
Composition Kills: A Case Study of Email Sender
Authentication

Jianjun Chen, Vern Paxson, and Jian Jiang

Component-based software design has been widely adopted as a way to manage complexity and improve
reusability. The approach divides complex systems into smaller modules that can be independently created and
reused in different systems. One then combines these components together to achieve desired functionality.
Modern software systems are commonly built using components made by different developers who work
independently.

While having wide-ranging benefits, the security research community has recognized that this practice also
introduces security concerns. In particular, when faced with crafted adversarial inputs, different components
can have inconsistent interpretations when operating on the input in sequence. Attackers can exploit such
inconsistencies to bypass security policies and subvert the system’s operation.

In this work we provide a case study of such composition issues in the context of email (SMTP) sender
authentication. We present 18 attacks for widely used email services to bypass their sender authentication
checks by misusing combinations of SPF, DKIM and DMARC, which are crucial defenses against email phishing
and spear-phishing attacks. Leveraging these attack techniques, an attacker can impersonate arbitrary senders
without breaking email authentication, and even forge DKIM-signed emails with a legitimate site’s signature.

Email spoofing, commonly used in phishing attacks, poses a serious threat to both individuals and organiza-
tions. Over the past years, a number of attacks used email spoofing or phishing attacks to breach enterprise
networks [5] or government officials’ accounts [10]. To address this problem, modern email services and
websites employ authentication protocols—SPF, DKIM, and DMARC—to prevent email forgery. These protocols
authenticate different aspects of email delivery, such as the sender’s IP address (SPF), content integrity (DKIM),
and correctness of the domains used for these checks (DMARC).

Our research in USENIX Security 2020 [3] identified a set of practical exploits to show the fragility of these
protocols as implemented in practice. The key problem is that different components in the email processing
chain employ a wide range of inconsistent interpretation regarding precisely how to interpret the different email
elements they secure. Figure 1 illustrates one of our spoofing attacks to impersonating facebook.com by
exploiting the inconsistency between the DKIM and DNS components. Gmail attests that the email was indeed
from security@facebook.com, but in fact it was not: Gmail obtained the public key used for DKIM verification
not from Facebook but instead from a server under our control (per Section Case Study: Ambiguous-domains).
In total, we identified 18 types of similar attacks, all of which work by exploiting inconsistencies between different
components across email servers and clients. We reported our findings to the affected vendors, who awarded
us a number of bounties totalling several thousand dollars.

All of the attacks we found can be unified under a general theme—insecure composition, a rising threat in
today’s distributed systems. The techniques we developed can be applied to identify similar vulnerabilities in
other systems. We published our testing tool on Github (https://github.com/chenjj/espoofer) to aid the
community in securing additional email systems.

Background
SMTP lacks authentication

Simple Mail Transfer Protocol (SMTP) provides an Internet standard for mail transmission [9]. Figure 2 shows
the three main steps to deliver an email message. When SMTP was originally designed, it had no built-in
security mechanisms to authenticate the sender’s identity. Therefore any Internet email user can impersonate
another’s identity by sending spoofed emails.

1

https://github.com/chenjj/espoofer

Figure 1: An example of our spoofing attacks to impersonates facebook.com. Gmail attests that this email is
signed by facebook.com.

Figure 2: Email transmission from Alice to Bob

Which identity to authenticate?

The following example shows how an email is sent to a SMTP server via telnet:

HELO a.com
250 - Mail b.com pleased to meet you

MAIL FROM: <sender@a.com>
250 - Mail OK

RCPT TO: <receiver@b.com>
250 - Mail OK

DATA
354 - Enter mail , end with "." on a line by itself

From: Alice <alice@a.com>
To: <bob@b.com>
Subject: Hello from Alice

Hi Bob, I’m Alice.
.

250 - Message accepted for delivery

SMTP’s design includes multiple “identities” when handling messages. In the above example, both the MAIL
FROM address and the From header address identify the email sender, but they have different meanings in an
SMTP conversation. The first represents the user who transmitted the message, and is usually not displayed to
the recipient. The second represents the user who composed the message, and is visible to the recipient. For
clarity of discussion, we will subsequently refer to the first as “MAIL FROM” and the second as “From”.

In addition, SMTP introduces multiple other sender identities, such as in the HELO command, and the
Sender and Resent-From headers. Nothing in the design enforces consistencies among these. Thus, the
design poses a basic question for any authentication mechanism: which identity to authenticate?

