.

[45] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha

Gangadharaiah, Amit Borase, Tamires Silva, Steven

Swanson, and Andy Rudoff. NOVA-fortis: a Fault-

tolerant Non-Volatile Main Memory File System. In

ACM Symposium on Operating Systems Principles,

pages 478–496, 2017.

[46] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph

Izraelevitz, and Steven Swanson. An Empirical Guide to

the Behavior and Use of Scalable Persistent Memory. In

USENIX Conference on File and Storage Technologies,

pages 169–182, 2020.

[47] Yang Zhan, Alexander Conway, Yizheng Jiao, Eric

Knorr, Michael A. Bender, Martin Farach-Colton,

William Jannen, Rob Johnson, Donald E. Porter, and

912    2022 USENIX Annual Technical Conference USENIX Association



Jun Yuan. The Full Path to Full-Path Indexing. In

USENIX Conference on File and Storage Technologies,

pages 123–138, 2018.

[48] Shengan Zheng, Morteza Hoseinzadeh, and Steven

Swanson. Ziggurat: a Tiered File System for Non-

Volatile Main Memories and Disks. In USENIX Confer-
ence on File and Storage Technologies, pages 207–219,

2019.

USENIX Association 2022 USENIX Annual Technical Conference    913



Artifact Appendix

A.1 Abstract
We provide FlatFS artifact description in this section. FlatFS

is a metadata-optimized NVM file system that features a flat

namespace. This section describes (1) how to build FlatFS on

NVM systems §A.2; (2) how to reproduce the main experi-

mental results of our paper §A.3.

A.2 How to Build FlatFS
This section describes software requirements for FlatFS and

how to build FlatFS.

• OS version: Ubuntu 18.04 or Ubuntu 14.04.6

• Kernel version: Linux 4.15.0

1. Download FlatFS

$ git clone https://github.com/miaogecm/FlatFS.git

This repository contains FlatFS source code which locates

in linux-4.15/fs/flatfs and a modified virtual file sys-

tem that supports coordinated path walk.

2. Compile and Install FlatFS

$ make localmodconfig

$ make menuconfig

Modify the Linux kernel configuration file, and make sure

these two configurations are enabled:

File systems/DAX support

File systems/FlatFS

and disable these four configurations:

Security options/AppArmor support

Security options/Yama support

Security options/TOMOYO Linux support

Security options/Security hooks for pathname based

access control

Compile the kernel

$ make -j

Install the new kernel:

$ make install

$ make modules_install

$ update-grub

Reboot the system:

$ reboot

3. Mount FlatFS

FlatFS can be mounted on a real or an emulated NVM

device. Create a mount directory and mount FlatFS:

$ mkdir /mnt/flatfs

$ mount -t flatfs -o init /dev/pmem0 /mnt/flatfs

4. Umount FlatFS

$ umount /mnt/flatfs

A.3 Experiment Reproducibility
We provide a number of helpful scripts to reproduce the main

experimental results automatically. Specifically, readers could

reproduce Figure 9, Figure 10a, Figure 10b, Figure 11a, Fig-

ure 11b, Figure 14a, Figure 14b, Table 2, Table 3, and Table 4.

Reproducing an experiment takes three steps except for the

Hive experiment.

Step 1. Clean old data:

$ ./clean

If you are reproducing Table 4, generate data for the exper-

iment first:

$ export TBL_PATH=~/hive/table

$ ./mktable

Step 2. Collect data for each tested file system, where

FS=ext4,xfs,pmfs,nova,flatfs,betrfs,vfs_opt. The

generated data is saved in a .data file in the current directory.

$ ./run $FS

Step 3. Draw the figure with collected data:

$ ./plot.py

More details can be found in evaluation/README.md in

the repository.

914    2022 USENIX Annual Technical Conference USENIX Association



StRAID: Stripe-threaded Architecture for Parity-based RAIDs with Ultra-fast
SSDs

Shucheng Wang1, Qiang Cao1∗, Ziyi Lu1, Hong Jiang2, Jie Yao3 and Yuanyuan Dong4

1Wuhan National Laboratory for Optoelectronics, HUST,
2Department of Computer Science and Engineering, UT Arlington,

3School of Computer Science and Technology, HUST, 4Alibaba Group

Abstract
Popular software storage architecture Linux Multiple-Disk

(MD) for parity-based RAID (e.g., RAID5 and RAID6) as-

signs one or more centralized worker threads to efficiently

process all user requests based on multi-stage asynchronous

control and global data structures, successfully exploiting

characteristics of slow devices, e.g., Hard Disk Drives (HDDs).

However, we observe that, with high-performance NVMe-

based Solid State Drives (SSDs), even the recently added

multi-worker processing mode in MD achieves only limited

performance gain because of the severe lock contentions un-

der intensive write workloads.

In this paper, we propose a novel stripe-threaded RAID

architecture, StRAID, assigning a dedicated worker thread

for each stripe-write (one-for-one model) to sufficiently ex-

ploit high parallelism inherent among RAID stripes, multi-

core processors, and SSDs. For the notoriously performance-

punishing partial-stripe writes, StRAID presents a two-phase

stripe write mechanism to opportunistically aggregate stripe-

associated writes to minimize write I/Os; and designs a parity

cache to reduce write-induced read I/Os on parity disks. We

evaluate a StRAID prototype with a variety of benchmarks

and real-world traces. StRAID is demonstrated to consistently

outperform MD by up to 5.8 times in write throughput without

affecting the read performance.

1 Introduction
The advent of ultra-fast storage devices such as NVMe-

based Solid-State Drives (SSDs) and Non-volatile Memory

(NVM) with GB/s-level I/O bandwidth has dramatically nar-

rowed the performance gap between memory and storage.

Redundant Array of Inexpensive Disks (RAID) [56] can com-

bine multiple such high-performance storage devices to fur-

ther promote the overall storage performance, reliability, and

capacity simultaneously. Many empirical studies [11, 19, 35]

including distributed datacenter storage systems [49, 70] and

enterprise storage systems [48] report that SSD drivers exhibit

∗Corresponding author. Email: caoqiang@hust.edu.cn

reliability problems in that more than 20% of SSDs develop

uncorrectable errors in a four-year period [58]. Therefore,

parity-based RAIDs composed of ultra-fast SSDs have be-

come attractive storage systems for modern data-intensive ap-

plications in supercomputing [55], big data analytics [27, 64],

machine learning [8], enterprise storage [48], and cloud ser-

vices [1, 32, 38, 46, 61].

HDD-based RAIDs have been extensively studied since

1988 [56]. In the literature, recent studies focus on SSD-based

RAID and All-Flash-Array (AFA), with efforts to reduce SSD

write-penalty by mitigating parity update [9, 16, 67], reduce

garbage-collection induced performance jitter [23,33,42], and

optimize AFA using declustering RAID approach to balance

load within devices and reduce tail-latency [30, 75]. Existing

RAID I/O handling techniques generally adopt a centralized

stripe-processing architecture following a classic principle

that trades more fast-CPU-cycles (e.g., scheduling algorithms)

for fewer slow-I/Os. Nonetheless, the question of whether

such RAID architecture can fully exploit the power of emerg-

ing fast storage remains unanswered.

We experimentally measure the actual performance of

Multiple-Disk (MD) [45], the most popular and mature soft-

ware RAID integrated into the Linux kernel for over two

decades. We conduct MD running on 6 NVMe-based SSDs

with 64 user threads (i.e., issuing block requests) and 64 work-

ers threads (i.e., handling RAID stripe-writes), with the ex-

periment environment summarized in Tables 1 and 2. The

results are shown in Figure 1 (detailed in Section 3.1). With

RAID0 (non-parity RAID-level), MD obtains an expected

performance that approaches the aggregate raw I/O capacity

of the underlying SSDs, i.e., 20GB/s and 14GB/s for read

and write throughputs respectively. However, MD falls far

short of the expectation in write performance in RAID5 and

RAID6 (parity-based RAID-levels). Specifically, the write

throughput of RAID5 is below 2.2GB/s under partial-stripe

writes and below 5.2GB/s under full-stripe writes, which are

only about 1/7 and 1/3 of that of RAID0, respectively. Al-

though parity-RAIDs introduce extra parity-compute over-

heads, our measured XORing rate on a CPU core can reach

USENIX Association 2022 USENIX Annual Technical Conference    915



up to 29GB/s [29], which is clearly not the bottleneck.

Through profiling (detailed in Section 3.2), we experimen-

tally uncover that the write inefficiency of parity-based RAID

comes from a centralized stripe-handling architecture in the

legacy MD. Specifically, a worker thread using shared data

structures (e.g., stripe-list) handles write requests by effi-

ciently collaborating with user threads, XORing threads, and

device I/O threads. For HDDs and slow SSDs, this one(worker

thread)-for-all(stripe) architecture utilizes fast CPU suffi-

ciently by postponing stripe-writes to absorb more requests

for reducing actual I/Os. However, a single worker thread is

upper-bounded in its processing capability that fails to keep

up with the fast storage. The latest MD introduces a multi-

worker mechanism, referred to as the N-for-all processing

model, but achieves a limited performance gain due to severe

lock contention on the centralized data structures.

In this paper, we propose a novel stripe-threaded architec-

ture, called StRAID, for parity-based RAIDs built on ultra-

fast storage devices such as NVMe-based SSDs. To ad-

dress the architectural drawback of the existing software

RAID (MD), StRAID employs a one(worker)-for-one(stripe)

model, thus significantly reducing the number of stripe-states

and their lock-based checks. Furthermore, StRAID adopts

a fine-grained stripe-level lock, substantially mitigating con-

tentions on shared data structures. To tame the notoriously

performance-degrading partial-stripe writes, StRAID further

designs a two-phase stripe submission mechanism that oppor-

tunistically aggregates subsequent incoming writes belonging

to the same stripe within a limited time window. Meanwhile,

StRAID proposes a parity-block cache to speed up frequent

write-induced parity reads. Fundamentally, StRAID effec-

tively exploits stripe-based data parallelism while mitigat-

ing intra-stripe conflicts between the dedicated stripe worker

thread and other threads. StRAID leverages the power of mul-

ticore CPUs that offers sufficient inexpensive-threads to fully

unleash the superior IOPS provided by fast SSDs.

The main contributions of this paper are as follows.

• We experimentally observe a serious write inefficiency

problem in the current MD when parity-based RAID is

running on ultra-fast storage. We further reveal that the

root cause is the centralized one-for-all stripe-handling

architecture.

• We propose a novel parity-RAID processing architec-

ture, StRAID, guided by a stripe-threaded one-for-one

model to unleash the full performance potentials of mod-

ern hardware. We also present two key techniques, op-

portunistic stripe-aggregation and parity-block cache, to

improve the performance of partial-stripe writes.

• We prototype and evaluate StRAID with a variety of

benchmarks and real-world workloads. StRAID con-

sistently outperforms MD by up to 5.8 times in write

throughput without affecting the read performance while

reducing CPU utilization.

The rest of the paper is organized as follows. Section 2

presents the background for RAID. Section 3 analyzes the

performance behaviors of Linux software RAID (MD) and

motivates the StRAID design. Section 4 describes StRAID’s

design. We evaluate StRAID in Section 5 and describe related

works in Section 6 . Section 7 concludes this paper.

2 Background

2.1 RAID Systems
Redundant Array of Inexpensive Disks (RAID) [56] is a

classic system-level approach that combines multiple disks to

improve performance, reliability and capacity simultaneously.

Over the past decades, RAID has been used ubiquitously to

construct and manage efficient storage servers, distributed

storage [5, 54], and cloud storage [1, 38] from within and/or

among storage devices.

The RAID architecture is categorized into various RAID

levels based on the amount of redundancy and how redun-

dancy is incorporated, including non-parity RAIDs (e.g.,

striping-only RAID0 and mirroring-only RAID1) and par-

ity RAIDs (e.g., RAID5 and RAID6 that can tolerate one and

two disk failures respectively). RAID can be implemented in

either software or dedicated hardware (e.g., I/O controllers or

firmware) to offer the block-addressable volume. A common

N-disk RAID internally consists of multiple stripes, each of

which comprises user data chunks and their corresponding

parity data chunks across N disks according to an algorithmic

address-mapping method. Normal reads without disk failure

are directly decomposed to their constituent chunk I/Os served

by the underlying disks. Normal writes in non-parity RAIDs

behave like normal reads without accessing parity chunks.

Normal writes in parity-based RAIDs need extra parity gen-

eration, update, or construction operations. For a full-stripe

user write where all data chunks of a stripe are written, the

RAID system generates all new parity chunks at once, and

then writes both data chunks and parity chunks into their

corresponding disks. For a partial-stripe write where only a

subset of the data chunks of a stripe are written, only after its

constituent old data or parity chunks are read from the disks

is the stripe updated and then written into the disks again,

thus inducing numerous extra I/Os [9, 30]. This read-modify-

write nature of partial-stripe writes makes them notoriously

costly. When disks fail within the failure-tolerance range, the

RAID transitions from its normal mode to a degraded mode

to perform read, write, or resync operations.

2.2 Linux Software RAID
The Linux software RAID module, referred to as Multiple-

Disk (MD) [45], is the most commonly used software RAID

evolving with the Linux Kernel for over two decades. Cur-

rently, MD supports various RAID levels and RAID composi-

tions. Non-parity-based RAIDs in MD perform an algorithmic

916    2022 USENIX Annual Technical Conference USENIX Association



(a) 860PRO (64KB Write) (b) 970PRO (64KB Write) (c) 980PRO (64KB Write) (d) 980PRO (1MB Write) (e) 980PRO (64KB Read)

Figure 1: The throughput of Linux software RAIDs on three-types of SSDs under varying number of user threads.

User Thread

RAID worker Thread

stripe_head with
state S

Linux RAID-4/5/6
Module

kworker
Module

aync_XOR
Module

hashing

Block IO Request

Device I/O
Thread

Uninitialized  
stripe_head

Stripe
Cache

FS Layer

Block Layer

SSD 1

Disk
Group

SSD 4SSD 2 SSD 3

WT XOR RD

Figure 2: Architecture of Linux MD parity-based RAID.

block-to-chunk address mapping. For parity-based RAIDs,

normal reads are similar to those in a non-parity-based RAID

without parity operation. However, writes inevitably intro-

duce several additional parity-generation/modification oper-

ations. Figure 2 shows the architecture of MD parity-based

RAIDs and Figure 3 shows the workflow of their stripe-writes.

The centralized data structure (stripe-cache) comprises inac-

tive and handling stripe-lists, which maintain the metadata

of the stripes (up to 256 by default). Each stripe has its own

stripe_head containing stripe states and device states (Devs).

Devs contains a set of block request structures (bios) pointing

to their buffered pages. Specifically, a stripe and its corre-

sponding Devs have 28 and 27 states respectively that are

used to precisely identify the handling states of this stripe.

When a stripe is processed and cleared, its corresponding

stripe_head will be transferred into the inactive_list.

MD handles stripe-writes using a state machine represented

as a directed acyclic graph (DAG) [17]. As shown in Fig-

ure 3, a normal user write process can be divided into 5

consecutive stages: 1) inserting/aggregating bios to a stripe

(INS); 2) reading data/parity chunks (RD); 3) computing par-

ity (XOR); 4) writing data/parity (WT); 5) clearing stripe

(CLR). Specifically, in the first stage �, user threads (UT)

invoke make_request() to attach bios to their correspond-

Read stageInsert stage XOR stage Write stage Clear stage
Stripe 1

Stripe 2

Figure 3: Stripe-write workflow of parity-based MD RAID.

ing stripe_head structures. Afterwards, a daemon worker

thread (WT), i.e., RAID5d in MD by default, handles all active

stripe_heads in a circular manner with priority.

For a full-stripe write, MD skips the second stage. For a

partial-stripe write, MD must introduce write-induced reads

�, resulting in I/O amplification. More specifically, there are

two stripe-updating schemes, read-modify-write (RMW) and

read-construction-write (RCW) [30]. MD calculates the re-

quired number of disk-read I/Os of both RCW and RMW,

selects the I/O-minimum approach, and launches the relevant

disk-read I/Os. When a disk I/O thread (DT) completes the

read, it sets a data-prepared flag to its bios. Afterwards, � WT

checks all the involved bios until prepared, and then launches

a parity-calculation executed by other XORing threads. When

WT verifies that the parity has been prepared, � it invokes

disk-write I/Os. � WT finally validates the completed state

and clears the stripe_head. Therefore, the write process or-

chestrates WT, UT, and DT threads via shared-state setting

and checking.

WT handles each stage of a stripe-write in four steps, as de-

scribed in Figure 3: 1© getting a stripe_head from a stripe_list;
2© analyzing the current state of this stripe and all its in-

volved bios, to determine whether this stripe is still in-flight;
3© handling the stripe by launching a given operation (e.g.,

XOR) through executing DAG; and 4© updating the stripe

state, inserting it back into a stripe_list and selecting the next

stripe. The worker thread handling a stripe exclusively ac-

cesses shared data structures and stripe-states using multiple

locks. For example, in step 4©, WT exclusively modifies han-

dle_list with a global device lock.

For HDD-based RAID, a disk I/O takes at least several

milliseconds. Therefore, a WT in Linux MD has sufficient

CPU-cycles to drive all stripe-writes. With the emerging SSDs

that have 2-3 orders of magnitude lower I/O latency than

HDD, MD also introduces a multi-worker mechanism [39,40]

that enables more numbers of functionally equivalent worker

USENIX Association 2022 USENIX Annual Technical Conference    917



Table 1: Evaluation Platform Specifications
Components Configurations

Processor Duel Socket Intel Xeon Gold 6328, 56 Cores, 128MB LLC

Memory 256GB 2666MHz DDR4

Operating System Ubuntu 20.10 LTS with the Linux kernel version 5.13.0

MD controller mdadm v4.1

Table 2: Characteristics of three representative SSD products.
Device
Types

Device
Modules Capacity Stable Write

Thr. (MB/s)
Stable Read
Thr. (MB/s) Interfaces

SATA SSD Samsung 860 Pro 512GB 500 510 SATA

NVMe SSD Samsung 970 Pro 512GB 2200 3200 PCIe 3.0

NVMe SSD Samsung 980 Pro 1TB 2600 6900 PCIe 4.0

threads to process stripes concurrently, referred to as the N-

for-all processing model.

3 Analysis and Motivation

3.1 Understanding the Write Performance

Experiment Setup We start with measuring the MD per-

formance in the RAID0, RAID5 and RAID6 levels running

on three types of SSD devices, whose I/O characteristics are

listed in Table 2. The platform configuration is shown in Ta-

ble 1. The XORing throughput on a single CPU-core can

reach up to 29GB/s. We deploy six SSD devices to construct

parity-based RAIDs, that is, 5+1 RAID5 and 4+2 RAID6

respectively. The chunk size in all RAIDs is set to 64KB

as default. We pin each user thread (UT) to a unique CPU-

core and increase the number of UTs from 1 to 64. Each UT

issues random 64KB-sized writes over 30 seconds. For parity-

RAIDs, we invoke up to 64 extra RAID worker threads (WT),

and enlarge the stripe cache capacity from the default of 256

stripe_heads to 16K stripe_heads.

Write Inefficiency with Parity-RAID Figure 1 reports

the throughput performance of MD. In all the cases, the write

performance and scalability of the non-parity RAID0 far

exceed those of parity-based RAID5 and RAID6. RAID0

achieves a write performance of about 1.4GB/s and 11GB/s

peak throughput on 860Pro and 980Pro SSDs at 64 UTs,

while RAID5 in the multi-worker mode achieves a peak write

performance of lower than 0.72GB/s and 5.3GB/s, respec-

tively. On 980Pro, the 64KB partial-stripe write throughputs

of parity-RAIDs are below 2.1GB/s, which is only 1/7 of that

of RAID0. Even for the 1MB full-stripe writes, the through-

puts of RAID5 and RAID6 with 64 UTs are below 5.2GB/s

and 5.3GB/s respectively, only about 38% of that of RAID0. It

indicates that parity-RAIDs fall short of leveraging the write

I/O performance of modern SSDs and the bottleneck on CPU

processing is the main reason. We will show more details in

the next section. Besides, normal reads of MD in all RAID

levels are generally similar and scale well with the number of

UTs.

We further analyze the write inefficiency of the multi-

worker mechanism with RAID5 on six 980Pro SSDs. We

invoke 64 UTs in either the single-worker (i.e., Single) mode

or the multi-worker mode with the number of WTs vary-

Figure 4: Write throughput of MD RAID5 under the multi-

worker mechanism.

Table 3: Key function calls and locks of Linux parity-RAID.
Operations Function as example Description

RD/WT generic_make_request()
Send bio to block device queues

( 2© in stages � and �)

XOR async_xor() Compute parity data ( 2© in stage �)

F/R List release_stripe()
Insert the stripe_head to stripe_list

according to its states ( 1© and 4©)

Lock spin_lock_irq(device_lock)
Global MD device Lock,

mainly used for updating shared structs

Analyze analyze_stripe()
Analyze the states of a stripe

and its Devs before handling ( 2©)

Others - Other software overhead

ing from 1 to 64 (i.e., +1W to +64W). Figure 4 shows that

the parity-based RAID gains limited benefits from the multi-

worker mode. For example, MD with 8 more WTs has a write

throughput improvement of 2.4x and 3.6x over the single-

worker mode under 16 and 64 UTs, respectively. However,

MD’s performance gain peaks at 16 WTs, beyond which MD’s

throughput starts to gradually decrease, e.g., with a 5% de-

cline at 64 WTs. This indicates that the multi-worker mode

has a diminishing return in performance beyond a relatively

small number of WTs. Therefore, even in the case of 64 UTs

and 64 WTs, parity-RAIDs still fall short of fully leveraging

the I/O bandwidth offered by the fast SSDs.

3.2 Identifying the Root Causes
We investigate the CPU usage distribution to identify the

root causes of poor write scalability of MD. We use RAID5

with fixed 64 UTs and vary the number of WTs from 1 to 64.

We use perf [44] to measure CPU cycles of key functions

within a WT thread, detailed in Table 3. We randomly select

one WT for analysis since all WTs behave very similarly in

our experiments. Figure 5 shows that CPU cycles of disk I/O

(RD/WT) and XORing (XOR) decrease as the number of WTs

increases, accounting for 42% of the total CPU cycles in the

single-worker mode, but only 9.7% at 64 WTs. Meanwhile,

the CPU cycles of stripe-write process (i.e., F/R List, Lock,

Analyze and Others) increase significantly as WTs increase.

First, the global device lock (Lock) consumes a mere 4.3%

of CPU-cycles in the single-worker mode but a dominant

54.6% in the 64-worker mode. As shown in Table 3, the de-

vice lock in Linux MD is spin lock, which controls concurrent

accesses from WTs, UTs, and DTs to all the stripe_lists and

metadata of RAID. In most cases, each WT exclusively ac-

cesses the handle_list, thus causing severe lock contention

918    2022 USENIX Annual Technical Conference USENIX Association



Figure 5: Breakdown of CPU cycles on key functions and

locks of the worker threads in Linux MD.

among these threads. Recently, Linux Kernel contributors also

found high overhead of the device lock in the read path [52]

and replaced them with a lockless memory barrier, thus achiev-

ing 7x improvement in small-sized reads. However, the device

lock in the write path remains a serious source of contention.

Second, checking for stripe states (Analyze) consumes 22%

and 13.2% CPU usage in the single-worker and 64-worker

modes, respectively. In Linux MD, most of the stripe states

and device bio states use a set of semaphores to orchestrate

UTs, WTs, and DTs. In summary, through extensive exper-

iments, we observe that the architectural deficiency of the

N-for-all centralized handling model leads to severe lock

contentions due to highly-concurrent accesses to global data

structures and the states of stripes.

4 Design
Given the above identified root causes of write inefficiency

of MD with parity-RAIDs running on ultra-fast SSDs, we pro-

pose a stripe-threaded architecture of parity-RAID, StRAID

for short. StRAID assigns a dedicated worker thread for

each stripe-write, which significantly reduces lock contentions

among multiple threads, and addresses the partial-stripe-write

penalty with a two-phase write submission and a parity cache.

4.1 Architecture
Figure 6 illustrates the StRAID architecture for parity-

RAID. StRAID does not change the data layout of the legacy

MD. It persists RAID’s metadata at the pre-defined location

of each disk. Each user thread (UT) pushes a block-write to

a dedicated worker thread (WT) that exclusively handles its

corresponding stripe. Multiple WTs process their own stripes

independently, exploiting the intrinsic data parallelism among

stripes. StRAID pre-allocates at least 256 WTs in the WT

Pool to alleviate frequent thread creation/destroy overhead in

runtime.

A normal stripe-write process in StRAID can be divided

into 6 consecutive stages of � initializing stripe_heads and

inserting bios (INS); � reading parity/data chunks (RD); �
performing I/O batching (BAT); � computing parity (XOR);

� writing data/parity and � clearing stripe states in SST

(CLR). Moreover, � user threads being batched must wait for

completion (WAIT). A notable workflow difference between

StRAID in Figure 6 and the legacy MD in Figure 3 is that

User Thread Stripe head 

StRAID

Parity
Cache

SSA

Block I/O request

Device I/O Thread

Per Thread
Batching QueueWorker Thread

CPU 0 CPU 4 CPU 8

WT
Pool

......

SSD 1

Disk
Group

SSD 4SSD 2 SSD 3

Figure 6: Architecture and process flow of StRAID

the latter’s stages of 1© stripe acquisition, 2© analysis and 4©
stripe release are removed in the former.

Compared to the legacy MD, StRAID removes the cen-

tralized stripe_head lists and their corresponding concurrent

operations. Furthermore, StRAID minimizes the number of

shared stripe-states and global-state checking among WTs,

because a dedicated WT handles a stripe-write exclusively.

Finally, the parity computation and I/O execution processes of

a stripe write are pinned to the same CPU core, thus avoiding

frequent context switches and CPU cache pollution.

However, StRAID faces new challenges in effectively con-

ducting thread collaboration and reducing the partial-write

penalty. StRAID still needs a minimal shared-data structure

to orchestrate UTs, WTs, and DTs in handling stripe-writes.

To this end, StRAID proposes a Stripe State Table (§4.2)

with lockless access features. Further, the legacy MD uses

the global stripe-cache and active/passive delays to aggregate

stripe-associated writes (SS-writes) that target the same stripe,

thus reducing partial-write-induced disk I/Os. However, in

StRAID, a user write triggers a dedicated WT to immedi-

ately and exclusively handle the corresponding stripe-write,

which does not address the costly partial-write penalty. To

optimize partial-stripe writes, StRAID presents a two-phase

stripe submission mechanism (§4.3) to opportunistically ag-

gregate SS-writes by employing a batching queue per WT.

Further, StRAID employs a parity cache (§4.4) in memory

to buffer hot parity blocks, for significantly mitigating write-

induced parity-reads.

4.2 Stripe State Table
StRAID designs a Stripe State Table (SST), as shown in

Figure 7, to maintain a minimal set of shared stripe-states.

USENIX Association 2022 USENIX Annual Technical Conference    919



Stripe ID [0:31] Stripe Lock TID [32:46] is_frozen [47:47]

0x0004 Locked 3 F

-- Unlocked -- --

0x0200 Locked 8 T

......

-- Unlocked -- --

Cuckoo 
Hashing

Figure 7: Stripe state table.

SST adopts a hash table to index up to 4096 active stripe-

entries, each of which is handled by a dedicated worker thread.

An SST-entry (48-bit) contains four fields: 32-bit Stripe ID
uniquely specifying a stripe; 1-bit Stripe Lock indicating

whether this stripe is currently being processed; 14-bit TID
identifying the thread ID of the dedicated WT handling this

stripe; and 1-bit is_frozen recording the shared stripe-state

that indicates whether the stripe is allowed to batch. SST is a

globally shared structure between WTs and DTs, where each

entry is uniquely associated with a physical stripe and can

only be exclusively modified by a WT using CAS [57] at any

time. SST employs Cuckoo hashing [53] for achieving high

table occupancy while preventing hash collisions. The total

memory footprint of SST is smaller than 40KB.

4.3 Two-phase Stripe Submission
Partial-stripe Write Overhead A partial-stripe write

causes write-induced reads and write amplification. The write-

induced-read ratio (WIRR) and write amplification (WA) of

RAID5 are estimated by Eq.1 and Eq.2 respectively, where

WS, CS and SS represent write-size, chunk-size and stripe-

size, respectively. When WS is smaller than CS in RAID5, a

block-size write induces 2x read I/Os and 2x write amplifica-

tion (one data-block write and one parity-block write) with

optimal RMW strategy. As WS increases, the amount of write-

induced-read data decreases (0 for a full-stripe write). The

write amplification is larger than 1.2x on RAID5 with no disk

failures.

Write-induced-read Ratio =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 WS ≤CS (RMW )

1+ CS
WS CS ≤WS <

SS
2

(RMW )

SS
WS −1

SS
2

≤WS < SS (RCW )

0 WS = SS

(1)

Write Ampli f ication =

{
2 WS ≤CS

1+ CS
WS WS > SS−CS (2)

Existing optimizations for partial-stripe writes can be

characterized by the three general approaches of write-

aggregation [45], dynamic stripe size [7, 76], and parity log-

ging [9,10,15,71,72]. The legacy Linux MD employs a global

stripe-cache to absorb active user writes by postponing stripe-

writes actively or passively. This write-aggregation approach

reduces actual disk I/Os but increases the latency of the post-

poned requests, which may hurt the overall performance for

low-latency SSDs. RAIDZ [7] uses a dynamic stripe size

mechanism to eliminate partial-stripe writes, but assumes the

support of the ZFS file system. The logging approach first

persists incoming writes to an auxiliary fast-disk (e.g., SSD

or NVM), and then rewrites the relevant stripes to original

locations in the background, thus leading to at least 2x write

amplification and bottlenecks from log-devices.

Two-phase Stripe Submission Without a global stripe-

cache, StRAID designs a two-phase stripe submission mecha-

nism to opportunistically absorb SS-writes. StRAID divides

the stripe-write process into two phases: a batching phase and

a frozen phase. Specifically, Figure 8 (referred by circled num-

bers) and Algorithm 1 (referred by line numbers) describe the

two-phase submission using an example where three concur-

rent I/O threads issue requests targeting the same stripe (S1).

A worker thread 1 (WT1) receives bios from its corresponding

UT, and acquires a stripe lock to begin stripe processing (Time
	, line 2) by CAS operation. WT1 first initializes the stripe

states in SST, then it determines the reconstruction method

(RCW/RMW) for this stripe and reads the required parity/data

blocks from the disk (line 4-6). Shortly after WT1’s arrival,

a second worker thread (WT2) arrives and seeks SST, only

to find that the targeted stripe is locked but enables batching

(Time 
, line 14). It inserts bios belonging to this stripe to the

batching queue of the handling thread WT1 (Time �, line 15)

and then suspends itself.

When WT1 completes its batching phase, it immediately

transitions the stripe into the frozen phase (Time �, line 7)

by using the CAS operation. At this point, the stripe is not al-

lowed to accept new bios. Hence, the newly arrived bios from

worker thread 3 (WT3) (Time ) are blocked and have to wait

for the stripe write’s completion. WT1 coalesces all requests

in its batching queue and processes them as a whole, then it

re-executes parity read (if required) in accordance with the ag-

gregated stripe-write, and performs XORing and data/parity

writes to reconstruct the stripe. Finally, WT1 clears up the

stripe states of S1 in SST and releases the stripe lock. The cor-

responding waiting thread WT2 will also return successfully

(Time �, line 12). Next, WT3 successively acquires the Stripe
Lock to handle its requests on the stripe.

In contrast to the stripe-cache approach for aggregating SS-

writes used in Linux MD, the novelty of the two-phase writing

approach in StRAID leverages the latency of executing a re-

construction read in the batching phase to opportunistically

aggregate incoming SS-writes. It ensures the efficiency of

each handling thread, thus achieving better throughput with-

out sacrificing I/O latency.

4.4 Parity Cache

Partial-stripe writes induce frequent parity-block accesses

and cause performance degradation. To alleviate this problem,

StRAID further designs a parity cache to keep hot parity-

blocks in the memory to reduce disk I/Os. Previous works

[9, 63, 72] use the logging approach to absorb parity updates

at the cost of write amplification and potential bottlenecks at

the log-devices. StRAID, instead, uses the parity cache only

for eliminating parity reads induced by partial-stripe writes.

920    2022 USENIX Annual Technical Conference USENIX Association



Algorithm 1 Two-phase stripe submission

1: while all bios are handled do
2: if get_stripe_lock(stripe_id) then
3: init_SST(stripe_id)

4: Determine reconstruction method

5: if is partial-stripe write then
6: read from disks

7: set is_ f rozen = true in SST and pull batching bios from queue

8: if Data is not enough for reconstruction then
9: Re-read from disks

10: Compute XOR and reconstruct stripe

11: clear_SST(stripe_id)

12: release_stripe_lock(stripe_id)

13: else
14: if !is_frozen(stripe_id) then
15: insert bio to queue with TID

16: else
17: handled = f alse
18: continue

19: Waiting for all bios to complete

Freeze Stripe 1

Worker Thread 1 Time Line

Worker Thread 2 Time Line

Worker Thread 3 Time Line

Read Write

Waiting for WT1 
to complete

Waiting for WT1 to complete

Lock S1
(False)

bio 1
arriving

Lock S1
(True)

Pull Batching
Queue Re-read bio 1

return

bio 2
arriving

Lock S1
(False)

S1 Frozen
(True)

Push bio to Batching
Queue(WT1)

bio 2
return

bio 3
arriving

S1 Frozen
(False)

Lock S1
(True)

XOR

Figure 8: Workflow of two-phase stripe submission, an exam-

ple with 3 concurrent worker threads (WT1-WT3) targeting

the same stripe.

The stripe parity has higher access-frequency than its stripe

data for partial stripe writes. Therefore, caching parity data is

significantly valuable.

The architecture of parity cache is shown in Figure 9. It con-

tains a high concurrency hash table with O(1) lookup cost, and

uses an LRU-based cache replacement policy to capture fre-

quently accessed parity data. Each hash entry corresponds to

a physical stripe and contains three fields, Stripe_ID, p_data
and q_data with the latter two pointing to cached parity data

aligned with the 4KB block size. RAID5 only uses the p_data
pointer and RAID6 uses both pointers. In addition, each entry

has a fine-grained read-write lock for synchronization.

The cache module updates and queries at the block granu-

larity, but inserts and deletes hash entries at the stripe gran-

ularity. For updates and queries, a WT needs to first insert

the Stripe_ID into the LRU and searches the relevant entry.

The read lock is required to access cached data because each

stripe can only be updated exclusively by one WT. During the

stripe-write process, a WT first searches the parity cache and

acquires hit parity blocks. When missed, WT updates both

disks and cache in a write-through scheme with the newest

parity data after XORing.

StRAID periodically triggers a dedicated thread to clean

up the stripe in the background. When the cache size exceeds

stripe ID    1 RWL T
0 p_data q_data

4K * *

8K p_data q_data

......

64K * *

Hash with stripe ID

Worker Threads

Parity
Cache

stripe ID    3 RWL F
0 * *

4K p_data p_data

8K * *

......

64K * *

……

Stripe LRU

Cache Clean Threads

Query with
stripe ID & parity offset

Record stripe ID

Figure 9: Architecture of the parity cache.

a threshold (64MB capacity for 16K parity blocks as default),

the cleaning thread removes the entries of evicted stripes from

the cache according to the LRU policy.

4.5 Recovery and Degraded Mode
Crash Consistency and Recovery After a system crash,

part of the chunk writes belonging to a stripe-write may be

lost, making the stripe inconsistent between its data and parity.

StRAID uses a bitmap to record the current update-state of

each chunk. Compared with Linux MD, StRAID’s bitmap

has basically the same data structure and layout, but can only

be updated and flushed by dedicated threads. For each chunk

update, StRAID first sets the corresponding bitmap bits and

changes their involved memory-page as dirty, then flushes

the page to the underlying SSDs via the memory mapping

mechanism. The bits will be cleared after their corresponding

chunks are written to the disk. Similar to MD, StRAID groups

bitmap updates in a batch to avoid frequent disk I/Os. In the

experiment, it is found that flushing the bitmap only incurs

a very small overhead (less than 2%) when handling stripe

writes. With unexpected power failures, StRAID will fetch

the bitmap from the disks and restore it to the consistent

state after reboot. Moreover, StRAID has the option to use a

journal device [3] as a writeback cache to prevent the write

hole problem [22].

Resync and Degraded Mode StRAID supports degraded

reads, degraded writes and resync operations in the same way

as the legacy MD because the underlying data layout is iden-

tical. For stripe writes, StRAID identifies the degraded stripe

and handles it after entering the frozen phase. The resync

operation reads all the data blocks from disks and compares

their calculated parity results with their on-disk parity data. It

is triggered upon RAID initialization, or reconstruction from

disk replacement. We evaluate the performance of StRAID in

degraded mode in Section 5.

5 Evaluation

5.1 Evaluation Setup
Platform We run all experiments on a server (detailed

settings listed in Table 1) and three types of SSD devices (de-

scribed in Table 2). The CPU-core can reach 29GB/s XORing

USENIX Association 2022 USENIX Annual Technical Conference    921



(a) RAID5 4KB (b) RAID6 4KB

(c) RAID5 64KB (d) RAID6 64KB

(e) RAID5 1MB (f) RAID6 1MB

Figure 10: Write scalability on three different RAID systems.

(a) RAID5 (b) RAID6

Figure 11: Read scalability of StRAID and MD.

throughput and the PCIe I/O bandwidth is 48GB/s [21], ex-

ceeding the aggregate sequential bandwidth of 6 NVMe-based

SSDs (2.6GB/s stable write throughput per SSD, 15.6GB/s

in total). In our experiments, we bind all the I/O threads and

worker threads to the same CPU socket-0 to avoid remote

accesses of memory and PCIe, i.e., the NUMA issues.

RAID systems setup We evaluate StRAID and Linux MD

(MD) of the RAID5 (5+1) and RAID6 (4+2) levels built on 6

SSDs. The chunk size is set to 64KB by default. StRAID has

a 64MB-sized parity cache. Linux MD has a 16K-entry stripe-

cache and up to 64 worker threads. This is a setting that MD is

shown by our experiments to achieve the best throughput. In

addition, we compare StRAID with EPLOG [9] that mitigates

parity update overhead by redirecting parity traffic to separate

dedicated HDD logging devices. To prevent the log-devices

from becoming a bottleneck, we replace the HDDs of EPLOG

with the same type of SSDs used in the main RAID array.

Workloads We implement a program to issue direct block

I/O requests with sequential or random access patterns as

micro-benchmark. We run each experiment ten times and

take the average as the results. We further select six repre-

sentative block traces summarized in Table 4 as trace-driven

(a) Average Latency 4K (b) Tail Latency 4KB

(c) Average Latency 64KB (d) Tail Latency 64KB

(e) Average Latency 1MB (f) Tail Latency 1MB

Figure 12: Average and tail latency of RAID systems.

macro-benchmarks. We implement a trace player in C++ us-

ing POSIX sync to generate direct block I/O requests to the

underlying RAID systems.

5.2 Micro-benchmark
We measure the write throughput, average and tail latency,

and amount of disk read/written data on MD, StRAID and

EPLOG with RAID5 and RAID6 on 980Pro SSDs, respectively.

We generate workloads with a different number of concurrent

I/O-issuing threads (i.e., UTs) and varying access patterns.

Three default I/O sizes are: 4KB (default block-size of file

systems, page cache, and block devices), 64KB (partial-stripe

write size), and 1MB (full-stripe write size).

Throughput Figure 10 reports the write throughput of

StRAID, MD and EPLOG in RAID5 and RAID6, respectively.

The errorbars are added on StRAID’s results. The throughput

of StRAID exceeds that of MD and EPLOG respectively by

up to 2.1x and 1.4x with 4KB-sized writes and 1.5x and 1.3x

with 64KB-sized writes with a single UT, respectively. This is

because StRAID effectively reduces the overhead of handling

stripe-states. As the number of UTs increases to 64, StRAID

achieves up to 2.0GB/s±0.2GB/s and 6.0GB/s±0.8GB/s peak

throughput with 4KB and 64KB writes respectively, repre-

senting 2.1x/59.1x and 2.9x/35.1x performance improvement

over MD/EPLOG. In addition, EPLOG achieves 1.4x-1.9x

higher throughput than MD under random write at a single

UT, because it avoids partial-write-induced reads with parity-

logging. However, EPLOG does not scale at all with more

922    2022 USENIX Annual Technical Conference USENIX Association



Figure 13: Breakdowns of CPU

cycles on StRAID and MD

Figure 14: Total CPU uti-

lizations

(a) Written data (b) Read data

Figure 15: Amount of data written to and read from disks by

StRAID, normalized to that of MD.

UTs, because it uses a global lock for serializing each write

operation.

For full-stripe writes (i.e., 1MB), StRAID achieves

4.6x/12x and 5.2x/13x higher write throughput in random

and sequential cases than MD/EPLOG with a single UT, re-

spectively. As the number of UTs increases to 8, StRAID’s

throughput saturates the device bandwidth, with an almost

fixed increase of about 6GB/s over MD. With 64 UTs,

the peak write throughput reaches 11.4GB/s±1.1GB/s and

10.4GB/s±1.0GB/s in StRAID under RAID5 and RAID6 re-

spectively, which are 2.1x higher than those of MD (5.2GB/s

and 5.1GB/s) and 41x higher than EPLOG (0.25GB/s and

0.26GB/s). StRAID’s full-stripe writes nearly unleash the full

power of the SSD performance, while MD suffers from heavy

contention on the global data structures.

Moreover, Figure 11 shows the read throughput of StRAID

and MD with varying-size reads. The average read throughput

difference between MD and StRAID is less than 5% in RAID5

and RAID6 respectively, demonstrating that StRAID does not

affect read performance.

Latency and Breakdown of CPU-cycles Figure 12

shows the average and tail (99th-percentile) latency under

RAID5 in StRAID, MD and EPLOG, respectively. StRAID

significantly outperforms MD and EPLOG in both average

and tail latencies performance under 64 UTs, reducing la-

tency by 75% and 98.2% with 4KB block-writes, 76% and

97.1% with 64KB partial-stripe writes, and by 69% and 95.2%

with full-stripe writes. StRAID reduces 22%-67% tail laten-

cies from MD under 64 UTs. The tail latency of EPLOG is

6.5x-42.1x higher than StRAID under multiple UTs, since the

global lock in EPLOG makes its average and tail latencies

much higher than those of MD and StRAID.

To better understand the reasons behind StRAID’s superi-

ority, Figure 13 shows the breakdown of the CPU-cycles of

key functions consumed by MD and StRAID with 64 UTs

issuing random writes, respectively. For partial-stripe writes,

the combined CPU-cycles on XORing and disk I/Os account

Figure 16: StRAID and MD throughput with partial-stripe

(*-P) and full-stripe writes (*-F) of different chunk sizes.

Table 4: Characteristics of block I/O traces used in the macro-

benchmark evaluations
Trace Write Ops

(millions)
Data Written

(GB)
Avg.write
size (KB)

Read Ops
(millions)

Data Read
(GB)

Avg.read
size (KB)

Pangu-A 1.89 113.24 63.21 0.24 4.06 17.99

Pangu-B 2.44 81.32 35.08 0.30 18.61 65.24

prxy_0 12.14 53.80 4.65 0.38 3.05 8.33

prn_0 4.98 45.97 9.67 0.60 13.12 22.84

varmail 3.39 39.20 12.13 0.05 5.38 114.05

fileserver 1.19 99.45 87.56 0.47 42.37 95.49

for 76% of the total CPU usage in StRAID, while that of MD

is less than 20%. The average stripe-write handling overhead

of StRAID, i.e., 60μs, is about 20 times less than that of MD,

i.e., 1180μs. Besides, the lock overhead on StRAID and MD

account for 5.1% and 46.1% of the total CPU usage, respec-

tively. StRAID efficiently mitigates lock contentions through

the stripe-threaded architecture and the lockless access fea-

tures in SST.

For full-stripe writes, the lock, XORing and I/O-write of

StRAID account for 1.3%, 22.5% and 62.6% of the total CPU

usage, respectively, in contrast to their MD counterparts of

36.7%, 24.5% and 19.4%, suggesting that StRAID achieves

to make better advantage of SSDs’ high write bandwidth. In

addition, the two-phase submission and the parity caching use

only 6% and 1.5% of the stripe-write CPU-cycles of partial-

stripe and full-stripe writes, respectively.

CPU utilization We compare the CPU utilizations of

StRAID and MD under random full-stripe and partial-stripe

write workloads respectively, with the same RAID5 settings

in Figure 10. Results in Figure 14 show that the total CPU uti-

lization of MD is up to 6.3x higher than StRAID with 64 UTs.

Even when the number of UTs is less than 8, the CPU usage

of MD is 2x higher than that of StRAID on average. Combin-

ing with the throughput results shown in Figure 10, MD with

4495% CPU-core utilization consumes only 1/3 of the SSDs

bandwidth, in contrast to StRAID that consumes 86.9% of

the SSDs bandwidth with 1156% CPU-core utilization.

Moreover, 64KB-sized partial-stripe writes of MD (MD-
64K) consume up to 80% more CPU than full-stripe writes

(MD-1M) with 64 UTs. MD’s inefficiency stems from its

high consumption of CPU cycles required to handle in-flight

partial-stripe writes. On the contrary, StRAID-64K consumes

only 25% less CPU cycles than StRAID-1M because StRAID

gains higher throughput for full-stripe writes that consumes

more CPU resources for computing XOR and issuing I/Os.

Read/Write amplification Figure 15 shows the amount of

USENIX Association 2022 USENIX Annual Technical Conference    923



(a) Pangu-A (b) Pangu-B (c) prn0 (d) prxy0 (e) varmail (f) fileserver

Figure 17: Throughput of StRAID and MD on trace-driven workloads.

(a) Pangu-A (b) Pangu-B (c) prn0 (d) prxy0 (e) varmail (f) fileserver

Figure 18: Latency CDF of StRAID and MD on trace-driven workloads.

data written to and read from disks by StRAID in RAID5, nor-

malized to that of MD. For random writes, StRAID and MD

have exactly the same amount of data written and data read

because stripe-write aggregation is rare for random writes.

For sequential writes, however, the amount of data written

in StRAID is up to 12% larger than MD. This is because

the two-phase submission in StRAID has a smaller aggrega-

tion window (i.e., proportional to SSD-read latency), which

is slightly less efficient than Linux MD’s active delays of

sequential stripe writes.

For sequential writes, the amount of data read in StRAID

and MD varies significantly with different numbers of UTs.

With a single UT, the amount of read data in StRAID is

1/2 of that in MD, because the parity caching mechanism

effectively reduces parity reads. However, with 64 UTs as

the worst case, StRAID reads 12x more data than MD. It

is because MD postpones and aggregates almost all stripe-

associated writes (SS-writes) into full-stripe writes, thus re-

ducing the amount of write-induced-read data (e.g., 1.1% of

user-written data). In contrast, a StRAID’s worker thread

immediately executes reading parity/data chunks before per-

forming write-aggregation, resulting in a nearly fixed number

of write-induced reads (e.g., 13.7% of user-written data). How-

ever, since the high read IOPS of fast SSDs can completely

absorb the increased number of read I/Os, StRAID’s write

performance can still be 5.2x higher than MD.

Chunk Sizes We evaluate the effect of chunk size config-

uration on the performance of StRAID and MD with 64KB-

sized writes in RAID6. The chunk size is set to 8KB for the

full-stripe-write case (StRAID-F and MD-F), and 64KB for

the partial-stripe-write case (StRAID-P and MD-P), respec-

tively. Figure 16 shows that both StRAID and MD benefit

significantly from full-stripe write workloads. The through-

put of StRAID-F reaches 11.8GB/s with 64 UTs, about 1.9x

higher than StRAID-P. Similarly, the throughput of MD-F is

up to 3.1x higher than MD-P. However, the peak throughput

of MD-F (8KB chunk size and 64KB write size) remains

at 5.3GB/s, consistent with the results shown in Figure 1(d)

(with 64KB chunk size and 1MB I/O size). It indicates that

the peak throughput of StRAID is sensitive to the chunk size

setting. An insight from this experiment is that it is beneficial

to set StRAID’s chunk size smaller, such as 8KB, to take full

advantage of full-stripe writes.

5.3 Macro-benchmark

We use six representative block traces from Filebench [60],

cloud-based application traces from Alibaba-Pangu [47] and

Microsoft [51] to evaluate StRAID’s performance. Table 4

summarizes the characteristics of these workloads, most of

which are read-write mixed or write-dominated. In the experi-

ments, we enable 32 WTs in MD and StRAID, and evaluate

them in both the RAID5 and RAID6 levels with a chunk size

of 8KB. We invoke 32 user threads to replay these traces

continuously, mimicking high-intensity workloads.

Figure 17 shows the throughput of StRAID and MD

over time. StRAID achieves up to 2.8x higher throughput

than MD, and shortens the total running time by an aver-

age of 64% across 6 workloads. In the fileserver workload,

StRAID achieves peak and average throughput of 10.3GB/s

and 7.9GB/s respectively, in contrast to their MD counter-

parts of 5.0GB/s and 3.2GB/s. The fileserver workload has

the largest average write size, so that StRAID benefits from

full-stripe writes. For the cloud-based workloads, StRAID’s

average throughput is 3.1x and 3x higher than MD’s in Pangu-

A and Pangu-B, respectively. The prxy0 workload exhibits the

lowest average throughputs among all workloads, 1.8GB/s

and 0.6GB/s for StRAID and MD respectively. This is be-

cause the prxy0 trace has the smallest average write size (i.e.,

4.6KB) among all workloads, leading to a large amount of

partial-stripe writes for both StRAID and MD. Further, it is

observed that StRAID in RAID5 is 10%-15% better than in

RAID6 among all the workloads, because RAID5 has less

parity data than RAID6.

Figure 18 shows the latency CDFs of StRAID and MD

across all the workloads. StRAID shows significantly better

CDF profiles, with about 80% and 69% lower average latency

than MD in workloads Pangu-A and Pangu-B, respectively.

For the other four workloads, StRAID also has at least 49%

lower average latency than MD. The median latencies of

924    2022 USENIX Annual Technical Conference USENIX Association



(a) Partial-stripe writes (b) Full-stripe writes

Figure 19: Performances of StRAID and MD on different

SSDs and RAMs.

Figure 20: StRAID throughput with partial-stripe (*-P) and

full-stripe writes (*-F) when running with/without two-phase

stripe submission (w/ TPS and w/o TPS).

StRAID in workloads Pangu-A, Pangu-B and filebench are

almost ten times lower than MD, while for workloads var-

mail, prn0, and prxy0 StRAID’s is 78%, 74% and 75% lower

than MD’s respectively. The 99th-percentile tail latency in

StRAID is 25% lower than that in MD among all workloads

on average. For example, StRAID’s tail latency is up to 31.1%

and 31.9% lower in workloads Pangu-A and prn0. StRAID’s

advantage over MD in tail latency is lower than in average

latency, because the high tail latency of both StRAID and MD

mainly comes from write latency spikes caused by internal

maintenance operations (e.g., garbage collection) within the

SSD devices.

5.4 Sensitivity Study
Experiment with other devices Next, we evaluate the

sensitivity of StRAID and MD to different types of storage

devices. We first build StRAID and Linux MD on six Intel Op-

tane PMs (in AppDirect Mode) [28] and lower-performance

970Pro SSDs, and compare these performances with that

in 980Pros. The raw read and write bandwidth per PM can

reach 6GB/s and 2GB/s [74], respectively. Further, we test

the extreme RAID performance over six ramdisks on 128GB

DRAM. We invoke up to 64 UTs with 64KB write-size for

partial-stripe write-load and 1MB for full-stripe write-load.

Results in Figure 19 show that StRAID on 980Pro SSDs

exhibits up to 20% higher throughput than it on 970PRO

SSDs. In contrast, the performance difference of Linux MD

on these two different types of SSDs is less than 5%. The

throughput of StRAID on PMs is up to 50% and 35% higher

than MD on partial-stripe and full-stripe writes, respectively.

We also find that StRAID on PMs shows up to 26% higher

throughput in partial-stripe writes than that SSDs. This is

because PM has one order of magnitude lower read latency

than SSDs, thus StRAID could handle stripes more efficiently.

Table 5: Parity cache capacity
Written

Data (GB)
Read

Data (GB)
Cache

Hit Rate
Average

Thr. (MB/s)
StRAID-NC 54.10 13.64 - 1482

StRAID-4M 54.10 12.12 0.39 1593

StRAID-16M 54.10 12.01 0.45 1636

StRAID-64M 54.10 11.75 0.55 1711

StRAID-256M 54.10 11.23 0.57 1726

MD 53.80 6.10 - 667

(a) Degraded read (b) Degraded write

Figure 21: Read and write performance on degraded StRAID

and Linux MD.

Moreover, StRAID on PM shows a throughput drop at higher

than 8 UTs, because PM has a limited concurrency [74].

In addition, StRAID on RAMs delivers up to 5.8x higher

write throughput than MD. At 64 UTs, StRAID reaches up

to 35.2GB/s random write throughput and 32.7GB/s sequen-

tial write throughput, respectively, in contrast to their MD

counterparts of 5.8GB/s and 5.7GB/s. It shows that StRAID

has the potential to effectively exploit faster storage like the

emerging PCIe 5.0 SSDs [18] in the near future.

Two-phase Submission We analyze the performance con-

tributions of the two-phase stripe submission (TPS) mecha-

nism of StRAID in RAID5. We run the experiment with (w/
TPS) and without (w/o TPS) two-phase submission, respec-

tively. The request size is set to 1MB for the full-stripe-write

case (*-F), and 64KB for the partial-stripe-write case (*-P).

We issue requests with sequential access patterns. Figure 20

shows that StRAID with TPS achieves 3.5x improvement of

average throughput than without TPS for partial-stripe writes

at 64 UTs. The two-phase submission allows request aggrega-

tion on writes belonging to a same stripe and handles them in

a batch. StRAID without TPS, by contrast, has to individually

execute each writes on a stripe. Besides, the performance con-

tribution of two-phase submission on full-stripe write load is

less than 4%, because the requests targeting different stripes

will not be aggregated.

Parity Cache We analyze the effectiveness of the parity

cache on StRAID performance. We compare the StRAID with

the parity cache disabled (StRAID_NC) against the StRAID

with its parity cache capacity varying from 4MB to 256MB

(StRAID_4M to StRAID_256M). We select the RAID5 level

with 8KB chunk size as an example. We run the prxy0 work-

load with the most partial-stripe writes among all workloads

tested, which has 9.5% write operations (0.51 million ops)

with I/O sizes of 40KB or larger (i.e., full-stripe write size

for 8KB chunk size), and the sequential write ratio is 66%

(8.02 million ops). We measure the average throughput, cache

hit rate, and amount of disk read/written data, respectively.

USENIX Association 2022 USENIX Annual Technical Conference    925



Results are shown in Table 5. As the parity cache capacity

increases, the cache hit ratio increases from 39% at StRAID-

4M to 57% at StRAID-64M, resulting in a 16% improvement

of average throughput. In addition, increasing the cache ca-

pacity to beyond 64MB contributes less than a 5% increase

in both the cache hit ratio and throughput, because the cache

has captured most of the parity data under such conditions.

5.5 Resync and Degraded Mode
We assess the performance of StRAID and Linux MD in the

degraded mode under RAID5. One random SSD in the RAID

array is set as failed. Then, a varying number of UTs issue

reads and writes of 64KB and 1MB size, respectively. Re-

sults in Figure 21 show that the read throughput of degraded

StRAID and Linux MD is almost the same, with an average

difference of less than 5%. Meanwhile, the write performance

of degraded StRAID is 50-70% higher than that in Linux MD

with multiple UTs. This is because the processing flow of

write operation in degraded mode is basically the same as that

in the normal mode. In addition, StRAID and MD apply the

same resync approach.

6 Related Works
SSD-aware RAID SSD-based RAIDs have been exten-

sively studied and can be roughly classified into three groups:

1) taming tail-latency by alleviating GC impact [33,68,69,73];

2) enhancing data reliability by optimizing parity distribution

or conducting wear leveling across SSDs [4, 41, 65]; and 3)

mitigating the overhead of parity writes [9, 15, 26, 31, 72].

StRAID focuses on the multi-threaded processing architec-

ture in RAID systems and can complement these works.

All-Flash-Array Systems RAID for AFA (all-flash-array)

systems have been studied for RAID data layout optimization

[50, 75] and taming tail-latency by alleviating GC impact

[33, 59]. FusionRAID [30] improves the latency performance

of the RAID system for SSD pools by leveraging the Latin-

square-based deterministic addressing methods proposed in

RAID+ [75], while proposing an out-of-place write method

for optimizing parity-updates. SWAN [33] tames tail-latency

by alleviating SSD GC impact in an all-flash-array system.

Complementary to them, StRAID focuses on the stripe-write

process on multi-core processors and fast SSDs without any

modification of the RAID data layout. Therefore, StRAID as

a new stripe-handling engine can be used in AFA systems to

exploit modern hardware with high internal parallelism.

Parity Write Optimization The stripe aggregation

method is widely studied to construct full-stripe writes for

reducing the write-induced reads or reducing the number of

parity writes to SSDs. Previous works [15, 16, 26, 63, 72] use

an NVRAM or SSD as a cache to absorb incoming write data

and/or parity information and delay parity updates with extra

devices. In contrast, the parity cache in StRAID is located

in memory and only used to accelerate read I/Os for stripe

reconstructions. Existing systems [20, 30, 67] first steer all

writes to a logging zone and then write back to the RAID zone

in the background. Such an aggregation approach requires

additional storage and double the amount of data written to

SSDs. In comparison to these efforts, StRAID performs an in-

place update for stripe writes and opportunistically aggregates

writes without extra storage requirements.

Block IO Scheduling Prior studies on block IO scheduling

are focused on optimizing multi-queue management including

prioritization [37], fairness queuing [24, 77], policy-based

storage provisioning and management [2, 62] and providing

low scheduling latency [25]. StRAID is a RAID stripe-write

engine on top of and thus complementary to these block IO

scheduling approaches. Additionally, compared with other

RAID systems that adopt FTL-level block I/O scheduling

[34, 66, 78], StRAID considers SSDs as black boxes, making

it highly portable and non-intrusive.

Multicore Optimization Previous studies have addressed

the scalability issues in key-value stores [12, 13], file sys-

tems [6, 14, 43], volume management [36] and block drivers

[25] with multicore processors and high-performance devices

(e.g., SSDs and NVMs). MAX [43] demonstrates that lock

contentions are the major reasons for poor scalability in file

systems. These works exploit the potentials of parallelism

on multicore processors and fast SSDs through localized key

data structures and fine-grained lock designs. The Linux ker-

nel contributors optimize lock mechanisms to improve read

performance [52]. In this paper, StRAID focuses on optimiz-

ing the write path of the MD parity-RAID architecture and

addresses the software overhead in handling stripe writes.

7 Conclusion

We experimentally reveal that Linux MD with parity-based

RAIDs cannot fully exploit the potentials offered by high-

performance SSDs due to the architectural drawback of cen-

tralized stripe-writes. We propose a stripe-threaded parity-

RAID (StRAID) to efficiently handle stripe-writes in parallel.

StRAID introduces a two-phase stripe submission mechanism

for aggregating partial-stripe writes and a parity cache for hot

parity-accesses. Through extensive trace-driven evaluations,

StRAID is shown to significantly and consistently outper-

form MD parity-based RAID in write performance without

sacrificing read performance.

Acknowledgments

We would like to thank the anonymous shepherd and re-

viewers for their valuable feedback and suggestion. This

work was supported in part by NSFC No. 62172175, Cre-

ative Research Group Project of NSFC No. 61821003, Na-

tional key research and development program of China under

Grant 2018YFA0701800, the US National Science Founda-

tion Grant CNS-2008835, and Alibaba Innovative Research.

926    2022 USENIX Annual Technical Conference USENIX Association



References
[1] Hussam Abu-Libdeh, Lonnie Princehouse, and Hakim

Weatherspoon. RACS: a case for cloud storage diver-

sity. In Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC 2010, Indianapolis, Indiana,
USA, June 10-11, 2010, pages 229–240, 2010.

[2] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier

Deguillard, Jayneel Gandhi, Stanko Novakovic, Arun

Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Ki-

ran Tati, Rajesh Venkatasubramanian, and Michael Wei.

Remote regions: a simple abstraction for remote mem-

ory. In Haryadi S. Gunawi and Benjamin Reed, editors,

2018 USENIX Annual Technical Conference, USENIX
ATC 2018, Boston, MA, USA, July 11-13, 2018, pages

775–787. USENIX Association, 2018.

[3] Apache. A journal for md/raid5. 2021. https://lwn.

net/Articles/665299/.

[4] Mahesh Balakrishnan, Asim Kadav, Vijayan Prab-

hakaran, and Dahlia Malkhi. Differential RAID: rethink-

ing RAID for SSD reliability. In Christine Morin and

Gilles Muller, editors, European Conference on Com-
puter Systems, Proceedings of the 5th European confer-
ence on Computer systems, EuroSys 2010, Paris, France,
April 13-16, 2010, pages 15–26. ACM, 2010.

[5] Doug Beaver, Sanjeev Kumar, Harry C Li, Jason Sobel,

Peter Vajgel, et al. Finding a needle in haystack: Face-

book’s photo storage. In OSDI, volume 10, pages 1–8,

2010.

[6] Srivatsa S. Bhat, Rasha Eqbal, Austin T. Clements,

M. Frans Kaashoek, and Nickolai Zeldovich. Scaling

a file system to many cores using an operation log. In

Proceedings of the 26th Symposium on Operating Sys-
tems Principles, Shanghai, China, October 28-31, 2017,

pages 69–86, 2017.

[7] J. Bonwick and B. Moorei. Zfs: The last word in file

systems. http://opensolaris.org/os/community

/zfs/docs/zfslast.pdf.

[8] John F. Canny, Huasha Zhao, Bobby Jaros, Ye Chen,

and Jiangchang Mao. Machine learning at the limit.

In 2015 IEEE International Conference on Big Data
(IEEE BigData 2015), Santa Clara, CA, USA, October
29 - November 1, 2015, pages 233–242. IEEE Computer

Society, 2015.

[9] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and

Yinlong Xu. Elastic parity logging for SSD RAID ar-

rays: Design, analysis, and implementation. IEEE Trans.
Parallel Distributed Syst., 29(10):2241–2253, 2018.

[10] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and

Yinlong Xu. Elastic parity logging for SSD RAID ar-

rays: Design, analysis, and implementation. IEEE Trans.
Parallel Distributed Syst., 29(10):2241–2253, 2018.

[11] Feng Chen, Tian Luo, and Xiaodong Zhang. CAFTL:

A content-aware flash translation layer enhancing the

lifespan of flash memory based solid state drives. In Gre-

gory R. Ganger and John Wilkes, editors, 9th USENIX
Conference on File and Storage Technologies, San Jose,
CA, USA, February 15-17, 2011, pages 77–90. USENIX,

2011.

[12] Hao Chen, Chaoyi Ruan, Cheng Li, Xiaosong Ma, and

Yinlong Xu. Spandb: A fast, cost-effective lsm-tree

based KV store on hybrid storage. In 19th USENIX
Conference on File and Storage Technologies, FAST
2021, February 23-25, 2021, pages 17–32, 2021.

[13] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang,

Yang Wang, and Jiwu Shu. Flatstore: An efficient

log-structured key-value storage engine for persistent

memory. In James R. Larus, Luis Ceze, and Karin

Strauss, editors, ASPLOS ’20: Architectural Support
for Programming Languages and Operating Systems,
Lausanne, Switzerland, March 16-20, 2020, pages 1077–

1091. ACM, 2020.

[14] Youmin Chen, Youyou Lu, Bohong Zhu, Andrea C.

Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Jiwu

Shu. Scalable persistent memory file system with kernel-

userspace collaboration. In 19th USENIX Conference
on File and Storage Technologies, FAST 2021, February
23-25, 2021, pages 81–95, 2021.

[15] Ching-Che Chung and Hao-Hsiang Hsu. Partial parity

cache and data cache management method to improve

the performance of an ssd-based RAID. IEEE Trans.
Very Large Scale Integr. Syst., 22(7):1470–1480, 2014.

[16] John Colgrove, John D. Davis, John Hayes, Ethan L.

Miller, Cary Sandvig, Russell Sears, Ari Tamches, Neil

Vachharajani, and Feng Wang. Purity: Building fast,

highly-available enterprise flash storage from commod-

ity components. In Proceedings of the 2015 ACM SIG-
MOD International Conference on Management of Data,
Melbourne, Victoria, Australia, May 31 - June 4, 2015,

pages 1683–1694, 2015.

[17] W.V. Courtright, G. Gibson, M. Holland, and J. Zelenka.

A structured approach to redundant disk array implemen-

tation. In Proceedings of IEEE International Computer
Performance and Dependability Symposium, pages 11–

20, 1996.

[18] Samsung Electronics. Samsung develops high-

performance pcie 5.0 ssd for enterprise servers.

USENIX Association 2022 USENIX Annual Technical Conference    927



https://www.samsungsemiconstory.com/global

/samsung-develops-high-performance-pcie-5-

0-ssd-for-enterprise-servers/.

[19] Nima Elyasi, Mohammad Arjomand, Anand Sivasubra-

maniam, Mahmut T. Kandemir, Chita R. Das, and My-

oungsoo Jung. Exploiting intra-request slack to improve

SSD performance. In Yunji Chen, Olivier Temam, and

John Carter, editors, Proceedings of the Twenty-Second
International Conference on Architectural Support for
Programming Languages and Operating Systems, ASP-
LOS 2017, Xi’an, China, April 8-12, 2017, pages 375–

388. ACM, 2017.

[20] Bin Fan, Wittawat Tantisiriroj, Lin Xiao, and Garth Gib-

son. Diskreduce: Replication as a prelude to erasure

coding in data-intensive scalable computing. SC11,

2011.

[21] Dean Gonzales. Pci express 4.0 electrical previews. In

PCI-SIG Developers Conference, 2015.

[22] Matthias Grawinkel, Lars Nagel, and André Brinkmann.

Lonestar raid: Massive array of offline disks for archival

systems. ACM Transactions on Storage (TOS), 12(1):1–

29, 2016.

[23] Mingzhe Hao, Gokul Soundararajan, Deepak R.

Kenchammana-Hosekote, Andrew A. Chien, and

Haryadi S. Gunawi. The tail at store: A revelation from

millions of hours of disk and SSD deployments. In 14th
USENIX Conference on File and Storage Technologies,
FAST 2016, Santa Clara, CA, USA, February 22-25,
2016, pages 263–276, 2016.

[24] Mohammad Hedayati, Kai Shen, Michael L. Scott, and

Mike Marty. Multi-queue fair queuing. In Dahlia Malkhi

and Dan Tsafrir, editors, 2019 USENIX Annual Techni-
cal Conference, USENIX ATC 2019, Renton, WA, USA,
July 10-12, 2019, pages 301–314. USENIX Association,

2019.

[25] Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and

Rachit Agarwal. Rearchitecting linux storage stack for

μs latency and high throughput. In 15th USENIX Sympo-
sium on Operating Systems Design and Implementation,
OSDI 2021, July 14-16, 2021, pages 113–128, 2021.

[26] Soojun Im and Dongkun Shin. Flash-aware RAID tech-

niques for dependable and high-performance flash mem-

ory SSD. IEEE Trans. Computers, 60(1):80–92, 2011.

[27] NETAPP INC. Data ontap 8. 2010. http:

//www.netapp.com/us/products/platform-os/d

ata-ontap-8/.

[28] Intel. Intel optane dc persistent memory.

https://www.intel.com/content/www/us/en/

architecture-and-technology.

[29] Intel. Isa-l performance report. https:

//01.org/intel%C2%AE-storage-accelerat

ion-library-open-source-version/documentat

ion/documentation.

[30] Tianyang Jiang, Guangyan Zhang, Zican Huang, Xi-

aosong Ma, Junyu Wei, Zhiyue Li, and Weimin Zheng.

Fusionraid: Achieving consistent low latency for com-

modity SSD arrays. In 19th USENIX Conference on File
and Storage Technologies, FAST 2021, February 23-25,
2021, pages 355–370, 2021.

[31] Chao Jin, Dan Feng, Hong Jiang, and Lei Tian. RAID6L:

A log-assisted RAID6 storage architecture with im-

proved write performance. In IEEE 27th Symposium on
Mass Storage Systems and Technologies, MSST 2011,
Denver, Colorado, USA, May 23-27, 2011, pages 1–6,

2011.

[32] Ram Kesavan, Jason Hennessey, Richard Jernigan, Peter

Macko, Keith A. Smith, Daniel Tennant, and Bharad-

waj V. R. Flexgroup volumes: A distributed wafl file

system. In Dahlia Malkhi and Dan Tsafrir, editors, 2019
USENIX Annual Technical Conference, USENIX ATC
2019, Renton, WA, USA, July 10-12, 2019, pages 135–

148. USENIX Association, 2019.

[33] Jaeho Kim, Kwanghyun Lim, Youngdon Jung, Sungjin

Lee, Changwoo Min, and Sam H. Noh. Alleviating

garbage collection interference through spatial separa-

tion in all flash arrays. In 2019 USENIX Annual Techni-
cal Conference, USENIX ATC 2019, Renton, WA, USA,
July 10-12, 2019, pages 799–812, 2019.

[34] Youngjae Kim, Junghee Lee, Sarp Oral, David A Dil-

low, Feiyi Wang, and Galen M Shipman. Coordinating

garbage collectionfor arrays of solid-state drives. IEEE
Transactions on Computers, 63(4):888–901, 2012.

[35] Gunjae Koo, Kiran Kumar Matam, Te I, H. V. Kr-

ishna Giri Narra, Jing Li, Hung-Wei Tseng, Steven

Swanson, and Murali Annavaram. Summarizer: trad-

ing communication with computing near storage. In

Hillery C. Hunter, Jaime Moreno, Joel S. Emer, and

Daniel Sánchez, editors, Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 2017, Cambridge, MA, USA, October
14-18, 2017, pages 219–231. ACM, 2017.

[36] Pradeep Kumar and H. Howie Huang. Falcon: Scaling

IO performance in multi-ssd volumes. In Dilma Da

Silva and Bryan Ford, editors, 2017 USENIX Annual
Technical Conference, USENIX ATC 2017, Santa Clara,
CA, USA, July 12-14, 2017, pages 41–53. USENIX As-

sociation, 2017.

[37] Kyber. multiqueue i/o scheduler. 2017. https://lwn.

net/Articles/720071/.

928    2022 USENIX Annual Technical Conference USENIX Association



[38] Jing Li, Peng Li, Rebecca J. Stones, Gang Wang, Zhong-

wei Li, and Xiaoguang Liu. Reliability equations for

cloud storage systems with proactive fault tolerance.

IEEE Trans. Dependable Secur. Comput., 17(4):782–

794, 2020.

[39] Shaohua Li. raid5: make stripe handling multi-threading.

https://lwn.net/Articles/563142/.

[40] Shaohua Li. raid5 offload stripe handle to workqueue.

https://git.kernel.org/pub/scm/linux/kerne

l/git/torvalds/linux.git/commit/?id=851c30

c9badfc6b294c98e887624bff53644ad21.

[41] Yongkun Li, Patrick P. C. Lee, and John C. S. Lui. Anal-

ysis of reliability dynamics of SSD RAID. IEEE Trans.
Computers, 65(4):1131–1144, 2016.

[42] Yongkun Li, Biaobiao Shen, Yubiao Pan, Yinlong Xu,

Zhipeng Li, and John C. S. Lui. Workload-aware elastic

striping with hot data identification for SSD RAID ar-

rays. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst., 36(5):815–828, 2017.

[43] Xiaojian Liao, Youyou Lu, Erci Xu, and Jiwu Shu. Max:

A multicore-accelerated file system for flash storage. In

2021 USENIX Annual Technical Conference, USENIX
ATC 2021, July 14-16, 2021, pages 877–891, 2021.

[44] Linux. Linux perf. https://perf.wiki.kernel.org

/.

[45] Linux. Linux raid. https://raid.wiki.kernel.org

/index.php/Linux_Raid.

[46] Linux. Hdfs-raid. 2020. https://wiki.apache.org/

confluence/display/HADOOP2.

[47] Shuyang Liu, Shucheng Wang, Qiang Cao, Ziyi Lu,

Hong Jiang, Jie Yao, Yuanyuan Dong, and Puyuan Yang.

Analysis of and optimization for write-dominated hy-

brid storage nodes in cloud. In Proceedings of the ACM
Symposium on Cloud Computing, SoCC 2019, Santa
Cruz, CA, USA, November 20-23, 2019, pages 403–415.

ACM, 2019.

[48] Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and

Bianca Schroeder. A study of SSD reliability in large

scale enterprise storage deployments. In Sam H. Noh

and Brent Welch, editors, 18th USENIX Conference
on File and Storage Technologies, FAST 2020, Santa
Clara, CA, USA, February 24-27, 2020, pages 137–149.

USENIX Association, 2020.

[49] Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur

Mutlu. A large-scale study of flash memory failures

in the field. In Bill Lin, Jun (Jim) Xu, Sudipta Sen-

gupta, and Devavrat Shah, editors, Proceedings of the

2015 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, Port-
land, OR, USA, June 15-19, 2015, pages 177–190. ACM,

2015.

[50] Richard R. Muntz and John C. S. Lui. Performance

analysis of disk arrays under failure. In Dennis McLeod,

Ron Sacks-Davis, and Hans-Jörg Schek, editors, 16th
International Conference on Very Large Data Bases,
August 13-16, 1990, Brisbane, Queensland, Australia,
Proceedings, pages 162–173. Morgan Kaufmann, 1990.

[51] Dushyanth Narayanan, Austin Donnelly, and Antony

I. T. Rowstron. Write off-loading: Practical power man-

agement for enterprise storage. In Mary Baker and

Erik Riedel, editors, 6th USENIX Conference on File
and Storage Technologies, FAST 2008, February 26-29,
2008, San Jose, CA, USA, pages 253–267. USENIX,

2008.

[52] Gal Ofri. raid5 avoid device lock in read one chunk.

https://github.com/torvalds/linux/commit/9

7ae27252f4962d0fcc38ee1d9f913d817a2024e.

[53] Rasmus Pagh and Flemming Friche Rodler. Cuckoo

hashing. J. Algorithms, 51(2):122–144, 2004.

[54] Satadru Pan, Theano Stavrinos, Yunqiao Zhang,

Atul Sikaria, Pavel Zakharov, Abhinav Sharma,

Shiva Shankar P., Mike Shuey, Richard Wareing,

Monika Gangapuram, Guanglei Cao, Christian Preseau,

Pratap Singh, Kestutis Patiejunas, J. R. Tipton, Ethan

Katz-Bassett, and Wyatt Lloyd. Facebook’s tectonic

filesystem: Efficiency from exascale. In 19th USENIX
Conference on File and Storage Technologies, FAST
2021, February 23-25, 2021, pages 217–231, 2021.

[55] Tirthak Patel, Suren Byna, Glenn K. Lockwood,

Nicholas J. Wright, Philip H. Carns, Robert B. Ross, and

Devesh Tiwari. Uncovering access, reuse, and sharing

characteristics of i/o-intensive files on large-scale pro-

duction HPC systems. In Sam H. Noh and Brent Welch,

editors, 18th USENIX Conference on File and Storage
Technologies, FAST 2020, Santa Clara, CA, USA, Febru-
ary 24-27, 2020, pages 91–101. USENIX Association,

2020.

[56] David A. Patterson, Garth A. Gibson, and Randy H.

Katz. A case for redundant arrays of inexpensive

disks (RAID). In Proceedings of the 1988 ACM SIG-
MOD International Conference on Management of Data,
Chicago, Illinois, USA, June 1-3, 1988, pages 109–116,

1988.

[57] Sundeep Prakash, Yann Hang Lee, and Theodore John-

son. A nonblocking algorithm for shared queues using

compare-and-swap. IEEE Transactions on Computers,

43(5):548–559, 1994.

USENIX Association 2022 USENIX Annual Technical Conference    929



[58] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant.

Flash reliability in production: The expected and the

unexpected. In Angela Demke Brown and Florentina I.

Popovici, editors, 14th USENIX Conference on File
and Storage Technologies, FAST 2016, Santa Clara, CA,
USA, February 22-25, 2016, pages 67–80. USENIX As-

sociation, 2016.

[59] Dimitris Skourtis, Dimitris Achlioptas, Noah Watkins,

Carlos Maltzahn, and Scott A. Brandt. Flash on rails:

Consistent flash performance through redundancy. In

Garth Gibson and Nickolai Zeldovich, editors, 2014
USENIX Annual Technical Conference, USENIX ATC
’14, Philadelphia, PA, USA, June 19-20, 2014, pages 463–

474. USENIX Association, 2014.

[60] Vasily Tarasov, Erez Zadok, and Spencer Shepler.

Filebench: A flexible framework for file system bench-

marking. login Usenix Mag., 41(1), 2016.

[61] Michael Hao Tong, Robert L. Grossman, and Haryadi S.

Gunawi. Experiences in managing the performance

and reliability of a large-scale genomics cloud plat-

form. In Irina Calciu and Geoff Kuenning, editors, 2021
USENIX Annual Technical Conference, USENIX ATC
2021, July 14-16, 2021, pages 973–988. USENIX Asso-

ciation, 2021.

[62] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan

Truong, Ashish Motivala, and Thierry Cruanes. Building

an elastic query engine on disaggregated storage. In Ran-

jita Bhagwan and George Porter, editors, 17th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI 2020, Santa Clara, CA, USA, Febru-
ary 25-27, 2020, pages 449–462. USENIX Association,

2020.

[63] Jiguang Wan, Wei Wu, Ling Zhan, Qing Yang, Xiaoyang

Qu, and Changsheng Xie. Deft-cache: A cost-effective

and highly reliable SSD cache for RAID storage. In

2017 IEEE International Parallel and Distributed Pro-
cessing Symposium, IPDPS 2017, Orlando, FL, USA,
May 29 - June 2, 2017, pages 102–111. IEEE Computer

Society, 2017.

[64] Rui Wang, Yongkun Li, Hong Xie, Yinlong Xu, and

John CS Lui. Graphwalker: An i/o-efficient and

resource-friendly graph analytic system for fast and scal-

able random walks. In 2020 {USENIX} Annual Techni-
cal Conference ({USENIX}{ATC} 20), pages 559–571,

2020.

[65] Wei Wang, Tao Xie, and Abhinav Sharma. SWANS: an

interdisk wear-leveling strategy for RAID-0 structured

SSD arrays. ACM Trans. Storage, 12(3):10:1–10:21,

2016.

[66] Suzhen Wu, Haijun Li, Bo Mao, Xiaoxi Chen, and Kuan-

Ching Li. Overcome the gc-induced performance vari-

ability in ssd-based raids with request redirection. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 38(5):822–833, 2018.

[67] Suzhen Wu, Bo Mao, Xiaolan Chen, and Hong Jiang.

LDM: log disk mirroring with improved performance

and reliability for ssd-based disk arrays. ACM Trans.
Storage, 12(4):22:1–22:21, 2016.

[68] Suzhen Wu, Weiwei Zhang, Bo Mao, and Hong Jiang.

Hotr: Alleviating read/write interference with hot read

data replication for flash storage. In Design, Automation
& Test in Europe Conference & Exhibition, DATE 2019,
Florence, Italy, March 25-29, 2019, pages 1367–1372,

2019.

[69] Suzhen Wu, Weidong Zhu, Guixin Liu, Hong Jiang, and

Bo Mao. Gc-aware request steering with improved

performance and reliability for ssd-based raids. In 2018
IEEE International Parallel and Distributed Processing
Symposium, IPDPS 2018, Vancouver, BC, Canada, May
21-25, 2018, pages 296–305, 2018.

[70] Erci Xu, Mai Zheng, Feng Qin, Yikang Xu, and Jiesheng

Wu. Lessons and actions: What we learned from 10k

ssd-related storage system failures. In Dahlia Malkhi

and Dan Tsafrir, editors, 2019 USENIX Annual Techni-
cal Conference, USENIX ATC 2019, Renton, WA, USA,
July 10-12, 2019, pages 961–976. USENIX Association,

2019.

[71] Gaoxiang Xu, Dan Feng, Zhipeng Tan, Xinyan Zhang,

Jie Xu, Xi Shu, and Yifeng Zhu. RFPL: A recovery

friendly parity logging scheme for reducing small write

penalty of SSD RAID. In Proceedings of the 48th Inter-
national Conference on Parallel Processing, ICPP 2019,
Kyoto, Japan, August 05-08, 2019, pages 23:1–23:10.

ACM, 2019.

[72] Gaoxiang Xu, Zhipeng Tan, Dan Feng, Yifeng Zhu,

Xinyan Zhang, and Jie Xu. Cap: Exploiting data cor-

relations to improve the performance and endurance of

SSD RAID. In 36th IEEE International Conference on
Computer Design, ICCD 2018, Orlando, FL, USA, Oc-
tober 7-10, 2018, pages 59–66. IEEE Computer Society,

2018.

