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The memory coherence problem in designing and implementing a shared virtual memory on loosely 
coupled multiprocessors is studied in depth. Two classes of algorithms, centralized and distributed, 
for solving the problem are presented. A prototype shared virtual memory on an Apollo ring based 
on these algorithms has been implemented. Both theoretical and practical results show that the 
memory coherence problem can indeed be solved efficiently on a loosely coupled multiprocessor. 

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Ar- 
chitecture and Design--network communications; C.2.4 [Computer-Communication Networks]: 
Distributed Systems-network operating systems; D.4.2 [Operating Systems]: Storage Manage- 
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Design-distributed systems 
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programming, shared virtual memory 

1. INTRODUCTION 
The benefits of a virtual memory go without saying; almost every high perfor- 
mance sequential computer in existence today has one. In fact, it is hard to 
believe that loosely coupled multiprocessors would not also benefit from virtual 
memory. One can easily imagine how virtual memory would be incorporated into 
a shared-memory parallel machine because the memory hierarchy need not be 
much different from that of a sequential machine. On a multiprocessor in which 
the physical memory is distributed, however, the implementation is not obvious. 
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Distributed shared memory, then…

Cache coherence protocol 
over network

Use DRAM as cache

Make transparent/fast 
with paging hardware 

(cache block = memory page)

Best apps were:

compute-focused 

dense 
coarse-grained



Distributed shared memory, now?

• New “data-intensive” applications: 
   Social network analysis 
   Machine learning 
   Bioinformatics 
   …


• Data access, not compute, 
is the hard part


• Locality can be hard to find


• A bad fit for DSM of 25 years ago, 
so community has explored other 
abstractions: 
  Spark, GraphLab, Naiad, etc. S.cerevisiae 

[von Mering et al.]
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Commodity networkLinux x86 node Linux x86 node

Grappa – Distributed shared memory 

MapReduce GraphLab
Relational 

Query  
Engine

Irregular 
apps, native 
code, etc...

....

Your next data-intensive 
application or framework!

What is Grappa?
Grappa:  
   Software distributed shared memory 
   for data-intensive apps



What makes this hard?

Lack of locality

Small messages

Small tasks

Parallelism is abundant 
in data-intensive 

applications!
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Small messages

Small tasks

Use parallelism to 
hide latency!
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What makes this hard?

Small messages

Small tasks

Lack of locality Use parallelism to 
hide latency!
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Our goal is throughput! 
We can trade additional latency 

for increased throughput.



Aggregating remote operations
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What makes this hard?

Lack of locality

Small messages

Small tasks

Use parallelism to 
hide latency!

Trade latency for 
more throughput!

Make context 
switching fast.



User-level cooperative multithreading

• With ~1000 threads per core, contexts often don’t fit in L1 
   Our scheduler prefetches contexts into cache 
   Limited by DRAM bandwidth, not miss latency


• Context switch moves 1 cacheline of thread state, 3 cachelines of working set


• ~50 ns



DSM implementation



Grappa Code: Expose DSM abstraction at 
language level using C++11 library

void search(Vertex * vertex_addr) { 
    Vertex v = *vertex_addr; 

    Vertex * child0 = v.children; 
    for( int i = 0; i < v.num_children; ++i ) { 
        search(child0+i); 
    } 
}

void search(GlobalAddress<Vertex> vertex_addr) { 
    Vertex v = delegate::read(vertex_addr); 

    GlobalAddress<Vertex> child0 = v.children; 
    forall( 0, v.num_children, [child0](int64_t i) { 
        search(child0+i); 
    } 
}

Grappa multi-node version

Standard single-core versionSearching a large,  
unbalanced tree
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Accessing data in the global address space

Memory is partitioned by core 
All sharing is done using communication, so synchronization == scheduling

DRAM DRAM DRAM DRAM

Global address space



var
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Accessing memory through delegates



var

DRAM DRAM DRAM DRAM

var+1

var+1

var+1

Accessing memory through delegates

var+1var+1var+1

Move computation to data:

All accesses to a word run on its home core



Results



Delegation + aggregation  
makes random access fast 

GUPS pseudocode:


int	
  a[BIG]; 
int	
  b[n]	
  =	
  {rand()}; 
 
for	
  (i=0;	
  i<n;	
  i++) 
	
  	
  a[	
  b[i]	
  ]++;
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Building application frameworks on Grappa

In-memory 
MapReduce GraphLab API Relational query 

execution engine



In-memory MapReduce

• Simple implementation of MapReduce 
model for iterative applications 
(no fault-tolerance)


• Compared with Spark, with fault-
tolerance disabled


• Benchmark: K-Means on SeaFlow 
ocean cytometry dataset (8.9GB)


• 64 AMD Interlagos nodes, 
Mellanox 40Gb ConnectX-2 InfiniBand
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Relational query execution

• Built a backend for the Raco 
relational algebra compiler/optimizer: 
github.com/uwescience/raco


• Queries are compiled into 
Grappa for() loops


• Compare with Shark, a Hive/SQL-like 
query system built on Spark 
using SP2Bench benchmark
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http://github.com/uwescience/raco


GraphLab on Grappa

• Subset of the GraphLab API described in 
PowerGraph paper


• GraphLab: replicated graph representation, 
                  complex partitioning strategy; 
 
Grappa: simple adjacency list, 
              random partitioning


• Four benchmarks from GraphBench.org: 
   PageRank, conn. components, SSSP, BFS


• Graphs: Friendster (65M vertices, 1.8B edges),  
   Twitter (41M vertices, 1B edges)
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Why is Grappa fast?

• Much higher message rates


• Built to enable use of RDMA  
(but is still fast over TCP)


• Faster serialization


• Efficient fine-grained synchronization and scheduling



Not in the talk

• Also in paper: 
   Deeper dive on performance 
   Results from programming against Grappa directly


• Related projects:


Alembic: Automatic Locality Extraction via Migration. 

B. Holt, P. Briggs, L. Ceze, M. Oskin

OOPSLA 2014


Radish: Compiling Efficient Query Plans for Distributed Shared Memory. 

B. Myers, D. Halperin, J. Nelson, M. Oskin, L. Ceze, B. Howe

Tech report, October 2014


Flat Combining Synchronized Global Data Structures. 

B. Holt, J. Nelson, B. Myers, P. Briggs, L. Ceze, S. Kahan, and M. Oskin 
International Conference on PGAS Programming Models (PGAS), October 2013

http://sampa.cs.washington.edu/papers/oopsla14-alembic.pdf
ftp://ftp.cs.washington.edu/tr/2014/10/UW-CSE-14-10-01.pdf
http://sampa.cs.washington.edu/papers/holt-pgas13.pdf


Conclusion

• Grappa is a platform for building new data-intensive analytics frameworks


• Latency tolerance enables fast distributed shared memory for analytics


• BSD-licensed source, more info: 

http://grappa.io

http://grappa.io