How SPF/DKIM/DMARC authenticate email senders

To combat email forgery, three email authentication mechanisms have been developed and widely deployed:
SPF [8], DKIM [4], and DMARC [11].

SPF. Sender Policy Framework (SPF) uses the MAIL From and HELO address to authenticate the sender.
When a message is received, the receiving mail server first queries the domain in the SMTP MAIL FROM and
HELO commands to obtain the SPF policy, which contains lists of IP addresses authorized to send email for the
domain. The receiving server checks if the sender’s IP address matches the policy. If either HELO or MAIL
FROM check fails, the mail server enforces the policy specified by the domain owner (e.g., hard fail, soft fail) to
reject the message.

DKIM. DomainKeys Identified Mail (DKIM) authenticates senders using the d= field in a DKIM-signature
header. When receiving a message, the receiving mail server first queries the domain in the d= field of

www.usenix.org ;login: | 2

DKIM-Signature header to obtain the public key, and then verify the signed message with the obtained public
key.

DKIM -Signature: v=1; a=rsa-sha256; c=relaxed/relaxed; d=example.com; s=selector; h=
From:To:Subject; l=200; bh=I8iwjsTG/djENwF0HjjQSgUtWKv5izitR9+mDu1ambA=; b=
HA1a66oMfyVbQwZLd3Dkm3ZDfomVU1FgMF ...

The above shows an example of a DKIM-Signature header. For our purposes, the relevant tags are:
• d represents the signer’s domain.
• s, the selector, enables specifying multiple keys under the “d=” domain for fine-grained signatory con-

trol. The tag is used to obtain a public key by querying “s._domainkey.d” (“selector._domainkey.
example.com” here).

Unfortunately, neither SPF nor DKIM provides a complete solution for preventing email spoofing, because
neither of them authenticates the From header displayed to the end-user, which means that even if an email
passes SPF and DKIM validation, its From address can still be forged.

Display

Bob

SPF

Mail User Agent

DNS

Verify
Sender IP

SPF
Lookup

Verify DKIM
Signature

DKIM
Lookup

DMARC
Lookup

Alignment
Test

Receiving Server
DKIM

DMARC

Sending
ServerDisplay

Alice Mail User Agent

SMTP
SMTP

Attacker

Figure 3: Email authentication flow. The attacker sends an email with a spoofed From header
(admin@legitimate.com) to the victim directly from their mail server (attack.com), which—nominally—email
authentication mechanisms should prevent.

DMARC. Domain-based Message Authentication, Reporting & Conformance (DMARC) is designed to fix
this final trust problem by building on SPF and DKIM. When receiving a message, the receiving mail server
queries the domain in the From header to obtain its DMARC policy, which specifies what the receiver should
do with the incoming email. The receiving server performs an identifier alignment test to check whether the
domain in the From header matches the domain name verified by SPF or DKIM. The alignment test has
two modes: strict and relaxed. In strict mode, the From header domain needs to exactly match the SPF or
DKIM-authenticated identifier. In relaxed mode (default mode), it only needs to have the same registered
domain (defined in the public suffix list, https://publicsuffix.org/). If either SPF or DKIM indicates a positive result,
and the From domain passes the alignment test, the email passes DMARC authentication. This design provides
more robustness, for example, for forwarded emails: SPF may fail, but DKIM will survive. If both fail, the server
will enforce the DMARC policy specified by the domain owners, such as rejecting the email and sending failure
reports.

Combining these three mechanisms is supposed to enable an email system to ensure that the address in
the From header cannot be forged.

Our Discovery: Bypassing the Authentication

We found 18 different attacks that can bypass sender authentication. The key concept of our attacks is to
exploit inconsistencies between different components in the email processing chain. As shown in Figure 3,
an email sent by Alice might be processed by at least six different components before reaching Bob. Those
components are often built by different developers or companies and can have a wide range of inconsistencies
that attackers can exploit. In this article, we describe several representative case studies to illustrate how those
inconsistencies could be exploited. More attacks can be found in our USENIX Security paper [3].

Case Study: Ambiguous domains

This example exploits inconsistencies between the DKIM component and the DNS component. An attacker can
craft ambiguous domains to make the DKIM component believe that it’s verifying the legitimate domain, but the

www.usenix.org ;login: | 3

DNS component actually queries the attacker’s domain to obtain those policy records. The DKIM component
generates “pass” authentication results because the attacker controls the policy retrieved via DNS.