[73] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao

Tong, Swaminathan Sundararaman, Andrew A. Chien,

and Haryadi S. Gunawi. Tiny-tail flash: Near-perfect

elimination of garbage collection tail latencies in NAND

ssds. In 15th USENIX Conference on File and Storage
Technologies, FAST 2017, Santa Clara, CA, USA, Febru-
ary 27 - March 2, 2017, pages 15–28, 2017.

930    2022 USENIX Annual Technical Conference USENIX Association



[74] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph

Izraelevitz, and Steven Swanson. An empirical guide to

the behavior and use of scalable persistent memory. In

FAST 2020.

[75] Guangyan Zhang, Zican Huang, Xiaosong Ma, Songlin

Yang, Zhufan Wang, and Weimin Zheng. RAID+: de-

terministic and balanced data distribution for large disk

enclosures. In 16th USENIX Conference on File and
Storage Technologies, FAST 2018, Oakland, CA, USA,
February 12-15, 2018, pages 279–294, 2018.

[76] Yupu Zhang, Abhishek Rajimwale, Andrea C. Arpaci-

Dusseau, and Remzi H. Arpaci-Dusseau. End-to-end

data integrity for file systems: A ZFS case study. In Ran-

dal C. Burns and Kimberly Keeton, editors, 8th USENIX
Conference on File and Storage Technologies, San Jose,
CA, USA, February 23-26, 2010, pages 29–42. USENIX,

2010.

[77] Yong Zhao, Kun Suo, Xiaofeng Wu, Jia Rao, Song Wu,

and Hai Jin. Preemptive multi-queue fair queuing. In

Jon B. Weissman, Ali Raza Butt, and Evgenia Smirni, ed-

itors, Proceedings of the 28th International Symposium
on High-Performance Parallel and Distributed Comput-
ing, HPDC 2019, Phoenix, AZ, USA, June 22-29, 2019,

pages 147–158. ACM, 2019.

[78] You Zhou, Fei Wu, Weizhou Huang, and Changsheng

Xie. Livessd: A low-interference RAID scheme for

hardware virtualized ssds. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst., 40(7):1354–1366, 2021.

USENIX Association 2022 USENIX Annual Technical Conference    931





VINTER: Automatic Non-Volatile Memory Crash Consistency Testing
for Full Systems

Samuel Kalbfleisch
Karlsruhe Institute of Technology

Lukas Werling
Karlsruhe Institute of Technology

Frank Bellosa
Karlsruhe Institute of Technology

Abstract
Non-volatile memory (NVM) is a new byte-addressable stor-
age technology that is part of the processor’s memory hierar-
chy. NVM is often exposed to applications via an in-kernel
file system. To prevent data loss in the case of crashes, the file
system implementation needs to be crash-consistent. Achiev-
ing crash consistency is difficult however, as special primitives
need to be inserted at appropriate places in the program to
ensure persistency in the presence of volatile caches.

We introduce VINTER, a new approach to automated NVM
crash consistency testing designed for full systems, including
unmodified kernel software such as file systems. By tracing
NVM accesses of a full system via dynamic binary transla-
tion, we capture interactions between user and kernel space
code. With such traces, our system efficiently generates rel-
evant crash states using a heuristic that determines NVM
locations significant for crash consistency. Finally, it extracts
the semantic representation of each crash state. This makes
the automatic detection of operation-spanning violations of
crash consistency properties such as atomicity feasible. Our
approach further aids in fixing detected bugs by represent-
ing how bugs originate from simulated crashes which are
annotated by trace metadata.

Our evaluation on NVM file systems uncovers several pre-
viously unknown bugs, including bugs in the state-of-the-art
file systems NOVA and NOVA-Fortis that lead to atomicity
violations and data loss.

1 Introduction

Non-volatile memory (NVM) is a new storage technology that
is byte-addressable and integrated in the processor’s memory
system. Applications can obtain a virtual memory mapping
to access non-volatile memory pages directly with load and
store instructions [40, 41, 52]. Such direct access enables per-
sistency without a serialization step, but requires extensive
reworking of the applications to ensure crash consistency:
Modifications need to be flushed from volatile caches, and

developers need to employ memory fences to enforce persis-
tency ordering. Thus, programming for NVM has turned out
to be difficult in practice [39].

As an alternative, unmodified applications can benefit from
high-speed NVM by running on NVM file systems [5, 23,
26, 45, 48–51, 54, 56] which implement common user space
interfaces such as POSIX [15]. Internally, these file systems
store metadata and file data directly on NVM, which means
that the same challenges for achieving crash consistency apply
to these file systems as well.

Recent research has produced many approaches to detect-
ing crash consistency bugs [8, 11, 27–30, 33]. However, we
find that most of these approaches cannot easily be applied
to file systems. Kernel software is often not supported at all
or requires extensive code modification. In particular, static
code analysis [11] and symbolic execution [33] are difficult
to apply to full systems where a variety of user and kernel
space code may interact. It is possible in theory to adapt a
kernel file system to user space in order to apply a testing tool
designed for user space software. However, this approach is
likely to distort results, as the interaction between user and
kernel space code can be a source of consistency bugs. For ex-
ample, the NOVA file system [49] relies on memory barriers
being performed when returning to user space.

We introduce VINTER, the virtualization-based NVM
tester, a novel approach for testing crash consistency that sup-
ports full systems. Using binary translation, we trace relevant
instructions such as load-store instructions or barriers in a vir-
tual machine running unmodified kernel and user space code.
From that trace, we generate crash images which represent
possible NVM contents after a crash. We reduce the expo-
nential search space by identifying NVM locations where the
recovery code reads from the crash image. By extracting the
semantic state of each crash image (e.g., a listing of all files
in a file system), we can finally automatically verify crash
consistency properties such as atomicity.

We use our prototype to test the NVM file systems
NOVA [49], NOVA-Fortis [50] and PMFS [10] for crash con-
sistency bugs. We find several new bugs in these file systems

USENIX Association 2022 USENIX Annual Technical Conference    933



ranging from atomicity violations to data loss and broken
file system states. One specific bug we find in NOVA high-
lights the importance of testing unmodified software instead
of higher-level methods such as manual code annotation: A
generic Linux helper function for an uncached memory copy
has an optimized assembly implementation for x86 that leaves
unaligned data in the cache. NOVA uses this function to copy
file data to NVM and is thus susceptible to data loss.

We identify the following major contributions of our work:
• Our solution traces NVM accesses using full system em-

ulation with dynamic binary translation. It thus supports
unmodified user and kernel space software.

• We apply heuristics to achieve efficient exploration of
crash states, avoiding combinatorial state explosion.

• Through grouping simulated crashes by their seman-
tic state, we introduce automatic testing of operation-
spanning crash consistency properties such as atomicity.

• To help developers fix uncovered bugs, we introduce
a representation of semantic crash states and their ori-
gins in simulated crashes which are annotated by trace
metadata.

• Using our solution, we provide the first comprehensive
analysis of NVM file systems for crash consistency.

2 Background and Related Work

In this section, we introduce the memory persistency model
that VINTER builds upon and the crash consistency properties
it can verify automatically. Then, we discuss related work.

2.1 Memory Persistency Models
Applications that access NVM need to pay close attention
to the memory persistency model which codifies the archi-
tecture’s guarantees about persistency. Multiple models have
been proposed [5, 12, 18, 35]. We implement VINTER for the
x86 architecture [17, 37] whose persistency model is based
on persistency epochs [20]. The epoch model divides thread
execution into persist epochs and guarantees that stores be-
tween epochs are strictly ordered, but not within the same
epoch [5, 35]. Stores are buffered in x86 and need to be
flushed from volatile caches with instructions such as clwb
to be persisted [22, 37]. Alternatively, non-temporal stores
bypass the caches. Memory barriers in the form of fence
instructions provide ordering points that divide the epochs. In
the following, we refer to all instructions that are relevant for
the persistency model as persistency primitives.

2.2 NVM Crash Consistency
Crash consistency as a property of stateful applications is
often only informally specified. Throughout this work, we
use the following definitions and assumptions about the tested
applications.

NVM

caches

crash images

semantic states1 2

time

Figure 1: An atomic operation: All crash images (partially
shown) recover to one of two semantic states.

We assume that the application keeps its persistent state
in NVM. Depending on the access method, modifications
may go through a volatile cache or may be reordered. After a
crash, these modifications may be partially lost. Consequently,
the NVM then contains all fully-persisted data (e.g., through
cache flush instructions and memory fences) with a subset of
the in-flight modifications applied. We call this a crash image.

The period during which a crash may occur is called the
pre-failure execution [29]. When restarting the application
from a crash image, its post-failure recovery code will read the
data to recover its semantic state. By comparing all possible
recovered states that can arise from crashes, we can describe
the following crash consistency properties. An operation with
all-or-nothing semantics fulfills atomicity. More formally, all
crash images possible during an atomic operation result in
one of two states: either the initial or the final state. Figure 1
illustrates such an atomic operation. From left to right, an
application is modifying NVM contents step-by-step. As long
as the modifications are not flushed from the caches, crash
images with partial cache contents are possible. However,
all but the final crash image recover to an identical semantic
state. We can observe patterns like this when techniques such
as journaling are in use. The final writes (green) mark the
previous modifications as valid.

For non-atomic operations, in Section 3.4.1 we define a
second, weaker property Single Final State: at the end of
an operation, all possible crash images recover to the same
semantic state. Either of these properties may be violated by
different kinds of bugs. For example, a missing memory fence
at the end of an operation may violate Single Final State:
the CPU could reorder cache flushes, which results in crash
images that miss some modifications.

Multiple methods exist that help applications to achieve
crash consistency, including logging [46, 47], log structur-
ing [4, 14, 24, 49, 55], and shadow paging [31, 34].

2.3 NVM Crash Consistency Testing

Since making NVM programs crash-consistent is difficult for
developers, multiple testing approaches have been proposed

934    2022 USENIX Annual Technical Conference USENIX Association



with varying degrees of automation. Many of the previous
approaches rely on user-provided code annotations [29, 30],
do not automatically confirm bug candidates [8, 29, 30, 33],
and are limited to user space applications [11, 29, 33] or
would need additional effort like kernel modification [8, 28,
30]. VINTER is free from these limitations.

Lantz et al.’s Yat [27] traces its target in a hardware-assisted
hypervisor, constructs all possible crash images by brute force,
and tests these by running an integrity checker such as fsck.
It is able to test kernel space applications, but it relies on
code modifications to trap persistency primitives due to lim-
its of hardware-assisted virtualization. Due to its exhaustive
crash image exploration, some test cases would take years to
complete. Furthermore, Yat can only detect inconsistencies
discovered by an integrity checker, and is not able to consider
consistency across entire operations.

Liu et al.’s PMTest [30] requires that developers annotate
their source code with persistency assertions. Their correct-
ness is then evaluated at runtime. The obvious drawback is
that the approach entirely depends on the quantity and quality
of annotations which need considerable effort by developers.

XFDetector by Liu et al. [29] applies heuristics to detect
a typical bug pattern. During runtime, it looks for read op-
erations during post-failure recovery whose corresponding
stores from pre-failure execution have not been explicitly per-
sisted. To avoid false positive bugs, they require manual code
annotations. Still, the bug candidates need manual screening.

Neal et al.’s Agamotto [33] applies symbolic execution to
NVM user space programs. This allows arguing over many
possible execution paths at once and can work with sym-
bolic NVM. It only detects some bug patterns like unpersisted
NVM locations after program termination. Thus, false posi-
tives can occur and manual vetting is required.

WITCHER by Fu et al. [11] focuses on testing user space
key-value stores. The authors propose a testing pipeline that
automatically confirms bugs. It uses heuristics based on dy-
namic and static analysis to choose interesting crash states
and thus avoids exhaustive search. Use of static analysis and
need for recompilation makes it difficult to apply to full sys-
tems, so we propose a new crash image generation heuristic
solely based on dynamic analysis. WITCHER automatically
detects violations of the atomicity of operations [18] by in-
troducing “output equivalence checking” that compares with
oracle states obtained before and after an operation. Our work
extends upon this by also testing for a relaxation of atom-
icity. Furthermore, VINTER outputs a representation of all
encountered semantic crash states for easy manual sighting
when strong properties such as atomicity do not apply. VIN-
TER also passes metadata through its testing pipeline in order
to facilitate debugging and root cause analysis of uncovered
bugs.

PMFuzz by Liu et al. [28] uses fuzzing for test case gen-
eration and is orthogonal to our work. PMDebugger by Di
et al. [8] focuses on efficiently processing memory traces.

Formal verification of NVM programs has been proposed [7,
13, 18].

2.4 File System Crash Consistency
The need for file systems to tolerate crashes is not new. Nu-
merous works have proposed methods for checking crash
consistency properties in file systems [19, 21, 25, 32, 36, 53].
Most of these approaches rely on instrumentation at the block
layer and thus cannot be applied to NVM file systems. How-
ever, we see opportunities to adopt specific techniques to an
NVM context. CrashMonkey [32] automatically generates
test cases for a crash consistency checker. Our evaluation re-
lies on manually written tests, but could be extended with a
similar technique. Jaffer et al. [19] evaluate how file systems
react to media errors common on solid state drives. Our ap-
proach could be extended in this direction, however, there is
currently limited information on specific NVM media errors.

File system semantics. A common issue with file system
crash consistency checking is that consistency semantics vary
from file system to file system and are often only loosely
specified. The POSIX standard [15], whose API most Unix
file systems implement, does not define crash consistency
semantics at all. Bornholt et al. [3] improve on this situation
by creating crash consistency models for a few commonly
used file systems. Rebello et al. [38] specifically look at error
handling by file systems and applications for the fsync sys-
tem call. These issues also apply to NVM file systems. For
our analysis, NOVA [49], NOVA-Fortis [50] and PMFS [10]
give strong atomicity guarantees for all metadata and file data
operations, so complex models were not required.

3 Approach

We introduce a novel crash consistency testing approach to au-
tomatically finding bugs that violate crash consistency proper-
ties in unmodified NVM applications, including kernel space
software. The key requirements for our solution are:

• To support kernel software such as file systems, it should
work with full systems and should not be limited to user
space software.

• It should not require manual development effort. In par-
ticular, no code annotations should be needed. Our solu-
tion even works with unmodified kernel and user space
binaries without needing source code access.

• Reported crash consistency bugs should be automatically
confirmed, and not be based on heuristics that allow for
false positives.

• For good performance, it should avoid exhaustive search
over all possible crash states, and only consider crash
states that are likely to exhibit crash consistency bugs.

• It should not only look for single crash states that are
obviously broken, but also consider semantic, operation-
spanning crash consistency such as atomicity. For ex-

USENIX Association 2022 USENIX Annual Technical Conference    935



crash images

pre-failure
program

Crash Image
Generator

trace
Tester

bugs

Tracer

NVM Simulator

post-failure
program

1
Tracer 2

3

Figure 2: Overview of the testing pipeline. Components are
in boxes; arrows are labeled with inputs or produced
artifacts.

ample, this allows to determine whether a file system
operation is atomic or has invalid intermediate crash
states.

3.1 Overview
VINTER dynamically analyzes the execution of a system that
interacts with NVM. The goal is to simulate crashes that
may occur during a recorded pre-failure execution and find
inconsistent states. The proposed framework consists of a
testing pipeline made up of multiple components which we
depict in Figure 2.

The pipeline’s initial input is an operating system image,
which includes all kernel and user space binaries, as well as a
sequence of operations that specifies the program’s pre-failure
execution during which crashes should be simulated. Each
step of the pipeline outputs an artifact that is fed to the next
stage of the pipeline. In the final step, uncovered crash con-
sistency bugs and a representation of encountered semantic
crash states are output. The entire pipeline may be run multi-
ple times with different test cases. Achieving comprehensive
results depends on the quality and quantity of these cases
being run in the system. Finding these is orthogonal to our
work (e.g., PMFuzz [28]).

VINTER’s Tracer makes use of full system emulation with
dynamic binary translation to trace NVM operations per-
formed by a system (§3.2). The resulting trace is fed into
our Crash Image Generator. To be able to reconstruct arbi-
trary crash states, the Crash Image Generator uses an NVM
simulation of a given memory persistency model to replay
the trace on it (§3.3). At each ordering point (e.g., memory
barrier), crash images are chosen by a heuristic that only con-
siders in-flight stores at memory locations likely to be read
by the recovery (post-failure) code, which avoids exhaustive
exploration of crash states. The latter are determined by run-
ning the post-failure code on special crash images, hence the
Crash Image Generator uses its own Tracer instance.

The Tester component finally takes crash images and ex-
tracts their semantic (crash) states (§3.4). Each of the pre-
failure operations is then analyzed for violations of crash con-
sistency properties such as atomicity. For example, if during
an operation three different semantic crash states are observed,

the operation has been shown not to be atomic. Uncovered
bugs are finally output to the user of the framework, together
with a representation of encountered semantic crash states
and how they originate from the simulated crashes (§3.5).

The workflow of our testing pipeline is similar to the one in
the WITCHER framework proposed by Fu et al. [11]. However,
our crash image generation algorithm additionally makes use
of the Tracer as part of our heuristic for choosing crash images
(we further compare our solution in §2.3).

3.2 Tracer
The Tracer is a full system emulator and is used in the testing
pipeline for the following purposes:

• During pre-failure execution, we trace writes to NVM
as well as invocation of persistency primitives, as this al-
lows reconstruction of arbitrary NVM crash states (§3.3).

• Further, we trace reads to NVM during post-failure exe-
cutions as part of our crash image generation heuristic
described in Section 3.3.

• Optionally, the Tracer may be used by the Tester compo-
nent for running the post-failure recovery on the gener-
ated crash images to extract their semantic states (§3.4).
Tracing NVM accesses may be disabled, but hypercalls
can be used (see below).

In common architectures, NVM is accessed directly via
load and store instructions to virtual memory that is backed
by NVM. Further, persistency primitives (such as cache line
flushes and memory fences) are usually implemented as ded-
icated instructions. To intercept these events, we base the
Tracer’s processor emulation on dynamic binary transla-
tion [43]. This allows full control over the emulated system,
and is transparent to the tested program stack, thus binaries
may remain unmodified. In contrast, hardware-assisted virtu-
alization (as used by Yat [27]) is faster, but does usually not
provide hooks for all events that are of interest (Yat requires
recompilation).

During the translation of basic blocks from the emulated
architecture to the host architecture, the Tracer adds instru-
mentation code for persistency primitives to the translated
code. Further, the memory abstraction layer of the emulator
intercepts memory writes and reads to address ranges backed
by simulated NVM. The intercepted events are then output
in a trace log with associated data. Data includes instruction
operands (e.g., cache flush addresses) or memory contents
updated by a store to NVM.

Hypercalls. We allow the emulated system to signal the
following events as hypercalls to the testing framework, which
are additionally recorded in the trace log:

• Checkpoint hypercalls during pre-failure execution sep-
arate semantic operations. We remind that input to the
testing framework is a sequence of operations that will
each be separately tested for operation-spanning crash
consistency. In practice, this may be in form of a sim-

936    2022 USENIX Annual Technical Conference USENIX Association



ple user space executable that calls the tested program’s
operations and emits hypercalls in between.

• Success indication hypercalls may occur during post-
failure recovery. If none is emitted, it is assumed that
recovery from the specific crash image has failed.

The use of hypercalls is not mandatory for the approach,
but it improves the testing workflow for example by allowing
separation of operations during pre-failure execution.

Metadata. During pre-failure execution, we log metadata
about traced events (such as NVM stores), particularly their
location in form of a call stack as traced by the emulator. Al-
though not required to detect crash consistency bugs, it helps
a developer to investigate uncovered crash consistency bugs.
We retain this metadata when generating crash images later
in the pipeline as a way to understand how a crash needs to
occur to lead to a certain invalid semantic crash state. Further,
additional events helpful for debugging may be traced and
logged, such as system calls.

3.3 Crash Image Generator

The Crash Image Generator component takes a pre-failure
trace as its input, and it outputs crash images to be passed
into the Tester (§3.4). A crash image is a string that describes
the binary contents of the NVM in a single crash state that
can occur according to the memory persistency model at an
arbitrary point of program execution.

Motivation and challenges. In memory persistency mod-
els that are based on persistency epochs [5, 35] (including
x86 [20]), the set of all possible crash images can be con-
structed as follows. At each ordering point (usually memory
fences), apply any possible subset of potentially unpersisted
in-flight stores on top of the memory contents that are already
guaranteed to be persisted [8, 11, 27–30, 33]. This works
because stores can only become irreversably persistent at
ordering points. Not all subsets may be allowed and order
of stores can be relevant depending on the specific memory
model [35, 37, 42], such as x86 with intra-cache-line ordering.

Although considering any possible crash state would be
comprehensive, it is impractical. Yat by Lantz et al. [27] does
so, but the authors find that some test cases would take several
years to complete due to exponential explosion in number of
crash images. Thus, many other approaches do not actually
generate and test crash images, but only apply heuristics on the
observed program execution to detect typical bug patterns [8,
29, 30, 33]—this either allows false positives to occur or
requires extensive manual code annotations.

Solving this problem requires reducing the number of
tested crash images. The chosen subset of crash images should
ideally not hide bugs. Accordingly, the chosen crash images
should have some properties that makes them relatively likely
to exhibit bugs. The recent WITCHER framework proposed by
Fu et al. [11] aims to solve this challenge for user space key-
value stores: From a mix of static and dynamic analysis, they

infer likely invariants regarding the persistency of program
data that have presumably been intended by the programmer.
Then, they choose crash images that violate these invariants
and test if these indeed violate crash consistency. This ap-
proach works well for key-value stores, but particularly the
reliance on static analysis makes it difficult to apply to full
systems, where a variety of user and kernel space code may
interact.

Proposed crash image generation heuristic. In contrast,
our heuristic only relies on dynamic analysis. For determin-
ing crash consistency, only the semantic state as recovered
by the application in post-failure recovery is relevant (§3.4).
Conversely, the semantic crash state can only have been in-
fluenced by memory locations from which the post-failure
execution has read. Our crash image generation heuristic is
based on this idea. When choosing subsets of in-flight stores
during crash image generation, our heuristic only considers
stores likely to be read by the post-failure recovery. Other
stores may be ignored.

We observe that techniques such as journaling and log
structuring, both common in file systems, cause the following
access pattern: The program writes a journal entry, flushes it
completely to NVM and only marks it valid after a store fence.
The journal entry may have an arbitrary size, resulting in a
large number of in-flight stores. However, considering subsets
of these stores for crash image generation is not useful. After
a failure, the recovery would only read a journal entry that is
marked valid.

According to this observation, we base the decision on
whether a store is likely to be read in post-failure recovery
on the following assumption: If an NVM location is not read
during the post-failure stage on the image where all unper-
sisted stores are applied, the post-failure stage will likely also
not read this location when an arbitrary subset of in-flight
stores is applied. Therefore, the heuristic limits the gener-
ated crash images to variations of stores that are likely to be
read during the post-failure stage’s execution. As with any
heuristic, the assumption may not always hold. We evaluate
its effectiveness in Section 6.2.

For the heuristic to capture all relevant NVM locations,
the post-failure recovery should read all relevant state, for
example by running code that serializes all state (as in the
state extractor to be introduced in Section 3.4).

The heuristic’s underlying idea of observing interactions
between pre- and post-failure executions is based on Liu et
al.’s XFDetector framework [29]. However, XFDetector uses
these observations directly to detect bug patterns, but does
not automatically confirm bug candidates. It further requires
developers to manually annotate their code to mark mem-
ory belonging to commit variables; it is further not directly
compatible with checksumming mechanisms as used by file
systems.

NVM simulation. To be able to replay the trace and
reconstruct the possible NVM crash states, we assume a simu-

USENIX Association 2022 USENIX Annual Technical Conference    937



lator of the architecture’s memory persistency model. It holds
the guaranteed persisted memory content as a binary string,
and further a list of in-flight stores that have not yet been
explicitly persisted. Each of these stores further retains as-
sociated metadata from the trace. It further needs to provide
functions for applying stores and persistency primitives (e.g.,
cache line flushes and ordering points). An efficient data struc-
ture and algorithm for processing in-flight stores have been
proposed by Di et al. [8].

Resulting algorithm. The algorithm processes the pre-
failure trace from beginning to end and replays each NVM
write operation and persistency primitive invocation on the
NVM simulation. At each ordering point, it generates crash
images in the following way:

1. Obtain a copy of the current NVM’s guaranteed persisted
memory, and apply all stores on it. We obtain NVMfull.

2. Instantiate the Tracer with NVMfull as initial NVM con-
tents. Execute and trace the post-failure recovery.

3. Look for “read” operations in that post-failure trace to
NVM addresses that have overlapping in-flight stores.

4. Consider all subsets of these cross-failure read in-flight
stores, and apply each subset to the guaranteed persisted
memory and emit the resulting crash images.

5. Continue with replaying the pre-failure trace.

As an optimization, we ignore ordering points if no stores
to NVM have occurred before the last one. Further, if there
would be too many subsets of cross-failure read in-flight stores
according to a configurable threshold, we choose a random
selection of these subsets.

Metadata. It is possible for the same crash image (merely
a binary string) to be emitted multiple times, but at different
ordering points and with different subsets of stores applied.
We deduplicate crash images and attach metadata to each
image that describes all its origins. Each origin includes the
(un)persisted in-flight stores’ metadata (containing the stack
trace that led to a store), the last ordering point’s ID, and the
last checkpoint’s ID. Crash images are further grouped by
checkpoint (i.e., the semantic operation they occur during).

3.4 Tester

In the previous step of VINTER’s testing pipeline, we have
generated crash images that simulate crashes at multiple
points during the traced pre-failure program execution. In this
final step, the Tester component analyzes each operation’s
crash images for the occurrence of crash consistency bugs.
We begin by defining crash consistency properties (§3.4.1)
and then describe how the Tester component discovers vio-
lations of the properties from a set of crash images (§3.4.2).
Our testing approach is an extension of Fu et al.’s “output
equivalence checking” [11].

3.4.1 Crash Consistency Definitions

The central idea is that an NVM image can be mapped to an
application-specific well-defined semantic state that describes
the intended meaning of the persisted data. The same semantic
state can possibly be encoded by different NVM images. We
use S to describe the set of semantic states, and ⊥ (⊥ 6∈ S ) to
denote that an NVM image is not recoverable from because it
is faulty. The state extractor function E maps NVM images to
semantic states, for which we use the notation E : {0,1}∗→
S ∪{⊥}.

We recall that we allow traces to be separated by check-
points (c1,c2, . . .) that are signaled by the running program
through hypercalls (§3.2). We define checkpoint intervals
[ci,ci+1]—called operations in the following—that each in-
duce a subsequence of a trace that contains all its recorded
events between checkpoints ci and ci+1. We use checkpoints
to separate different semantic operations during the pre-failure
execution traced in the beginning of our testing pipeline. We
define two crash consistency properties which, depending
on the operation, may be considered a requirement for crash
consistency of the operation.

We propose the following new property:

Definition 1 (Single Final State, SFS). A checkpoint ck is
single-final-state crash-consistent (SFS(ck)) if and only if all
crash images Nk ⊂ {0,1}∗ that can result from crashes in the
trace exactly at checkpoint ck result in the same state 6=⊥, or
formally: ∃s ∈ S : {E(n) | n ∈ Nk}= {s}.

For s ∈ S , we write SFS(ck,s) if ck is single-final-state
crash-consistent and {E(n) | n ∈ Nk} = {s}. Further, an op-
eration [ci,ci+1] is single-final-state crash-consistent if and
only if ci+1 is single-final-state crash-consistent.

SFS is a property that is useful to require even when an
operation is not considered atomic; in that case, intermediate
states are allowed, but as soon as an operation returns, a crash
may not yield any intermediate states anymore.

We further define the well-known atomicity property in our
context:

Definition 2 (Atomicity). An operation [ci,ci+1] is atomic
if and only if ci and ci+1 are both single-final-state crash-
consistent, and all crash images N[i,i+1] ⊂ {0,1}∗ that can
result from crashes anywhere between checkpoints ci and
ci+1 result in either of two states 6=⊥, or formally:

∃sbefore,safter ∈ S :SFS(ci,sbefore)∧SFS(ci+1,safter)

∧{E(n) | n ∈ N[i,i+1]}= {sbefore,safter}.

Atomicity means that operations execute, from the point
of view after crash recovery, in an all-or-nothing fashion:
Either an operation is fully run (safter) or not at all (sbefore).
No intermediate states should occur and all states should be
recoverable. This means that no more than two states may be
observable after recovering from arbitrary crashes between

938    2022 USENIX Annual Technical Conference USENIX Association



crash image 2
001101. . .

crash image 1
001111. . .

state 1

stack trace 1 stack trace 2 . . .

origin 1 metadata
ordering point=37

stores persisted=[7,8]

origin 2 metadata
ordering point=38

origin 3 md.
ord. p.=39

state 2
. . .

Figure 3: Representation of an operation’s semantic states
and their origins’ metadata as output by VINTER.

the two checkpoints of an operation. An atomic operation is
obviously also SFS crash-consistent, but SFS crash-consistent
operations exist that are not atomic.

The state extractor E will usually be implemented by run-
ning the application’s post-failure recovery on the given crash
image including a step that serializes the state. Additional
tests may be run after the recovery to ensure correctness (such
as fsck on file systems). In this case, if a hypercall indicating
success is not issued by the post-failure recovery, the state is
mapped to⊥. The Tracer component can be reused to provide
a virtual environment that implements these hypercalls.

3.4.2 Testing Crash Consistency Properties

VINTER’s Tester component finds crash consistency viola-
tions given a set of crash images from the previous step of
the testing pipeline. As its input, we assume a map of (al-
ready deduplicated) crash images to lists of the metadata that
describe an image’s (possibly multiple) origins (§3.3).

The Tester builds a table Mcp7→states that maps checkpoint
IDs to semantic states which originated from crash images
where the most recent checkpoint hypercall had the corre-
sponding ID. As an image can have multiple origins with
different checkpoint IDs, a semantic state may be mapped
to more than one checkpoint. It also builds another similar
table Mcp 7→fin. states, with the exception that only images are
considered that result from crashing directly at a checkpoint
boundary, thus only considering the “final” states at the end
of an operation.

It is easy to find violations of crash consistency properties
by scanning the tables:

• The Single Final State property of a checkpoint is valid
if and only if Mcp 7→fin. states contains exactly one state for
that checkpoint.

• The Atomicity property of an operation [ci,ci+1] is valid
if and only if ci and ci+1 are SFS crash-consistent (with
Mcp 7→fin. states[ci] = {sbefore} and Mcp 7→fin. states[ci+1] =
{safter}) and Mcp7→states[ci] = {sbefore,safter}.

Violations of these properties are reported by the Tester.

Further, for each operation it outputs a representation of all
encountered semantic crash states with their associated crash
images and the crash images’ origins (Figure 3). This repre-
sentation helps with root cause identification as we cover in
the following section.

3.5 Bug Analysis

The Tester’s output lets developers determine whether crash
consistency bugs have been uncovered. Trivially, if the ex-
tracted semantic states include an unrecoverable state (⊥),
a bug has been uncovered. Otherwise, in the simple case, a
developer specifies that a certain operation should hold one
of the previously covered crash consistency properties, and
then a violation reported by the Tester implies a bug. How-
ever, the crash consistency semantics of an operation may
be more complex or even unclear and may allow multiple
intermediate states. The developer can then manually inspect
the encountered semantic states for their validity (as output in
the maps Mcp7→states and Mcp 7→fin. states). Alternatively, they can
automate the decision by implementing an operation-specific
predicate that validates whether for a set of semantic states
the operation is crash-consistent.

Once bugs have been discovered, VINTER aids develop-
ers in understanding their root causes by representing how
crash-consistency-violating semantic states originate from
simulated crashes. As depicted in Figure 3, every semantic
state keeps a link back to the crash images it was extracted
from, and each crash image keeps a link to the simulated
crashes’ states (origins) it was created from. As a crash image
only represents the NVM’s binary contents, multiple different
crash images may lead to the same semantic state (e.g., an
uncommitted journal entry does not contribute to the semantic
state). Further, crashing at different ordering points or with
different subsets of in-flight stores applied, as stored in the
“origin metadata,” may lead to the same crash image.

Each crash image origin includes a list of in-flight stores at
the ordering point (fence) where the crash was simulated, as
well as the subset of in-flight stores applied to obtain the crash
image. Each of the ordering points and their in-flight stores is
annotated with its stack trace (as logged by the Tracer) and
thus maps back to its source code location.

By inspecting the origins of a crash-consistency-violating
semantic state, developers can understand where and how a
crash needs to occur to trigger the bug (as in source code
location and persistency status of NVM data). This eases root
cause identification. For example, if all of an invalid state’s
origins have a strict subset of in-flight stores applied (i.e., the
crash image at the same ordering point with all in-flight stores
applied does not lead to the invalid state), then introducing
more persistency ordering constraints (fences) may likely fix
the bug.

We present two concrete bug analyses in Section 5.3.

USENIX Association 2022 USENIX Annual Technical Conference    939



4 Implementation

We implement a prototype of VINTER for the 64-bit x86
architecture [17]. Its tracer is based on PANDA [9] and Py-
PANDA [6], which provide a platform for dynamic analy-
sis built on QEMU [1]. QEMU is a full system emulator
based on dynamic binary translation. Core parts of our proto-
type are written in Python. Therefore, while its performance
is sufficient for our file system evaluation, considerable im-
provements are likely possible without changing the general
approach. VINTER’s prototype is available and described in
Appendix A.

Our NVM simulator implements x86’s memory persistency
model [17, 37]. By dividing the simulated NVM into segments
of 64 bytes and keeping ordering of in-flight stores within
these lines, VINTER respects intra-cache-line ordering con-
straints. This guarantees ordering even of non-temporal stores,
which is a higher guarantee than the architecture gives. Setting
the segment size to 8 bytes would allow testing reordering
of non-temporal stores, but would also break intra-cache-line
ordering which some NVM file systems rely on [10].

5 File System Crash Consistency

The crash consistency testing tool we have described so far
does not have any parts specific to file systems and could be
applied to arbitrary software running in a virtual machine. In
this section, we describe how to apply it to NVM file systems.
Then, we present the results of our analysis of NOVA [49],
NOVA-Fortis [50] and PMFS [10].

Our testing pipeline requires an application-specific state
extraction procedure for mapping from a crash image to its
semantic state. The Tester component boots a virtual machine
with the crash image, runs the procedure, and records the
output or a failure state ⊥ in case of errors. We implement
file system state extraction as follows:

1. Mount the file system read-only.
2. Traverse the file system and output a serialized represen-

tation of each file.
We need to mount the file system read-only to prevent

inadvertent changes to metadata such as file access times-
tamps. The file systems we target adhere to the POSIX stan-
dard [15], which allows us to build a generic state extractor for
all POSIX-compatible file systems. For each file (including
regular files, directories, symbolic links) we output a serial-
ization of its path, its contents, its type, and most metadata
from the stat structure1.

After the state extraction completes, we verify that the file
system can still be modified. We remount the file system as
writable and run an additional test-case-specific command
that modifies some of the files or directories used in the test.

1We exclude runtime properties such as device IDs and preferred I/O
block size.

If any of these operations fail, we mark the state described by
this crash image as failure state ⊥.

Our notion of consistency only encompasses the file sys-
tem state as visible via the file system API. The underlying
assumption is that if the file system is still properly readable
and writable, its state can be considered consistent without
the need to inspect its internal state.

For testing more traditional file systems that depend on
separate integrity checkers (fsck), these could also be run as
part of the state extraction procedure and map to the failure
state ⊥ if the integrity checker fails.

5.1 File System Setup
For each tested file system, we need a corresponding virtual
machine image. To reduce the time required for tracing, we
hand-craft minimal VM images consisting of a statically-
linked Linux kernel image with a user space based on Busy-
Box [44]. We do not use an init system. Instead, we let the
system spawn a shell that accepts test commands over a virtual
serial console. Consequently, there are no unrelated processes
running in the background during tracing.

5.2 Test Cases and Results
We manually craft 16 test cases consisting of operation se-
quences which cover most basic file system operations. Fig-
ure 4 shows a summary of the test cases and the results. Most
test cases correspond to basic file system operations given
in monospace font. The “atime” and “[cm]time” test cases
update the corresponding timestamps as side effects of a file
read or directory operations2, whereas “touch” uses a system
call for that purpose. We test three variants of the rename op-
eration: a rename that overwrites an existing file (overwrite),
moving a directory into another (directory), and changing the
file name to a longer one (long name). The “long name” test
case creates a file with a long file name and writes to it. Test
cases with “long” file names use a name that exceeds the
cache line size (which is 64 bytes). Finally, “update” modifies
a small part in the middle of a larger file.

In total, VINTER finds previously unreported bugs in 7 out
of 16 test cases for NOVA. We analyze these bugs manually
and find three root causes. First, we observe missing cache
flushes when NOVA writes unaligned data to NVM which
lead to data loss. This issue manifests in our test cases “write”
and “symlink,” but could also occur in “append” and “update”
(marked with an asterisk) depending on the length of the
written data. The test cases with long filenames (i.e., longer
than cache line size) suffer from the same issue and result
in files where reading the metadata with stat fails. Second,
the rename operation is not atomic. We observe crash states
where the renamed file or directory is completely missing.

2Adding or removing files from a directory updates the directory’s change
and modification timestamps.

940    2022 USENIX Annual Technical Conference USENIX Association



write append atime [cm]time chmod chown link symlink
NOVA 3* 3 3 3 3

NOVA-Fortis 3 3 3

PMFS 3 3 3 ( ) 3 3 3 3

mkdir
rmdir

rename
overwrite

rename
directory

rename
long name touch long name unlink update

NOVA 3 3 3 3*
NOVA-Fortis
PMFS ( ) ( ) 3 3 3 ( ) ( ) 3

data loss crash atomicity violation read/write fails after recovery multiple final states (SFS violation)

Figure 4: Crash consistency bugs discovered by VINTER.

In the following section, we give a detailed analysis of these
two bugs. Third, creating hard links is not completely atomic.
Our tool detects a crash state where the original file’s link
count (st_nlink) is incremented, but the new link does not
yet exist.

As NOVA-Fortis is an extension of NOVA with the addition
of checksumming and parity, it shares most of the issues we
find in NOVA. However, we see three additional failing test
cases. Our tool discovers intermediate crash states where
both data and the checksum over that data are only partially
persisted. This leads to checksum errors during recovery and
errors when trying to read or write the affected files. We
also observe an instance where the additional data integrity
mechanisms help: In the “write” test, NOVA-Fortis does not
suffer from data loss since it can recover the unpersisted data
from parity. However, it appears that NOVA-Fortis does not
protect all data that way: The data loss in the “symlink” test
case shares the same root cause as for “write,” but still occurs
in NOVA-Fortis.

PMFS suffers from fewer failing test cases than the NOVA
variants. We observe a minor atomicity violation in test cases
that remove or overwrite a file. Before the file disappears,
crash states exist where the file has updated change and mod-
ification timestamps. A more serious issue can occur when
removing files in the root directory: Crash states are possible
where mounting the file system results in a failing assertion,
which leads to a crash of the PMFS kernel module.

We reported all NOVA and NOVA-Fortis bugs to the devel-
opers3. We did not report PMFS issues since it is not main-
tained anymore.

5.3 Analysis

VINTER has discovered several previously unreported crash
consistency bugs in the NOVA variants. In the following, we
exemplarily provide a detailed analysis of two of these bugs
that highlights advantages of our crash consistency testing

3Issue IDs 105, 116, 121–125; each accessible at
https://github.com/NVSL/linux-nova/issues/<ID> (also on archive.org)

unpersisted stores call stack of store (metadata)

0x2db008 7→ l __copy_user_nocache

y do_nova_inplace_file_write

y . . .

y vfs_write

y . . .

0x2db009 7→ d

0x2db00a 7→
�

Figure 5: The unpersisted stores after writing HelloWorld
�

to a file in NOVA. The bytes l, d,
�

are the last three
bytes of the string.

event operand instr. (metadata)

syscall sys_write(fd=1, buf=‘HelloWorld\n’, n=11)
. . . . . . . . .
write (NT) 0x...0 7→ HelloWor movnti qword [rdi], r8
write (T) 0x...8 7→ l mov byte [rdi], al
write (T) 0x...9 7→ d mov byte [rdi], al
write (T) 0x...a 7→

�
mov byte [rdi], al

fence sfence (store fence)

Figure 6: Excerpt of the trace that shows how the file contents
are written to NVM. No flush operations follow on
the cache line belonging to the temporal stores.

approach. Furthermore, the analysis illustrates how VINTER
helps manual analysis with the metadata carried throughout
the testing pipeline and presented as part of the Tester’s report.

5.3.1 Incompletely Persisted Data

We first analyze the data loss bug occurring in the test
case “write” (see Figure 4). The test case creates a file and
writes the string HelloWorld

�
, as in the shell command echo

HelloWorld > /mnt/myfile. Our tool detects a violation
of Single Final State and records partially persisted file con-
tents where up to three bytes at the end are replaced with zero
(e.g., HelloWor 0 0 0 and HelloWorl 0 0 ).

First, we take a look at the unpersisted stores as reported

USENIX Association 2022 USENIX Annual Technical Conference    941



a bdir. entries b b

file contents x y x yx y

(1) (2) (3)

x y

(4)

Figure 7: Observed crash states in NOVA during a rename
of file a to b in a directory, intending to replace b.
Boxes represent files. (1) is the initial state.

by the Tester component. As pictured in Figure 5, each store
is associated with a call stack. We see that the stores originate
from a write system call and that NOVA uses the function
__copy_user_nocache to write to NVM.

Next, we inspect the NVM trace pictured in Figure 6. It
captures the system call entry as well as all writes to NVM,
cache flushes, and memory fences. Non-temporal writes (NT)
are distinguished from temporal writes (T) as the former by-
pass the volatile caches. We see that the helper function
__copy_user_nocache writes the first eight bytes of the
string to NVM with a single non-temporal store, then writes
the remaining bytes one by one with temporal stores. As there
is no cache flush operation, these bytes end up unpersisted.

Further investigation in the Linux source code shows that
__copy_user_nocache has an architecture-specific imple-
mentation for x86 implemented in assembly. As the function
was written with performance and not persistency in mind,
the Linux developers deemed it acceptable to use temporal
stores for unaligned data.

This bug highlights the importance of testing unmodified
software. Using an approach that relies on source code an-
notations to trace NVM events, a developer would likely
assume that the Linux helper function works correctly and
would annotate it accordingly without following through to
the architecture-specific assembly implementation.

5.3.2 Data Loss During Rename

Second, we analyze the atomicity issues of the rename op-
eration in NOVA. As depicted in Figure 4, our tool detects
atomicity violations and data loss for all variants we test (over-
writing a file, renaming a directory, and a normal rename with
long file names). We visualize the crash states for the over-
write variant in Figure 7. In addition to the initial state (1)
and the desired final state (4), we observe a state where the
file to be renamed is missing (2), as well as a state where the
target file is also missing (3). For the other two test cases that
do not overwrite files, we observe crash states similar to (2)
where the file or directory is missing.

We find that both invalid crash states from Figure 7 have at
least one crash image associated with an “origin” where all
in-flight stores were persisted (i.e., includes all volatile cache
lines; §3.5). Consequently, the bug does not stem from mis-
takes with NVM persistency primitives. We inspect the call

stacks for these crash images and find that they correspond to
different locations in the nova_rename function. By inserting
early return statements at these locations, we can reproduce
the issue without our testing framework, thus confirming the
issue.

This bug shows that our testing pipeline is also capable of
finding persistency issues that are not specific to NVM. By
carrying metadata such as stack traces through the pipeline,
our framework makes bug verification easy.

6 Evaluation

In the previous section, we have shown that our approach
is capable of finding new crash consistency bugs in file sys-
tems. We now give a more complete picture of our prototype’s
performance by answering the following questions: Is the ap-
proach comprehensive or does it miss certain types of known
crash consistency bugs? How effective is our crash image
generation heuristic at reducing the search space of possible
crash images? How big is the slowdown incurred by tracing
and how fast are the other stages of the testing pipeline?

6.1 Completeness

It is well known that—outside of formal methods—software
testing can only prove the existence of bugs, but not their ab-
sence. Nevertheless, we would like to evaluate the complete-
ness of our approach: Does it miss certain types of real-world
crash consistency bugs?

To this end, we sight all 45 issues and patches available on
the public NOVA bug tracker which were submitted between
2019-01-01 and 2021-10-30. We include issues and patches
that are related to crash consistency bugs. We exclude #1104

as according to the bug description, recovery from a crash
only leads to error messages but no observed wrong behavior.
We exclude #98, as according to the bug report, it requires
an NVM capacity > 128GiB, which is infeasible with our
evaluation setup. We are left with four different patches (#89,
#92, #95, #109) that fix crash consistency bugs in NOVA and
NOVA-Fortis.

To assess whether our prototype is able to find these bugs,
we evaluate our prototype on a commit before and after each
bug, and compare the Tester component’s reports. This way,
we can ignore the crash consistency bugs we describe in Sec-
tion 5 which may already be present in older NOVA versions.

Our prototype is able to find all of the known bugs chosen
by our evaluation methodology. There is no need for special
test cases. All bugs are triggered by at least one of the test
cases we describe in Section 5.2.

4The numbers are IDs of issues or patches in the NOVA bug tracker and
can be accessed at URLs of the following form:
https://github.com/NVSL/linux-nova/issues/<ID> (also on archive.org)

942    2022 USENIX Annual Technical Conference USENIX Association



µ±σ [s]
total elapsed Tracer process time 6.37± 0.11�

boot (only minimal instrumentation) 1.63± 0.03�
trace (from outside) 4.15± 0.10�

trace (in guest, portion of command) 3.02± 0.05
execution in guest with raw PANDA 0.09± 0.00

Figure 8: Runtimes measured while tracing the pre-failure
command of the “write” test case in NOVA. 20 runs,
µ is mean and σ is sample standard deviation.

6.2 Effectiveness of Heuristic
We evaluate whether our proposed crash image generation
heuristic based on cross-failure reads (§3.3) helps with ef-
ficiency as intended. To this end, we modify our prototype
to consider all lines with unpersisted stores for crash image
generation, rather than only lines overlapping with the unper-
sisted cross-failure reads as reported by our heuristic. We run
this modified prototype on all NOVA test cases (§5.2).

We compare both the number of unique crash images gener-
ated (accumulated over all test cases), and the semantic crash
states discovered by the modified prototype with that of the
original prototype. 2 466 unique crash images are produced
by the modified prototype without the heuristic, versus only
438 crash images by the original prototype5. Thus, the pro-
totype without the heuristic needs to test approximately 5.6
times as many crash images. This results in an increased run-
time, but it still discovers only the same semantic crash states
as the original prototype using the heuristic.

We additionally analyze how the heuristic reduces the num-
ber of in-flight stores considered for crash image generation.
In 47 out of 178 applications of the heuristic during all NOVA
tests, the recovery code does not read any in-flight stores. We
manually verify that these cases occur during journaling in
NOVA by checking tracing metadata. In 94 applications of
the heuristic, all cache lines with in-flight stores are read. In
the remaining 37 heuristic applications, the cross-failure reads
make up a strict subset of in-flight stores.

6.3 Performance
Even though performance was not a priority of our prototype,
we evaluate its performance to show that the approach is
sufficiently fast for testing file systems. We benchmark the
Tracer’s performance with the pre-failure command of the
“write” test case (see §5.2) on the NOVA evaluation target
on an Intel Xeon E5-2620 v4 CPU. We depict the results
in Figure 8. Compared to the runtime in raw PANDA (i.e.,
binary translation without tracing), we observe a slowdown
of approximately factor 34. The resulting traces each have

5We have only performed a single run for each test case; the generated
crash images in each run can slightly vary due to nondeterministic guest
execution.

µ±σ [s]
total elapsed process time 83.82± 0.53�

boot 1.63± 0.03�
Crash Image Generator 37.87± 0.33�

cross-failure tracing (heuristic) 2.00± 0.28 ×12�
Tester 43.65± 0.35�

reset to snapshot & load image 0.08± 0.01 ×31�
run dumper command (PANDA) 1.04± 0.12 ×31

Figure 9: Runtimes of the Crash Image Generator & Tester
process when processing the trace from Figure 8.

≈ 304438 events and are each ≈ 11.73 MiB in size (in a
simple textual format; compressed only ≈ 0.15 MiB).

As the Crash Image Generator and Tester run in the same
process in our prototype, we show the execution time of both
combined in Figure 9. 12 crash images at fences are used
as input for the cross-failure heuristic. The tester processes
31 unique crash images that stem from 77 origins (§3.3) and
result in seven unique semantic crash states. We find that the
Crash Image Generator and Tester contribute roughly equally
to the execution time.

With metadata tracing enabled, the runtime of the Tracer
increases significantly to 78.70s± 0.75s, whereas the run-
time of the Crash Image Generator and Tester only increases
slightly to 84.84s± 0.60s. We argue that performance of
metadata tracing mode is not very relevant in practice: Test
cases can be tested without metadata tracing, and if a crash
consistency bug is uncovered, the affected test cases can be re-
run with metadata tracing enabled. Nevertheless, performance
can presumably be significantly improved.

In total, all our test cases from Section 5.2 take approx-
imately 24 minutes to execute sequentially on the NOVA
evaluation target (without metadata tracing). This includes
additional steps such as compressing traces. As test cases can
be analyzed in parallel, the whole testing time can be reduced
to only a few minutes.

7 Discussion

VINTER fares well at finding new bugs. Its testing pipeline
is highly automated and the manual effort required for setup
and interpretation of its results is low. In the context of file
system testing, the Single Final State property has turned out
to be useful, as even if operations are not considered atomic,
this property should hold for most file system operations after
a call to sync. Even in cases where the crash consistency
semantics of a file system operation are not clear, VINTER’s
representation of semantic crash states makes manual vetting
feasible. It has turned out to be useful to test modifying the
file system after recovery as part of the state extraction proce-
dure, as some of the bugs only become visible when such an
operation fails.

USENIX Association 2022 USENIX Annual Technical Conference    943



We find that severe crash consistency bugs can be found
in NVM file systems by only testing primitive file system
operations, with no need for complex interaction between
multiple operations. This is contrary to the bugs discovered by
CrashMonkey [32], which all appear to involve more complex
operation sequences. We see two potential reasons: First, pro-
gramming for NVM with its byte-level access and persistency
semantics is much more complicated than the programming
pattern for traditional file systems, where updated sectors are
first built in DRAM and then transferred to block storage.
Second, the tested file systems are of relatively young age,
and are still research prototypes not aimed at production us-
age (and in case of PMFS, even unmaintained). Testing more
complex operation sequences on our evaluation targets might
yield even more bugs.

8 Conclusion

Crash consistency is difficult to achieve in non-volatile mem-
ory (NVM) software. Existing works on NVM crash consis-
tency testing for kernel software are either inefficient or incom-
prehensive and not automated, and none consider crash con-
sistency and atomicity among entire operations. This makes
existing work unsuitable for comprehensive file system crash
consistency testing.

In this work, we have introduced VINTER, a new approach
to automatic testing of non-volatile memory software. VIN-
TER consists of an automated testing pipeline that traces exe-
cutions of full systems that use NVM, simulates crashes, and
finally tests the resulting crash images for consistency. We
use VINTER to find crash consistency bugs in NVM file sys-
tems, including the state-of-the-art file systems NOVA [49]
and NOVA-Fortis [50]. Our evaluation uncovers several bugs
in all tested file systems, many of them previously unreported.
The bugs lead to issues such as data loss, kernel crashes, and
unwritable files.

To summarize, our approach is general as it is compati-
ble with differents kinds of software including kernel code,
easy to apply as it is largely automated and does not need
code modifications, and has been shown to find new bugs in
existing software.

8.1 Future Work
We lay out possibilities for future work on our subject. We
see several areas for improvement:
Support for persistent caches. Some recent processors en-

sure that all data in the CPU caches is written out
to persistent memory in case of a power failure (e.g.,
eADR [16]). With persistent caches, the programmer no
longer needs to use cache flushes to write out data to
NVM. This greatly reduces the potential for crash con-
sistency bugs, but does not entirely eliminate them. For
example, the NOVA bug we describe in Section 5.3.2

would still occur on an eADR-enabled system. VINTER
could support detecting crash consistency bugs on eADR
systems by considering prefixes of all temporal writes
instead of arbitrary subsets during crash image genera-
tion (§3.3). Choosing subsets of in-flight stores would
however still be applicable to non-temporal writes since
these are weakly-ordered.

Fault injection. Some NVM software including NOVA-
Fortis [50] intends to be resilient against media errors.
VINTER could be extended with fault injection to test
robustness against corruption.

Heuristics. Bug detection or crash image generation heuris-
tics that observe control or data flow such as those pro-
posed by Fu et al. [11] could be adapted to our approach.

Evaluate NVM operating systems. VINTER could not only
be applied to file systems, but also to entire operating
systems targeted for NVM, like Bittman et al.’s Twiz-
zler [2]. Twizzler removes the file system from the OS
interface, and instead allows applications to directly al-
locate NVM.

File system test cases. Our file system evaluation could be
extended by running automatically generated test cases
in a large scale similar to Mohan and Martinez et al.’s
CrashMonkey [32].

Traditional file systems. VINTER could also be extended to
test traditional block-storage-based file systems with-
out NVM support, bringing features such as automatic
atomicity testing over previous work [32]. A generally
applicable approach to achieve this would be virtualizing
a block storage device and recording a trace of writes as
well as flush primitives.

944    2022 USENIX Annual Technical Conference USENIX Association



A Artifact Appendix

Abstract
We provide an artifact containing our prototype implementa-
tion of VINTER as described in Section 4. The artifact further
includes the test cases, configurations, and scripts for repro-
ducing the major parts of our file system analysis (§5) as well
as our broader evaluation (§6).

Scope
We aim to achieve two main goals with the artifact. First, it
allows reproducing the results of this paper. In particular:

• VINTER can find new bugs in file systems and can help
developers with finding the root cause. We provide in-
structions for reproducing Figures 4 to 6 as well as Sec-
tion 5.3.

• VINTER can reproduce previously fixed bugs in NOVA.
We provide instructions for reproducing Section 6.1.

• VINTER’s heuristic is effective at reducing the number of
generated crash images without missing semantic states.
We provide instructions for reproducing Section 6.2.

• VINTER is sufficiently fast for analyzing file systems.
We provide instructions for reproducing Figures 8 and 9.

Second, we provide VINTER for the purpose of analyzing
other file systems, in the hope that it will prove useful in
developing new NVM file systems.

Contents
Our source code repository (located at /home/vinter/
vinter in the virtual machine image) contains the follow-
ing components:

• README.md contains general setup information, and
artifact-evaluation/README.md contains instruc-
tions for reproducing the experiments and launching
a virtual machine where VINTER is preinstalled.

• vinter_python/: The original implementation of VIN-
TER that is used for the analysis in this paper.

– pmemtrace.py: The Tracer component.
– trace2img.py: The Crash Image Generator and

Tester components.
– trace-and-analyze.sh: Main script for running

the full testing pipeline.
– report-results.py: Script for analyzing output

from the testing pipeline.
• vinter_rust/: A reimplementation of VINTER in Rust,

with the intention of improved performance and to pro-
vide a clean base for future extensions.

– vinter_trace/: The Tracer component.
– vinter_trace2img/: The Crash Image Genera-

tor and Tester components. Main entry point for
running the full testing pipeline.

• fs-testing/: Everything related to the analysis of file
systems.

– scripts/: Helper scripts, virtual machine (VM)
definitions, and test case definitions.

– initramfs/: BusyBox-based user space of the test
VMs.

– fs-dump/: File system state extraction program.
– linux/: Configurations of the Linux kernels we

test.
• panda/: The underlying full system emulator based on

upstream PANDA [9] with patches applied.

Hosting
VINTER’s source code is available on GitHub at
https://github.com/KIT-OSGroup/vinter
on the branch atc22-artifact,
commit 4b7e5651e820ec9ebbe2a7321e28b2748103ab74.

Additionally, we provide an archive containing a virtual
machine image that comes installed with VINTER and all its
dependencies at doi:10.5281/zenodo.6626098. The archive
contains instructions for using the virtual machine image.

USENIX Association 2022 USENIX Annual Technical Conference    945

https://github.com/KIT-OSGroup/vinter
https://doi.org/10.5281/zenodo.6626098


References

[1] Fabrice Bellard. “QEMU, a Fast and Portable Dy-
namic Translator.” In: 2005 USENIX Annual Tech-
nical Conference (USENIX ATC 05). Anaheim, CA:
USENIX Association, Apr. 2005. URL: https : / /
www . usenix . org / conference / 2005 - usenix -
annual-technical-conference/qemu-fast-and-
portable-dynamic-translator.

[2] Daniel Bittman, Peter Alvaro, Pankaj Mehra, Darrell
D. E. Long, and Ethan L. Miller. “Twizzler: A Data-
Centric OS for Non-Volatile Memory.” In: ACM Trans.
Storage 17.2 (June 2021). ISSN: 1553-3077. DOI: 10.
1145/3454129.

[3] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind
Krishnamurthy, Emina Torlak, and Xi Wang. “Specify-
ing and Checking File System Crash-Consistency Mod-
els.” In: Proceedings of the Twenty-First International
Conference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS ’16. At-
lanta, Georgia, USA: Association for Computing Ma-
chinery, 2016, pp. 83–98. ISBN: 978-1-4503-4091-5.
DOI: 10.1145/2872362.2872406.

[4] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang
Wang, and Jiwu Shu. “FlatStore: An Efficient Log-
Structured Key-Value Storage Engine for Persistent
Memory.” In: Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems. AS-
PLOS ’20. Lausanne, Switzerland: Association for
Computing Machinery, 2020, pp. 1077–1091. ISBN:
9781450371025. DOI: 10.1145/3373376.3378515.

[5] Jeremy Condit, Edmund B. Nightingale, Christo-
pher Frost, Engin Ipek, Benjamin Lee, Doug Burger,
and Derrick Coetzee. “Better I/O through Byte-
Addressable, Persistent Memory.” In: Proceedings of
the ACM SIGOPS 22nd Symposium on Operating
Systems Principles. SOSP ’09. Big Sky, Montana,
USA: Association for Computing Machinery, 2009,
pp. 133–146. ISBN: 978-1-60558-752-3. DOI: 10 .
1145/1629575.1629589.

[6] Luke Craig, Andrew Fasano, Tiemoko Ballo, Tim Leek,
Brendan Dolan-Gavitt, and William Robertson. “Py-
PANDA: Taming the PANDAmonium of Whole Sys-
tem Dynamic Analysis.” In: Workshop on Binary Anal-
ysis Research (BAR). Vol. 2021. 2021, p. 21.

[7] John Derrick, Simon Doherty, Brijesh Dongol, Ger-
hard Schellhorn, and Heike Wehrheim. “Verifying
Correctness of Persistent Concurrent Data Structures.”
In: Formal Methods – The Next 30 Years. Ed. by
Maurice H. ter Beek, Annabelle McIver, and José
N. Oliveira. Cham: Springer International Publishing,
2019, pp. 179–195. ISBN: 978-3-030-30942-8.

[8] Bang Di, Jiawen Liu, Hao Chen, and Dong Li. “Fast,
Flexible, and Comprehensive Bug Detection for Persis-
tent Memory Programs.” In: Proceedings of the 26th
ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems. ASPLOS 2021. Virtual, USA: Association for
Computing Machinery, 2021, pp. 503–516. ISBN: 978-
1-4503-8317-2. DOI: 10.1145/3445814.3446744.

[9] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin,
Tim Leek, and Ryan Whelan. “Repeatable Reverse En-
gineering with PANDA.” In: Proceedings of the 5th
Program Protection and Reverse Engineering Work-
shop. PPREW-5. Los Angeles, CA, USA: Association
for Computing Machinery, 2015. ISBN: 978-1-4503-
3642-0. DOI: 10.1145/2843859.2843867.

[10] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshava-
murthy, Philip Lantz, Dheeraj Reddy, Rajesh Sankaran,
and Jeff Jackson. “System Software for Persistent
Memory.” In: Proceedings of the Ninth European Con-
ference on Computer Systems. EuroSys ’14. Amster-
dam, The Netherlands: Association for Computing Ma-
chinery, 2014. ISBN: 978-1-4503-2704-6. DOI: 10 .
1145/2592798.2592814.

[11] Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shree-
pathi, Mohannad Ismail, Sunny Wadkar, Dongyoon
Lee, and Changwoo Min. “Witcher: Systematic Crash
Consistency Testing for Non-Volatile Memory Key-
Value Stores.” In: Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles.
SOSP ’21. Virtual Event, Germany: Association for
Computing Machinery, 2021, pp. 100–115. ISBN:
9781450387095. DOI: 10.1145/3477132.3483556.

[12] Vaibhav Gogte, William Wang, Stephan Diestelhorst,
Peter M. Chen, Satish Narayanasamy, and Thomas
F. Wenisch. “Relaxed Persist Ordering Using Strand
Persistency.” In: 2020 ACM/IEEE 47th Annual Inter-
national Symposium on Computer Architecture (ISCA).
2020, pp. 652–665. DOI: 10.1109/ISCA45697.2020.
00060.

[13] Morteza Hoseinzadeh and Steven Swanson. “Corun-
dum: Statically-Enforced Persistent Memory Safety.”
In: Proceedings of the 26th ACM International Con-
ference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS 2021.
Virtual, USA: Association for Computing Machinery,
2021, pp. 429–442. ISBN: 978-1-4503-8317-2. DOI:
10.1145/3445814.3446710.

[14] Qingda Hu, Jinglei Ren, Anirudh Badam, Jiwu Shu,
and Thomas Moscibroda. “Log-Structured Non-
Volatile Main Memory.” In: 2017 USENIX Annual
Technical Conference (USENIX ATC 17). Santa Clara,
CA: USENIX Association, July 2017, pp. 703–717.

946    2022 USENIX Annual Technical Conference USENIX Association

https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/qemu-fast-and-portable-dynamic-translator
https://doi.org/10.1145/3454129
https://doi.org/10.1145/3454129
https://doi.org/10.1145/2872362.2872406
https://doi.org/10.1145/3373376.3378515
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/3445814.3446744
https://doi.org/10.1145/2843859.2843867
https://doi.org/10.1145/2592798.2592814
https://doi.org/10.1145/2592798.2592814
https://doi.org/10.1145/3477132.3483556
https://doi.org/10.1109/ISCA45697.2020.00060
https://doi.org/10.1109/ISCA45697.2020.00060
https://doi.org/10.1145/3445814.3446710


ISBN: 978-1-931971-38-6. URL: https : / / www .
usenix . org / conference / atc17 / technical -
sessions/presentation/hu.

[15] IEEE Std 1003.1-2017 (revision of IEEE Std 1003.1-
2008) – IEEE Standard for Information Technology–
Portable Operating System Interface (POSIX(®)) Base
Specifications, Issue 7. IEEE Computer Society and
The Open Group.

[16] Intel. eADR: New Opportunities for Persistent Mem-
ory Applications. 2021. URL: https://www.intel.
com/content/www/us/en/developer/articles/
technical / eadr - new - opportunities - for -
persistent-memory-applications.html.

[17] Intel. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual. Apr. 2021.

[18] Joseph Izraelevitz, Hammurabi Mendes, and Michael L.
Scott. “Linearizability of Persistent Memory Objects
Under a Full-System-Crash Failure Model.” In: Dis-
tributed Computing. Ed. by Cyril Gavoille and David
Ilcinkas. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2016, pp. 313–327. ISBN: 978-3-662-53426-7.

[19] Shehbaz Jaffer, Stathis Maneas, Andy Hwang, and
Bianca Schroeder. “Evaluating File System Reliabil-
ity on Solid State Drives.” In: 2019 USENIX Annual
Technical Conference (USENIX ATC 19). Renton, WA:
USENIX Association, July 2019, pp. 783–798. ISBN:
978-1-939133-03-8. URL: https://www.usenix.
org/conference/atc19/presentation/jaffer.

[20] Jungi Jeong and Changhee Jung. “PMEM-Spec: Per-
sistent Memory Speculation (Strict Persistency Can
Trump Relaxed Persistency).” In: Proceedings of the
26th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems. ASPLOS 2021. Virtual, USA: Association for
Computing Machinery, 2021, pp. 517–529. ISBN: 978-
1-4503-8317-2. DOI: 10.1145/3445814.3446698.

[21] Yanyan Jiang, Haicheng Chen, Feng Qin, Chang Xu,
Xiaoxing Ma, and Jian Lu. “Crash Consistency Vali-
dation Made Easy.” In: Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering. FSE 2016. Seattle, WA,
USA: Association for Computing Machinery, 2016,
pp. 133–143. ISBN: 9781450342186. DOI: 10.1145/
2950290.2950327.

[22] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and
Stratis Viglas. “Efficient persist barriers for multicores.”
In: 2015 48th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO). 2015, pp. 660–
671. DOI: 10.1145/2830772.2830805.

[23] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap,
Taesoo Kim, Aasheesh Kolli, and Vijay Chidambaram.
“SplitFS: Reducing Software Overhead in File Systems
for Persistent Memory.” In: Proceedings of the 27th
ACM Symposium on Operating Systems Principles.
SOSP ’19. Huntsville, Ontario, Canada: Association
for Computing Machinery, 2019, pp. 494–508. ISBN:
9781450368735. DOI: 10.1145/3341301.3359631.

[24] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam,
Sam H. Noh, and Young-ri Choi. “SLM-DB: Single-
Level Key-Value Store with Persistent Memory.” In:
17th USENIX Conference on File and Storage Tech-
nologies (FAST 19). Boston, MA: USENIX Associa-
tion, Feb. 2019, pp. 191–205. ISBN: 978-1-939133-09-
0. URL: https://www.usenix.org/conference/
fast19/presentation/kaiyrakhmet.

[25] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon
Yoon, Wen Xu, and Taesoo Kim. “Finding Seman-
tic Bugs in File Systems with an Extensible Fuzzing
Framework.” In: Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles. SOSP
’19. Huntsville, Ontario, Canada: Association for
Computing Machinery, 2019, pp. 147–161. ISBN:
9781450368735. DOI: 10.1145/3341301.3359662.

[26] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Si-
mon Peter, Emmett Witchel, and Thomas Anderson.
“Strata: A Cross Media File System.” In: Proceed-
ings of the 26th Symposium on Operating Systems
Principles. SOSP ’17. Shanghai, China: Association
for Computing Machinery, 2017, pp. 460–477. ISBN:
9781450350853. DOI: 10.1145/3132747.3132770.

[27] Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Ra-
jesh Sankaran, and Jeff Jackson. “Yat: A Validation
Framework for Persistent Memory Software.” In: 2014
USENIX Annual Technical Conference (USENIX ATC
14). Philadelphia, PA: USENIX Association, June
2014, pp. 433–438. ISBN: 978-1-931971-10-2. URL:
https://www.usenix.org/conference/atc14/
technical-sessions/presentation/lantz.

[28] Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira
Khan. “PMFuzz: Test Case Generation for Persistent
Memory Programs.” In: Proceedings of the 26th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems. AS-
PLOS 2021. Virtual, USA: Association for Comput-
ing Machinery, 2021, pp. 487–502. ISBN: 978-1-4503-
8317-2. DOI: 10.1145/3445814.3446691.

[29] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas
Wenisch, Aasheesh Kolli, and Samira Khan. “Cross-
Failure Bug Detection in Persistent Memory Programs.”
In: Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming

USENIX Association 2022 USENIX Annual Technical Conference    947

https://www.usenix.org/conference/atc17/technical-sessions/presentation/hu
https://www.usenix.org/conference/atc17/technical-sessions/presentation/hu
https://www.usenix.org/conference/atc17/technical-sessions/presentation/hu
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.usenix.org/conference/atc19/presentation/jaffer
https://www.usenix.org/conference/atc19/presentation/jaffer
https://doi.org/10.1145/3445814.3446698
https://doi.org/10.1145/2950290.2950327
https://doi.org/10.1145/2950290.2950327
https://doi.org/10.1145/2830772.2830805
https://doi.org/10.1145/3341301.3359631
https://www.usenix.org/conference/fast19/presentation/kaiyrakhmet
https://www.usenix.org/conference/fast19/presentation/kaiyrakhmet
https://doi.org/10.1145/3341301.3359662
https://doi.org/10.1145/3132747.3132770
https://www.usenix.org/conference/atc14/technical-sessions/presentation/lantz
https://www.usenix.org/conference/atc14/technical-sessions/presentation/lantz
https://doi.org/10.1145/3445814.3446691


Languages and Operating Systems. ASPLOS ’20. Lau-
sanne, Switzerland: Association for Computing Ma-
chinery, 2020, pp. 1187–1202. ISBN: 978-1-4503-7102-
5. DOI: 10.1145/3373376.3378452.

[30] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli,
and Samira Khan. “PMTest: A Fast and Flexible Test-
ing Framework for Persistent Memory Programs.” In:
Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS ’19.
Providence, RI, USA: Association for Computing Ma-
chinery, 2019, pp. 411–425. ISBN: 978-1-4503-6240-5.
DOI: 10.1145/3297858.3304015.

[31] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pi-
rahesh, and Peter Schwarz. “ARIES: A Transaction
Recovery Method Supporting Fine-Granularity Lock-
ing and Partial Rollbacks Using Write-Ahead Log-
ging.” In: ACM Trans. Database Syst. 17.1 (Mar. 1992),
pp. 94–162. ISSN: 0362-5915. DOI: 10.1145/128765.
128770.

[32] Jayashree Mohan, Ashlie Martinez, Soujanya Ponna-
palli, Pandian Raju, and Vijay Chidambaram. “Crash-
Monkey and ACE: Systematically Testing File-System
Crash Consistency.” In: ACM Trans. Storage 15.2 (Apr.
2019). ISSN: 1553-3077. DOI: 10.1145/3320275.

[33] Ian Neal, Ben Reeves, Ben Stoler, Andrew Quinn,
Youngjin Kwon, Simon Peter, and Baris Kasikci. “AG-
AMOTTO: How Persistent is your Persistent Memory
Application?” In: 14th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI
20). USENIX Association, Nov. 2020, pp. 1047–1064.
ISBN: 978-1-939133-19-9. URL: https : / / www .
usenix.org/conference/osdi20/presentation/
neal.

[34] Yuanjiang Ni, Jishen Zhao, Daniel Bittman, and Ethan
Miller. “Reducing NVM Writes with Optimized
Shadow Paging.” In: 10th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage
18). Boston, MA: USENIX Association, July 2018.
URL: https : / / www . usenix . org / conference /
hotstorage18/presentation/ni.

[35] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch.
“Memory persistency.” In: 2014 ACM/IEEE 41st Inter-
national Symposium on Computer Architecture (ISCA).
2014, pp. 265–276. DOI: 10 . 1109 / ISCA . 2014 .
6853222.

[36] Thanumalayan Sankaranarayana Pillai, Vijay
Chidambaram, Ramnatthan Alagappan, Samer Al-
Kiswany, Andrea C. Arpaci-Dusseau, and Remzi
H. Arpaci-Dusseau. “All File Systems Are Not
Created Equal: On the Complexity of Crafting
Crash-Consistent Applications.” In: Proceedings of

the 11th USENIX Conference on Operating Systems
Design and Implementation. OSDI’14. Broomfield,
CO: USENIX Association, 2014, pp. 433–448. ISBN:
9781931971164.

[37] Azalea Raad, John Wickerson, Gil Neiger, and Viktor
Vafeiadis. “Persistency Semantics of the Intel-X86 Ar-
chitecture.” In: Proc. ACM Program. Lang. 4.POPL
(Dec. 2019). DOI: 10.1145/3371079.

[38] Anthony Rebello, Yuvraj Patel, Ramnatthan Alagap-
pan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. “Can Applications Recover from fsync Fail-
ures?” In: 2020 USENIX Annual Technical Confer-
ence (USENIX ATC 20). USENIX Association, July
2020, pp. 753–767. ISBN: 978-1-939133-14-4. URL:
https://www.usenix.org/conference/atc20/
presentation/rebello.

[39] Jinglei Ren, Qingda Hu, Samira Khan, and Thomas
Moscibroda. “Programming for Non-Volatile Main
Memory Is Hard.” In: Proceedings of the 8th Asia-
Pacific Workshop on Systems. APSys ’17. Mumbai,
India: Association for Computing Machinery, 2017.
ISBN: 978-1-4503-5197-3. DOI: 10.1145/3124680.
3124729.

[40] Steve Scargall. “Introduction to Persistent Memory
Programming.” In: Programming Persistent Memory:
A Comprehensive Guide for Developers. Berkeley, CA:
Apress, 2020. ISBN: 978-1-4842-4932-1. DOI: 10 .
1007/978-1-4842-4932-1.

[41] Margo Seltzer, Virendra Marathe, and Steve Byan. “An
NVM Carol: Visions of NVM Past, Present, and Fu-
ture.” In: 2018 IEEE 34th International Conference
on Data Engineering (ICDE). 2018, pp. 15–23. DOI:
10.1109/ICDE.2018.00011.

[42] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco
Zappa Nardelli, and Magnus O. Myreen. “X86-TSO:
A Rigorous and Usable Programmer’s Model for X86
Multiprocessors.” In: Commun. ACM 53.7 (July 2010),
pp. 89–97. ISSN: 0001-0782. DOI: 10.1145/1785414.
1785443.

[43] Jim Smith and Ravi Nair. Virtual Machines: Versa-
tile Platforms for Systems and Processes (The Morgan
Kaufmann Series in Computer Architecture and De-
sign). San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2005. ISBN: 1558609105.

[44] Denys Vlasenko. BusyBox. URL: https://busybox.
net (visited on 2022-01-10).

[45] Haris Volos, Sanketh Nalli, Sankarlingam Panneer-
selvam, Venkatanathan Varadarajan, Prashant Saxena,
and Michael M. Swift. “Aerie: Flexible File-System
Interfaces to Storage-Class Memory.” In: Proceed-
ings of the Ninth European Conference on Computer

948    2022 USENIX Annual Technical Conference USENIX Association

https://doi.org/10.1145/3373376.3378452
https://doi.org/10.1145/3297858.3304015
https://doi.org/10.1145/128765.128770
https://doi.org/10.1145/128765.128770
https://doi.org/10.1145/3320275
https://www.usenix.org/conference/osdi20/presentation/neal
https://www.usenix.org/conference/osdi20/presentation/neal
https://www.usenix.org/conference/osdi20/presentation/neal
https://www.usenix.org/conference/hotstorage18/presentation/ni
https://www.usenix.org/conference/hotstorage18/presentation/ni
https://doi.org/10.1109/ISCA.2014.6853222
https://doi.org/10.1109/ISCA.2014.6853222
https://doi.org/10.1145/3371079
https://www.usenix.org/conference/atc20/presentation/rebello
https://www.usenix.org/conference/atc20/presentation/rebello
https://doi.org/10.1145/3124680.3124729
https://doi.org/10.1145/3124680.3124729
https://doi.org/10.1007/978-1-4842-4932-1
https://doi.org/10.1007/978-1-4842-4932-1
https://doi.org/10.1109/ICDE.2018.00011
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1145/1785414.1785443
https://busybox.net
https://busybox.net


Systems. EuroSys ’14. Amsterdam, The Netherlands:
Association for Computing Machinery, 2014. ISBN:
9781450327046. DOI: 10.1145/2592798.2592810.

[46] Haris Volos, Andres Jaan Tack, and Michael M. Swift.
“Mnemosyne: Lightweight Persistent Memory.” In:
Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages
and Operating Systems. ASPLOS XVI. Newport
Beach, California, USA: Association for Computing
Machinery, 2011, pp. 91–104. ISBN: 9781450302661.
DOI: 10.1145/1950365.1950379.

[47] Hu Wan, Youyou Lu, Yuanchao Xu, and Jiwu Shu.
“Empirical study of redo and undo logging in persistent
memory.” In: 2016 5th Non-Volatile Memory Systems
and Applications Symposium (NVMSA). 2016, pp. 1–6.
DOI: 10.1109/NVMSA.2016.7547178.

[48] Xiaojian Wu and A. L. Narasimha Reddy. “SCMFS:
A file system for Storage Class Memory.” In: SC
’11: Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage
and Analysis. 2011, pp. 1–11.

[49] Jian Xu and Steven Swanson. “NOVA: A Log-
structured File System for Hybrid Volatile/Non-volatile
Main Memories.” In: 14th USENIX Conference on File
and Storage Technologies (FAST 16). Santa Clara, CA:
USENIX Association, Feb. 2016, pp. 323–338. ISBN:
978-1-931971-28-7. URL: https://www.usenix.
org/conference/fast16/technical-sessions/
presentation/xu.

[50] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha
Gangadharaiah, Amit Borase, Tamires Brito Da Silva,
Steven Swanson, and Andy Rudoff. “NOVA-Fortis:
A Fault-Tolerant Non-Volatile Main Memory File
System.” In: Proceedings of the 26th Symposium on
Operating Systems Principles. SOSP ’17. Shanghai,
China: Association for Computing Machinery, 2017,
pp. 478–496. ISBN: 978-1-4503-5085-3. DOI: 10 .
1145/3132747.3132761.

[51] Jian Yang, Joseph Izraelevitz, and Steven Swanson.
“Orion: A Distributed File System for Non-Volatile
Main Memory and RDMA-Capable Networks.” In:
17th USENIX Conference on File and Storage Tech-
nologies (FAST 19). Boston, MA: USENIX Associa-
tion, Feb. 2019, pp. 221–234. ISBN: 978-1-939133-09-
0. URL: https://www.usenix.org/conference/
fast19/presentation/yang.

[52] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph
Izraelevitz, and Steve Swanson. “An Empirical Guide
to the Behavior and Use of Scalable Persistent Mem-
ory.” In: 18th USENIX Conference on File and Storage
Technologies (FAST 20). Santa Clara, CA: USENIX

Association, Feb. 2020, pp. 169–182. ISBN: 978-1-
939133-12-0. URL: https: //www .usenix.org /
conference/fast20/presentation/yang.

[53] Junfeng Yang, Can Sar, and Dawson Engler. “EX-
PLODE: A Lightweight, General System for Find-
ing Serious Storage System Errors.” In: 7th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 06). Seattle, WA: USENIX Associ-
ation, Nov. 2006. URL: https://www.usenix.org/
conference / osdi - 06 / explode - lightweight -
general - system - finding - serious - storage -
system-errors.

[54] Takeshi Yoshimura, Tatsuhiro Chiba, and Hiroshi Horii.
“EvFS: User-level, Event-Driven File System for Non-
Volatile Memory.” In: 11th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage
19). Renton, WA: USENIX Association, July 2019.
URL: https : / / www . usenix . org / conference /
hotstorage19/presentation/yoshimura.

[55] Baoquan Zhang and David H. C. Du. “NVLSM: A Per-
sistent Memory Key-Value Store Using Log-Structured
Merge Tree with Accumulative Compaction.” In: ACM
Trans. Storage 17.3 (Aug. 2021). ISSN: 1553-3077.
DOI: 10.1145/3453300.

[56] Shengan Zheng, Morteza Hoseinzadeh, and Steven
Swanson. “Ziggurat: A Tiered File System for Non-
Volatile Main Memories and Disks.” In: 17th USENIX
Conference on File and Storage Technologies (FAST
19). Boston, MA: USENIX Association, Feb. 2019,
pp. 207–219. ISBN: 978-1-939133-09-0. URL: https:
/ / www . usenix . org / conference / fast19 /
presentation/zheng.

USENIX Association 2022 USENIX Annual Technical Conference    949

https://doi.org/10.1145/2592798.2592810
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.1109/NVMSA.2016.7547178
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://doi.org/10.1145/3132747.3132761
https://doi.org/10.1145/3132747.3132761
https://www.usenix.org/conference/fast19/presentation/yang
https://www.usenix.org/conference/fast19/presentation/yang
https://www.usenix.org/conference/fast20/presentation/yang
https://www.usenix.org/conference/fast20/presentation/yang
https://www.usenix.org/conference/osdi-06/explode-lightweight-general-system-finding-serious-storage-system-errors
https://www.usenix.org/conference/osdi-06/explode-lightweight-general-system-finding-serious-storage-system-errors
https://www.usenix.org/conference/osdi-06/explode-lightweight-general-system-finding-serious-storage-system-errors
https://www.usenix.org/conference/osdi-06/explode-lightweight-general-system-finding-serious-storage-system-errors
https://www.usenix.org/conference/hotstorage19/presentation/yoshimura
https://www.usenix.org/conference/hotstorage19/presentation/yoshimura
https://doi.org/10.1145/3453300
https://www.usenix.org/conference/fast19/presentation/zheng
https://www.usenix.org/conference/fast19/presentation/zheng
https://www.usenix.org/conference/fast19/presentation/zheng




AlNiCo: SmartNIC-accelerated Contention-aware Request Scheduling
for Transaction Processing

Junru Li Youyou Lu∗ Qing Wang Jiazhen Lin Zhe Yang Jiwu Shu

Department of Computer Science and Technology, Tsinghua University
Beijing National Research Center for Information Science and Technology (BNRist)

Abstract
High-performance transaction processing needs to sched-
ule numerous requests from the network. However, such
request scheduling comes with costs of complex informa-
tion gathering and considerable computation. We observe
that emerging SmartNICs pose opportunities for transaction
scheduling with low overhead. In this paper, we propose Al-
NiCo, which leverages SmartNICs to intelligently schedule
incoming transaction requests to CPU cores, minimizing inter-
transaction contention with low latency. AlNiCo describes
the contention according to system states in a way that Smart-
NICs can efficiently process, and co-designs hardware and
software to enable flexible and adaptive scheduling. We im-
plement AlNiCo using FPGA-equipped Innova-2 SmartNICs,
and our evaluation shows that AlNiCo boosts the throughput
by 1.30× ∼ 2.68× and reduces the latency by up to 48.8%.

