Latency-Tolerant
Software Distributed Shared Memory

Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis
Ceze, Simon Kahan, Mark Oskin

University of Washington
USENIX ATC 2015
July 9, 2015

25 years ago...

Memory Coherence in Shared Virtual
Memory Systems

KAI LI

Princeton University
and

PAUL HUDAK
Yale Universitv

The
couple
for so!
on the
memo

Categc
chitec
Distril
ment-
Desig:

TreadMarks:

Shared Niemo:
Computing on
Networks of
Workstations

Gener
Additi
progre

Cristiana Amza, Alan L. Cox, igh-speed networks and improved microprocessor performance
Sandhya Dwarkadas, H are making networks of workstations an appealing vehicle for
Pete Keleher, Honghui Lu, parallel computing. By relying solely on commodity hardware
Ramakrishnan Rajamony, and software, networked workstations can offer parallel processing at a
Weimin Yu, and relatively low cost.

Willy Zwaenepoel A network-of-workstations multiprocessor can be realized as a proces-
Rice University sor bank in which dedicated processors provide computing cycles, or it

can consist of a dynamically varying set of machines that perform long-
running computations during idle periods. In the latter case, the hard-
ware cost is essentially zero, since many organizations already have
extensive workstation networks.

In terms of performance, networked workstations approach or exceed
supercomputer performance for some applications. These loosely cou-
pled mudtiprocessors will by no means replace the more tightly coupled
designs, which, because of lower latencies and higher bandwidths, are
more efficient for applications with stringent synchronization and com-
Shared memory facilitates munication requiremnents. However, advances in networking technology

and processor performance are expanding the class of applications that
the transition from sequential canbe executed efficiently on networked workstations.

| — T

Distributed shared memory, then...

Best apps were:
compute-focused
dense
coarse-grained

Use DRAM as cache

Make transparent/fast
with paging hardware Cache coherence protocol

(cache block = memory page) over network

Distributed shared memory, now?

- New “data-intensive” applications:
Social network analysis Ny~
Machine learning %
Bioinformatics

- Data access, not compute,
Is the hard part

* Locality can be hard to find
- A bad fit for DSM of 25 years ago,
so community has explored other |
abstractions: \A
Spark, GraphLab, Naiad, etc. ‘/ "

S.cerevisiae
[von Mering et al.]

Grappa:
Software distributed shared memory

for data-intensive apps

Your next data-intensive
application or framework!

Relational Irregular \/
MapReduce GraphLab Query apps, native
Engine code, etc...

Grappa — Distributed shared memory

Linux x86 node —g::n;nodity netﬂc_)@f Linux x86 node

What makes this hard?

Lack of locality

Parallelism i1s abundant

In data-intensive
applications!

Small tasks

What makes this hard?

ackof focalty | Wy U5e Bl i

Small messages

Small tasks

A remote read with latency tolerance

A remote read with latency tolerance

A remote read with latency tolerance

What makes this hard?

ackof focalty | Wy U5e Bl i

Small messages

Small tasks

The small message problem

N
|

Bandwidth (GB)

| |
16 B 1 kB 64 kB
Message size

The small message problem

N
|

Bandwidth (GB)

| |
16 B 1 kB 64 kB
Message size

The small message problem

N
|

Bandwidth (GB)

O -
| | |
16 81 1 kB 64 kB
Message size

Our goal is throughput!
We can trade additional latency
for increased throughput.

Aggregating remote operations

Aggregating remote operations

Aggregating remote operations

What makes this hard?

Use parallelism to

Lack of locality hide latency!

Trade latency for
more throughput!

Small messages

=
=

Small tasks

What makes this hard?

Use parallelism to
hide latency!

Lack of locality

Make context

Small tasks switching fast.

Small messaaes Trade latency for
° more throughput!

User-level cooperative multithreading

- With ~1000 threads per core, contexts often don’t fit in L1
Our scheduler prefetches contexts into cache
Limited by DRAM bandwidth, not miss latency

- Context switch moves 1 cacheline of thread state, 3 cachelines of working set

« ~50 ns

DSM implementation

Grappa Code: Expose DSM abstraction at
language level using C++11 library

Searching a large, Standard single-core version
unbalanced tree void search(Vertex * vertex_addr) {
Vertex v = xvertex_addr;

&, N

EsSs, JfA2a= Vertex * child® = v.children;

Es 7/ /\: S= for(int i = @; 1 < v.num_children; ++i) {

ol AN i search(childo+i);

/% l‘/ : \\\\‘ ¥ $ }
(.;/‘,9' & / i _‘.I‘\ \\\\\‘\l § S }
7 "l
i ‘M\"\\
1507 Grappa multi-node version
void search(GlobalAddress<Vertex> vertex_addr) {
©100- Vertex v = delegate::read(vertex_addr);
(2}
S GlobalAddress<Vertex> child@ = v.children;
= forall(@, v.num_children, [child@](int64_t i) {
507 search(childo+i);
s
s
0_
8 16 32 48 64

Nodes

Accessing data in the global address space

: I L.