HELO attack.com
MAIL FROM: <any@attack.com>
RCTP TO: <victim@victim.com>

DKIM-Signature: …;d=legitimate.com;
 s=attack.com.\x00.any; …
From: <admin@legitimate.com>
To: <victim@victim.com>

Dear customer,
We are writing to inform you that…

Figure 4: NUL ambiguity. The DKIM component believes that the message is signed by legitimate.com
, while the DNS component uses attack.com to obtain the public key.

One way to craft such domains uses the NUL (“\x00”) character, which terminates strings in some languages
(e.g., C), but not in others (e.g., Perl or PHP). For example, we can fool Gmail.com using this technique. Gmail’s
DKIM and DNS components differ in interpreting NULs in the domain name, which we exploited for our example
in the Introduction (Figure 1).

Here is how the attack works. Per Figure 4, the attacker constructs a fake email with arbitrary content. They
then sign the message with their own private DKIM key to generate the DKIM-Signature header, which specifies
the “d=” tag as legitimate.com and the ‘s=’ tag as “attacker.com.\x00.any”.

When the Gmail server receives the email, its DKIM component queries the domain s._domainkey.d, i.e.,
“attack.com.\x00.any._domainkey.legitimate.com”, to obtain the public key. But when it resolves this
domain, the DNS component parses the NUL character as a string terminator and instead obtains the public
key from attack.com. The DKIM component thus uses the attacker’s public key to verify the forged message,
erroneously believing that the legitimate domain correctly signed the message. The spoofed message also
passes Gmail’s DMARC verification because the “d=” domain matches the From header domain.

iCloud.com
(Server)

iCloud.com
(Web)

Attacker
server

From: <any@attack.com>
From: <admin@legitimate.com>
To: <victim@victim.com>

DMARC verifies attack.com MUA displays legitimate.com

Victim

From: <any@attack.com>
From: <admin@legitimate.com>
To: <victim@victim.com>

(a) Preference of multiple From headers.

Mail.ru
(Server)

Outlook
(Windows)

Attacker
server

From
 : <any@attack.com>
From: <admin@legitimate.com>
To: <victim@victim.com>

DMARC verifies attack.com

From
 : <any@attack.com>
From: <admin@legitimate.com>
To: <victim@victim.com>

Victim

MUA displays legitimate.com

(b) Inconsistent interpretation in folding-space-succeeded From
header.

Fastmail.com
(Server)

Fastmail.com
(Web)

Attacker
server

From: <any@attack.com>
From : <admin@legitimate.com>
To: <victim@victim.com>

DMARC verifies attack.com

From: <any@attack.com>
From: <admin@legitimate.com>
To: <victim@victim.com>

Victim

MUA displays legitimate.com

(c) Exploiting normalization behavior with space-succeeded
From header.

Naver.com
(Server)

Outlook
(Windows)

Attacker
server

From
 : <any@attack.com>
Sender: <admin@legitimate.com>
To: <victim@victim.com>

DMARC verifies attack.com

From
 : <any@attack.com>
Sender: <admin@legitimate.com>
To: <victim@victim.com>

Victim

MUA displays legitimate.com

(d) Interpreting Sender header as From alternative header.

Figure 5: Different cases of inconsistent interpretation of ambiguous From headers between email servers and
MUAs.

Case Study: Ambiguous From headers

The second example exploits inconsistencies between mail servers and mail user agents (MUA) to make
mail servers authenticate one sender identity, but MUAs display another sender identity to the end-user. The
complexity and flexibility of email message syntax enabled us to find a large number of inconsistencies.

1) Multiple From headers. The simplest attack technique is to construct an email message with two
different From headers. Figure 5a shows such an example. iCloud (Server) uses the first From header for
DMARC verification and generates “pass” authentication results, but iCloud (Web) displays the second one
(which is unverified) to the end-user.

www.usenix.org ;login: | 4

Although RFC 5322 suggests that email messages with multiple From headers are invalid and should
be rejected by receivers, we find that 19 out of 29 tested implementations (including 5 email providers and
14 MUAs) do not in fact follow the specification and reject such messages. All 5 email providers use the
first From header for DMARC checking. iCloud.com (Web) and Mail (Windows) display the last From header;
Mail (macOS) shows both headers; the other 11 MUAs display the first From header.

2) Space-surrounded From headers. We can further create different variants by inserting space around
the From header. RFC 5322 defines an email header as a field name, a colon, and a field body (value). If
an attacker violates this syntax structure by inserting whitespace before or after the header name, different
implementations handle the ill-formed header differently.