1 Introduction

Transaction processing is a critical building block for many
applications such as e-commerce and the stock exchange.
Over the last few years, two trends in transaction process-
ing stand out. First, network bandwidth has improved sig-
nificantly, enabling a surge of transaction requests from the
network. Second, modern servers are equipped with numer-
ous CPU cores, providing abundant computing capacity for
transaction processing [1–4]. These two trends together pose a
crucial problem: how to schedule each individual transaction
request to the most appropriate CPU core? Using a sophisti-
cated scheduler for transaction processing can mitigate lots
of inter-transaction contention (i.e., two transactions concur-
rently access the same record, and at least one performs a
write), reducing transaction aborts/blocking and thus boosting
system throughput.

There are two setbacks in realizing efficient transaction
scheduling. First, it is hard to gather necessary information

∗Youyou Lu is the corresponding author (luyouyou@tsinghua.edu.cn).

for scheduling in consideration of cost-efficiency. This is be-
cause the transaction system is intricate: each request contains
a write/read-set with multiple records, and different records
have different degrees of hotness [5–7] and affinities. The hot-
ness and affinity are dynamic: for example, in the live selling
platform of Kuaishou, product popularity changes over time
due to the behavioral uncertainty of users. Second, transaction
scheduling incurs considerable computation overhead. For an
incoming request, to calculate which CPU core it executes
on causes the least contention, the scheduler has to consume
computation cycles that are proportional to the number of
CPU cores and the request’s write/read-set size.

We observe that exploiting emerging SmartNICs [8, 9] can
enable efficient transaction scheduling for two reasons. First,
every transaction request/response flows through NICs, so
they are the natural place to gather information about schedul-
ing. Second, transaction scheduling requires considerable
computation, and SmartNICs are equipped with specialized
programmable hardware (e.g., FPGAs), which is adept in fine-
grained parallelism. Thus, SmartNICs can serve numerous
concurrent scheduling tasks with low latency.

It is non-trivial to design transaction scheduling using
SmartNICs. First, we need to describe inter-transaction con-
tention in a hardware-friendly manner so as to squeeze out the
parallelism capabilities of the specialized hardware in Smart-
NICs. Second, it is impossible for SmartNICs to perform all
scheduling tasks since CPU-side transaction software owns
important information about transaction execution, e.g., the
abort rate, which is indispensable for scheduling. Thus, to
enable effective transaction scheduling, SmartNICs should
cooperate with upper-level transaction software.

We propose AlNiCo, a transaction processing system with
on-NIC request scheduling. At the core of AlNiCo is a
SmartNIC-accelerated contention-aware scheduler; it sched-
ules incoming transaction requests to different CPU cores in-
telligently, minimizing contention between transactions with
low latency.

To describe the inter-transaction contention in a hardware-
friendly manner, we first classify system runtime states into

USENIX Association 2022 USENIX Annual Technical Conference    951



clientsclients

data

clients

data:{A, B, C, …, T, …} data

Contention

Batching & Grouping

(a) (b) (c)

Data Partitioning

txn1txn0

clients

data

(d)

txn0,1

id=Sched(txn)

runtime states

txn2

worker threads
host

NICFPGA

On-path SmartNICs

PCIe switch

NIC FPGA

Off-path SmartNICs

PCIe

network

Txn1:
{A=0, T=1}

Txn0:
{A=1, T=0}

Figure 1: The architectures of networked transaction systems (a-d). (a): A system without scheduling. (b): A system using
the static data partitioning method. (c): A system using the batching-based scheduling method. (d): AlNiCo.

three types: 1) request state, i.e., the set of records accessed
by a request and the associated access modes (read and write);
2) worker state, i.e., the set of requests being executed by the
worker thread on each CPU core; 3) global state, i.e., work-
load characteristics such as hotspots. Then, we encode the
above three types of states into compact vectors and translate
contention calculation into fast vector computation on Smart-
NICs. For an incoming request, to calculate its contention
against different CPU cores, the scheduler compares the re-
quest state and each worker’s worker state, with the global
state as the weight. We optimize the calculation process via
fine-grained parallelism, ensuring low scheduling latency.

To enable adaptive scheduling for time-varying applica-
tions, AlNiCo adopts a feedback mechanism from the upper-
level transaction software to the SmartNICs. Specifically, soft-
ware in AlNiCo periodically samples the global state as the
scheduling guideline and updates the on-NIC scheduler by
flexible hardware/software interfaces. In this way, AlNiCo
can handle dynamic workloads in which hotspots change over
time. In addition, via the generalized feedback mechanism,
AlNiCo can support various concurrency control protocols.

We implement AlNiCo with Mellanox Innova-2 [8], a
SmartNIC equipped with an FPGA. The evaluation shows
that AlNiCo reduces the abort rate by contention-aware
transaction scheduling. AlNiCo boosts the throughput by
1.30× ∼ 2.68× than the original system with various con-
currency control protocols. In addition, compared with ex-
isting static data partitioning methods, AlNiCo can handle
time-varying and skewed workloads; compared with batching-
based scheduling methods, AlNiCo schedules requests in real-
time and renders latency two orders of magnitude lower.

In summary, we make the following contributions:

• A SmartNIC-enabled contention-aware transaction sched-
uler that offers low overhead by exploiting the acceleration
provided by the FPGA.

• AlNiCo, a transaction processing system based on the
scheduler, supporting various concurrency control proto-
cols and time-varying workloads.

• An AlNiCo prototype on real hardware, exhibiting higher
throughput, lower latency, and less abort rate.

2 Background and Motivation

2.1 Contention-aware Scheduling

In an in-memory single-server transaction system, as shown
in Figure 1 (a), the NIC receives transaction requests and dis-
patches them to worker threads. Each transaction request of-
ten includes multiple write/read operations to the in-memory
records. Worker threads execute transactions using various
concurrency control protocols to guarantee transaction isola-
tion. However, concurrent transactions are more likely to be
aborted or blocked when there is contention (i.e., two trans-
actions concurrently access the same record, and at least one
performs a write). Aborts result in costly retries, and blocking
may be cascaded, both of which degrade performance [3].
Therefore, the transaction system needs to minimize con-
tention among concurrent transactions [10–22]. Designing a
contention-aware scheduler that schedules conflicting trans-
actions to the same worker threads is meaningful. However,
there is an accuracy-overhead trade-off in designing it.

Accuracy-overhead trade-off. A high-accuracy scheduler
can assist the majority of requests in selecting an appropriate
(i.e., with less contention) worker thread to execute on. To
achieve such accuracy, the scheduler incurs much computa-
tion overhead. Unlike single-key get/put requests in key-value
stores, transaction requests are more sophisticated, containing
multiple operations (reads, writes, and range queries) to mul-
tiple records. The packet steering method [23, 24] based on
RSS [25] or Flow Director [26], which embeds a single key
in the packet header as the request dispatching information,
is no longer effective for transaction requests. Furthermore,
the records have different degrees of hotness (i.e., a small set
of records are accessed frequently) and affinities (i.e., two
records are often accessed together). The hotness and affinity
are also constantly changing. As a result, contention-aware
scheduling is time-consuming and induces high overhead for
high accuracy.

2.2 Existing Scheduling Methods

We revisit two transaction scheduling methods and show their
choices in the accuracy-overhead trade-off.

952    2022 USENIX Annual Technical Conference USENIX Association



Static data partitioning method. As shown in Figure 1 (b),
recent studies [10–12] maintain a data partition scheme, i.e.,
a mapping from records to worker threads. Clients know the
partition scheme and send transactions directly to worker
threads without scheduling. Then, each worker thread ex-
ecutes the transactions that access records in a single par-
tition sequentially. Further, Jepsen et al. [15, 16] use a pro-
grammable switch to triage transactions belonging to different
data partitions before sending them to the database server.

This method is effective for partitionable workloads where
transactions tend to access records in a single partition be-
cause it has no scheduling overhead under such workloads.
However, this method sacrifices the accuracy for two types
of workloads: Ê workloads that do not have a good parti-
tion scheme and Ë workloads whose record affinities and
degrees of hotness are constantly changing. In the first type
of workloads, many transactions are cross-partition. These
transactions require synchronization between worker threads
to access remote partitions. In the second type of workloads,
the partition scheme needs to be updated to follow workload
changes. Recent studies all use offline computation on work-
load traces to generate the partition scheme; therefore, this
method can not react to the changes in workloads in time and
introduces load imbalance when hotspots change.
Batching-based scheduling method. As shown in Fig-
ure 1 (c), in this method, worker threads collect a batch of
transactions and divide the batch into n groups (n is the
worker thread count), intending to minimize contention be-
tween groups. After that, each worker thread executes a trans-
action group with almost no contention. Specifically, recent
studies on this method [18–21] use a graph partition algo-
rithm that treats transactions as nodes, contention between
them as edges, and transaction groups as sub-graphs.

This method is adaptive and can react to changes in work-
loads. Moreover, it avoids load imbalance by guaranteeing
even grouping (i.e., high accuracy). However, it introduces
high latency for batching (i.e., high overhead). For example,
in a state-of-the-art system, Strife [21], the batch size is 10K,
which adds about 5ms latency for requests. This is insuffer-
able for in-memory transaction systems [22] which usually
have microsecond-level latency.

2.3 Scheduling with SmartNICs
We observe that exploiting emerging SmartNICs (as shown
in Figure 1 (d)) is promising to break the accuracy-overhead
trade-off due to the following two advantages.

First, every transaction request/response flows through the
NIC, so the NIC is the natural place to implement a scheduler,
which can route packets to any worker thread and keep track
of running/queuing transactions on each worker thread. Then,
with this piece of information, NICs have an opportunity
to make accurate and adaptive scheduling decisions. Recent
studies [23,27–29] leverage the NIC as a scheduler to dispatch
key-value requests, addressing the load imbalance or head-of-

line blocking problems. However, they do not take transaction
semantics into consideration.

Second, FPGA-equipped SmartNICs can perform lots of
computation to generate accurate scheduling decisions with
low latency. FPGA-equipped SmartNICs allow users to cus-
tomize network processing logic. Also, the FPGA modules
can reduce scheduling overhead with hardware acceleration
instead of amortizing it by batching transactions. Recent stud-
ies [30–36] also show that packet manipulation processes
with data/pipeline parallelism (i.e., encryption and serializa-
tion) are suitable to be offloaded to the FPGA modules on
SmartNICs. Such offloading can accelerate networking and
relieve the host-side CPU/memory burdens.

FPGA-equipped SmartNICs can be divided into two cate-
gories, on-path and off-path, as shown on the right of Figure 1.
They vary in the connection architecture between the FPGA
and other NIC components. In an on-path SmartNIC, the
FPGA is located between network ports and the NIC ASIC.
In this type of SmartNICs, the FPGA modules need to process
all link-layer network traffic, complicating the FPGA logic.
Contrarily, in an off-path SmartNIC, the NIC ASIC is the
same as that of a standard NIC, and packets are routed to
either the host or the FPGA by an on-board PCIe switch. We
use an off-path SmartNIC, Mellanox Innova-2 [8], so that we
can focus on the scheduling logic while leaving sophisticated
network functions (e.g., reliable delivery and ordering) to the
full-fledged NIC ASIC.

Mellanox Innova-2 [8] has a ConnectX-5 NIC ASIC and
a Xilinx XCKU15P FPGA. It has two 25Gbps ports and
uses PCIe 3.0 ×8 to connect the NIC ASIC, the FPGA,
and the CPU. The CPU communicates with the FPGA via
MMIO (memory-mapped IO) or the FPGA’s DMA engine.
The ConnectX-5 NIC ASIC supports RDMA (remote direct
memory access), through which remote clients can read/write
the server’s memory while bypassing the server’s CPUs.

Challenges of transaction scheduling with SmartNICs. It
is non-trivial to design a transaction scheduler using Smart-
NICs due to the following challenges: 1) The FPGA is adept
in fixed and simple execution flows. We need to describe com-
plicated inter-transaction contention in a hardware-friendly
manner to squeeze out the FPGA’s parallelism capabilities.
2) Worker threads have important information about trans-
action execution, e.g., abort rate, which is indispensable for
scheduling. Thus, to enable effective transaction scheduling,
worker threads should gather this information as feedback
to adjust the scheduler. 3) Transaction systems use various
concurrency control protocols and face various workloads;
however, the FPGA redesign is costly. It is difficult for an
application-specific FPGA-based scheduler to support vari-
ous transaction systems [37, 38]. To be generalized for all
transaction systems, the scheduler design (e.g., request for-
mat, scheduling algorithm, and feedback interfaces) should
not encode any application-specific characteristics.

USENIX Association 2022 USENIX Annual Technical Conference    953



SmartNIC

…

NIC ASIC

…

RPC data

FPGA

RPC features

poll CQ

PCIe

…
RPC reply

Host

network

§3.2

§3.3

feedback

 





 MMIO

DMA

…workers

analyzer

Figure 2: A scheduling-enabled RPC with SmartNICs.

3 AlNiCo

3.1 Overview
To reduce the inter-transaction contention and break
the accuracy-overhead trade-off, we propose AlNiCo, a
SmartNIC-accelerated contention-aware request scheduler.
AlNiCo uses hardware acceleration of the FPGA for low over-
head and provides generalized software feedback interfaces
for high accuracy.

Transaction systems typically provide a stored procedure
interface, where each type of transaction is compiled into
a procedure, and clients issue transactions via remote pro-
cedure calls (RPCs). To achieve request scheduling, Smart-
NICs need to parse the procedure parameters and then de-
tect inter-transaction contention. However, the parameters are
application-specific, including keys that the transaction will
access, the access modes (read/write), the values that the trans-
action will write, and so on. The format of the parameters
also varies across applications.

Therefore, in order to support diverse applications with-
out encoding application-specific properties, we include a
fixed-form header in each request. Clients need to convert the
parameters into the fixed-form header. We call this the request
feature vector. Scheduling also needs the information on run-
ning/queuing transactions in worker threads and workload
characteristics. AlNiCo encodes them in a hardware-friendly
manner and leverages the data and pipeline parallelisms of
the FPGA to make scheduling decisions (§3.2).

We design a scheduling-enabled RPC with SmartNICs
as the communication mechanism between clients and the
server, allowing the FPGA to receive requests and schedule
them. Figure 2 describes its workflow. The server maintains a
data buffer on the host memory and a feature vector buffer on
the FPGA. To issue a transaction, the client sends the data (Ê)
and the feature vector (Ë) to their respective buffers via two
one-sided RDMA writes posted together. AlNiCo’s scheduler
(on the FPGA) polls the feature vector buffers to determine
the arrival of new requests. The scheduler then selects the
most appropriate worker thread based on the request’s feature
vector, the runtime states of worker threads, and the workload
characteristics. After making the scheduling decision, the

scheduler notifies the selected worker thread via writing its
receive completion queue (CQ) (Ì). The CQ entry includes
only the address of request data but not the feature vector.
Since RDMA enforces ordered writes, after reading a new
CQ entry (Í), the worker thread can get the completed data
from the RPC data buffers. The worker thread then executes
the transaction and replies to the client via a normal RDMA
write (Î).

To make the scheduler adaptive to workload changes, Al-
NiCo employs a software feedback mechanism (§3.3). It al-
lows the software to use information about transaction exe-
cution (e.g., records that cause transactions to be aborted) to
guide the scheduler. The feedback interface is generalized
for various concurrency control protocols and different work-
loads. The FPGA fetches the feedback periodically via DMA
reads outside the critical path.

3.2 Accelerated Scheduling on The Hardware
To describe the inter-transaction contention and schedule
transactions in a hardware-friendly manner, we identify three
types of states for scheduling: request state (§3.2.1), worker
state (§3.2.2), and global state (§3.2.3). We then encode the
states into compact vectors and translate the scheduling algo-
rithm into the fast vector computation, which is well-suited
for the FPGA (§3.2.4).

3.2.1 Request state

AlNiCo uses the request state to describe the resources re-
quired by a transaction. Clients embed the complex param-
eters of a transaction request into a request feature vector.
Specifically, each feature vector ( ~freq) has L elements1. We
use a mapping function to divide all records into L groups.
Each element in the vector represents whether the transaction
will access the corresponding group of records. The mapping
function is the same in all clients. To generate the feature vec-
tor, clients enumerate the keys2 in the request parameters and
set the corresponding elements. Each element can be encoded
into either 1-bit or 2-bit element. A 1-bit element describes
two access modes: no operation and access (read or write).
A 2-bit element describes three access modes: no operation,
read, and write, having better expressibility but consuming
more space. The scheduler can use the feature vectors of re-
quests to estimate whether contention exists between them.
For example, if two requests set the same element in their
feature vectors, these two requests might have contention.
The mapping function for generating feature vectors. The
mapping function is used to select a group for a given key.
Clients use a hash function to calculate a hash value (v) for
each key and use v % L as the group number. Due to hash colli-
sions, clients might map two different keys to the same group.

1All vectors have a length of L in this paper.
2The primary keys of records.

954    2022 USENIX Annual Technical Conference USENIX Association



C
D

F 
(%

)
Uniform
random hash
+ R1
+ R1 and R2

Mapping
collision (%)

0

50

100

0 20 40 60 80 100

Figure 3: Mapping collisions of two New-order txns.

To reduce the negative impact of hash collisions, AlNiCo im-
poses two requirements (R) on the mapping function. First,
transaction systems manage records with different seman-
tics in different tables (e.g., the CUSTOMER table and the
ORDER_LINE table in TPC-C) and access records through
〈table_id, key〉. Therefore, clients should map the keys of
different tables into different groups (R1). For example, if
an application has two tables, the mapping function maps
the keys of one table to L2 groups and maps the keys in the
other table to the other L2 groups. Second, because different
tables can have different sizes (i.e., numbers of records), the
number of groups of a table should be proportional to its size
(R2). We test the CDF of the mapping collisions between
New-order transactions in TPC-C, as shown in Figure 3. The
mapping function with these two requirements reduces the
mapping collisions compared with the simple uniform ran-
dom hash. Note that when the table count is large, all tables
should instead share the feature space since there are not
enough elements in the feature vector.
Discussion. There are two corner cases worth discussing
when describing the request state.
How to handle data growth. In our current design, the feature
vector length L and the key-to-feature mapping function are
static at runtime. When the amount of data grows, AlNiCo
does not need to increase L correspondingly in most cases.
This is because the determinant of mapping collisions is the
amount of hot data instead of the data in the entire system;
only a small amount of data is accessed frequently. However,
if changing L or the mapping function is a must (e.g., when
the hotspot size changes significantly), AlNiCo can reload the
on-NIC scheduler with the new configuration (which takes
4.18ms on Innova-2 in our evaluation). In that case, clients
also need to update the new configuration.
How to describe pre-unknown keys. Clients specify most of
the keys of the records that a transaction will access in the
request’s parameters. However, some keys are pre-unknown
and can only be determined through transaction execution. To
describe the required resources for these transactions more
accurately, AlNiCo employs the following two speculative
optimizations. First, for transactions containing range queries,
clients randomly generate the keys in the ranges and set the
corresponding elements of the request feature vector. Second,
for transactions that access records via non-primary keys, the
client maintains a secondary-index cache, which maps each
non-primary key to a set of primary keys, to determine the
records that those transactions will access.

no op read write read & write
request feature vector ~freq 00 10 01 01
worker feature vector ~fw 00 01 11 11

Table 1: Encoding of read and write modes.

3.2.2 Worker state

AlNiCo uses the worker state to describe the resources that
are being or will be accessed by worker threads. Each worker
thread has different running/queuing transactions. Therefore,
a state of the i-th worker thread is the union of the feature
vectors of its running/queuing transactions. We call it the
worker feature vector ( ~fwi

for the i-th worker). This vector
has the same format as the request feature vector. Further,
to allow worker threads to steer requests actively, AlNiCo
introduces the other worker state, called the worker steering
vector. Each worker thread maintains a steering vector with
1-bit elements ( ~swi for the i-th worker). Worker threads can
set their steering vectors via the software feedback interface,
which is described in detail in §3.3.2.
How to describe the contention. AlNiCo uses the bitwise
AND (&) operation to describe the contention between a new
request and the running/queuing requests in a worker. When
the element in the feature vector is 1-bit, AlNiCo encodes
request features and worker features in the same way, where
1 represents access (read or write) and 0 represents no opera-
tion. The AND operation between request features and worker
features estimates all concurrent accesses to the same group.
When the element is 2-bit, AlNiCo encodes the access modes
in request features and worker features in different ways, as
shown in Table 1. The result of AND operation between the
request features and the worker features describes read/write
and write/write accesses to the same group as contention.
How to maintain worker feature vectors. The scheduler
maintains a feature vector queue (FVQ) for each worker. The
FVQ stores the feature vectors of the worker’s running/queu-
ing requests ( ~freq), in the same order as the requests in the
worker’s CQ. The new worker feature vector is recalculated
on adding/deleting an ~freq to/from the worker’s FVQ. Specifi-
cally, for each worker, the scheduler keeps two counter vectors.
A counter vector counts the number of read requests on dif-
ferent groups, and the other vector counts the write requests.
When a request is added/deleted, the scheduler updates the
counter vectors and then converts them to the aforementioned
worker feature vector with the FPGA’s parallelism.

When a request completes, the scheduler needs to remove
its feature vector from the FVQ. One naive method is to let
the worker thread notify the scheduler after executing the
request. However, it requires an additional MMIO operation,
which may slow down the system. AlNiCo designs a lazy
updating mechanism. Specifically, the scheduler will check
the completed requests only when the scheduler pushes a new
request to a worker’s CQ. This can be done efficiently through
the FPGA’s DMA without invoking the CPU.

USENIX Association 2022 USENIX Annual Technical Conference    955



State of Name Format Maintainer
request feature: ~freq vector: 2-bit × L client

worker feature: ~fw vector: 2-bit × L scheduler
steering: ~sw vector: 1-bit × L

worker thread
global weight: ~W vector: 8-bit × L

worker-set table type→ worker set

Table 2: The states used for making scheduling decisions.

3.2.3 Global state

AlNiCo uses the global state to describe workload character-
istics. Real-world applications have skewed access patterns,
where some records are accessed frequently (i.e., hotspots).
These hot records are the main source of contention. There-
fore, in AlNiCo, one of the global states is the weight vector.
Each element in the vector has 8 bits and is the weight of a
group. The element actually represents the total sum hotness
of the keys in a group. To make our scheduler adaptive to
hotspot changes, the weight vector is dynamically updated by
the software, and the feedback interface is detailed in §3.3.1.

The other global state is the worker-set table, which stores
a set of worker threads for each request type. The scheduler
selects a worker only from each request type’s worker set. This
is used to avoid the head-of-line blocking for long-running
requests, which is described in detail in §3.3.3.

3.2.4 Making scheduling decisions

As summarized in Table 2, states are formatted in vectors with
length L, except for the global worker-set table. Therefore, the
scheduler can use fast vector computation to make scheduling
decisions. For each new request, the scheduler performs the
following three steps.
Step#1. The scheduler searches the worker-set table to get
the set of workers for this type of transaction.
Step#2. For each worker, the scheduler calculates a con-
tention rank (rankwi for the i-th worker) between the new
request and the running/queuing requests in the worker. The
contention rank is calculated using the following formula:

rankwi =
(
sign ( ~freq AND ~fwi

) AND ~swi

)
DOT ~W

Here we assume elements in steering vectors ( ~swi) are 1.
When each element in feature vector is 2-bit, AlNiCo needs
the sign function to transform the result of ( ~freq AND ~fwi

) to a
vector with 1-bit elements for later calculations. If the input is
greater than 0, the result of the sign function is 1, otherwise it
is 0. This result ~resi

3 represents the same groups accessed by
the new request ( ~freq) and the i-th worker’s running/queuing
requests ( ~fwi

). The contention rank of the i-th worker is the
weighted sum (~W) of ~resi.

3We denote the results of sign ( ~freq AND ~fwi
) AND ~swi as ~resi.

scheduling  decision

L/8…
28 Results

log2
L

8
൝ log2n

൝

൝+ +

+

n
8-bit unit

൝

max()

28 Results…w

res𝒊

ranki max()

max()

8-bit unit …
rank0 rankn-1

Figure 4: Hardware acceleration for scheduling.

Step#3. The scheduler selects the worker with the highest
contention rank among n workers4 to route the request.
Hardware acceleration. We leverage the FPGA to accelerate
the scheduling calculation, including the AND (&) and DOT
PRODUCT (·) to compute the contention rank of each worker,
and the MAX to select a worker with the highest rank.

(1) We leverage the FPGA data parallelism to calculate all
bits simultaneously during the AND operation.

(2) Because each element in ~resi is 1-bit, the DOT PRODUCT
operation between ~resi and ~W is actually a summation op-
eration, which adds a weight value into the sum only if the
corresponding bit in ~resi is 1. We optimize the summation
via a binary tree reduction algorithm. As illustrated in Fig-
ure 4, the reduction algorithm executes the + operation in
parallel using many computation units. Each unit adds two
values in the L inputs, and then the L2 results become new
inputs. It repeats this process until there is only one result left.
This algorithm only needs to execute log2 L times but uses L2
computation units. To save the computation units, we trade
memory consumption. Because the weight vector is period-
ically updated, it is constant for a period. The FPGA stores
the results of the DOT PRODUCT between different ~resi and the
constant ~W in advance. However, ~resi has 2L cases, and it is
impractical to store all results. Therefore, we divide ~resi into
L
8 segments. Each segment includes 8 bits and has 28 = 256
results. There are L8 ×28 results in total, small enough to be
stored in the FPGA’s memory. The FPGA still uses the reduc-
tion algorithm to compute the sum of these segments’ results.
Storing segment result trades the memory for reducing the
number of computation units from L

2 to L
16 .

(3) The MAX operation is to find the highest value among
n values. As shown in Figure 4, the FPGA uses the MAX
reduction algorithm, which requires only log2 n steps.

These hardware optimizations are leveraged to reduce the
overhead of making accurate scheduling decisions.

3.3 Adaptive Feedback from The Software
To make the scheduler adaptive to the changes in workload
characteristics, AlNiCo allows the software to set the follow-
ing three states: the weight vector ~W (§3.3.1), the workers’
steering vectors ~sw (§3.3.2), and the worker-set table (§3.3.3).
AlNiCo provides generalized feedback interfaces to worker
threads and uses a lightweight analyzer thread to update the

4We denote n as the worker count in the following paper.

956    2022 USENIX Annual Technical Conference USENIX Association



1 void hotness_feedback(i: worker id, key){
2 hotness[i][hash(key)]++;
3 }
4

5 void affinity_feedback(group_A, group_B){
6 set_affinity(group_A, group_B)
7 }
8

9 void worker_set_feedback(txn_type, worker_set);
10

11 void update_weight(E: epoch id){ // Sec.3.3.1
12 TP(E) =

∑n−1
i=0 tpi

13 ~hall =
∑n−1

i=0
~hi ×tpi / TP(E)

14 if ( E == 0 || TP(E) < (1-c) × TP(E-1) )

15 update ~W based on ~hall // normalization

16 next_epoch(): clear tpi and ~hi
17 }
18

19 void update_steering(~w){ // Sec.3.3.2
20 g_groups = [] // the indexes of guideline groups

21 for weight in sorted ~W { // from the highest
22 new_group = weight.index;
23 if no_affinity(new_group, g_groups)
24 g_groups.append(new_group);
25 if (g_groups.size() == n) break;
26 }
27 update steering vectors based on g_groups
28 }

Listing 1: The feedback interfaces and algorithms.

scheduler’s states based on the feedback. Listing 1 shows
the feedback interfaces and the algorithms for translating the
feedback into the states needed by the scheduler.

3.3.1 Hotness feedback

We define the keys that cause contention frequently as the
hotspots in the transaction system, instead of the keys that
are accessed frequently. The hotspots keep changing over
time. AlNiCo requires the software to identify the hotspots in
real-time and update the weight vector correspondingly.
Hotness feedback interface. We provide a hotness feedback
interface as shown in Lines 1-3. Each worker increases the
hotness of a key in its exclusive hotness vector (~hi) without
any coordination with other workers. Different concurrency
control protocols invoke the interface in different situations,
and we divide them into two cases based on the way they
address the contention. First, with OCC and the 2PL that
avoids deadlock by wait-free algorithms, transactions might
get aborted and re-executed. The worker increases the hotness
of the record that causes the abort. Second, with the 2PL
that holds locks sequentially to avoid deadlock, transactions
might be blocked while trying to acquire a lock. Every time a
transaction retries acquiring the lock of a record, the worker
increases the corresponding hotness.
How to update the weight vector. AlNiCo employs an
epoch-based updating approach. The analyzer thread collects
these hotness vectors at the end of each epoch. Further, each
worker measures its throughput (tpi). Then, as shown in Line
13, the analyzer calculates the weighted average (based on
tpi) of workers’ hotness vectors as the global hotness vector
( ~hall) and uses it to update the weight vector (Line 15).

When to update the weight vector. AlNiCo updates the
weight vector only when the real hotspots change. When the
system is cold-started (e.g., in epoch 0), requests are randomly
scheduled, and therefore ~hall can reflect the real hotspots.
However, when the system is stable, due to AlNiCo’s effective
scheduling mechanism, those hot keys detected right after the
cold start no longer cause contention, and their degrees of
hotness is low in the new ~hall. In this case, ~W should remain
unchanged to keep the scheduler effective.

The software uses throughput decreases or abort rate in-
creases as the signal of the hotspot changes. Line 14 shows
how to detect changes in hotspots. In this algorithm, we use
the throughput (TP) decreases as the signal. If the throughput
decreases significantly, i.e., TP drops by more than a factor of
c, AlNiCo will store ~hall in a state buffer that can be read by
the NIC via DMA.

When the workload is read-intensive, workers increase the
hotness every time a record is read. The analyzer simply
ignores the workload change signal and always updates the
weight vector at the end of epochs. In this way, AlNiCo helps
worker threads to better leverage cache locality.

3.3.2 Affinity feedback

A contention-aware scheduler not only schedules conflicting
transactions to the same workers but also schedules trans-
actions without contention to different workers to make all
workers busy. To this end, AlNiCo introduces the steering
vectors ( ~sw) to guide the scheduler. As shown in the formula
in §3.2.4, only if the element in a worker’s steering vector
( ~swi ) is 1, the corresponding element in its feature vector ( ~fwi

)
is valid. The key idea is to select n (i.e., worker count) guide-
line groups that have the highest weights and do not have
affinities with each other. AlNiCo assigns different guideline
groups to different workers to achieve the aforementioned
goal. Each worker’s steering vector consists of 1-s for its
assigned guideline group and all non-guideline groups by de-
fault. For other guideline groups, the corresponding element
in the steering vector is 0. In this way, the worker will steer
transactions accessing its guideline group. Therefore, in a
running system, the feature vector of a worker represents the
groups that have affinities with the worker’s guideline group.
Affinity feedback interface. To find the n guideline groups,
AlNiCo needs the affinity characteristics of workloads. We
provide the affinity feedback interface (Lines 5-7) that allows
users to offer the affinity hint for different workloads.
How to update the steering vectors. As shown in Lines 19-
28, the analyzer thread first sorts all groups according to their
weights and enumerates them from the group with the highest
weight. Then, the analyzer thread checks whether the group
has an affinity with the already found guideline groups. If
there is no affinity between them, the group will be labeled as
a new guideline group.

USENIX Association 2022 USENIX Annual Technical Conference    957



3.3.3 Reserving workers for long-running transactions

In real-world workloads, some transactions take a long time to
finish (e.g., analytical transactions) and block the transactions
assigned to the same worker (i.e., head-of-line blocking). For
example, a Delivery transaction accesses about 10 times more
keys than a New-order transaction. We reserve some workers
to handle these long-running transactions, which is similar to
the size-aware request scheduling mechanism [39, 40]. We
provide an interface to set the worker set for different types
of transactions. Our design only sets the worker-set table
on the system startup for workloads that have long-running
transactions.

4 Implementation
We implement AlNiCo on an Innova-2 SmartNIC [8] and use
STO [41], a state-of-the-art transaction processing framework,
as the backend transaction processing module.
The scheduler on the FPGA. We implement two fundamen-
tal drivers for SmartNICs: a PeerDirect driver [42,43] to build
peer-to-peer communication between the NIC ASIC and the
FPGA, and a DMA driver [44] to connect the FPGA and the
host. Innova-2 holds a Xilinx KU15P FPGA. In our implemen-
tation, the feature vector length L is 512, and we encode read-
/write modes to the same bit to save feature space. The clock
frequency is 250MHz. With these configurations, AlNiCo con-
sumes 54 cycles for each request to make the scheduling deci-
sion. AlNiCo updates global states every 1024 requests (every
22ms) in the background, consuming 1184 cycles. Therefore,
we set the epoch size for gathering the feedback in software to
20ms. The implementation consumes 159K (30.48%) LUTs,
157K (15.10%) FFs, and 678.5 (68.95%) BRAMs. We evalu-
ate the computation cycles and resource usage with different
feature vector lengths in §5.6.
The transaction processing module on the host. We choose
STO as our backend transaction processing module because it
implements various CC protocols in the same framework and
is high-performance. To use STO, we locate the contention
handling function in the framework and then add feedback
interface codes to these functions. The parameters of this
feedback interface are the records that triggered the contention
handling function. On the client side, we do not modify the
original request format of the stored procedure, and we only
add the field for the feature vector in the request header. We
use the following four concurrency control (CC) protocols in
the STO framework:
• OCC: it is based on Silo [45], which avoids allocating

global timestamps to improve multi-core scalability.
• TicToc [46]: it is an OCC variant that assigns commit times-

tamps dynamically according to read/write set.
• MVCC: it is based on Cicada [47], which optimizes the

management of the timestamps and multi-version values.
• 2PL [48, 49]: it uses NO_WAIT to avoid deadlock; when a

transaction fails to acquire a lock, it immediately aborts.

All four concurrency control protocols run at the serializable
isolation level. The table indexes use Masstree [50], which
supports range queries.

5 Evaluation

We evaluate AlNiCo under various workloads and seek to
answer the following five questions:
1. How does AlNiCo perform compared with existing trans-

action scheduling methods (§5.2)?
2. How does AlNiCo react to dynamic workloads (§5.3)?
3. Why are SmartNICs necessary for the contention-aware

request scheduling (§5.4) ?
4. How compatible is AlNiCo with various concurrency con-

trol protocols (§5.5) ?
5. What are the overhead and the limitation incurred by the

on-NIC scheduler in AlNiCo (§5.6)?

5.1 Experimental Setup

Experimental environment. We run all experiments on three
machines, one as the server and two as clients.
Hardware settings. Each machine is equipped with two 12-
core Xeon E5-2650 v4 2.20GHz CPU sockets, PCIe 3.0 inter-
faces, and memory of 128GB. The database server is equipped
with a dual-port 25Gbps Innova-2 SmartNIC. Each client is
equipped with one 100Gbps Mellanox ConnectX-5 NIC. They
are connected by a 100Gbps Mellanox switch.
Software settings. Each client thread issues up to 4 transac-
tion requests simultaneously (i.e., the queue depth is 4). We
adjust the number of clients and the number of asynchronous
requests per client to change the test pressure. The server uses
20 cores for worker threads, 2 cores for long-running trans-
actions in TPC-C workloads, and one core for the analyzer
thread and performance measurement. For a fair comparison,
the competitors use the RDMA-based RPC with optimiza-
tions from previous RDMA systems [51–58], and only use
the normal ASIC part of the Innova-2 NIC. We evaluate the
performance of this RPC against our scheduling-enable RPC
in §5.6.

Workloads. We use the following benchmarks:
TPC-C [6] simulates the activity of a wholesale supplier with
five types of transactions. We use the full-mix TPC-C. AlNiCo
reserves two cores for the long-running delivery transactions.
YCSB-T is a transactional extension of YCSB, which is a
popular KV store benchmark [59]. It has 20 tables as many as
the worker threads, and the key space is 100M. Each record
contains an 8-byte key and a 384-byte value [39, 60]. Each
transaction accesses 16 records in a single table, and the keys
are generated according to the Zipf distribution (θ=0.99).
YCSB-HOT is a dynamic workload based on YCSB-T. Dif-
ferent from YCSB-T, it has 100 tables, and 20 tables are hot
at one time. The hot tables are changed every two seconds to

958    2022 USENIX Annual Technical Conference USENIX Association



Th
ro

ug
hp

ut
 (M

op
s/

s) NetSTO StaticPart Strife AlNiCo
(a) (b) (c) (d) (e) (f) (g)

0
0.5
1.0
1.5
2.0

TPC-C (20 wh) TPC-C (20 wh, Zipf) TPC-C (2 wh) YCSB-T (w: 5) YCSB-T (w: 50) YCSB-T (w: 95) YCSB-HOT (w: 50)

Figure 5: Throughput. The wh in TPC-C is the number of warehouses, (a): the low-contention workload, (b): the skewed
workload under Zipf θ=0.99, (c): the high-contention workload. The w in YCSB is the percentage of write operations.

simulate the changes in time-varying applications. Keys are
generated according to the Zipf distribution (θ=1.2).
Competitors. We compare AlNiCo with five systems: a base-
line system without scheduling, two systems using existing
scheduling methods, and two CPU-based versions of AlNiCo.
NetSTO is a baseline system in which clients randomly select
a worker to send transaction requests without scheduling.
StaticPart is a system using the static data partitioning method.
For TPC-C workloads, StaticPart partitions data based on the
warehouse ID [12]. For YCSB-T and YCSB-HOT workloads,
StaticPart partitions data based on the ID of tables.
Strife [21] is a system using the batching-based method. The
batch size is 10K, and the batch waiting time is 5ms, the same
configuration as in Strife’s paper. To support batching, the
queue depth in clients is 1K.
AlNiCo-CPU-2 is a CPU-based version of AlNiCo, which
reserves two dedicated threads to execute the scheduling logic.
Each scheduler thread connects to half of the clients and
communicates with the workers through separated message
queues. The worker/global states are shared by the scheduler
threads and updated with atomic operations.
AlNiCo-CPU-N is the other CPU-based version of AlNiCo. It
co-locates the worker logic and scheduler logic in each thread,
where they multiplex the CPU resource. All threads share
the worker/global states. The client connections are evenly
distributed among threads. Each thread can make scheduling
decisions and delegate requests to others as a scheduler.

5.2 Overall Performance
We first evaluate the peak throughput of NetSTO, StaticPart,
Strife, and AlNiCo with various workloads in Figure 5. Then
we evaluate the latency of different types of transactions under
TPC-C by varying request pressure in Figure 6.
Throughput under TPC-C. We evaluate TPC-C under dif-
ferent levels of contention by varying the number of ware-
houses. We set the warehouse count to 20 and 2 to simulate
low-contention and high-contention scenarios. We also in-
troduce a skewed TPC-C, which has 20 warehouses. In this
skewed TPC-C, clients select the warehouse according to the
Zipf distribution with θ = 0.99. In StaticPart, when the ware-
house count is equal to the worker count (20), each worker
manages an exclusive warehouse, and when the warehouse

count is 2, every 10 workers manage a warehouse. For a
fair comparison, StaticPart, Strife, and AlNiCo all reserve 2
worker threads for long-running transactions. Figure 5 (a)-(c)
show the throughput of TPC-C under these configurations,
and we have the following two observations.

First, in the low-contention workloads (Figure 5 (a)), Stat-
icPart has the highest throughput, outperforming NetSTO,
Strife, and AlNiCo by 1.30×, 1.11×, and 1.06×, respectively.
This is because only 10% of the transactions are cross-
warehouse transactions, and the warehouse count is the same
as the worker count, which is a good case for the static data
partition method. The transaction grouping algorithm in Strife
and the feedback mechanism in AlNiCo cost the CPU re-
sources that are originally used for transaction execution. In
the skewed workloads (Figure 5 (b)), the throughput of Stat-
icPart is only 47% of NetSTO. This is because clients access
hot warehouses while the data partition in StaticPart is static,
which results in load imbalance.

Second, in the high-contention workloads (Figure 5 (c)),
1) AlNiCo improves throughput by 2.46× compared with
NetSTO. This is because the contention-aware scheduling
reduces the contention between the running transactions and
saves the CPU resources to execute more transactions. 2) The
throughput of AlNiCo is 2.41× higher than StaticPart. This is
because the workload is not partitionable and there is still a
lot of contention between concurrent transactions.
Throughput under YCSB-T. Figure 5 (d)-(f) show the
throughput under YCSB-T with different read/write ratios.
We have the following two new observations.

First, all scheduling methods do not have benefits under
the read-intensive workload (Figure 5 (d)). This is because
1) there is less contention for read-intensive transactions; 2)
the throughput of this workload is bound by the bandwidth of
the NIC (i.e., 50Gbps); 1Mops/s throughput in this workload
requires about 45.6Gbps outbound bandwidth to transmit data.

Second, the highest throughput of write-intensive work-
loads (Figure 5 (f)) is bound by the NIC in AlNiCo. However,
NetSTO can not use the full bandwidth because this workload
causes more contention (especially the write-write contention)
than the read-intensive one.
Latency under TPC-C. We evaluate the latency distribution
for New-order transactions and Delivery transactions (long-
running) with varying throughput. Figure 6 shows the median

USENIX Association 2022 USENIX Annual Technical Conference    959



P9
9 

La
te

nc
y 

(m
s)

0

1

2

3 (b) New-order
         P99

0

1

2

3

0

100

200

300 (c) Delivery
       P50

0

100

200

300

0.5 1.0 2.0

P5
0 

La
te

nc
y 

(μ
s)

0

50

100
NetSTO StaticPart AlNiCo
(a) New-order
          P50

0

50

100

Total throughput (Mops/s)

0

2

4

6
        (d)
Delivery P99

0

2

4

6

0.5 1.0 2.0

Figure 6: Latency of New-order and Delivery transactions
under TPC-C (2 warehouses).

(P50) and 99th percentile (P99) latency, and we have the
following two observations.

First, as shown in Figure 6, when the throughput is low, the
median latency of New-order in AlNiCo (24.1µs) is higher
than that in NetSTO (23.6µs). This is because the requests
in AlNiCo have extra latency for scheduling logic and two
extra PCIe communication latency for the off-path Smart-
NICs. As the throughput increases, the New-order median
latency in AlNiCo is lower than NetSTO because the reserv-
ing worker threads for long-running transactions prevent them
from blocking other normal transactions.

Second, in NetSTO, before the throughput reaches the peak,
the latency increases faster than in AlNiCo. This is because
the contention blocks transactions or causes them to retry, in-
creasing the latency of the running transactions and blocking
subsequent requests. Under a similar throughput of AlNiCo
(0.78Mops/s) and NetSTO (0.71Mops/s), AlNiCo reduces the
median latency of New-order from 51.8µs to 26.5µs.

In addition, median and P99 latency in Strife exceed 7ms,
larger than the batch waiting time (5ms). In Strife, the median
latency of New-order is between 7.00ms and 19.92ms, and
the P99 latency is between 12.54ms and 25.18ms, which are
not plotted in the figure to avoid obscuring other results. This
is because the end-to-end latency includes the network stack
latency, the batch time, the transaction grouping time, and
the transaction execution time. AlNiCo does not sacrifice the
request latency: at the peak throughput, the P99 tail latency
of the New-order transaction is no more than 1.17ms, and the
median latency is only 72.7µs.

5.3 Dynamic Workloads

We evaluate AlNiCo’s ability to adapt to dynamic workloads
by changing the hot tables in YCSB-HOT. We run YCSB-
HOT with a 50/50 read/write ratio.

Figure 7 shows the throughput over time, from which we
have the following three observations.

Time (100ms)

Th
ro

ug
hp

ut
 (M

op
s/

s)

NetSTO
StaticPart

Strife
AlNiCo

0
0.5
1.0
1.5
2.0

2 4 6 8 1020 22 24 26 28 3040 42 44 46 48 50

Figure 7: YCSB-HOT throughput over time. Hot tables
change every 2s; measuring the throughput every 10ms.

First, AlNiCo takes about 150ms to adapt to the changes
of hot tables. At the beginning of changes, the throughput
drops to the lowest point, even worse than NetSTO. This
is because the weight vector fails to reflect the conflicting
hotspots in the new hot tables. The steering vectors based
on the historical hotspots can not guide the scheduling. Be-
fore adjusting the scheduler to fit the new workloads, AlNiCo
suffers performance jitters. This is because the feedback in
AlNiCo reflects the workload characteristics over time, and
it takes a while to make the characteristics of old hot tables
fade away. Second, Strife reacts more quickly to dynamic
workloads without experiencing throughput degradation. This
is because the results of transaction grouping in Strife are
based on the information in a batch and do not rely on the
historical information of the workloads. However, the medi-
an/P99 latency (at the peak throughput) of AlNiCo and Strife
are 72.6us/1.66ms and 12.21ms/15.23ms, respectively. This is
because Strife introduces extra latency due to batching. Third,
StaticPart performs worse than NetSTO and varies with the
workload changes. This is because the hot tables cause the
load imbalance problem in this static data partition method.

In summary, according to §5.2 and §5.3, the static data
partition methods are the best for the partitionable work-
loads, but they can not handle skewed or dynamic workloads.
The batching-based scheduling methods can handle various
workloads, but they introduce orders of magnitude higher la-
tency for requests. Thanks to SmartNICs, AlNiCo can handle
skewed or dynamic workloads with low latency.

5.4 Comparison with CPU-based AlNiCo
We demonstrate the necessity of SmartNIC-accelerated design
for contention-aware scheduling by comparing it with two
versions of CPU-based AlNiCo.

Figure 8 shows the throughput of CPU-based AlNiCo with
varying worker thread count. The workload is TPC-C with 2
warehouses. We have the following three observations.

First, AlNiCo-CPU-2 brings an improvement in throughput
when the worker thread count is small. However, with more
worker threads, the performance decreases. This is because
two scheduler threads have limited computing resources, and
the scheduling complexity increases linearly with the number
of worker threads. As a result, the CPU can not accelerate the
scheduling computation.

960    2022 USENIX Annual Technical Conference USENIX Association



(a) OCC (b) TicToc

Th
ro

up
ut

pu
t (

M
op

s/
s)

NetSTO
+AlNiCo-CPU-N

+AlNiCo-CPU-2
+AlNiCo

0
0.5
1.0
1.5
2.0

(c) MVCC (d) 2PL

# of worker threads

0

0.5

1.0

0 4 8 12 16 20 0 4 8 12 16 20

Figure 8: TPC-C (2 warehouses) throughput with four dif-
ferent concurrency control protocols.

Second, AlNiCo-CPU-N is not as good as AlNiCo-CPU-2
when the worker thread count is small because the scheduling
consumes the workers’ resources. It improves the throughput
compared with NetSTO because its scheduling overhead is
less than the overhead for transaction aborts/blocking. More-
over, its throughput is scalable with the thread count because
the resources for the scheduler increase linearly with the
thread count.

Third, the improvement of the AlNiCo-CPU-N version is
small. The throughput of the scheduler itself is not the bottle-
neck in AlNiCo-CPU-N, but it can not enjoy the acceleration
of the FPGA. The scheduling logic costs lots of CPU re-
sources. AlNiCo speeds up individual request scheduling by
fine-grained parallel computation, and the computation of
multiple requests is pipelined. These provide higher perfor-
mance with less CPU resource cost.

5.5 Generality of AlNiCo

We demonstrate the generality of AlNiCo by changing the
concurrency control protocols in STO. Figure 8 shows the
throughput with varying worker thread count and the four
CC protocols described in §4. The workload is TPC-C with
2 warehouses. Note that, since the 2PL implementation in
STO has performance abnormalities under full-mix TPC-C,
we only evaluate the New-order transactions for 2PL (Fig-
ure 8 (d)). Comparing AlNiCo with NetSTO, we have two
observations:

First, AlNiCo brings performance improvement for these
4 CC protocols. With 20 workers, AlNiCo improves the
throughput by 2.45× (OCC), 1.77× (TicToc), 2.45× (MVCC),
and 2.28× (2PL), respectively. This is because AlNiCo pro-
vides a generalized hotness feedback interface and affinity
feedback interface to generate the worker states and global
states. The feedback mechanism in AlNiCo is generalized for
various concurrency control protocols.

AlNiCo
RDMA-RPC

M
ed

ia
n 

la
te

cn
y

   
   

  (
μs

)

(b)

0
10
20
30

128
256

512
1K 2K 4K 8K

Th
ro

ug
hp

ut
  (

M
op

s/
s)

(a)

0
2
4
6

128
256

512
1K 2K 4K 8K

Request size (bytes)

Figure 9: RPC throughput (a) and median latency (b) with
varying request sizes.

L=128 L=256 L=512 L=1K L=4K

Accuracy
rate

TPC-C 22.7% 36.7% 59.8% 85.5% 99.9%
YCSB-T 5.2% 6.5% 9.9% 28.4% 84.4%

YCSB-HOT 17.6% 20.7% 29.4% 42.7% 79.8%
Computation cycles 37 37 54 101 N/A
BRAM/LUT/FF(%) 6/2/9 10/3/11 16/5/16 30/10/26 N/A

Table 3: The trade-off of feature vector length L.

Second, 2PL performance is worse than other protocols.
This is because 2PL needs to write shared memory to acquire
the read lock, while the weakness of OCC’s high rollback
overhead is negligible in the in-memory system. MVCC has
the extra overhead of maintaining version information, so it
has lower overall throughput than OCC and TicToc.

5.6 Overhead and Limitation
We evaluate the overhead of AlNiCo and discuss its limitation.
Overhead of clients. The client specifies the request feature
vector when serializing a transaction into a network message.
It takes about 23ns for each key in the transaction parameters.
Overhead of SmartNICs. Figure 9 shows the performance
of RDMA-RPC and AlNiCo under a micro-benchmark, where
the server sends an 8-byte reply to clients immediately as soon
as receiving a request. When the request is less than 2KB, the
IOPS and latency are limited by the on-NIC scheduler. This
is because AlNiCo needs extra bandwidth to send the fea-
ture vector, and the off-path SmartNIC introduces additional
latency.
Overhead of server feedback. The evaluation shows that
AlNiCo uses only 1.2% of the CPU resources for the software
feedback since the FPGA completes most computations for
scheduling. However, the CPU-based AlNiCo (AlNiCo-CPU-
N version) takes 27.7% of the CPU resources (i.e., scheduling
overhead) to make scheduling decisions, which overshadows
the scheduling benefits. This illustrates the need for using
SmartNICs to reduce scheduling overhead.
The trade-off of feature vector length L. Table 3 shows the
trade-off for choosing the feature vector length L, where the
accuracy rate means the proportion of keys detected as the con-
tention that are truly contention. We have two observations.
First, a larger feature vector length L improves the accuracy
rate because it reduces mapping collisions in features. Second,
the scheduler IP core in AlNiCo requires more computation
cycles and FPGA resources, and they increase linearly with

USENIX Association 2022 USENIX Annual Technical Conference    961



C
on

te
nt

io
n 

de
te

ct
io

n
  a

cc
ur

ac
y 

ra
te

 (%
) (b)

0
20
40
60

0.5 1.0 1.5

AlNiCo
NetSTO

Th
ro

ug
hp

ut
  (

M
op

s/
s)

(a)

1.0

1.5

2.0

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Zipf θ Zipf θ

Figure 10: YCSB-T (W:50) throughput (a) and contention
detection accuracy rate (b) with varying θ.

the feature vector length L. The theoretical maximum of L is
limited by BRAM resources that are used to receive request
feature vectors and store scheduler runtime states. We can sac-
rifice computation optimization or use on-NIC DDR4 (8GB
in Innova-2) as storage resources to support a larger L.
Limitation. Based on all experiments in this section, we dis-
cuss the following two limitations. 1) AlNiCo can not improve
the performance of uniform workloads. Figure 10 shows the
throughput and the accuracy rate of contention detection with
different θ under YCSB-T(W:50%). We observe that only
when θ is higher than 0.8, the feature vectors can reflect the
contention between requests. This is because, with the more
skewed access pattern, the mapping collisions are fewer, and
the weights of groups are more distinguishing. 2) AlNiCo
can not improve the performance of the workloads whose
throughput is limited by the NIC bandwidth. We focus on
workloads whose throughput is limited by contention because
AlNiCo consumes additional bandwidth for feature vectors.

6 Related Work

In-network scheduling. There have been intensive evolu-
tion efforts in application layer network scheduling, focusing
on core affinity, load balance, head-of-line blocking, and in-
network transaction coordination.
Core affinity. RSS [25] and FlowDirector [26] dispatch pack-
ets based on hashing header fields. MICA [23] uses RSS
to assign single-key KV requests to cores based on the key
hash partitioning for object-level core affinity. RSS++ [61]
achieves dynamic load balance by RSS indirection and
supports stateful flow migration by optimizing state trans-
fers among cores. Different from them, AlNiCo focuses on
contention-aware scheduling for transaction requests.
Load balance. Recent studies [62–64] achieve µs-scale SLOs
through dynamic core scheduling or request scheduling.
Humphries et al. [27] offload Shinjuku [64] to SmartNICs.
RPCValet [28] and R2P2 [65] dispatch stateless RPC by
emulating the theoretically optimal single-queue schedul-
ing policy on NICs and programmable switches, respectively.
RackSched [66] is a rack-level service scheduler with two-
layer (i.e., inter/intra-server) scheduling.
Head-of-line blocking. In Minos [39] and DARC [40], KV
requests for records of different sizes go to different cores to
avoid blocking small requests by long-running requests.

In-network transaction coordination. Recent work offloads
the transaction coordination to programmable switches [67–
69] and client-side SmartNICs [70] to reduce the network
overhead of distributed transactions. AlNiCo focuses on
scheduling single-machine transactions to different CPU
cores.
Transaction scheduling. Recent work for transaction pro-
cessing can be categorized into inter-transaction scheduling
and intra-transaction scheduling. AlNiCo focuses on inter-
transaction scheduling, which schedules each entire transac-
tion to the most appropriate CPU core.
Inter-transaction scheduling. The common principle of
batching-based scheduling methods is to make each group al-
most conflict-free, and they differ in the approaches to residual
conflicts. Calvin [71], LADS [19], and QueCC [18] keep track
of the dependencies between transaction groups and wait for
the completion of dependent transactions. Ding et al. [20]
present a method that retries conflicting transactions at a
higher priority in the next batch. Further, Jepsen et al. [15,16]
use a programmable switch to triage transactions belonging
to different static data partitions before sending them to the
database server.
Intra-transaction scheduling. A series of studies use strategies
including tracking transaction dependencies [72], exploring
the operation commutability [73], reading values from the
write buffer [20], and releasing the lock in advance [74] to
schedule each read/write operation. Polyjuice [75] uses ma-
chine learning models to specify different execution policies
for each operation. Moreover, some studies focus on the order
of locks; QURO [76] allows transactions that are more likely
to block the system to hold locks, while Chiller [77] changes
the lock order to reduce the locking time of hot records. Their
intra-transaction scheduling is complementary to AlNiCo.

7 Conclusion
This paper presents AlNiCo, a transaction system that lever-
ages SmartNICs to intelligently schedule incoming trans-
action requests to CPU cores, minimizing contention with
low latency. AlNiCo describes the contention in a hardware-
friendly manner so that specialized hardware can efficiently
make scheduling decisions, and co-designs hardware and soft-
ware to enable flexible and adaptive scheduling. Evaluation
with real hardware (Innova-2) shows that AlNiCo reduces the
contention between the running transactions and significantly
improves performance.

Acknowledgements
We sincerely thank our shepherd and the anonymous review-
ers for their valuable feedback, which greatly improved this
paper. We also thank Jian Gao, Minhui Xie, Jing Wang, Wen-
hao Lv, Xiaojian Liao,and Jian Chen for their suggestions.
This work is funded by the National Natural Science Founda-
tion of China (Grant No.62022051, 61832011), and Kuaishou.

962    2022 USENIX Annual Technical Conference USENIX Association



References

[1] Tianzheng Wang and Hideaki Kimura. Mostly-
optimistic concurrency control for highly contended dy-
namic workloads on a thousand cores. Proceedings of
the VLDB Endowment, 10(2):49–60, 2016.

[2] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas
Devadas, and Michael Stonebraker. Staring into the
abyss: An evaluation of concurrency control with one
thousand cores. Proc. VLDB Endow., 8(3):209–220,
November 2014.

[3] Mohammad Sadoghi and Spyros Blanas. Transaction
processing on modern hardware. Synthesis Lectures on
Data Management, 14(2):1–138, 2019.

[4] Youmin Chen, Xiangyao Yu, Paraschos Koutris, An-
drea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and
Jiwu Shu. Plor: General transactions with predictable,
low tail latency. In Proceedings of the 2022 Interna-
tional Conference on Management of Data, SIGMOD-
/PODS ’22, page 19–33, New York, NY, USA, 2022.
Association for Computing Machinery.

[5] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino,
and Philippe Cudre-Mauroux. Oltp-bench: An extensi-
ble testbed for benchmarking relational databases. Pro-
ceedings of the VLDB Endowment, 7(4):277–288, 2013.

[6] Standard Specification. TPC BENCHMARKTM C.
1994.

[7] Tianyang Jiang, Guangyan Zhang, Zhiyue Li, and
Weimin Zheng. Aurogon: Taming aborts in all phases
for distributed In-Memory transactions. In 20th USENIX
Conference on File and Storage Technologies (FAST
22), pages 217–232, Santa Clara, CA, February 2022.
USENIX Association.

[8] Mellanox. InnovaTM-2 Flex Open Programmable
SmartNIC.
https://www.mellanox.com/files/doc-2020/
pb-innova-2-flex.pdf, 2020.

[9] Cisco. Cisco Nexus SmartNIC.
https://www.cisco.com/c/en/us/products/
interfaces-modules/nexus-smartnic/index.
html, 2021.

[10] Robert Kallman, Hideaki Kimura, Jonathan Natkins, An-
drew Pavlo, Alexander Rasin, Stanley Zdonik, Evan PC
Jones, Samuel Madden, Michael Stonebraker, Yang
Zhang, et al. H-store: a high-performance, distributed
main memory transaction processing system. Proceed-
ings of the VLDB Endowment, 1(2):1496–1499, 2008.

[11] Ippokratis Pandis, Ryan Johnson, Nikos Hardavellas,
and Anastasia Ailamaki. Data-oriented transaction exe-
cution. Proceedings of the VLDB Endowment, 3(ARTI-
CLE), 2010.

[12] Carlo Curino, Evan Philip Charles Jones, Yang Zhang,
and Samuel R Madden. Schism: a workload-driven
approach to database replication and partitioning. 2010.

[13] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. Skew-
aware automatic database partitioning in shared-nothing,
parallel oltp systems. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of
Data, pages 61–72, 2012.

[14] Abdul Quamar, K. Ashwin Kumar, and Amol Desh-
pande. Sword: Scalable workload-aware data placement
for transactional workloads. In Proceedings of the 16th
International Conference on Extending Database Tech-
nology, EDBT ’13, page 430–441, New York, NY, USA,
2013. Association for Computing Machinery.

[15] Theo Jepsen, Alberto Lerner, Fernando Pedone, Robert
Soulé, and Philippe Cudré-Mauroux. In-network sup-
port for transaction triaging. 2021.

[16] Theo Jepsen. Building blocks for leveraging in-network
computing. PhD thesis, Università della Svizzera ital-
iana, 2020.

[17] Thamir Qadah, Suyash Gupta, and Mohammad Sadoghi.
Q-store: Distributed, multi-partition transactions via
queue-oriented execution and communication. In EDBT,
pages 73–84, 2020.

[18] Thamir M Qadah and Mohammad Sadoghi. Quecc: A
queue-oriented, control-free concurrency architecture.
In Proceedings of the 19th International Middleware
Conference, pages 13–25, 2018.

[19] Chang Yao, Divyakant Agrawal, Gang Chen, Qian Lin,
Beng Chin Ooi, Weng-Fai Wong, and Meihui Zhang. Ex-
ploiting single-threaded model in multi-core in-memory
systems. IEEE Transactions on Knowledge and Data
Engineering, 28(10):2635–2650, 2016.

[20] Bailu Ding, Lucja Kot, and Johannes Gehrke. Improv-
ing optimistic concurrency control through transaction
batching and operation reordering. Proceedings of the
VLDB Endowment, 12(2):169–182, 2018.

[21] Guna Prasaad, Alvin Cheung, and Dan Suciu. Handling
highly contended oltp workloads using fast dynamic par-
titioning. In Proceedings of the 2020 ACM SIGMOD In-
ternational Conference on Management of Data, pages
527–542, 2020.

USENIX Association 2022 USENIX Annual Technical Conference    963

https://www.mellanox.com/files/doc-2020/pb-innova-2-flex.pdf
https://www.mellanox.com/files/doc-2020/pb-innova-2-flex.pdf
https://www.cisco.com/c/en/us/products/interfaces-modules/nexus-smartnic/index.html
https://www.cisco.com/c/en/us/products/interfaces-modules/nexus-smartnic/index.html
https://www.cisco.com/c/en/us/products/interfaces-modules/nexus-smartnic/index.html


[22] Yihe Huang, William Qian, Eddie Kohler, Barbara
Liskov, and Liuba Shrira. Opportunities for opti-
mism in contended main-memory multicore transac-
tions. Proceedings of the VLDB Endowment, 13(5):629–
642, 2020.

[23] Hyeontaek Lim, Dongsu Han, David G Andersen, and
Michael Kaminsky. MICA: A holistic approach to fast
in-memory key-value storage. In 11th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 14), pages 429–444, 2014.

[24] Antoine Kaufmann, Simon Peter, Thomas Anderson,
and Arvind Krishnamurthy. Flexnic: Rethinking net-
work dma. In Proceedings of the 15th USENIX Confer-
ence on Hot Topics in Operating Systems, HOTOS’15,
page 7, USA, 2015. USENIX Association.

[25] Intel. Receive-Side Scaling (RSS).
http://www.intel.com/content/dam/support/
us/en/documents/network/sb/318483001us2.
pdf, 2007.

[26] Intel. Ethernet Flow Director.
https://www.intel.com/content/dam/www/
public/us/en/documents/white-papers/
intel-ethernet-flow-director.pdf, 2014.

[27] Jack Tigar Humphries, Kostis Kaffes, David Mazières,
and Christos Kozyrakis. Mind the gap: A case for in-
formed request scheduling at the nic. In Proceedings
of the 18th ACM Workshop on Hot Topics in Networks,
pages 60–68, 2019.

[28] Alexandros Daglis, Mark Sutherland, and Babak Falsafi.
Rpcvalet: Ni-driven tail-aware balancing of µs-scale
rpcs. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 35–48, 2019.

[29] Alexander Rucker, Muhammad Shahbaz, Tushar Swamy,
and Kunle Olukotun. Elastic rss: Co-scheduling packets
and cores using programmable nics. In Proceedings
of the 3rd Asia-Pacific Workshop on Networking 2019,
pages 71–77, 2019.

[30] Intel. Infrastructure Processing Units (IPUs).
https://www.intel.com/content/www/us/en/
products/network-io/smartnic.html, 2021.

[31] Jiaxin Lin, Kiran Patel, Brent E Stephens, Anirudh
Sivaraman, and Aditya Akella. PANIC: A high-
performance programmable NIC for multi-tenant net-
works. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 20), pages 243–
259, 2020.

[32] Anirudh Sivaraman, Suvinay Subramanian, Mohammad
Alizadeh, Sharad Chole, Shang-Tse Chuang, Anurag
Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti,
and Nick McKeown. Programmable packet scheduling
at line rate. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 44–57, 2016.

[33] Ming Liu, Simon Peter, Arvind Krishnamurthy, and
Phitchaya Mangpo Phothilimthana. E3: Energy-efficient
microservices on smartnic-accelerated servers. In 2019
USENIX Annual Technical Conference (USENIX ATC
19), pages 363–378, 2019.

[34] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu,
Yongqiang Xiong, Andrew Putnam, Enhong Chen, and
Lintao Zhang. Kv-direct: High-performance in-memory
key-value store with programmable nic. In Proceedings
of the 26th Symposium on Operating Systems Principles,
pages 137–152, 2017.

[35] Nikita Lazarev, Neil Adit, Shaojie Xiang, Zhiru Zhang,
and Christina Delimitrou. Dagger: Towards efficient
rpcs in cloud microservices with near-memory recon-
figurable nics. IEEE Computer Architecture Letters,
19(2):134–138, 2020.

[36] Boris Pismenny, Haggai Eran, Aviad Yehezkel, Liran
Liss, Adam Morrison, and Dan Tsafrir. Autonomous nic
offloads. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2021, page
18–35, New York, NY, USA, 2021. Association for Com-
puting Machinery.

[37] Zsolt István. Let’s add transactions to fpga-based key-
value stores! In Proceedings of the 16th International
Workshop on Data Management on New Hardware, Da-
MoN ’20, New York, NY, USA, 2020. Association for
Computing Machinery.

[38] Zhaoshi Li, Leibo Liu, Yangdong Deng, Jiawei Wang,
Zhiwei Liu, Shouyi Yin, and Shaojun Wei. Fpga-
accelerated optimistic concurrency control for transac-
tional memory. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitec-
ture, MICRO ’52, page 911–923, New York, NY, USA,
2019. Association for Computing Machinery.

[39] Diego Didona and Willy Zwaenepoel. Size-aware shard-
ing for improving tail latencies in in-memory key-value
stores. In 16th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 19), pages 79–
94, 2019.

[40] Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich,
Marios Kogias, Boon Thau Loo, Linh Thi Xuan Phan,
and Irene Zhang. When idling is ideal: Optimizing

964    2022 USENIX Annual Technical Conference USENIX Association

http://www.intel.com/content/dam/support/us/en/documents/network/sb/318483001us2.pdf
http://www.intel.com/content/dam/support/us/en/documents/network/sb/318483001us2.pdf
http://www.intel.com/content/dam/support/us/en/documents/network/sb/318483001us2.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html


tail-latency for heavy-tailed datacenter workloads with
perséphone. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP ’21,
page 621–637, New York, NY, USA, 2021. Association
for Computing Machinery.

[41] Yihe Huang, Nathaniel Herman, William Qian, Jee-
vana Priya Inala, Eddie Kohler, Lillian Tsai, Barbara
Liskov, and Liuba Shrira. STO: Software Transactional
Objects.
https://github.com/readablesystems/sto/,
2021.

[42] Mellanox. How To Implement PeerDirect Client using
MLNX_OFED.
PeerDirect, 2018.

[43] PCI-SIG. PCI-Express Specification.
https://www.pcisig.com/specifications/
pciexpress/, [n. d.].

[44] Wojciech M Zabołotny. Dma implementations for fpga-
based data acquisition systems. In Photonics Appli-
cations in Astronomy, Communications, Industry, and
High Energy Physics Experiments 2017, volume 10445,
pages 1269–1276. SPIE, 2017.

[45] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara
Liskov, and Samuel Madden. Speedy transactions in
multicore in-memory databases. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 18–32, 2013.

[46] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srini-
vas Devadas. Tictoc: Time traveling optimistic concur-
rency control. In Proceedings of the 2016 International
Conference on Management of Data, pages 1629–1642,
2016.

[47] Hyeontaek Lim, Michael Kaminsky, and David G An-
dersen. Cicada: Dependably fast multicore in-memory
transactions. In Proceedings of the 2017 ACM Inter-
national Conference on Management of Data, pages
21–35, 2017.

[48] Aleksandar Dragojević, Rachid Guerraoui, and Michal
Kapalka. Stretching transactional memory. ACM sig-
plan notices, 44(6):155–165, 2009.

[49] Dixin Tang, Hao Jiang, and Aaron J Elmore. Adaptive
concurrency control: Despite the looking glass, one con-
currency control does not fit all. In CIDR, volume 2,
page 1. Citeseer, 2017.

[50] Yandong Mao, Eddie Kohler, and Robert Tappan Morris.
Cache craftiness for fast multicore key-value storage. In
Proceedings of the 7th ACM european conference on
Computer Systems, pages 183–196, 2012.

[51] Masoud Hemmatpour, Bartolomeo Montrucchio, Maur-
izio Rebaudengo, and Mohammad Sadoghi. Analyzing
in-memory nosql landscape. IEEE Transactions on
Knowledge and Data Engineering, 34(4):1628–1643,
2022.

[52] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. Octo-
pus: An rdma-enabled distributed persistent memory file
system. In Proceedings of the 2017 USENIX Conference
on Usenix Annual Technical Conference, USENIX ATC
’17, page 773–785, USA, 2017. USENIX Association.

[53] Anuj Kalia, Michael Kaminsky, and David G Andersen.
Fasst: Fast, scalable and simple distributed transactions
with two-sided (rdma) datagram rpcs. In 12th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 185–201, 2016.

[54] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Design guidelines for high performance rdma systems.
In Proceedings of the 2016 USENIX Conference on
Usenix Annual Technical Conference, USENIX ATC
’16, page 437–450, USA, 2016. USENIX Association.

[55] Youmin Chen, Youyou Lu, and Jiwu Shu. Scalable
rdma rpc on reliable connection with efficient resource
sharing. In Proceedings of the Fourteenth EuroSys Con-
ference 2019, EuroSys ’19, New York, NY, USA, 2019.
Association for Computing Machinery.

[56] Jiwu Shu, Youmin Chen, Qing Wang, Bohong Zhu,
Junru Li, and Youyou Lu. Th-dpms: Design and im-
plementation of an rdma-enabled distributed persistent
memory storage system. ACM Trans. Storage, 16(4),
oct 2020.

[57] Qing Wang, Youyou Lu, Erci Xu, Junru Li, Youmin
Chen, and Jiwu Shu. Concordia: Distributed shared
memory with In-Network cache coherence. In 19th
USENIX Conference on File and Storage Technologies
(FAST 21), pages 277–292. USENIX Association, Febru-
ary 2021.

[58] Qing Wang, Youyou Lu, and Jiwu Shu. Sherman: A
write-optimized distributed b+tree index on disaggre-
gated memory. In Proceedings of the 2022 International
Conference on Management of Data, SIGMOD/PODS
’22, page 1033–1048, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery.

[59] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with ycsb. In Proceedings of the 1st
ACM symposium on Cloud computing, pages 143–154,
2010.

USENIX Association 2022 USENIX Annual Technical Conference    965

https://github.com/readablesystems/sto/
https://community.mellanox.com/s/article/howto-implement-peerdirect-client-using-mlnx-ofed/
https://www.pcisig.com/specifications/pciexpress/
https://www.pcisig.com/specifications/pciexpress/


[60] Zhichao Cao, Siying Dong, Sagar Vemuri, and David
H. C. Du. Characterizing, Modeling, and Benchmark-
ing RocksDB Key-Value Workloads at Facebook, page
209–224. USENIX Association, USA, 2020.

[61] Tom Barbette, Georgios P Katsikas, Gerald Q
Maguire Jr, and Dejan Kostić. RSS++ load and
state-aware receive side scaling. In Proceedings of the
15th International Conference on Emerging Networking
Experiments And Technologies, pages 318–333, 2019.

[62] George Prekas, Marios Kogias, and Edouard Bugnion.
Zygos: Achieving low tail latency for microsecond-scale
networked tasks. In Proceedings of the 26th Symposium
on Operating Systems Principles, pages 325–341, 2017.

[63] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam
Belay, and Hari Balakrishnan. Shenango: Achieving
high CPU efficiency for latency-sensitive datacenter
workloads. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
361–378, 2019.

[64] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, and Christos Kozyrakis.
Shinjuku: Preemptive scheduling for µsecond-scale tail
latency. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages
345–360, 2019.

[65] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fi-
etz, and Edouard Bugnion. R2p2: Making rpcs first-class
datacenter citizens. In 2019 USENIX Annual Technical
Conference (USENIXATC 19), pages 863–880, 2019.

[66] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu,
Christos Kozyrakis, Ion Stoica, and Xin Jin. Racksched:
A microsecond-scale scheduler for rack-scale computers.
In 14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 1225–1240,
2020.

[67] Zsolt István, David Sidler, Gustavo Alonso, and Marko
Vukolic. Consensus in a box: Inexpensive coordination
in hardware. In Proceedings of the 13th Usenix Confer-
ence on Networked Systems Design and Implementation,
NSDI’16, page 425–438, USA, 2016. USENIX Associ-
ation.

[68] Theo Jepsen, Leandro Pacheco de Sousa, Masoud
Moshref, Fernando Pedone, and Robert Soulé. Infinite
resources for optimistic concurrency control. In Pro-
ceedings of the 2018 Morning Workshop on In-Network
Computing, NetCompute ’18, page 26–32, New York,
NY, USA, 2018. Association for Computing Machinery.

[69] Jialin Li, Ellis Michael, and Dan R. K. Ports. Eris:
Coordination-free consistent transactions using in-
network concurrency control. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
page 104–120, New York, NY, USA, 2017. Association
for Computing Machinery.

[70] Henry N. Schuh, Weihao Liang, Ming Liu, Jacob Nel-
son, and Arvind Krishnamurthy. Xenic: Smartnic-
accelerated distributed transactions. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles, SOSP ’21, page 740–755, New York,
NY, USA, 2021. Association for Computing Machinery.

[71] Alexander Thomson, Thaddeus Diamond, Shu-Chun
Weng, Kun Ren, Philip Shao, and Daniel J Abadi.
Calvin: fast distributed transactions for partitioned
database systems. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of
Data, pages 1–12, 2012.

[72] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and
Jinyang Li. Extracting more concurrency from dis-
tributed transactions. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
14), pages 479–494, 2014.

[73] Neha Narula, Cody Cutler, Eddie Kohler, and Robert
Morris. Phase reconciliation for contended in-memory
transactions. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pages
511–524, 2014.

[74] Zhihan Guo, Kan Wu, Cong Yan, and Xiangyao Yu. Re-
leasing locks as early as you can: Reducing contention
of hotspots by violating two-phase locking (extended
version). Proceedings of the 2021 ACM SIGMOD Inter-
national Conference on Management of Data, 2021.

[75] Jiachen Wang, Ding Ding, Huan Wang, Conrad Chris-
tensen, Zhaoguo Wang, Haibo Chen, and Jinyang Li.
Polyjuice: High-performance transactions via learned
concurrency control. arXiv preprint arXiv:2105.10329,
2021.

[76] Boyu Tian, Jiamin Huang, Barzan Mozafari, and Grant
Schoenebeck. Contention-aware lock scheduling for
transactional databases. Proceedings of the VLDB En-
dowment, 11(5):648–662, 2018.

[77] Erfan Zamanian, Julian Shun, Carsten Binnig, and Tim
Kraska. Chiller: Contention-centric transaction exe-
cution and data partitioning for modern networks. In
Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pages 511–526,
2020.

966    2022 USENIX Annual Technical Conference USENIX Association



FpgaNIC: An FPGA-based Versatile 100Gb SmartNIC for GPUs

Zeke Wang1, Hongjing Huang1, Jie Zhang1, Fei Wu1,2

1 Collaborative Innovation Center of Artificial Intelligence, Zhejiang University, China
2 Shanghai Institute for Advanced Study of Zhejiang University, China

Gustavo Alonso
Systems Group, Dept. of Computer Science

ETH Zurich, Switzerland

Abstract
Network bandwidth is improving faster than the compute ca-
pacity of the host CPU, turning the CPU into a bottleneck. As
a result, SmartNICs are often used to offload packet process-
ing, even application logic, away from the CPU. However,
today many applications such as Artificial Intelligence (AI)
and High Performance Computing (HPC) rely on clusters of
GPUs for computation. In such clusters, the majority of the
network traffic is created by the GPUs. Unfortunately, com-
mercially available multi-core SmartNICs, such as BlueFiled-
2, fail to process 100Gb network traffic at line-rate with its
embedded CPU, which is capable of doing control-plane man-
agement only. Commercially available FPGA-based Smart-
NICs are mainly optimized for network applications running
on the host CPU. To address such scenarios, in this paper we
present FpgaNIC, a GPU-oriented SmartNIC to accelerate
applications running on distributed GPUs. FpgaNIC is an
FPGA-based, GPU-centric, versatile SmartNIC that enables
direct PCIe P2P communication with local GPUs using GPU
virtual address, and that provides reliable 100Gb network
access to remote GPUs. FpgaNIC allows to offload various
complex compute tasks to a customized data-path accelera-
tor for line-rate in-network computing on the FPGA, thereby
complementing the processing at the GPU. The data-path
accelerator can be programmed using C++-based HLS (High
Level Synthesis), so as to make it easier to use for software
programmers. FpgaNIC has been designed to explore the de-
sign space of SmartNICs, e.g., direct, on-path, and off-path
models, benefiting different type of application. It opens up
a wealth of research opportunities, e.g., accelerating a broad
range of distributed applications by combining GPUs and
FPGAs and exploring a larger design space of SmartNICs by
making them easily accessible from local GPUs.

1 Introduction
While the computing capacity of CPUs is growing slowly
and mostly either through parallelism (SIMD, multi-core) or
specialization (GPGPU, security or virtualization support),
network bandwidth is growing obviously faster. 100Gbps

NICs are common and soon 400Gbps will be available [46].
This growing gap between network bandwidth and compute
capability is being addressed through offloading of network
functions to the Network Interface Card (NIC), so called
SmartNIC [13, 14, 19, 36, 45], which frees up significant CPU
cycles and provides better hardware to keep up with the grow-
ing network traffic and its often strict requirements in terms
of bandwidth and latency.

Modern GPUs provide an order of magnitude higher mem-
ory bandwidth and higher compute capacity than modern
CPUs. As a result, GPUs have become a key element in, e.g.,
Artificial Intelligence (AI) and High Performance Comput-
ing (HPC) applications that are both compute- and memory-
bound [4]. Since a multi-GPU server is often not enough to
cover the computing power needed in many AI, graph, and
HPC applications, current solutions are typically based on a
cluster of GPUs (e.g., [27,58,78]), with the GPUS generating
the majority of the network traffic in such systems.

In this paper, we present the design of a 100Gb GPU-centric
SmartNIC to serve distributed applications running on GPUs.
From a GPU’s perspective, such a SmartNIC should 1) enable
the GPU directly triggering doorbell registers and polling on
status registers on the SmartNIC without CPU intervention
(G1); 2) use the GPU virtual address space to directly access
GPU memory via Peer-to-Peer (P2P) communication without
CPU intervention (G2); 3) implement in hardware the full
network stack to ensure low latency and high throughput
(G3); 4) support application logic offloading to a software-
defined and hardware-accelerated data-path accelerator, i.e.,
on-NIC computing processing 100Gb network traffic at line-
rate (G4)1; and 5) The data-path accelerator should be easily
programmed by system programmers (G5). Commercially
available SmartNICs are not able to satisfy all these goals
as they are not optimized for GPUs. In the following, we
analyze existing multicore and FPGA-augmented SmartNICs
that motivate FpgaNIC.
Multicore SmartNIC. A multicore SmartNIC, such as

1In the paper, we use on-NIC computing module and data-path accelerator
interchangeably.

USENIX Association 2022 USENIX Annual Technical Conference    967



Table 1: Comparison of FpgaNIC with existing SmartNIC
types for GPUs. X indicates full support,%indicates no sup-
port, and indicates partial support.

Multicore
SmartNIC

[44]

FPGA-aug.
SmartNIC

[45]
Ours

Control plane offload (G1) % % X

Access GPU with virtual address (G2) X % X
100Gb transport offload (G3) X

100Gb data-path accelerator (G4) % X

High programmability (G5) X % X

BlueField-2 [44], combines a multicore CPU, e.g., ARM, with
an ASIC network controller. It introduces an additional hop to
implement the smart function using a multicore CPU, which
features two DDR4 channels for staging. This allows to map
a broad range of applications on multicore SmartNICs. There-
fore, its high programmability G5 is fully supported. However,
it increases processing latency and multicore CPU’s mem-
ory bandwidth can easily become a performance bottleneck.
BlueField-2 has 27.3GB/s achievable memory bandwidth un-
der a benchmarking tool sysbench [1], indicating that directly
staging 100Gbps data stream at the NIC CPU already over-
whelms BlueField-2, matching the findings in [40]. Therefore,
it cannot act as a 100Gb data-path accelerator G4. To our
knowledge, the multicore SmartNIC is controlled from the
host CPU, so G1 is not yet supported. The network trans-
port is implemented with the packet processing engine with
necessary control on the host (or ARM) CPU, so G3 is par-
tially supported. Finally, the ASIC network chip of multicore
SmartNIC supports NVIDIA GPUDirect [52], which enables
direct PCIe P2P data communication to a GPU, so G2 is fully
supported.
FPGA-augmented SmartNIC. An FPGA-augmented
SmartNIC combines a hardware-programmable FPGA
with an ASIC network controller. For example, Mellanox
Innova-2 [45] is an FPGA-augmented SmartNIC featuring
a network adapter ConnectX-5 and an Xilinx FPGA.
ConnectX-5 consists of a 100Gbps InfiniBand/Ethernet
interface for networking and a PCIe Gen4x8 interface for
communicating with the host CPU. The FPGA communicates
with ConnectX-5 via a PCIe x8 Gen4 link, so processing
packets on the FPGA adds considerable latency to the packets
and processing cannot happen at line rate because Innova-2
has limited PCIe link bandwidth between the FPGA and
ConnectX-5. Therefore, Innova-2 can only acts as a partial
100Gb data-path accelerator G4. G1 is not yet supported,
G2 is not supported, G3 is partially supported, and the high
programmability G5 is not supported.