‘ ‘ ‘ iﬁiil address spac

T
.

Memory is partitioned by core
All sharing is done using communication, so synchronization == scheduling

Accessing memory through delegates

| Sgrrs

h_

=

va r+1j

Accessing memory through delegates

/

Move computation to data:
All accesses to a word run on its home core

Results

Delegation + aggregation
makes random access fast

 3e+09 -
-
O
O
@ GUPS pseudocode:
S 2e+09 -
(7)) .
Y= int a[BIG];
GE) int b[n] = {rand()};
@
G 1e+09 - for (i=0; i<n; i++)
o al b[1]]J++;
=
S
< 0e+00 -
| | | | |
16 32 64 96 128
Nodes
32-core AMD Interlagos nodes,
RDMA Mellanox ConnectX-2
Grappa : ©
delegate &tomic 40 Gb InfiniBand

increment

Building application frameworks on Grappa

void mapper(x) {
K, v = compute(x)
reducers[hash(k)].append(k,v)
)

void reducer(k, vals) {
results.append(k, sum(vals))

forall (e :
mapper(e)

forall ((k,vals)
reducer (k, vals)

inputs)

reducers. groups)

INn-memory
MapReduce

while (graph.active_verts.size > 0) {
// gather phase

forall (Vertex v

forall (Edge e

graph.active_verts)
v.in_edges)
v.prog.gather(v, e);
// apply phase
forall (Vertex v
v.prog.apply(v);
// scatter phase

forall (Vertex v

graph.active_verts)

graph.active_verts)
forall (Edge e v.out_edges)
v.prog.scatter(v, e);

GraphLab AP

// FriendsOfFollowers(a,b,c) :-

/7 FollowedBy(a,b),

// Friends(b,c),

// a > 10

forall(Tuple t Friends)
hashO0.insert(t.get(0), t);

forall(Tuple t FollowedBy) {
if (t.get(0) > 10) ¢

e = hash0.lookup(t.get(1))
results.append(e)

Relational query
execution engine

SHARK

In-memory MapReduce

- Simple implementation of MapReduce
model for iterative applications

14
(no fault-tolerance)
o 12
=
. Compared with Spark, with fault- S 10
tolerance disabled o 8
N
E 6
« Benchmark: K-Means on SeaFlow g 4
ocean cytometry dataset (8.9GB) 5
o N
« 64 AMD Interlagos nodes, Grappa Spark

Mellanox 40Gb ConnectX-2 InfiniBand

Relational query execution

- Built a backend for the Raco
relational algebra compiler/optimizer: 14
github.com/uwescience/raco

o 12
=

- Queries are compiled into 5 10

Grappa for() loops § 8

E 6

» Compare with Shark, a Hive/SQL-like S 4

query system built on Spark 5
using SP2Bench benchmark o,

Grappa Shark

(16 nodes)

http://github.com/uwescience/raco

GraphLab on Grappa

Subset of the GraphLab API described in
PowerGraph paper

GraphlLab: replicated graph representation,
complex partitioning strategy;

Grappa: simple adjacency list,
random partitioning

Normalized Runtime

Four benchmarks from GraphBench.org:
PageRank, conn. components, SSSP, BFS

Graphs: Friendster (65M vertices, 1.8B edges),
Twitter (41M vertices, 1B edges)

3
2
1
0
Q)
0
O
©
Q
(31 nodes)

(Sad) geydeun

(wopuel) geydeln

http://GraphBench.org

Why is Grappa fast?

- Much higher message rates

« Built to enable use of RDMA
(but is still fast over TCP)

« Faster serialization

- Efficient fine-grained synchronization and scheduling

Not in the talk

* Also in paper:
Deeper dive on performance
Results from programming against Grappa directly

- Related projects:

Alembic: Automatic Locality Extraction via Migration.
B. Holt, P. Briggs, L. Ceze, M. Oskin
OOPSLA 2014

Radish: Compiling Efficient Query Plans for Distributed Shared Memory.
B. Myers, D. Halperin, J. Nelson, M. Oskin, L. Ceze, B. Howe
Tech report, October 2014

Flat Combining Synchronized Global Data Structures.
B. Holt, J. Nelson, B. Myers, P. Briggs, L. Ceze, S. Kahan, and M. Oskin
International Conference on PGAS Programming Models (PGAS), October 2013

http://sampa.cs.washington.edu/papers/oopsla14-alembic.pdf
ftp://ftp.cs.washington.edu/tr/2014/10/UW-CSE-14-10-01.pdf
http://sampa.cs.washington.edu/papers/holt-pgas13.pdf

Conclusion

- Grappa is a platform for building new data-intensive analytics frameworks
- Latency tolerance enables fast distributed shared memory for analytics

« BSD-licensed source, more info:

http://grappa.io