We identify three such edge cases: a) a space-preceded From header as the first header; b) a space-
succeeded From header; c) a folding-space-succeeded From header. The email standards implicitly disallow
the first two cases, and explicitly disallow the last case. In practice, none of our tested implementations fully
comply with the specification. Protonmail.com (Server) rejects the first and second case, Yahoo.com (Server)
rejects the third case. Others recognize the space-surrounded From header as a valid From header, take it as
an unknown header or parse the whitespace as the delimiter between email headers and body.

Whitespace abuse opens up new opportunities for multiple From ambiguities. First, the use of whitespace
can bypass the email server’s validation. For example, Mail.ru (Server) rejects email with multiple From headers,
but an attacker can bypass this with a folding-space-succeeded From header, as shown in Figure 5b. Second,
inconsistent interpretations of whitespace can lead to ambiguities. Mail.ru (Server)’s DMARC component
recognizes the folding-space-succeeded From header and authenticates attack.com, but Outlook (Windows)
takes it as an unknown header and presents admin@legitimate.com as the validated From header.

Sometimes we can even fool the email servers and MUAs using the same header parsing and processing, by
leveraging special forwarding behaviors of the email servers. Figure 5c shows an example. Both Fastmail.com
(Server) and Fastmail.com (Web) don’t recognize the space-succeeded From header, but Fastmail.com (Server)
normalizes the space-succeeded From header, removing the space when forwarding the message. The
forwarding behavior causes Fastmail.com (Web) to recognize a different From header.

3) From alternative headers. We can also bypass sender authentication by using From alternative headers.
Normally, only the From header plays a role in email authentication and display. However, if an attacker crafts
an email with no From header or an unrecognized From header, some implementations will use alternative
headers like Sender or Resent-From header to identify the message sender. We found 7 out of 19 MUAs have
such behavior. Gmail.com (Web) shows the Resent-From header value when the From header is missing; the
other 6 display the Sender header value in the From field. All of the email servers we tested only use the From
header for DMARC verification. If a From header is not found, they don’t perform DMARC authentication, or
generate “none” as the result.

The interplay between From header and its alternative headers introduces another source of ambiguity.
As shown in Figure 5d, Naver.com (Server) recognizes a folding-space-succeeded From header and verifies
attack.com, but Outlook (Windows) doesn’t recognize it and shows the (unverified) Sender header value in
the From field.

Case Study: Ambiguous email addresses

Even if a mail server and client extract the same From header from an email message, extracting a consistent
email address from that From header poses another challenge due to the complex syntax of From headers.

Figure 6: An example of a valid From header.

Figure 6 shows a valid From header with a single mailbox address, which consists of four elements.

• Display name is an optional field that identifies the sender’s name.
• Real address represents the real sender and is protected by SPF/DKIM/DMARC. (In this article, we aim

to spoof the real address.)

www.usenix.org ;login: | 5

From: <any@attack.com>, <admin@legitimate.com>
Tutanota.com

(Server)
Tutanota.com

(Web)

(a) Preference of multiple email addresses.

From: bs64(<admin@legitimate.com>), <any@attack.com>

Yahoo.com
(Web)

Yahoo.com
(Server)

(b) Differences in parsing Base64-encoded address.

From: <@attack.com, @any.com: admin@legitimate.com>

Fastmail.com
(Server)

Fastmail.com
(Web)

(c) Inconsistencies in supporting route portion feature.

From: <admin@legitimate.com>\, <any@attack.com>

Mail
�Windows�

Gmail.com
(Server)

(d) Differences in supporting quoted-pair feature.

Figure 7: Different cases of inconsistent interpretations of email addresses between email servers and MUAs.

• Route portion is an obsolete feature originally defined in RFC 822 to indicate the delivery path that the
message should follow. RFC 5322 prohibits generating this obsolete field, but recipients still must accept
it (and ignore the routing part).

• Comments provide some human-readable information and can be freely inserted in many places in a From
header, such as before or after the address, or inside the real address. For example, RFC 5322 Appendix
A.5 states that “From: Pete(A nice \) chap) <pete(his account)@silly.test(his host)>”
is a valid address.

• Multiple address lists. RFC 5322 specifies that the From header value can be a mailbox address list,
which indicates that the message has multiple authors. So the address in Figure 6 can be repeated
multiple times, separated by a colon.