Given the limitations of existing NICs, in this paper we
present FpgaNIC, a full-stack FPGA-based GPU-centric ver-
satile SmartNIC that opens up the opportunity to explore a
large design space around SmartNICs due to the FPGA’s re-
configuable nature and efficient FPGA-GPU co-processing
while achieving all the five goals mentioned above in a single

system. We have implemented FpgaNIC as a composable
architecture that consists of a GPU communication stack,
a 100Gb hardware network transport, and an On-NIC com-
puting (ONC), i.e., data-path accelerator.2 The GPU com-
munication stack enables offloading of control plane onto
GPUs (G1) and thus for the first time enables local GPUs
directly to manipulate SmartNIC without CPU intervention.
and enabling the FPGA-based SmartNIC for the first time to
use GPU virtual address to directly access GPU memory via
PCIe P2P communication (G2). The 100Gb hardware net-
work transport enables efficient and reliable 100Gb network
communication with remote GPUs (G3). Moreover, FpgaNIC
adopts a layered design to allow developers to easily explore
the design space of SmartNIC models (i.e., direct, off-path,
and on-path) to benefit their application, where different appli-
cations favor a different SmartNIC model. FpgaNIC allows to
prototype applications that can eventually be migrated to hard-
ened SmartNICs. Implementing a data-path accelerator on
an FPGA can easily satisfy line-rate processing requirement
(G4) due to its hardware implementation, while FpgaNIC
allows to use C++-based High Level Synthesis (HLS) so as to
provide high programmability (G5). As such, in the context of
FPGA-GPU co-processing, the GPU provides to applications
expressiveness and computing flexibility, while the FPGA
provides a flexible network infrastructure and the necessary
ONC. FpgaNIC results in significant end-to-end performance
improvements as data can be processed as it flows from/to the
GPU in a streaming manner and without involving the CPU.

We have prototyped FpgaNIC on a PCIe-based Xilinx
FPGA board Alveo U50 [74], whose UltraScale+ FPGA fea-
tures a 100Gbps networking port, a X16 PCIe Gen3, and
8GB HBM. Its form factor is half-length, half-height and
its Maximum Total Power (MTP) is 75W, allowing it to be
easily deployed in any CPU server. 3In addition to comprehen-
sive benchmarking, we validate the versatility and potential
of FpgaNIC by implementing use cases for all three mod-
els: GPU-centric networking (in a direct model), a collective
primitive AllReduce (in an off-path model), and cardinality
estimation on incoming streaming data (in an on-path model).
The experimental results show that FpgaNIC is able to ef-
ficiently support all three SmartNIC models at the full line
rate of 100 Gbps Ethernet. Particularly, FpgaNIC-enhanced
AllReduce almost reaches the maximum theoretical through-
put when performing on a distributed pool of eight RTX 8000
GPUs, while requiring fewer than 20% of the FPGA resources
on the U50 board. It indicates that, even when considering
the full network stack offloading, it has sufficient FPGA re-
sources to allow more aggressive offloading, e.g., the Adam

2In the paper, we use on-NIC computing module and data-path accelerator
interchangeably.

3We have also migrated FpgaNIC onto the Alveo U280 FPGA board [73]
with minor modifications affecting the FPGA pin mapping. Though we have
not ported FpgaNIC to Intel FPGA boards yet, we believe that it requires
only a small amount of effort to do so. We leave the porting to future work.

968    2022 USENIX Annual Technical Conference USENIX Association



optimizer [31].4 As such, FpgaNIC enables efficient FPGA-
GPU co-training on Deep Learning models. We leave this
exploration to future work.

2 Design and Implementation of FpgaNIC

2.1 Design Challenges
We highlight four concrete research challenges we faced in
designing FpgaNIC.
C1: How to Enable the FPGA to Access the GPU Virtual
Address? Enabled by NVIDIA GPUDirect [52], the DMA
engine in the PCIe IP core allows the FPGA to efficiently
transfer data from and to GPU memory via issuing a DMA
read/write command that consists of a starting physical ad-
dress and length (no larger than a GPU page size). However,
doing so in the context of SmartNIC raises two challenges.
First, a GPU program manipulates GPU virtual address rather
than physical address, so the FPGA should work on GPU
virtual address to be consistent with the view of GPUs. Sec-
ond, a single contiguous virtual address space needs not to
be physically contiguous on GPU memory, and the typical
memory page size is 64KB on modern GPUs as they do not
yet support huge pages, making TLB management really chal-
lenging, especially when the required number of TLB entires
is large.
C2: How to Enable Efficient Reliable Network Transport
between Distributed GPUs? Modern GPUs have become a
key compute engine to power AI and HPC applications due
to its massive parallel compute capacity and huge memory
bandwidth. AI and HPC applications typically need reliable
network communication between distributed GPUs to realize
GPU-accelerated cluster computing. However, GPUs are not
originally designed for reliable network transport [28, 43]
since reliable networking reduces the degree of parallelism
and requires a complex flow control, e.g., retransmission.

The straightforward approach to realize network transport
is to implement it on the CPU. Such a CPU-based approach
consumes several CPU cores to implement a 100Gbps net-
work transport layer. Furthermore, the network operations are
initiated from the GPU, incurring longer network latencies.
Instead, we offload the implementation of the reliable network
transport to the FPGA to make the data plane fully bypass
the host CPU. Fortunately, there is a growing amount of open-
source FPGA-based 100Gb network transports [3] such as the
TCP/IP stack of [57, 60] and the RoCEv2 stack used in [62].
However, how to enable the GPU to efficiently manipulate
the reliable hardware transport on the FPGA becomes a new
challenge.
C3: How to Enable High-level Programming Interface
for FpgaNIC? The traditional programming interface on
FPGAs use tedious, low-level, cycle-sensitive hardware de-

4The total offloading tasks (communicator and optimizer) in FpgaNIC do
not need any GPU computing cycles that can be used for compute-intensive
and memory-intensive forward and backward propagation.

PCIe Wrapper

PCIe Switch

GPUs

Host CPUMem

Data plane:  
FPGA—>GPU

Control plane:  
GPU—>FPGA

PCIe Endpoint
PCIe   X16 Gen3

100Gb CMAC

FpgaNIC

On-NIC ComputingHBM/DDR4

Network Transport

GPU communication stack

DMA ConfigurationGTLB

100Gb Ethernet

ONC
HW Transport

<PA,len>

<VA,len>

Master 
Interface

Slave 
Interface

(User code, GPU driver, FPGA driver)

Figure 1: System architecture of FpgaNIC, which enables
control/data plane offloading and reliable network transport
offloading, and enables on-NIC computing module to process
data from network at line rate. Moreover, FpgaNIC enables a
large SmartNIC design space exploration.

scription language (HDL), which hinders FPGAs from wide
adoption by software programmers. Therefore, the program-
ming interface of FpgaNIC cannot be HDL so as to attract
more system programmers.
C4: How to Enable Various SmartNIC Models? Based
on the location of the smart function, SmartNICs can be cat-
egorized into three models: direct, on-path and off-path. A
direct SmartNIC allows local GPUs to directly manipulate the
network transport to realize, e.g., GPU-centric networking.

An on-path SmartNIC directly works on each network
packet according to the corresponding smart function so that
packets do not need to be staged, avoiding unnecessary ad-
ditional latency in calling the smart function. However, its
application scope is limited since it cannot handle complex
functions as they are directly on the critical path of the net-
work packets.

An off-path SmartNIC introduces an additional hop to
implement the smart function using, e.g., a multicore CPU,
which features two DDR4 channels for staging. This allows
to map a broad range of applications on off-path SmartNICs.
However, multicore CPU’s memory bandwidth can easily
become a performance bottleneck when processing 100Gb
network traffic using the multicore CPU [40].

Different smart functions favor different SmartNIC models.
For example, an on-path approach is preferred when offload-
ing database’s filter operator [61] while AllReduce [4] is
better mapped to off-path SmartNICs. Instead of using spe-
cialized SmartNICs, we argue for a flexible architecture that
enables all this models.

USENIX Association 2022 USENIX Annual Technical Conference    969



2.2 Main Architecture of FpgaNIC
To address the above four challenges, FpgaNIC adopts a lay-
ered design to enable easy design space exploration for Smart-
NIC architectures dedicated for various distributed applica-
tions that run on distributed GPUs, while minimizing the de-
velopment effort and increasing the overall system efficiency.
FpgaNIC consists of three main components: GPU commu-
nication stack, reliable network transport in hardware, and
on-NIC computing (ONC), as shown in Figure 1. The goal of
the GPU communication stack is 1) to allow the FPGA to use
GPU virtual address (C1) to directly access GPU memory via
direct PCIe P2P data communication at low-latency and line-
rate, and 2) to allow GPUs to initiate data transfers by using
doorbell registers on the FPGA to avoid having to involve
the host CPU in the invocation. The goal of reliable network
transport in hardware is to provide a reliable, low-latency, and
high-throughput network access to the local GPUs (C2). The
goal of on-NIC computing is 1) to enable high-level program-
ming interface, and 2) to enable three NIC models: direct,
on-path, and off-path, such that FpgaNIC is able to benefit a
broad range of GPU-powered distributed applications (C4).

2.3 GPU Communication Stack
Built on a PCIe IP core, e.g., Xilinx’s UltraScale+ Gen3 x16,
the GPU communication stack of FpgaNIC aims at enabling
offloading the control plane onto GPUs (via a slave interface)
and offloading the data plane onto the FPGA (via a master
interface), such that the host CPU is bypassed.

2.3.1 Offloading Control Plane onto GPUs

In order to allow GPUs to directly access the FPGA’s control
and status registers, FpgaNIC needs to offload the control
plane onto the GPUs.
How to Enable Control Plane Offloading? Enabling con-
trol plane offloading requires a hardware-software codesign
approach. On the hardware side, we enable a PCIe BAR ex-
posing a configurable FPGA address space at the PCIe IP
core on the FPGA. On the software side, our implementation
consists of a GPU driver, an FPGA driver, and user code that
interacts with both drivers. The process consists of three steps.
First, the FPGA driver uses the function misc_register to reg-
ister the PCIe BAR with the Linux kernel as an IO device
/dev/fpga_control. Second, the user code uses the function
mmap to map the device into the host address. Third, the user
code adopts a CUDA (Compute Unified Device Architecture)
memory management function to register the host address
for use within a CUDA kernel [52]. With this, the GPU can
directly trigger doorbell registers and poll status registers on
the FPGA without CPU intervention.
What Control Plane Offloading can Do? After enabling
control plane offloading, the doorbell/status registers that are
instantiated by all the components (GPU communications
stack, ONC, and network transport) have to be mapped into

GPU virtual address space so that the GPU program is able
to access these registers without CPU intervention. More-
over, it enables us to populate GPU TLB (GTLB) entries on
the FPGA such that the FPGA can translate GPU virtual ad-
dress to physical address before issuing a DMA read/write
operation to GPU memory (§2.3.2).

2.3.2 Offloading Data Plane onto the FPGA

FpgaNIC needs to offload the data plane onto the FPGA to
allow the FPGA to directly access the GPU memory. How-
ever, NVIDIA GPUDirect [52] allows direct PCIe P2P data
communication using physical address. For the sake of easy
programming, FpgaNIC needs to work on GPU virtual ad-
dress, rather than physical address (C1). Via a GPU BAR
window, Tesla GPUs expose all of their device memory space,
e.g., 40GB, while Quadro GPUs typically expose 256MB
memory space with 36MB reserved for internal use [52]. In
order to allow the FPGA to access more GPU memory space,
FpgaNIC needs to store all the related virtual to physical
address translation entries. To minimize the overhead of trans-
lation, we intend to keep all the entries on on-chip memory.
However, the 64KB GPU page size becomes the main chal-
lenge, because storing a great number of translation entries on
the FPGA needs a large on-chip memory. For example, 32GB
GPU memory needs 512K entries, far beyond the number
the FPGA implementation can accommodate without hurting
timing.
How to Enable FPGA to Efficiently Work on Virtual Ad-
dress? To this end, we propose a GPU Translation Lookaside
Buffer (GTLB) to perform address translation on the FPGA,
while keeping the on-chip memory consumption reasonably
low. The key motivation behind the design of GTLB is that
even though a single contiguous virtual address space needs
not be physically contiguous on GPU memory, it has high
probability to be physically contiguous, especially at the gran-
ularity of 2MB. Therefore, we manually coalesce 32 consecu-
tive 64KB GPU memory pages into a 2MB page if these 64KB
pages are allocated to a contiguous portion of physical mem-
ory and aligned within the 2MB page. The GTLB consists of
a main TLB and a complementary TLB. The process of popu-
lating the GTLB on the FPGA involves four steps, as shown
in Algorithm 1. First, we pre-malloc GPU memory space us-
ing gpuMemAlloc for staging the GPU memory that will be
accessed by the DMA engines on the FPGA (Line 1). Second,
we pass the initial virtual address and length of this GPU
memory to the GPU kernel function nvidia_p2p_put_pages
to get all the <VA, PA> pairs for all the 64KB pages (Line 2),
where VA refers to virtual address and PA refers to physical
address. Third, we try to coalesce 64KB pages into 2M pages
as aggressive as possible (Line 3). Fourth, we populate main
and complementary TLBs (Lines 4-18) via the control reg-
isters exposed by the control plane offloading (§2.3.1). The
main TLB provides the virtual to physical address translations
for 2MB pages (Lines 7-10). If any 2MB page is not physi-

970    2022 USENIX Annual Technical Conference USENIX Association



Algorithm 1: POPULATING GTLB
Input : init_addr: initial GPU virtual address

len: length of GPU memory
Output : T LBmain: main TLB

T LBcomp: complementary TLB
/* Step 1: Malloc GPU memory space. */

1 init_addr = gpuMemAlloc(len);
/* Step 2: Get <VA, PA> pairs of all the 64KB pages. */

2 <VA64KB, PA64KB> pairs = nvidia_p2p_put_pages (init_addr, len);
/* Step 3: Coalescing 64KB pages to 2MB pages if possible */

3 <VA2MB, PA2MB> pairs <– <VA64KB, PA64KB> pairs;
/* Step 4: Populating T LBmain and T LBcomp */

4 index = 0; /* Large page index */
5 comp = 0; /* Base page index */
6 for (pair in <VA2MB, PA2MB> pairs) do
7 if (pair is physically contiguous) then

/* Update the T LBmain */

8 T LBmain[index].pair = pair;
9 T LBmain[index].valid = 1;

10 end
11 else

/* Update the T LBcomp */
12 T LBcomp[32∗ comp+31 : 32∗ comp] = pair’s 32 64KB pages;
13 T LBmain[index].valid = 0;
14 T LBmain[index].comp_o f f set = comp*32;
15 comp++;
16 end
17 index++;
18 end

cally contiguous, we store the corresponding 32 translations
of 32 64KB pages in the complementary TLB, which provides
2048 entires for accommodating 64 such 2M pages (Lines 12-
15).5As such, the total number of required entires for 32GB
memory becomes 16K+2K=18K, significantly smaller than
the previous 512K entries.

Fully-pipelined Translation Lookup. After the population,
FpgaNIC is able to directly access GPU memory using
on-line virtual to physical address translation. Given a vir-
tual address, FpgaNIC first checks the corresponding en-
try in the main TLB to see whether it is continuous or not
(T LBmain.valid == 1). If yes, FpgaNIC fetches the PA and
feeds it into the DMA engine. If no, FpgaNIC will read the
corresponding entry in the complementary TLB using the off-
set T LBmain.comp_o f f set. We can observe that the proposed
GTLB can easily achieve fully-pipelined translation lookup
on the FPGA.

GTLB Miss/Eviction. Currently, we pre-populate TLB en-
tries for each application, assuming that the FPGA only ac-
cesses certain range of GPU memory. When GTLB miss or
eviction happens, we need to re-populate GTLB entries for
successful GPU memory references. However, we suggest to
instantiate multiple GTLBs to provide sufficient number of
GTLB entries to eliminate potential GTLB misses and evic-
tions on the FPGA, because each GTLB entry only occupies
a row of a BRAM, indicating relatively low cost of storing
GTLB entries on the FPGA.

5In our experiment, 2048 entires are far beyond enough.

2.4 100Gbps Hardware Network Transport
In order to address the second challenge (C2), FpgaNIC of-
floads the transport-layer network to the FPGA to provide a
reliable and high-performance hardware network transport
to the local GPUs. Fortunately, there is a growing amount of
open-source FPGA-based 100Gb network stacks such as the
TCP/IP stack of [57, 60] and the RoCEv2 stack used in [62].
Without loss of generality, FpgaNIC is built on the 100Gb
TCP/IP stack [57, 60], which is able to support thousands
of connections with external FPGA memory for buffering.6

We have modified this stack to adapt it to the requirements
of FpgaNIC’s by modifying its interface to improve band-
width utilization and allow local GPUs to directly control the
network transport.

2.4.1 Efficient Decoupled Application Interface

The original application interface [25, 57, 60] requires a con-
trol handshake between the TCP stack and the application
code before sending or receiving a network packet to or from
the TCP stack. A control handshake takes from 10 to 30 cy-
cles while the payload of a packet (up to 1460B) only takes
up to 23 cycles, leading to low network bandwidth utilization.
To reduce the overhead of the handshake, we introduce an
efficient decoupled application interface that does not need
the handshake and further overlaps the control handshake
and the packet transfer, maximizing the network bandwidth
utilization and easing programming.
Decoupled Sending Application Interface. The original
sending interface only allows to send a data chunk at a time
after a control handshake, where the size of a data chunk is up
to 1460B. A data chunk and a TCP header constitute a TCP
segment, which can be encapsulated into an IP packet before
sending over Ethernet. The proposed decoupled interface gets
rid of the handshake, overlapping the control handshakes with
the data transfer. And it further allows to send data streams of
up to 4GB in size by automatically splitting the data stream
into the right size chunks without programmer’s involvement
in packetization.
Decoupled Receiving Application Interface. The original
receiving interface informs the user logic through a valid no-
tification when a TCP segment is available to be consumed,
which then sends out the read request to the receiving in-
terface. After 10 to 30 cycles, the TCP segment’s payload
will be available at the 64B-wide AXI (Advanced eXtensible
Interface)-Stream interface and consumed by the user logic.
Similar to the sending interface, the proposed decoupled inter-
face gets rid of the handshake, and further overlaps handshake

6The TCP stack needs two 64KB fixed-sized buffers per connection, one
buffer for incoming packets and the other for outgoing packets. Therefore,
external FPGA memory is needed to support thousands of concurrent con-
nections. However, if fewer than 10 concurrent connections are needed, the
TCP stack of [57, 60] can implement the buffers using on-chip memory such
that external FPGA memory could be saved for offloaded smart functionality.
In this paper, FpgaNIC uses both versions.

USENIX Association 2022 USENIX Annual Technical Conference    971



Table 2: Resource Usage breakdown of FpgaNIC on U50.

LUTs REGs RAMs DSPs
Available 871K 1743K 232.4Mb 9024

GPU Commu. Stack 79K 103K 5.2Mb 0
100G HW Transport 101.3K 166.5K 23.4Mb 0

ONC: GPU-centric networking 14.5K 20K 24.6Mb 0
ONC: AllReduce 7.3K 10K 12.8Mb 0

ONC: Hyperloglog 19.5K 26K 7.1Mb 1104

and data transfer and assembles the complete data stream for
each TCP connection without programmer’s involvement in
depacketization.

2.5 On-NIC Computing (ONC)
The on-NIC computing module sits between the GPU com-
munication stack module and the 100Gbps network hard-
ware transport module, so ONC can directly manipulate the
other two modules to enable flexible design space exploration
around GPU-centric SmartNICs. The key goal of on-NIC
computing module is to 1) expose high-level programming in-
terface for system programmer, and 2) enable three SmartNIC
models for various GPU-powered distributed applications. In
the following, we discuss the programming interface of ONC
and how to enable three three models.

2.5.1 High-level Manipulation Interfaces of ONC
In order to address the third challenge (C3), FpgaNIC intends
to raises the programming abstraction from HDL to high-level
synthesis (HLS), i.e., C/C++, such that systems programmers
are able to use C/C++ to manipulate FpgaNIC, rather than
cycle-sensitive HDL.7 In the following, we present the con-
crete manipulation interfaces for the GPU communication
stack and hardware network transport modules.
Manipulation Interfaces of GPU Communication Stack.
The GPU communication stack exposes two manipulation in-
terfaces: a slave interface that allows GPUs to access FPGA’s
registers and a master interface that allows the FPGA to di-
rectly access GPU memory, as shown in Table 3.

The slave interface is a 4B-wide AXI-Lite interface
(axilite_control), through which local GPUs directly access
doorbell and status registers within FpgaNIC without CPU
intervention. In FpgaNIC, we instantiate 512 doorbell regis-
ters and 512 status registers, each of which has its own PCIe
address to allow individual access. We correspond a few door-
bell and status registers to each engine from any of three
components within FpgaNIC. The doorbell registers can be
triggered by GPUs to manipulate the engine, and the status
registers can be polled by GPUs to check the status of the
engine.

The master interface consists of two command streams
and two data streams. The two command streams are
96-bit-wide AXI-Stream interfaces (dma_read_cmd and
dma_write_cmd) that provide the GPU virtual address and
length to directly access GPU memory, where the length is

7Nevertheless, ONC can be also programmed in HDL if necessary.

Table 3: Two interfaces of GPU communication stack
Type Interface Content

Slave interface axilite_control AXI-Lite interface for configuration
Master interface dma_read_cmd Dest. GPU virtual address, length

dma_read_data AXI data stream from GPU memory
dma_write_cmd Source GPU virtual address, length
dma_write_data AXI data stream to GPU memory

Table 4: Manipulation interface for the network transport
Type Interface Meaning

Data interface tcp_tx_meta Session ID, length
tcp_tx_data AXI data stream to remote node
tcp_rx_meta Session ID, length, IP, port, etc.
tcp_rx_data AXI data stream from remote node

Control interface server_listen_port A TCP listening port
server_listen_start Staring to listen
client_conn_port Destination port to connect
client_conn_ip Destination ip to connect

client_conn_start Start to connect to server
conn_close_session Destination session to connect

conn_close_start Start to close connection

up to 4G. The data from and to GPU memory is sent over the
dma_read_data and dma_write_data data streams, which
are 64B-wide AXI-Stream interfaces. For either GPU mem-
ory read or write operation, we need to configure the com-
mand stream and then work on the corresponding data stream,
allowing programmers to easily access GPU memory.

Interfaces of Hardware Network Transport. The hardware
network transport exposes two interfaces: data interface and
control interface.

The data interface consists of a sending interface and a re-
ceiving interface. The sending interface consists of a metadata
stream and a data stream. The metadata stream (tcp_tx_meta)
is a 48-bit-wide AXI-Stream that provides a 4B-wide data
length and a 2B-wide session ID that corresponds to a re-
mote node. The data stream (tcp_tx_data) is a 64B-wide
AXI-Stream to send payload stream. The receiving interface
also consists of a metadata stream and a data stream. The
metadata stream (tcp_rx_meta) is an 44B-wide AXI-Stream
that provides session ID, length, IP address, port and close
session flag. The data stream (tcp_rx_data) is a 64B-wide
AXI-Stream to receive payload stream from remote node.

The control interface of the hardware transport is similar
to that of the well-understood socket interface, which allows
GPU programmers to easily leverage the network transport,
with their meanings as shown in Table 4. We instantiate the
corresponding doorbell and status registers, exposed through
the PCIe’s slave interface (§2.3), to allow local GPUs to di-
rectly manipulate or poll the 100Gb hardware network trans-
port.8 In summary, the network transport serves as a network
proxy, through which the ONC module and local GPUs can ac-
cess the network transport directly without CPU intervention,
so as to address the second challenge C2.

8Inside the FPGA, the ONC module (§2.5) can also directly manipulate
the hardware transport via these registers.

972    2022 USENIX Annual Technical Conference USENIX Association



Table 5: Lines of code for each component of FpgaNIC

Hardware Software
GPU Commu. Stack 2.9K (Verilog/HLS) 0.7K (C++, CUDA)
100G HW Transport 15.3K (HLS)

ONC: GPU-centric networking 1.0K (HLS) 0.5K (C++, CUDA)
ONC: AllReduce 2.7K (HLS/Verilog) 1.5K (C++)

ONC: Hyperloglog 1.6K (HLS) 0.3K (C++, CUDA)

2.5.2 How to Support Three SmartNIC Models?

In order to address the fourth challenge C4, FpgaNIC’s on-
NIC computing component allows system programmers to
customize data-path engines between the GPU communica-
tion stack and the hardware network transport to accelerate
various distributed applications. Table 2 shows that the pre-
vious GPU communication stack and network transport con-
sume less than 20% FPGA resources on a mid-sized FPGA
U50, so the on-NIC computing component has plenty of re-
sources to realize complex data-path engines to accelerate
various distributed applications. Moreover, the commercial
FPGA board that features DDR4 (even HBM) is able to stage
data from network or GPUs, and perform on-NIC comput-
ing on the data before feeding into GPUs or sending out to
network.

Due to the reconfigurable nature of the FPGA, FpgaNIC
can easily support various SmartNIC models: direct, on-path,
and off-path, to benefit a broad range of distributed applica-
tions. Table 5 shows the lines of code for each component.
The direct model directly exposes the hardware network
transport module to local GPUs via the GPU communication
stack module, such that local GPUs can directly manipulate
the network transport to do reliable network communication.
An an example, we develop a GPU-centric networking to
demonstrate the potentials of the direct model. Due to space
limitation, we describe the detailed design and implementa-
tion of GPU-centric networking to the Appendix §A.1.
The on-path model is similar to the direct model that local
GPUs directly manipulate the hardware network transport,
except that the on-path model allows the network stream also
to enter an on-path engine in the ONC component for the
offloaded computation, where the on-path engine needs to
consume the network stream at line-rate such that the on-path
engine would not impede line-rate network traffic. We use
the HyperLogLog (HLL) application [18, 33] as an example
to demonstrate the power of the on-path model. The detailed
design and implementation of HLL with FpgaNIC can be
found in the Appendix §A.3.
The off-path model enables an off-path engine in the ONC
component to directly manipulate the GPU communication
stack and the hardware network transport such that FpgaNIC
is able to orchestrate the data flow between all the three com-
ponents. Typically, the off-path needs to stage data in on-
board memory. We use the collective communication primi-
tive AllReduce [4, 11, 50] as an example to demonstrate the
power of the off-path model (§A.2). The detailed design and

100Gb Ethernet Switch

GPUs

CPU

FpgaNIC

GPUs

CPU
Server 0 Server 1

GPUs

CPU

Server 7… 

… 
100GbE 100GbE 100GbE

FpgaNIC FpgaNIC

Figure 2: Experimental Setup

implementation of AllReduce with FpgaNIC is in the Ap-
pendix §A.2.9

How to Support Multiple Tenants? To support multiple
tenants, we can adopt Coyote [32] to wire the GPU communi-
cation stack and hardware network stack into the static region
of FpgaNIC while exposing the same programming interface
to offloaded tasks, for which we pre-synthesize the FPGA
bitstreams ahead of time. Furthermore, FpgaNIC adopts the
notion of vFPGAs (virtual FPGAs or separate application
regions that are individually reconfigurable) as implemented
in Coyote [32] to smoothly support secure, temporal and spa-
tial multiplexing of GPU communication stack and hardware
network transport between tenants (without pre-emption and
context switching). For each tenant, FpgaNIC provides suffi-
cient FPGA resources in a partial reconfiguration region to
implement an independent ONC engine to guarantee perfor-
mance isolation, and thus we no longer need to reboot the
FPGA to change the functionality of FpgaNIC. We leave this
as future work.

3 Experimental Evaluation

3.1 Experimental Setup
System Architecture. The experiments are run on a clus-
ter consisting of eight 4U AMAX servers, connected with a
Mellanox 100Gbps Ethernet SN2700 switch (Figure 2). Each
server is equipped with two Intel Xeon Silver 4214 CPUs
@2.20GHz, 128GB memory, FpgaNIC (i.e., a Xilinx Ultra-
Scale+ FPGA [72]), and a Nvidia RTX 8000 GPU, where the
FPGA and the GPU have direct PCIe P2P communication, as
shown in Figure 1. Two servers have an additional two A100
GPUs. FpgaNIC is implemented on Xilinx Alveo cards U50
or U280 with Vivado 2020.1.
Methodology. We first benchmark the GPU communication
stack and hardware network transport to demonstrate that Fp-
gaNIC allows easy PCIe P2P communication with local GPUs
and reliable network communication with remote GPUs. We
then evaluate the three FpgaNIC models: direct (§3.3), off-
path (§3.4), and on-path (§3.5), to demonstrate FpgaNIC’s
performance and ability to enable the exploration of a large
SmartNIC design space.

9The off-path model is generic enough such that it would also work well
in other applications that follow a partition/aggregate pattern and require
multiple rounds of communication [38].

USENIX Association 2022 USENIX Annual Technical Conference    973



3.2 Benchmarking Shared Infrastructure
We benchmark the shared GPU communication stack and
hardware network transport.

3.2.1 GPU Communication Stack

To analyze the effect of control plane and data plane offload-
ing, we measure the latency and throughput of the PCIe P2P
link (§2.3). We use two classes of GPU: Quadro RTX8000
(labelled “R8K") and Tesla A100 (labelled “A100"), since a
different GPU class leads to different latency and throughput.
Effect of Control Plane Offloading. We examine the effect
of control plane offloading by comparing the latency of com-
mands issued from the GPU to the FPGA. Figure 3 shows the
read latency when using various end points: “X_Y" means
that device “X" reads from device “Y". A first important re-
sult is that the latency of interactions between the GPU and
the FPGA is comparable to that of the CPU calling the FPGA
and it is under 1 microsecond. Moreover, the GPU-FPGA’s
latency fluctuation is smaller than that of CPU-FPGA, demon-
strating one of the advantages of FpgaNIC in terms of offering
deterministic latency. The results also show that performance
improves slightly with a better GPU, indicating that the overall
system will improve with future versions of the GPU. Finally,
the latency of “GPU_FPGA" is significantly lower than that
of “GPU_CPU" plus “CPU_FPGA", proving the efficiency
of control plane offloading proposed in FpgaNIC.

R8K_FPGA A100_FPGA CPU_FPGA R8K_CPU A100_CPU
0

0.5

1

1.5

2

L
at

en
cy

[µ
s]

Figure 3: Control plane latency comparison. X_Y refers to
the device “X" accesses the device “Y". R8K refers to RTX
8000 GPU, and A100 refers to A100 GPU. Whiskers show
the 1st and 99th percentile.

Effect of Data Plane Offloading. We examine the effect of
data plane offloading by measuring the throughput when the
FPGA issues a DMA read/write operation to GPUs. Each
operation transfers 4GB of data between the FPGA and the
GPU memory. Figure 4 illustrates the achievable throughput
with varying burst size, which is associated with the length of
a DMA operation. It is interesting to observe that DMA read
and write operations reach peak throughput at different burst
sizes: 512B for read and 8K for write, indicating that we need
to carefully choose the right DMA size to saturate the PCIe
P2P bandwidth between FPGA and GPU. As with latency,
a newer GPU class leads to much higher PCIe throughput.
For example, a DMA read operation to an A100 GPU yields
12.6GB/s, close to the maximum possible PCIe bandwidth.

Figure 4: PCIe P2P throughput between FPGA and GPU

3.2.2 Hardware Network Transport
Next, we measure the throughput and latency of the hardware
network transport (§2.4).
Latency. We measure the the round-trip time (RTT) between
two FPGAs connected via the network switch. Figure 5a
shows the RTT with varying message size. The most striking
result is that the TCP latency is in microseconds, instead of
milliseconds, demonstrating the advantages of offloading to
a SmartNIC instead of using the CPU for communication.
For messages smaller than 1 KB, the RTT latency (roughly
3.1us) is dominated by the physical communication path (the
Ethernet switch introduces an additional hop with roughly
1us latency.
Throughput. We measure as well the throughput between
two network transports with varying packet size and vary-
ing number of connections. Figure 5b shows the observed
throughput by sending out a total of 1GB from one transport to
the other with varying packet size and number of connections.
We observe that the number of connections does not affect the
achievable throughput under the same packet size, indicating
that FpgaNIC is able to efficiently support multi-connection
communication. For small packets, the throughput is low due
to the fixed overhead, i.e., the 40B header, per packet and the
turnaround cycles to process each packet. However, for larger
packets, the achievable throughput is close to the 100Gbps
channel capacity, demonstrating that FpgaNIC efficiently uses
the available network bandwidth.

3.3 Evaluation of the Direct Model
We evaluate the throughput of FpgaNIC used in direct mode.
The experiment involves sending data from one GPU to a
remote GPU through the corresponding FPGAs using the
direct model path: GPU-PCIe-FPGA-network-FPGA-PCIe-
GPU.
Effect of Slot Size. We examine the effect of the slot size
(W ) of the circular buffer for each connection (§A.1.2). The
slot size determines the size of the DMA operation between
an FPGA and a GPU. Figure 6a illustrates the throughput
with varying slot size. We have two observations. First, a
sufficiently large slot size leads to saturated throughput. A

974    2022 USENIX Annual Technical Conference USENIX Association



(a) Round-trip latency with varying message size

(b) Throughput with varying packet size and connections

Figure 5: 100Gb TCP stack: latency and throughput

small slot size (<64KB) leads to lower throughput since it
leads to low DMA engine utilization (Figure 4). Second, the
network bandwidth between A100 GPUs is higher than that
between RTX 8000 GPUs, as the slow PCIe speed between
a RTX 8000 GPU and the FPGA becomes the bottleneck of
network bandwidth (Figure 4).
Effect of Control Plane Offloading on Slot Size. We exam-
ine the effect of control plane offloading on different slot sizes.
Without control plane offloading, we need to use CPU to trig-
ger the DMA operation after executing a CUDA kernel that
copies a chunk in the “GPU user" layer into the send buffer
in the “GPU kernel" layer, leading to one kernel invocation
per chunk. Intuitively, such frequent kernel invocations lead
to significant overhead when the chunk size or the transfer
size is not large. Figure 6b illustrates the throughput compari-
son with and without control plane offloading under different
chunk size, when the data transfer size is 1GB. We observe
that control plane offloading can leads to obviously higher
throughput than the implementation without control plane
offloading. Moreover, a smaller chunk size leads to higher
throughput improvement, because control plane offloading
eliminates more CUDA kernel invocations.
Effect of Control Plane Offloading on Transfer Size. We
examine the effect of control plane offloading on different
transfer sizes. Figure 6c illustrates the throughput compari-
son with and without control plane offloading under different
transfer size, when the chunk size is 64KB. We observe that
when the transfer length is smaller, control plane offloading
leads to significant throughput improvement over the case
without control plane offloading, whose performance is domi-

(a) Effect of DMA size with control plane offloading

(b) Effect of control plane offloading on chunk size

(c) Effect of control plane offloading on transfer size

Figure 6: Throughput of GPU-centric networking

nated by the kernel invocation overhead and context switch. In
contrast, control plane offloading can remove these overheads
by triggering doorbell registers from within a CUDA kernel,
rather other from the host CPU.

3.4 Evaluation of the Off-path Model
In this subsection, we evaluate the performance of FpgaNIC-
enhanced AllReduce on a distributed pool of eight GPUs, as
shown in Figure 2. When accelerating AllReduce, we config-
ure FpgaNIC in an off-path model and offload the AllReduce
engine to the FPGA. In the following, we present the baseline
and the corresponding performance comparison.
Baseline. The experimental platform used as a baseline is
similar to Figure 2, except that FpgaNIC in each server is
replaced with a Mellanox ConnectX-5 100Gbps MT27800
NIC with RoCE and GPUDirect enabled. We use NVIDIA
Collective Communication Library (NCCL) [50] which pro-
vides state-of-the-art collective communication primitives,
e.g., AllReduce, over distributed Nvidia GPUs.

USENIX Association 2022 USENIX Annual Technical Conference    975



Figure 7: Effect of data size under eight nodes

Figure 8: Effect of node number with 64MB data size

Comparison Metric. To demonstrate the performance of
AllReduce, we introduce the metric bus bandwidth [51],
which is calculated to be algorithm bandwidth times 2∗ (N −
1)/N, where algorithm bandwidth is calculated to be the data
size divided by the elapsed time and N is the number of nodes.
The elapsed time is estimated to be the average time of all the
involved nodes in five rounds [9].
Effect of Data Size. We examine the effect of data size when
performing AllReduce. Intuitively, a large data size easily
leads to a saturated throughput because we hit the bandwidth
limits of the underlying channels. Figure 7 illustrates the bus
bandwidth comparison between FpgaNIC and NCCL in a clus-
ter with 8 nodes. FpgaNIC leads to up to 2.5x speedup over
NCCL, because the AllReduce engine in FpgaNIC efficiently
overlaps the operations of the PCIe DMA, network transport,
and FPGA memory. Moreover, FpgaNIC does not consume
any GPU/CPU cycles, freeing up these precious computing
resources for other important tasks. FpgaNIC reaches the the-
oretical bus bandwidth when the data size is larger than 8MB,
indicating that FpgaNIC’s AllReduce implementation is us-
ing all resources efficiently. Finally, when data size is small
(<1MB), the speedup is up to 2.5x, due to the faster transition
between states in FpgaNIC (Table 8) when compared to the
same operation being implemented on GPUs.
Impact of Systems Size. We examine the effect of number
of nodes on the AllReduce performance under 64MB data
size. Figure 8 shows how both FpgaNIC and NCCL reach
the theoretical bus bandwidth with an increasing number of
nodes. However, NCCL needs a quite amount of CPU/GPU
computing cycles to realize, while FpgaNIC does not.
Discussion. In the context of distributed AI model training,
these results indicate that only offloading the AllReduce en-
gine will not able to fully harvest FpgaNIC’s potential. We
can offload not only the communication functions (i.e., the

AllReduce engine) but also part of the learning engine such
as the compressor (e.g., compression engine) and optimizer
(e.g., Adam engine) to FpgaNIC, such that the entire commu-
nication part of training is offloaded to minimize the commu-
nication overhead for GPUs. Since these engines can easily
achieve line-rate throughput, plenty of interesting trade-offs
in the design of distributed learning, e.g., sync vs. async, can
be revisited by using FpgaNIC. We leave this idea to future
work.

3.5 Evaluation of the On-path Model
We finally evaluate the performance of FpgaNIC-enhanced
HLL, when FpgaNIC is configured in an on-path model. The
cardinality is calculated when the data stream has been trans-
ferred. The goal of this experiment is to verify whether the
HLL module within an FPGA can act as a bump in the wire.

The baseline, labelled “write", is to feed data to a GPU
without processing the data in the FPGA. The GPU receives
the data from the FPGA and stores it in the current block in
GPU memory, while at the same time performing HLL on
the previous block, overlapping data transfer with cardinality
calculation at the block granularity. Table 6 illustrates that at
least 8 SMs, in terms of 8 thread blocks and 512 threads per a
thread block, are required to consume 100Gbps data stream
(packet payload size: 1408 bytes) on an A100 GPU, when
the block size is no smaller than 256K. Moreover, when the
block size is smaller than 128K, an A100 GPU is not able to
consume the data stream, as such a small block size cannot
fully utilize GPU’s processing parallelism.

Table 6: Number of required GPU SMs w.r.t block size

Block size <=128K 256K 512K 1024K
Number of A100 SMs >256 8 8 8

Figure 9: Performance of HLL with and without offloading.
HLL with offloading does not affect the overall throughput,
but saves at least 8 A100 GPU SMs, required by HLL without
offloading, to consume 100 Gbps HLL data stream.

Figure 9 illustrates that FpgaNIC-enhanced HLL is able
to achieve similar throughput as the baseline under various
packet payload size, where the block size is 256K. It indicates
that offloading HLL does not block the incoming data stream
and introduces negligible latency. More important, FpgaNIC-
enhanced HLL does not require any GPU compute power,

976    2022 USENIX Annual Technical Conference USENIX Association



Table 7: Comparison of FpgaNIC with existing SmartNICs from industry. X indicates full support,%indicates no support.

Programmable flow processing Targeted applications CPU-centric GPU-centric
Broadcom [7] X Virtualization, storage, NFV X %

Pensando [53] X Storage, security X %

Netronome [49] X SDN-controlled server-based networking X %

Intel IPU [23, 24] X Cloud, storage, security X %

FpgaNIC X AI model training % X

e.g., at least 8 A100 SMs, which can be used in other comput-
ing task. Moreover, Table 2 shows that FpgaNIC-enhanced
HLL takes a small amount of FPGA resources. Therefore, in
the context of FPGA+GPU co-processing, it is clearly more
efficient to offload HLL onto FpgaNIC, rather than processing
HLL on the GPU.

4 Related Work
To our knowledge, FpgaNIC is the first FPGA-based GPU-
centric 100Gbps SmartNIC that addresses the bottleneck lim-
itations introduced by the use of conventional CPUs or small
cores (ARM) in SmartNICs.
FPGA-augumented SmartNICs. Several commercial sys-
tems [10, 21, 22, 45, 55, 79] feature an FPGA within a Smart-
NIC. The closest work is from Mellanox Innova [45] that
features an FPGA in its SmartNIC to accelerate offloaded
compute-intensive applications, while PCIe and network in-
terfaces are handled by a NIC ASIC ConnectX-5. The FPGA
is connected with the NIC ASIC via a PCIe interface and
therefore acts as an additional PCIe endpoint. The FPGA
is entirely dedicated to the user’s application logic. In con-
trast, FpgaNIC implements all functionalities, including net-
working and PCIe, within a powerful FPGA, enabling a large
design space exploration of SmartNIC architecture, while In-
nova provides limited architectural flexibility due to how the
FPGA is connected.
GPU-FPGA Communication. Previous work [6,64] has im-
plemented GPUDirect RDMA on an FPGA to directly ac-
cess GPU memory, but not allowing the GPU to trigger door-
bell registers within an FPGA. In contrast, FpgaNIC allows
GPUDirect RDMA and the GPU to trigger registers within
an FPGA, and is an FPGA-based SmartNIC that allows large
design space exploration of SmartNIC architecture.
Acceleration using FPGA-based SmartNICs. Most previ-
ous work [2,3,8,10,13,14,14,17,26,35,36,36,37,59,62,65]
features an FPGA on SmartNICs to offload data processing
to the network from the host CPU. In contrast, FpgaNIC is
an FPGA-based full-stack SmartNIC that mainly targets com-
pute task offloading from local GPUs which require a more
complex system than offloading for CPUs. For example, we
can offload partial G-TADOC [76, 77] that is a novel opti-
mization to perform compressed data direct processing onto
FpgaNIC to maximize the performance of distributed system
under efficient FPGA-GPU co-processing.
Multicore-based SmartNICs. There is also a lot of work

done [12, 16, 29, 41, 42, 44, 47, 48, 54, 56, 63, 66, 70] on Smart-
NIC built upon a wimpy RISC cores plus hardware engines
to accelerate dedicated functionality such as compression.
These RISC cores are used to both process packets as well
as to implement “smart" functions instead of using the host
CPUs. Such an approach inevitably suffers from load inter-
ference since packet processing and the smart functions have
to compete for the shared resources, e.g., the last level cache
and memory bandwidth. In contrast, FpgaNIC implements an
GPU-centric SmartNIC on an FPGA.

On-going SmartNICs in Industry. Besides NVIDIA’s
DPU, we compare FpgaNIC with other SmartNICs from in-
dustry, as shown in Table 7. Broadcom offers the Stingray
SmartNIC [7], which features a ARM 8-core CPU for control-
plane management and P4-like TruFlow packet processing
engine for data-plane processing, targeting various applica-
tions such as virtualization, storage, and NFV. Pensando has
a DPU architecture [53] that features an ARM CPU and a
P4 processor for data-plane packet processing, targeting var-
ious applications such as security and storage. Netronome
provides the NFP4000 Flow Processor architecture [49] that
features a ARM CPU, 48 packet processing cores, and 60
P4-programmable flow processing cores for data-plane pro-
cessing, targeting the SDN-controlled server-based network-
ing application. Intel presents the FPGA-based IPU (Infras-
tructure Processing Unit) that consists of a MAX 10 FPGA
for control-plane management and an Arria 10 FPGA for
data-plane processing [23], and uses an ASIC IPU whose
architecture is not publicly documented [24]. Fungible has
a DPU [15] featuring multiple PCIe endpoints, TrueFabric
for networking, and specialized engines such as compression
and EC/RAID to address inefficient data-centric computa-
tion within a node and inefficient interchange between nodes,
targeting various applications such as virtualization, cloud
storage, and data analytics. All these systems are CPU-centric
in that they are designed to complement the CPU. In several
cases, they suffer from the bottleneck problem pointed out
above that prevents them from being above to operate at line
rate. In contrast, FpgaNIC is an FPGA-based GPU-centric
SmartNIC that targets various applications such as AI model
training and security and specifically designed to operate at
line rate which also means that it might not be suitable for
operations that would significantly impair the flow of net-
work packets (such as blocking operations or computations
generating large amounts of intermediate state).

USENIX Association 2022 USENIX Annual Technical Conference    977



5 Insights and Implications of FpgaNIC

In this section, we discuss three interesting properties regard-
ing FpgaNIC.
High Performance of On-NIC Computing Module. An
increasing amount of SmartNIC solutions intend to remove
the conventional CPU from the data-path (e.g., Microsoft Cat-
apult). However, they either do not exploit the possibilities
of direct communication between the FPGA and the GPU,
or use small CPUs (ARM cores) that cannot process at line
rate to impose additional hops within the NIC to implement
the smart functionality (e.g., Bluefield-2). Furthermore, com-
mercially available multi-core SmartNICs, such as BlueFiled-
2, fail to process 100Gbps network traffic at line rate with
its embedded CPU, which is capable of doing control-plane
management only. The embedded CPU in Bluefield-2 is over-
whelmed by trying to stage a 100Gbps data stream coming
from the network. In contrast, FpgaNIC provides a 100Gbps
data-path accelerator for distributed computing over GPUs,
and thus enables a large design space exploration around
SmartNIC for GPU-based applications. The key aspect of
FpgaNIC is that it can process data at line rate as it comes
from the network, something that other systems cannot do,
because this requires to insert the accelerator in the data path,
which cannot be done with conventional hardware (running
conventional software) but can be done with FPGAs. To do so,
FpgaNIC only consumes roughly 20% of the FPGA resources
(marked in blue) to implement the NIC architecture (100Gbs
hardware network transport and GPU communication stack)
in a half-length, half-height FPGA board (Alveo U50), as
shown in Table 5. It implies that the majority of the FPGA re-
sources can be dedicated to on-NIC computing for SmartNIC
functionality. Moreover, U50 has High Bandwidth Memory
(HBM) which can be used to implement functionality with
more intermediate states as memory access does not become
the bottleneck. Therefore, FpgaNIC allows the offloading of
compute-bound and memory-intensive tasks from multiple
tenants (e.g., like in [39]) onto a mid-size FPGA.
Performance Guarantee and Isolation. Many multicore-
based SmartNICs use small CPU cores for in-network com-
puting. On these CPUs is really hard to provide performance
guarantee and isolation due to insufficient CPU processing
abilities and interference across tasks. We have shown that
FpgaNIC is able to guarantee performance and isolation from
two perspectives. From a compute’s perspective, FpgaNIC
provides dedicated hardware resources for each offloaded
compute task, leading to a strict performance guarantee and
perfect performance isolation. From a memory’s perspective,
U50 features 2-channel HBMs [71, 75] with 32 independent
memory channels, each of which provides up to 13.6GB/s
of memory throughput [20, 68]. This guarantees that each
offloaded compute task is able to gain exclusive control over
the assigned memory channels, without interfering with other
offloaded compute tasks and the NIC infrastructure, which op-

erates on dedicated hardware resources to guarantee line-rate
network throughput.
Medium Programmability. Programming FPGAs using a
Hardware Description Language (HDL), is error-prone and
difficult to debug, limiting the adoption of FPGAs by system
programmers. When using FpgaNIC, we intentionally ensure
that it can be programmed using C++-based HLS (High Level
Synthesis), to make it easier to use for software programmers,
where HLS is the highest level of abstraction commercially
available for programming FPGAs. To let FpgaNIC support
both HDL and HLS, FpgaNIC’s interface mainly leverages
the stream type in HLS, i.e., AXI stream in HDL, for better
compatibility. In future work, we intend to raise the level of
abstraction further by developing a comprehensive framework
such that users without hardware design experience can easily
leverage FpgaNIC to accelerate distributed GPU-powered ap-
plications by automatically identifying offloaded functionali-
ties via an FPGA-aware performance analysis framework [69]
for maximum performance and high programmability.

6 Conclusion

Inspired by the fact that there is no SmartNIC designed for
GPUs, we present FpgaNIC, a full-stack FPGA-based GPU-
centric 100Gbps SmartNIC that allows a large design space
exploration around SmartNICs for accelerating applications
running on distributed GPUs. FpgaNIC enables direct data
communication to local GPUs via PCIe P2P communication,
enables local GPUs to directly manipulate the FPGA, pro-
vides reliable network communication with remote nodes, and
enables on-NIC computing module to process the data from
network at line rate. FpgaNIC can be efficiently used in three
SmartNIC modes: direct, off-path, and on-path, to accelerate
a broad range of GPU-powered distributed applications, such
as Deep Learning model training. FpgaNIC is open-source to
encourage further development and research in GPU-centric
applications (Github: https://github.com/RC4ML/FpgaNIC).
Acknowledgement. We thank our shepherd and anonymous
reviewers for their constructive suggestions. We are grateful
to the AMD-Xilinx University Program for the donation of
some of the AMD-Xilinx FPGAs used in the experiments.
The work is supported by the following grants: the National
Key R&D Program of China (Grant No. 2020AAA0103800),
the Fundamental Research Funds for the Central Universities
226-2022-00151 and 226-2022-00051, Starry Night Science
Fund of Zhejiang University Shanghai Institute for Advanced
Study (SN-ZJU-SIAS-0010).

References

[1] Alexey Kopytov. sysbench. https://github.com/
akopytov/sysbench, 2020.

978    2022 USENIX Annual Technical Conference USENIX Association

https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench


[2] Catalina Alvarez, Zhenhao He, Gustavo Alonso, and
Ankit Singla. Specializing the Network for Scatter-
Gather Workloads. In SOCC, 2020.

[3] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya
Ghobadi, Jennifer Rexford, David Walker, and David
Wentzlaff. Enabling Programmable Transport Protocols
in High-Speed NICs. In NSDI, 2020.

[4] Baidu. baidu-allreduce. https://github.com/
baidu-research/baidu-allreduce, 2016.

[5] M. Banikazemi, V. Moorthy, and D. K. Panda. Efficient
collective communication on heterogeneous networks
of workstations. In ICPP, 1998.

[6] R. Bittner and E. Ruf. Direct GPU/FPGA Communica-
tion via PCI Express. In ICPP Workshops, 2012.

[7] Broadcom. Stingray PS250 2x50-Gb High-Performance
Data Center SmartNIC. https://docs.broadcom.
com/doc/PS250-PB, 2019.

[8] Marco Spaziani Brunella, Giacomo Belocchi, Marco
Bonola, Salvatore Pontarelli, Giuseppe Siracusano,
Giuseppe Bianchi, Aniello Cammarano, Alessandro
Palumbo, Luca Petrucci, and Roberto Bifulco. hXDP:
Efficient Software Packet Processing on FPGA NICs.
In OSDI, 2020.

[9] D. Bureddy, H. Wang, A. Venkatesh, S. Potluri, and D. K.
Panda. Omb-gpu: A micro-benchmark suite for evaluat-
ing mpi libraries on gpu clusters. In Jesper Larsson Träff,
Siegfried Benkner, and Jack J. Dongarra, editors, Recent
Advances in the Message Passing Interface, 2012.

[10] A. M. Caulfield, E. S. Chung, A. Putnam, et al. A Cloud-
scale Acceleration Architecture. In MICRO, 2016.

[11] M. Cho, U. Finkler, M. Serrano, D. Kung, and H. Hunter.
Blueconnect: Decomposing all-reduce for deep learning
on heterogeneous network hierarchy. IBM Journal of
Research and Development, 2019.

[12] Aleksandar Dragojević, Dushyanth Narayanan, Miguel
Castro, and Orion Hodson. FaRM: Fast remote memory.
In NSDI, 2014.

[13] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and
Mark Silberstein. NICA: An Infrastructure for Inline
Acceleration of Network Applications. In ATC, 2019.

[14] Daniel Firestone, Andrew Putnam, Sambhrama Mund-
kur, Derek Chiou, et al. Azure Accelerated Networking:
SmartNICs in the Public Cloud. In NSDI, 2018.

[15] Fungible. FUNGIBLE F1 DATA PROCESS-
ING UNIT. https://www.fungible.com/
wp-content/uploads/2020/08/PB0028.01.

02020820-Fungible-F1-Data-Processing-Unit.
pdf, 2020.

[16] Stewart Grant, Anil Yelam, Maxwell Bland, and Alex C.
Snoeren. SmartNIC Performance Isolation with Fair-
NIC: Programmable Networking for the Cloud. In SIG-
COMM, 2020.

[17] Zhenhao He, Dario Korolija, and Gustavo Alonso.
EasyNet: 100 Gbps Network for HLS. In FPL, 2021.

[18] Stefan Heule, Marc Nunkesser, and Alexander Hall. Hy-
perLogLog in Practice: Algorithmic Engineering of a
State of the Art Cardinality Estimation Algorithm. In
CEDT, 2013.

[19] T. Hoefler, S. Di Girolamo, K. Taranov, R. E. Grant,
and R. Brightwell. sPIN: High-performance Streaming
Processing in the Network. In SC, 2017.

[20] Hongjing Huang, Zeke Wang, Jie Zhang, Zhenhao He,
Chao Wu, Jun Xiao, and Gustavo Alonso. Shuhai: A
Tool for Benchmarking High Bandwidth Memory on
FPGAs. TC, 2022.

[21] Intel. Intel SmartNICs for Telecommunica-
tions. https://www.intel.com/content/
www/us/en/products/programmable/
smart-nics-fpga-for-broadband-edge.html,
2020.

[22] Intel. Infrastructure Processing Units (IPUs) and Smart-
NICs. https://www.intel.com/content/www/us/
en/products/network-io/smartnic.html, 2021.

[23] Intel. Intel FPGA Programmable Ac-
celeration Card N3000 for Networking.
https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/po/
intel-fpga-programmable-acceleration-card/
-n3000-for-networking.pdf, 2021.

[24] Intel. Intel Unveils Infrastructure Pro-
cessing Unit. https://www.intel.com/
content/www/us/en/newsroom/news/
infrastructure-processing-unit-data-center.
html#gs.bdzkbc, 2021.

[25] Zsolt István, David Sidler, Gustavo Alonso, and Marko
Vukolic. Consensus in a Box: Inexpensive Coordination
in Hardware. In NSDI, 2016.

[26] Wenqi Jiang, Zhenhao He, Shuai Zhang, Kai Zeng,
Liang Feng, Jiansong Zhang, Tongxuan Liu, Yong Li,
Jingren Zhou, Ce Zhang, and Gustavo Alonso. Flee-
tRec: Large-Scale Recommendation Inference on Hy-
brid GPU-FPGA Clusters. In KDD, 2021.

USENIX Association 2022 USENIX Annual Technical Conference    979

https://github.com/baidu-research/baidu-allreduce
https://github.com/baidu-research/baidu-allreduce
https://docs.broadcom.com/doc/PS250-PB
https://docs.broadcom.com/doc/PS250-PB
https://www.fungible.com/wp-content/uploads/2020/08/PB0028.01.02020820-Fungible-F1-Data-Processing-Unit.pdf
https://www.fungible.com/wp-content/uploads/2020/08/PB0028.01.02020820-Fungible-F1-Data-Processing-Unit.pdf
https://www.fungible.com/wp-content/uploads/2020/08/PB0028.01.02020820-Fungible-F1-Data-Processing-Unit.pdf
https://www.fungible.com/wp-content/uploads/2020/08/PB0028.01.02020820-Fungible-F1-Data-Processing-Unit.pdf
https://www.intel.com/content/www/us/en/products/programmable/smart-nics-fpga-for-broadband-edge.html
https://www.intel.com/content/www/us/en/products/programmable/smart-nics-fpga-for-broadband-edge.html
https://www.intel.com/content/www/us/en/products/programmable/smart-nics-fpga-for-broadband-edge.html
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/po/intel-fpga-programmable-acceleration-card/-n3000-for-networking.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/po/intel-fpga-programmable-acceleration-card/-n3000-for-networking.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/po/intel-fpga-programmable-acceleration-card/-n3000-for-networking.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/po/intel-fpga-programmable-acceleration-card/-n3000-for-networking.pdf
https://www.intel.com/content/www/us/en/newsroom/news/infrastructure-processing-unit-data-center.html#gs.bdzkbc
https://www.intel.com/content/www/us/en/newsroom/news/infrastructure-processing-unit-data-center.html#gs.bdzkbc
https://www.intel.com/content/www/us/en/newsroom/news/infrastructure-processing-unit-data-center.html#gs.bdzkbc
https://www.intel.com/content/www/us/en/newsroom/news/infrastructure-processing-unit-data-center.html#gs.bdzkbc


[27] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui,
and Chuanxiong Guo. A Unified Architecture for Ac-
celerating Distributed DNN Training in Heterogeneous
GPU/CPU Clusters. In OSDI, 2020.

[28] Anuj Kalia, Dong Zhou, Michael Kaminsky, and
David G. Andersen. Raising the Bar for Using GPUs in
Software Packet Processing. In NSDI, 2015.

[29] Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma,
Thomas Anderson, and Arvind Krishnamurthy. High
Performance Packet Processing with FlexNIC. In ASP-
LOS, 2016.

[30] Sangman Kim, Seonggu Huh, Xinya Zhang, Yige Hu,
Amir Wated, Emmett Witchel, and Mark Silberstein.
GPUnet: Networking Abstractions for GPU Programs.
In OSDI, 2014.

[31] Diederik P Kingma and Jimmy Ba. Adam: A
Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980, 2014.

[32] Dario Korolija, Timothy Roscoe, and Gustavo Alonso.
Do OS abstractions make sense on FPGAs? In OSDI,
2020.

[33] A. Kulkarni, M. Chiosa, T. B. Preußer, K. Kara, D. Si-
dler, and G. Alonso. HyperLogLog Sketch Acceleration
on FPGA. In FPL, 2020.

[34] N. T. Kung and R. Morris. Credit-based Flow Control
for ATM Networks. IEEE Network, 1995.

[35] N. Lazarev, N. Adit, S. Xiang, Z. Zhang, and C. Delim-
itrou. Dagger: Towards Efficient RPCs in Cloud Mi-
croservices With Near-Memory Reconfigurable NICs.
IEEE Computer Architecture Letters, 2020.

[36] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei
Lu, Yongqiang Xiong, Andrew Putnam, Enhong Chen,
and Lintao Zhang. KV-Direct: High-Performance In-
Memory Key-Value Store with Programmable NIC. In
SOSP, 2017.

[37] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng,
Renqian Luo, Ningyi Xu, Yongqiang Xiong, Peng
Cheng, and Enhong Chen. ClickNP: Highly Flexible
and High Performance Network Processing with Recon-
figurable Hardware. In SIGCOMM, 2016.

[38] Y. Li, J. Park, M. Alian, Y. Yuan, Z. Qu, P. Pan, R. Wang,
A. Schwing, H. Esmaeilzadeh, and N. S. Kim. A
Network-Centric Hardware/Algorithm Co-Design to Ac-
celerate Distributed Training of Deep Neural Networks.
In MICRO, 2018.

[39] Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh
Sivaraman, and Aditya Akella. PANIC: A High-
Performance Programmable NIC for Multi-tenant Net-
works. In OSDI, 2020.

[40] Jianshen Liu, Carlos Maltzahn, Craig Ulmer, and
Matthew Leon Curry. Performance Characteris-
tics of the BlueField-2 SmartNIC. arXiv preprint
arXiv:2105.06619, 2021.

[41] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishna-
murthy, Simon Peter, and Karan Gupta. Offloading Dis-
tributed Applications onto SmartNICs Using IPipe. In
SIGCOMM, 2019.

[42] Ming Liu, Simon Peter, Arvind Krishnamurthy, and
Phitchaya Mangpo Phothilimthana. E3: Energy-efficient
microservices on smartnic-accelerated servers. In ATC,
2019.

[43] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang
Xiong, Peng Cheng, Jiansong Zhang, Enhong Chen, and
Thomas Moscibroda. Multi-path transport for RDMA
in datacenters. In NSDI, 2018.

[44] Mellanox. Mellanox BlueField SmartNIC.
http://www.mellanox.com/related-docs/prod_
adapter_cards/PB_BlueField_Smart_NIC.pdf,
2019.

[45] Mellanox. Mellanox innova-2flex. http:
//www.mellanox.com/related-docs/prod_
adapter_cards/PB_Innova-2_Flex.pdf, 2020.

[46] Michael Cooney. Speed Race: Just as 400Gb Ethernet
Gear Rolls Out, an 800GbE SPEC is Revealed.
https://www.prnewswire.com/news-releases/
400gbe-to-drive-the-majority-of-data-center-/
ethernet-switch-bandwidth-within-five-years-/
forecasts-crehan-research-300587873.html,
2020.

[47] YoungGyoun Moon, SeungEon Lee, Muhammad Asim
Jamshed, and KyoungSoo Park. Acceltcp: Accelerating
network applications with stateful TCP offloading. In
NSDI, 2020.

[48] Craig Mustard, Fabian Ruffy, Anny Gakhokidze, Ivan
Beschastnikh, and Alexandra Fedorova. Jumpgate: In-
Network Processing as a Service for Data Analytics. In
HotCloud, 2019.

[49] Netronome. NFP-4000 Theory of Operation. https://
www.netronome.com/static/app/img/products/
silicon-solutions/WP_NFP4000_TOO.pdf, 2016.

[50] Nvidia. NVIDIA NCCL. https://developer.
nvidia.com/nccl, 2016.

980    2022 USENIX Annual Technical Conference USENIX Association

http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_Innova-2_Flex.pdf
https://www.prnewswire.com/news-releases/400gbe-to-drive-the-majority-of-data-center-/ethernet-switch-bandwidth-within-five-years-/ forecasts-crehan-research-300587873.html
https://www.prnewswire.com/news-releases/400gbe-to-drive-the-majority-of-data-center-/ethernet-switch-bandwidth-within-five-years-/ forecasts-crehan-research-300587873.html
https://www.prnewswire.com/news-releases/400gbe-to-drive-the-majority-of-data-center-/ethernet-switch-bandwidth-within-five-years-/ forecasts-crehan-research-300587873.html
https://www.prnewswire.com/news-releases/400gbe-to-drive-the-majority-of-data-center-/ethernet-switch-bandwidth-within-five-years-/ forecasts-crehan-research-300587873.html
https://www.netronome.com/static/app/img/products/silicon-solutions/WP_NFP4000_TOO.pdf
https://www.netronome.com/static/app/img/products/silicon-solutions/WP_NFP4000_TOO.pdf
https://www.netronome.com/static/app/img/products/silicon-solutions/WP_NFP4000_TOO.pdf
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl


[51] Nvidia. Performance reported by NCCL tests.
https://github.com/NVIDIA/nccl-tests/blob/
master/doc/PERFORMANCE.md, 2018.

[52] NVIDIA. Developing a Linux Kernel Module us-
ing GPUDirect RDMA. https://docs.nvidia.com/
cuda/gpudirect-rdma/index.html, 2020.

[53] Pensando. Pensando DSC-25 Distributed Services Card.
https://pensando.io/wp-content/uploads/
2020/03/Pensando-DSC-25-Product-Brief.pdf,
2020.

[54] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine
Kaufmann, Simon Peter, Rastislav Bodik, and Thomas
Anderson. Floem: A Programming System for NIC-
Accelerated Network Applications. In OSDI, 2018.

[55] Andrew Putnam, Adrian M Caulfield, Eric S Chung,
et al. A Reconfigurable Fabric for Accelerating Large-
scale Datacenter Services. In ISCA, 2014.

[56] Yiming Qiu, Qiao Kang, Ming Liu, and Ang Chen.
Clara: Performance Clarity for SmartNIC Offloading.
In HotNets, 2020.

[57] M. Ruiz, D. Sidler, G. Sutter, G. Alonso, and S. López-
Buedo. Limago: An FPGA-Based Open-Source 100
GbE TCP/IP Stack. In FPL, 2019.

[58] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao,
Bingyu Kong, Matthai Philipose, Arvind Krishnamurthy,
and Ravi Sundaram. Nexus: a GPU cluster engine for
accelerating DNN-based video analysis. In SOSP, 2019.

[59] Ran Shu, Peng Cheng, Guo Chen, Zhiyuan Guo, Lei Qu,
Yongqiang Xiong, Derek Chiou, and Thomas Mosci-
broda. Direct Universal Access: Making Data Center
Resources Available to FPGA. In NSDI, 2019.

[60] D. Sidler, G. Alonso, M. Blott, K. Karras, K. Vissers, and
R. Carley. Scalable 10Gbps TCP/IP Stack Architecture
for Reconfigurable Hardware. In FCCM, 2015.

[61] David Sidler, Zsolt István, Muhsen Owaida, and Gus-
tavo Alonso. Accelerating Pattern Matching Queries in
Hybrid CPU-FPGA Architectures. In SIGMOD, 2017.

[62] David Sidler, Zeke Wang, Monica Chiosa, Amit Kulka-
rni, and Gustavo Alonso. StRoM: Smart Remote Mem-
ory. EuroSys, 2020.

[63] Brent Stephens, Aditya Akella, and Michael M. Swift.
Your Programmable NIC Should Be a Programmable
Switch. In HotNets, 2018.

[64] Y. Thoma, A. Dassatti, and D. Molla. FPGA2: An Open
Source Framework for FPGA-GPU PCIe Communica-
tion. In ReConFig, 2013.

[65] Yuta Tokusashi, Huynh Tu Dang, Fernando Pedone,
Robert Soulé, and Noa Zilberman. The Case For In-
Network Computing On Demand. In EuroSys, 2019.

[66] Maroun Tork, Lina Maudlej, and Mark Silberstein. Lynx:
A SmartNIC-Driven Accelerator-Centric Architecture
for Network Servers. In ASPLOS, 2020.

[67] Guanhua Wang, Shivaram Venkataraman, Amar Phan-
ishayee, Nikhil Devanur, Jorgen Thelin, and Ion Stoica.
Blink: Fast and Generic Collectives for Distributed ML.
In MLSys, 2020.

[68] Z. Wang, H. Huang, J. Zhang, and G. Alonso. Shuhai:
Benchmarking High Bandwidth Memory On FPGAs.
In FCCM, 2020.

[69] Zeke Wang, Bingsheng He, Wei Zhang, and Shunning
Jiang. A performance analysis framework for optimizing
OpenCL applications on FPGAs. In HPCA, 2016.

[70] Xingda Wei, Rong Chen, and Haibo Chen. Fast RDMA-
based Ordered Key-Value Store using Remote Learned
Cache. In OSDI, 2020.

[71] Mike Wissolik, Darren Zacher, Anthony Torza, and
Brandon Day. Virtex UltraScale+ HBM FPGA: A Rev-
olutionary Increase in Memory Performance, 2019.

[72] Xilinx. XILINX ALVEO Adaptable Accelerator Cards
for Data Center Workloads. https://www.xilinx.
com/products/boards-and-kits/alveo.html,
2010.

[73] Xilinx. Alveo U280 Data Center Accelerator Card
Data Sheet. https://www.xilinx.com/support/
documentation/data_sheets/ds963-u280.pdf,
2019.

[74] Xilinx. Alveo U50 Data Center Accelerator Card
Data Sheet. https://www.xilinx.com/support/
documentation/data_sheets/ds965-u50.pdf,
2019.

[75] Xilinx. AXI High Bandwidth Memory Controller v1.0,
2019.

[76] Feng Zhang, Zaifeng Pan, Yanliang Zhou, Jidong Zhai,
Xipeng Shen, Onur Mutlu, and Xiaoyong Du. G-
TADOC: Enabling Efficient GPU-based Text analytics
without Decompression. In ICDE, 2021.

[77] Feng Zhang, Jidong Zhai, Xipeng Shen, Dalin Wang,
Zheng Chen, Onur Mutlu, Wenguang Chen, and Xiaoy-
ong Du. TADOC: Text Analytics Directly on Compres-
sion. VLDBJ, 2021.

USENIX Association 2022 USENIX Annual Technical Conference    981

https://github.com/NVIDIA/nccl-tests/blob/master/doc/PERFORMANCE.md
https://github.com/NVIDIA/nccl-tests/blob/master/doc/PERFORMANCE.md
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-25-Product-Brief.pdf
https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-25-Product-Brief.pdf
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.xilinx.com/support/documentation/data_sheets/ds963-u280.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds963-u280.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds965-u50.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds965-u50.pdf


[78] Hanyu Zhao, Zhenhua Han, Zhi Yang, Quanlu Zhang,
Fan Yang, Lidong Zhou, Mao Yang, Francis C.M. Lau,
Yuqi Wang, Yifan Xiong, and Bin Wang. HiveD: Sharing
a GPU Cluster for Deep Learning with Guarantees. In
OSDI, 2020.

[79] N. Zilberman, Y. Audzevich, et al. NetFPGA SUME:
Toward 100 Gbps as Research Commodity. IEEE Micro,
2014.

Appendices
A Implementation of FpgaNIC: Three Mod-

els

Due to the reconfigurable nature of FpgaNIC, the on-NIC
computing component has been designed to easily support
three SmartNIC modes for various types of application. We
use an application to map to each of three SmartNIC models
to demonstrate the versatility and efficiency of FpgaNIC.

A.1 Direct Model: GPU-centric Networking
We allow the direct model to support GPU-centric network-
ing (GCN), which enables direct network communication
between GPUs via a socket-like interface similar to that of
GPUnet [30]. The design is based on four goals.
D1: Reliable Communication. FpgaNIC intends to serve
AI and HPC applications which typically rely on reliable
data communication between computing nodes. With the
FPGA acting as a network proxy, this implies extending the
functionality of FpgaNIC on the GPU side to avoid losing
messages due to processing rate mismatches.
D2: Easy to Program. We strive to spare the developer the
need to deal with tedious GPU-related optimization meth-
ods such as the number of thread blocks and the number of
threads within a thread block. However, existing systems like
GPUnet [30] invokes its send/recv calls within a thread block
and requires all threads in a thread block to work in a coa-
lesced manner [30]. As a result, a programmer needs to be
quite familiar with GPU programming to leverage GPUnet.
Moreover, RDMA programming is much more complex than
traditional socket programming because RDMA exposes the
underlying functions and data structures of NIC to allow pro-
grammers to manipulate. Therefore, FpgaNIC implements
instead a simple socket API, making the development of dis-
tributed GPU applications easier.10

D3: Light-weight. Our GCN implementation has to be light-
weight, in terms of low GPU memory footprint and low GPU
core usage, on the GPU side, since the targeted HPC and AI
applications running on GPUs are both compute-intensive

10Nevertheless, FpgaNIC can also implement RDMA APIs with reason-
ably small amount of modifications.

//setup context for socket programming 
context = create_socket_context();  
int sockfd = socket(context); //create an socket  

connect(); //connect to the server 
send(sockfd, send_data, len); //send out an array 
  

FpgaNIC

//setup context for socket programming 
context = create_socket_context(); 
sockfd = socket(context); 
listen(sockfd); 
newsock = accept(sockfd, …); 
recv(newsock, recv_data, len)//recv an array 

(a) Client (b) Server

Figure 10: A typical example between a sender and a receiver

and memory-bound. Thus, the overall design needs to free up
GPU resources to maximize the application’s performance.
D4: Generalization to GPU Classes. Different GPU gen-
erations have different specifications for GPUDirect [52]:
maximum BAR size and PCIe P2P bandwidth. The maximum
BAR size available for GPUDirect is 256MB on Kepler-class
GPUs, while at least 16GB on Tesla-class GPUs. Besides,
the PCIe P2P bandwidth is 10.6GB/s on Quadro GPUs while
12.6GB/s on Tesla GPUs (§3.2). Our goal is to provide a solu-
tion that works on all GPUs regardless of their specifications.

In the following, we describe an example GPU-centric
networking (§A.1.1), followed by the overall architecture
(§A.1.2) and the implementation details (§A.1.3 and §A.1.4).

A.1.1 GCN Example

Figure 10 illustrates a typical example, written with the pro-
posed socket-like APIs, between a client and a server running
on distributed GPUs. After performing a typical socket hand-
shake, the client GPU sends the data of length len, starting
from the GPU memory address send_data, to the server GPU,
starting from the GPU memory address recv_data. This ex-
ample is similar to a typical socket program running on CPUs,
except the need to set up a context for the inter-GPU socket
programming. The resulting code is concise and easy to un-
derstand, satisfying one of the stated goals (D2: Easy of Use).

A.1.2 Overall Architecture of GCN

Figure 11 shows the software/hardware co-design approach
chosen to implement the GPU-centric network model. The
overall architecture consists of three layers: ONC, GPU ker-
nel, and GPU user. The key idea is to aggressively overlap
the operations performed on these three layers such that the
overall performance is maximized.
ONC Layer. The “ONC" layer of FpgaNIC consists of the
control, DMA read, and DMA write modules. The control
module directly accepts control-plane commands from the
GPUs and calls the other modules, e.g., DMA read. The DMA
read module accepts a DMA read command from the control
module and then issues a DMA read operation to the GPU.
Next, the DMA read module forwards the data stream from
PCIe to the 100Gb TCP stack. The DMA write module polls
on the incoming stream interface from the 100Gb TCP stack
and then forwards the received data to the GPU by issuing a
DMA write operation.

982    2022 USENIX Annual Technical Conference USENIX Association



FpgaNIC

GPU communication stack            

100Gb HW Transport

DMA read & forward

2

    GPU communication stack

           100Gb HW Transport

Add header & DMA write

Send buffer Receive bufferGPU	kernel

Head

Tail Head

Tail

GPU	user

Control Control

… … … …
1

3

4 5

6

7

8

Trigger DMA read Flow control

9

(a) Sender (b) Receiver

	To-send	array: To-receive	array:

Control plane GPU copy FPGA-GPU DMA TCP transfer  Inter-GPU flow control  

Figure 11: GCN between a sender and a receiver

GPU Kernel Layer. To manage incoming and outgoing traf-
fic, we implement a send buffer and a receive buffer, concep-
tually two circular buffers, for each established connection.
The key role of either buffer is to provide a staging option at
the GPU memory exposed to other PCIe devices, as not all
the memory space is visible to other PCIe devices on Quadro
GPUs. Since the total exposed memory size is 220MB, we
allocate 100MB to the send buffers and 100MB to the receive
buffers, while the remaining 20MB is reserved for internal
use. The number of supported connections is N, so each con-
nection has a circular buffer of size M = 100/N MB. We also
split a circular buffer into F slots, each of which containing
W = M

F MB GPU memory space.11

GPU User Layer. In the GPU user layer, calling a send()
or a receive() function will launch a data-mover kernel that
leverages Streaming Multiprocessing (SM)12 to move data
between the GPU user and kernel layers such that the speed
of the data mover matches the DMA read/write speed.

A.1.3 Handshake Protocol of GCN

We demonstrate how the handshake protocol works in GCN.
The key idea is to directly leverage the TCP stack on the
FPGA (§2.4) via the control plane offloaded to GPUs. The
handshake process consists of the following three steps.

First, each side creates a GPU-aware context by calling
create_socket_context, which specifies the number N of sup-
ported TCP connections (e.g., 8), the GPU send/recv buffer
size of each connection (e.g., 12.5MB), the initial address of
control plane.

11Nevertheless, FpgaNIC can be easily extended to support dynamic buffer
size with slight modifications in the GPU kernel layer.

12In our experiment, a Streaming Multiprocessing (SM) provides more
than enough throughput on both Quadro and Tesla GPUs. Each SM consists
of 64 GPU cores. RTX8000 has 72 SMs while A100 has 108.

Second, each side creates a socket (sockfd) using the func-
tion socket, which launches a GPU kernel with only one thread
that will apply for one free TCP connection slot in the FPGA
100Gb TCP stack.

Third, the server will listen to the socket sockfd by set-
ting the listen-port register listen_port and then triggering the
doorbell register listen_start (Table 4). Then, the server initi-
ates the function accept to wait for an incoming connection
from a client. The client calls the function connect with two
parameters conn_port and conn_ip to specify the destination
IP address and port. Once a connection is established, a client
and a server can proceed to exchange data.

A.1.4 Send/Recv Functions of GCN

We now describe the implementation details of the two-sided
communication between distributed GPUs by explaining the
overall data and control flow shown in Figure 11.
Data Flow. The sender splits the “to-send array" into chunks,
each of which has the size of W MB. For each chunk, we per-
form the following five steps. First, we employ a data-mover
kernel that occupies a GPU SM, in terms of a thread block
with 1024 threads, to copy a chunk in the “GPU user" layer
into the “tail" slot in the send buffer in the “GPU kernel" layer
( 1 ). Second, the sender kernel triggers a doorbell register
within an FPGA to start a DMA read operation ( 2 ). Third,
the DMA read module reads the data stream from the “head"
slot in the send buffer ( 3 ), and then forwards to the 100Gb
TCP stack ( 4 ). Fourth, the receiver accepts the data stream
from its 100Gb TCP stack ( 5 ), and then adds a header and a
trailer to the data stream and forwards it to the “tail" slot in
the receive buffer in the “GPU kernel" layer ( 6 ). Fifth, the
receiving GPU kernel monitors the “head" slot and leverages
a data-mover kernel that also occupies a GPU SM to copy the
data in the “tail" slot to the destination chunk in the to-receive
array in the “GPU user" layer ( 7 ).
Flow Control. Reliable communication (goal D1) is achieved
through a simple credit-based flow control [34] over each TCP
connection, so as to avoid potential congestion at a slow re-
ceiving GPU receiving a heavy traffic load. At the beginning,
the sender has a full credit of M MB to leverage. If we send
data from the to-send array to the tail slot in the send buffer
( 1 ), the corresponding credits are consumed, and the data in
the send buffer will be safely delivered to the receive buffer
on the other side. When the receiver copies the data from
the head slot to the to-receive array in the “GPU user" layer,
and then accumulates the amount Mr of correctly received
data, where Mr is initialized to be 0. Once the ratio of Mr to
M is over a threshold (T h), the receiver sends back a credit
with T h×M bytes to the sender, indicating T h×M bytes
of data have been correctly received. To do so, the receiver
triggers a doorbell register (consumed_bytes) specified in the
“control" module ( 8 ), and then forms a flow-control packet
to the sender ( 9 ). After the sender receives the credits, the
sender can proceed to send T h×M additional bytes.

USENIX Association 2022 USENIX Annual Technical Conference    983



Table 8: State transition of AllReduce within FpgaNIC. “x/y" means that x is input and y is output, where G refers to the
communication with a GPU, E refers to the communication with the 100Gb TCP stack. “(G+E)" means that we perform the
reduction on the data from GPUs (G) and the data from the 100Gb TCP stack (E), and store the reduced result in on-board
memory. “(E,G)" means that the data is read from on-board memory and forwarded to the next GPU via 100Gb TCP stack (E)
and GPUs (G). E j

i indicates the subarray[i] has already been accumulated j times, where 1 ≤ j ≤ 4. When j is 4, E4 and G4 are
the final reduced result sent to the next GPU via 100Gb TCP stack and to local GPU, respectively.

t0 t1 t2 t3 t4 t5 t6 t7
FPGA 0 G1

0/- (G1
3 + E1

3 )/E1
0 (G1

2 + E2
2 )/E2

3 (G1
1 + E3

1 )/E3
2 E4

0 /(E4
1 ,G4

1) E4
3 /(E4

0 ,G4
0) E4

2 /(E4
3 ,G4

3) -/G4
2

FPGA 1 G1
1/- (G1

0 + E1
0 )/E1

1 (G1
3 + E2

3 )/E2
0 (G1

2 + E3
2 )/E3

3 E4
1 /(E4

2 ,G4
2) E4

0 /(E4
1 ,G4

1) E4
3 /(E4

0 ,G4
0) -/G4

3
FPGA 2 G1

2/- (G1
1 + E1

1 )/E1
2 (G1

0 + E2
0 )/E2

1 (G1
3 + E3

3 )/E3
0 E4

2 /(E4
3 ,G4

3) E4
1 /(E4

2 ,G4
2) E4

0 /(E4
1 ,G4

1) -/G4
0

FPGA 3 G1
3/- (G1

2 + E1
2 )/E1

3 (G1
1 + E2

1 )/E2
2 (G1

0 + E3
0 )/E3

1 E4
3 /(E4

0 ,G4
0) E4

2 /(E4
3 ,G4

3) E4
1 /(E4

2 ,G4
2) -/G4

1

Discussion. The design matches the goals we established the
beginning, which dictate many of the architectural decisions.
To ensure reliable communication (goal D1), we implement
a credit-based flow control (§A.1.4) on the GPU side. To
simplify programming (goal D2), the GPU-aware socket-like
functions are executed sequentially by leveraging the default
CUDA stream, which is transparent to programmers. Never-
theless, our APIs also allow programmers to explicitly specify
CUDA streams to maximize execution overlap between ker-
nels. To minimize overhead (goal D3), GCN uses at most
220MB of the GPU memory for the communication, and a
GPU SM only when a send() or a receive() function is active.
Moreover, each handshake function launches a GPU kernel
with only one active thread. Finally, to support a wide range
of GPU classes (goal D4), GCN only exposes 220MB GPU
memory, which is allowed in all supported Nvidia GPUs.

A.2 Off-path SmartNIC: AllReduce
To illustrate the the off-path model of FpgaNIC, we imple-
ment a use case from HPC and AI applications: a collective
communication primitive AllReduce [4, 11, 50] operating on
the data residing in a distributed pool of GPUs. In particular,
we implement a ring-based AllReduce algorithm [4, 50] as it
provides high performance while having a simple communica-
tion flow that fits well within an FPGA. The communication
pattern is as follows. Assume there are P GPUs and each
GPU divides its own array for AllReduce into P subarrays.
The p-th GPU receives subarray[i] from the (p−1)-th GPU,
performs a reduction operation on the received subarray[i]
and its local subarray[i], and then sends the reduced result to
the (p+1)-th GPU, where 0 ≤ i, p < P.

A.2.1 Overall Architecture of AllReduce

The AllReduce [5, 67] engine implements the entire logic
in the ONC component, which is configured in an off-path
model, as show in Figure 12. The engine concurrently op-
erates on three components on the FPGA: the PCIe DMA
operation (§2.3), the network stack (§2.4), and the on-board
memory. The overall execution under FpgaNIC allows to over-
lap the access to these components to maximize throughput.

PCIe DMA Operation. The PCIe DMA operation is used
transfer data between the FPGA and its local GPU by issuing
a DMA operation within an FPGA directly to the GPU and
without CPU intervention.
Network Stack. The network stack is used to communicate
with remote GPUs through their corresponding FPGAs. In
our ring implementation, data arrives the previous GPU and
it is sent to the next GPU in the ring.
On-board Memory. The FPGA on-board memory is used
to store intermediate results. The current reduced result is
accumulated in on-board memory before being forwarded to
the next GPU. While it is being forwarded, the next result is
being calculated. Thus, the memory needs to provide suffi-
cient bandwidth for simultaneously writing partial results and
reading the previous result as it is being sent.

GPUs

GPUs

Data plane:  
FPGA—>GPU

Control plane:  
GPU—>FPGA

    GPU communication stack 

PCIe   X16 Gen3

100Gb HW Transport

+

PCIe Wrapper

HBM/
DDR4

G13

E13

(G13 + E13)

(G13 + E13)
E10

FpgaNIC

GPUs

GPUs

    GPU communication stack            

100Gb HW Transport

E40E41

FpgaNIC

G41
HBM/
DDR4

(a) t1@FPGA 0 (b) t5@FPGA 1

Figure 12: Architecture of AllReduce on the off-path model

A.2.2 Execution Flow of AllReduce on FpgaNIC

Table 8 illustrates the detailed execution flow of FpgaNIC-
enhanced AllReduce with a concrete example over 4 dis-
tributed nodes, labelled FPGA i, where i is from 1 to 4. The
execution is divided into eight steps (t0 ∼ t7).

At step t0, FPGA i issues a DMA read operation to transfer
its local subarray[i] in GPU memory to the FPGA’s memory
(labelled G1

i ). At step t1, FPGA i issues a DMA read operation
to read from its local subarray[i-1] (G1

i−1) in GPU memory,
receives E1

i−1 from the previous GPU in the ring (i.e., arriving
via the network), and then accumulates these two on-the-
fly and finally stores the accumulated result in the FPGA
memory (labelled (G1

i−1 +E1
i−1)). At the same time, FPGA i

984    2022 USENIX Annual Technical Conference USENIX Association



forwards its local subarray[i] in FPGA memory to the next
GPU, labelled E1

i . Figure 12(a) illustrates the data flow of
FPGA 0. At step t2, FPGA i performs the reduction operation
on its local G1

i−2 in GPU memory and E2
i−2 from the previous

GPU, and then stores the accumulated result in FPGA memory
(labelled (G1

i−2 +E2
i−2)). At the same time, FPGA i forwards

its local E2
i−1 from the FPGA memory to the next GPU. At

step t3, FPGA i performs the reduction operation on G1
i−3

from its local GPU memory and E3
i−3 from the previous GPU,

and then stores the accumulated result in FPGA memory,
labelled (G1

i−3 +E3
i−3). At the same time, FPGA i sends its

local E3
i−2 from FPGA memory to the next GPU in the ring.

At step t4, FPGA i receives E4
i from the previous GPU and

copies it to FPGA memory. At the same time, FPGA i sends
(G1

i−3 +E3
i−3) from the FPGA memory to the next GPU E4

i−3
and writes it to its local GPU memory G4

i−3. At step t5, FPGA
i receives E4

i−3 from the previous GPU and copies into the
FPGA memory. At the same time, FPGA i sends E4

i in the
FPGA memory to both the next GPU E4

i and writes it to its
local GPU memory G4

i . Figure 12(b) illustrates the data flow
of FPGA 1. At step t6, FPGA i receives E4

i−2 from the previous
GPU and copies it to on-board memory. At the same time,
FPGA i sends E4

i−3 to the next GPU E4
i−3 and writes it to its

GPU memory G4
i−3. At the final step t7, FPGA i writes E4

i−2
from the FPGA memory into its GPU memory G4

i−2 which
now has the final aggregated result.
Comparison with AllReduce on Innova. To illustrate the
advantages of FpgaNIC’s design over existing commercial
solutions, consider how the same AllReduce operation would
work on Mellanox Innova. In Innova, the PCIe link connect-
ing the FPGA to the rest of the system limits the overall
throughput because the AllReduce engine on the FPGA is
forced to interact with both the local GPU and the network
through its PCIe X8 Gen4 endpoint. In such a design, the
FPGA can consume data either from the GPU or from the
network but not from both at the same time. We estimate
that the overall throughput would be halved. Both Innova and
FpgaNIC approaches do not involve any GPU cores during
execution, freeing up GPU cores for other computing tasks.

A.3 On-path SmartNIC: HyperLoglog
To illustrate the on-path model of FpgaNIC, we use Hyper-
LogLog (HLL) [18, 33] as an example application. HLL is
widely used in data analytic applications to estimate the car-
dinality of data streams or of large data sets. In our case, HLL
will work on the data as it flows from the network transport
towards the GPU. The basic scenario is transferring data to
be processed to the GPU and using the FPGA to compute the
cardinality on the fly without adding any overhead.

The on-path model is similar to the direct model (labelled
“direct"), except that the incoming data stream is forwarded to
both the GPU and to the on-path module (HLL in this case)
via the “op_in" port. We use an open source implementa-

GPUs

GPUs

    GPU communication stack 

100Gb HW Transport

+

G13

Direct

E10

FPGA		
board

(a) t1@FPGA 0

Direct

Op_in

Op_out
Op_returnOn-path 

module

Figure 13: On-path model of FpgaNIC

tion of HLL [33] that is embedded into the ONC component
(Figure 13). After the data stream has been consumed, the
cardinality of the data set can be forwarded to the local GPU
via the “op_out" port. The on-path model also allows the re-
sult to be sent back to the network through the “op_return"
port. In such a case, FpgaNIC can be used as an independent,
network attached accelerator that uses the on-path module to
process data on behalf of a remote client.

7 Artifact

7.1 Abstract

This artifact provides the source code of FpgaNIC and scripts
to reproduce the main experimental results. The experiments
are run on a cluster consisting of eight 4U AMAX servers,
connected with a Mellanox 100Gbps Ethernet SN2700 switch.
Each server is equipped with two Intel Xeon Silver 4214
CPUs@2.20GHz, 128GB memory, FpgaNIC (i.e., a Xilinx
Ultra-Scale+ FPGA), and a Nvidia RTX 8000 GPU, where
the FPGA and the GPU have direct PCIe P2P communication.
Two servers have an additional two A100 GPUs. FpgaNIC is
implemented on Xilinx Alveo cards U50 or U280 with Vivado
2020.1.

7.2 Check-list

1. At least two nodes, each has a GPU that supports
NVIDIA GPUDirect and the Xilinx U280 or U50 card.

2. Each FPGA card is connected to a 100Gbps Ethernet
switch.

3. FPGA card and GPU are connected to the same PCIe
switch.

4. Host OS: Linux 4.15.0-20-generic

5. Nvidia Driver Version: 450.51.05

6. CUDA Version: 11.0

USENIX Association 2022 USENIX Annual Technical Conference    985



Hugepages Setting. Make sure that each server has enabled
Hugepages. If not, run the following commands.

1. $ sudo apt install libboost-program-options-dev cmake

2. $ sudo groupadd hugetlbfs

3. $ sudo getent group hugetlbfs

4. $ sudo adduser xxx hugetlbfs
xxx is the user name you are using

5. Edit “/etc/sysctl.conf" and specify the number of pages
you want to reserve.

6. $ mkdir /media/huge

7. Add this line “hugetlbfs /media/huge hugetlbfs
mode=1770,gid=1001 0 0" to “/etc/fstab".

8. $ reboot

7.3 Thee Steps to Run Experiments
There are three steps to run each experiment. Before running
FpgaNIC, please clone the source code:

$ git clone https://github.com/RC4ML/FpgaNIC

7.3.1 Hardware: FPGA Bitstream

1. $ mkdir build && cd build

2. $ cmake ..

3. Make HLS IP core
$ make installip

4. Create vivado project, add the hardware project option
after make, as shown in Table 9.
$ make pcie_benchmark

5. Now the hardware project is produced, generate bit-
stream using vivado and flush it to every FPGA card.

6. Every time you download the bitstream to the FPGA,
you have to reboot the machine, do not forget to reinstall
xdma driver and GDR driver (See Subsection 7.3.2).

Table 9: The options of hardware project

Project Description
direct To create direct model project

pcie_benchmark To create PCIe benchmark project
tcp_latency To create TCP latency benchmark project

tcp_benchmark To create TCP throughput benchmark project
allreduce To create off-path model project

hyperloglog To create on-path model project

7.3.2 Software: Driver Installation

1. $ cd FpgaNIC/driver

2. $ make && sudo insmod xdma_driver.ko

3. $ cd FpgaNIC/gdrcopy

4. $ sudo ./insmod.sh

5. Note that you need to reinstall xdma driver and gdr driver
every time you reboot your machine.

7.3.3 Software: Running Application Code

1. $ cd FpgaNIC/sw && mkdir build && cd build

2. $ cmake ../src

3. $ make

4. $ sudo ./dma-example -b 0

5. $ Above command would report GPU read CPU
memory latency, for more details, please refer to
sw/README.md

986    2022 USENIX Annual Technical Conference USENIX Association



Faster Software Packet Processing on FPGA NICs with eBPF Program Warping

Marco Bonola1,2, Giacomo Belocchi1,3, Angelo Tulumello1,3, Marco Spaziani Brunella1,3, Giuseppe
Siracusano4, Giuseppe Bianchi3 and Roberto Bifulco4

1Axbryd, 2CNIT, 3University of Rome Tor Vergata, 4NEC Laboratories Europe

Abstract

FPGA NICs can improve packet processing performance,
however, programming them is difficult, and existing solu-
tions to enable software packet processing on FPGA either
provide limited packet processing speed, or require changes
to programs and to their development/deployment life cycle.

We address the issue with program warping, a new tech-
nique that improves throughput replacing several instructions
of a packet processing program with an equivalent runtime
programmable hardware implementation. Program warping
performs static analysis of a packet processing program, de-
scribed with Linux’s eBPF, to identify subsets of the program
that can be implemented by an optimized FPGA pipeline, the
warp engine. Packets handled by the warp engine are eventu-
ally delivered to a regular eBPF program executor, along with
their program context (registers, stack), to complete execution
of those program parts that cannot be efficiently pipelined.

We prototype program warping on a 100Gbps FPGA NIC,
extending hXDP, a state-of-the-art eBPF processor for FPGA,
and measure its performance running 6 unmodified real-world
eBPF programs, including deployed applications such as
Katran and Suricata. Our prototype runs at 250MHz, uses
less than 15% of the FPGA resources, and improves hXDP
throughput by 1.2-3x in most cases, and up to 18x.

1 Introduction
Datacenter and telecom operators deploy FPGA NICs to han-
dle network port speeds of 100Gbps or more, and to support
heterogeneous applications and workloads [12, 21, 30]. In
fact, these devices can host multiple accelerators [23], e.g.,
for radio signal processing, therefore providing a common
hardware platform to address different scenarios [11].

Nonetheless, for network packet processing functions, such
as firewalls or load balancers, FPGA NICs raise several chal-
lenges. First, programming FPGAs is difficult, often requiring
dedicated teams of hardware specialists [15]. Second, it in-
volves longer synthesis-implementation cycles that may take

hours to complete, before a new program version can be fi-
nally deployed. This is at odds with current practices that
foster continuous deployment cycles, and frequent updates to
the packet processing programs [1,7]. Finally, packet process-
ing functions should consume only minimal FPGA hardware
resources, to leave space to other accelerators required for
signal processing, machine learning, etc.

These requirements, when combined, rule out existing solu-
tions that cannot dynamically change the implemented packet
processing programs, such as those based on the high-level
synthesis of programs described with domain-specific lan-
guages [3, 38, 40] like P4 [8]. Alternative approaches, such as
hXDP [10], explicitly address these challenges, but at the cost
of a lower packet forwarding throughput. In fact, hXDP imple-
ments on the FPGA a processor-based executor for network
programs described with eBPF, which provides a remarkable
but still limited throughput performance, comparable to that
of a single multi-GHz CPU’s core [10].

Our goal is to improve on this figure, and significantly in-
crease throughput while respecting the listed requirements.
We follow the conceptual approach of hXDP, embracing the
Linux’s eBPF framework and its programming model to de-
scribe packet processing functions. However, we introduce a
new technique, program warping, which leverages common
properties of eBPF programs to automatically replace the ex-
ecution of many program’s instructions with a semantically
equivalent hardware-supported implementation, thereby re-
ducing the program execution time and increasing throughput.
As we will see, in some real-world use cases our system can
achieve up to an 18x higher throughput than hXDP.

Program warping builds on the observation that a subset of
the eBPF programs’ instructions implement common packet
processing tasks, such as packet header parsing, which can be
efficiently implemented in pipeline-parallel architectures [9,
13]. Therefore, under the constraint of keeping transparency to
the programmer, we address two main issues in our design: (i)
identifying, from the eBPF program’s bytecode, the tasks that
can be efficiently parallelized in a pipeline; (ii) designing an
FPGA pipeline that runs such tasks, while providing runtime

USENIX Association 2022 USENIX Annual Technical Conference    987



Figure 1: Program warping includes two components: an
optimizing compiler and a hardware engine for FPGAs

reconfigurability and using minimal hardware resources.
We prototype program warping extending hXDP with a

new compiler, the Warp Optimizer, and a new hardware mod-
ule, the Warp Engine (cf. Figure 1). The Warp Optimizer
performs static analyses of the eBPF bytecode, leveraging the
eBPF’s machine model to make several simplifying assump-
tions, e.g., about memory areas’ content, in order to infer the
program’s intent. In this step, the Warp Optimizer identifies
set of instructions whose execution can be performed by the
Warp Engine. The Warp Engine is integrated with the hXDP’s
eBPF executor. Packets received by the system are processed
by the Warp Engine first, and then passed to the eBPF execu-
tor to run the subset of the program that cannot be accelerated.
In turn, this allows us to streamline the Warp Engine imple-
mentation, which resembles a fused parser plus match-action
pipeline, supporting only the minimal set of functionality re-
quired to accelerate common packet processing tasks, and
leaving to the eBPF executor any more complex functionality.

We evaluate our system with a 100Gbps Xilinx Alveo U50,
running 6 real-world use cases: the IP router and the tunneling
examples from the Linux XDP’s application examples; a
Dynamic NAT; the Facebook load balancer Katran [14]; and
the Network Security Appliance Suricata [39]. On this set
of applications and compared to hXDP, program warping
provides a per-application speed-up of at least 1.2-3x, and
up to 18x, while running at 250MHz and keeping the overall
FPGA resources occupation below 15%. To put this result
in perspective, running Suricata in software (Linux v.5.4.0)
on a single Intel Xeon 4410 CPU core achieves a throughput
of about 8.7 Million packets per second (Mpps), whereas
our program warping prototype achieves up to 83Mpps in a
similar setting. This shows that program warping is beneficial
in all cases, but clearer advantages appear with programs that
have a heavier packet parsing and classification component.
In summary, we contribute:

• A method to extract high-level packet processing tasks
from eBPF bytecode, and generate functionally equiv-
alent descriptions that combine parsing descriptions,
match-action rules and subsets of the original bytecode;

• A hardware extension to hXDP, which implements high-
performance and runtime-configurable packet data read-
ing and classification using few FPGA resources;

• The evaluation of the end-to-end system using 6 real-
world use cases and extensive micro-benchmarks.

2 Goal, Requirements and Challenges
Our goal is to provide a significant increase (i.e., >2x) to the
throughput of eBPF packet processing programs on FPGA
NICs, while meeting the following requirements:

1. The system should run unmodified eBPF programs
2. The system should support dynamic program loading
3. The system should use a small fraction of the FPGA

resources (<20%)
This is challenging for several reasons. First, previous work
like hXDP already explored the optimization space for eBPF
programs on FPGA, leveraging instruction-set specialization
and instruction-level parallelism to reduce the number of pro-
grams’ instructions and run them in parallel, when possible.
This suggests that additional instruction-level optimization is
unlikely to provide large gains. Second, our solution space
is limited since we cannot change the eBPF programming
model. For instance, we cannot pursue any solution that would
require programmers to annotate their code, e.g., to discover
parallelization opportunities. Third, the need to support dy-
namic program loading rules out approaches that implement
programs as hardware pipelines, e.g., like in Emu [38] and
P4->NetFPGA [3]. Finally, the requirement to use little FPGA
resources makes effectively impossible to use any solution
that requires complex logic implementation in hardware. For
reference, even streamlined hardware designs like hXDP al-
ready consume about 10% of the FPGA resources.

Non-goal Since we use only a fraction of the FPGA for net-
work packet processing, we do not have the goal of matching
the throughput of designs entirely dedicated to the task.

3 Concept and Background
In this Section we provide background about eBPF/XDP, and
then present the program warping concept and system design.

3.1 Background: eBPF and XDP
eBPF is a Linux technology used to implement load balanc-
ing [14], security [7], monitoring [2], deep packet inspec-
tion [5], policy enforcement [1], and more.

The eBPF framework runs small programs within the Linux
kernel using a virtual machine (VM) with its own Instruction
Set Architecture (ISA). The VM implements a register ar-
chitecture, with a program counter (PC), 10 general registers
(R0−R9), and a read-only stack pointer (R10) that contains
the address of a 512B memory area used as program’s stack.
These capture the current program’s state, which resets for
every new run. eBPF provides maps data structures to save
state across program runs. These are memory areas defined at
compile time and organized as lookup tables.

988    2022 USENIX Annual Technical Conference USENIX Association



eBPF programs written in a high-level language, such as
C, are compiled to the eBPF bytecode. The eBPF bytecode
can be loaded in the kernel using different hooks. We focus
on the XDP hook [19], and call XDP programs an eBPF pro-
gram attached to the XDP hook. The hook is provided at the
NIC driver level. When a packet is received, the XDP envi-
ronment: (i) creates an xdp_md struct to contain the packet
buffer pointers and metadata, such as the packet’s input port
id; (ii) sets R0 to point to the address of the memory area
hosting the struct; (iii) and then starts the VM to run the XDP
program. At the end of its execution, the program can return a
forwarding decision for the packet by writing the forwarding
action code in R0.

When loaded in the Linux kernel, the bytecode is statically
verified to ensure safety, e.g., guaranteed program termination.
To enable verification, eBPF programs can only use a subset
of the C expressive power. For instance, unbounded cycles and
dynamic memory allocations are not allowed. To finally run
on the target hardware, a second (just-in-time) compilation
step translates the eBPF bytecode to the target machine code.
Program example Listing 1 shows an XDP program written
in C. The program checks if the source MAC address of IPv4
packets is in a hashtable. If so, it passes the packet to the
Linux’s network stack. Otherwise, the packet gets dropped.
Furthermore, the program drops any IPv6 packet, and passes
to the network stack any packet that is neither IPv4 or IPv6.

3.2 Program Warping
eBPF executors on FPGA have limited throughput when they
need to process many eBPF instructions: FPGA designs usu-
ally have a low clock frequency (e.g., <400 MHz), making
running an instruction expensive. While parallel instructions
execution is possible, the level of parallelization is at most
2-3 instructions per clock cycle [10]. Reducing the number
of instructions can increase throughput, but can we achieve
functional equivalence with less instructions?

To answer the question, we studied several XDP programs.
We show two examples in Figure 2, where we report the
control flow for the program from Listing 1 (a), and for (a
subset of) Katran [14] (b), an XDP L4 load balancer deployed
in production by Facebook. In all the studied cases, the first
part of the program has instructions that only perform reading
from the packet data and comparisons with constants. This is
the case since network packet processing programs usually
perform packet header parsing and classification as a first step.
After that, the programs diverge significantly, with operations
that are specific to the application logic.

For a hardware implementation, read only access to a single
(small) memory means no data hazards to handle (i.e., no
read/write conflicts), and that hardware wires routing may
be simple, since a single memory contains all the needed
data. In fact, the operations of the first program’s part may be
described by a few match-action rules, as shown in Table 1

Listing 1: A simple eBPF/XDP program example in C

1 int l2_acl(struct xdp_md *ctx) {
2 void *data_end =(void *)(long)ctx->data_end;
3 void *data = (void *)(long)ctx->data;
4 void *lookup_res = NULL;
5 __u32 proto , nh_off;
6 struct ethhdr *eth = data;
7 __u8 key[6] = {0};
8 nh_off = sizeof(struct ethhdr);
9 if (data + nh_off > data_end) {

10 return XDP_DROP;
11 }
12 proto = eth->h_proto;
13 if (proto == BE_ETH_P_IP) {
14 __builtin_memcpy(key, eth->h_source , 6);
15 entry = bpf_map_lookup_elem(&map, &key);
16 if (entry) {
17 return XDP_PASS;
18 } else {
19 return XDP_DROP;
20 }
21 } else if (proto == BE_ETH_P_IPV6) {
22 return XDP_DROP;
23 } else {
24 return XDP_PASS;
25 }
26 }

Figure 2: Flow diagrams for the program from Listing 1
(a) and for (part of) Katran (b). The solid lines show the
part of the program that only needs reading packet data
and comparison operations.

for Listing 1. Rules #1 and #3 only read some bits from the
packet and check their value. Rule #2 is more complex, since
it requires the execution of the program’s part that includes
the lookup and its downstream operations. More generally,
this second part of the program requires to read/write memory
areas beyond that containing the packet data.

From this observation emerges the core idea of program
warping: run the first program’s part on an extremely simple
executor, and then use a downstream eBPF processor to run
only the remaining, more complex instructions. This enables
skipping several instructions, and increase throughput.

3.3 System Design
Without loss of generality, we design program warping as an
extension to hXDP (Figure 1), the current state-of-the-art to

USENIX Association 2022 USENIX Annual Technical Conference    989



# eth_proto action
1 IPv6 DROP
2 IPv4 Continue Processing
3 * PASS

Table 1: Match-action rules to implement part of the pro-
gram from Listing 1. Rule #2 needs additional processing
and accessing data beyond the packet’s content.

run XDP programs on FPGA NICs [10]. hXDP provides the
XDP environment for the FPGA NIC, and a compiler that
takes eBPF bytecode and outputs the machine code for the
on-NIC XDP environment. We inherit the eBPF programming
and deployment models from hXDP: from the perspective
of an eBPF/XDP programmer, program warping does not
introduce any change.

Compile time When loading an XDP program’s bytecode
to the NIC, program warping extends the hXDP compiler by
triggering a new compiler first: the Warp Optimizer. The Warp
Optimizer performs static analysis on the bytecode to identify
the instructions that can warped, i.e., they can be run by the
Warp Engine. The output of this process is a configuration for
the Warp Engine in the form of match-action rules.

Runtime At runtime, the Warp Engine receives packets first,
and applies the match-action rules. If a forwarding decision
can be already taken at this stage, the Warp Engine sets the
value of the XDP Environment’s R0, and transfers the packet
to the XDP Environment that carries out the forwarding action.
If instead the program cannot run entirely in the Warp Engine,
then a context restoration is triggered. Context restoration
allows the eBPF executor to skip the warped instructions,
while ensuring a correct internal state to start processing the
remaining instructions. This involves copying data from the
packet to the XDP Environment’s R0−R9 and stack memory,
and setting the program counter to point to the next program’s
instruction. The Warp Engine performs such operations in
parallel while also transfering the packet to the XDP environ-
ment, where finally the processing continues to terminate the
program’s execution. That is, the Warp Engine and the XDP
Environment work in pipeline: while the XDP Environment
processes a packet, the Warp Engine is processing the next
packets. This ensures that the introduction of the Warp Engine
never reduces the system throughput, and that in the worst
case it only introduces an often negligible increase (10s of
nanoseconds) of the packet processing latency.

4 Warp Optimizer
The Warp Optimizer is a custom compiler that takes as in-
put the eBPF bytecode and produces as output: (i) the set of
bits that should be extracted from the packet data; (ii) a set of
match-action rules that will replace the warped (i.e., removed)
program’s instruction; (iii) the description of the context asso-
ciated to context restore actions. The rules’ match conditions
are described by a set of couples (offset, length), which

specify the bits of the packet that should be read. The actions
can be of one of the following two types:

• An XDP forwarding decision that neither modifies the
packet nor the internal state of the system (e.g., the con-
tent of the maps), i.e., DROP, PASS, TX or REDIRECT;

• A context restore to continue execution in the XDP
Environment, configured using the provided program
counter and context (i.e., registers and stack content).

Here, there are two important design decisions that allow us
to minimize hardware complexity. First, the definition of the
match conditions may be thought as roughly corresponding
to the definition of packet header’s fields, however the Warp
Optimizer (and the Warp Engine) have no knowledge of what
a header field is. We purposely avoided the implementation
of a complete packet header parser logic [18], opting instead
for a simpler set of reads of a sequence of bit vectors from
the packet data. This allows us to avoid the implementation
of state machines and enables a fully pipelined execution of
the bit vector extraction. Second, the Warp Optimizer only
provides a forwarding decision action when there is no mod-
ification to the packet and no side effects due to the packet
processing, e.g., map accesses. Modification to the packet
would require additional hardware machinery, e.g., to com-
pute values and write them in the specific packet’s positions.
Instead, accessing any internal state of the system would in-
crease hardware complexity significantly, requiring a tighter
integration with the XDP environment, and introducing po-
tential data hazards due to e.g., read-after-write for packets
processed back-to-back in the Warp Engine pipeline [37].

4.1 Program analysis
To extract the Warp Engine configuration, the Warp Optimizer
performs static analysis of the input program. Here, recall that
XDP programs can implement arbitrary computations, which
generally complicates any static analysis task [29]. Nonethe-
less, eBPF is designed to simplify static verification of pro-
grams loaded in the Kernel, which helps also our analysis. In
particular, we benefit from the definition of three logically
distinct memory areas: (i) the packet buffer; (ii) the stack; (iii)
and maps. Each of these areas can be easily identified. The
packet buffer is retrieved from the struct xdp_md, whose
address is in eBPF VM’s register R1 when a program starts.
The stack base address is stored in the read-only register
R10. Finally, maps are always accessed using a specific eBPF
helper function. With this information the Warp Optimizer
can trace accesses to the different memory areas, and infer
the evolution of the program state.

In greater detail, the Warp Optimizer first builds the pro-
gram’s Control Flow Graph (CFG), e.g., see left part of Fig-
ure 3. The CFG is a directed graph, in which each node rep-
resents a code block, i.e., a set of instructions that are all
executed if the program’s control flow triggers the execution
of the block’s first instruction. The directed edges show how

990    2022 USENIX Annual Technical Conference USENIX Association



Figure 3: The operations of the Warp Optimizer for the program from Listing 1: (i) Control Flow Graph analysis; (ii)
Match-action rules extraction; (iii) Context identification. All the operations are performed at compile time.

the different blocks might be executed one after the other,
depending on the results of (conditional) jumps. Second, the
Warp Optimizer converts the eBPF instructions, which use
physical registers, into a Static Single Assignment (SSA) form.
In this form, physical registers are substituted with variables
that identify the instruction that have defined them. This helps
the tracking of the values accessed by each instruction, and
therefore it allows the Warp Optimizer to identify the accessed
packet data, and the values stored into stack and registers.

After these two processing steps, the Warp Optimizer di-
vides the CFG’s blocks in three categories: start node; middle
nodes; and terminal nodes. Terminal nodes are the blocks
containing as last instruction exit, call or instructions that
write to the packet data. Middle nodes are all the nodes that
are not the start or terminal nodes, and they are further catego-
rized in matching and non-matching nodes. This depends on
whether the block ends with a conditional jump instruction
(matching) or with any other instruction (non-matching).

4.2 Match-action rules generation
Match-action rules generated by the Warp Optimizer are
triples 〈matches, action, priority〉, where matches is a list
of (offset, length) pairs, action is either a forwarding de-
cision or context restore, and priority is an integer value
where the lower number encodes the higher priority. To gen-
erate these triples, the Warp Optimizer runs Algorithm 1. The
algorithm defines a zero initialized current priority counter,
a list of bitvectors extracted from the packet (fields), their
corresponding matching values (matches), and the current
stack and registers. Then, it performs Depth-First Search

(DFS) on the CFG, descending from the start node and stop-
ping when it reaches a terminal node. The paths explored with
this way capture the part of the program that can be warped.

When performing DFS, the algorithm evaluates all the in-
structions in the node, updating the current stack and registers
state (i.e., the registers and stack arrays). For each middle
node, if it is a matching node, the algorithm creates a copy
of the fields and matches, and adds to them the bitvector
checked by the current’s block matching condition. That is,
the condition of the conditional jump, and the variable’s value
used in the condition, respectively. This corresponds to check-
ing if packet_data[s:e] == X, where [s:e] identifies a
vector of e - s bits in the packet starting at offset s, and X is
an e - s long bitvector. The current registers and stack
are also copied, since the algorithm has to explore the two
branches coming after the conditional jump, for which the
program’s state will evolve differently. When doing so, the
algorithm explores first the branch corresponding to the jump
taken case. When completing the exploration of that branch,
the algorithm comes back to the latest encountered branching
point, to explore the other branch, i.e., the one corresponding
to the jump not-taken case (see right-top part of Figure 3).

A branch exploration terminates when there is a termi-
nal node. After evaluating the instructions in the termi-
nal node, the algorithm creates a match-action rule us-
ing the current list of matches and the current priority
value. To define the action associated to the rule, the al-
gorithm looks at the nodes’s last instruction. If it is an
exit instruction the action is a forwarding decision, defined
by the currently evaluated value of the r0 register. Other-

USENIX Association 2022 USENIX Annual Technical Conference    991



Algorithm 1: Warp Optimizer Algorithm
priority← 0
matches, f ields, rules, registers, stack← [ ]
Function get_MAT(block, matches, f ields, priority, rules,

stack, registers):
evaluate_instructions(block, registers, stack)
last_insn← block.instructions[LAST ]
if is_terminal(block) then

if is_exit(last_insn) then
rule← 〈matches, Action(r0), priority〉

else
action←
Action(PC=last_insn.pc, registers, stack)

rule← 〈matches, action, priority〉
rules← rules∪{rule}
priority++

else
block+← block.tnext
block−← block. f next
if is_match(last_insn) then

f ields← f ields∪{PacketField(last_insn)}
matches+← matches∪{Match(last_insn)}
get_MAT(block+, matches+, priority, rules,

stack, registers)
get_MAT(block−, matches, priority, rules, stack,

registers)

wise, the action is a restore context action, which includes
〈pc, restored_stack, restored_registers〉, where pc is the
program counter of the instruction immediately following the
node’s last instruction, restored_stack and restored_registers
are the evaluated current stack and registers, i.e., the context
to be restored (right-bottom part of Figure 3). After the rule
creation, the priority counter is incremented. Since the CFG
is explored by selecting first the branch-taken path, this en-
sures that the rules having the longer match list have higher
priority, which is then useful to simplify the rule matching
logic implementation at runtime.

5 Warp Engine
The Warp Engine is a pipelined implementation of a fused
packet parsing and match-action unit, in principle similar to
those implemented in switching ASICs, such as RMT [9], but
with important conceptual differences and simplifications that
are enabled by the co-design with the Warp Optimizer. For
instance, in the Warp Engine there is no distinction between
the input parser and the match-action unit.

Figure 4 shows an overview of the Warp Engine architec-
ture. We can identify three conceptual sub-systems. First,
there is a key extraction unit, which comprises twelve stages
and is in charge of building a 16B long vector extracting bits
from the packet data. Second, a match-action unit uses the key
to perform a lookup for a matching entry, which is associated

with three areas in three distinct memories. These memory
areas store the type of action associated with the packet, and
the program context (register, stack) that should be restored in
case of a context restore action. Finally, the last sub-system is
the context restoration unit, which extracts the packet data re-
quired to build the context for a packet that needs to continue
processing at the end of the Warp Engine. In our design, we
use hXDP to implement the XDP environment on the FPGA,
slightly modifying it to enable the Warp Engine to hook into
the registers and stack memories.

An important aspect of the Warp Engine design is that the
three sub-systems are part of a single pipeline that by design
never stalls. In fact, the only case in which the pipeline stages
do not advance processing is when hXDP is busy processing
a previous packet, and therefore the hXDP’s Active Packet
Selector cannot host a new packet in its buffer memory. This
design has also a second effect, since hXDP is still in charge
of the forwarding of each and any packet, the Warp Engine
has no impact on the packets ordering.

5.1 Key Extractor
The Key Extractor is connected to the packet input queue
through a splitter, which duplicates the first 128B of the
packet to forward them to the Key Extractor’s pipeline. The
pipeline includes 12 stages, and each of them implements a
configurable extractor module. The extractor reads up to 2Bs
from the duplicated packet chunk, performs a simple bitwise
operation on them, e.g., and, with a 2B long constant value,
and finally writes the result of such operation to a lookup key
buffer. Which bytes to read, what operation to perform, and
the value of the constant are all runtime-configurable parame-
ters that are provided by the Warp Optimizer. Each extractor
performs its operations in a single clock cycle, and passes to
the next extractor: (i) its modified lookup key buffer; (ii) the
offset at which to write in such buffer; (iii) the packet chunk.

5.2 Match-action Unit
The match-action includes a ternary-addressable content
memory (TCAM), and three memory areas: (i) the Action
Memory, to store the actions associated to the TCAM entries,
including action type, R0 value and program counter; (ii)
Registers Configuration Memory, which stores the Context
Restoration Unit’s configuration to extract the register values;
(iii) Stack Configuration Memory, which provides a similar
configuration but related to the stack. These three areas are
organized in lines of different sizes, and for each memory the
number of lines is equal to the maximum number of TCAM
entries. The lookup key provided by the key extractor is used
to find the matching entry in the TCAM, which is associated
to a single line number that is then used to access in parallel
the three memory areas. If the line extracted from the action’s
memory includes an action of type forwarding decision, then
the pipeline propagates only such line to the next stage, to

992    2022 USENIX Annual Technical Conference USENIX Association



Figure 4: Warp Engine’s architecture. The pipeline stalls only when hXDP is not ready to receive a next packet.

eventually configure the XDP Environment. Otherwise, each
of the three lines extracted from the three memories is pro-
vided to the downstream pipeline. The memory lines contain
the full configuration for the Context Restoration Unit, in or-
der to build the stack and registers values. Both the TCAM
entries and the memory lines are configured at runtime with
the output of the Warp Optimizer.

5.3 Context Restoration Unit
The Context Restoration Unit comprises two parallel
pipelines, which are composed of modules closely resem-
bling the Extractor modules of the Key Extractor. However,
instead of reading just up to 2B from the packet chunk, the
extractors of the Context Restoration Unit can read up to 8B
each. This is in line with the eBPF VM’s registers size (64bit).
Furthermore, they replace the lookup key buffer with larger
buffers to host either the partially reconstructed stack or the
reconstructed registers’ state. Finally, instead of an offset,
each extractor provides to its downstream extractor the line
read from either the Registers Configuration Memory or the
Stack Configuration Memory, depending on which of the two
parallel pipelines the extractor belongs to. Here, we point out
that this approach was needed since the Context Restoration
Unit has an additional complexity element when compared
to the Key Extractor. The Key Extractor configuration is the
same for any received packet, whereas the configuration for
the Context Restoration Unit strictly depends on the content
of the received packet. Since the entire system is organized
in a pipeline, each stage of the Context Restoration Unit has
to carry along the configuration to restore the context for the
specific packet being processed in that stage.

These two parallel pipelines are fed by a second splitter
that duplicates the packet chunk. The pipeline that restores

the Stack has 10 stages, and it is connected to the Stack Con-
figuration Memory. The line extracted from this memory
provides to the Extractors the information needed to populate
the stack, including constant values and values extracted from
the packet chunk. This information includes: (i) the offset at
which the packet chunk should be read; (ii) the operation to be
performed on the read byte (and the constant value associated
to that); (iii) the target address in the stack. The pipeline that
restores the Registers has 10 stages too, including 9 Extractors
and a Delay element. This is the case since only 9 registers
need restoration (R1 - R9) and the Warp Optimizer ensures
that R0 is only read if its value is changed by the loaded XDP
program after restoration.1 The Delay element is required to
synchronize the two context restoration pipelines.

5.4 Integration with hXDP
The Warp Engine pipeline ends in hXDP. Here, the Warp En-
gine waits for hXDP to be available to receive packets. Once
that is the case, it first copies the packet data in the hXDP’s
Active Packet Selector (APS). The packet data transfer is also
pipelined, and it happens in synch with the Warp Engine’s
pipeline. That is, multiple packets’ data are moved through the
pipeline at each clock cycle, using a 64B datapath (matching
Corundum’s datapath). Then, we have two possible behaviors.
If the current action memory’s line contains a forwarding
action, then the Warp Engine sets R0, and instructs the APS
to proceed with packet forwarding. The APS will then carry
out forwarding according to the value provided in R0. Instead,
if the action is a restore context action, then the Warp En-
gine sets the hXDP’s program counter, registers (R1−R9)

1Register R10 is read-only, and in hXDP it has a constant value. R0 is
used to store the return value of helper function calls, which are usually the
first instruction run by the program after restoration.

USENIX Association 2022 USENIX Annual Technical Conference    993



Application Instructions TCAM Match Max Stack
eBPF hXDP Entries size [B] size [B]

L2 ACL 40 27 3 2 6
Router 119 95 9 4 8
Tunnel 283 155 7 4 24
DNAT 228 135 6 6 40
Suricata 138 65 49 12 40
Katran 1398 1013 20 16 80

Table 2: Tested applications and key metrics

and stack, and starts the hXDP’s Sephirot eBPF Processor.
Sephirot will then run the XDP program starting from the
instruction pointed by the program counter, and using the
provided registers and stack values.

5.5 Implementation
We implemented the Warp Engine design using the latest ver-
sion of hXDP, which is integrated in Corundum [16], clocked
at 250MHz, and targets a Xilinx Alveo U50 FPGA NIC [4].
The Warp Engine is clocked at 250MHz too, and its pipeline
is 28 clock cycles long. Since at 250MHz each clock cycle
takes 4 nanoseconds, the Warp Engine introduces a fixed 112
nanoseconds of latency to each processed packet. This is a
negligible overhead in the vast majority of cases, and it is the
only runtime overhead introduced by the Warp Engine.

Our design has several parameters, e.g., the number of Key
Extractor stages and the packet chunk size, which may be
changed to meet different use case requirements. We summa-
rize them in Appendix, along with the configuration we im-
plemented in this paper, which is driven by the requirements
of the 6 use cases we tested during evaluation (cf. Table 2).

6 Evaluation
In this Section we evaluate correctness, optimizations, re-
sources requirements, and performance of our prototype.

6.1 Applications
We use 6 different applications to perform the evaluation,
as detailed next. Table 2 summarizes them and reports rele-
vant metrics, including their requirements in terms of Warp
Engine’s TCAM entries, lookup key size and max Stack size.
L2 ACL (Running example). This is the application we used
as running example, and described in Section 3.1.
Dynamic NAT. Network Address Translation (NAT) for
flows coming from a LAN and destined to a public net-
work, and reverse translation. The application has two main
branches: (i) one for packets originated from the the LAN,
and (ii) the other for those coming from the public network.
XDP Router. An implementation of an IPv4/IPv6 router, pro-
vided as eBPF application example with the Linux Kernel. It
performs parsing of L2 and L3 headers, and then a lookup in
two tables to take a packet routing decision.

XDP TX Tunnel. This is another eBPF application example
provided by the Linux Kernel. It performs IPinIP encapsu-
lation matching on destination IP address and destination
L4 port. A lookup in a hashtable matches on the destination
virtual IP address to retrieve the tunnelling information.
Suricata IDS. Suricata [39] is a software Intrusion Detection
System (IDS). Among its multiple features, it provides an
XDP program that works as a filter, to perform early dropping
of undesired flows. The XDP program contains a large number
of processing branches to handle all the combinations of
stacked 802.1Q and 802.1AD VLAN headers, and performs
a lookup in a hashmap to take some of the filtering decisions.
Katran. Katran [14] is an XDP-based Layer 4 load balancer.
It encapsulates packets with a specific destination Virtual IP
addresses and balances the connections towards the available
servers. The first part of the processing includes L3 parsing
and handling of ICMP/ICMPv6 protocols. Then, a first map
lookup retrieves the virtual IP information. The application
uses this information to query a Least Recently Used (LRU)
map, in order to fetch the address of a connection table. A
query to the connection table finally retries the real IP address
of the destination server.

6.2 Functional Equivalence
Program warping modifies a program to run it on a system that
comprises two different executors. We therefore performed
tests to verify that the resulting behavior matches the original
program behavior. In particular, for each of the tested applica-
tions, we: (i) enumerate all the program’s control paths; (ii)
generate input packets that trigger the execution of each of the
listed paths; (iii) and finally verify the produced output, for
all the generated input packets. We run these steps for the 6
applications described earlier, verifying that program warping
keeps functional equivalence. More details are in Appendix.

6.3 Warped instructions
We now evaluate the number of instructions that can be
skipped thanks to program warping, since their functionality
is implemented by the Warp Engine. This requires evaluat-
ing the instructions being actually executed at runtime. We
use uBPF [22], a userspace eBPF processor, extending it to
implement a Warp Engine emulator in software, to compute
the number of actually executed instructions for all the tested
applications, and for all the control flow paths of each appli-
cation. Since the control path at later stages of the program
depends also on the stored state, e.g., entries in the maps, our
testing strategy is adapted to test the multiple possible state
conditions. For instance, in the case of the L2 ACL, after the
map lookup there are two different paths: if the lookup returns
an entry; or not (cf. Listing 1).

Figure 5 reports the results, showing the total number of
eBPF instructions executed per path (background bar), and
the number of instructions executed when program warping is

994    2022 USENIX Annual Technical Conference USENIX Association



0 1 2 3
path id

0

10

20

30

40

# 
in

st
ru

ct
io

ns

-1
00

%

-8
5%

-1
00

%

-8
7.
2%

Reduced inst
All inst

(a) L2 ACL

0 1 2 3 4 5 6 7 8
path id

0

20

40

60

80

100

# 
in

st
ru

ct
io

ns

-1
00

%

-5
6.
4%

-1
00

%

-1
00

%

-5
7.
3%

-1
00

%

-1
00

%

-5
4.
4%

-1
00

%

Reduced inst
All inst

(b) Router

0 1 2 3 4 5 6
path id

0

50

100

150

# 
in

st
ru

ct
io

ns

-8
8.
6%

-2
8.
3%

-8
7.
5%

-8
8.
2%

-3
3.
1%

-8
7.
2%

-1
00

%

Reduced inst
All inst

(c) Tunnel

0 1 2 3 4 5 6 7 8 9
path id

0

50

100

150

200

# 
in

st
ru

ct
io

ns

-2
1.
7%

-2
1.
7%

-2
9.
9%

-2
2.
2%

-2
2.
2%

-3
0.
2%

-1
00

%

-1
00

%

-1
00

%

-1
00

%

Reduced inst
All inst

(d) DNAT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

path id

0

20

40

60

80

# 
in

st
ru

ct
io

ns

-8
6.
2%

-8
6.
4%

-1
00

% -8
3.
1%

-8
2.
7%

-9
3.
7%

-1
00

%
-8
6.
4%

-8
6.
5%

-1
00

% -8
3.
3%

-8
2.
9%

-9
3.
8%

-1
00

% -8
4.
8%

-8
5%

-1
00

% -8
1.
2%

-8
0.
6%

-9
2.
7%

-1
00

%
-8
6.
5%

-8
6.
7%

-1
00

% -8
3.
5%

-8
3.
1%

-9
3.
8%

-1
00

%
-8
6.
7%

-8
6.
8%

-1
00

% -8
3.
8%

-8
3.
3%

-9
3.
9%

-1
00

%
-8
6.
5%

-8
6.
7%

-1
00

% -8
3.
5%

-8
3.
1%

-9
3.
8%

-1
00

% -8
4.
2%

-8
4.
4%

-1
00

% -8
0.
3%

-7
9.
7%

-9
2.
3%

-1
00

% -9
4.
9%

Reduced inst
All inst

(e) Suricata

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

path id

0

200

400

600

# 
in

st
ru

ct
io

ns

-1
00

% -3
7.
5% -3

4.
7%

-3
5.
9%

-1
8.
3%

-1
00

%
-2
9.
5%

-4
6.
7%

-2
2.
5%

-1
00

%
-1
00

% -3
5.
9%

-1
00

%
-1
8.
7%

-1
9%

-2
0%

-1
00

%
-1
00

%
-1
00

%
-1
00

%

Reduced inst
All inst

(f) Katran
Figure 5: Number of instructions per program’s control flow path (background bar) vs number of instructions executed
per path with program warping (foreground bar). Program warping reduces the instructions to be executed by 50-100%.

in place (foreground bar). The results show that in many cases
the number of instructions to be executed by the eBPF pro-
cessor is reduced by over 50%, and that anyway in all cases it
is reduced by at least 16.3%. More precisely, an application’s
control flow paths belong to one of two general categories,
based on where their execution is going to be implemented:
(i) Mostly Warp Engine; (ii) and Mixed.

Mostly Warp Engine In all the applications there are at least
a few control paths whose processing is mostly implemented
by the Warp Engine. This is due to the practice of including
in the programs several checks to take an early forwarding
decision. Many of these early decisions are taken to protect
programs from bogus or malicious traffic, which has an in-
teresting implication: program warping may provide higher
performance boosts when it is the most needed. For instance,
some Denial-of-Service attacks’ traffic may be entirely han-
dled by the Warp Engine. Consistently, we can observe that
all the control flow paths of Suricata fall in this category. In
fact, Suricata generates XDP programs to filter network traffic
as early as possible. As a result, in some cases the entire pro-
gram is implemented by the Warp Engine. More generally, in
Figure 5e we can see that the instructions reduction depends
on the specific path, and it is in the range 82%-100%.

Mixed Some control flow paths split their execution between
the Warp Engine and the eBPF processor, either in equal parts
or mostly using the latter. This is the case for, e.g., Router,
Tunnel, and DNAT. In such cases, the packet parsing and
lookup key extraction are delegated to the Warp Engine. The
rest of the application logic, e.g., lookup in a single map and
packet header mangling, is performed by the eBPF processor.
In some programs, this second part is relatively simple. For
instance, we see that program warping reduces the instructions
of these paths by 54%-57% and 51% for Router (Paths 1, 4,
7). In some applications, this second part is instead more
complex. For instance, the Tunnel application’s paths 1 and 4
are reduced by 28% and 33%, respectively. This is the case

Logic Res. Memory Res.
LUTs Reg. BRAM URAM

Corundum (C) + hXDP 10.7% 6.91 % 13.65% 2.34%
C + hXDP + Warp Engine 16.8% 9.86% 14.51% 8.44%

Table 3: FPGA resources usage

since these paths have a large number of instructions that deal
with the packet encapsulation, which happens after a map
lookup. Similarly, in the first six DNAT application paths, the
reduction ranges between 21%-31% due to the high number of
instructions required to recompute the checksum and packet
modifications after the program warping. In Katran’s paths
this is even more evident due to the many lookups in maps
performed in the program’s paths. The reduction, in this case,
ranges from 16.8%-34.7%.

6.4 Warp Engine Hardware Requirements
We now evaluate the FPGA resources required by the Warp
Engine. We compare the requirements with those of the lat-
est hXDP version [4], which is integrated within the Corun-
dum NIC [16] and targets a Xilinx Alveo U50. The U50 is
equipped with a Xilinx Ultrascale+ FPGA, which offers 4
main types of resources that are of interest to us: (i) Lookup-
Tables (LUTs); (ii) registers; (iii) block RAM (BRAM); and
Ultra RAM (URAM). The LUTs and registers are the main
building blocks to implement logic functions, whereas BRAM
and URAM are two different memory blocks provided by the
FPGA. BRAMs provide multi-port access, whereas URAM
have a single read/write port but they are larger than BRAMs.
For all the resource types, the Warp Engine is within our orig-
inal requirement of keeping the packet processing subsystem
below the 20% of the available FPGA resources (Table 3).

6.5 End-to-end performance
We finally test the end-to-end system when processing traffic,
measuring both packet throughout and forwarding latency.

USENIX Association 2022 USENIX Annual Technical Conference    995



Testbed We use two machines: a first machine is equipped
with a 100Gbps Mellanox ConnectX-5 NIC, and it runs a
DPDK-based traffic generator/receiver, capable of sending
traffic at 100Gbps with 64B packets, i.e., ∼150Mpps; the sec-
ond machine is equipped with a single port 100Gbps Xilinx
Alveo U50, connected back-to-back with the first machine.
In all the tests, we measure packet forwarding that is han-
dled entirely within the NIC, and drops. In this last case, we
gain visibility by placing a dedicated drop counter within the
FPGA design. Latency is always measured at the packet gen-
erator’s machine, as difference between the packet reception
and packet sent (hw) timestamps. We do not measure the per-
formance of processing that involves transferring packets to
the host system, since the Corundum’s network driver can for-
ward few Mpps, and it would therefore become the system’s
bottleneck [16]. However, we remark that in terms of Warp
Engine+hXDP design, the transmission to a NIC’s port or to
the PCIe bus is implemented with the same hardware logic,
therefore our system tests are representative of both cases.

Baseline We perform a baseline test to measure throughput
and latency when 100% of program’s instruction are imple-
mented by the Warp Engine. Since the Warp Engine pipeline
performs the same steps for all the applications and execution
paths, the performance is the same in all the cases. That is,
we achieve ∼83Mpps, when performing DROP, and 50Mpps
with a 1µs of per packet end-to-end latency when forward-
ing packets (TX). This is the same performance achieved by
hXDP when running a program with a single instruction.2

In fact, the Warp Engine relies on hXDP to carry out the
forwarding action, and this performance matches the hXDP
baseline performance, confirming that the Warp Engine is
never a bottleneck in our design. In fact, this result holds true
even when forwarding small packets that are larger than the
Warp Engine packet datapath, e.g., 65B long packets.3

Applications Wach application has multiple execution paths,
which are taken depending on the received traffic and applica-
tion’s state. For paths that are 100% processed by the Warp
Engine, the performance is the same of the baseline case, for
all applications and paths. This often provides throughput
improvements of over 10x for such paths (E.g., see last row
of Table 4). For the remaining paths, in the interest of space,
we report the performance for only a subset of them, focusing
on those that are the most frequent cases, or on cases that
are interesting to study the system behavior. In particular, for
L2 ACL, DNAT and Katran, we select the paths correspond-
ing to successful lookups in the maps, which are the most
frequent cases. For instance, this would be the path taken by
established connections in both the DNAT and Katran cases.
For Suricata, we see from Figure 5e a periodic pattern, which
is due to the repetition of several different packet parsing

2hXDP takes 3(5) clock cycles to handle drop(forward), with 64B packets.
3The interested reader can find more insights about the implications of

datapath size on the packet forwarding throughput in [44].

combinations (e.g., including or not multiple levels of VLAN
parsing). Among these, we select the worst case for program
warping, i.e., the path corresponding to the most instructions
executed by hXDP. Finally, for Router and Tunnel, we ana-
lyze traffic traces to select the most common paths that would
be triggered by processing such traffic. For Router, we use a
Datacenter trace [6], and the path handling IPv4 is triggered in
over 80% of the cases. For Tunnel, we use a MAWI trace [28],
and the case IPv4+TCP is triggered in 60% of the cases.

We summarize the results in Table 4. For the selected exe-
cution paths, program warping improves throughput by 1.23x-
3.08x, and increases latency in the worst case by only 104
nanoseconds. We can make two important observations. First,
program warping provides remarkable throughput improve-
ments, nonetheless, comparing to results from Figure 5, it
seems that the tested paths provide a lower-than-expected
speed-up. For instance, for the L2 ACL’s path #1, Figure 5a
shows that only 15% of the instructions should be executed,
which would suggest a potential throughput increase of over
6x. However, our test measures a 1.7x increase. This is the
case since different hXDP instructions have different costs.
For example, a call instruction may cost several clock cycles,
and it also depends on variables such as the lookup key length.
Therefore, the absolute number of instructions at compile
time is not necessarily a good estimator for the achievable
performance at runtime. Furthermore, it is important to no-
tice that the Warp Optimizer works on the eBPF bytecode,
which at a later stage is transformed by the hXDP compiler.
The hXDP compiler may remove some instructions and par-
allelize others, therefore modifying the total program length
(cf. Table 2). A side-effect of this is that the warped instruc-
tions may have been finally removed or parallelized by the
hXDP compiler, which reduces the relative gain obtained by
avoiding their execution. Second, in the case of Katran we
observe a reversed result. Katran’s throughput is improved
to 2.3x, despite Figure 5f shows only an 18.7% reduction for
the path #11’s instructions. This is due to the relatively large
number of (conditional) jumps in the first part of the Katran’s
execution path. These jumps introduce bubbles in the hXDP’s
processor pipeline, lowering throughput and increasing la-
tency. In fact, Table 4 shows that in the case of Katran the
Warp Engine significantly improves also forwarding latency,
lowering it from 1.9µs to 1.5µs.

To put this in perspective, for the Router, Tunnel and DNAT
cases the throughput of hXDP+Warp Engine (clocked at
250MHz) matches that of an Arm Cortex A72’s core clocked
at 2.75GHz (A processor in use in high-end SmartNICs [32]).
For Katran, the throughput is similar to that provided by two
A72’s cores. In the case of L2_ACL and Suricata, our pro-
totype matches the performance of four A72’s cores. More
details about this are provided in Appendix.

996    2022 USENIX Annual Technical Conference USENIX Association



Application Latency [ns] Tput [Mpps] Tput w/WE
[Path ID] w/ WE w/o WE w/ WE w/o WE vs w/o WE

L2 ACL [#1] 1128 1024 9.26 5.43 170.37%
Router [#7] 1304 1212 3.47 2.66 130.58%
Tunnel [#4] 1368 1288 2.84 2.21 128.41%
DNAT [#2] 1444 1364 2.34 1.89 123.36%
Suricata [#46] 1124 1112 10.86 3.52 308.52%
Katran [#11] 1501 1942 2.08 0.90 231.08%

Performance for 100% instruction reduction scenarios
Suricata [#23] (DROP) 82.87 4.31 1824,72%

Table 4: Warp Engine (WE) End-to-End Performance

7 Discussion
Actual Performance Program warping throughput improve-
ment depends on: (i) the XDP program; and (ii) on which
program’s control path is executed. In our evaluations, we
only measured a subset of the program’s paths. In operational
settings, other control paths are likely to be part of the work-
load. In some cases, this may dramatically increase the perfor-
mance gain. For instance, in Suricata, the last row of Table 4
shows the performance for one of the cases in which the Warp
Engine can entirely offload hXDP. In this case, the system pro-
vides an 18.2x throughput increase. It is worth noticing that
these paths are not necessarily uncommon or rarely executed.
On the contrary, often they may represent the most frequently
taken paths. For instance, CloudFlare defines XDP programs
to perform early packet dropping for DDoS protection [7]. In
such applications, these highly boosted paths are expected to
be handling the majority of traffic.
Programming for Performance This last observation high-
lights that the performance of the loaded program is not guar-
anteed, and instead it depends on the received input. While
this is sometimes considered an issue in switching devices [9],
this is an expected behavior for software programmers who
are already used to handle such variability in performance. A
related interesting observation is that programmers can de-
scribe processing rules using if statements and hardcoded
variables and constants, to improve throughput. This is the
same set of techniques used to optimize XDP programs run-
ning within the Linux kernel on x86 processors. That is, pro-
gram warping aligns to both the XDP programming model
and best practices to improve program performance, matching
XDP programmers’ expectations.
Configurability Our current program warping design is quite
general, since the 6 presented applications include a good
variety of cases. Nonetheless, there may be some other appli-
cations for which the Warp Engine resources cannot entirely
describe the instructions that can be warped. While falling
back to the eBPF executor is always a viable option, we also
point out that it is possible to change several parameters of our
design to accommodate different applications (e.g., lookup
key’s size, TCAM entries number, etc.).
Limitations The performance acceleration provided by pro-
gram warping strictly depends on the share of instructions
that a program dedicates to packet parsing and classification.
If the majority of the runtime is spent in other parts of a pro-

gram execution, program warping will only provide small
benefits. Conversely, there could be cases in which the warp
engine cannot offload all the program instructions that can
be in principle warped. For example, this is the case if the
Key Extractor’s pipeline is too short to extract all the data
needed for parsing. In such cases, the Key Extractor and Con-
text Restoration Unit’s pipelines length provides a hard limit
to the maximum number of instructions that can be warped.
Scaling throughput The Warp Engine is not the system’s bot-
tleneck. Therefore, for throughput oriented solutions where
FPGA resources are available, it is possible to envision a de-
sign in which the Warp Engine serves packets to multiple
hXDP modules that work in parallel. Similar high-throughput
solutions is something we plan to explore as future work.
Portability While in this paper we use program warping to
improve hXDP, the approach has more general applicability.
In particular, the Warp Optimizer can be decoupled from the
underlying hardware platform. For example, the extracted
parsing logic can be used to automatically generate packet
parsing programs specified with P4, or to map it to DPDK’s
rte_flow API calls, to configure the underlying NIC packet
parsing capabilities. Here, a challenge is to describe efficient
mechanisms to move the partial execution context from e.g.,
the device subsystem performing header parsing and the sub-
system that executes the remaining part of the program. Thus,
the benefits of the approach vary depending on the specific
target, which opens an interesting opportunity for future re-
search. The Warp Engine design is also portable to different
platforms, beyond FPGAs. In fact, it is a parametrized but
“fixed” pipeline, thereby requiring relatively little changes to
be ported to an ASIC implementation.

8 Related Work
A large number of new NIC designs appeared in the last
few years [17, 20, 27, 32, 34, 41]. These solutions mostly
combine in a mix-and-match manner different compute and
network modules, e.g., regular NIC’s switching ASICs with
general purpose compute clusters based on RISC cores [32],
or FPGA-enhanced switching combined with general pur-
pose clusters [20, 41]. In many of the solutions, a novelty
factor is enabling P4-based programming of the switching
ASIC. This effectively corresponds to replacing the fixed-
function switching module with a programmable switching
module [34]. However, in all these designs the data plane
needs to be explicitly programmed with the provided tools,
e.g., based on P4. Some of these designs offer (partial) eBPF
support. However, they implement eBPF on top of the gen-
eral purpose clusters, replicating the architecture commonly
used in server machines, but on a smaller scale (including
the need to transfer data from the switching ASIC to the
general purpose compute clusters using an internal bus). In
research, previous work addresses the challenges of mov-
ing data among these modules [25], and explores ways to

USENIX Association 2022 USENIX Annual Technical Conference    997



leverage these new NIC designs to improve application per-
formance [12,15,24,26,35,36,43]. Program warping focuses
specifically on the design of the packet switching module, tar-
geting FPGA NICs, and presenting a solution that integrates
with Linux applications that leverage eBPF/XDP. We extend
hXDP [10], which to the best of our knowledge is the only
solution providing full support for XDP on FPGA NIC di-
rectly within the switching module. Compared to hXDP, we
provide better performance introducing a new compilation
step co-designed with a hardware module, the Warp Engine,
which is pipelined to the hXDP processor.

Recent work addressed eBPF programs oprimization at
compile time, targeting x86 processors [29, 42]. These works
share with us the challenge of performing static analysis of
the programs, and leverage some of the insights we discussed
about the eBPF execution model. However, they focus on
implementing compiler techniques targeting a fixed processor
design, whereas we co-design the compiler and the hardware
executor. Another related work is Gallium [43], which targets
the offloading of a program’s part to programmable switching
ASICs. Also in this case, it assumes a fixed set of execu-
tors, including programmable switching chips and processors.
Program warping, instead, introduces both a compiler and
hardware design that integrates with the XDP processor, in
order to push the intermediate computations context directly
within the processor environment.

9 Conclusion
We introduced program warping, a method that leverages
compiler-hardware co-design to accelerate the execution of
eBPF programs running on FPGA NICs. Program warping
enhances existing systems that run eBPF on FPGA NICs with
a new compilation step and adding a hardware module, the
Warp Engine. The compilation step identifies parts of eBPF
programs that can be more efficiently implemented by the
Warp Engine, which offloads them from eBPF processors,
improving throughput (120%-300%, and up to 18x) at the
cost of a small amount of additional FPGA resources. The
crucial insight is that only packet data reads and comparisons
are needed to implement the identified program parts. There-
fore, the Warp Engine supports this minimal set of operations,
thereby achieving speed and efficiency, while eventually con-
cluding packet processing on a regular eBPF processor that
could handle any more complex program’s functions.

Acknowledgements

We thank the anonymous USENIX ATC 2022 shepherd and
reviewers for their valuable feedback. This work has been
partially funded by the European Commission in the frame
of the Horizon 2020 projects 5GMED (grant #951947) and
MARSAL (grant #101017171).

References

[1] Cilium website. https://cilium.io.

[2] Hubble github repository. https://github.com/
cilium/hubble.

[3] P4-NetFPGA. https://github.com/NetFPGA/
P4-NetFPGA-public/wiki.

[4] Pushing xdp into smartnics. https://fosdem.org/
2021/schedule/event/sdn_hxdp_fpga/.

[5] Suricata Documentation. Using Capture Hardware:
eBPF and XDP. https://suricata.readthedocs.
io/en/latest/capture-hardware/ebpf-xdp.
html.

[6] T. Benson. Data set for IMC 2010 data center mea-
surement. http://pages.cs.wisc.edu/~tbenson/
IMC10_Data.html.

[7] G. Bertin. Xdp in practice: integrating xdp into our ddos
mitigation pipeline. In Technical Conference on Linux
Networking, Netdev, volume 2, 2017.

[8] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker. P4: Programming protocol-
independent packet processors. SIGCOMM Comput.
Commun. Rev., 44(3):87–95, July 2014.

[9] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McK-
eown, M. Izzard, F. Mujica, and M. Horowitz. Forward-
ing metamorphosis: Fast programmable match-action
processing in hardware for sdn. In Proceedings of the
ACM SIGCOMM 2013 Conference on SIGCOMM, SIG-
COMM ’13, page 99–110, New York, NY, USA, 2013.
Association for Computing Machinery.

[10] M. S. Brunella, G. Belocchi, M. Bonola, S. Pontarelli,
G. Siracusano, G. Bianchi, A. Cammarano, A. Palumbo,
L. Petrucci, and R. Bifulco. hxdp: Efficient software
packet processing on FPGA nics. In 14th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI 20), pages 973–990. USENIX Association,
Nov. 2020.

[11] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat,
J. Fowers, M. Haselman, S. Heil, M. Humphrey, P. Kaur,
J. Kim, D. Lo, T. Massengill, K. Ovtcharov, M. Pa-
pamichael, L. Woods, S. Lanka, D. Chiou, and D. Burger.
A cloud-scale acceleration architecture. In 2016 49th An-
nual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 1–13, 2016.

[12] D. Chiou. The microsoft catapult project. In 2017 IEEE
International Symposium on Workload Characterization
(IISWC), pages 124–124. IEEE, 2017.

998    2022 USENIX Annual Technical Conference USENIX Association

https://cilium.io
https://github.com/cilium/hubble
https://github.com/cilium/hubble
https://github.com/NetFPGA/P4-NetFPGA-public/wiki
https://github.com/NetFPGA/P4-NetFPGA-public/wiki
https://fosdem.org/2021/schedule/event/sdn_hxdp_fpga/ 
https://fosdem.org/2021/schedule/event/sdn_hxdp_fpga/ 
https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html
https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html
https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html


[13] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Var-
gaftik, A. Berger, G. Mendelson, M. Alizadeh, S.-T.
Chuang, I. Keslassy, A. Orda, and T. Edsall. drmt: Dis-
aggregated programmable switching. In Proceedings
of the Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM ’17, pages 1–14,
New York, NY, USA, 2017. ACM.

[14] Facebook. Katran source code repository. https://
github.com/facebookincubator/katran, 2018.

[15] D. Firestone, A. Putnam, S. Mundkur, D. Chiou,
A. Dabagh, M. Andrewartha, H. Angepat, V. Bhanu,
A. Caulfield, E. Chung, H. K. Chandrappa, S. Chatur-
mohta, M. Humphrey, J. Lavier, N. Lam, F. Liu,
K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre,
M. Shaw, G. Silva, M. Sivakumar, N. Srivastava,
A. Verma, Q. Zuhair, D. Bansal, D. Burger, K. Vaid,
D. A. Maltz, and A. Greenberg. Azure accelerated net-
working: Smartnics in the public cloud. In 15th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 18), pages 51–66, Renton, WA, Apr.
2018. USENIX Association.

[16] A. Forencich, A. C. Snoeren, G. Porter, and G. Papen.
Corundum: An open-source 100-Gbps NIC. In 28th
IEEE International Symposium on Field-Programmable
Custom Computing Machines, 2020.

[17] Fungible, Inc. S1 DPU Product
Brief. https://www.fungible.com/
wp-content/uploads/2021/01/PB0029.01.
12020113-Fungible-S1-Data-Processing-Unit.
pdf.

[18] G. Gibb, G. Varghese, M. Horowitz, and N. McKeown.
Design principles for packet parsers. In Proceedings of
the Ninth ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, ANCS ’13,
page 13–24. IEEE Press, 2013.

[19] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann,
J. Fastabend, T. Herbert, D. Ahern, and D. Miller. The
express data path: Fast programmable packet process-
ing in the operating system kernel. In Proceedings of
the 14th International Conference on Emerging Net-
working EXperiments and Technologies, CoNEXT ’18,
page 54–66, New York, NY, USA, 2018. Association
for Computing Machinery.

[20] Intel Corporation. Infrastructure Processing Units
(IPUs). https://www.intel.com/content/www/us/
en/products/network-io/smartnic.html.

[21] Intel Corporation. 5G Wireless. https:
//www.intel.com/content/www/us/en/
communications/products/programmable/
applications/baseband.html, 2020.

[22] IOVisor Project. uBPF repository. https://github.
com/iovisor/ubpf.

[23] D. Korolija, T. Roscoe, and G. Alonso. Do OS abstrac-
tions make sense on fpgas? In 14th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 20), pages 991–1010. USENIX Association, Nov.
2020.

[24] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu,
Y. Xiong, P. Cheng, and E. Chen. Clicknp: Highly flexi-
ble and high performance network processing with re-
configurable hardware. In Proceedings of the 2016 ACM
SIGCOMM Conference, SIGCOMM ’16, page 1–14,
New York, NY, USA, 2016. Association for Computing
Machinery.

[25] J. Lin, K. Patel, B. E. Stephens, A. Sivaraman, and
A. Akella. PANIC: A high-performance programmable
NIC for multi-tenant networks. In 14th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 20), pages 243–259. USENIX Association, Nov.
2020.

[26] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Pe-
ter, and K. Gupta. Offloading distributed applications
onto smartnics using ipipe. In Proceedings of the ACM
Special Interest Group on Data Communication, SIG-
COMM ’19, page 318–333, New York, NY, USA, 2019.
Association for Computing Machinery.

[27] Marvell Technology, Inc. Data Processing
Units. https://www.marvell.com/products/
data-processing-units.html.

[28] MAWI. MAWILab traffic trace - samplepoint f
- 2021-03-22. https://mawi.wide.ad.jp/mawi/
samplepoint-F/2021/202103221400.html.

[29] S. Miano, A. Sanaee, F. Risso, G. Rétvári, and G. Antichi.
Dynamic recompilation of software network services
with morpheus, 2021.

[30] NEC. Building an Open vRAN Ecosystem
White Paper. https://www.nec.com/en/global/
solutions/5g/index.html, 2020.

[31] Netronome. AgilioTM CX 2x40GbE intelligent server
adapter. https://www.netronome.com/media/
redactor_files/PB_Agilio_CX_2x40GbE.pdf.

[32] NVIDIA Corporation. NVIDIA BlueField data process-
ing unit (DPU). https://www.nvidia.com/en-us/
networking/products/data-processing-unit/.

[33] Orange. OKO. https://github.com/
Orange-OpenSource/oko.

USENIX Association 2022 USENIX Annual Technical Conference    999

https://github.com/ facebookincubator/katran
https://github.com/ facebookincubator/katran
https://www.fungible.com/wp-content/uploads/2021/01/PB0029.01.12020113-Fungible-S1-Data-Processing-Unit.pdf
https://www.fungible.com/wp-content/uploads/2021/01/PB0029.01.12020113-Fungible-S1-Data-Processing-Unit.pdf
https://www.fungible.com/wp-content/uploads/2021/01/PB0029.01.12020113-Fungible-S1-Data-Processing-Unit.pdf
https://www.fungible.com/wp-content/uploads/2021/01/PB0029.01.12020113-Fungible-S1-Data-Processing-Unit.pdf
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://www.intel.com/content/www/us/en/communications/products/programmable/applications/baseband.html
https://www.intel.com/content/www/us/en/communications/products/programmable/applications/baseband.html
https://www.intel.com/content/www/us/en/communications/products/programmable/applications/baseband.html
https://www.intel.com/content/www/us/en/communications/products/programmable/applications/baseband.html
https://github.com/iovisor/ubpf
https://github.com/iovisor/ubpf
https://www.marvell.com/products/data-processing-units.html
https://www.marvell.com/products/data-processing-units.html
https://mawi.wide.ad.jp/mawi/samplepoint-F/2021/202103221400.html
https://mawi.wide.ad.jp/mawi/samplepoint-F/2021/202103221400.html
https://www.nec.com/en/global/solutions/5g/index.html
https://www.nec.com/en/global/solutions/5g/index.html
https://www.netronome.com/media/redactor_files/PB_Agilio_CX_2x40GbE.pdf
https://www.netronome.com/media/redactor_files/PB_Agilio_CX_2x40GbE.pdf
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://github.com/Orange-OpenSource/oko
https://github.com/Orange-OpenSource/oko


[34] Pensando Systems. Pensando DSC-100 Product Brief.
https://pensando.io/wp-content/uploads/
2020/03/Pensando-DSC-100-Product-Brief.pdf.

[35] P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Peter,
R. Bodik, and T. Anderson. Floem: A programming
system for nic-accelerated network applications. In 13th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 663–679, Carlsbad,
CA, Oct. 2018. USENIX Association.

[36] S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone,
M. Spaziani, V. Bruschi, D. Sanvito, G. Siracusano,
A. Capone, M. Honda, F. Huici, and G. Siracusano.
Flowblaze: Stateful packet processing in hardware. In
16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 531–548, Boston,
MA, Feb. 2019. USENIX Association.

[37] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Al-
izadeh, H. Balakrishnan, G. Varghese, N. McKeown, and
S. Licking. Packet transactions: High-level program-
ming for line-rate switches. In ACM SIGCOMM ’16,
ACM SIGCOMM ’16, pages 15–28. ACM, 2016.

[38] N. Sultana, S. Galea, D. Greaves, M. Wojcik, J. Shipton,
R. Clegg, L. Mai, P. Bressana, R. Soulé, R. Mortier,
P. Costa, P. Pietzuch, J. Crowcroft, A. W. Moore, and
N. Zilberman. Emu: Rapid prototyping of networking
services. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17), pages 459–471, Santa Clara, CA,
July 2017. USENIX Association.

[39] Suricata. Suricata IDS Website. https://suricata.
io/.

[40] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivas-
tav, N. Foster, and H. Weatherspoon. P4fpga: A rapid
prototyping framework for p4. In Proceedings of the
Symposium on SDN Research, SOSR ’17, page 122–135,
New York, NY, USA, 2017. Association for Computing
Machinery.

[41] Xilinx, Inc. Alveo SN1000 SmartNIC. https:
//www.xilinx.com/applications/data-center/
network-acceleration/alveo-sn1000.html.

[42] Q. Xu, M. D. Wong, T. Wagle, S. Narayana, and
A. Sivaraman. Synthesizing safe and efficient kernel
extensions for packet processing. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference, SIGCOMM
’21, page 50–64, New York, NY, USA, 2021. Associa-
tion for Computing Machinery.

[43] K. Zhang, D. Zhuo, and A. Krishnamurthy. Gal-
lium: Automated software middlebox offloading to pro-
grammable switches. In Proceedings of the Annual

Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communica-
tion, SIGCOMM ’20, page 283–295, New York, NY,
USA, 2020. Association for Computing Machinery.

[44] N. Zilberman, G. Bracha, and G. Schzukin. Stardust:
Divide and conquer in the data center network. In 16th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 141–160, Boston, MA,
Feb. 2019. USENIX Association.

1000    2022 USENIX Annual Technical Conference USENIX Association

https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-100-Product-Brief.pdf
https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-100-Product-Brief.pdf
https://suricata.io/
https://suricata.io/
https://www.xilinx.com/applications/data-center/network-acceleration/alveo-sn1000.html
https://www.xilinx.com/applications/data-center/network-acceleration/alveo-sn1000.html
https://www.xilinx.com/applications/data-center/network-acceleration/alveo-sn1000.html


Appendices

A Warp Engine Parameters
In Table 5 we report a subset of the parameters that can be con-
figured in the Warp Engine. This is helpful to accommodate
different workloads, or to tune the FPGA resources require-
ments to the workload of interest in the specific deployment.
For instance, there may be cases in which a packet chunk of
64B is sufficient to extract the entire packet context. Likewise,
there may be needs to extend the lookup key beyond 16B, etc.

Parameter Val. Description
Packet
chunk
size

128B Number of packet’s bytes that can be read to
build the lookup key (also affects the TCAM
entries width).

Lookup
key size

16B Size of the lookup key used in the match-
action unit

Key Ex-
tractor
Stages

12 Corresponds to the maximum number of dif-
ferent places that can be read in the packet
chunk

Key Ex-
tractor
read size

2B Maximum number of contiguous bytes that
can be read by each Key Extractor’s stage
(also affects the maximum size of the con-
stant value used for the bitwise operation)

TCAM
entries

64 Maximum number of match-action entries
that can be configured by the Warp Opti-
mizer for a given program

Stack
Extractor
Stages

10 Corresponds to the maximum number of dif-
ferent places that can be read in the packet
chunk

Stack
buffer

136B Maximum number of stack bytes that can
be restored

Stack
Extractor
read size

8B Maximum number of contiguous bytes that
can be read by each Stack Extractor’s stage
(also affects the maximum size of the con-
stant value used for the bitwise operation)

Reg. Ex-
tractor
Stages

9 Corresponds to the maximum number of dif-
ferent places that can be read in the packet
chunk

Reg. Ex-
tractor
read size

8B Maximum number of contiguous bytes that
can be read by each Stack Extractor’s stage
(also affects the maximum size of the con-
stant value used for the bitwise operation)

Table 5: Warp Engine’s main design parameters, and the val-
ues used for the design tested in this paper.

B Applications
Here we report a slightly more detailed description of the
application used during our system evaluation (and reported
in the paper).
L2 ACL (Running example). This is the application we
used as running example, and described in Section 3.1. It
includes three branches: the main processing branch handles
IPv4 packets and checks whether the source MAC address is
present in the access list; the other two branches handle IPv6

packets, which are always dropped), and any packet that is
not IP, which is passed to the networking stack.
Dynamic NAT. Network Address Translation (NAT) for
flows coming from a LAN and destined to a public net-
work, and reverse translation. The application has two main
branches: (i) one for packets originated from the the LAN,
and (ii) the other for those coming from the public network.
When a flow’s first packet from the LAN is processed, the
application selects a new NATed port, and saves it in the NAT
binding table using the 5-tuple as flow identifier. Then it per-
forms address translation and forwards the packet. For any
following flow’s packet, the application retrieves the NATed
port, and performs address translation accordingly. In a sim-
ilar way, packets from the public network are subject to a
reverse NAT if there is a corresponding entry in the NAT
binding table, or they are dropped otherwise.
XDP Router. An implementation of an IPv4/IPv6 router, pro-
vided as eBPF application example with the Linux Kernel. It
performs parsing of L2 and L3 headers, and then a lookup in
two tables to take a packet routing decision. The first table is
an exact match table that looks up the entire IP destination
address. If the lookup in the first table fails, the application
performs a second lookup in a Longest Prefix Match (LPM)
table.
XDP TX Tunnel. This is another eBPF application example
provided by the Linux Kernel. It performs IPinIP encapsula-
tion matching on destination IP address and destination L4
port. The application works with both IPv4 and IPv6, with
the two main processing branches handling these two cases
to assign the proper IPv4 or IPv6 encapsulation. A lookup in
a hashtable matches on the destination virtual IP address to
retrieve the tunnelling information.
Suricata IDS. Suricata [39] is a software Intrusion Detection
System (IDS). Among its multiple features, it provides an
XDP program that works as a filter, to perform early dropping
of undesired flows. The XDP program contains a large number
of processing branches to handle all the combinations of
stacked 802.1Q and 802.1AD VLAN headers. After VLAN
parsing, it processes differently IPv4 and IPv6 packets, and
performs a lookup in a hashmap providing the 5-tuple plus
the (optional) VLAN identifiers to take some of the filtering
decisions.
Katran. Katran [14] is an XDP-based Layer 4 load balancer.
It encapsulates packets with a specific destination Virtual IP
addresses and balances the connections towards the available
servers. The first part of the processing includes L3 parsing
and handling of ICMP/ICMPv6 protocols, for early response
to echo request messages. Then, a first map lookup retrieves
the virtual IP information. The application uses this informa-
tion to query a Least Recently Used (LRU) map, in order to
fetch the address of a connection table. A query to the connec-
tion table finally retries the real IP address of the destination
server. If a destination is not found, and the packet has the
SYN flag set, then Katran installs a new forwarding rule in

USENIX Association 2022 USENIX Annual Technical Conference    1001



the connection table to ensure forwarding consistency for the
following packets of that flow.

C Software Emulator

For some of the Warp Optimizer evaluations, we used a Warp
Engine emulator based on uBPF [22]. Here we give additional
details about such implementation.

M
A
T

MAPS

xdp
prog

input
pcap

PC, context

eBPF executor

action XDP

action MAP

drop

abort

pass

tx

user space XDP engine

Figure 6: MAT+uBPF Architecture

uBPF is an open source project that implements an eBPF
processor in userspace. Unfortunately, out of the box, uBPF
misses relevant functional blocks, such as maps. We therefore
used OKO [33], an open source project providing an eBPF
engine for OpenVSwitch, to enhance uBPF with the OKO’s
maps and helper functions implementations. Starting from this
basis, we further extended this implementation to include any
additional feature required by the Warp Engine (cf Figure 6).

Our implementation takes several input files to configure
its internal modules. First, we implemented a program that
reads the ELF files provided by the standard LLVM eBPF
compiler, and which creates as output:

1. a text file containing the eBPF instructions, formatted as
a sequence of bytes representing the 64bit instructions
of the program;

2. a JSON file describing the XDP program’s map defini-
tions. Such information includes the key size, value size,
number of entries and type of map (array, hashmap, etc.).

These two files are provided to our software emulator to con-
figure the eBPF executor, and create the maps required by the
program.