• Encoding. RFC 2047 defines encoding approaches to support non-ASCII characters in email headers.
Its syntax looks like: =?charset?encoding?encoded-text?=, in which the “charset” field specifies
the character set of the unencoded text; “encoding,” which should be “B” or “Q”, specifies the encoding
algorithm; and “encoded-text,” the text encoded by the algorithm. For example,“From: bob<b@b.com>”
can be encoded as “From: =?utf-8?B?Ym9i?=<b@b.com>” by the Base64 encoding approach.

• Quoted-pair. RFC 5322 reserves some characters for special interpretation, such as commas and quotes.
To permit the use of these characters as uninterpreted data, email senders can use ‘\’ to escape them.

Attacks leveraging complex From headers. We find that implementations vary in parsing and interpreting
From headers. Here we show four sample attacks that exploit these inconsistencies, per Figure 7.

1) Multiple email addresses. We observe 5 distinct behaviors in processing From headers listing multiple
addresses. Gmail.com (Server) and Mail.ru (Server) reject the messages; Tutanota.com (Web) displays the
last address; Zoho.com (Server) and iCloud.com (Web) don’t verify or display any address; 2 mail servers and
4 MUAs verify or display all of the addresses; all the others take the first address.

Multiple email addresses enable a new kind of ambiguity. The mail server may recognize a From header
value that differs from the email address that the client displays. As shown in Figure 7a, Tutanota.com (Server)
only uses the first address for DMARC checking, while its web interface only shows the second one.

2) Email address encoding. Figure 7b shows an example exploiting the differences in parsing encoded ad-
dresses. In our experiments, Yahoo.com (Server), Outlook.com (Server), iCloud.com (Server), Fastmail (Server),
Zoho.com (Server) and Tutanota.com (Server) don’t recognize the encoded address, and use attack.com
for DMARC testing; but Gmail.com (Web), Outlook.com (Web), Yahoo.com (Web), Naver.com (Web), Mail
(macOS), Mail (Windows), and Mail (iOS) support this encoding feature, and only display the first address.

3) Route portion. As shown in Figure 7c, Fastmail.com (Server) does not recognize the route portion, and
treats attack.com as a real address to use for DMARC verification; while 10 MUAs, including Fastmail.com
(Web), ignore the route portion, and only show admin@legitimate.com.

4) Quoted-pairs. Figure 7d shows an example arising from differences in supporting the quoted-pair feature.
Gmail.com (Server) and iCloud.com (Web) recognize the second address; but Mail (Windows), iCloud (Server),
and 12 other implementations only use the first one.

Case Study: Forging DKIM-signed emails

Attackers can further spoof emails with seemingly valid DKIM signatures from legitimate domains, bypassing
both DKIM and DMARC authentication to make forged emails more deceptive.

www.usenix.org ;login: | 6

First, we find that most email providers do not perform sufficient checks on the From header for mail
originating from their local MUAs, enabling an attacker who has an email service account to send messages with
fake From headers through the email provider’s server. Since the exploited email providers will automatically
attach DKIM signatures to their outgoing emails, such messages will pass the receiver’s DKIM and DMARC
validation.

Second, a replay attacker can bypass the check by adding an extra forged From header to a valid, previously
sent, DKIM-signed message, and then resend the message to a victim. When the victim’s email server receives
the message, its DKIM component may verify the original From header, enabling the message to pass both
DKIM and DMARC verification, while the MUA may instead show the fake From header. (For more details, see
Section 6 of [3].)

Mitigation

We provide several suggestions for end-users, email clients, and email providers to mitigate these attacks.
End-users should not blindly trust the email sender displayed by email clients, since the sender address

can be spoofed. Users should carefully examine or verify the message content, especially when the message
impels the user to take some action.

Email clients should have a systematic consideration of how to better display security features. Most of the
MUAs we tested do not display SPF, DKIM, or DMARC authentication results explicitly, making it difficult for
end-users, especially mobile client users, to apprehend the authentication status of the message. This lack
facilitates attackers in bypassing server-side authentication, for example, by appending invisible characters to
trick email servers into failing to obtain policy information via DNS. One possible approach for mitigating such
attacks would be to add icons indicating emails with verified sender domains.

Email providers. The root cause of our attacks lies in the inconsistent interpretation of ambiguous mes-
sages. One possible mitigation is that email providers parse email messages strictly, and block messages with
ambiguous addresses. To aid the community in identifying such security issues, we have released our testing
tool on GitHub [1] to help administrators and security practitioners secure email systems.