The emulator’s Warp Engine module implements a Match
Action Table (MAT) with ternary match values. The MAT is
configured using the output generated by the Warp Optimizer.
uBPF execution The emulator takes packet in input by read-
ing a PCAP file. It can then be run in two different modes of
operation: with the software Warp Engine disabled; and with
the software Warp Engine enabled.

In the first case, the MAT is bypassed and the packet is
directly fed to the eBPF executor, which applies the eBPF in-
structions on the packet data. With the MAT enabled, instead,
the packet data is used to extract the fields needed to perform

a lookup in the MAT. The matched entry contains the action
that must be performed on the packet, that is:

• a standard XDP return code (DROP, ABORT, PASS and
TX), so in this case the packet bypasses the eBPF execu-
tion stage;

• a context restoration action, which contains the informa-
tion to construct and restore the context.

In case of context restoration, we copy the registers and
stack values as described in the action (which is configured
from the Warp Engine’s output). Then, in any case, the pro-
gram counter is updated with the one required by the matched
action, and the regular eBPF execution starts. Finally, the
emulator outputs a number of global and per-packet statistics:

• one PCAP trace for each XDP return code, for packets
that have been subject to the DROP, PASS, ABORT and
TX XDP actions;

• the list of instructions executed for each packet;
• the number of instructions actually executed;
• the number of times a rule in the Match Action Table

has been matched.
These statistics have been collected to construct the results
shown in Section 6.

D Functional Equivalence

We provide more details about the strategy we used to check
functional equivalence of programs running with and without
program working. In particular, we validate the equivalence
of running an eBPF program in our accelerated system and
running the same program in the standard Linux kernel XDP
implementation. First, we analyze the behavioral equivalence,
i.e. that the packets out of the Linux kernel implementation
exactly match the packets in output from our software im-
plementation. This is a black-box test and has two outcomes:
(i) it validates the equivalence between the standard imple-
mentation and our accelerated version, and (ii) it validates the
correctness of our software prototype. For what concerns the
test cases, for each application we use synthetic packet traces
in which each packet exactly matches one entry in the Match
Action Table. We run an eBPF program with and without
the MAT enabled and compare the output packet traces. We
obtain the behavioral equivalence by verifying that the two
outputs match exactly, in terms of packet data and associated
XDP action.

Nonetheless, a careful choice of the test cases should take
into account all the possible inputs such that the totality of
the eBPF instructions of a program are covered. For example,
in the NAT application, the first packet of a new connection
matches the same entry of subsequent packets, but for the
first packet the processing is different, and the instructions
covered are different as well. In other words, we should take
into account the state updates in the execution of a program.
To validate the correctness of our test cases to cover the entire
set of program’s instructions, for each application we crafted

1002    2022 USENIX Annual Technical Conference USENIX Association



the packets to cover all the branches in the Control Flow
Graph, along with the correct configuration of the eBPF map
entries. For every use case considered, we achieved the full
program instructions coverage. We verified this by checking
that the enumerated instructions represent the totality of the
original program.

In the case of Katran, we used a simplified version by
removing some parts of the code for which the instructions
could not be executed. For example, some portions of the
Katran code rely of timeouts triggering a certain condition.
Since our uBPF prototype does not implement timers, we
removed those program parts. In any case, all the instructions
that are not covered by our tests always happen after the
warped part of the program, therefore we could still verify
that program warping does not modify in any way a program’s
behavior.

E Comparison with commercial SmartNICs

In Section 6 we compare our prototype only with hXDP. This
is the case since we are not aware of any other NIC platform
that supports running unmodified eBPF in the network data
plane.4 Furthermore, we are interested in evaluating the spe-
cific contribution of program warping to FPGA-based eBPF
executors, and less concerned with the evaluation of packet
processing when using different platforms. However, when
looking more generally supporting eBPF on a NIC, some re-
cent commercial NICs that include battery of general purpose
CPUs can indeed run unmodified XDP programs.

It should be clear that comparing our program warping
prototype with such systems is not generally correct from a
technical perspective, since the goals, constraints and scopes
of application are too different to devise a fair testing strat-
egy. For instance, a more direct comparison of the packet
forwarding data plane component would require an ASIC-
based implementation of program warping.

While we are aware of the above, we believe that the com-
parison may still be useful for practitioners who may be in-
terested in evaluating FPGA NIC solutions vs alternatives.
Therefore we decided to at least include such tests in this
appendix for the interested reader.
NVIDIA Bluefield2 architecture We tested the XDP pro-
grams performance on an NVIDIA Bluefield2 NIC [32] (in
NVIDIA terminology, these devices are currently called Data
Processing Units, or DPUs). The Bluefield2 combines two
main subsystems: a switching data plane based on the Mel-
lanox ConnectX6 architecture; and a battery of 8 general
purpose Arm A72 CPUs running at up to 2.75GHz. The Con-
nectX6 receives the packets from the network ports and can
forward them directly to the host system, like a regular NIC,

4In fact, Netronome SmartNICs [31] support eBPF, but only in a limited
form, and therefore packet processing programs need to be rewritten for the
specific Netronome’s capabilities.

Figure 7: Forwarding throughput for the applica-
tions described in Section 6, when running on hXDP,
hXDP+Warp Engine, and on 1-4 cores of an NVIDIA
Bluefield2’s CPUs.

or it can re-direct them to the Arm CPUs. Here, further pro-
cessing can happen, and the packets can be either consumed
locally, or sent back once more to the ConnectX6, to be finally
delivered to the host system or to the network port.
Experiments We use the experimental setup, applications
and testing strategy described in Section 6 to evaluate the
packet forwarding performance of the Bluefield2, when using
the Arm CPUs. Figure 7 shows the results.

Like already explained in Section 6, we report the results
only for a subset of the application paths. For Router, Tunnel
and DNAT, the hXDP+Warp Engine combination achieves a
higher throughput than an Arm core clocked at over 10x the
hXDP clock frequency. For Katran, our prototype is close to
the performance provided by two cores. Finally, in the case
of L2_ACL and Suricata, the hXDP+Warp Engine achieves a
forwarding throughput roughly equivalent (or close) to 4 Arm
cores instead.

These results show that in favorable cases program warping
can indeed boost the performance of an FPGA-based proces-
sor to match that of several hardcoded cores running at much
higher frequency. This suggests that a practitioner will require
a careful workload analysis if the choice of an FPGA NIC
is not mandated by other deployment requirements5, since
the performance is use case dependent. In any case, program
warping provides a viable solutions to run eBPF software
packet processing in environments where an FPGA NIC is
required.

5Requirements may not be necessarily related to the need of hosting
FPGA-based accelerators. They may also include considerations on power
consumption and type of board cooling.

USENIX Association 2022 USENIX Annual Technical Conference    1003





NVMe SSD Failures in the Field: the Fail-Stop and the Fail-Slow
Ruiming Lu1*, Erci Xu2*, Yiming Zhang3†, Zhaosheng Zhu4, Mengtian Wang4,

Zongpeng Zhu4, Guangtao Xue1†, Minglu Li1,5, and Jiesheng Wu4

1Shanghai Jiao Tong University, 2PDL, 3Xiamen University,
4Alibaba Inc., and 5Zhejiang Normal University

Abstract

NVMe SSD has become a staple in modern datacenters thanks
to its high throughput and ultra-low latency. Despite its popu-
larity, the reliability of NVMe SSD under mass deployment
remains unknown. In this paper, we collect logs from over
one million NVMe SSDs deployed at Alibaba, and conduct
extensive analysis. From the study, we identify a series of
major reliability changes in NVMe SSD. On the good side,
NVMe SSD becomes more resilient to early failures and
variances of access patterns. On the bad side, NVMe SSD
becomes more vulnerable to complicated correlated failures.
More importantly, we discover that the ultra-low latency na-
ture makes NVMe SSD much more likely to be impacted by
fail-slow failures.

1 Introduction
NVMe SSD is now the new favorite of modern data centers.
With a performance specification of up to 6GB/s bandwidth
and microsecond-level latency, NVMe SSD serves as a strong
performance upgrade to its SATA-based peers [8, 18, 29–31].

Apart from the performance, the reliability of any hardware
under mass deployment is of great concern [3, 5–7, 10, 14, 38,
40,42,45]. While there is a spate of work covering the failure
characteristics of SATA SSDs in the field [34–36,41,47], their
findings may not be conclusive for NVMe SSD.

First, with a low-latency interface, NVMe SSD can be
especially prone to fail-slow failure (aka. gray failure [17, 21,
25, 26, 48]). In a nutshell, the NVMe SSD fail-slow failure
causes a drive to exhibit abnormal performance slowdown
(e.g., high latency under normal traffic). Unlike SATA SSD,
where fail-slow failure may be masked by the relatively high
latency (>100µs), NVMe SSD can be easily impacted due to
its ultra-low latency nature (∼ 10µs) [23, 27, 28].

Moreover, the NVMe SSD is not just the SATA SSD with
an interface upgrade. Instead, the internal architecture of
NVMe SSD has gone through considerable changes. An out-
standing example is the wide adoption of 3D-TLC NAND
in NVMe SSD for larger capacity. Compared to MLC, the
denser bits per cell (i.e., TLC) shows lower reliability and

*Equal contribution.
†Corresponding authors.

the vertical stacking (i.e., 3D flash) can exhibit disparate be-
haviors or even opposite patterns (e.g., lower error rate under
higher temperatures [32]). Also, the vendors have integrated
a series of techniques to improve the overall reliability in
NVMe SSD, such as Redundant Array of Independent NAND
(RAIN) or Low-Density Parity-Check code (LDPC) [43, 50].
Unfortunately, with no large-scale NVMe SSD fail-stop study
available at the moment, the influences of recent advance-
ments remain unknown.

In this paper, we study the fail-stop and fail-slow failures
of NVMe SSDs deployed at Alibaba. Specifically, we collect
and analyze device logs (i.e., SMART [11]), runtime logs (i.e.,
iostat), and failure tickets from over one million NVMe
SSDs1. Throughout the study, we set our analysis into the
context of previous studies to help various parties of interest
get a clear picture of NVMe SSD reliability, including the im-
proving and deteriorating failure patterns of fail-stop failures
and the characteristics regarding the fail-slow failures.

We start our study by plotting and analyzing the baseline
statistics (§3) of the NVMe SSDs, including the drive charac-
teristics (e.g., manufacturer and model), usage characteristics
(e.g., power-on time), and health metrics (e.g., annual re-
placement rate). Then, we comb through the dataset against
different impact factors such as age and write amplification
(§4). Finally, we lay a special focus on the fail-slow failures
(§5), where we rigorously identify the fail-slow drives and
perform extensive analysis. Altogether, we obtain 10 major
findings and we list the highlights as follows:

• Infant mortality (failures occurring soon after deployment),
a concerning failure trend in SATA SSD [35], is not out-
standing in NVMe SSD. For nearly all of our models, the
failure rate in the first three months is equivalent to or even
less than that from later periods.

• High Write Amplification Factor (WAF), unlike SATA
SSD [36], is no longer closely correlated with failures. In-
terestingly, NVMe SSD with low WAF (WAF≤1) exhibits
2.19× higher ARR than high-WAF ones.

• Co-located (i.e., intra-node/rack) NVMe SSD failure be-
comes more temporally correlated. For example, compared
to SATA SSD, NVMe SSD correlated failure increases up

1We release our dataset at https://tianchi.aliyun.com/
dataset/dataDetail?dataId=128972.

USENIX Association 2022 USENIX Annual Technical Conference    1005

https://tianchi.aliyun.com/dataset/dataDetail?dataId=128972
https://tianchi.aliyun.com/dataset/dataDetail?dataId=128972


to 14.69× and 1.78× in intra-node/rack scenarios, respec-
tively.

• The fail-slow failure is a widespread and severe problem
for NVMe SSD. On average, 1.41% of NVMe SSDs are
infected within four-month monitoring, which is 6.05× that
of HDD. Besides, fail-slow NVMe SSD could degrade to
SATA SSD or even HDD performance.

• The NVMe SSD fail-slow failure does not correlate with
SMART attributes, and rarely (0.22% of the fail-slow
drives) transits to fail-stop failures.

We conclude this paper with the limitation of this study
(§6), the related work (§7) and a short conclusion (§8).

2 Background
2.1 System Architecture
The NVMe SSDs, in our study, come from multiple IDCs
(Internet Data Centers) across the globe. An IDC usually
hosts dozens of storage clusters. The clusters are homomor-
phic with each running an HDFS-like distributed file system
(DFS). Each cluster owns several to tens of racks and each
rack includes up to 48 nodes. All NVMe SSDs in our study
come from the all-flash-configuration nodes that contain 12
NVMe SSDs (not RAIDed) for data storage (not hosting OS).

2.2 Drive Model & Workload
Our candidate SSDs are all enterprise-level. The earliest
model was deployed around May 2015, while the latest model
is from July 2019. We introduce the details in §3.

The SSD fleet serves a total of 7 services, including block
storage, object storage, big data, buffering, log, streaming,
and query. Each service spans across several dedicated clus-
ters. For confidentiality, we do not share the numbers of SSDs
or their distribution under each service. Still, we study the in-
fluences of workload under controlled-variable experiments.

2.3 Data Collection

Data Span Entry
SMART Logs 2019-11-04~2020-11-14 ∼1.8M
Perf. Logs 2020-11-16~2021-03-05 ∼84M
Failure Tickets 2019-11-04~2020-11-02 ∼20K

Table 1: Data collection period (§2.3).

SMART logs. SMART is a set of attributes widely adopted
by vendors and administrators to evaluate the reliability and
performance of drives [11]. In our clusters, the reportings of
SMART attributes are collected on a daily basis. Readings of
the metrics can be either cumulative (e.g., number of media er-
rors) or instantaneous (e.g., temperature). In practice, vendors
may not necessarily follow the exact counting or reporting
mechanism. Therefore, we standardize the numbers based on
the manufacturer manuals.

Performance logs. A major subset of our clusters is equipped
with node-level daemons to monitor and record the iostat,
a Linux kernel performance log. The iostat includes vi-
tal statistics of storage devices, such as latency, IOPS and
throughput. Currently, the daemon runs 3 hours a day (from
9 PM to 12 AM) and only records the average iostat values
of each monitoring window (15 seconds long). Within the
three hours, the traffic is relatively stable (around 70% peak
traffic) and dominated mainly by internal workloads and large
external clients (i.e., less burst traffic).
Failure tickets. Every node in our clusters has set up a dae-
mon to monitor and report fail-stop failures. Upon reporting,
a failure ticket would be generated (and manually checked by
engineers), containing basic information of the victim drive
(e.g., model and hostname) and the timestamp. Around 35%
of our nodes also record an error code, detailing the direct
symptom of failure (see Table 3 in §3.1). Upon failures, based
on the symptoms, drives would be repaired online (e.g., fsck)
or directly put offline for replacement (e.g., drive lost).

2.4 Methodology Correctness
To ensure sound and generalizable conclusions, we adhere to
the following principles and measures throughout the study.

First, our study methodology (similar to [19,34,36,41,47])
starts with a general and extensive comparison to identify
outstanding dominant factors. If high-level observation is
fruitless or suspicious (e.g., spurious correlation led by inter-
dependence between different factors as noted in [41]), we
would then perform fine-grained controlled variable experi-
ments (e.g., conditioned on workloads, drive models, drive
age and the total bytes written) to unravel the underlying root
causes and actionable advice for practitioners if any.

Second, we pre-screen the raw datasets to avoid bias (e.g.,
higher average) led by outliers (e.g., overflowing SMART val-
ues, NULL iostat recordings). Note that on-site engineers
have manually verified all failure tickets before this study. In
total, we have dropped around 5.8% and 1.5% untrustworthy
records from SMART logs and iostat, respectively. More-
over, for generalizability concerns, we also exclude drive
models with a smaller population (less than 1K) from the
study. Note that different suppliers may register a model by
different names, but we treat them as the same one here.

Third, we carefully choose statistical instruments to iden-
tify and verify the potential patterns in the NVMe SSD fail-
ures. Our rationale is that either such techniques or thresholds
have been applied in previous studies, or clear documentation
indicates the techniques can be used in the targeted scenarios.

3 Baseline Statistics
3.1 Dataset Overview
SMART logs. We begin by presenting the baseline statistics
in Table 2, where the dataset is grouped into three categories:
Basic Information, Usage Characteristics, and Health Metrics.

1006    2022 USENIX Annual Technical Conference USENIX Association



Basic Information Usage Characteristics Health Metrics
Model Cap. NAND Lith./ Total Drive OP WAF Crit. CRC Media P/E ARR

(GB) Layer (%) Years Warn. Err. Err. Err. (%)
I-A 800 MLC 15nm 0.1 3.32 28% 1.69 0.0015 / 0 1439.46 / 0 0 / 0 0 / 0 0.34

2000 MLC 15nm 0.8 3.07 2% 2.05 0.027 / 0 759.73 / 0 3.52 / 0 0 / 0 0.69
3840 MLC 15nm 0.1 2.87 7% 0.84 0.0025 / 0 3091.59 / 1 0 / 0 0 / 0 0.78

I-B 1600 MLC 15nm 0.7 2.73 28% 1.82 0.011 / 0 0 / 0 0.01 / 0 0 / 0 1.12
3200 MLC 15nm 0.1 2.99 28% 1.86 0.16 / 0 0 / 0 759.81 / 0 0 / 0 2.34

I-C 4000 3D-TLC 64L 0.1 0.46 2% 1.04 0 / 0 0 / 0 0 / 0 0 / 0 0.66
II-A 1920 MLC 20nm 0.5 3.44 7% 3.68 0.052 / 0 59.46 / 0 0 / 0 1.70 / 0 0.77
II-B 800 MLC 20nm 0.7 3.60 28% 7.82 0 / 0 52.90 / 0 0 / 0 3.10 / 0 0.49

1600 MLC 20nm 1.3 3.63 28% 7.97 0 / 0 43.52 / 0 2.69 / 0 5.80 / 0 0.63
II-C 960 3D-TLC 32L 3.4 2.55 7% 3.62 0 / 0 1572.77 / 0 0 / 0 0.79 / 0 0.52

1920 3D-TLC 32L 1.8 2.50 7% 2.88 0.0017 / 0 849.99 / 0 0.49 / 0 1.60 / 0 0.79
4000 3D-TLC 32L 5.5 2.39 2% 3.36 0.00079 / 0 957.86 / 0 0.34 / 0 3.60 / 1 0.64

II-D 960 3D-TLC 64L 4.9 1.47 7% 2.45 0.00026 / 0 38.66 / 0 1.45 / 0 0.38 / 0 0.26
1920 3D-TLC 64L 8.4 0.97 7% 2.37 0.00031 / 0 54.56 / 0 0.45 / 0 0.45 / 0 0.56
3840 3D-TLC 64L 45.3 0.69 7% 1.96 0.000038 / 0 32.72 / 0 5.53 / 0 0.66 / 0 1.12

II-E 370 NEW 20nm 0.5 1.24 0% - 0 / 0 72.05 / 0 0.71 / 0 0 / 0 1.40
750 NEW 20nm 0.7 0.18 0% - 0 / 0 38.92 / 0 16.27 / 0 0 / 0 3.27

III-A 3200 3D-TLC 48L 0.3 2.65 28% 2.59 0 / 0 19.39 / 0 45.28 / 0 0.28 / 0 2.31
III-B 960 3D-TLC 48L 3.4 1.96 7% 3.34 0.0038 / 0 296.41 / 0 2.29 / 0 30.00 / 0 0.60

1900 3D-TLC 48L 7.4 1.73 7% 2.78 0.0080 / 0 263.04 / 6 0.82 / 0 69.00 / 0 0.69
3800 3D-TLC 48L 9.9 1.93 7% 1.87 0.010 / 0 469.66 / 6 1.81 / 0 67.00 / 0 1.13

III-C 960 3D-TLC 64L 4.1 0.45 7% 3.96 0.0023 / 0 124.55 / 0 0.02 / 0 5.30 / 0 0.49

Table 2: Baseline statistics of our drives (§3). The table shows the summarized statistics of NVMe SSD fleet. Cap.: capacity;
NAND: flash architecture; Lith./Layer: lithography or numbers of stacking layers; OP: Over-Provisioning rate; WAF: Write
Amplification Factor; Crit. Warn.: critical warning; P/E Err.: program/erase error. In Health Metrics, the two values separated
by a slash refer to mean and median values, respectively.

In Basic Information, we name the drive models as
manufacturer-model and use the alphabetic order to refer
to the generations of a manufacturer (e.g., I-A stands for the
earliest model from manufacturer I). Each model can be fur-
ther specified by capacities (i.e., Cap. column) and NAND
architecture (i.e., NAND column). We mark the planar chips
with their lithography (e.g., 15nm for I-A) and the 3D chips
with their vertical stacking layers (e.g., 64-layer for I-C). II-E
is a unique case as it adopts a novel (neither planar nor 3D
stacking) cell, thus named NEW (for anonymity). Finally, we
list each model’s relative population (i.e., Total%).

The Usage Characteristics describes the high-level adminis-
trative information. The first column is the average power-on
time in terms of years. The second and third columns respec-
tively present the over-provisioning rate (i.e., OP) and the
calculated average Write Amplification Factor (i.e., WAF).
WAF is calculated by dividing the number of NAND writes
by the number of logical writes. Both numbers are reported
by the SSD SMART attributes.

Last, we cover five primary reliability-related metrics.

• Critical Warning, introduced by NVM Express [20], indi-
cates that the drive may have serious media errors (i.e., in
read-only or degraded mode), possible hardware failures, or
exceeding temperature alarm threshold.

• CRC Error refers to the number of transmission errors (e.g.,
the faulty interconnection between the drive and the host).
• Media Error refers to the number of data corruption errors
(i.e., unable to access stored data in flash media).
• Program/Erase Error refers to the number of flash cell
programming errors (e.g., unable to program flash cells from
a block that is about to be garbage collected during copyback).
• Annual Replacement Rate (ARR) is the number of device
failures divided by numbers of device years, reflecting the
general reliability of drives (a common standard [34, 41]).

Note that readings of the first four health metrics are heavily
biased where zeros account for an absolute majority (e.g.,
99.97% for critical warning) of valid recordings. Hence, we
list both average and median values (i.e., average/median).
Failure tickets. A subset (around 35%) of our drives details
the direct cause upon failure reporting. Here, we present the
distribution of their symptoms in Table 3. There are a total of
five failure symptoms. I/O failure refers to a drive that fails to
perform a read/write request. The Link failure indicates either
a connection error during the PCI-e transmission or an abnor-
mal bandwidth. The Lost failure refers to a functioning drive
to become unfound. The Boot failure describes a drive that
fails to initiate (e.g., mounting file system). The Thres. failure
refers to one or more SMART attributes to have reached the

USENIX Association 2022 USENIX Annual Technical Conference    1007



Distribution Statistics
Type Dist. ARR ARR_M ARR_3D ARR_N
I/O 49.55% 0.40% 0.14% 0.42% 1.07%
Link 11.07% 0.09% 0.01% 0.10% 0.10%
Lost 5.65% 0.05% 0.06% 0.04% 0.01%
Boot 19.59% 0.16% 0.30% 0.14% 0.39%
Thres. 14.15% 0.11% 0.20% 0.10% 0.10%

Table 3: Failure symptom distribution (§3.1). Dist.: dis-
tribution; ARR: overall ARR; ARR_X: ARR of drives under
different flash architecture; I/O: read/write failure; Link:
connection failure; Lost: drive unfound; Boot: booting fail-
ure; Thres.: SMART value over a pre-defined threshold.

pre-defined threshold(s). For each type of failure, we present
its distribution (Dist. column) along with the corresponding
ARRs in all NVMe SSDs (ARR), MLC-based (ARR_M),
3D-TLC (ARR_3D), and NEW-NAND ones (ARR_N).

3.2 High Level Observations
Based on Tables 2 and 3, we now associate drive character-
istics with health metrics to get a high-level understanding
of the NVMe SSD fail-stop failures. Note that, even for the
same model, the drive population can be a diverse mix of
model and usage characteristics (e.g., NAND type, age, and
total bytes written). We have further verified our observations
through controlled-variable experiments on such impacting
factors.
NVMe SSD vs. SATA/SAS SSD. The ARR of NVMe SSD
in our dataset is much higher than that of SATA/SAS SSD
from Netapp’s enterprise storage systems [34]. We perform
a t-test on both sets of ARRs and the corresponding p-value
is equal to 3.554e-07. The average and median ARR of our
NVMe SSD are 0.98% and 0.69%, which are 2.77× and
2.83× higher than those of SATA/SAS SSD respectively (i.e.,
0.26% and 0.18% calculated from Table 1 in [34]). We obtain
similar results as we further break down the SSD population
by NAND types and lithography. Regarding Alibaba’s data
centers [19], the trend persists except for two models (i.e., C1
and C2 from Table 1 in [19]).

Moreover, we also compare the failure symptom distribu-
tion between NVMe SSD and SATA SSD (see Table 3 in [47]).
We observe radical changes as I/O error becomes far more
prevalent in NVMe SSD (accounting for 49.55%) while Lost
error (i.e., drive unfound) is no longer dominant (i.e., 5.65%
in NVMe SSD vs. 53.7% in SATA SSD).
Drive capacity. Within the same drive family, the average
P/E errors and ARR are positively correlated with the capac-
ity. For example, in the II-D drive family, as the capacity
increases, the average P/E error rises from 0.38 to 0.66 and
the ARR surges from 0.26% to 1.12%. This is understandable
as drives with larger capacity are more likely to be accessed,
thereby increasing the chances of suffering program errors.
NAND type. In our dataset, we find that the ARR of 3D-

TLC drives is slightly lower than that of MLC drives, while
in SATA SSD [34], the trend is reversed. The ARR of our
MLC drives varies from 0.34% to 2.34%, while that of 3D-
TLC SSD is from 0.26% to 2.31%. However, we notice that
drives with NEW NAND architecture (i.e., II-E family) ex-
hibit around 1.61× and 1.87× higher average ARR than those
of MLC and 3D-TLC drives, respectively (the p-values are
equal to 2.065e-02 and 4.351e-03). Table 3 further demon-
strates an ARR breakdown of failure symptoms among differ-
ent NAND chips. For NEW-based SSD, the main culprits of
its high ARR are the I/O and booting failures.

4 The Fail-stop
Now, we present the three major changes in failure patterns in
NVMe SSD. For each aspect, we start with existing patterns
in SATA/SAS SSD. We then study the differences in NVMe
SSD using a similar setup and further verify our findings
under a series of controlled-variable experiments.

4.1 Infant Mortality
Finding 1. Infant mortality, a notorious failure trend in hard-
ware early deployment period, is not notable in NVMe SSD.
Existing patterns. The Bathtub Curve [40] is a classic depic-
tion of hardware failure variances through time. Generally,
there are three main phases: infant mortality, stable (aka.
useful-life) and wear-out period. Previous SATA SSD studies
suggest that flash drive also follows this trend [35] (i.e., with
an early detection phase followed by the bathtub curve).
Difference in NVMe SSD. For NVMe SSD, we are inter-
ested in whether such observation still holds. Here, we adopt
the monthly failure conditional probability (FCP) to demon-
strate the failure trend (i.e., the same metric as in Section
5.1 of [34]). The FCP is calculated as the number of drives
to be replaced that month divided by the number of drives
surviving that month. In Figure 1, we present a comparison
between the six most popular drive families covering varying
NAND architectures (i.e., 15-20nm MLC, 32-64 layers 3D-
TLC, and the NEW). Throughout the paper, error bars refer to
95% confidence intervals with bootstrap methods [12] (2,000
iterations). In Figure 1, to calculate the error bar of FCP
in month x (with N drives surviving month x-1), we create
2,000 random samples of FCPs; in each sample, the FCP is
calculated based on a randomly-chosen set of N drives (i.e.,
sampling with replacement). Finally, we calculate the 95%
confidence interval based on these 2,000 samples of FCPs as
the corresponding error bar.

Should the NVMe SSD still follow the bathtub curve, we
shall see the FCP, starting from a high value (i.e., the infant
mortality), quickly decreases to a stable range (i.e., the useful
life) until surging in the wear-out period. However, from
visual inspection, we discover that most drive families do
not have outstanding infant mortality during early periods.
We further calculate the average FCP under various periods
(e.g., 1st to 3rd month and the most recent three months).

1008    2022 USENIX Annual Technical Conference USENIX Association



I-A (MLC, 15nm)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 5 10 15 20 25 30 35 40

Month

F
C

P
 (

%
)

II-B (MLC, 20nm)

0.0

0.2

0.4

0.6

1 5 10 15 20 25 30 35 40 45 50 55

Month

F
C

P
 (

%
)

II-C (3D-TLC, 32-layer)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

1 5 10 15 20 25 30 35 40

Month

F
C

P
 (

%
)

II-D (3D-TLC, 64-layer)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

1 5 10 15 20 25 30

Month

F
C

P
 (

%
)

II-E (NEW, 20nm)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 5 10 15 20 25 30 35

Month

F
C

P
 (

%
)

III-B (3D-TLC, 48-layer)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

1 5 10 15 20 25 30 35 40

Month

F
C

P
 (

%
)

Figure 1: Failure trend (§4.1). The figures present the Fail-
ure Conditional Probability (%) vs. drive’s deployed time
in months in 6 drive families. The dashed line indicates the
average value within each figure. Error bars throughout the
paper refer to 95% bootstrap confidence intervals [12] (2,000
iterations).

As a result, the early period (i.e., the first three months) has
equivalent or even lower FCP than the later periods. For
example, in I-A, the first three months yield an average FCP
of 0.02%, whereas the average FCPs of the next 9 months
(months 4-12) and most recent three months are 0.05% and
0.35%, respectively.

Validity analysis. Next, we explore the reason behind this
reliability improvement. First, it is unlikely that the stress
tests weed out the faulty drives before deployment. Stress
tests are usually short (up to one week) and thus not enough
for drives suffering infant mortality (the period lasts for 12-15
months long [35]). Second, we exclude the possibility of
external impacts (e.g., uneven distribution of workloads and
drive age, if any) using two-sided t-tests. Then, we focus on
the internal aspect by studying the SMART attributes vari-
ances over time. Here, for both II-D and III-B in Figure 2,
nearly all health-related metrics experience the infant mortal-
ity as they start with a much higher value and then decrease
to a stable range over time. Other drive families, in general,
also follow this trend. Note that the values in Figure 2 are
normalized to the lowest point on each curve and reported in
logarithmic reporting. This indicates that NVMe SSD still

SMART
CRC Error Erase Error Media Error

Program Error Unsafe Shutdown

II-D (3D-TLC, 64-layer)

10
0

10
1

10
2

10
3

10
4

10
5

1 5 10 15

Month

N
o
rm

a
liz

e
d
 v

a
lu

e

III-B (3D-TLC, 48-layer)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

1 5 10 15

Month

N
o
rm

a
liz

e
d
 v

a
lu

e

Figure 2: SMART in early age (§4.1). The figures present
the average number of SMART-recorded errors per month
during the first 15 months of deployment in two major drive
models. Note that the numbers are normalized to the lowest
point on each curve.

accumulates a large number of errors during the early period.
Therefore, we assume it is likely that the improvement of FTL
error handling makes the NVMe SSD more resilient in the
early periods.
Operational advice. We believe the recent advancement in
failure handling has set the NVMe SSDs free from suffer-
ing infant mortality. This can serve as a relief signal for the
supply chain and the on-site administrators as previous prac-
tice usually demands that the cloud operators stockpile extra
pieces before initial deployment.

4.2 WAF
Finding 2. NVMe SSD becomes more robust to high write
amplification (WAF>2), but extremely low write amplification
(WAF≤1) is still rare-but-deadly.
Existing patterns. Write amplification is a common phe-
nomenon in SSD I/O where the logical writes incur extra data
to be written to NAND due to SSD internal operations (e.g.,
garbage collection and alignment). A higher write amplifica-
tion factor (i.e., NAND writes size divided by logical writes
size) therefore indicates a more random and small-writes-
dominant workload. To overcome this disadvantage, manu-
facturers often use write compression techniques to combine
small or buffer repeated writes [9, 46, 49].

Previously, a large-scale SATA SSD failure study by Mi-
crosoft pointed out that higher WAF (WAF>2) incurs more
SSD failures (i.e., Section 3.5.1 of [36]). Moreover, they
suggest that the write compression technique can be damag-
ing where drives with less-than-one WAF have failure rates
similar to those with a higher-than-two WAF (see Figure 11
in [36]).
Difference in NVMe SSD. To avoid bias led by model char-
acteristics, we conduct a comparative study within each model
family. For each drive family, we first place SSDs into differ-
ent buckets by WAF with a step of 0.5. Then for each bucket,
we calculate its corresponding ARR. Since the 95th percentile
of WAF in our entire fleet is around 4, the last bucket includes

USENIX Association 2022 USENIX Annual Technical Conference    1009



I-A (MLC, 15nm)

0.0

0.2

0.4

0.6

0.8

1.0

<
=

 1

1
.0

-1
.5

1
.5

-2
.0

2
.0

-2
.5

2
.5

-3
.0

3
.0

-3
.5

3
.5

-4
.0

>
 4

Interval in WAF

A
R

R
 (

%
)

[1]

II-A (MLC, 20nm)

0.0

0.2

0.4

0.6

0.8

<
=

 1

1
.0

-1
.5

1
.5

-2
.0

2
.0

-2
.5

2
.5

-3
.0

3
.0

-3
.5

3
.5

-4
.0

>
 4

Interval in WAF

A
R

R
 (

%
)

[1]

II-B (MLC, 20nm)

0.0

0.2

0.4

0.6

0.8

<
=

 1

1
.0

-1
.5

1
.5

-2
.0

2
.0

-2
.5

2
.5

-3
.0

3
.0

-3
.5

3
.5

-4
.0

>
 4

Interval in WAF

A
R

R
 (

%
)

II-C (3D-TLC, 32-layer)

0.0

0.3

0.6

0.9

1.2

1.5

<
=

 1

1
.0

-1
.5

1
.5

-2
.0

2
.0

-2
.5

2
.5

-3
.0

3
.0

-3
.5

3
.5

-4
.0

>
 4

Interval in WAF

A
R

R
 (

%
)

II-D (3D-TLC, 64-layer)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

<
=
 1

1
.0

-1
.5

1
.5

-2
.0

2
.0

-2
.5

2
.5

-3
.0

3
.0

-3
.5

3
.5

-4
.0

>
 4

Interval in WAF

A
R

R
 (

%
)

[2] [2]

III-A (3D-TLC, 48-layer)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

<
=
 1

1
.0

-1
.5

1
.5

-2
.0

2
.0

-2
.5

2
.5

-3
.0

3
.0

-3
.5

3
.5

-4
.0

>
 4

Interval in WAF

A
R

R
 (

%
)

III-B (3D-TLC, 48-layer)

0.0

1.0

2.0

3.0

4.0

5.0

<
=
 1

1
.0

-1
.5

1
.5

-2
.0

2
.0

-2
.5

2
.5

-3
.0

3
.0

-3
.5

3
.5

-4
.0

>
 4

Interval in WAF

A
R

R
 (

%
)

III-C (3D-TLC, 48-layer)

0.0

1.0

2.0

3.0

4.0

5.0

<
=
 1

1
.0

-1
.5

1
.5

-2
.0

2
.0

-2
.5

2
.5

-3
.0

3
.0

-3
.5

3
.5

-4
.0

>
 4

Interval in WAF

A
R

R
 (

%
)

Figure 3: ARR under different WAF levels (§4.2). The
grey dashed line indicates the average value within each
figure. “[1]”: the bucket includes no drives; “[2]”: the calcu-
lated ARR is zero (i.e., no failed drives). The first buckets of
III-B and III-C are overflowed (>5%).

drives with WAF above 4. The WAF≤1 bucket contains drives
significantly influenced by the write compression technique.

Figure 3 presents the correlation between WAF and failure
rates among eight popular drive families, covering different
types of NAND and manufacturers. Here, we make two
observations. First, for WAF higher than one, we do not
observe a strong positive correlation between WAF and ARR
in most drive families (the II-D drive family is considered an
exception). A set of Spearman’s Rank Correlation Coefficient
tests [44] further statistically confirm our hypothesis. This
indicates that NVMe SSD is less affected by random small
writes (a major cause for high write amplification). Second,
we observe that, for drives with low WAF (i.e., WAF≤1), their
failure rates are still relatively high. On average, these low-
WAF drives can have a 2.19× higher ARR rate than average.

Time Type SATA SSD NVMe SSD Hypo.

Total
node 4.5-73.7% 70.6-96.6% 0.04-9.0%
rack 28.6-91.4% 79.4-97.6% 27.8-77.4%

(0, 1min]
node 0.8-24.7% 1.1-17.9% 0%
rack 1.7-27.2% 1.3-17.9% 0%

(1d, 1mon]
node 1.1-39.4% 14.3-57.5% 0.01-1.1%
rack 6.5-47.9% 15.5-57.2% 2.9-10.0%

Table 4: Intra-node/rack failure distributions across
drive types (§4.3). The table presents the relative percentage
of intra-node and intra-rack failures in SATA SSD from a
previous study [19], our NVMe SSD fleet, and a hypothetical
setting where failures are independent of time and location.

An extreme example is the III-B drive family (lower left in
Figure 3), where low-WAF drives are 6.18× more likely to
fail than average. Fortunately, we discover that these low-
WAF drives usually occupy only a small proportion (e.g., only
0.09% in III-B). Even for I-A-3840 (i.e., having an average
WAF of 0.84), we argue that low-WAF drives can be easily
singled out with simple SMART attributes calculation for
close monitoring or reallocation.
Validity analysis. Many factors (e.g., workloads, age, wear,
and drive model) can influence both the WAF and reliability.
To verify our finding, we further conduct a series of experi-
ments by controlling the above variables (not shown due to
space limitations). Our evaluation further confirms that none
of the factors influences our finding. Therefore, we conclude
that, in NVMe SSD, while the low WAF may still be deadly,
the high WAF is no longer concerning.

4.3 Intra-node/rack Failures

Finding 3. Spatially correlated (intra-node/rack) NVMe SSD
failures are temporally correlated in the long-term span (i.e.,
1 day to 1 month), but no longer prevalent in the short span.
Existing patterns. Correlated drive failures are notorious
for their cascading impact on the reliability of the entire dis-
tributed system (e.g., reduced redundancy) [2,15]. According
to a previous study in Alibaba (i.e., Finding 5 of [19]), a
non-negligible proportion (i.e., up to 34.3% and 44.2%) of
SATA SSD spatial-correlated (intra-node/rack) failures can
also be temporal-correlated within a short span (i.e., at most
one minute apart), posing a critical challenge to the overall
stability.
Difference in NVMe SSD. To study whether such a corre-
lated pattern still plagues the NVMe SSD fleet, we further
check the intra-node/rack failure time intervals in our datasets.
Here, to be consistent with the previous study [19], we reuse
the Relative Percentage of Failures (RPF) to calculate the
likelihood of correlated failures. In RPF, the numerator is the
number of the sets of failures that occur between a specific
period (e.g., 0 to 1 minute). The denominator is the sum of
all failures of a particular drive model. Note that, in RPF,
the same failure can be counted repeatedly as a member of

1010    2022 USENIX Annual Technical Conference USENIX Association



Failure time interval
(0,1min]

(1min,30min]

(30min,1day]

(1day,1wk]

(1wk,2wk]

(2wk,1month]

Intra-node

0

10

20

30

40

50

60

70

80

I-A
2000

I-B
1600

I-B
3200

II-A
1920

II-B
1600

II-C
1920

II-C
4000

II-D
1920

II-D
3840

III-A
3200

III-B
1900

III-B
3800

R
e

la
tiv

e
 p

e
rc

e
n

ta
g

e
 o

f f
a

il
u

re
s
 (

%
)

Intra-rack

0

10

20

30

40

50

60

70

80

I-A
2000

I-B
1600

I-B
3200

II-A
1920

II-B
1600

II-C
1920

II-C
4000

II-D
1920

II-D
3840

III-A
3200

III-B
1900

III-B
3800

R
e

la
tiv

e
 p

e
rc

e
n

ta
g

e
 o

f f
a

il
u

re
s
 (

%
)

Figure 4: Intra-node/rack failure distributions across
drive models (§4.3). The figures present relative percent-
age of intra-node and intra-rack failures for each drive model.
Note that stacked bars can reach above 100% because failures
could be counted multiple times into different buckets.

different correlated failures sets. For example, consider three
failures, say A, B, and C, all occur within one minute inside
the same node. Then there are three sets of correlated failures
(i.e., [A,B], [B,C], and [A,C]), thus yielding an RPF of 100%.

In Table 4, we list the RPF from the previous study (i.e.,
SATA SSD column) and ours (i.e., NVMe SSD column).
We make the following observations. First, the accumulated
RPFs (i.e., Total row) across all NVMe drive models are
substantially higher, with an increase up to 14.69× and 1.78×
for intra-node and intra-rack scenarios, respectively. The
corresponding t-tests return p-values equal to 6.322e-06 and
1.881e-04.

Second, unlike SATA SSD (mostly correlated during short
intervals), correlated failures in NVMe SSD are commonly
observed only in long intervals (i.e., 1 day to 1 month). Here,
we use Figure 4 to demonstrate further the distribution of cor-
related failure intervals among different models on a weekly
breakdown of the long intervals (i.e., 1 day to 1 month). In
Figure 4, the upper graph shows the distribution of intra-node
intervals, and the lower graph shows the intra-rack ones. We
denote each interval with a different color (e.g., darkest for
the shortest interval). Figure 4 shows the prevalence of long
intervals (i.e., the three lightest/top boxes in each bar) in cor-
related failures. Conversely, short and medium ones (i.e.,
the three darkest/bottom boxes) on average occupy less than
17.86% (within 1 minute), 15.48% (1-30 min), and 16.25%
(30 min to 1 day) of the total RPF.

Validity analysis. Each rack in our setup hosts hundreds
of drives. Under such a considerable number, uniformly
distributed failures may also co-occur within a rack. To ver-
ify that intra-node/rack failures are indeed a result of non-
uniformity, we perform a set of hypothetical experiments
where drive failures are redistributed to be uncorrelated (i.e.,
independent of location and arrival time). First, for each drive
model, we sample without replacement to get a new batch of
drives and mark them as “failed” drives. Second, we assign a
random timestamp from 2019-11-04 to 2020-11-02 to each
“failed” drive as its failure time (see Table 1). For a fair analy-
sis, we repeat the above procedures 2,000 times and calculate
the average RPFs of intra-node/rack failures for each drive
model.

In Table 4, we compare the intra-node/rack failure distribu-
tions of hypothetical experiments (i.e., Hypo. column) with
those of the original setting (i.e., NVMe SSD column). Our
observations are as follows. First, intra-node failures under
the hypothetical setting are nearly negligible. For example,
the accumulated RPFs (i.e., Total row) of intra-node failures
are only 0.04-9.0% under the hypothetical setting, whereas
those from the original setting (70.6-96.6%) are much smaller
(the p-value is less than 2.2e-16). Second, even though intra-
rack failures are non-negligible under the hypothetical set-
ting, their RPFs are consistently smaller than those from the
original setting, e.g., with accumulated RPFs of 27.8-77.4%
vs. 79.4-97.6% (the p-value is equal to 1.119e-08). Therefore,
the non-uniformity in intra-node/rack failures is significant in
our dataset in contrast with the hypothetical setting.
Operational advice. While the decline of closely correlated
failures implies a lower risk of experiencing system-wise
failures, the surging of long-interval correlated failures still
poses a pressing threat. An inconvenient fact is that fixing
drive failure usually starts with software-based approaches
(e.g., data scrubbing and fsck), and such online checking
and repairing takes time [16, 33, 47]. In fact, we discover
that 43.90%, 14.36%, and 10.90% of the failed drives in our
clusters are repaired after one day, one week, and two weeks.
Based on our finding, we have refined our operational process
by directly putting drives offline upon failures to reduce the
chances of suffering long-term correlated failures.

5 The Fail-slow
Apart from the common fail-stop failures, we are also inter-
ested in fail-slow failures where drives exhibit performance
much less than expected (e.g., considerably high latency un-
der normal traffic). We hypothesize that the ultra-low latency
nature of NVMe SSD would make the drive more susceptible
to fail-slow failures. To verify our assumption, we conducted
an extensive study based on the per drive iostat traces from
more than half a million NVMe SSDs and more than 4 million
HDDs during four-month monitoring.

Note that our storage system requires all replicas (three
replicas in most cases) ACKed before any write request is

USENIX Association 2022 USENIX Annual Technical Conference    1011



Model Lith. Slow Event Dur. Event Slow- Slow Event Dur. Event Slow-
/Layer Drive Freq. (min) Laten. down Drive Freq. (min) Laten. down
/Type (%) (us) Ratio (%) (us) Ratio

5min 15min
I-A-2000 15nm 4.44% 225.06 18.98 195.60 2.39 3.65% 118.01 38.44 200.20 2.39
II-A-1920 20nm 1.25% 24.22 8.60 152.77 1.94 0.57% 8.70 20.36 148.96 1.80
II-C-1920 32L 0.52% 23.50 19.31 263.31 2.19 0.37% 11.84 39.67 256.58 2.19
II-C-4000 32L 0.06% 1.59 8.41 180.67 2.04 0.05% 0.66 21.16 175.62 2.03
II-D-1920 64L 0.17% 4.52 22.00 34.98 2.30 0.12% 2.30 42.59 36.22 2.35
II-D-3840 64L 0.48% 14.08 12.00 152.63 5.87 0.31% 5.99 27.08 122.35 4.48
III-B-1900 48L 3.04% 46.75 9.43 54.67 2.19 1.55% 12.82 24.69 56.68 2.22
III-B-3800 48L 1.31% 44.28 13.51 360.59 6.33 1.05% 20.89 30.39 244.74 4.29
Average - 1.41% 48.00 14.03 174.40 3.16 0.96% 22.65 30.55 155.17 2.72
H1 CMR 0.32% 4.53 8.56 47370.67 2.18 0.09% 1.15 23.97 55120.74 2.33
H2 CMR 0.24% 2.30 6.92 12355.12 2.04 0.03% 0.32 21.20 14796.03 2.38
H3 CMR 0.04% 0.51 11.72 1962.49 3.01 0.03% 0.36 28.49 2041.27 3.39
Average - 0.20% 2.45 9.07 20562.76 2.41 0.05% 0.61 24.55 23986.01 2.70

30min 60min
I-A-2000 15nm 3.19% 70.46 60.50 207.18 2.38 2.49% 32.95 97.33 203.25 2.24
II-A-1920 20nm 0.45% 3.03 34.53 143.81 1.81 0.11% 0.38 60.25 147.45 1.79
II-C-1920 32L 0.36% 7.63 60.82 263.97 2.18 0.32% 3.61 100.04 272.49 2.14
II-C-4000 32L 0.03% 0.28 39.85 176.39 2.03 0.01% 0.03 97.88 182.67 2.20
II-D-1920 64L 0.08% 1.26 61.72 37.57 2.40 0.04% 0.52 92.95 39.62 2.49
II-D-3840 64L 0.23% 2.60 47.63 132.95 4.31 0.13% 0.85 86.96 128.33 3.62
III-B-1900 48L 0.75% 4.74 48.27 61.94 2.35 0.40% 1.96 86.63 74.55 2.70
III-B-3800 48L 0.91% 11.18 49.53 248.33 4.18 0.63% 4.14 84.23 148.26 2.32
Average - 0.75% 12.65 50.36 159.02 2.71 0.52% 5.56 88.28 149.58 2.44
H1 CMR 0.04% 0.41 44.79 58673.31 2.43 0.02% 0.11 83.36 62272.65 2.50
H2 CMR 0.01% 0.10 39.86 15496.51 2.55 <0.01% 0.02 98.31 20991.78 3.66
H3 CMR 0.03% 0.21 53.05 2937.19 3.66 0.02% 0.11 96.27 3187.88 5.09
Average - 0.03% 0.24 45.90 25702.34 2.88 0.01% 0.08 92.65 28817.44 3.75

Table 5: Baseline statistics for fail-slow (§5.1-§5.2). The table shows the summarized statistics of fail-slow occurrences under
the 5-min to 60-min duration requirements. Lith./Layer/Type: lithography, numbers of stacking layers or HDD type; Event
Freq.: fail-slow event frequency per 1K drives per hour; Dur.: average event duration in minutes; Event Laten.: average event
latency in µs. Note that the SSDs and HDDs under heavy traffic are not included (see §5.1).

returned, while only one ACKed for each read request. Thus,
fail-slow failures are more likely to impact the write perfor-
mance than the read. Such a phenomenon agrees with most
known fail-slow cases in practice. Throughout this section,
we focus on the write latency where fail-slow failure can be
more destructive.

5.1 Identifying Fail-slow Events and Drives

Currently, a subset of our clusters is equipped with daemons
to monitor the iostat of the deployed drives. Due to capac-
ity limits and performance concerns, the daemon runs 3 hours
(9 P.M. to 12 A.M.) each day. It only records the average
statistics of each monitoring window (15 seconds in the cur-
rent setup), thereby yielding 720 records per drive (3 hours
divided by 15 seconds) each day.
Methodology overview. We use the following threshold-
based approach to identify fail-slow drives (similar to a previ-
ous study on SATA SSD and HDD tail latency [21]). The first
step is to select suspicious drives with high latencies. Then,

we determine whether the chosen drives are indeed fail-slow
by checking the existence of consistent slowdowns.
Identifying suspicious fail-slow drives. In the first step,
we observe that the performance (e.g., latency, IOPS, and
throughput) records within a cluster generally follow a Pos-
itively Skewed Distribution. For example, in one cluster,
the median latency is only 49.19µs while the average la-
tency is 667.85µs. Thus, we can use a latency threshold as
(−∞,3rd_quartile+2IQR) to identify the outliers (i.e., slow
drives) [39] where the IQR (interquartile range) is computed
by subtracting the first quartile from the third quartile.

If the 3-hour median latency of a drive is beyond the bar, we
mark this drive as a suspicious slow drive. To avoid reporting
led by heavy traffic (i.e., false-positive), we also rule out high-
latency drives under heavy traffic (i.e., IOPS/throughput is
also beyond 3rd_quartile+2IQR).
Identifying slowdown events. Note that a suspicious drive
may be marked due to transient but time-consuming events
(e.g., read retries, unstable connection). Therefore, we further

1012    2022 USENIX Annual Technical Conference USENIX Association



check whether a suspicious drive has experienced a consis-
tent slowdown event to pinpoint the fail-slow drives. Here,
we borrow the idea of measuring slowdown events from a
previous SSD performance study [21].

First, we mark the 3-hour iostat latency records from the
suspicious slow drive and its 11 intra-node peers (12 drives
per node) as Lk

i , representing the record i (i ∈ {1,2, ...,720})
from drive k (k ∈ {1,2, ...,12}) . Then, we use RLk

i (Relative
Latency) to indicate the slowdown degree of drive k at record

i, formally RLk
i =

Lk
i

median(L1
i ,L

2
i ,...,L

12
i )

. Then, we formulate an

event as Ek
i, j by computing the means of RLs of drive k from

record i to j, formally Ek
i, j = mean(RLk

i ,RLk
i+1, ...,RLk

j).
For an Ek

i, j to be considered a fail-slow event, it must sat-
isfy two requirements. First, Ek

i, j needs to be larger than an
empirical slowdown degree. We set the slowdown degree as
2 (same in [21]), meaning that, during the event, the victim
drive is at least twice slower than its peers. Second, we set
four minimum spans as 5, 15, 30 and 60 minutes, meaning
the Ek

i, j should last longer than 20, 60, 120 or 240 records (a
record spans 15 seconds).

To sum up, a drive (i.e., NVMe SSD or HDD) is deemed
fail-slow if and only if it has a high median latency (i.e.,
higher than top 0.04% latency variances in the cluster during
3-hour monitoring) and suffers at least one fail-slow event.

5.2 Dataset and High Level Observations
5.2.1 Dataset Overview
In total, we have identified around 5K and 3K fail-slow NVMe
SSDs and HDDs, respectively. Table 5 gives an overview of
the fail-slow drives and events among the fleets. We use four
quadrants to represent the statistics under different require-
ments (i.e., 5 to 60 min). The upper half of each quadrant
includes 8 major NVMe SSD models (named as brand-model-
capacity), while the lower includes the three most popular
HDD models (H1, H2, and H3) in our clusters.

For each column, we begin by listing the lithography (for
planar NAND), layers (for 3D-NAND), or the type (for HDD,
i.e., CMR or SMR). Further, we show the percentage of drives
that have been identified as fail-slow ones in that model (Slow
Drive%). The Event Freq. describes the numbers of events
per 1000 drives per hour, reflecting the fail-slow severity in a
mid-sized cluster. The following two columns (Duration and
Event Latency) show the average fail-slow event duration and
average event latency. The final column (Slowdown Ratio) is
the ratio of average event latency to average latency of peer
drives (i.e., healthy drives from the same node) during the
event. The last row of each sub-quadrant is the average value
for each category (i.e., SSD or HDD).

5.2.2 SSD vs. HDD
Finding 4. Compared to HDD, fail-slow failure in NVMe
SSD is much more widespread and frequent, and can degrade
the drive to SATA SSD or even HDD level performance.

We start with the differences between NVMe SSDs and
HDDs. First, we observe the disparity between HDD and
SSD in slow drive popularity (i.e., Slow Drive %). Compar-
ing the average row in each quadrant reveals that slow drives
are 6.05× (i.e., 1.41% to 0.20% in the 5-min quadrant) to
51× (0.52% to 0.01% in the 60-min quadrant) more common
in SSDs. Similarly, we also observe that the fail-slow occur-
rences (i.e., Event Freq.) are much more frequent in SSDs,
ranging from 18.59× (5-min) to 68.50× (60-min).

Regarding the event duration, the difference varies. On
average, the SSD event lasts up to 55% longer in the first
three quadrants, but the trend reverses as the HDD event costs
5% more time in the 60-min quadrant. This indicates that
fail-slow events in NVMe SSD are relatively short-termed.

Moreover, while models like II-D-1920 and III-B-1900 still
deliver relatively satisfying performance, fail-slow NVMe
SSDs usually degrade to SATA-SSD-level latency (i.e., hav-
ing an average event latency around 160µs, see average rows
of event latency from 5-min to 60-min). Even worse, our eval-
uation shows that the top 1% slowest events in several NVMe
SSD models deteriorate to an average latency of around 22ms,
an unsatisfying performance even for HDD.

The comparisons of slow drive popularity, event fre-
quency, and performance prove that the NVMe SSD is indeed
widely plagued (1.41% affected under 5-min requirement)
and severely impacted (∼ 160µs average event latency) by
fail-slow failure. Recall that the dataset comes from only three
hours of monitoring per day for four months. Plus, all of our
models are enterprise-level, and we have already excluded
SSDs under heavy traffic. Therefore, we expect the annual
fail-slow drive rate to be higher and fail-slow occurrences
more frequent in the field.
Operational advice. Experiencing widespread and severe
fail-slow faults can be particularly harmful to NVMe SSDs
as performance-sensitive jobs are usually placed on them.
However, simply putting all fail-slow drives offline can be
unacceptably expensive. Recently, we have been experiment-
ing with a “three strikes” approach to tackle the suspiciously
slow drives. Specifically, the first time a drive is diagnosed
with fail-slow failure, we would clean the drive’s data and
deploy it again as a new drive. In the second time, we would
fully flush the drive with zeroes, reformat and redeploy it.
A third timer would be directly put offline for replacement.
Unfortunately, we have just deployed this strategy and do not
have enough samples for analysis.
Root cause. We have sent 100 slowest SSDs (around the top
2% of the identified slow drives with an average event latency
of 4.4 ms) back to vendors for repair. The results show that
33 of them have bad capacitors, causing the malfunctioning
buffer and thus the high latency. 46 of them contain bad chips
and the root causes of the rest remain unclear.

5.2.3 Differences between SSD models.

Finding 5. The manufacturer is a dominant factor of fail-slow

USENIX Association 2022 USENIX Annual Technical Conference    1013



I-A-2000

0.00

0.25

0.50

0.75

1.00

1 2 5 10 50
Event reoccurence

5-min
15-min
30-min
60-min

II-D-3840

0.00

0.25

0.50

0.75

1.00

1 2 5 10 50
Event reoccurence

5-min
15-min
30-min
60-min

Figure 5: CDF of fail-slow event reoccurrence (§5.2). The
figures present the distribution of event reoccurrence for two
models under four duration requirements.

drive population in NVMe SSD.
Now, we dig deeper by focusing on the fail-slow distribu-

tion differences between SSD models. First, we look at the
influences of the manufacturers. Our dataset includes three
manufacturers (i.e., I, II, and III). For slow drive percentage,
there is a clear order (i.e., manufacturer I followed by III and
II) across the four quadrants. Even the highest value of III
(e.g., 3.04% of III-B-1900 in 5-min quadrant) is well behind
that of the I’s model (i.e., 4.44% of I-A-2000), which also
applies to the comparison between III and II. However, we
do not observe visible patterns for the event duration, event
latency, and slowdown ratio.
Finding 6. Higher fail-slow drive popularity does not always
lead to a higher fail-slow event frequency.

Moreover, we notice a seemingly counter-intuitive pattern.
One may assume a higher fail-slow drive percentage leads
to a higher event frequency. While this hypothesis holds in
the longest duration requirement (60-min quadrant), we find
many counter-examples among shorter ones (e.g., II-A-1920
and II-C-1920 in 5-min quadrant).

A possible explanation is that under a shorter duration re-
quirement, there are more drives with multiple events, result-
ing in a small slow drive percentage with high event frequency.
Here, we further verify this assumption by using Figure 5,
a CDF of events per drive under different duration require-
ments. We can clearly see that drives under shorter durations
accumulate more events than those under longer durations.

5.3 Correlating Factors
In this section, we conduct an extensive study on fail-slow fail-
ures versus various correlating factors (i.e., drive age, work-
load and SMART attributes).

5.3.1 Drive Age

Finding 7. Fail-slow drive population and event frequency
are strongly correlated with age, but only for old (power-on
time > 41 months) NVMe SSDs.

Age is widely known for its significant impact on SSD
fail-stop failures [34, 35, 41]. We correlate fail-slow metrics
with drive power-on time to see the significance of age here.

We first place all fail-slow drives into monthly buckets

5-min

0.0

2.5

5.0

7.5

10.0

1 6 11 16 21 26 31 36 41 46

Month

F
a

il-
s
lo

w
 d

ri
v
e

 (
%

) 60-min

0.0

0.5

1.0

1.5

2.0

2.5

1 6 11 16 21 26 31 36 41 46

Month

F
a

il-
s
lo

w
 d

ri
v
e

 (
%

)

Figure 6: Fail-slow drive percentage across time (§5.3.1).
The figures show the percentage of fail-slow drives per month
under the 5-min and 60-min duration requirements. The
dashed line indicates the average value within each figure.

(e.g., bucket-1 includes fail-slow drives with power-on time
between 0 to 1 month). Note that for a drive with multiple
event occurrences (e.g., fail-slow events in both 34th and
35th months), we put the drive to the earliest bucket (i.e.,
34th-month bucket). Then we calculate the fail-slow drive
percentage for each bucket by dividing the numbers of fail-
slow drives against the numbers of drives of the same age.

Figure 6 demonstrates the population variances along time
under the 5-min (left) and the 60-min (right) requirements
where the horizontal dashed line is the average. We can see
that the population, in both scenarios, oscillates around the
average value at first and then start to surge in the final months.
Further, a Spearman’s Rank Correlation Coefficient (SRCC)
test [44] reveals that the fail-slow population in old drives (>41
months) is highly correlated with age. Specifically, in the 5-
min requirement, the SRCC score for old drives is around 0.92
(way beyond the common threshold for positive correlation,
i.e., 0.5). In contrast, the scores from the rest (i.e., younger
drives) are close to 0, meaning no correlation. Similar trend
exists under 15-min, 30-min, and 60-min requirements.

Next, we adopt similar approaches to measure the correla-
tion between age and other metrics, including event frequency,
event duration, and slowdown ratio. We find that the event
frequency is similar to the fail-slow population where old
drives (i.e., > 41 months) are strongly correlated with age
while young drives are not. We do not observe a notable
correlation for duration and slowdown ratio, indicating that
both metrics remain rather stable throughout the lifecycle.

5.3.2 Workload

Finding 8. The workload can significantly affect various fail-
slow characteristics, and heavy traffic workload may have
long-lasting impacts on fail-slow occurrences.

Workload is also a well-known impact factor on the SATA
SSD fail-stop failures [1, 24, 36, 41, 47]. The key difference
between workloads is the I/O pattern. Therefore, we evalu-
ate the impacts of workloads by studying four representative
cloud storage services with drastically different access pat-
terns, namely block storage, buffering, object storage, and
query.

1014    2022 USENIX Annual Technical Conference USENIX Association



G Age-Wr Wl. Slow Event Dur. Slow-
Drive Freq. (min) down
(%) Ratio

II-D-3840

1 3rd-2nd
Block 0.02 0.23 9.81 1.99
Buffer 39.17 1318.51 11.85 2.28
Query 0.08 2.31 6.83 3.01

2 3rd-3rd
Block 0.01 1.84 19.60 2.15
Buffer 13.86 466.00 13.38 2.22

III-B-3800

3 2nd-1st
Block 0.03 0.65 15.29 152.59
Object 5.86 1187.69 26.67 12.41

4 2nd-2nd
Block 0.01 0.15 7.04 2.06
Buffer 36.88 1196.75 12.00 2.30

5 3rd-2nd
Block 0.71 12.76 10.09 64.91
Buffer 10.18 608.78 20.24 2.39

Table 6: Fail-slow statistics for groups of workloads
(§5.3.2). The table presents fail-slow metrics under differ-
ent workloads with control variables on the drive model, age,
and P/E cycle (total bytes written divided by capacity) under
5-min duration requirement. G: variable-controlling group;
Age-Wr: age-write bucket; Wl.: workload; “Slow Drive (%)”
to “Slow-down Ratio” follow the same metrics in Table 5.

As factors like age and manufacturers could severely in-
fluence the fail-slow failures, we thus conduct this study in
a finer granularity by setting multiple variable-controlling
groups. In Table 6, based on the fail-slow metrics under 5-
min duration requirement, we group the drives (G column)
by drive model, age, and P/E cycle (total bytes written di-
vided by capacity). We choose two drive models, II-D-3840
(upper half) and III-B-3800 (lower half), as they are from
different manufacturers and both popular among different
services. Then, we control other variables as Age-Wr (age
and P/E cycle). The age is listed by years and the P/E cycle is
broken down into 4 intervals (i.e., ≤100, 100∼500, 500∼1K,
and 1K∼10K P/E cycles, respectively). For example, the
3rd-2nd from group 1 means the drives from this group have
a deployment time between 2 to 3 years and a usage level be-
tween 100 to 500 P/E cycles. For each group, we further list
the workload (Wl. column) and the corresponding fail-slow
metrics (“Slow Drive (%)” to “Slow-down Ratio” column,
same as Table 5).

Here, we make the following observations. First, by com-
paring the metrics within each group, we can see that the
workload can significantly affect all four fail-slow metrics.
For instance, in groups 1 and 2, the fail-slow population
and event frequency of buffering workload can be thousands
of times higher than those in block storage (e.g., 39.17%
vs. 0.02% in group 1). Similar disparities in event duration
and slowdown ratio can be observed between block and object
storage in group 3, or between block storage and buffering in
group 5.

Second, the patterns can preserve despite model, age, or

P/E cycle variances. For example, by comparing groups 2 and
5, while the groups are of different models and usage levels,
the buffering workload in both groups has a much higher slow
drive percentage and event frequency.

To sum up, the above experiments verify the significant
influences of workloads on fail-slow failure. Primarily, we
discover that fail-slow failure favors the buffering workload
the most. In practice, the drives under the buffering workload
usually have constantly heavy traffic (e.g., storing intermedi-
ate results of big data workload). Recall that we have already
excluded SSDs under heavy traffic from consideration. There-
fore, a possible explanation is that the heavy traffic may have a
long-lasting effect (e.g., leaving data more scattered), making
the drive more susceptible to fail-slow failure.

5.3.3 SMART Attributes

Finding 9. SMART attributes only exhibit negligible correla-
tion with fail-slow metrics.

Now, we analyze whether SMART attributes (an essential
set of indicators for fail-stop failures) correlate with fail-slow
failures. We collect SMART data on the last day of our
four-month fail-slow detection period. Further, we divide
drives into groups based on drive model, age, P/E cycle, and
workload. Within each group, we label drives as either “slow”
or “not-slow”. Finally, we apply SRCC [44] to examine the
correlation between fail-slow failures and SMART attributes.

Under the 5-min duration requirement, we obtain 40 groups
of drives. None of them exhibit a clear correlation with any
SMART attributes, such as Critical Warning, P/E Error, and
CRC Error. The above results preserve under 15-min, 30-min
and 60-min duration requirements. Even if we set drives
with multiple fail-slow events as “slow”, the results remain.
Hence, we conclude that the root causes and/or the symptoms
of fail-slow failures are not (well) captured by the SMART.
Operational advice. In this case, we decide not to integrate
SMART attributes to improve the fail-slow detection. Cur-
rently, we have been exploring various approaches. The major
hurdle is the lack of verified positive samples (i.e., fail-slow
drives) due to the lack of a fail-slow oracle. Therefore, based
on the performance, we tried classic statistical methods and
discovered that basic linear or polynomial regression is not
very practical as they require constant adjustment for the
varying traffic (even within the same workload). We leave
employing machine learning models as a part of our future
work once the “three strikes” yields convincing and abun-
dant cases. Also, we encourage manufacturers to reveal drive
characteristics (e.g., flash GC timing) to facilitate fail-slow
identification.

5.4 Transition to Failures
Finding 10. The transition from fail-slow to fail-stop failures
is rarely observed, at least not observed within a short time
interval (within 5 months).

Previous case studies indicate that a fail-slow failure may

USENIX Association 2022 USENIX Annual Technical Conference    1015



Not-replaced Replaced Total

Not-slow
98.84% 0.57% 99.41%

(770965) (4429) (775394)

Slow
0.59% <0.01% 0.59%
(4574) (10) (4584)

Total
99.43% 0.57% 100%

(775539) (4439) (779978)

Table 7: Transition from fail-slow to fail-stop failures
(§5.4). The table presents a contingency table of fail-slow
and failed (later in time) drives for NVMe SSDs under the
5-min duration requirement.

turn into a fail-stop failure [17]. Therefore, we collect up-
to-date failure tickets ever since the beginning date of our
detection period. The latest failure tickets are about 5 months
older than the last recorded fail-slow event.

Table 7 is a sample contingency table recording the fre-
quency counts of drives based on 2 categories: appearing in
the failure tickets (Replaced column) or not (Not-replaced
column) and having at least one fail-slow event (Slow row)
or not (Not-slow row). The result is rather surprising as only
10 drives exhibit fail-slow failures before fail-stop failures,
yielding a relatively small population in both slow (around
0.22%) and replaced (around 0.23%) drives. The mean and
median transition time are 73 and 67 days, respectively. A
possible reason is that fail-slow seldom or may need a long
time to transit to a fail-stop failure. Therefore, we conclude
the fail-slow failures are unlikely to transit to fail-stop failures,
at least not within a few months.

6 Limitation
Environmental differences. The main methodology of this
paper is to draw side-by-side comparisons with previous find-
ings. The environmental differences (e.g., workload and hard-
ware setup) may impact the validity of our findings. There-
fore, throughout the study, we use controlled-variable experi-
ments to rule out the biases led by such influences and only
make findings when statistical confidence is enough. Plus,
many previous studies share great similarities with our setups
(i.e., cloud storage systems from [19, 35, 36, 47]) and work-
loads (e.g., object storage in [19, 36, 47] and database storage
in [36, 47]). Hence, our findings are a result of the NVMe
SSD characteristics instead of the environmental factors.
Comprehensiveness. Previous studies have covered various
aspects of SATA SSD failures. Due to the space limit, we are
unable to present all of them. In the paper, we do not discuss
the topics due to three reasons: missing data sources (e.g., bus
power consumption [35]), statistically unconvincing results
(e.g., lithography [34]), and unchanged failure patterns.
Fail-slow detection. Unlike fail-stop failures where the or-
acle is clear (i.e., the five symptoms in Table 3), fail-slow
failures are often difficult to pinpoint and thus rely on empiri-
cal thresholds. In the study, we place a rather strict threshold

and drives under heavy traffic are not considered. The average
event latency (close to SATA SSD performance), shown in
Table 5, confirms the effectiveness of our detection approach.
Even though we may underestimate the impacts of fail-slow
occurrences due to the demanding standards, we believe our
dataset and findings are sufficient to reveal a rather concerning
status quo of fail-slow NVMe SSD in the field.

7 Related Work
SATA/SAS SSD failure study. There are several field studies
of SSD failures in large datacenters, including NetApp [34],
Google [4, 41], Alibaba [19, 47], Facebook [35], and Mi-
crosoft [36]. These studies share important insights regarding
the trend, impacting factors, and correlation of the SATA/SAS
SSD failures in the field. Our study distinguishes from them
in two aspects. First, we focus on NVMe SSD, which can
have distinctive failure characteristics due to internal (e.g.,
RAIN) and external (e.g., NVMe interface) changes. Sec-
ond, apart from fail-stop failures, we also study the fail-slow
failures, a pressing issue especially for the NVMe SSD.
Fail-slow failure study. Fail-slow failure (aka. gray failure)
has attracted increasing attention from academia and indus-
try [13, 17, 21, 22, 25, 26, 37]. Specifically, Gunawi et al. [17]
collect more than 100 hardware fail-slow cases from various
datacenters and perform qualitative analysis to understand
the distribution and root causes behind the failures. More-
over, Hao et al. [21] reveal the distribution of tail latency in
large-scale SSD/HDD-based RAID systems. Our work is dif-
ferent from the above as we focus on NVMe SSDs inside the
general-purpose cloud storage system and perform large-scale
quantitative analysis based on the monitoring data.

8 Conclusion
We perform a large-scale failure study of NVMe SSDs in
the field. We have identified major changes of NVMe SSD
fail-stop failure patterns including failures, robustness under
WAF and the temporal correlation. Also, we investigate the
fail-slow failures and the impact factors at scale. Altogether,
we obtain 10 findings and open-source our dataset.

Acknowledgements
We would like to thank our shepherd and the anonymous re-
viewers for their insightful comments and suggestions. This
research was supported by NSFC (62102424, 61872376,
U1736207, 62072306), the Alibaba Innovation Research
(AIR) program, National Key R&D Program of China
(2018YFB2101102), Program of Hunan Postdoc Innovation
(2021RC2069), and Program of Shanghai Academic Research
Leader (20XD1402100). The authors thank Ryan Huang, En-
nan Zhai, Shiming Wang, and Amber Bi for their feedbacks
on early versions of this paper.

1016    2022 USENIX Annual Technical Conference USENIX Association



References
[1] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber,

John D. Davis, Mark Manasse, and Rina Panigrahy.
Design Tradeoffs for SSD Performance. In Proceed-
ings of the 2008 USENIX Annual Technical Conference
(USENIX ATC), 2008.

[2] Ramnatthan Alagappan, Aishwarya Ganesan, Yuvraj
Patel, Thanumalayan Sankaranarayana Pillai, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Corre-
lated Crash Vulnerabilities. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016.

[3] Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta,
and Samer Al-Kiswany. An Analysis of Network-
Partitioning Failures in Cloud Systems. In Proceedings
of the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2018.

[4] Jacob Alter, Ji Xue, Alma Dimnaku, and Evgenia
Smirni. SSD Failures in the Field: Symptoms, Causes,
and Prediction Models. In Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2019.

[5] Lakshmi N. Bairavasundaram, Andrea C. Arpaci-
Dusseau, Remzi H. Arpaci-Dusseau, Garth R. Goodson,
and Bianca Schroeder. An Analysis of Data Corruption
in the Storage Stack. In Proceedings of the 6th USENIX
Conference on File and Storage Technologies (FAST),
2008.

[6] Lakshmi N. Bairavasundaram, Garth R. Goodson,
Shankar Pasupathy, and Jiri Schindler. An Analysis of
Latent Sector Errors in Disk Drives. In Proceedings of
the 2007 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems,
2007.

[7] Lakshmi N. Bairavasundaram, Meenali Rungta, Nitin
Agrawa, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, and Michael M. Swift. Analyzing the Effects
of Disk-pointer Corruption. In Proceedings of the 38th
Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN), 2008.

[8] Matias Bjørling, Abutalib Aghayev, Hans Holmberg,
Aravind Ramesh, Damien Le Moal, Gregory R. Ganger,
and George Amvrosiadis. ZNS: Avoiding the Block In-
terface Tax for Flash-based SSDs. In Proceedings of the
2021 USENIX Annual Technical Conference (USENIX
ATC), 2021.

[9] Feng Chen, Tian Luo, and Xiaodong Zhang. CAFTL: A
Content-Aware Flash Translation Layer Enhancing the
Lifespan of Flash Memory based Solid State Drives. In
Proceedings of the 9th USENIX Conference on File and
Storage Technologies (FAST), 2011.

[10] Brian Choi, Randal Burns, and Peng Huang. Under-
standing and Dealing with Hard Faults in Persistent
Memory Systems. In Proceedings of the 16th European
Conference on Computer Systems (EuroSys), 2021.

[11] Kingston Technology Corporation. SMART Attribute
Details. https://media.kingston.com/support/
downloads/MKP_306_SMART_attribute.pdf,
2015.

[12] Thomas DiCiccio and Bradley Efron. Bootstrap confi-
dence intervals. Statistical science, 1996.

[13] Thanh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa,
Tiratat Patana-anake, and Haryadi S. Gunawi. Limplock:
Understanding the Impact of Limpware on Scale-out
Cloud Systems. In Proceedings of the 4th Annual Sym-
posium on Cloud Computing (SoCC), 2013.

[14] Daniel Ford, François Labelle, Florentina I. Popovici,
Murray Stokely, Van-Anh Truong, Luiz Barroso, Carrie
Grimes, and Sean Quinlan. Availability in Globally
Distributed Storage Systems. In Proceedings of the 9th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2010.

[15] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Re-
dundancy Does Not Imply Fault Tolerance: Analysis
of Distributed Storage Reactions to Single Errors and
Corruptions. In Proceedings of the 15th USENIX Con-
ference on File and Storage Technologies (FAST), 2017.

[16] Om Rameshwar Gatla, Muhammad Hameed, Mai
Zheng, Viacheslav Dubeyko, Adam Manzanares, Filip
Blagojević, Cyril Guyot, and Robert Mateescu. Towards
Robust File System Checkers. In Proceedings of the
16th USENIX Conference on File and Storage Technolo-
gies (FAST), 2018.

[17] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears,
Casey Golliher, Swaminathan Sundararaman, Xing Lin,
Tim Emami, Weiguang Sheng, Nematollah Bidokhti,
Caitie McCaffrey, Gary Grider, Parks M. Fields, Kevin
Harms, Robert B. Ross, Andree Jacobson, Robert Ricci,
Kirk Webb, Peter Alvaro, H. Birali Runesha, Mingzhe
Hao, and Huaicheng Li. Fail-Slow at Scale: Evidence of
Hardware Performance Faults in Large Production Sys-
tems. In Proceedings of the 16th USENIX Conference
on File and Storage Technologies (FAST), 2018.

[18] Kyuhwa Han, Hyunho Gwak, Dongkun Shin, and Jooy-
oung Hwang. ZNS+: Advanced Zoned Namespace
Interface for Supporting In-Storage Zone Compaction.
In Proceedings of the 15th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
2021.

[19] Shujie Han, Patrick P. C. Lee, Fan Xu, Yi Liu, Cheng He,
and Jiongzhou Liu. An In-Depth Study of Correlated

USENIX Association 2022 USENIX Annual Technical Conference    1017

https://media.kingston.com/support/downloads/MKP_306_SMART_attribute.pdf
https://media.kingston.com/support/downloads/MKP_306_SMART_attribute.pdf


Failures in Production SSD-Based Data Centers. In
Proceedings of the 19th USENIX Conference on File
and Storage Technologies (FAST), 2021.

[20] Jonmichael Hands. How SSDs Fail – NVMe™
SSD Management, Error Reporting, and Logging
Capabilities. https://nvmexpress.org/how-ssds-
fail-nvme-ssd-management-error-reporting-
and-logging-capabilities/, 2020.

[21] Mingzhe Hao, Gokul Soundararajan, Deepak
Kenchammana-Hosekote, Andrew A. Chien, and
Haryadi S. Gunawi. The Tail at Store: A Revelation
from Millions of Hours of Disk and SSD Deployments.
In Proceedings of the 14th USENIX Conference on File
and Storage Technologies (FAST), 2016.

[22] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Ed-
ward Edberg Halim, Henry Hoffmann, and Haryadi S.
Gunawi. LinnOS: Predictability on Unpredictable Flash
Storage with a Light Neural Network. In Proceedings
of the 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2020.

[23] Bryan Harris and Nihat Altiparmak. Ultra-Low Latency
SSDs’ Impact on Overall Energy Efficiency. In Proceed-
ings of the 12th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage), 2020.

[24] Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. The Unwritten Con-
tract of Solid State Drives. In Proceedings of the 12th
European Conference on Computer Systems (EuroSys),
2017.

[25] Peng Huang, Chuanxiong Guo, Jacob R. Lorch, Lidong
Zhou, and Yingnong Dang. Capturing and Enhancing In
Situ System Observability for Failure Detection. In Pro-
ceedings of the 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2018.

[26] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R.
Lorch, Yingnong Dang, Murali Chintalapati, and Ran-
dolph Yao. Gray Failure: The Achilles’ Heel of Cloud-
Scale Systems. In Proceedings of the 16th Workshop on
Hot Topics in Operating Systems (HotOS), 2017.

[27] Sungjoon Koh, Changrim Lee, Miryeong Kwon, and
Myoungsoo Jung. Exploring System Challenges of
Ultra-Low Latency Solid State Drives. In Proceedings
of the 10th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage), 2018.

[28] Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham,
Jae W. Lee, and Jinkyu Jeong. Asynchronous I/O Stack:
A Low-latency Kernel I/O Stack for Ultra-Low Latency
SSDs. In Proceedings of the 2019 USENIX Annual
Technical Conference (USENIX ATC), 2019.

[29] Xiaojian Liao, Youyou Lu, Erci Xu, and Jiwu Shu. Write
Dependency Disentanglement with HORAE. In Pro-

ceedings of the 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2020.

[30] Xiaojian Liao, Youyou Lu, Erci Xu, and Jiwu Shu. Max:
A Multicore-Accelerated File System for Flash Storage.
In Proceedings of the 2021 USENIX Annual Technical
Conference (USENIX ATC), 2021.

[31] Xiaojian Liao, Youyou Lu, Zhe Yang, and Jiwu Shu.
Crash Consistent Non-Volatile Memory Express. In
Proceedins of the 28th ACM Symposium on Operating
Systems Principles (SOSP), 2021.

[32] Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch,
and Onur Mutlu. HeatWatch: Improving 3D NAND
Flash Memory Device Reliability by Exploiting Self-
Recovery and Temperature Awareness. In Proceedings
of the 24th IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2018.

[33] Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. ffsck: The Fast File System
Checker. In Proceedings of the 11th USENIX Confer-
ence on File and Storage Technologies (FAST), 2013.

[34] Stathis Maneas, Kaveh Mahdaviani, Tim Emami, and
Bianca Schroeder. A Study of SSD Reliability in Large
Scale Enterprise Storage Deployments. In Proceedings
of the 18th USENIX Conference on File and Storage
Technologies (FAST), 2020.

[35] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu.
A Large-Scale Study of Flash Memory Failures in the
Field. In Proceedings of the 2015 ACM International
Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), 2015.

[36] Iyswarya Narayanan, Di Wang, Myeongjae Jeon, Bikash
Sharma, Laura Caulfield, Anand Sivasubramaniam, Ben
Cutler, Jie Liu, Badriddine Khessib, and Kushagra Vaid.
SSD Failures in Datacenters: What? When? And Why?
In Proceedings of the 9th ACM International on Systems
and Storage Conference (SYSTOR), 2016.

[37] Biswaranjan Panda, Deepthi Srinivasan, Huan Ke,
Karan Gupta, Vinayak Khot, and Haryadi S. Gunawi.
IASO: A Fail-Slow Detection and Mitigation Frame-
work for Distributed Storage Services. In Proceed-
ings of the 2019 USENIX Annual Technical Conference
(USENIX ATC), 2019.

[38] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André
Barroso. Failure Trends in a Large Disk Drive Popula-
tion. In Proceedings of the 5th USENIX Conference on
File and Storage Technologies (FAST), 2007.

[39] Peter J. Rousseeuw and Mia Hubert. Robust Statistics
for Outlier Detection. WIREs Data Mining and Knowl-
edge Discovery, 2011.

[40] Bianca Schroeder and Garth A. Gibson. Disk Failures
in the Real World: What Does an MTTF of 1,000,000

1018    2022 USENIX Annual Technical Conference USENIX Association

https://nvmexpress.org/how-ssds-fail-nvme-ssd-management-error-reporting-and-logging-capabilities/
https://nvmexpress.org/how-ssds-fail-nvme-ssd-management-error-reporting-and-logging-capabilities/
https://nvmexpress.org/how-ssds-fail-nvme-ssd-management-error-reporting-and-logging-capabilities/


Hours Mean to You? In Proceedings of the 5th USENIX
Conference on File and Storage Technologies (FAST),
2007.

[41] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant.
Flash Reliability in Production: The Expected and the
Unexpected. In Proceedings of the 14th USENIX Con-
ference on File and Storage Technologies (FAST), 2016.

[42] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich
Weber. DRAM Errors in the Wild: A Large-Scale Field
Study. In Proceedings of the 2009 ACM SIGMETRICS
International Conference on Measurement and Model-
ing of Computer Systems, 2009.

[43] Scott Shadle. NAND Flash Media Management
Through RAIN. https://www.micron.com/-
/media/client/global/documents/products/
technical-marketing-brief/brief_ssd_rain.
pdf, 2011.

[44] Charles Spearman. The Proof and Measurement of
Association Between Two Things. American Journal of
Psychology, 100(3/4):441–471, 1987.

[45] Amy Tai, Andrew Kryczka, Shobhit O. Kanaujia, Kyle
Jamieson, Michael J. Freedman, and Asaf Cidon. Who’s
Afraid of Uncorrectable Bit Errors? Online Recovery of
Flash Errors with Distributed Redundancy. In Proceed-
ings of the 2019 USENIX Annual Technical Conference
(USENIX ATC), 2019.

[46] Guanying Wu and Xubin He. Delta-FTL: Improving
SSD Lifetime via Exploiting Content Locality. In Pro-
ceedings of the 7th ACM European Conference on Com-
puter Systems (EuroSys), 2012.

[47] Erci Xu, Mai Zheng, Feng Qin, Yikang Xu, and Jiesh-
eng Wu. Lessons and Actions: What We Learned from
10K SSD-Related Storage System Failures. In Proceed-
ings of the 2019 USENIX Annual Technical Conference
(USENIX ATC), 2019.

[48] Qiao Zhang, Guo Yu, Chuanxiong Guo, Yingnong Dang,
Nick Swanson, Xinsheng Yang, Randolph Yao, Murali
Chintalapati, Arvind Krishnamurthy, and Thomas An-
derson. Deepview: Virtual Disk Failure Diagnosis and
Pattern Detection for Azure. In Proceedings of the 15th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2018.

[49] Xuebin Zhang, Jiangpeng Li, Hao Wang, Kai Zhao,
and Tong Zhang. Reducing Solid-State Storage De-
vice Write Stress through Opportunistic In-place Delta
Compression. In Proceedings of the 14th USENIX Con-
ference on File and Storage Technologies (FAST), 2016.

[50] Kai Zhao, Wenzhe Zhao, Hongbin Sun, Xiaodong
Zhang, Nanning Zheng, and Tong Zhang. LDPC-in-
SSD: Making Advanced Error Correction Codes Work
Effectively in Solid State Drives. In Proceedings of the

11th USENIX Conference on File and Storage Technolo-
gies (FAST), 2013.

A Artifact Appendix
Abstract
The artifact consists of the first large-scale public dataset on
real-world operational data of NVMe SSD. With this dataset,
we have identified a series of major reliability changes in
NVMe SSD. The community could leverage our dataset and
findings to understand the major reliability changes in NVMe
SSD, and design effective reliability solutions (e.g., detecting
and predicting failures) in production environments.

Scope
Most major findings in the main text (i.e., Findings 1-8 and
10) could be validated by exploring the dataset. Moreover,
practitioners could make use of this dataset to investigate the
fail-stop and fail-slow failure characteristics of NVMe SSD.
For example, the dataset could be used to design fail-slow
detection algorithms or to predict fail-stop or fail-slow failure
occurrences in large storage systems.

Contents
The dataset primarily covers:
• SMART logs and failure tickets of around 700K NVMe
SSDs of 11 drive families from three vendors during a one-
year span. Practitioners could make use of them to investigate
the fail-stop failure characteristics of NVMe SSD.
• Performance logs (i.e., device-level write latency time
series) of around 97K NVMe SSDs and 141K SATA HDDs.
Practitioners could make use of them to investigate the fail-
slow failure characteristics of NVMe SSD, and compare them
with those of SATA HDD.

Hosting
The open-source dataset is hosted by Tianchi of Al-
ibaba Cloud at https://tianchi.aliyun.com/dataset/
dataDetail?dataId=128972 with detailed instructions.
Please refer to the above link for more information. We
commit to ensuring the availability of this dataset.

USENIX Association 2022 USENIX Annual Technical Conference    1019

https://www.micron.com/-/media/client/global/documents/products/technical-marketing-brief/brief_ssd_rain.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-marketing-brief/brief_ssd_rain.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-marketing-brief/brief_ssd_rain.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-marketing-brief/brief_ssd_rain.pdf
https://tianchi.aliyun.com/dataset/dataDetail?dataId=128972
https://tianchi.aliyun.com/dataset/dataDetail?dataId=128972




CacheSack: Admission Optimization for Google Datacenter Flash Caches

Tzu-Wei Yang, Seth Pollen, Mustafa Uysal, Arif Merchant, and Homer Wolfmeister

Google Inc.

{twyang, pollen, uysal, aamerchant, wolfmeister}@google.com

Abstract

This paper describes the algorithm, implementation, and de-
ployment experience of CacheSack, the admission algorithm
for Google datacenter flash caches. CacheSack minimizes the
dominant costs of Google’s datacenter flash caches: disk IO
and flash footprint. CacheSack partitions cache traffic into
disjoint categories, analyzes the observed cache benefit of
each subset, and formulates a knapsack problem to assign the
optimal admission policy to each subset. Prior to this work,
Google datacenter flash cache admission policies were opti-
mized manually, with most caches using the Lazy Adaptive
Replacement Cache (LARC) algorithm. Production experi-
ments showed that CacheSack significantly outperforms the
prior static admission policies for a 6.5% improvement of the
total operational cost, as well as significant improvements in
disk reads and flash wearout.

1 Introduction

Colossus Flash Cache (Figure 1) is the general-purpose flash
cache service for Colossus [20], the successor to the Google
File System [19]. Disk reads are expensive and are a major
cost in datacenters: while disks are growing in storage ca-
pacity, the IO capacity (the ability to offer disk accesses per
second, mainly disk reads) is not growing proportionally. As
a result, to provision the IO requirements, we need to deploy
a lot of hard disks that are not for storage but for the target IO
capacity, which is costly.

Colossus Flash Cache provides a cost-effective way to
improve IO capacity while costing a fraction of an equivalent
RAM cache or deploying more hard disks. The primary design
goal of Colossus Flash Cache is to reduce the amount of
hard disk reads, in order to reduce disk IO requirements and
costs. 1 Colossus Flash Cache serves the read traffic of many
widely-used Google services including Colossus and database

1While reducing read latency is also a desirable goal, it is not a design
goal for Colossus Flash Cache, and beyond the scope of this paper.

HDD

Buffer Cache

HDD HDD HDD

Disk Server

SSD SSD SSD SSD

Flash Server

3(a): Cached data

Client

3(b): Uncached data

5: Admitted data (pulled)

Cache
Index Server

2: Cache location or cache miss

1: Cache lookup

4: Admit/Evict 
instructions

Figure 1: Colossus Flash Cache system.

systems such as BigQuery [37], BigTable [11], F1 [34], and
Spanner [13].

CacheSack is the cache admission algorithm used by Colos-
sus Flash Cache, intended to minimize the total cost of owner-
ship (TCO). Compared to a RAM cache, a flash cache usually
provides a much larger cache-to-storage capacity, and so a
simple algorithm such as LRU may achieve a good cache
hit-ratio. An idealized LRU is difficult to implement in a flash
cache; we address this issue in Section 4. However, flash
memory has limited write endurance, so may cause prema-
ture flash wearout and increase TCO. Write amplification and
flash wearout, along with caching in Colossus disk servers,
form a special challenge for designing a cache algorithm for
Colossus Flash Cache.

2 Our contributions

CacheSack is the cache admission algorithm for Colossus
Flash Cache, the successor to LARC (Lazy Adaptive Replace-
ment Cache). CacheSack dynamically analyzes the cacheabil-
ity of a workload and the given cache size, making the admis-

USENIX Association 2022 USENIX Annual Technical Conference    1021



sion decision for the workload. CacheSack was deployed in
Colossus Flash Cache in May 2021 and is now Colossus Flash
Cache’s default cache admission algorithm. Our contributions
are summarized as follows:
• CacheSack partitions traffic into multiple categories, es-

timates the disk reads and cost of write of each category,
and formulates a knapsack problem that finds the optimal
admission policy per category to minimize the overall
cost, including disk reads and bytes written to flash.
• CacheSack effectively reduces the total cost of own-

ership (TCO) of Colossus Flash Cache. Compared to
LARC, it results in 6% lower disk reads, reduces bytes
written to flash by 26%, and improves TCO by 6.5%
(one week average).
• CacheSack runs in real time, using a fraction of the re-

sources of a cache index server.
• CacheSack is fully decentralized (as is Colossus Flash

Cache). It requires only the information received by a
single cache index server, and the failure of a single
cache index server does not impact others.
• CacheSack supports major Google database systems and

requires zero configuration if using these systems. For
other applications, users only need to provide category
annotations (Section 5.1).

3 Background

3.1 Write amplification
Non-sequential writes to a flash drive can cause serious write
amplification [29, 42], a phenomenon where one logical write
causes multiple physical writes. A flash byte has to be erased
before it can be rewritten. A flash block is a continuous region
of bytes in a flash drive and is the smallest unit that can be
erased. As a result, a flash drive needs to move the live bytes
in a flash block somewhere else before this flash block can
be erased, which is called write amplification. Extra writes
caused by write amplification reduce the IO performance and
the lifetime of a flash drive; both greatly increase the cost of
operating a flash cache.

Sequential cache evictions (like FIFO) result in large se-
quential areas that can be easily erased and reused later when
admitting new data. By contrast, non-sequential evictions
(such as those caused by LRU) result in a fragmented cache
space and the flash drive has to move the interspersed live
bytes somewhere else before erasing a block.

As a result, most existing eviction algorithms for RAM
caches cannot be directly applied to flash caches, and write
amplification is one of the most important factors to consider
when designing a flash cache algorithm. Both Google [1] and
Facebook [18] use FIFO-based evictions or other special pur-
pose algorithms [36, 44] for production flash caches because
of write amplification. Colossus Flash Cache reduces write
amplification brought by non-sequential evictions by using

0 20 40 60 80 100
Number of accesses

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

of
 b

yt
es

All accessed bytes
Bytes accessed more than once

Figure 2: Fraction of bytes accessed a given number of times
from disk plus flash over a week (right truncated at 100 ac-
cesses).

approximate LRU (Section 4).

3.2 Write endurance
Flash has limited write endurance, and thus admitting all
data into Colossus Flash Cache upon write or even upon
the first read would wear out the flash too soon, significantly
increasing TCO. To mitigate this issue, Colossus Flash Cache
previously used Lazy Adaptive Replacement Cache (LARC)
[21] to exclude data that are accessed only once by inserting
data at the second access. Figure 2 shows that more than 60%
of the traffic of Colossus Flash Cache is accessed only once,
and so LARC can greatly reduce bytes written to flash and
avoid cache pollution.

However, excessive flash writes are still possible with
LARC, and as a workaround, Colossus Flash Cache used
a write rate limiter to avoid an excessively high write rate.
This is, however, a blunt approach, since it does not accu-
rately factor in the impact on overall cost, and treats all work-
loads similarly. It may be preferable to allow some highly
cacheable workloads to burst writes at the expense of other
less cacheable workloads rather than throttling all write rates.
CacheSack uses a more flexible and accurate approach by
optimizing the total costs, including the write costs and the
cost of disk reads.

3.3 Capturing second-access hits
LARC leverages the fact that a large fraction of data is ac-
cessed only once. Inserting data into cache only upon the
second access avoids flash writes for data accessed once, re-
ducing flash wear. However, the cost is that all second ac-
cesses are cache misses. Figure 2 shows that of the data ac-
cessed more than once in our workloads, 39% is accessed
exactly twice, and these second accesses are cache misses
under LARC. This has a significant performance impact, as
was also observed in Facebook’s cache for social network
photos [36]. Our workaround for this when using LARC was
to monitor the performance loss, and to manually turn off
LARC (i.e., admit all data on the first miss) for workloads
that suffered a significant performance penalty. However, the

1022    2022 USENIX Annual Technical Conference USENIX Association



0 1 2 3 4 5 6 7 8 9

Workload index
0.0

0.2

0.4

0.6

0.8

Miss ratios of buffer cache

Figure 3: Miss ratios for 10 workloads at the disk server buffer
cache if there is no Colossus Flash Cache (simulated).

manual maintenance to identify and set up special cases be-
came more and more labor-intensive with the rapid adoption
of Colossus Flash Cache in production. In our redesign, it was
a requirement that the cache admission algorithm should be
automatic and not require manual adjustments.

3.4 Colossus buffer cache
In addition to Colossus Flash Cache, Colossus maintains a
RAM buffer cache in the lower level disk servers that buffers
recent reads and writes as well as data prefetched from the
disk. A cache miss in Colossus Flash Cache does not cause a
disk read if the access hits in the buffer cache. Many Colossus
workloads use the buffer cache extensively to improve IO
performance.

In many cases, the cache hit ratio of Colossus Flash Cache
is only weakly correlated with the actual disk read reduction,
especially for workloads that are highly optimized for the
buffer cache. Figure 3 shows simulated miss ratios of the
disk server buffer caches with no Colossus Flash Cache for
ten selected workloads, and they range from below 20% to
over 80%. These miss ratios represent the upper bound on
how far Colossus Flash Cache can improve the disk read
rates. For workloads with low buffer cache miss ratios, hits in
Colossus Flash Cache may simply replace buffer cache hits
without improving the disk read rates. As a result, flash cache
hit ratios are not a good metric to measure the efficacy of
Colossus Flash Cache. In fact, our production results (Section
7.1) show that an admission policy can sometimes provide a
higher hit ratio in Colossus Flash Cache but cause worse disk
read rates.

3.5 Online and realtime requirements
Colossus Flash Cache is a fully decentralized system, so its
cache algorithm can only use the resources of individual cache
index servers, and heavyweight algorithms, such as machine
learning (ML) models, may not be feasible. The binary of
Colossus Flash Cache is updated on a weekly basis, while
workloads change much more rapidly, so it is difficult for an
offline-trained static model updated with the binary to adapt

to workload changes. Therefore, we decided to use an online-
trained model.

4 Overview of Colossus Flash Cache

Colossus Flash Cache consists of independent cache index
servers. A cache index server does not directly hold cached
data, but keeps an in-memory lookup table, called the index,
that tracks the locations of cached data stored in the flash
drives that reside on independent storage servers.

When a Colossus Flash Cache client requests to access data
stored in Colossus, the client first sends an RPC to a Colossus
Flash Cache cache index server (see Figure 1) to determine
if the requested data are already cached on a flash server (a
flash hit). If so, the cache index server sends back sufficient
information for the client to access the flash copy of the data
directly from the flash server. For a flash cache miss, the client
contacts the disk server to read the data, while the cache index
server independently decides whether to admit the data into
the flash cache. If the cache index server decides to admit the
data into flash, it instructs the flash server to pull the data from
the disk server directly. The extra latency of communicating
with the cache index servers is negligible compared to typical
remote disk read latencies, and the latencies between remote
flash reads and remote disk reads are in different orders of
magnitude, so Colossus Flash Cache typically reduces overall
latency, although this is not an explicit service goal. The goal
is reducing TCO by avoiding expensive disk reads.

The buffer cache of a disk server also caches recently ac-
cessed data and prefetches a small amount of data into mem-
ory for a few seconds, so that reading recently-accessed data
from an disk server does not necessarily cost extra disk reads.
Colossus users are encouraged to design their workloads to
improve IO performance by utilizing this buffer cache.

Colossus Flash Cache uses an approximate LRU eviction
strategy to manage evictions. An idealized LRU cache would
always evict the least recently used block from the cache
when the cache is full. However, idealized LRU evictions
cause non-sequential writes to flash, resulting in write am-
plification [29, 42]. To mitigate the issue of write amplifica-
tion, Colossus Flash Cache uses evictions similar to Second
Chance [30] to approximate LRU evictions: each Colossus
Flash Cache cache index server manages a FIFO queue of
many fixed-sized Colossus files (typically 1 GiB), each of
which contains cache blocks. When evicting the file from the
tail of the queue, we reinsert 28% of the most-recently-used
blocks into the file at the head of queue. The percentage of
the reinserted blocks is a tradeoff between the amount of hot
blocks recycled, which improves the cache hit ratio, and the
rate of reinsertion into flash, which increases write amplifica-
tion. The current value (28%) is selected experimentally to
strike a good balance between cache performance and write
amplification. This way, the write amplification factor is ef-
fectively 1.28. A comparison of the performance of Second

USENIX Association 2022 USENIX Annual Technical Conference    1023



Chance [30] indicates that the performance is quite close to
that of LRU. Therefore, for ease of modeling, we approximate
Colossus Flash Cache as an LRU cache.

Each Colossus Flash Cache server maintains a ghost cache
[21], an in-memory lookup table that maps the key of data
to the data’s last access time, regardless of whether they are
actually cached on flash. This is a key component of Cache-
Sack, which relies on inter-arrival times to quickly build all
the estimates described in Section 5.

Each cache index server represents a fraction of the key
space, and one server’s failure does not impact other cache
index servers. To maintain the same reliability, CacheSack is
also designed in the same decentralized manner: each cache
index server runs its own CacheSack model, using only the
information received by the cache index server, and its admis-
sion decisions do not affect other cache index servers.

5 CacheSack

5.1 Traffic partitioning
CacheSack partitions potential cache blocks into many cate-
gories, and assigns an admission policy to each category.

The majority of Colossus Flash Cache traffic comes from
Google’s database systems like BigTable and Spanner where
categories can be well-defined. For database traffic, Cache-
Sack defines a category as the combination of the table name,
locality group [11, 13], and type for BigTable and Spanner,
and a similar combination for other databases. Since Colossus
Flash Cache is also available for other Colossus users, those
users can define their own categories by annotating their data.
If a user does not provide a category annotation, CacheSack
will use the user name contained in the Colossus file path.

CacheSack then selects the right policy based on the pattern
that category exhibits. Later, we will explain how we formu-
late CacheSack as a knapsack-like problem: given the cache
capacity, how CacheSack chooses the items (categories) to
minimize the overall cost.

5.2 Admission policies
We consider four admission policies that can be assigned to
each category:
• AdmitOnWrite: Inserts a cache block at a write access

or on any read cache miss.
• AdmitOnMiss: Inserts a cache block on any read cache

miss, but does not insert a block at a write access. This
is the conventional admission policy used in most of the
cache literature.
• AdmitOnSecondMiss (LARC): Equivalent to Lazy

Adaptive Replacement Cache (LARC); Inserts a block
only after the second read access (miss), and only if the
last access time is not older than the oldest last access
time of the blocks in the cache, to reduce the insertion

Cache 
Block

Cache
Block ...Cache 

Block
Cache 
Block

Cache 
Block

Cache 
Block

Head Tail

Cache blocks stay in cache for D seconds

(2) Cache Miss: Interarrival time d > D seconds

Cache (TTL Queue)

Last 
access

Next 
access

(1) Cache Hit: Interarrival time d <= D seconds

Last 
access

Next 
access

Block 
eviction

Block 
eviction

Time

Time

Figure 4: LRU evictions are approximated by TTL evictions
with the modeled retention time D while the TTL counter of
a cache block is reset whenever the cache block is accessed.
If the access interarrival time d is less than or equal to D,
this access is a cache hit and we move the cache block to the
head of the queue (the TTL counter is reset). If the access
interarrival time d is greater than D, this access is a cache
miss and we insert the cache block to the head of the queue
(the TTL counter is also reset).

rate of cold blocks. LARC is scan resistant: any scanned
data (accessed exactly once) will not be admitted.
• NeverAdmit: Never inserts blocks.

We can sort these policies by aggressiveness: NeverAdmit <
AdmitOnSecondMiss < AdmitOnMiss < AdmitOnWrite.

5.3 Fast approximation to an LRU model

To determine the best policy for the cache, the most intu-
itive way is to simulate all possible policy-category combina-
tions, which is a combinatorial knapsack problem (NP-Hard).
Because CacheSack currently allows up to 5000 categories
(Section 6.1) and uses 4 policies, there are up to 45000 com-
binations and the knapsack problem can not be done even
with downsampled traces. Instead, we use a fast approxima-
tion for modeling an LRU cache, by introducing the modeled
cache retention time. The cache retention time is the maxi-
mum duration that a block stays in the LRU cache without
any intervening accesses to it. In practice, the cache retention
time varies slowly over time. Here we assume the modeled
cache retention time is a constant D and this assumption will
make all our estimates just approximations.

We use AdmitOnMiss as an example. For a given block,
when a read access arrives, we can compute d, the time since
last access (which is ∞ if the current access is the first read).
We can classify the inter-arrival times by using D (Figure 4):
• d ≤ D: An access arrives before the block leaves the

cache, and therefore the access generates a cache hit and
moves the block to the head of the queue.

1024    2022 USENIX Annual Technical Conference USENIX Association



• d > D: An access arrives after the block leaves the cache,
and therefore it is a cache miss, which causes a write to
the cache.

In other words, we approximate the LRU cache by a cache
that has the TTL value D and resets the TTL counter of a
block when receiving an access to the block. The theoretical
aspect of the TTL approximation was also studied in literature.
Fagin [17] showed the TTL approximation is asymptotically
exact for independent and identically distributed requests, and
[23] proved that given the assumption that data accesses are
stationary and ergodic, the TTL approximation will converge
to an LRU cache as the cache size goes to infinity. The accu-
racy of the TTL approximation in production is analyzed in
Section 7.1.

A cache miss in Colossus Flash Cache will cause a disk
read if it is also a miss in the Colossus buffer cache. Each
cache index server maintains a buffer cache simulator, and
when d > D, we run the simulator and see whether it is a miss.

This way, when a new access arrives, we are able
to update the disk reads, cache usage, and bytes writ-
ten to flash cache caused by admitting the block using
AdmitOnMiss. We can also compute the same quantities
for other policies: AdmitOnSecondMiss, AdmitOnWrite, and
NeverAdmit. The detailed estimation is described in Ap-
pendix A.2.

A nice property of this approximation is that the estimates
for a block are not affected by other blocks or policies, as long
as the modeled cache retention time is given. Therefore, the
disk reads, cache usage, and written bytes caused by admitting
a category are just the sums of the corresponding block-level
quantities.

5.4 Knapsack problem

Once we have the estimates for disk reads, cache usage, and
bytes written to flash cache for each policy-category pair, we
have a knapsack problem: find the optimal policy per category
to minimize the overall cost (disk reads and written bytes)
while fitting within the cache. We omit the definitions of the
relative cost of disk reads, bytes written to flash, and flash
storage, because they are confidential.

We further allow fractional policies: CacheSack can ap-
ply a policy to a fraction of a category. For example,
CacheSack may decide it is optimal to apply AdmitOnMiss,
AdmitOnSecondMiss, AdmitOnWrite, and NeverAdmit to
30%, 20%, 10%, and 40% of blocks in a category, respectively.
Then the problem becomes a fractional knapsack problem
[14] that finds the optimal policy fractions per category to
minimize the overall cost. The advantage of considering a
fractional knapsack is that it can be solved efficiently by a
greedy algorithm, as opposed to a combinatorial knapsack
that is NP-Hard. Our problem is slightly different from the
original fractional knapsack in [14] because we need to de-
cide four fractions per category instead of two. Appendix A.4

explains the details of how we solve our problem by a greedy
algorithm after applying Andrew’s monotone chain convex
hull algorithm [2]. We note that if an LRU cache is perfectly
modeled by the TTL approximation, the resulting cache re-
tention time of the LRU cache is exactly D after applying the
optimal policy fractions per category.

5.5 Optimization over modeled cache reten-
tion times

The knapsack problem in Section 5.4 is to find the optimal
policy fractions for a given modeled cache retention time D,
which can not be known in advance. Thus, we need to solve
the same knapsack problem for all possible D. To do this in
production, we can have a set of predefined modeled cache
retention times: 0 < D1 < D2 < · · ·< Dm = D where D is a
suitable upper bound, and solve m different knapsack prob-
lems. Thanks to the greedy algorithm, we can still solve many
knapsack problems (currently 127, Section 6.2) quickly.

6 CacheSack in production

CacheSack is now deployed in production as the default cache
admission algorithm for Colossus Flash Cache. This section
explains the engineering efforts needed to do so.

6.1 Category assignment
The number of categories encountered in production can not
be known in advance, so we balance the need for accuracy
and space by hashing a category to one of 5000 buckets. Cat-
egories assigned to the same bucket are treated as combined
in the optimization. The number of hash buckets is a trade-
off between memory usage and hash collisions. The typical
number of categories per server is less than 100 and our ex-
periments showed that with 5000 buckets, 95% of the clients
see a hash collision rate lower than 1% and the worst colli-
sion rate is less than 5%. Further, cache collisions are not
persistent, since each cache index server uses a different hash
key and changes it periodically to break possible spatial and
temporal correlations.

A bucket without sufficient training data might not provide
meaningful metrics. If a bucket contributes to less than 0.1%
of total lookups, it will be aggregated to a single catch-all
bucket before solving the knapsack problem.

6.2 Modeled cache retention times
Currently, CacheSack uses 127 predefined cache retention
times: 15 minutes, 1.06×15 minutes, 1.062×15 minutes, ...,
1.06126×15 minutes≈ 16 days; the 128th value is reserved
for positive infinity.

These retention times are decided in the following way.
We first determine the working range. A retention time less

USENIX Association 2022 USENIX Annual Technical Conference    1025



than 15 minutes means we evict and insert cache blocks in an
extremely aggressive way, which would cause serious flash
wearout. By policy, any cache block is forced to leave the
cache if it stays more than 15 days. Hence we set the modeled
working range of retention times as 15 minutes to 15 days.
We then decide the number of retention times to model. We
tried 127 (6% geometric increase) and 255 (3% geometric
increase) retention times, and our experiments showed that
127 retention times gave similar results while reducing RAM
usage by half.

6.3 Ghost cache

Since LARC was Colossus Flash Cache’s previous admis-
sion control, a ghost cache was implemented in cache index
servers. It is an in-memory lookup table that maps a data’s key
to the data’s last read access time, and LARC uses the infor-
mation to determine whether to admit the data on miss. Cache-
Sack uses the same ghost cache to obtain inter-arrival times.
In addition, to build the metric estimate for AdmitOnWrite,
we expanded the ghost cache so that we know whether the
last access is a write access. To build the metric estimate for
AdmitOnSecondMiss, we use the ghost cache to record the
most two recent access times.

Because the ghost cache is the ground truth for CacheSack,
the ghost cache must contain sufficient history. The optimal
solution of CacheSack will not be affected as long as the ghost
cache TTL, the time since the oldest last access time of the
blocks in the ghost cache, is greater than the optimal modeled
cache retention time. As a rule of thumb, we provision the
size of the ghost cache so that its TTL is at least twice the
solved optimal modeled retention time (typically about four
hours).

6.4 Buffer cache simulators

A cache miss in Colossus Flash Cache causes a disk read
only if it is also a miss in the buffer cache. CacheSack simu-
lates the buffer cache to determine whether the current miss
in Colossus Flash Cache is also likely a miss in the buffer
cache. In fact, we need many simulators: one for each pair of
policy-retention time so there are 382 simulators (3×127+1,
the retention time does not affect NeverAdmit). Running the
simulators is the most computationally intensive component
in the CacheSack model. Fortunately, the buffer cache sim-
ulator is simple enough and only requires the access history
in the past few seconds so it only moderately increases CPU
load on the low-QPS servers (5% CPU usage).

6.5 Model training

We use a simple scheme to train the CacheSack model: the
model is reset every 5 minutes and is trained based on the

lookups in this 5-minute period. We note that a lookup con-
tains the access times of the most recent two accesses and
therefore the lookups in a 5-minute period may contain the
information of many hours.

The selection of the training duration is a trade-off. Using
a larger training duration means the model can be improved
by more training data and longer time horizon, while the
model can react more quickly to changes in the workload
with a shorter duration. We tested several training durations
and found that 5-minute one gave most disk read reduction,
although we did not find significant differences among all
candidates.

6.6 Lessons learned
Automatic cache optimization incentivized user adoption

In deciding whether to use Colossus Flash Cache, users weigh
both the likely TCO improvement and the engineering effort
required to configure and maintain it. In the past, users had to
manually choose the admission policy (using AdmitOnMiss
or AdmitOnSecondMiss) based on knowledge of their work-
load or by running A/B experiments with the assistance of
the Colossus Flash Cache team. For heavy users like Spanner,
Colossus Flash Cache had to provide heuristic, hand-tuned
admission policies to improve cache performance. Such hu-
man tuning and maintenance usually requires effort from
both the users and the Colossus Flash Cache team, which
can discourage the adoption of Colossus Flash Cache if the
expected hardware resource saving does not justify the extra
engineering cost.

We found that CacheSack greatly incentivized users to
adopt Colossus Flash Cache. The automatic cache provision-
ing brought by CacheSack requires almost no configuration
and maintenance so that it can be set and forgotten. We found
that new users were more willing to use Colossus Flash Cache
once they knew it would automatically adjust the cache policy
based on their workloads.

Some of Colossus Flash Cache’s existing users have inde-
pendently verified that CacheSack applied appropriate ad-
mission policies to their workloads, based on the knowl-
edge of their workloads and reporting provided by Colossus
Flash Cache. One user experimentally overrode CacheSack
with manually optimized policies and found that CacheSack
worked as well as manual policy tuning. After CacheSack
became the default admission policy in Colossus Flash Cache,
we were able to retire the hand-tuned optimization for Span-
ner, and our existing users did not need to manually adjust the
policy anymore.

Experiment infrastructure accelerated feature develop-
ment

The development of CacheSack was significantly benefited
by the experiment infrastructure of Colossus Flash Cache.

1026    2022 USENIX Annual Technical Conference USENIX Association



The experiment infrastructure allows developers to test new
features by using 10% of the cache index servers, and be-
cause cache index servers are independent and isolated, any
experiment can only cause minor service degradation in the
worst case. Before the full deployment, we ran CacheSack
as an experiment for a few months and most of the issues
were identified and corrected during the experimental phase.
In fact, there was no binary rollback caused by CacheSack
since the full deployment.

In addition, because each server represents a fraction of the
key space, which is permuted randomly, each server is sta-
tistically indistinguishable. We can have simultaneous com-
parisons between CacheSack and the control group to see
whether CacheSack works as expected and identify any is-
sues. The experiment infrastructure is extensively used by the
developers of Colossus Flash Cache for new features, and the
impact of a new feature can be accurately measured before
the full deployment.

Model introspectability and maintainability played im-
portant roles

We found that the model introspectability played an important
role for the adoption of the new cache algorithm. Because any
cache algorithm of Colossus Flash Cache will be operated
and maintained by developers and site reliability engineers
(SREs) after the initial deployment, one requirement of de-
ploying a new cache algorithm is that the model behavior
can be fully understood and monitored by the developers and
SREs. CacheSack satisfies this requirement as it only assumes
that the TTL approximation (Section 5.3) is sufficiently close
to the eviction of Colossus Flash Cache, and all model behav-
iors can be derived from this assumption. Another advantage
of a highly introspectable model is that the developers (be-
sides the original designers) of Colossus Flash Cache can
easily ensure thorough test coverage, validate software re-
leases, add extend the original functionality of CacheSack
without assistance from the original designers. After the de-
ployment of the original CacheSack, it became the foundation
of further optimizations for Colossus Flash Cache.

It is also worth mentioning that CacheSack is simple
enough to be implemented by limited extensions to the orig-
inal codebase of Colossus Flash Cache. In particular, the
optimization was implemented as a simple greedy algorithm
instead of using a generic linear program solver library. This
did cost extra time for development, but we decided to do so
because it allowed us to minimize the computational overhead
and increase system reliability by reducing external dependen-
cies. More importantly, anyone familiar with the ecosystem of
Colossus Flash Cache can easily maintain CacheSack or de-
velop new features based on it. The implementation of Cache-
Sack can evolve continuously with Colossus Flash Cache,
reducing maintenance burden. Since the completion of the
initial deployment, both maintenance and new feature devel-

0.0 0.2 0.4 0.6 0.8 1.0
Relative error

0.00

0.25

0.50

0.75

1.00
CDF of relative errors of CacheSack predictions

Figure 5: CacheSack disk read rate prediction errors relative
to the actual value in production (CDF).

opments have been completely handled by Colossus Flash
Cache developers and SREs without the need for involvement
from the original designers.

7 Evaluation

7.1 Production evaluation

Model accuracy

There are two LRU approximations in Colossus Flash Cache:
Colossus Flash Cache uses Second-Chance-like approach
to approximate LRU evictions (Section 4), and CacheSack
models an LRU cache as a TTL approximation (Section 5.3).
Therefore, it is important to verify that the CacheSack model
is a good enough approximation to the actual Colossus Flash
Cache. We examined the accuracy of CacheSack in the follow-
ing way. For each client, the solution to the knapsack problem
in Section 5.4 gives the predicted disk reads when using the
optimal admission policies. Then Colossus Flash Cache ap-
plies the optimal policies in production so we compared the
predicted disk reads with the actual disk reads. Figure 5 shows
the prediction errors of CacheSack relative to the actual val-
ues obtained from the disk servers; 51% of the relative errors
are within 10% and 82% of the relative errors are within 20%.

Policy distribution

Figure 6 shows the policy distributions suggested by Cache-
Sack in the selected datacenters of various workloads. We
can see that each datacenter has a different workload pattern
and CacheSack adaptively decides suitable admission policies
based on workloads and cache sizes. Although it would be
possible for manual selection of static policies to match each
datacenter workload, CacheSack is able to reduce the human
toil, response delay, and operational complexity required to
maintain these assignments.

USENIX Association 2022 USENIX Annual Technical Conference    1027



0 1 2 3 4 5 6 7 8 9

Datacenter index
0.0

0.5

1.0

1.5

Policy distribution suggested by CacheSack
NeverAdmit
AdmitOnSecondMiss

AdmitOnMiss
AdmitOnWrite

Figure 6: Policy distribution suggested by CacheSack in se-
lected datacenters, demonstrating a variety of workload re-
sponses.

01
Aug
2021

02 03 04 05 06 07
0.00

0.25

0.50

0.75

1.00

Scaled disk reads

CacheSack
AdmitOnSecondMiss

AdmitOnMiss

Figure 7: Disk reads of different admission policies in produc-
tion, divided by the average value for AdmitOnSecondMiss.

01
Aug
2021

02 03 04 05 06 07
0

1

2

3

Scaled bytes written to flash cache

CacheSack
AdmitOnSecondMiss

AdmitOnMiss

Figure 8: Written bytes of different admission poli-
cies in production, divided by the average value for
AdmitOnSecondMiss.

01
Aug
2021

02 03 04 05 06 07
0.0

0.5

1.0

Scaled total cost

CacheSack
AdmitOnSecondMiss

AdmitOnMiss

Figure 9: Total cost (a function of disk reads, flash storage and
written bytes) of different admission policies in production,
divided by the average value for AdmitOnSecondMiss.

01
Aug
2021

02 03 04 05 06 07
0.0

0.2

0.4

0.6
Hit ratios

CacheSack
AdmitOnSecondMiss

AdmitOnMiss

Figure 10: Hit ratios in Colossus Flash Cache of different
admission policies in production.

Production experiments

By using the experiment infrastructure of Colossus Flash
Cache, we can compare the performance of different cache
algorithms in production. Because each cache index server
represents a fraction of the key space, the pattern of work-
load each cache index server receives is statistically indistin-
guishable. We let 10% of the cache index servers run static
AdmitOnMiss and another 10% of the cache index servers
run AdmitOnSecondMiss so that we can compare CacheSack,
static AdmitOnMiss and static AdmitOnSecondMiss simulta-
neously in production.

From Figure 7 and 8 we see that compared to
AdmitOnSecondMiss, CacheSack results in fewer disk reads
(6% of one week average) and reduces 26% (one week aver-
age) written bytes to flash, and Figure 9 shows that CacheSack
effectively reduces the total operating cost in production: the
cost of disk reads, flash cache writes and flash storage of
CacheSack is 93% of AdmitOnSecondMiss and is 78% of
AdmitOnMiss (one week average).

Figure 10 shows that CacheSack has a higher hit ratio than
AdmitOnSecondMiss but lower than AdmitOnMiss. Never-
theless, AdmitOnMiss is not the best choice. Figure 7 shows
that AdmitOnMiss has the worst disk read reduction even
though it has the highest hit ratio. Because of the lower-level
buffer cache, a higher hit ratio in the flash cache does not
necessarily imply fewer disk reads: many major Colossus
users optimize their workloads by accessing the same data
many times within the first few seconds so that only the first
access causes an actual disk read. In this case, AdmitOnMiss
generates many hits that do not reduce disk reads at all.
AdmitOnSecondMiss resolves this issue by avoiding a cache
insertion if the most recent access time is too recent to expect
that the data has left the buffer cache.

7.2 Evaluation by simulations

In addition to production experiments, we also used the Colos-
sus Flash Cache simulator to test the performance of Cache-
Sack in a variety of configurations and contexts, such as

1028    2022 USENIX Annual Technical Conference USENIX Association



0.0

0.5

1.0

1.5

2.0

2.5

3.0
Hit ratios

CacheSack
AdmitOnSecondMiss

AdmitOnMiss
AdmitOnWrite

0 1 2 3 4 5
Scaled flash cache size

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Hit ratios normalized on AdmitOnSecondMiss
CacheSack
AdmitOnSecondMiss

AdmitOnMiss
AdmitOnWrite

Figure 11: Hit ratios in Colossus Flash Cache of different
admission policies in simulation. Above: Original hit ratios.
Below: Values relative to AdmitOnSecondMiss.

cache size and optimization iteration period. The Colossus
Flash Cache simulator is used for multiple purposes includ-
ing performance-regression testing by Colossus Flash Cache
developers and for datacenter resource planning by Colossus
Flash Cache clients. The Colossus Flash Cache simulator uses
the same production code as Colossus Flash Cache and we
use production traces as the input of the simulator.

We first compare the performance of Cache-
Sack, to the static admission policies AdmitOnMiss,
AdmitOnSecondMiss and AdmitOnWrite for various cache
sizes. We use here a two-day trace from one large (order of
million QPS) production cache as a representative. This trace
reflects a uniform sample of the data accesses from a large
collection of internal production workloads.

Impact of cache size on performance

When the cache size is small, AdmitOnSecondMiss has a
better performance than AdmitOnMiss or AdmitOnWrite
because single-use keys are excluded. On the other
hand, AdmitOnMiss and AdmitOnWrite will outperform
AdmitOnSecondMiss for a large cache because the cache
benefit of second accesses is gained.

CacheSack learns to use a more conservative policy for a
small cache and a more aggressive policy for a large cache.
Figure 11 and Figure 12 show that CacheSack can provide a
good performance for the entire range of flash cache sizes.

It is also interesting to see the amount of written bytes

0.00

0.25

0.50

0.75

1.00

1.25

Scaled disk reads
CacheSack
AdmitOnSecondMiss

AdmitOnMiss
AdmitOnWrite

0 1 2 3 4 5
Scaled flash cache size

0.0

0.5

1.0

1.5

2.0
Disk reads normalized on AdmitOnSecondMiss

CacheSack
AdmitOnSecondMiss

AdmitOnMiss
AdmitOnWrite

Figure 12: Disk reads of different admission policies in sim-
ulation. Above: Constant scaling by dividing the values by
the average value for AdmitOnSecondMiss. Below: Values
relative to AdmitOnSecondMiss.

caused by different admission policies in Figure 14. For
AdmitOnMiss, AdmitOnWrite and AdmitOnSecondMiss
with excessively small cache, blocks are frequently evicted
from and reinserted into the cache, resulting in a very large
amount of written bytes, especially for AdmitOnMiss and
AdmitOnWrite. CacheSack, on the other hand, takes into ac-
count the cost of written bytes, and therefore only admits the
most valuable part of the workload into the cache.

We can also view the total cost (a confidential function
of disk reads, flash storage, and written bytes) as a function
of cache size. When the cache size is small, disk reads and
writes to flash are the largest contributions to cost, while flash
storage is the largest cost component for larger cache sizes.
Therefore, the total cost is a U-shape curve and we are able
to find the optimal cache size that minimizes the total cost.
Figure 13 shows that CacheSack gives the lowest total cost for
all cache sizes. CacheSack avoids the trade-off and provides
robust good behavior over the range of cash sizes.

Optimization frequency

We evaluated the system performance on the choice of differ-
ent optimization frequencies. Here we test different lengths
of training duration from one minute to eight hours, which
span a majority of the observed time variation of workloads.
Figure 15 shows that the training duration does not signifi-
cantly impact the performance and all the cost metrics are

USENIX Association 2022 USENIX Annual Technical Conference    1029



0.00

0.25

0.50

0.75

1.00

1.25

1.50

Scaled total cost
CacheSack
AdmitOnSecondMiss

AdmitOnMiss
AdmitOnWrite

0 1 2 3 4 5
Scaled flash cache size

0.00

0.25

0.50

0.75

1.00

1.25

1.50
Total cost normalized on AdmitOnSecondMiss

CacheSack
AdmitOnSecondMiss

AdmitOnMiss
AdmitOnWrite

Figure 13: Total cost (a function of disk reads, flash storage
and written bytes) of different admission policies in simu-
lation. Above: Constant scaling by dividing the values by
the average value for AdmitOnSecondMiss. Below: Values
relative to AdmitOnSecondMiss.

0

1

2

3

4
Scaled bytes written to flash cache

CacheSack
AdmitOnSecondMiss

AdmitOnMiss
AdmitOnWrite

0 1 2 3 4 5
Scaled flash cache size

0

2

4

6

8

10

Bytes written to flash cache normalized on AdmitOnSecondMiss
CacheSack
AdmitOnSecondMiss

AdmitOnMiss
AdmitOnWrite

Figure 14: Written bytes of different admission policies in
simulation. Above: Constant scaling by dividing the values by
the average value for AdmitOnSecondMiss. Below: Values
relative to AdmitOnSecondMiss.

0.0

0.5

1.0
Hit ratios

1 minute
5 minutes

1 hour
8 hours

0.0

0.5

1.0

1.5
Scaled disk reads

1 minute
5 minutes

1 hour
8 hours

0

2

4
Scaled bytes written to flash cache

1 minute
5 minutes

1 hour
8 hours

0 1 2 3 4 5
Scaled flash cache size

0.0

0.5

1.0

1.5
Scaled total cost

1 minute
5 minutes

1 hour
8 hours

Figure 15: Hit ratios, disk reads, written bytes, and total cost
(a function of disk reads, flash storage and written bytes) of
Colossus Flash Cache with different training durations. Disk
reads, written bytes, and total cost are divided by the average
value for the 5-minute training duration.

similar. Because this method is insensitive to this parameter,
customized or automated tuning was deemed unneeded, and
the entire deployment currently uses a single value.

8 Related work

Production flash cache algorithms
Both Google [1] and Facebook [18] were using FIFO-based
evictions in their production flash caches to trade cache per-
formance for managed write amplification. RIPQ [36] is a
non-FIFO, advanced flash cache algorithm that brings higher
hit ratios while write amplification is well-control. Flashield
[16] further improves RIPQ’s write amplification by using
DRAM as a buffer, and only writes flash-worthy objects into
flash, predicted by a lightweight support vector machine clas-
sifier. CacheLib [7] resolved Flashield’s issue that the TTLs
of objects in the DRAM buffer are too short to be effective.
CacheLib uses Bloom filters to count the number of accesses
per object in the past six hours (similar to TinyLFU [15]), to
predict the number of accesses in the future, and use FIFO
for eviction. Kangaroo [26] further improves CacheLib’s per-
formance for tiny objects. DSS [28] uses predefined rules
to classify I/O requests into different priorities, and applies
heuristic admission and eviction policies to different priori-
ties. DSS has been implemented in Intel’s Cache Acceleration

1030    2022 USENIX Annual Technical Conference USENIX Association



Software. Amazon’s AQUA [3], which is conceptually similar
to CacheSack, analyzes workload patterns to place data into
the appropriate tier.

CacheSack’s high-level idea is similar to Flashield and
CacheLib: keep the eviction simple to control write amplifi-
cation, and use a more sophisticated admission to improve
cache performance and flash write endurance. For evictions,
Flashield uses the CLOCK [12] approach and CacheSack uses
Second Chance [30] to achieve LRU-style evictions. On the
admission side, instead of using DRAM as a buffer, Cache-
Sack has no in-memory buffer and expands the metadata table
(ghost cache) for a more complete history; the median of the
ghost cache TTL is 20 hours, which is several times longer
than the information used by Flashield and CacheLib. With
a more complete history, CacheSack is able to build a more
sophisticated model for admission. CacheSack also considers
the two major costs of operating flash caches, disk reads and
flash wearout, as a whole, and minimizes the overall operation
cost.

CacheSack also utilizes the advantage that the categories
are well-defined in the database systems served by Colossus
Flash Cache. Classifying unstructured data is usually a dif-
ficult problem in machine learning. For Google’s database
systems, the classification is naturally given, and the cate-
gories often hint their cacheability.

Admission algorithms

LARC [21] was previously used by Colossus Flash Cache
as the default admission policy. LARC is designed for flash
caches, and reduces write rate by inserting an object into the
cache only when it is read a second time, based on the obser-
vation that most objects are read only once. Thus, inserting
only the objects that are read a second time into the cache
significantly reduces the write rate and the cache pollution.
This strategy is particularly useful when a significant portion
of the traffic is accessed only once, for example, Tencent’s
photo traffic [41], and AliCloud [24]. However, LARC loses
all the first cache hits and becomes undesirable for long-tail
accesses like Facebook’s cache for social network photos. In
the past, Colossus Flash Cache disabled LARC for workloads
in which LARC underperformed. Selective admissions like
TinyLFU [15] (non-window version) and HEC [42] that sac-
rifice the first few hits to determine the cacheability of data
likely have the same issue.

TinyLFU [15] works by comparing the expected hit ratio of
a newly accessed object against that of the object that would
be evicted next from the cache, inserting the new object if its
likely hit ratio is higher. Any eviction policy can be used to
select the eviction victim (LRU is typical). TinyLFU predicts
hit ratios for the objects using approximate counting (Bloom
filters) of access frequency. TinyLFU also needs some extra
structures to work properly: Doorkeeper is used to filter one-
accessed blocks (the same use of LARC’s ghost cache), and a

DRAM buffer cache in front of TinyLFU (W-TinyLFU). All
these structures require extra parameter tuning, which does
not best fit the needs of Colossus Flash Cache as a general-
purpose cache. mARC [32] uses ARC [27] as the eviction
policy and dynamically determines whether to admit data on
the first miss (naive ARC) or second miss (LARC). UBC
[31] proposes a low-overhead mechanism to partition shared
on-chip cache.

Eviction algorithms

There are also extensive studies on advanced eviction algo-
rithms. Beckmann and Sanchez’s method [5] evicts a block
based on the block’s economic value added. Instead of LRU or
LFU that require specific data structures, Hyperbolic Caching
[9] evicts a block based on a time-decay (hyperbolic) value
function and uses a sampling technique to resolve the issue
of the data structure requirement. Similarly, LHD [4] evicts
the block of the lowest hit density, the number of hits per
cache byte-second, and also applies a sampling technique to
overcome the data structure issue. Hawkeye [22] assumes that
the recent history can predict the near future and hence one
can train a predictor learned from Belady’s OPT [6] running
on the recent traces. [40] considers an ensemble of candi-
dates, which can be a set of existing algorithms, or the same
algorithm with different parameters, runs scaled-down sim-
ulations on each candidate and periodically adopts the most
performant one.

Machine learning algorithms

With the recent rapid development of machine learning (ML),
there are also a few papers that adopt ML techniques to en-
hance cache performance. LFO [8] and LRB [35] use ML
models to learn Belady’s OPT [6], and apply the ML models
to CDN (Content Delivery Networks) caches. Parrot [25] also
use ML to learn Belady’s OPT from history, but uses modern
deep learning architectures like Transformer [38] and BiDAF
[33]. [41] utilizes a concept similar to LARC [21] that the
majority of traffic is accessed just once, and uses ML mod-
els to predict whether data is worth inserting into the flash
cache. The algorithm showed a large flash write reduction in
Tencent’s photo cache system as well as the improvement of
hit ratios and latency. LeCaR [39] uses an ML approach to
adaptively decide the better policy between LRU and LFU
at eviction time. Zhou and Maas [43] model the inter-arrival
times of a block as a log-normal distribution and learn the
parameters from traces; then the evictions are executed in the
manner of Belady’s OPT: the block with lowest probability
to get the next access in the near future will be evicted.

USENIX Association 2022 USENIX Annual Technical Conference    1031



9 Conclusions

In this paper, we introduce CacheSack, an admission policy
optimization for Google’s datacenter flash caches. CacheSack
provides an efficient estimation for the performance metrics
of an LRU-style cache under various configuration options.
We use a knapsack approach to identify the optimal admis-
sion polices to minimize the total cache-operating cost. We
share the experience of deploying CacheSack in Colossus
Flash Cache, the general-purpose flash cache serving Colos-
sus, which has since become the default admission policy.
CacheSack requires less manual configuration than the previ-
ously used cache admission algorithm (LARC), significantly
reduces disk reads and bytes written to flash, and improves
TCO by 6.5% compared to LARC.

Acknowledgements

The authors would like to thank Cory Casper, Junaid Khalid,
Martin Maas, and Richard McDougall for their assistance in
various stages of the design and implementation of this algo-
rithm. We would also like to thank Dan Gibson, Larry Green-
field, Aaron Laursen, Milo Martin, Damodharan Rajalingam,
and John Wilkes, as well as the anonymous reviewers and our
conference shepherd, for their reviews and suggestions that
improved this manuscript.

A Mathematical model of CacheSack

A.1 Model assumption

CacheSack models the cache as using LRU evictions. Colos-
sus Flash Cache considers data for caching to be immutable
after being written, i.e. the first access is a write, and subse-
quent ones are reads; mutability is handled by higher layers
in the system. The CacheSack model does not need the im-
mutability assumption, but we keep it to align with the actual
system; the model can be easily modified for the mutable
case.

A.2 Metric estimation of an LRU cache

We begin with AdmitOnMiss. For a given block b, let t1, t2, t3,
..., tn be the read access times, and t0 =−∞ for convenience.
Therefore, the inter-arrival times are di = ti− ti−1 and d1 =
t1− t0 = ∞. Assume that D is the modeled cache retention
time; that is, D is the maximum duration that a block stays
in the LRU cache without any intervening accesses. We can
classify the inter-arrival times as follows:
• di ≤D: A cache hit because the access arrives before the

block leaves the cache. The block is moved to the head
of the queue because of the LRU eviction.

• di > D: A cache miss because the access arrives after the
block leaves the cache. AdmitOnMiss inserts the block
into the cache on miss, causing a write to the cache.
• For a flash cache miss, we update the buffer cache simu-

lator to see whether it is also a cache miss in the buffer
cache. If so, the access is a disk read.

We can then write disk reads SAOMb (D), cache byte-time
usage2 UAOM

b (D) and bytes written to cache W AOM
b (D) as func-

tions of D:

BAOM
b (D, i) =

{
1, Buffer Cache Hit at ti, using AOM.
0, Buffer Cache Miss at ti, using AOM.

SAOMb (D) = |{i : di > D, BAOM
b (D, i) = 0}|,

UAOM
b (D) = Size(b)×∑

i
min(di,D),

W AOM
b (D) = Size(b)×|{i : di > D}|.

Similarly, the metrics for a category C is the sum of the
metrics for all blocks in C :

SAOMC (D) = ∑
b∈C

SAOMb (D),

UAOM
C (D) = ∑

b∈C
UAOM

b (D),

W AOM
C (D) = ∑

b∈C
W AOM

b (D).

The only difference between AdmitOnWrite and
AdmitOnMiss is that AdmitOnWrite also takes into account
write accesses. Therefore, for AdmitOnWrite, we let t1 be
the write access time, t2 be the first read access time, t3 be the
second read access time and so on. Then we can similarly
define SAOWC (D), UAOW

C (D) and W AOW
C (D).

For AdmitOnSecondMiss, a block is admitted at the second
miss (read access). In addition, to prevent the cache from
inserting a cold block, we require that when inserting a block,
its last read access time must be not older than the oldest
last access time of the blocks in the cache. Mathematically,
a block is inserted at ti−1 (if not already in the cache) only if
di−1 = ti−1− ti−2 ≤ D. Therefore, the condition that a block
is in the cache at ti−1, either because it is already in the cache
or it is inserted, is di−1 ≤ D, and so an access at ti is a cache
hit if and only if di−1 ≤ D and di ≤ D:

BAOSM
b (D, i) =

{
1, Buffer Cache Hit at ti, using AOSM.
0, Buffer Cache Miss at ti, using AOSM.

SAOSMb (D) = |{i : max(di−1,di)> D, BAOSM
b (D, i) = 0}|.

For UAOSM
b (D), the access at ti contributes cache usage if either

it is a cache hit, max(di,di−1)≤ D, with residence time di, or

2Bytes of occupied cache multiplied by seconds of residence time in
cache. The same concept is also used in LHD [4].

1032    2022 USENIX Annual Technical Conference USENIX Association



a block insertion, di ≤ D < di−1, with residence time D:

UAOSM
b (D) = Size(b)×∑

i

(
di×1{max(di,di−1)≤D}

+D×1{di≤D<di−1}

)
.

W AOSM
b (D) is the block size times the number of insertions:

W AOSM
b (D) = Size(b)×|{i : di ≤ D < di−1}|.

Of course, SAOSMC (D), UAOSM
C (D) and W AOSM

C (D) can be defined
similarly.

Because NeverAdmit does not insert any blocks at all,
UNA

C (D) = 0, W NA
C (D) = 0 and SNAC (D) is the number of buffer

cache misses because of the accesses to the blocks in C :

BNA
b (D, i) =

{
1, Buffer Cache Hit at ti, using NA.
0, Buffer Cache Miss at ti, using NA.

SNAb (D) = |{i : BNA
b (D, i) = 0}|,

SNAC (D) = ∑
b∈C

SNAb (D).

A.3 Linear program
We minimize the total cost by formulating a linear program.
The cost function is the sum of the cost of disk reads and the
cost of written bytes:

V p
C (D) = Cost of Sp

C (D)+Cost of W p
C (D),

for p ∈ {AOM,AOW,AOSM,NA} and a given category C .
A category can receive fractional admission policies.

For example, CacheSack may decide that it is optimal to
apply AdmitOnMiss, AdmitOnSecondMiss, AdmitOnWrite
and NeverAdmit are applied to 30%, 20%, 10% and 40% of
blocks in C , respectively. Then we can formulate a linear pro-
gram that finds optimal policy fractions {αAOM

C , αAOW
C , αAOSM

C ,
αNA

C } to minimize the overall cost:

min
α
AOM
C ,αAOW

C ,αAOSM
C ,αNA

C
∑
C

(
α
AOM
C V AOM

C (D)+α
AOSM
C V AOSM

C (D)

+α
AOW
C V A)W

C (D)+α
NA
C V NA

C (D)
)
,

(1)

subject to the capacity constraint that the cache usage should
not exceed the given cache capacity Utotal:

0≤ α
AOM
C ,αAOW

C ,αAOSM
C ,αNA

C ≤ 1,

α
AOM
C +α

AOW
C +α

AOSM
C +α

NA
C = 1,

∑
C

(
α
AOM
C UAOM

C (D)+α
AOSM
C UAOSM

C (D)

+α
AOW
C UAOW

C (D)+α
NA
C UNA

C (D)
)
≤Utotal.

We note that if the LRU cache is perfectly modeled by the
approach in Section A.2, the resulting cache retention time of
the LRU cache is exactly D after applying the optimal policy
fractions.

Cost

Cache Usage

NeverAdmit

AdmitOnSecondMiss

AdmitOnMiss
AdmitOnWrite

Figure 16: Example of Andrew’s monotone chain convex hull
algorithm applied to the admission policies.

A.4 Greedy algorithm

Although the linear program (1) can be solved by a standard
solver, we are able to solve it by a greedy algorithm with a
simple transformation. It is especially beneficial for the pro-
duction deployment because of the low-overhead and stability
of the greedy algorithm, compared to a generic solver. We first
note that the difference between the above linear program and
a fractional knapsack problem [14] is that for each category,
we need to decide coupled four fractions (three degrees of
freedom), instead of two fractions (one degree of freedom)
in a fractional knapsack problem. Thus, the greedy algorithm
in [14] can not be directly applied. However, we can use
Andrew’s lower convex hull algorithm [2] to decouple the
dependency.

For a given category C , the lower convex hull formed by
the points {(Up

C ,V
p
C ), p∈ {AOM,AOW,AOSM,NA}}, is the lowest

cost of C that can be generated among all convex combina-
tions of the policies. For example, Figure 16 is the lower
convex hull constructed by the given admission policies by
using Andrew’s algorithm. Let FC (u) denote the lower convex
hull formed above, as a mapping from cache usage u to the
corresponding cost, for each category C . By dropping any
line segments with non-negative slopes, all FC are strictly de-
creasing, piecewise linear functions. Then we can transform
the linear program to a convex optimization problem:

min
uC≥0

∑
C

FC (uC ), ∑
C

uC ≤Utotal.

We can then solve the above convex optimization problem
by the steepest descent method (a greedy algorithm). We
initialize uC = 0 for all C and iteratively decide each uC in
the following way. We first choose the line segment with the
most negative slope among all line segments of FC and change
the value of the corresponding uC . In the same fashion, we

USENIX Association 2022 USENIX Annual Technical Conference    1033



then choose the line segment with second most negative slope
and change the value of the corresponding uC , then the third
most negative slope, and so on, until the sum of uC reaches
Utotal.

Because we allow fractional policies, the category cor-
responding to the last chosen line segment generally has
the optimal policy as a convex combination of two of
{AOM,AOW,AOSM,NA}, and the optimal policy of any other cat-
egory must be exactly one of {AOM,AOW,AOSM,NA}.

A.5 Optimization over modeled cache reten-
tion times

The linear program (1) is to find the optimal policy fractions
for a given modeled cache retention time D, which can not be
known a priori. Thus, we need to solve the same optimization
problem for all possible D:

min
D>0

min
α
AOM
C ,αAOW

C ,αAOSM
C ,αNA

C
∑
C

(
α
AOM
C V AOM

C (D)+α
AOSM
C V AOSM

C (D)

+α
AOW
C V AOW

C (D)+α
NA
C V NA

C (D)
)
,

subject to the same capacity constraint.
To do this, we can use a standard scalar-variable optimiza-

tion approach like Brent’s method [10] for 0 < D≤ D, where
D is a suitable upper bound. A brute-force approach may be
even more practical for implementation: we simply solve the
optimization problem for a set of reasonable retention times:
0 < D1 < D2 < · · ·< Dm = D.

References

[1] Christoph Albrecht, Arif Merchant, Murray Stokely,
Muhammad Waliji, François Labelle, Nate Coehlo,
Xudong Shi, and C. Eric Schrock. Janus: Optimal Flash
Provisioning for Cloud Storage Workloads. In 2013
USENIX Annual Technical Conference (USENIX ATC
13), pages 91–102. USENIX Association, June 2013.

[2] A.M. Andrew. Another efficient algorithm for convex
hulls in two dimensions. Information Processing Letters,
9(5):216–219, 1979.

[3] Jeff Barr. AQUA (Advanced Query Accelerator) –
A Speed Boost for Your Amazon Redshift Queries.
https://aws.amazon.com/blogs/aws/new-aqua-
advanced-query-accelerator-for-amazon-
redshift/, April 2021.

[4] Nathan Beckmann, Haoxian Chen, and Asaf Cidon.
LHD: Improving Cache Hit Rate by Maximizing Hit
Density. In 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18), pages
389–403. USENIX Association, April 2018.

[5] Nathan Beckmann and Daniel Sanchez. Maximizing
Cache Performance Under Uncertainty. In 2017 IEEE
International Symposium on High Performance Com-
puter Architecture (HPCA), pages 109–120, 2017.

[6] L. A. Belady. A Study of Replacement Algorithms for
a Virtual-Storage Computer. IBM Syst. J., 5(2):78–101,
June 1966.

[7] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac
Grosof, Sathya Gunasekar, Jimmy Lu, Michael Uhlar,
Jim Carrig, Nathan Beckmann, Mor Harchol-Balter, and
Gregory R. Ganger. The CacheLib Caching Engine:
Design and Experiences at Scale. In 14th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI 20), pages 753–768. USENIX Association,
November 2020.

[8] Daniel S. Berger. Towards Lightweight and Robust
Machine Learning for CDN Caching. In Proceedings
of the 17th ACM Workshop on Hot Topics in Networks,
HotNets ’18, page 134–140. Association for Computing
Machinery, 2018.

[9] Aaron Blankstein, Siddhartha Sen, and Michael J. Freed-
man. Hyperbolic Caching: Flexible Caching for Web
Applications. In 2017 USENIX Annual Technical Con-
ference (USENIX ATC 17), pages 499–511. USENIX
Association, July 2017.

[10] R.P. Brent. Algorithms for minimization without deriva-
tives. Prentice-Hall, 1973.

[11] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:
A Distributed Storage System for Structured Data. ACM
Trans. Comput. Syst., 26(2), June 2008.

[12] F.J. Corbató. A Paging Experiment with the Multics
System. Massachusetts Institute of Technology, 1968.

[13] James C. Corbett, Jeffrey Dean, Michael Epstein,
Andrew Fikes, Christopher Frost, JJ Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eu-
gene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-
nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford.
Spanner: Google’s Globally-Distributed Database. In
10th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 12), pages 261–264.
USENIX Association, October 2012.

[14] George B. Dantzig. Discrete-Variable Extremum Prob-
lems. Operations Research, 5(2):266–288, 1957.

1034    2022 USENIX Annual Technical Conference USENIX Association

https://aws.amazon.com/blogs/aws/new-aqua-advanced-query-accelerator-for-amazon-redshift/
https://aws.amazon.com/blogs/aws/new-aqua-advanced-query-accelerator-for-amazon-redshift/
https://aws.amazon.com/blogs/aws/new-aqua-advanced-query-accelerator-for-amazon-redshift/


[15] Gil Einziger, Roy Friedman, and Ben Manes. TinyLFU:
A Highly Efficient Cache Admission Policy. ACM Trans.
Storage, 13(4), November 2017.

[16] Assaf Eisenman, Asaf Cidon, Evgenya Pergament,
Or Haimovich, Ryan Stutsman, Mohammad Alizadeh,
and Sachin Katti. Flashield: a Hybrid Key-value Cache
that Controls Flash Write Amplification. In 16th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 65–78. USENIX As-
sociation, February 2019.

[17] Ronald Fagin. Asymptotic miss ratios over independent
references. Journal of Computer and System Sciences,
14(2):222–250, 1977.

[18] Alex Gartrell. McDipper: A key-value cache for
Flash storage. https://engineering.fb.com/2013/
03/05/web/mcdipper-a-key-value-cache-for-
flash-storage/, March 2013.

[19] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The Google File System. In Proceedings of the
19th ACM Symposium on Operating Systems Principles,
pages 20–43, 2003.

[20] Dean Hildebrand and Denis Serenyi. Colossus
under the hood: a peek into Google’s scalable
storage system. https://cloud.google.com/
blog/products/storage-data-transfer/a-peek-
behind-colossus-googles-file-system, April
2021.

[21] Sai Huang, Qingsong Wei, Dan Feng, Jianxi Chen, and
Cheng Chen. Improving Flash-Based Disk Cache with
Lazy Adaptive Replacement. ACM Trans. Storage,
12(2), February 2016.

[22] Akanksha Jain and Calvin Lin. Back to the Future:
Leveraging Belady’s Algorithm for Improved Cache
Replacement. In Proceedings of the 43rd International
Symposium on Computer Architecture, ISCA ’16, page
78–89. IEEE Press, 2016.

[23] Bo Jiang, Philippe Nain, and Don Towsley. On the
Convergence of the TTL Approximation for an LRU
Cache under Independent Stationary Request Processes.
ACM Trans. Model. Perform. Eval. Comput. Syst., 3(4),
September 2018.

[24] Jinhong Li, Qiuping Wang, Patrick P. C. Lee, and Chao
Shi. An In-Depth Analysis of Cloud Block Storage
Workloads in Large-Scale Production. In 2020 IEEE
International Symposium on Workload Characterization
(IISWC), pages 37–47, 2020.

[25] Evan Zheran Liu, Milad Hashemi, Kevin Swersky,
Parthasarathy Ranganathan, and Junwhan Ahn. An Imi-
tation Learning Approach for Cache Replacement. In
Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119 of Proceedings of Machine Learning
Research, pages 6237–6247. PMLR, 2020.

[26] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias,
Juncheng Yang, Sathya Gunasekar, Jimmy Lu, Daniel S.
Berger, Nathan Beckmann, and Gregory R. Ganger. Kan-
garoo: Caching Billions of Tiny Objects on Flash. In
Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP ’21, page 243–262.
Association for Computing Machinery, 2021.

[27] Nimrod Megiddo and Dharmendra S. Modha. ARC: A
Self-Tuning, Low Overhead Replacement Cache. In 2nd
USENIX Conference on File and Storage Technologies
(FAST 03). USENIX Association, March 2003.

[28] Michael Mesnier, Feng Chen, Tian Luo, and Jason B.
Akers. Differentiated storage services. In Proceedings
of the Twenty-Third ACM Symposium on Operating Sys-
tems Principles, SOSP ’11, page 57–70. Association for
Computing Machinery, 2011.

[29] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-
Won Lee, and Young Ik Eom. SFS: Random Write Con-
sidered Harmful in Solid State Drives. In Proceedings
of the 10th USENIX Conference on File and Storage
Technologies, FAST’12, page 12. USENIX Association,
2012.

[30] Pancham Pancham, Deepak Chaudhary, and Ruchin
Gupta. Comparison of Cache Page Replacement Tech-
niques to Enhance Cache Memory Performance. Inter-
national Journal of Computer Applications, 98:27–33,
07 2014.

[31] Moinuddin K. Qureshi and Yale N. Patt. Utility-based
cache partitioning: A low-overhead, high-performance,
runtime mechanism to partition shared caches. In 2006
39th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO’06), pages 423–432, 2006.

[32] Ricardo Santana, Steven Lyons, Ricardo Koller, Raju
Rangaswami, and Jason Liu. To ARC or Not to ARC.
In 7th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 15). USENIX Association,
July 2015.

[33] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. Bidirectional Attention Flow for
Machine Comprehension. In 5th International Confer-
ence on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceed-
ings. OpenReview.net, 2017.

USENIX Association 2022 USENIX Annual Technical Conference    1035

https://engineering.fb.com/2013/03/05/web/mcdipper-a-key-value-cache-for-flash-storage/
https://engineering.fb.com/2013/03/05/web/mcdipper-a-key-value-cache-for-flash-storage/
https://engineering.fb.com/2013/03/05/web/mcdipper-a-key-value-cache-for-flash-storage/
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system


[34] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy,
Chad Whipkey, Eric Rollins, Mircea Oancea, Kyle
Littlefield, David Menestrina, Stephan Ellner, John
Cieslewicz, Ian Rae, Traian Stancescu, and Himani Apte.
F1: A Distributed SQL Database That Scales. In VLDB,
2013.

[35] Zhenyu Song, Daniel S. Berger, Kai Li, and Wyatt Lloyd.
Learning relaxed belady for content distribution network
caching. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages
529–544. USENIX Association, February 2020.

[36] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar,
and Kai Li. RIPQ: Advanced Photo Caching on Flash
for Facebook. In 13th USENIX Conference on File
and Storage Technologies (FAST 15), pages 373–386.
USENIX Association, February 2015.

[37] Rajesh Thallam. BigQuery explained: An overview
of BigQuery’s architecture. https://cloud.google.
com/blog/products/data-analytics/new-blog-
series-bigquery-explained-overview, Septem-
ber 2020.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,
and Illia Polosukhin. Attention is All you Need. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

[39] Giuseppe Vietri, Liana V. Rodriguez, Wendy A. Mar-
tinez, Steven Lyons, Jason Liu, Raju Rangaswami, Ming
Zhao, and Giri Narasimhan. Driving Cache Replace-
ment with ML-Based LeCaR. In Proceedings of the 10th
USENIX Conference on Hot Topics in Storage and File
Systems, HotStorage’18, page 3. USENIX Association,
2018.

[40] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad,
and Nohhyun Park. Cache Modeling and Optimization
using Miniature Simulations. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pages 487–
498. USENIX Association, July 2017.

[41] Hua Wang, Xinbo Yi, Ping Huang, Bin Cheng, and
Ke Zhou. Efficient SSD Caching by Avoiding Unneces-
sary Writes Using Machine Learning. In Proceedings of
the 47th International Conference on Parallel Process-
ing, ICPP 2018. Association for Computing Machinery,
2018.

[42] Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala,
Swaminathan Sundararaman, and Robert Wood. HEC:
Improving Endurance of High Performance Flash-Based

Cache Devices. In Proceedings of the 6th International
Systems and Storage Conference, SYSTOR ’13. Associ-
ation for Computing Machinery, 2013.

[43] Giulio Zhou and Martin Maas. Learning on distributed
traces for data center storage systems. In A. Smola,
A. Dimakis, and I. Stoica, editors, Proceedings of Ma-
chine Learning and Systems, volume 3, pages 350–364,
2021.

[44] Huapeng Zhou, Linpeng Tang, Qi Huang, and Wyatt
Lloyd. The Evolution of Advanced Caching in the
Facebook CDN. https://research.fb.com/blog/
2016/04/the-evolution-of-advanced-caching-
in-the-facebook-cdn/, April 2016.

1036    2022 USENIX Annual Technical Conference USENIX Association

https://cloud.google.com/blog/products/data-analytics/new-blog-series-bigquery-explained-overview
https://cloud.google.com/blog/products/data-analytics/new-blog-series-bigquery-explained-overview
https://cloud.google.com/blog/products/data-analytics/new-blog-series-bigquery-explained-overview
https://research.fb.com/blog/2016/04/the-evolution-of-advanced-caching-in-the-facebook-cdn/
https://research.fb.com/blog/2016/04/the-evolution-of-advanced-caching-in-the-facebook-cdn/
https://research.fb.com/blog/2016/04/the-evolution-of-advanced-caching-in-the-facebook-cdn/


Amazon DynamoDB: A Scalable, Predictably Performant, and Fully Managed
NoSQL Database Service

Mostafa Elhemali, Niall Gallagher, Nicholas Gordon, Joseph Idziorek, Richard Krog
Colin Lazier, Erben Mo, Akhilesh Mritunjai, Somu Perianayagam ,Tim Rath

Swami Sivasubramanian, James Christopher Sorenson III, Sroaj Sosothikul, Doug Terry, Akshat Vig
dynamodb-paper@amazon.com

Amazon Web Services

Abstract
Amazon DynamoDB is a NoSQL cloud database service that
provides consistent performance at any scale. Hundreds of
thousands of customers rely on DynamoDB for its fundamen-
tal properties: consistent performance, availability, durability,
and a fully managed serverless experience. In 2021, during the
66-hour Amazon Prime Day shopping event, Amazon systems
- including Alexa, the Amazon.com sites, and Amazon fulfill-
ment centers, made trillions of API calls to DynamoDB, peak-
ing at 89.2 million requests per second, while experiencing
high availability with single-digit millisecond performance.
Since the launch of DynamoDB in 2012, its design and im-
plementation have evolved in response to our experiences
operating it. The system has successfully dealt with issues
related to fairness, traffic imbalance across partitions, moni-
toring, and automated system operations without impacting
availability or performance. Reliability is essential, as even
the slightest disruption can significantly impact customers.
This paper presents our experience operating DynamoDB at
a massive scale and how the architecture continues to evolve
to meet the ever-increasing demands of customer workloads.

1 Introduction

Amazon DynamoDB is a NoSQL cloud database service that
supports fast and predictable performance at any scale. Dy-
namoDB is a foundational AWS service that serves hundreds
of thousands of customers using a massive number of servers
located in data centers around the world. DynamoDB powers
multiple high-traffic Amazon properties and systems includ-
ing Alexa, the Amazon.com sites, and all Amazon fulfillment
centers. Moreover, many AWS services such as AWS Lambda,
AWS Lake Formation, and Amazon SageMaker are built on
DynamoDB, as well as hundreds of thousands of customer
applications.

These applications and services have demanding opera-
tional requirements with respect to performance, reliability,
durability, efficiency, and scale. The users of DynamoDB rely

on its ability to serve requests with consistent low latency. For
DynamoDB customers, consistent performance at any scale
is often more important than median request service times be-
cause unexpectedly high latency requests can amplify through
higher layers of applications that depend on DynamoDB and
lead to a bad customer experience. The goal of the design of
DynamoDB is to complete all requests with low single-digit
millisecond latencies. In addition, the large and diverse set
of customers who use DynamoDB rely on an ever-expanding
feature set as shown in Figure 1. As DynamoDB has evolved
over the last ten years, a key challenge has been adding fea-
tures without impacting operational requirements. To benefit
customers and application developers, DynamoDB uniquely
integrates the following six fundamental system properties:

DynamoDB is a fully managed cloud service. Using the
DynamoDB API, applications create tables and read and write
data without regard for where those tables are stored or how
they’re managed. DynamoDB frees developers from the bur-
den of patching software, managing hardware, configuring a
distributed database cluster, and managing ongoing cluster
operations. DynamoDB handles resource provisioning, au-
tomatically recovers from failures, encrypts data, manages
software upgrades, performs backups, and accomplishes other
tasks required of a fully-managed service.

DynamoDB employs a multi-tenant architecture. Dy-
namoDB stores data from different customers on the same
physical machines to ensure high utilization of resources, en-
abling us to pass the cost savings to our customers. Resource
reservations, tight provisioning, and monitored usage provide
isolation between the workloads of co-resident tables.

DynamoDB achieves boundless scale for tables. There
are no predefined limits for the amount of data each table
can store. Tables grow elastically to meet the demand of the
customers’ applications. DynamoDB is designed to scale the
resources dedicated to a table from several servers to many
thousands as needed. DynamoDB spreads an application’s
data across more servers as the amount of data storage and
the demand for throughput requirements grow.

DynamoDB provides predictable performance. The simple

USENIX Association 2022 USENIX Annual Technical Conference    1037



Figure 1: DynamoDB yimeline

DynamoDB API with GetItem and PutItem operations allows
it to respond to requests with consistent low latency. An ap-
plication running in the same AWS Region as its data will
typically see average service-side latencies in the low single-
digit millisecond range for a 1 KB item. Most importantly,
DynamoDB latencies are predictable. Even as tables grow
from a few megabytes to hundreds of terabytes, latencies re-
main stable due to the distributed nature of data placement
and request routing algorithms in DynamoDB. DynamoDB
handles any level of traffic through horizontal scaling and
automatically partitions and re-partitions data to meet an ap-
plication’s I/O performance requirements.

DynamoDB is highly available. DynamoDB replicates data
across multiple data centers—called Availability Zones in
AWS—and automatically re-replicates in the case of disk
or node failures to meet stringent availability and durability
requirements. Customers can also create global tables that are
geo-replicated across selected Regions for disaster recovery
and provide low latency access from anywhere. DynamoDB
offers an availability SLA of 99.99 for regular tables and
99.999 for global tables (where DynamoDB replicates across
tables across multiple AWS Regions).

DynamoDB supports flexible use cases. DynamoDB
doesn’t force developers into a particular data model or con-
sistency model. DynamoDB tables don’t have a fixed schema
but instead allow each data item to contain any number of at-
tributes with varying types, including multi-valued attributes.
Tables use a key-value or document data model. Developers
can request strong or eventual consistency when reading items
from a table.

In this paper, we describe how DynamoDB evolved as a
distributed database service to meet the needs of its customers
without losing its key aspect of providing a single-tenant ex-
perience to every customer using a multi-tenant architecture.
The paper explains the challenges faced by the system and
how the service evolved to handle those challenges while con-
necting the required changes to a common theme of durability,
availability, scalability, and predictable performance.

The paper captures the following lessons that we have
learnt over the years

• Adapting to customers’ traffic patterns to reshape the
physical partitioning scheme of the database tables im-
proves customer experience.

• Performing continuous verification of data-at-rest is a
reliable way to protect against both hardware failures
and software bugs in order to meet high durability goals.

• Maintaining high availability as a system evolves re-
quires careful operational discipline and tooling. Mech-
anisms such as formal proofs of complex algorithms,
game days (chaos and load tests), upgrade/downgrade
tests, and deployment safety provides the freedom to
safely adjust and experiment with the code without the
fear of compromising correctness.

• Designing systems for predictability over absolute ef-
ficiency improves system stability. While components
such as caches can improve performance, do not allow
them to hide the work that would be performed in their
absence, ensuring that the system is always provisioned
to handle the unexpected.

The structure of this paper is as follows: Section 2 expands
on the history of DynamoDB and explains its origins, which
derive from the original Dynamo system. Section 3 presents
the architectural overview of DynamoDB. Section 4 covers
the journey of DynamoDB from provisioned to on-demand
tables. Section 5 covers how DynamoDB ensures strong dura-
bility. Section 6 describes the availability challenges faced
and how these challenges were handled. Section 7 provides
some experimental results based on the Yahoo! Cloud Serving
Benchmark (YCSB) benchmarks, and Section 8 concludes
the paper.

2 History

The design of DynamoDB was motivated by our experiences
with its predecessor Dynamo [9], which was the first NoSQL
database system developed at Amazon. Dynamo was created
in response to the need for a highly scalable, available, and
durable key-value database for shopping cart data. In the early
years, Amazon learned that providing applications with direct
access to traditional enterprise database instances led to scal-
ing bottlenecks such as connection management, interference
between concurrent workloads, and operational problems with
tasks such as schema upgrades. Thus, a service-oriented ar-
chitecture was adopted to encapsulate an application’s data

1038    2022 USENIX Annual Technical Conference USENIX Association



behind service-level APIs that allowed sufficient decoupling
to address tasks like reconfiguration without having to disrupt
clients.

High availability is a critical property of a database ser-
vice as any downtime can impact customers that depend on
the data. Another critical requirement for Dynamo was pre-
dictable performance so that applications could provide a
consistent experience to their users. To achieve these goals,
Amazon had to start from first principles when designing
Dynamo. The adoption of Dynamo widened to serve several
use cases within Amazon because it was the only database
service that provided high reliability at scale. However, Dy-
namo still carried the operational complexity of self-managed
large database systems. Dynamo was a single-tenant system
and teams were responsible for managing their own Dynamo
installations. Teams had to become experts on various parts of
the database service and the resulting operational complexity
became a barrier to adoption.

During this period, Amazon launched new services (no-
tably Amazon S3 and Amazon SimpleDB) that focused on a
managed and elastic experience in order to remove this op-
erational burden. Amazon engineers preferred to use these
services instead of managing their own systems like Dynamo,
even though the functionality of Dynamo was often better
aligned with their applications’ needs. Managed elastic ser-
vices freed developers from administrating databases and
allowed them to focus on their applications.

The first database-as-a-service from Amazon was Sim-
pleDB [1], a fully managed elastic NoSQL database service.
SimpleDB provided multi-datacenter replication, high avail-
ability, and high durability without the need for customers to
set up, configure, or patch their database. Like Dynamo, Sim-
pleDB also had a very simple table interface with a restricted
query set that served as a building block for many developers.
While SimpleDB was successful and powered many applica-
tions, it had some limitations. One limitation was that tables
had a small capacity in terms of storage (10GB) and of request
throughput. Another limitation was the unpredictable query
and write latencies, which stemmed from the fact that all table
attributes were indexed, and the index needed to be updated
with every write. These limitations created a new kind of
operational burden for developers. They had to divide data
between multiple tables to meet their application’s storage
and throughput requirements.

We realized that the goal of removing the limitations of Sim-
pleDB and providing a scalable NoSQL database service with
predictable performance could not be met with the SimpleDB
APIs. We concluded that a better solution would combine the
best parts of the original Dynamo design (incremental scala-
bility and predictable high performance) with the best parts of
SimpleDB (ease of administration of a cloud service, consis-
tency, and a table-based data model that is richer than a pure
key-value store). These architectural discussions culminated
in Amazon DynamoDB, a public service launched in 2012

Operation Description

PutItem
Inserts a new item, or replaces an old item
with a new item.

UpdateItem
Updates an existing item, or adds a new
item to the table if it doesn’t already exist.

DeleteItem
The DeleteItem operation deletes a single
item from the table by the primary key.

GetItem
The GetItem operation returns a set of at-
tributes for the item with the given primary
key.

Table 1: DynamoDB CRUD APIs for items

that shared most of the name of the previous Dynamo system
but little of its architecture. Amazon DynamoDB was the
result of everything we’d learned from building large-scale,
non-relational databases for Amazon.com and has evolved
based on our experiences building highly scalable and reliable
cloud computing services at AWS.