Conclusion

We presented a set of practical attacks against email authentication systems and identified a wide variety
of inconsistencies between different components across email servers and clients. We showed that these
inconsistencies can enable an attacker to bypass email authentication to impersonate any site and even
forge DKIM-signed emails with a legitimate domain’s signature. All 10 email providers and 19 MUAs in our
experimental testing proved vulnerable to multiple of the 18 attacks that we developed.

As our software systems become increasingly complex, the need for building them out of disparate inde-
pendent components rises. It appears that, in addition to email systems, many other real-world applications
suffer similar problems [2,6,7]. We hope this research can inspire the community to work towards developing
methodologies to help secure additional applications.

References

[1] Espoofer. https://github.com/chenjj/espoofer, 2020. [accessed Dec-2020].

[2] Jianjun Chen, Jian Jiang, Haixin Duan, Nicholas Weaver, Tao Wan, and Vern Paxson. Host of Troubles:
Multiple Host Ambiguities in HTTP implementations. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages 1516–1527. ACM, 2016.

[3] Jianjun Chen, Vern Paxson, and Jian Jiang. Composition kills: A case study of email sender authentication.
In 29th USENIX Security Symposium (USENIX Security 20), 2020.

[4] D. Crocker, T. Hansen, and M. Kucherawy. DomainKeys Identified Mail (DKIM) Signatures. STD 76, RFC
Editor, September 2011. http://www.rfc-editor.org/rfc/rfc6376.txt.

www.usenix.org ;login: | 7

https://github.com/chenjj/espoofer
http://www.rfc-editor.org/rfc/rfc6376.txt

[5] Sean Gallagher and David Kravets. How did yahoo get breached? employee got spear phished, fbi
suggests. https://arstechnica.com/tech-policy/2017/03/fbi-hints-that-hack-of-semi-
privileged-yahoo-employee-led-to-massive-breach/, 2017. [accessed Dec-2020].

[6] Mark Handley, Vern Paxson, and Christian Kreibich. Network Intrusion Detection: Evasion, Traffic
Normalization, and End-to-End Protocol Semantics. In USENIX Security, 2001.

[7] James Kettle. HTTP Desync Attacks: Smashing into the Cell Next Door. Black Hat USA, 2019.

[8] S. Kitterman. Sender Policy Framework (SPF) for Authorizing Use of Domains in Email, Version 1. RFC
7208, RFC Editor, April 2014. http://www.rfc-editor.org/rfc/rfc7208.txt.

[9] J. Klensin. Simple Mail Transfer Protocol. RFC 5321, RFC Editor, October 2008. http://www.rfc-
editor.org/rfc/rfc5321.txt.

[10] Katiana Krawchenko. The phishing email that hacked the account of john podesta. https://
www.cbsnews.com/news/the-phishing-email-that-hacked-the-account-of-john-podesta/,
2016. [accessed Dec-2020].

[11] M. Kucherawy and E. Zwicky. Domain-based Message Authentication, Reporting, and Conformance
(DMARC). RFC 7489, RFC Editor, March 2015. http://www.rfc-editor.org/rfc/rfc7489.txt.

www.usenix.org ;login: | 8

 https://arstechnica.com/tech-policy/2017/03/fbi-hints-that-hack-of-semi-privileged-yahoo-employee-led-to-massive-breach/
 https://arstechnica.com/tech-policy/2017/03/fbi-hints-that-hack-of-semi-privileged-yahoo-employee-led-to-massive-breach/
http://www.rfc-editor.org/rfc/rfc7208.txt
http://www.rfc-editor.org/rfc/rfc5321.txt
http://www.rfc-editor.org/rfc/rfc5321.txt
https://www.cbsnews.com/news/the-phishing-email-that-hacked-the-account-of-john-podesta/
https://www.cbsnews.com/news/the-phishing-email-that-hacked-the-account-of-john-podesta/
http://www.rfc-editor.org/rfc/rfc7489.txt

	Background
	SMTP lacks authentication
	Which identity to authenticate?
	How SPF/DKIM/DMARC authenticate email senders

	Our Discovery: Bypassing the Authentication
	Case Study: Ambiguous domains
	Case Study: Ambiguous From headers
	Case Study: Ambiguous email addresses
	Case Study: Forging DKIM-signed emails

	Mitigation
	Conclusion