3 Architecture

A DynamoDB table is a collection of items, and each item is
a collection of attributes. Each item is uniquely identified by
a primary key. The schema of the primary key is specified at
the table creation time. The primary key schema contains a
partition key or a partition and sort key (a composite primary
key). The partition key’s value is always used as an input to
an internal hash function. The output from the hash function
and the sort key value (if present) determines where the item
will be stored. Multiple items can have the same partition key
value in a table with a composite primary key. However, those
items must have different sort key values.

DynamoDB also supports secondary indexes to provide
enhanced querying capability. A table can have one or more
secondary indexes. A secondary index allows querying the
data in the table using an alternate key, in addition to queries
against the primary key. DynamoDB provides a simple in-
terface to store or retrieve items from a table or an index.
Table 1 contains the primary operations available to clients
for reading and writing items in DynamoDB tables. Any oper-
ation that inserts, updates, or deletes an item can be specified
with a condition that must be satisfied in order for the op-
eration to succeed. DynamoDB supports ACID transactions
enabling applications to update multiple items while ensuring
atomicity, consistency, isolation, and durability (ACID) across
items without compromising the scalability, availability, and
performance characteristics of DynamoDB tables.

A DynamoDB table is divided into multiple partitions to
handle the throughput and storage requirements of the table.
Each partition of the table hosts a disjoint and contiguous part
of the table’s key-range. Each partition has multiple replicas
distributed across different Availability Zones for high avail-

USENIX Association 2022 USENIX Annual Technical Conference    1039



Figure 2: Storage replica on a storage node

Figure 3: Log replica on a log node

ability and durability. The replicas for a partition form a repli-
cation group. The replication group uses Multi-Paxos [14]
for leader election and consensus. Any replica can trigger a
round of the election. Once elected leader, a replica can main-
tain leadership as long as it periodically renews its leadership
lease.

Only the leader replica can serve write and strongly consis-
tent read requests. Upon receiving a write request, the leader
of the replication group for the key being written generates
a write-ahead log record and sends it to its peer (replicas). A
write is acknowledged to the application once a quorum of
peers persists the log record to their local write-ahead logs.
DynamoDB supports strongly and eventually consistent reads.
Any replica of the replication group can serve eventually con-
sistent reads. The leader of the group extends its leadership
using a lease mechanism. If the leader of the group is failure
detected (considered unhealthy or unavailable) by any of its
peers, the peer can propose a new round of the election to
elect itself as the new leader. The new leader won’t serve
any writes or consistent reads until the previous leader’s lease
expires.

A replication group consists of storage replicas that contain
both the write-ahead logs and the B-tree that stores the key-
value data as shown in Figure 2. To improve availability and
durability, a replication group can also contain replicas that
only persist recent write-ahead log entries as shown in Figure
3. These replicas are called log replicas. Log replicas are
akin to acceptors in Paxos. Log replicas do not store key-
value data. Section 5 and 6 discusses how log replicas
help DynamoDB improve its availability and durability.

DynamoDB consists of tens of microservices. Some of the
core services in DynamoDB are the metadata service, the

Figure 4: DynamoDB architecture

request routing service, the storage nodes, and the autoadmin
service, as shown in Figure 4. The metadata service stores
routing information about the tables, indexes, and replication
groups for keys for a given table or index. The request rout-
ing service is responsible for authorizing, authenticating, and
routing each request to the appropriate server. For example,
all read and update requests are routed to the storage nodes
hosting the customer data. The request routers look up the
routing information from the metadata service. All resource
creation, update, and data definition requests are routed to
the autoadmin service. The storage service is responsible for
storing customer data on a fleet of storage nodes. Each of the
storage nodes hosts many replicas of different partitions.

The autoadmin service is built to be the central nervous sys-
tem of DynamoDB. It is responsible for fleet health, partition
health, scaling of tables, and execution of all control plane
requests. The service continuously monitors the health of
all the partitions and replaces any replicas deemed unhealthy
(slow or not responsive or being hosted on bad hardware). The
service also performs health checks of all core components
of DynamoDB and replaces any hardware that is failing or
has failed. For example, if the autoadmin service detects a
storage node to be unhealthy, it kicks off a recovery process
that replaces the replicas hosted on that node to bring the
system back to a stable state.

Other DynamoDB services not shown in in Figure 4 sup-
port features such as point-in-time restore, on-demand back-
ups, update streams, global admission control, global tables,
global secondary indices, and transactions.

4 Journey from provisioned to on-demand

When DynamoDB launched, we introduced an internal ab-
straction, partitions, as a way to dynamically scale both the ca-
pacity and performance of tables. In the original DynamoDB
release, customers explicitly specified the throughput that a
table required in terms of read capacity units (RCUs) and
write capacity units (WCUs). For items up to 4 KB in size,
one RCU can perform one strongly consistent read request
per second. For items up to 1 KB in size, one WCU can

1040    2022 USENIX Annual Technical Conference USENIX Association



perform one standard write request per second. RCUs and
WCUs collectively are called provisioned throughput. The
original system split a table into partitions that allow its con-
tents to be spread across multiple storage nodes and mapped
to both the available space and performance on those nodes.
As the demands from a table changed (because it grew in
size or because the load increased), partitions could be further
split and migrated to allow the table to scale elastically. Par-
tition abstraction proved to be really valuable and continues
to be central to the design of DynamoDB. However this early
version tightly coupled the assignment of both capacity and
performance to individual partitions, which led to challenges.

DynamoDB uses admission control to ensure that storage
nodes don’t become overloaded, to avoid interference between
co-resident table partitions, and to enforce the throughput lim-
its requested by customers. Admission control in DynamoDB
has evolved over the past decade. Admission control was the
shared responsibility of all storage nodes for a table. Stor-
age nodes independently performed admission control based
on the allocations of their locally stored partitions. Given
that a storage node hosts partitions from multiple tables, the
allocated throughput of each partition was used to isolate
the workloads. DynamoDB enforced a cap on the maximum
throughput that could be allocated to a single partition, and
ensured that the total throughput of all the partitions hosted
by a storage node is less than or equal to the maximum al-
lowed throughput on the node as determined by the physical
characteristics of its storage drives.

The throughput allocated to partitions was adjusted when
the overall table’s throughput was changed or its partitions
were split into child partitions. When a partition was split
for size, the allocated throughput of the parent partition was
equally divided among the child partitions. When a partition
was split for throughput, the new partitions were allocated
throughput based on the table’s provisioned throughput. For
example, assume that a partition can accommodate a maxi-
mum provisioned throughput of 1000 WCUs. When a table
is created with 3200 WCUs, DynamoDB created four parti-
tions that each would be allocated 800 WCUs. If the table’s
provisioned throughput was increased to 3600 WCUs, then
each partition’s capacity would increase to 900 WCUs. If the
table’s provisioned throughput was increased to 6000 WCUs,
then the partitions would be split to create eight child parti-
tions, and each partition would be allocated 750 WCUs. If
the table’s capacity was decreased to 5000 WCUs, then each
partition’s capacity would be decreased to 675 WCUs.

The uniform distribution of throughput across partitions
is based on the assumptions that an application uniformly
accesses keys in a table and the splitting a partition for size
equally splits the performance. However, we discovered that
application workloads frequently have non-uniform access
patterns both over time and over key ranges. When the request
rate within a table is non-uniform, splitting a partition and
dividing performance allocation proportionately can result

in the hot portion of the partition having less available per-
formance than it did before the split. Since throughput was
allocated statically and enforced at a partition level, these non-
uniform workloads occasionally resulted in an application’s
reads and writes being rejected, called throttling, even though
the total provisioned throughput of the table was sufficient to
meet its needs.

Two most commonly faced challenges by the applications
were: hot partitions and throughput dilution. Hot partitions
arose in applications that had traffic going consistently to-
wards a few items of their tables. The hot items could belong
to a stable set of partitions or could hop around to different
partitions over time. Throughput dilution was common for
tables where partitions were split for size. Splitting a partition
for size would cause the throughput of the partition to be
divided equally among the newly created child partitions, and
hence the per partition throughput would decrease.

In both cases, from the customer’s perspective, throttling
caused their application to experience periods of unavailabil-
ity even though the service was behaving as expected. Cus-
tomers who experienced throttling would work around it by
increasing a table’s provisioned throughput and not use all
the capacity. That is, tables would be over-provisioned. While
this allowed them to achieve the performance they needed, it
was a poor experience because it was difficult to estimate the
right level of performance provisioning for their tables.

4.1 Initial improvements to admission control

As we mentioned at the start of this section, hot partitions and
throughput dilution stemmed from tightly coupling a rigid
performance allocation to each partition, and dividing that
allocation as partitions split. We liked that enforcing alloca-
tions at an individual partition level avoided the need for the
complexities of distributed admission control, but it became
clear these controls weren’t sufficient. Shortly after launch-
ing, DynamoDB introduced two improvements, bursting and
adaptive capacity, to address these concerns.

4.1.1 Bursting

The key observation that partitions had non-uniform access
also led us to observe that not all partitions hosted by a storage
node used their allocated throughput simultaneously. Hence,
to absorb temporal spikes in workloads at a partition level, Dy-
namoDB introduced the concept of bursting. The idea behind
bursting was to let applications tap into the unused capacity
at a partition level on a best effort basis to absorb short-lived
spikes. DynamoDB retained a portion of a partition’s unused
capacity for later bursts of throughput usage for up to 300
seconds and utilized it when consumed capacity exceeded the
provisioned capacity of the partition. The unused capacity is
called burst capacity.

DynamoDB still maintained workload isolation by ensuring

USENIX Association 2022 USENIX Annual Technical Conference    1041



that a partition could only burst if there was unused throughput
at the node level. The capacity was managed on the storage
node using multiple token buckets: two for each partition
(allocated and burst) and one for the node. These buckets
provided admission control. When a read or write request
arrived on a storage node, if there were tokens in the parti-
tion’s allocated token bucket, then the request was admitted
and tokens were deducted from the partition and node level
bucket. Once a partition had exhausted all the provisioned
tokens, requests were allowed to burst only when tokens were
available both in the burst token bucket and the node level
token bucket. Read requests were accepted based on the local
token buckets. Write requests using burst capacity required
an additional check on the node-level token bucket of other
member replicas of the partition. The leader replica of the
partition periodically collected information about each of the
members node-level capacity. In section 4.3 we explain how
we increased a node’s ability to burst.

4.1.2 Adaptive capacity

DynamoDB launched adaptive capacity to better absorb long-
lived spikes that cannot be absorbed by the burst capacity.
Adaptive capacity allowed DynamoDB to better absorb work-
loads that had heavily skewed access patterns across parti-
tions. Adaptive capacity actively monitored the provisioned
and consumed capacity of all the tables. If a table experienced
throttling and the table level throughput was not exceeded,
then it would automatically increase (boost) the allocated
throughput of the partitions of the table using a proportional
control algorithm. If the table was consuming more than its
provisioned capacity then capacity of the partitions which re-
ceived the boost would be decreased. The autoadmin system
ensured that partitions receiving boost were relocated to an
appropriate node that had the capacity to serve the increased
throughput, however like bursting, adaptive capacity was also
best-effort but eliminated over 99.99% of the throttling due
to skewed access pattern.

4.2 Global admission control

Even though DynamoDB had substantially reduced the
throughput problem for non-uniform access using bursting
and adaptive capacity, both the solutions had limitations.
Bursting was only helpful for short-lived spikes in traffic
and it was dependent on the node having throughput to sup-
port bursting. Adaptive capacity was reactive and kicked in
only after throttling had been observed. This meant that the
application using the table had already experienced brief pe-
riod of unavailability. The salient takeaway from bursting and
adaptive capacity was that we had tightly coupled partition
level capacity to admission control. Admission control was
distributed and performed at a partition level. DynamoDB
realized it would going to be beneficial to remove admission

control from the partition and let the partition burst always
while providing workload isolation.

To solve the problem of admission control, DynamoDB re-
placed adaptive capacity with global admission control (GAC).
GAC builds on the same idea of token buckets. The GAC
service centrally tracks the total consumption of the table
capacity in terms of tokens. Each request router maintains a
local token bucket to make admission decisions and commu-
nicates with GAC to replenish tokens at regular intervals (in
the order of few seconds). GAC maintains an ephemeral state
computed on the fly from client requests. Each GAC server
can be stopped and restarted without any impact on the overall
operation of the service. Each GAC server can track one or
more token buckets configured independently. All the GAC
servers are part of an independent hash ring. Request routers
manage several time-limited tokens locally. When a request
from the application arrives, the request router deducts tokens.
Eventually, the request router will run out of tokens because
of consumption or expiry. When the request router runs of
tokens, it requests more tokens from GAC. The GAC instance
uses the information provided by the client to estimate the
global token consumption and vends tokens available for the
next time unit to the client’s share of overall tokens. Thus, it
ensures that non-uniform workloads that send traffic to only
a subset of items can execute up to the maximum partition
capacity.

In addition to the global admission control scheme, the
partition-level token buckets were retained for defense-in-
depth. The capacity of these token buckets is then capped to
ensure that one application doesn’t consume all or a signifi-
cant share of the resources on the storage nodes.

4.3 Balancing consumed capacity

Letting partitions always burst required DynamoDB to man-
age burst capacity effectively. DynamoDB runs on a variety
of hardware instance types. These instance types vary by
throughput and storage capabilities. The latest generation
of storage nodes hosts thousands of partition replicas. The
partitions hosted on a single storage node could be wholly un-
related and belong to different tables. Hosting replicas from
multiple tables on a storage node, where each table could
be from a different customer and have varied traffic patterns
involves defining an allocation scheme that decides which
replicas can safely co-exist without violating critical prop-
erties such as availability, predictable performance, security,
and elasticity.

Colocation was a straightforward problem with provisioned
throughput tables. Colocation was more manageable in the
provisioned mode because of static partitions. Static partitions
made the allocation scheme reasonably simple. In the case
of provisioned tables without bursting and adaptive capacity,
allocation involved finding storage nodes that could accom-
modate a partition based on its allocated capacity. Partitions

1042    2022 USENIX Annual Technical Conference USENIX Association



were never allowed to take more traffic than their allocated
capacity and, hence there were no noisy neighbors. All parti-
tions on a storage node did not utilize their total capacity at
a given instance. Bursting when trying to react to the chang-
ing workload meant that the storage node might go above its
prescribed capacity and thus made the colocation of tenants
a more complex challenge. Thus, the system packed storage
nodes with a set of replicas greater than the node’s overall
provisioned capacity. DynamoDB implemented a system to
proactively balance the partitions allocated across the storage
nodes based on throughput consumption and storage to miti-
gate availability risks caused by tightly packed replicas. Each
storage node independently monitors the overall throughput
and data size of all its hosted replicas. In case the throughput
is beyond a threshold percentage of the maximum capacity
of the node, it reports to the autoadmin service a list of can-
didate partition replicas to move from the current node. The
autoadmin finds a new storage node for the partition in the
same or another Availability Zone that doesn’t have a replica
of this partition.

4.4 Splitting for consumption
Even with GAC and the ability for partitions to burst al-
ways, tables could experience throttling if their traffic was
skewed to a specific set of items. To address this problem,
DynamoDB automatically scales out partitions based on the
throughput consumed. Once the consumed throughput of a
partition crosses a certain threshold, the partition is split for
consumption. The split point in the key range is chosen based
on key distribution the partition has observed. The observed
key distribution serves as a proxy for the application’s access
pattern and is more effective than splitting the key range in
the middle. Partition splits usually complete in the order of
minutes. There are still class of workloads that cannot benefit
from split for consumption. For example, a partition receiv-
ing high traffic to a single item or a partition where the key
range is accessed sequentially will not benefit from split. Dy-
namoDB detects such access patterns and avoids splitting the
partition.

4.5 On-demand provisioning
Many applications that migrated to DynamoDB previously
ran on-premises or on self-hosted databases. In either sce-
nario, the application developer had to provision servers. Dy-
namoDB provides a simplified serverless operational model
and a new model for provisioning - read and write capacity
units. Because the concept of capacity units was new to cus-
tomers, some found it challenging to forecast the provisioned
throughput. As mentioned in the beginning of this section,
customers either over provisioned, which resulted in low uti-
lization or under provisioned which resulted in throttles. To
improve the customer experience for spiky workloads, we

launched on-demand tables. On-demand tables remove the
burden from our customers of figuring out the right provision-
ing for tables. DynamoDB provisions the on-demand tables
based on the consumed capacity by collecting the signal of
reads and writes and instantly accommodates up to double
the previous peak traffic on the table. If an application needs
more than double the previous peak on table, DynamoDB
automatically allocates more capacity as the traffic volume
increases to ensure that the workload does not experience
throttling. On-demand scales a table by splitting partitions for
consumption. The split decision algorithm is based on traffic.
GAC allows DynamoDB to monitor and protect the system
from one application consuming all the resources. The ability
to balance based on consumed capacity effectively means
partitions of on-demand tables can be placed intelligently so
as to not run into node level limits.

5 Durability and correctness

Data should never be lost after it has been committed. In
practice, data loss can occur because of hardware failures,
software bugs, or hardware bugs. DynamoDB is designed for
high durability by having mechanisms to prevent, detect, and
correct any potential data losses.

5.1 Hardware failures
As with most database management systems, the write-ahead
logs [15] in DynamoDB are central for providing durability
and crash recovery. Write ahead logs are stored in all three
replicas of a partition. For higher durability, the write ahead
logs are periodically archived to S3, an object store that is
designed for 11 nines of durability. Each replica still contains
the most recent write-ahead logs that are usually waiting to
be archived. The unarchived logs are typically a few hundred
megabytes in size. In a large service, hardware failures such
as memory and disk failures are common. When a node fails,
all replication groups hosted on the node are down to two
copies. The process of healing a storage replica can take
several minutes because the repair process involves copying
the B-tree and write-ahead logs. Upon detecting an unhealthy
storage replica, the leader of a replication group adds a log
replica to ensure there is no impact on durability. Adding a
log replica takes only a few seconds because the system has to
copy only the recent write-ahead logs from a healthy replica
to the new replica without the B-tree. Thus, quick healing of
impacted replication groups using log replicas ensures high
durability of most recent writes.

5.2 Silent data errors
Some hardware failures can cause incorrect data to be stored
[5, 7]. In our experience, these errors can happen because of
the storage media, CPU, or memory [5]. Unfortunately, it’s

USENIX Association 2022 USENIX Annual Technical Conference    1043



very difficult to detect these and they can happen anywhere in
the system. DynamoDB makes extensive use of checksums to
detect silent errors. By maintaining checksums within every
log entry, message, and log file, DynamoDB validates data
integrity for every data transfer between two nodes. These
checksums serve as guardrails to prevent errors from spread-
ing to the rest of the system. For example, a checksum is
computed for every message between nodes or components
and is verified because these messages can go through various
layers of transformations before they reach their destination.
Without such checks, any of the layers could introduce a silent
error.

Every log file that is archived to S3 has a manifest that
contains information about the log, such as a table, partition
and start and end markers for the data stored in the log file.
The agent responsible for archiving log files to S3 performs
various checks before uploading the data. These include and
are not limited to verification of every log entry to ensure that
it belongs to the correct table and partition, verification of
checksums to detect any silent errors, and verification that
the log file doesn’t have any holes in the sequence numbers.
Once all the checks are passed, the log file and its manifest
are archived. Log archival agents run on all three replicas of
the replication group. If one of the agents finds that a log file
is already archived, the agent downloads the uploaded file to
verify the integrity of the data by comparing it with its local
write-ahead log. Every log file and manifest file are uploaded
to S3 with a content checksum. The content checksum is
checked by S3 as part of the put operation, which guards
against any errors during data transit to S3.

5.3 Continuous verification

DynamoDB also continuously verifies data at rest. Our goal
is to detect any silent data errors or bit rot in the system.
An example of such a continuous verification system is the
scrub process. The goal of scrub is to detect errors that we
had not anticipated, such as bit rot. The scrub process runs
and verifies two things: all three copies of the replicas in a
replication group have the same data, and the data of the live
replicas matches with a copy of a replica built offline using
the archived write-ahead log entries. The process of building
a replica using archived logs is explained in section 5.5 below.
The verification is done by computing the checksum of the
live replica and matching that with a snapshot of one gener-
ated from the log entries archived in S3. The scrub mechanism
acts as a defense in depth to detect divergences between the
live storage replicas with the replicas built using the history
of logs from the inception of the table. These comprehensive
checks have been very beneficial in providing confidence in
the running system. A similar technique of continuous veri-
fication is used to verify replicas of global tables. Over the
years, we have learned that continuous verification of data-at-
rest is the most reliable method of protecting against hardware

failures, silent data corruption, and even software bugs.

5.4 Software bugs

DynamoDB is a distributed key-value store that’s built on a
complex substrate. High complexity increases the probability
of human error in design, code, and operations. Errors in the
system could cause loss or corruption of data, or violate other
interface contracts that our customers depend on. We use
formal methods [16] extensively to ensure the correctness
of our replication protocols. The core replication protocol
was specified using TLA+ [12, 13]. When new features that
affect the replication protocol are added, they are incorporated
into the specification and model checked. Model checking
has allowed us to catch subtle bugs that could have led to
durability and correctness issues before the code went into
production. Other services such as S3 [6] have also found
model-checking useful in similar scenarios.

We also employ extensive failure injection testing and
stress testing to ensure the correctness of every piece of soft-
ware deployed. In addition to testing and verifying the repli-
cation protocol of the data plane, formal methods have also
been used to verify the correctness of our control plane and
features such as distributed transactions.

5.5 Backups and restores

In addition to guarding against physical media corruption, Dy-
namoDB also supports backup and restore to protect against
any logical corruption due to a bug in a customer’s application.
Backups or restores don’t affect performance or availability
of the table as they are built using the write-ahead logs that
are archived in S3. The backups are consistent across mul-
tiple partitions up to the nearest second. The backups are
full copies of DynamoDB tables and are stored in an Ama-
zon S3 bucket. Data from a backup can be restored to a new
DynamoDB table at any time.

DynamoDB also supports point-in-time restore. Using
point-in-time restore, customers can restore the contents of
a table that existed at any time in the previous 35 days to
a different DynamoDB table in the same region. For tables
with the point-in-time restore enabled, DynamoDB creates
periodic snapshots of the partitions that belong to the table
and uploads them to S3. The periodicity at which a partition
is snapshotted is decided based on the amount of write-ahead
logs accumulated for the partition. The snapshots, in conjunc-
tion to write-ahead logs, are used to do point-in-time restore.
When a point-in-time restore is requested for a table, Dy-
namoDB identifies the closest snapshots to the requested time
for all the partitions of the tables, applies the logs up to the
timestamp in the restore request, creates a snapshot of the
table, and restores it.

1044    2022 USENIX Annual Technical Conference USENIX Association



6 Availability

To achieve high availability, DynamoDB tables are distributed
and replicated across multiple Availability Zones (AZ) in a
Region. DynamoDB regularly tests resilience to node, rack,
and AZ failures. For example, to test the availability and
durability of the overall service, power-off tests are exercised.
Using realistic simulated traffic, random nodes are powered
off using a job scheduler. At the end of all the power-off tests,
the test tools verify that the data stored in the database is
logically valid and not corrupted. This section expands on
some of the challenges solved in the last decade to ensure
high availability.

6.1 Write and consistent read availability

A partition’s write availability depends on its ability to have a
healthy leader and a healthy write quorum. A healthy write
quorum in the case of DynamoDB consists of two out of
the three replicas from different AZs. A partition remains
available as long as there are enough healthy replicas for a
write quorum and a leader. A partition will become unavail-
able for writes if the number of replicas needed to achieve
the minimum quorum are unavailable. If one of the replicas
is unresponsive, the leader adds a log replica to the group.
Adding a log replica is the fastest way to ensure that the write
quorum of the group is always met. This minimizes disrup-
tion to write availability due to an unhealthy write quorum.
The leader replica serves consistent reads. Introducing log
replicas was a big change to the system, and the formally
proven implementation of Paxos provided us the confidence
to safely tweak and experiment with the system to achieve
higher availability. We have been able to run millions of Paxos
groups in a Region with log replicas. Eventually consistent
reads can be served by any of the replicas. In case a leader
replica fails, other replicas detect its failure and elect a new
leader to minimize disruptions to the availability of consistent
reads.

6.2 Failure detection

A newly elected leader will have to wait for the expiry of the
old leader’s lease before serving any traffic. While this only
takes a couple of seconds, the elected leader cannot accept
any new writes or consistent read traffic during that period,
thus disrupting availability. One of the critical components
for a highly available system is failure detection for the leader.
Failure detection must be quick and robust to minimize dis-
ruptions. False positives in failure detection can lead to more
disruptions in availability. Failure detection works well for
failure scenarios where every replica of the group loses con-
nection to the leader. However, nodes can experience gray
network failures. Gray network failures can happen because
of communication issues between a leader and follower, is-

sues with outbound or inbound communication of a node, or
front-end routers facing communication issues with the leader
even though the leader and followers can communicate with
each other. Gray failures can disrupt availability because there
might be a false positive in failure detection or no failure de-
tection. For example, a replica that isn’t receiving heartbeats
from a leader will try to elect a new leader. As mentioned in
the section above, this can disrupt availability. To solve the
availability problem caused by gray failures, a follower that
wants to trigger a failover sends a message to other replicas
in the replication group asking if they can communicate with
the leader. If replicas respond with a healthy leader message,
the follower drops its attempt to trigger a leader election. This
change in the failure detection algorithm used by DynamoDB
significantly minimized the number of false positives in the
system, and hence the number of spurious leader elections.

6.3 Measuring availability
DynamoDB is designed for 99.999 percent availability for
global tables and 99.99 percent availability for Regional tables.
Availability is calculated for each 5-minute interval as the per-
centage of requests processed by DynamoDB that succeed.
To ensure these goals are being met, DynamoDB continu-
ously monitors availability at service and table levels. The
tracked availability data is used to analyze customer perceived
availability trends and trigger alarms if customers see errors
above a certain threshold. These alarms are called customer-
facing alarms (CFA). The goal of these alarms is to report
any availability-related problems and proactively mitigate the
problem either automatically or through operator interven-
tion. In addition to real-time tracking, the system runs daily
jobs that trigger aggregation to calculate aggregate availabil-
ity metrics per customer. The results of the aggregation are
uploaded to S3 for regular analysis of availability trends.

DynamoDB also measures and alarms on availability ob-
served on the client-side. There are two sets of clients used
to measure the user-perceived availability. The first set of
clients are internal Amazon services using DynamoDB as
the data store. These services share the availability metrics
for DynamoDB API calls as observed by their software. The
second set of clients is our DynamoDB canary applications.
These applications are run from every AZ in the Region, and
they talk to DynamoDB through every public endpoint. Real
application traffic allows us to reason about DynamoDB avail-
ability and latencies as seen by our customers and catch gray
failures [10, 11]. They are a good representation of what our
customers might be experiencing both as long and short-term
trends.

6.4 Deployments
Unlike a traditional relational database, DynamoDB takes
care of deployments without the need for maintenance win-

USENIX Association 2022 USENIX Annual Technical Conference    1045



dows and without impacting the performance and availability
that customers experience. Software deployments are done
for various reasons, including new features, bug fixes, and
performance optimizations. Often deployments involve updat-
ing numerous services. DynamoDB pushes software updates
at a regular cadence. A deployment takes the software from
one state to another state. The new software being deployed
goes through a full development and test cycle to build confi-
dence in the correctness of the code. Over the years, across
multiple deployments, DynamoDB has learned that it’s not
just the end state and the start state that matter; there could
be times when the newly deployed software doesn’t work
and needs a rollback. The rolled-back state might be different
from the initial state of the software. The rollback procedure
is often missed in testing and can lead to customer impact.
DynamoDB runs a suite of upgrade and downgrade tests at a
component level before every deployment. Then, the software
is rolled back on purpose and tested by running functional
tests. DynamoDB has found this process valuable for catch-
ing issues that otherwise would make it hard to rollback if
needed.

Deploying software on a single node is quite different from
deploying software to multiple nodes. The deployments are
not atomic in a distributed system, and, at any given time,
there will be software running the old code on some nodes
and new code on other parts of the fleet. The additional chal-
lenge with distributed deployments is that the new software
might introduce a new type of message or change the protocol
in a way that old software in the system doesn’t understand.
DynamoDB handles these kinds of changes with read-write
deployments. Read-write deployment is completed as a multi-
step process. The first step is to deploy the software to read
the new message format or protocol. Once all the nodes can
handle the new message, the software is updated to send new
messages. New messages are enabled with software deploy-
ment as well. Read-write deployments ensure that both types
of messages can coexist in the system. Even in the case of
rollbacks, the system can understand both old and new mes-
sages.

All the deployments are done on a small set of nodes before
pushing them to the entire fleet of nodes. The strategy reduces
the potential impact of faulty deployments. DynamoDB sets
alarm thresholds on availability metrics (mentioned in section
6.3). If error rates or latency exceed the threshold values
during deployments, the system triggers automatic rollbacks.
Software deployments to storage nodes trigger leader failovers
that are designed to avoid any impact to availability. The
leader replicas relinquish leadership and hence the group’s
new leader doesn’t have to wait for the old leader’s lease to
expire.

6.5 Dependencies on external services

To ensure high availability, all the services that DynamoDB
depends on in the request path should be more highly avail-
able than DynamoDB. Alternatively, DynamoDB should be
able to continue to operate even when the services on which
it depends are impaired. Examples of services DynamoDB
depends on for the request path include AWS Identity and
Access Management Services (IAM) [2], and AWS Key Man-
agement Service (AWS KMS) [3] for tables encrypted using
customer keys. DynamoDB uses IAM and AWS KMS to au-
thenticate every customer request. While these services are
highly available, DynamoDB is designed to operate when
these services are unavailable without sacrificing any of the
security properties that these systems provide.

In the case of IAM and AWS KMS, DynamoDB employs
a statically stable design [18], where the overall system keeps
working even when a dependency becomes impaired. Per-
haps the system doesn’t see any updated information that its
dependency was supposed to have delivered. However, every-
thing before the dependency became impaired continues to
work despite the impaired dependency. DynamoDB caches
result from IAM and AWS KMS in the request routers that
perform the authentication of every request. DynamoDB peri-
odically refreshes the cached results asynchronously. If IAM
or KMS were to become unavailable, the routers will continue
to use the cached results for pre-determined extended period.
Clients that send operations to request routers that don’t have
the cached results will see an impact. However, we have seen
a minimal impact in practice when AWS KMS or IAM is
impaired. Moreover, caches improve response times by re-
moving the need to do an off-box call, which is especially
valuable when the system is under high load.

6.6 Metadata availability

One of the most important pieces of metadata the request
routers needs is the mapping between a table’s primary keys
and storage nodes. At launch, DynamoDB stored the metadata
in DynamoDB itself. This routing information consisted of
all the partitions for a table, the key range of each partition,
and the storage nodes hosting the partition. When a router
received a request for a table it had not seen before, it down-
loaded the routing information for the entire table and cached
it locally. Since the configuration information about partition
replicas rarely changes, the cache hit rate was approximately
99.75 percent. The downside is that caching introduces bi-
modal behavior. In the case of a cold start where request
routers have empty caches, every DynamoDB request would
result in a metadata lookup, and so the service had to scale
to serve requests at the same rate as DynamoDB. This effect
has been observed in practice when new capacity is added
to the request router fleet. Occasionally the metadata service
traffic would spike up to 75 percent. Thus, introducing new

1046    2022 USENIX Annual Technical Conference USENIX Association



request routers impacted the performance and could make the
system unstable. In addition, an ineffective cache can cause
cascading failures to other parts of the system as the source
of data falls over from too much direct load [4].

DynamoDB wanted to remove and significantly reduce
the reliance on the local cache for request routers and other
metadata clients without impacting the latency of the cus-
tomer requests. When servicing a request, the router needs
only information about the partition hosting the key for the
request. Therefore, it was wasteful to get the routing infor-
mation for the entire table, especially for large tables with
many partitions. To mitigate against metadata scaling and
availability risks in a cost-effective fashion, DynamoDB built
an in-memory distributed datastore called MemDS. MemDS
stores all the metadata in memory and replicates it across the
MemDS fleet. MemDS scales horizontally to handle the entire
incoming request rate of DynamoDB. The data is highly com-
pressed. The MemDS process on a node encapsulates a Perkle
data structure, a hybrid of a Patricia tree [17] and a Merkle
tree. The Perkle tree allows keys and associated values to be
inserted for subsequent lookup using the full key or a key
prefix. Additionally, as keys are stored in sorted order, range
queries such as lessThan, greaterThan, and between are also
supported. The MemDS Perkle tree additionally supports two
special lookup operations: floor and ceiling. The floor
operation accepts a key and returns a stored entry from the
Perkle whose key is less than or equal to the given key. The
ceiling operation is similar but returns the entry whose key
is greater than or equal to the given key.

A new partition map cache was deployed on each request
router host to avoid the bi-modality of the original request
router caches. In the new cache, a cache hit also results in
an asynchronous call to MemDS to refresh the cache. Thus,
the new cache ensures the MemDS fleet is always serving a
constant volume of traffic regardless of cache hit ratio. The
constant traffic to the MemDS fleet increases the load on the
metadata fleet compared to the conventional caches where
the traffic to the backend is determined by cache hit ratio, but
prevents cascading failures to other parts of the system when
the caches become ineffective.

DynamoDB storage nodes are the authoritative source of
partition membership data. Partition membership updates
are pushed from storage nodes to MemDS. Each partition
membership update is propagated to all MemDS nodes. If the
partition membership provided by MemDS is stale, then the
incorrectly contacted storage node either responds with the
latest membership if known or responds with an error code
that triggers another MemDS lookup by the request router.

7 Micro benchmarks

To show that scale doesn’t affect the latencies observed by
applications, we ran YCSB [8] workloads of types A (50
percent reads and 50 percent updates) and B (95 percent reads

Figure 5: Summary of YCSB read latencies

Figure 6: Summary of YCSB write latencies

and 5 percent updates). Both benchmarks used a uniform
key distribution and items of size 900 bytes. The workloads
were run against production DynamoDB in the North Virginia
region. The workloads were scaled from 100 thousand total
operations per second to 1 million total operations per second.
Figure 5 shows the read latencies of both workloads at 50th

and 99th percentiles. The purpose of the graph is to show, even
at different throughput, DynamoDB read latencies show very
little variance and remain identical even as the throughput
of the workload is increased. The read throughput of the
Workload B is twice that Workload A and still the latencies
show very little variance. Figure 6 shows the writes latencies
of both workloads at 50th and 99th percentiles. Like the read
latencies, the write latencies remain constant no matter the
throughput of the workload. In case of YCSB, workload A
drives a higher throughput than workload B, but the write
latency profile for both workloads are similar.

8 Conclusion

DynamoDB has pioneered the space of cloud-native NoSQL
databases. It is a critical component of thousands of applica-

USENIX Association 2022 USENIX Annual Technical Conference    1047



tions used daily for shopping, food, transportation, banking,
entertainment, and so much more. Developers rely on its
ability to scale data workloads while providing steady perfor-
mance, high availability, and low operational complexity. For
more than 10 years, DynamoDB has maintained these key
properties and extended its appeal to application developers
with game-changing features such as on-demand capacity,
point-in-time backup and restore, multi-Region replication,
and atomic transactions.

9 Acknowledgements

DynamoDB has benefited greatly from its customers whose
continuous feedback pushed us to innovate on their behalf. We
have been lucky to have an amazing team working with us on
this journey. We thank Shawn Bice, Rande Blackman, Marc
Brooker, Lewis Bruck, Andrew Certain, Raju Gulabani, James
Hamilton, Long Huang, Yossi Levanoni, David Lutz, Max-
imiliano Maccanti, Rama Pokkunuri, Tony Petrossian, Jim
Scharf, Khawaja Shams, Stefano Stefani, Allan Vermuellen,
Wei Xiao and the entire DynamoDB team for the impact-
ful contributions during the course of this evolution. Many
people have helped to improve this paper. We thank the anony-
mous reviewers who helped shape the paper. Special thanks
to Darcy Jayne, Kiran Reddy, and Andy Warfield for going
above and beyond to help.

References

[1] Amazon SimpleDB: Simple Database Service.
https://aws.amazon.com/simpledb/.

[2] AWS Identity and Account Management Service.
https://aws.amazon.com/iam/.

[3] AWS Key Management Service.
https://aws.amazon.com/kms/.

[4] Summary of the amazon dynamodb service disrup-
tion and related impacts in the us-east region. 2015.
https://aws.amazon.com/message/5467D2/.

[5] L. N. Bairavasundaram, A. C. Arpaci-Dusseau, R. H.
Arpaci-Dusseau, G. R. Goodson, and B. Schroeder. An
analysis of data corruption in the storage stack. ACM
Transactions on Storage (TOS), 4(3):1–28, 2008.

[6] J. Bornholt, R. Joshi, V. Astrauskas, B. Cully, B. Kragl,
S. Markle, K. Sauri, D. Schleit, G. Slatton, S. Tasiran,
J. Van Geffen, and A. Warfield. Using lightweight for-
mal methods to validate a key-value storage node in
amazon s3. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP ’21,
page 836–850, New York, NY, USA, 2021. Association
for Computing Machinery.

[7] C. Constantinescu, I. Parulkar, R. Harper, and S. Micha-
lak. Silent data corruption—myth or reality? In 2008
IEEE International Conference on Dependable Systems
and Networks With FTCS and DCC (DSN), pages 108–
109. IEEE, 2008.

[8] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems
with ycsb. In Proceedings of the 1st ACM symposium
on Cloud computing, pages 143–154, 2010.

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly
available key-value store. SIGOPS Oper. Syst. Rev.,
41(6):205–220, oct 2007.

[10] T. Hauer, P. Hoffmann, J. Lunney, D. Ardelean, and
A. Diwan. Meaningful availability. In 17th {USENIX}
Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 20), pages 545–557, 2020.

[11] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang,
M. Chintalapati, and R. Yao. Gray failure: The achilles’
heel of cloud-scale systems. In Proceedings of the 16th
Workshop on Hot Topics in Operating Systems, pages
150–155, 2017.

[12] L. Lamport. Specifying systems, volume 388. Addison-
Wesley Boston, 2002.

[13] L. Lamport. The pluscal algorithm language. In Interna-
tional Colloquium on Theoretical Aspects of Computing,
pages 36–60. Springer, 2009.

[14] L. Lamport et al. Paxos made simple. ACM Sigact News,
32(4):18–25, 2001.

[15] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. Aries: A transaction recovery method sup-
porting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Transactions on
Database Systems (TODS), 17(1):94–162, 1992.

[16] C. Newcombe, T. Rath, F. Zhang, B. Munteanu,
M. Brooker, and M. Deardeuff. How amazon web ser-
vices uses formal methods. Communications of the
ACM, 58(4):66–73, 2015.

[17] K. Sklower. A tree-based packet routing table for berke-
ley unix. In USENIX Winter, volume 1991, pages 93–99.
Citeseer, 1991.

[18] B. Weiss and M. Furr. Static stability using availability
zones. https://aws.amazon.com/builders-library/static-
stability-using-availability-zones/.

1048    2022 USENIX Annual Technical Conference USENIX Association


	atc22-bergman
	atc22-zou
	MeGA__an_IO_Efficient_Fine_grained_Deduplication_based_Backup_Framework (16).pdf
	Introduction
	Background and Related Works
	Fine-grained Deduplication
	Backup Workloads

	Observation and Motivation
	Challenges
	Selective Delta Compression
	Delta-friendly Data Layout
	Forward Reference and Delta Prewriting

	Design and Implementation
	General Description
	Backup Workflow
	Maintaining Delta-Friendly Data Layout
	Restore Workflow
	Discussion

	Evaluation
	Configuration
	Backup Speed
	Restore Speed
	Deduplication Ratio
	Overall Performance
	I/O Overhead in Maintaining Data Layout

	Conclusion

	MeGA_Artifact_Appendix (1).pdf
	Artifact Appendix


	atc22-yang-zuoru
	Introduction
	Background and Motivation
	Limitations of Deduplication-after-Encryption
	Moving to Deduplication-before-Encryption
	Intel SGX

	Design Overview
	DEBE Architecture
	Threat Model
	Design Goals

	Detailed Design
	Main Idea
	Key Management
	Frequency Tracking
	Frequency-based Deduplication
	Storage Management
	Security Discussion

	Implementation
	Evaluation
	Datasets
	Evaluation on Synthetic Data
	Evaluation on Real-world Traces

	Related Work
	Conclusion
	Artifact Appendix

	atc22-li-zijun
	Introduction
	Background
	Secure Container Models
	Problems with Secure Containers

	Problem Analysis and Insights
	Bottleneck of Container Rootfs Storage
	High Memory Overhead Per Container
	High Host-side Overhead of Cgroups

	Methodology of RunD
	Design Overview
	Efficient Container Rootfs Mapping
	Condensed and Pre-patched Guest Kernel
	Reducing the guest kernel size
	Alleviating code self-modification

	Lightweight Cgroup and Cgroup Pool

	Evaluation
	Evaluation Setup
	Concurrent Startup Measurement
	Deployment Density
	Impact of Deployment Density on Startup Latency and Concurrency
	In-Production Usage for Serverless
	Lessons Learned from Production Usage

	Related Work
	Conclusion
	Artifact Appendix
	Abstract
	Artifact Check-list (Meta-information)
	How to Access and Installation
	Experiment Workflow
	High-concurrency Experiment (Section 5.2)
	High-density Experiment (Section 5.3)
	Density Impact on Concurrency (Section 5.4)

	Expected Results and Notes


	atc22-li-zijun-1
	Introduction
	Background and Related Work
	Investigation and Motivations
	Latencies of Cold and Prewarm Startups
	Limitations of Prewarm Schemes
	Opportunity of Reusing Idle Containers

	Design of Pagurus
	Intra-function Container Management
	Identifying Idle Containers
	Replacing Idle Containers with Zygotes

	Inter-function Container Scheduling
	Selecting To-be-helped Functions
	Re-packing a Zygote Image
	Forking a Zygote Container

	Sharing-aware Function Balancing
	Evaluation of Pagurus
	Experimental Setup
	Alleviating Container Cold Startups
	Reducing Startup and E2E Latency
	Large-scale Evaluation with Azure Trace
	Alleviating Cold Startup
	Reducing Tail Latency
	Impacts of Hyperparameters

	Integrating with Orthogonal Techniques
	Overheads of Pagurus Components

	Conclusion
	Artifact Appendix
	Abstract
	Artifact Check-list (Meta-information)
	Hardware and Software Dependencies
	How to Access and Install
	Experiment and Expected Results
	AWS applications (Section 8.2 and 8.3)
	Azure Trace mapping (Section 8.4)



	atc22-zhou-diyu
	Introduction
	Background
	NiLiCon
	Deterministic Replay on Multiprocessors

	Overview of RRC
	Implementation
	Nondeterministic Events Record/Replay
	Integrating Checkpointing with Record/Replay
	Handling Network Traffic
	Transition to Live Execution
	Transferring the Event Logs
	Container Fork
	Mitigating the Impact of Data Races

	Experimental Setup
	Evaluation
	Overheads: Performance, CPU Utilization
	Response Latency
	Recovery Rate and Latency

	Limitations
	Related Work
	Conclusion

	atc22-guerraoui
	Introduction
	Background
	Membership Service
	RDMA
	Communication Model

	Design Overview
	Architecture
	Communication
	Challenges

	Microsecond Failure Detection
	Multi-level Failure Detection
	uKharon's Failure Detectors

	Microsecond Consensus
	Consensus and Paxos
	One-sided Paxos
	uKharon's Consensus Engine
	Practical Considerations
	Comparison with the State-of-the-art


	Microsecond Real-timeness
	The Active Method
	Leases
	Extensions

	Evaluation
	Overhead Induced by uKharon
	Failover Time
	uKharon-KV

	Related Work
	Conclusion
	One-sided Paxos
	Assumptions
	One-sided RPC
	Consensus and Abortable Consensus
	One-sided Abortable Consensus
	Streamlined One-sided Algorithm
	Overcoming Limited CAS Size

	Active Method Correctness
	Formal Definition
	Non-leased Active Membership
	Leased Active Membership

	Clocks
	Artifact

	atc22-wei
	Introduction
	Background and Motivation
	The case for fast control path in elastic computing
	RDMA and queue pair (QP)
	Analysis of RDMA control path costs
	User-space control path costs
	Existing kernel-space solution is insufficient


	Approach and Overview
	Challenges and solutions
	Execution flow and architecture

	Detailed Design
	Programming interface of KRCore
	Data structures
	Control path operations
	Data path operations
	Zero-copy protocol for two-sided operations
	Physical QP transfer protocol

	Evaluation
	Control path performance
	Data path performance
	Application performance
	Scaling RACE Hashing
	Accelerating data transfer in serverless computing


	Discussion
	Related Work
	Conclusion
	Acknowledgment
	Artifact Appendix

	atc22-wu
	Introduction
	OSD Background
	OSD
	Limitations and opportunities
	State-of-the-art optimizations
	Summary

	Design of ZCOT
	Overview
	Distributed class-data sharing
	Supporting OSD-based scenarios

	Memory Management
	Group-based management
	Metadata server
	RPC interfaces
	Garbage collection

	Transmission Deduplication
	Overview
	Duplication detection
	Dependency management
	Garbage collection
	Internalization

	Evaluation
	Experimental setup
	Microbenchmark
	Spark
	Flink

	Related work
	OSD optimizations
	Distributed language runtimes
	Runtime optimizations for Java

	Conclusion
	Acknowledgement
	Artifact Appendix

	atc22-ma
	Introduction
	The Price of Automation
	Background
	Multi-Layer Refinement
	Automated Reasoning and Monolithic Provers
	IC3PO: Our Monolithic Prover of Choice

	Overview of Sift
	Refinement-Guided Automation
	From Monolithic Proofs to Refinement
	Enforcing pre- and postconditions across layers
	Converting Assertions to Conditionals
	Converting Assertions to Invariants


	Introducing Intermediate Layers
	Intermediate Layers for Complexity
	Intermediate Layers for Decidability

	Evaluation
	Leader Election
	Distributed Lock
	Two-Phase Commit
	Sharded Hash Table (SHT)
	Raft
	Intermediate Layers and Proof Effort

	MultiPaxos
	Intermediate Layers and Proof Effort

	Performance Evaluation
	SHT Performance
	Raft and MultiPaxos Performance


	Limitations and Future Directions
	Related Work
	Conclusion

	atc22-feng
	Introduction
	Related Work and Motivation
	Transformer Verification
	Deep Learning Frameworks on GPUs
	Opportunities and Challenges

	Semantic-aware Computation Graph Transformation
	Semantic-aware Kernel Fusion
	Bound-aware Cross-layer Kernel Fusion

	Verification-specialized Kernel Crafter
	Verification Pattern Categorization
	Workload-adaptive Reduction
	Sharing-oriented Workload Scheduling
	Broadcast-aware Super Threading

	Expert-guided Autotuning Optimization
	Evaluation
	Experiment Setup
	Overall Performance
	Optimization Analysis

	Discussion
	Conclusion

	atc22-cui
	Introduction
	Related Work
	Background and Motivation
	Input diversity
	Operator diversity
	Load diversity
	Diversities among DNN services

	Design of DVABatch
	Overview
	The Serving Workflow with DVABatch

	Enabling Multi-entry Multi-exit Scheme
	Defining the Meta Operations
	Implementing the Meta Operations
	Batch Table and Batch Queues
	Handling Meta Operations


	Managing Stage Executors
	Processing with Multiple Buffers
	State Transition of the Executors
	Implementing the Transition Diagram

	Scheduling Policies of Serving Diversities
	Identifying Diversities and Slicing Models
	Defining Policies with Meta Operations

	Evaluation of DVABatch
	Experiment Setup
	Reducing Average Latency
	Robustness at Stepping Load
	Impact of Input Distributions
	Effectiveness of split operation
	Impacts of the Number of Buffer Pairs
	Impacts of the Stage Numbers
	Scheduling Overhead

	Discussion
	Implication for Future DNN Inference
	Flexibility
	Limitations

	Conclusion
	Artifact Appendix

	atc22-choi-seungbeom
	Introduction
	Background
	Batch-Aware ML Inference Serving
	Temporal Scheduling for ML on GPUs
	Spatial Sharing on GPU

	Motivation
	Optimal Batch Size and Partition
	Schedulability and GPU Partitioning
	Performance of Effective Partitioning
	Interference in Consolidated Executions

	Design
	Overview
	Search Space Challenge
	Elastic Partitioning Algorithm
	Modeling Interference
	Scaling GPUs for Request Rate Changes
	Implementation

	Evaluation
	Methodology
	Experimental Results

	Related Work
	Prior ML Systems Studies
	Comparison to Prior Work

	Conclusion
	Acknowledgements
	Artifact Appendix
	Abstract
	Hosting
	Scope
	Contents
	SW Components
	Models
	Dataset
	Docker Images

	Requirements
	Hardware
	OS and Kernel
	Software

	Experiment Setup


	atc22-zhang-wei
	Introduction
	Motivation
	GPU Under-utilization of Cloud Gaming
	Challenges
	Co-location with DL Training

	PilotFish Overview
	Game Loop Instrumentation
	DL Training Scheduler
	Task Executor
	GPU Kernel Execution
	Low-overhead Pause and Resume
	Mitigating Other Resource Contention

	Evaluation of PilotFish
	Experimental Setup
	GPU Utilization Improvement and FPS Guarantee
	Dissecting Execution
	Sources of Improvement

	Scale to Data Center
	Related Work
	Conclusion

	atc22-kuznetsov
	Introduction
	Background & motivation
	Design
	Execution & usage model
	Semi-privileged execution
	Sandboxing semi-privileged execution
	Sandboxing techniques
	Verification
	Discussion: Privbox vs. NaCl


	Implementation
	OS & library support
	Code instrumentation
	Load/store instrumentation
	Control-flow instrumentation
	Code alignment


	SPAP: Hardware support for reducing instrumentation overhead
	Security
	Evaluation
	System call latency
	I/O-thread workloads
	Real-world workloads

	Conclusion & future work
	Instrumentation details
	Special case load/store instrumentation
	Stack accesses
	Jump instructions

	Artifact Description

	atc22-wang-jiawei
	Introduction
	Background and Related Work
	Design of BBQ
	The Block-based Approach
	BBQ from a Bird's-eye View
	Two-Level Control Variables

	Implementation of BBQ
	Structure
	Operations
	Successful allocation/reservation
	Advancing to the next block

	Drop-old Mode
	Variable-sized Entries
	Other Implementation Details

	Verification and Optimization of BBQ
	Evaluation
	Environment Setup
	Microbenchmarks
	BBQ Parameters and Design Choices
	State-of-the-art Comparison: Retry-new Mode
	State-of-the-art Comparison: Drop-old Mode

	Macrobenchmarks
	DPDK's End-to-end Benchmark
	Linux io_uring
	LMAX Disruptor Benchmarks


	Conclusion

	atc22-kim-taeyoon
	Introduction
	Job Failures in Deep Learning Cluster
	Sibylla Design
	Evaluation
	Classifier Performance
	Simulation Results

	Related Work
	Concluding Remarks

	atc22-li-nanqinqin
	Introduction
	Highly Available Applications
	Application-level Replication
	Recovery From Disaggregated Storage
	Lower Application Availability


	Introducing Speculative Recovery
	Design
	Components and Overview
	super: Creating a Disk Superposition
	Collocated-Clone

	collapse: Collapsing a Superposition
	Correctness and the Failure Model

	Implementation
	Evaluation
	Experimental Setup
	Disk-level Performance
	Application Recovery Latency
	End-to-end Failover Latency
	Other SpecREDS Overheads

	Related Work
	Conclusions
	Artifact Appendix

	atc22-gouk
	Introduction
	Memory Disaggregation and Related Work
	Remote Direct Memory Access
	Swap: Page-based Memory Pool
	KVS: Object-based Memory Pool

	Direct Accessible Memory Aggregation
	Connecting Host and Memory over CXL
	Software Runtime for DirectCXL
	Prototype Implementation

	Evaluation
	In-depth Analysis of RDMA and CXL
	Latency Distribution and Scaling Study
	Performance of Real Workloads

	Conclusion
	Future Work and Acknowledgement

	atc22-holzbauer
	Introduction
	Background: Protocols and Standards
	Methodology
	Target Address Configurations
	Email Collection and Recruitment
	Ethical Considerations

	Datasets
	Results
	IP Support
	TLS Configuration
	DNSSEC Validation
	Anti-SPAM (Greylisting)

	Related Work
	Discussion
	Heavy-tail Email
	Delivery vs. Adoption
	Standard Deployment and SPAM

	Conclusion

	atc22-song
	Introduction
	Background
	Related Work and Motivation
	Overview of AddrMiner
	AddrMiner-N
	Overview of AddrMiner-N
	Undirected Graph Construction
	Pattern Mining
	Organization Association Strategy

	AddrMiner-F
	AddrMiner-S
	Target Address Generation Based on Reinforcement Learning

	Evaluation
	Efficiency of AddrMiner-N
	Efficiency of AddrMiner-F
	Common Pattern Library Analysis
	Efficiency of AddrMiner-S

	IPv6 Hitlist
	Ethical Considerations
	Conclusion and Future Work
	Acknowledgments
	Similarity Definition
	Model Building of AddrMiner-S
	Seed Number vs. Probing Efficiency
	Verification of AddrMiner-S
	Aliased Prefix Analysis
	IPv6 Hitlist Introduction 

	atc22-jansen
	Introduction
	Background and Motivation
	Requirements
	Traditional Architectures
	Hybrid Architectures and Challenges

	Design
	Overview
	Components
	Simulation Controller Process
	Parallel Worker Threads
	Direct Application Execution
	System Call Interposition
	Emulating System Calls
	Managed Process-to-Controller Communication
	Managed Process/Thread Scheduling
	Linux CPU Scheduling


	Implementation
	Evaluation
	Performance: Microbenchmarks
	Performance: Macrobenchmarks
	Setup
	Results

	Accuracy: Verification
	Comparison to Related Tools

	Conclusion
	Background Details for Related Tools
	Mininet
	NS-3 and gRaIL
	Shadow

	Interposing System Calls with ptrace
	Scaling waitpid to Many Tracees
	Reducing Per-syscall ptrace Stops
	Efficiently Accessing Tracee Memory
	Enabling Work Stealing
	Avoiding ptrace Stops on Some Syscalls

	Context Switching Performance
	Simulated System and Network Facilities
	Extended Evaluation
	Extended Microbenchmarks
	Extended Macrobenchmarks
	Extended Network Verification
	Extended Basic Network Verification
	Extended Tor Network Verification



	atc22-sun
	Introduction
	Background and Related Works
	Kernel Fuzzing
	System Call Specification

	Challenges
	Extracting Entries of Submodules
	Identifying Input Types of Entries

	Key Techniques
	Entry Extraction
	Types and Constraints Collection
	Specification Generation

	Implementation
	Evaluation
	Specification Generation
	Coverage Improvement
	Bug Finding and Case Studies

	Discussion and Limitations
	Conclusion
	APPENDIX
	Generated Specifications


	atc22-bai
	Introduction
	Background and Motivation
	Deadlock and Its Detection
	Concurrency Model of the OS Kernel
	Motivating Example

	Challenges and Key Techniques
	Summary-Based Lock-Usage Analysis
	Reachability-Based Comparison Method
	Two-Dimensional Filtering Strategy

	DLOS Approach
	Evaluation
	Bug Detection
	False Positives and Negatives
	Case Studies of the Found Deadlocks
	Comparison Experiment

	Discussion
	Related Work
	Dynamic Analysis of Deadlocks
	Static Analysis of Deadlocks
	Detection of Kernel Concurrency Bugs

	Conclusion

	atc22-kim-beom
	Introduction
	Overview
	System Model
	Divergence and Convergence
	An Example Bug

	Modulo
	Abstract Execution Model
	Concrete Execution Model
	DRM Examples
	Implementation

	Evaluation
	Bug Discovery
	Testing Performance
	DRM State Exploration

	Discussion
	Related Work
	Conclusion
	Bug Description
	ZooKeeper Bugs
	MongoDB Bugs
	Redis Bugs


	atc22-zhang-zhi
	Introduction
	Background and Related Work
	DRAM
	Rowhammer Vulnerability
	Rowhammer Defenses

	SoftTRR: Software-only Target Row Refresh
	Threat Model and Assumptions
	Design Principles
	Design Overview

	Implementation
	Data Structures
	Page Table Collector
	Adjacent Page Tracer
	Row Refresher
	Offline Profile

	Security Evaluation
	Defeating Memory Spray
	Defeating CATTmew
	Defeating PThammer

	Performance Evaluation
	Benchmark Runtime Overhead
	LAMP Runtime Memory Consumption
	System Robustness

	Discussion
	Conclusion
	SPECint 2006
	Artifact

	atc22-johnson
	Introduction
	Background
	Virtual Instruction Set Computing
	Kernel-Mode Memory Protection in SVA
	VMX Support in SVA

	Threat Model
	Design
	vISA Additions and Improvements
	Securing Higher-Level VMX Features
	Guest Context Switching Optimizations
	VMCS Management Optimizations

	SMP Support in SVA
	Thread Safety and Reference Counting
	TLB Shootdowns

	Return Address Integrity
	Security Guarantees
	Enforcement Design

	Implementation
	Security Analysis
	Performance Evaluation
	Macrobenchmark Results
	Microbenchmarks
	Overhead Sources and Their Remedies

	Related Work
	Future Work and Conclusions
	Additional Benchmarks
	Unmodified Xen vs. Unvirtualized
	Ombro without Instrumentation

	Implementation and Porting Experience
	Engineering Observations
	Performance-Driven Design Changes

	Background on the Name Ombro

	atc22-jia
	Introduction
	Background
	Trusted Execution Environment
	Trusted Platform Module
	Threat Model

	Design
	System Overview
	Memory Management and Protection
	Trusted Boot, Attestation and Sealing
	The Enclave SDK

	Flexible Enclave Operation Mode
	Guest User Enclaves
	Host User Enclaves
	Privileged Enclaves

	Implementations
	RustMonitor
	The Kernel Module
	The Enclave SDK

	Security Analysis
	Evaluation
	World Switches Performance
	Enclave Exception Handling
	Marshalling Buffer Overhead
	Real-world Workloads

	Discussions
	Related Works
	Conclusion
	Supplementary Materials
	Mapping Attacks
	Virtualization Overhead
	Memory Encryption Overhead

	Artifact Appendix

	atc22-sang
	Introduction
	Background and Related Work
	Overview
	Pridwen
	Prober
	PassManager
	Synthesizer
	Validator

	Implementation
	Example Passes
	Example Pass #1: Fine-grained ASLR
	Example Pass #2: T-SGX
	Example Pass #3: Varys
	Example Pass #4: QSpectre

	Pass Coordination

	Evaluation
	Security Analysis
	Correctness
	Performance of Pridwen
	Performance of Synthesized Binaries

	Discussion
	Conclusion
	Acknowledgment
	Additional Related Work
	Loop Comparison: Varys vs. T-SGX

	atc22-li-jie
	atc22-zhou-zhe
	Introduction
	Background & Motivations
	Transformer Models 
	Multi-Task Transformers Serving
	Parameter-Efficient Transformers
	Challenges of Multi-Task PETs Serving

	PetS Framework
	Unified Representation of PETs
	Framework Overview
	Managing PET Tasks
	PET Inference Pipeline
	Preprocessing
	Batch Scheduler
	PET Inference Engine


	Optimization Strategies
	Coordinated Batching
	PET Operator Scheduling

	Implementation
	PET Description
	Inference Serving
	User Interfaces

	Evaluation
	Experimental Setup
	Main Results
	Maximum Number of Supported Tasks
	Throughput Improvement
	Comparison with ParS

	Performance Analysis
	Execution Time Breakdown
	Memory Footprint Breakdown
	Effect of PET Operator Scheduling

	Performance on Arbitrary Inputs

	Limitations & Future Work
	Related Work
	Conclusion
	Artifact Appendix

	atc22-he
	Introduction
	Background
	Mixed Precision Training
	Tensor Core Acceleration

	Observation and Motivation
	Design
	Overview
	Performance Modeling
	Predicting Casting Cost
	Predicting Execution Time of Operation

	Runtime Graph Rewriting
	Usage of Tensor Cores

	Implementation
	Discussions
	Evaluation
	Experimental Setup
	Training Throughput
	Performance Breakdown
	Training Accuracy
	Prediction Accuracy of Performance Models
	Power Consumption and Energy Efficiency

	Related Work
	Conclusions
	Acknowledgements

	atc22-hu
	Introduction
	Background and Motivation
	Learning-Augmented Systems
	Challenges and Motivation
	Model Interpretation as a Solution
	Interpreting Black-box Models.
	Building Interpretable Models


	Primo Design
	Framework Overview
	Interpretable Models
	PrAM: Addictive Model based Method
	PrDT: Decision Tree based Method

	Model Training
	Bayes Optimization
	Distill Engine

	Post-Processing Optimization
	Monotonic Constraint
	Counterfactual Explanation


	Case Study 1: LinnOS
	System Interpretation
	Performance Analysis
	Effectiveness Analysis

	Case Study 2: Clara
	System Interpretation
	Performance Analysis
	Model Adjustment

	Case Study 3: Pensieve
	System Interpretation
	Performance Analysis

	More Evaluation
	Discussion
	Related Work
	Conclusion
	Supplementary Elaborations
	PrAM: Explainable Boosting Machine
	PrDT: Minimal Cost-Complexity Pruning

	Insufficiency of Existing Methods
	Contradictory Interpretation
	Incapability for Global Surrogate

	Lessons Learned From the Case Studies
	More Details about the Evaluated Systems
	LinnOS
	Clara
	Pensieve

	Artifact

	atc22-gu
	Introduction
	Background
	Stateful Stream Processing
	Prior Rescaling Mechanisms

	System Design
	Prioritized State Migration
	Fetch-on-demand State Accessing Protocol
	Hierarchical State Data Organization
	Gradual State Migration

	State Migration Implementation
	System Architecture and Usage
	State Transition
	Fault Tolerance

	Evaluation
	Experimental Setup
	Latency Performance during Rescaling
	Impact of State Migration on Latency Performance during Rescaling
	Performance under Backpressure
	Overhead Analysis
	Comparison with Other State Migration Approaches
	Comparison with Rhino
	Comparison with Megaphone


	Related Work
	Conclusion
	Artifact Appendix
	Appendix: Latency Performance Evaluation on full NEXMark suite during Rescaling

	atc22-luo
	Introduction
	Background and Motivation
	Quorum systems and async. programming
	Experience in debugging fail-slow behavior
	Goal

	The DepFast Framework
	DepFast from a programmer's perspective
	Coroutines and events
	QuorumEvent
	Other event types
	A showcase of DepFast's expressiveness

	DepFast internals
	Architecture
	Lazy and cooperative scheduling
	Concurrency and multi-threading


	Discussion
	Building Quorum Systems with DepFast
	DepFast-Raft
	DepFast-Copilot

	Evaluation
	Experiment Methodology
	DepFast-Raft
	DepFast-Copilot

	Related Work
	Concluding Remarks
	Appendix
	Artifact evaluation
	Empowered analysis

	Supplemental evaluation

	atc22-fouto
	Introduction
	Related Work
	Minimizing latency
	Communication cost
	Distributing the load
	Linearizable reads

	ChainPaxos
	Overview
	Protocol State
	Fault-free execution
	Dealing With Faults and Reconfigurations

	Local Linearizable Read Operations
	Evaluation
	Experimental Setup and Parameters
	Performance in a Single Data Center
	Performance of Read Operations
	Zookeeper case-study
	Performance in a Geo-Replicated Setting
	Impact of Reconfiguration

	Final Remarks
	Correctness
	All nodes agree on the leader
	Instance with a leader election (two-phases)
	Instances following a new leader election
	Leader Conflicts
	Removal and addition of a replica

	Artifact Appendix

	atc22-mansi
	Introduction
	Motivation: Evaluating Current Behavior
	Measuring Huge Page Benefits 
	Soft Page Fault Latency Breakdown 

	Cost-Benefit Memory Management
	The Estimator
	Cost and Benefit Models
	Preloaded Profiles
	System Management
	Discussion

	Implementation 
	Huge Page Management 
	Asynchronous Prezeroing 
	Eager paging 

	Evaluation 
	Methodology 
	System Behavioral Consistency
	End-to-End Performance 
	Efficiency
	Generality 
	CBMM Models

	Related Work
	Conclusion
	Artifact Appendix 

	atc22-gu
	Introduction
	Background and Motivation
	Hardware Background
	Motivation

	The EPK Mechanism
	Extended Page Table Management
	Multi-Domain Access Support
	System Components in Linux/KVM

	Case Study: Protecting Server Applications
	Micro-benchmarks
	Macro-benchmarks

	Case Study: Isolating NVM Data
	Data Structure Benchmarks
	OLTP Benchmarks

	Case Study: Boosting IPCs in Microkernels
	HyBridge
	Experiments

	Other Related Work
	Summary
	Acknowledgement

	atc22-choi-sangjin
	Introduction
	Motivation and Background
	Memory Usage in Shared Multi-GPUs
	Exploiting Neighbor GPU Memory

	Hierarchical Unified Virtual Memory
	Data Path with HUVM
	Design Challenges

	Memory Management for HUVM
	Overview
	Hiding Eviction Latency to Host
	Pre-eviction
	Large page eviction
	Eviction policy

	Hiding Fetch Latency from Host
	Fetching pages in parallel
	Multi-path parallel prefetcher
	Prefetch policy

	Putting It All Together

	Implementation
	Managing Spare Memory
	Managing GPU Memory Eviction
	Managing Fetch Requests

	Evaluation
	Experimental Setup
	Experimental Results
	Inter-job Harvesting
	Intra-job Harvesting.


	Related Work
	Conclusion

	atc22-wang-zhe
	Introduction
	Zero-overhead Monitoring
	Design and Implementation
	Overview
	Scaling-out Monitoring

	Case Study
	Evaluation
	Evaluation Setup
	Zero Overhead

	Related Work
	Conclusion
	Acknowledgment

	atc22-zhang-zhizhou
	Introduction
	Motivating Example for CRISP
	Background
	Distributed Tracing at Uber
	Difficulties with Large-Scale Jaeger Traces

	CRISP Methodology
	Critical Path Analysis
	Deriving Critical Path from a Single Trace
	Critical Path Algorithm

	Challenges with the Clock Drift
	Aggregating Critical Paths
	Workflow for Continuous CPA

	CRISP Features
	Top-Down Analysis
	Bottom-Up Analysis
	Anomaly Detection

	Experience and Evaluation
	Tail Latency Investigation via Top-Down Analysis
	Systemic Insights via Bottom-Up Analysis
	Empirical Analysis of Anomaly Detection
	CPA in Hardware Selection

	Related Work
	Conclusions and Future Work
	Violin Plot for Hardware Selection
	Autoencoder Model Architecture
	Inference

	atc22-jia
	Introduction
	Background and Motivation
	Parallel Strategies
	Heterogeneity in GPU Clusters
	Gaps and Opportunities

	Design
	Abstraction
	Internal Key Concepts
	Parallel Primitives

	Parallel Planner
	Virtual Device Generation
	TaskGraph Partitioning
	Bridge Layer

	Hardware-aware Load Balance
	Intra-TaskGraph Load Balance
	Inter-TaskGraph Load Balance


	Implementation
	Experiment
	Micro-benchmark
	Performance of Single Parallel Strategy
	Performance of Hybrid Strategy
	Overhead of Bridge Layer
	Effect of Sharding Pattern

	Performance of Load Balance
	Industry-Scale Giant Model Training
	Training M6-10B Model
	Training M6-MoE Model to Trillions


	Related Work
	Conclusion

	atc22-graur
	Introduction
	ML Input Data Processing
	ML Input Data Pipeline Characteristics
	Why disaggregate input data processing?
	Existing Mechanisms

	ML Input Data Service Challenges
	Autoscaling Challenges
	Autocaching Challenges

	Cachew Design
	Service Architecture
	Cachew API
	Autoscaling Policy
	Autocaching Policy
	Multi-tenancy
	Fault tolerance

	Implementation
	Autocache Mechanisms

	Evaluation
	Methodology
	Cachew Autoscaling
	Cachew Autocaching
	Autocaching & Autoscaling over Time
	End-to-end performance and cost
	Time to Accuracy and Training Cost
	Service Overhead

	Multi-tenancy

	Discussion
	Related Work
	Conclusion
	Artifact Evaluation README
	Abstract
	Artifact check-list
	Prerequisites
	Instructions
	Getting Started
	Reproducing Experiment Results

	Evaluation and Expected Results
	Experiment Metrics
	Expected Results and Possible Variations
	Experiment customization



	atc22-hwang
	Introduction
	Background and Motivation
	Retrospective Analytics
	Video Decoding: the New Bottleneck
	Block-based Video Coding

	Overview of CoVA
	Compressed Domain Blob Tracking
	Learning to Detect Blobs
	BlobNet
	Tracking Blobs

	Track-aware Frame Selection
	Label Propagation
	Implementation
	Evaluation
	Methodology
	Performance Implication of CoVA
	Accuracy Implication of CoVA
	Sensitivity Study

	Related Work
	Conclusion
	Acknowledgements

	atc22-shen
	Introduction
	Background
	Deep Neural Network
	Intel SGX and Related Work

	Overview
	System setup
	Security model
	System overview

	Protocol Description
	Morph Then Restore (MTR) protocol
	Integrity checking with fingerprints

	Implementation
	Evaluation
	End-to-end inference performance
	Sensitivity
	Security analysis
	Robustness to integrity breaches

	Discussion
	Conclusion

	atc22-kim
	Introduction
	Background 
	Flash Translation Layer 
	Lifespan of the Flash Storage 
	F2FS, a log-structured file system

	Design Overview
	Design Philosophy
	Organization

	IPLFS
	Multi-area Partition Layout
	Metadata Design
	Discarding the Invalid Blocks
	Discard Logging

	Interval Mapping 
	Design 
	Mapping Interval and Active Interval
	Fixed-Region Mapping

	Evaluation
	Eliminating the Garbage Collection 
	Discard Policy of IPLFS
	Address Translation Overhead 
	Map Node Size

	Related Works
	Conclusion
	Artifact Appendix

	atc22-kwon
	Introduction
	Preliminaries
	Log-Structured Merge KV Stores
	SSD Internal Tasks and Challenges

	Motivation and Related Work
	Long-tail Latency on Reads
	Scheduling Internal Tasks

	High-level View of Vigil-KV
	Hardware Support for Fine-Granular Performance Windows
	Software-Defined Strong Latency Determinism for Get services.

	Hardware Prototype and Characterizations
	Enabling PLM with NVM Multi-Sets
	PLM Constraint and Behavior Analysis

	Details of Vigil-KV Software
	Vigil-KV Stack Implementation
	Performance Window Management

	Evaluation
	Experimental Setup
	Long-tail Latency Analaysis
	Analysis of Different-level Latency
	Memory Consumption and Scan Service

	Conclusion

	atc22-wang-jing
	Introduction
	Background and Motivation
	Log-Structured KV Stores on PM
	Compaction Overhead Analysis on PM

	Design
	Traversing Index with Shortcut
	Reducing Excessive PM Accesses
	Redesigning the Compaction Pipeline
	Separating Hot-Cold Data
	Recovery

	Evaluation
	Experimental Setup
	Overall Performance
	Impact of Capacity Utilization
	YCSB Benchmark
	Sensitivity Analysis

	Analysis of Techniques
	Comparison with Other KV Stores
	Recovery

	Related Work
	Conclusion

	atc22-yan
	Introduction
	Background and Motivation
	A Motivating Example
	Limitations of Existing Algorithms

	Model for Latency Minimization
	Modeling Delayed Hits
	Mean Latency of All Requests

	Latency-Aware Cache
	From Theory to Practice

	Implementation
	LA-Cache Prototype
	LA-Cache Simulator

	Evaluation
	Methodology
	Accuracy of Timer-based Model
	Latency Reduction of LA-Cache Prototype
	LA-Cache vs. State-of-the-art Algorithms

	Related Work
	Conclusion
	Supplementary Material
	Analysis of Real Request Traces
	Comparison with Offline Optimum Bélády
	Hit Rate Comparison


	atc22-xu
	Introduction
	Background and Motivation
	Hashing is a Practical Challenge in Network Designs
	Multi-stage Clos DCN
	Spineless DCN
	WAN

	ECMP/WCMP Traffic Load Balancing
	Hash Correlation Causes Traffic Polarization and Load Imbalance
	Limited Number of Hash Functions Leads to Hash Correlation
	Random Seeds Are Not Effective


	Hashing Design in Multi-stage Networks
	Mitigating Correlation for Mesh Networks
	The Coprime Theorem
	Coprime for ECMP
	Coprime for WCMP

	Evaluation
	Experiment Setup
	Color Recombining for Multi-stage DCN
	Coprime for Spineless DCN
	Coprime for ECMP
	Coprime for WCMP

	Coprime for WAN
	Hardware Testbed Evaluation and Production Fabric Deployment

	Related Work
	Conclusions
	Acknowledgement
	Proofs of Theorems

	atc22-cao
	Introduction
	Motivation
	Overview
	Intent Generation
	Syntax-Guided Intent Generation
	Semantic Constraint Injection
	Intent Space Pruning

	Program Verification
	DP Program Formalization
	Intent Formalization
	Program Correctness Verification

	Evaluation
	Bug Analysis
	Bug Coverage
	Efficiency
	Scalability

	Discussion
	Related Work
	Conclusion
	Semantic Constraints of Advanced DP Program Generators

	atc22-lion
	Introduction
	Language Runtime Instrumentation
	LangBench
	Methodology
	Overview of Results
	Runtime Overhead (Single-thread)
	Type and Bounds Checking Overhead
	Interpreter Overhead
	GC Write Barriers

	Scalability Limitations
	Runtime Advantages
	GC Improved Cache Locality
	Scalability in Go
	I/O System Calls in the File Server

	Related Work
	Concluding Remarks

	atc22-du
	Introduction
	Background
	Compiler Optimization
	Security Implications

	Related Work
	Approach
	Dataset Generation
	Dynamic Feature Generation
	Feature Extraction
	Classification

	Implementation
	Evaluation
	Compiler Configuration Identification
	Optimization Pass Identification
	Case Study on Optimization-induced Vulnerabilities
	The Effects of the Dynamic Features

	Limitations
	Conclusion
	Availability
	The Unbalanced Dataset
	Artifact Appendix

	atc22-khrabrov
	Introduction
	Motivation and Related Work
	Static AOT Compilation in the JVM
	Sharing Compiled Code between JVMs
	Checkpointing and Reusing JVM Processes
	Remote JIT Compilation

	Design and Implementation
	Remote Compilation Mechanism
	Caching JVM Runtime Information
	Reliability and Security
	Reusing Dynamically Compiled Code
	Method Serialization Mechanism

	Evaluation
	Application Performance and Footprint
	Overall System Efficiency
	Compilation Request Latencies
	Scalability
	Effect of Network Latency

	Conclusion and Future Work
	Artifact Appendix

	atc22-curtsinger
	Introduction
	Related Work
	Overview
	Examples
	Summary

	Tracing and TraceIR
	Definitions
	Tracing Implementation
	The TraceIR Language
	Generating TraceIR Transcripts

	Build Algorithm
	Command Emulation and Execution
	Caching
	Build Planning
	Exit Code Handling
	Correctness

	Evaluation
	Are Riker builds easy to specify?
	Are Riker builds fast?
	Are Riker builds correct?
	How does Riker compare to Rattle?

	Conclusion
	Artifact Appendix

	atc22-cai
	atc22-wang-shucheng
	atc22-kalbfleisch
	1 Introduction
	2 Background and Related Work
	2.1 Memory Persistency Models
	2.2 NVM Crash Consistency
	2.3 NVM Crash Consistency Testing
	2.4 File System Crash Consistency

	3 Approach
	3.1 Overview
	3.2 Tracer
	3.3 Crash Image Generator
	3.4 Tester
	3.4.1 Crash Consistency Definitions
	3.4.2 Testing Crash Consistency Properties

	3.5 Bug Analysis

	4 Implementation
	5 File System Crash Consistency
	5.1 File System Setup
	5.2 Test Cases and Results
	5.3 Analysis
	5.3.1 Incompletely Persisted Data
	5.3.2 Data Loss During Rename


	6 Evaluation
	6.1 Completeness
	6.2 Effectiveness of Heuristic
	6.3 Performance

	7 Discussion
	8 Conclusion
	8.1 Future Work

	A Artifact Appendix
	References

	atc22-li-junru
	Introduction
	Background and Motivation
	Contention-aware Scheduling
	Existing Scheduling Methods
	Scheduling with SmartNICs

	AlNiCo
	Overview
	Accelerated Scheduling on The Hardware
	Request state
	Worker state
	Global state
	Making scheduling decisions

	Adaptive Feedback from The Software
	Hotness feedback
	Affinity feedback
	Reserving workers for long-running transactions


	Implementation
	Evaluation
	Experimental Setup
	Overall Performance
	Dynamic Workloads
	Comparison with CPU-based AlNiCo
	Generality of AlNiCo
	Overhead and Limitation

	Related Work
	Conclusion

	atc22-wang-zeke
	Introduction
	 Design and Implementation of FpgaNIC
	Design Challenges
	Main Architecture of FpgaNIC
	GPU Communication Stack
	Offloading Control Plane onto GPUs 
	Offloading Data Plane onto the FPGA 

	100Gbps Hardware Network Transport
	Efficient Decoupled Application Interface

	On-NIC Computing (ONC)
	High-level Manipulation Interfaces of ONC
	How to Support Three SmartNIC Models?


	Experimental Evaluation
	Experimental Setup
	Benchmarking Shared Infrastructure
	GPU Communication Stack
	Hardware Network Transport

	Evaluation of the Direct Model
	Evaluation of the Off-path Model
	Evaluation of the On-path Model

	Related Work
	Insights and Implications of FpgaNIC
	Conclusion
	Appendices
	Implementation of FpgaNIC: Three Models
	Direct Model: GPU-centric Networking
	GCN Example
	Overall Architecture of GCN
	Handshake Protocol of GCN
	Send/Recv Functions of GCN

	Off-path SmartNIC: AllReduce
	Overall Architecture of AllReduce
	Execution Flow of AllReduce on FpgaNIC

	On-path SmartNIC: HyperLoglog

	Artifact
	Abstract
	Check-list
	Thee Steps to Run Experiments
	Hardware: FPGA Bitstream
	Software: Driver Installation
	Software: Running Application Code



	atc22-bonola
	Introduction
	Goal, Requirements and Challenges
	Concept and Background
	Background: eBPF and XDP
	Program Warping
	System Design

	Warp Optimizer
	Program analysis
	Match-action rules generation

	Warp Engine
	Key Extractor
	Match-action Unit
	Context Restoration Unit
	Integration with hXDP
	Implementation

	Evaluation
	Applications
	Functional Equivalence
	Warped instructions
	Warp Engine Hardware Requirements
	End-to-end performance

	Discussion
	Related Work
	Conclusion
	Appendices
	Warp Engine Parameters
	Applications
	Software Emulator
	Functional Equivalence
	Comparison with commercial SmartNICs


	atc22-lu
	Introduction
	Background
	System Architecture
	Drive Model & Workload
	Data Collection
	Methodology Correctness

	Baseline Statistics
	Dataset Overview
	High Level Observations

	The Fail-stop
	Infant Mortality
	WAF
	Intra-node/rack Failures

	The Fail-slow
	Identifying Fail-slow Events and Drives
	Dataset and High Level Observations
	Dataset Overview
	SSD vs. HDD
	Differences between SSD models.

	Correlating Factors
	Drive Age
	Workload
	SMART Attributes

	Transition to Failures

	Limitation
	Related Work
	Conclusion
	Artifact Appendix

	atc22-yang-tzu_wei
	Introduction
	Our contributions
	Background
	Write amplification
	Write endurance
	Capturing second-access hits
	Colossus buffer cache
	Online and realtime requirements

	Overview of Colossus Flash Cache
	CacheSack
	Traffic partitioning
	Admission policies
	Fast approximation to an LRU model
	Knapsack problem
	Optimization over modeled cache retention times

	CacheSack in production
	Category assignment
	Modeled cache retention times
	Ghost cache
	Buffer cache simulators
	Model training
	Lessons learned

	Evaluation
	Production evaluation
	Evaluation by simulations

	Related work
	Conclusions
	Mathematical model of CacheSack
	Model assumption
	Metric estimation of an LRU cache
	Linear program
	Greedy algorithm
	Optimization over modeled cache retention times


	atc22-perianayagam
	Introduction
	History
	Architecture
	Journey from provisioned to on-demand
	Initial improvements to admission control
	Bursting
	Adaptive capacity

	Global admission control
	Balancing consumed capacity
	Splitting for consumption
	On-demand provisioning

	Durability and correctness
	Hardware failures
	Silent data errors
	Continuous verification
	Software bugs
	Backups and restores

	Availability
	Write and consistent read availability
	Failure detection
	Measuring availability
	Deployments
	Dependencies on external services
	Metadata availability

	Micro benchmarks
	Conclusion
	Acknowledgements

	Blank Page



