
Latency-Tolerant 
Software Distributed Shared Memory

Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis
Ceze, Simon Kahan, Mark Oskin

University of Washington

USENIX ATC 2015
July 9, 2015

25 years ago…

Memory Coherence in Shared Virtual
Memory Systems
KAI Ll
Princeton University
and
PAUL HUDAK
Yale University

The memory coherence problem in designing and implementing a shared virtual memory on loosely
coupled multiprocessors is studied in depth. Two classes of algorithms, centralized and distributed,
for solving the problem are presented. A prototype shared virtual memory on an Apollo ring based
on these algorithms has been implemented. Both theoretical and practical results show that the
memory coherence problem can indeed be solved efficiently on a loosely coupled multiprocessor.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Ar-
chitecture and Design--network communications; C.2.4 [Computer-Communication Networks]:
Distributed Systems-network operating systems; D.4.2 [Operating Systems]: Storage Manage-
ment-distributed memories; uirtuol memory; D.4.7 [Operating Systems]: Organization and
Design-distributed systems

General Terms: Algorithms, Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Loosely coupled multiprocessors, memory coherence, parallel
programming, shared virtual memory

1. INTRODUCTION
The benefits of a virtual memory go without saying; almost every high perfor-
mance sequential computer in existence today has one. In fact, it is hard to
believe that loosely coupled multiprocessors would not also benefit from virtual
memory. One can easily imagine how virtual memory would be incorporated into
a shared-memory parallel machine because the memory hierarchy need not be
much different from that of a sequential machine. On a multiprocessor in which
the physical memory is distributed, however, the implementation is not obvious.

This research was supported in part by National Science Foundation grants MCS-8302018, DCR-
8106181, and CCR-8814265. A preliminary version of this paper appeared in the Proceedings of the
5th Annual ACM Symposium on Principles of Distributed Computing [36].
Authors’ addresses: K. Li, Department of Computer Science, Princeton University, Princeton, NJ
08544; P. Hudak, Department of Computer Science, Yale University, New Haven, CT 06520.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1989 ACM 0734-2071/89/1100-0321$01.50

ACM Transactions on Computer Systems, Vol. 7, No. 4, November 1989, Pages 321-359.

DRAM DRAM DRAM DRAM

CPU CPU CPU CPU

Distributed shared memory, then…

Cache coherence protocol 
over network

Use DRAM as cache

Make transparent/fast 
with paging hardware 

(cache block = memory page)

Best apps were:

compute-focused

dense
coarse-grained

Distributed shared memory, now?

• New “data-intensive” applications: 
 Social network analysis 
 Machine learning 
 Bioinformatics 
 …

• Data access, not compute, 
is the hard part

• Locality can be hard to find

• A bad fit for DSM of 25 years ago, 
so community has explored other
abstractions: 
 Spark, GraphLab, Naiad, etc. S.cerevisiae 

[von Mering et al.]

2

Commodity networkLinux x86 node Linux x86 node

Grappa – Distributed shared memory

MapReduce GraphLab
Relational

Query
Engine

Irregular
apps, native
code, etc...

....

Your next data-intensive
application or framework!

What is Grappa?
Grappa:  
 Software distributed shared memory 
 for data-intensive apps

What makes this hard?

Lack of locality

Small messages

Small tasks

Parallelism is abundant 
in data-intensive

applications!

What makes this hard?

Lack of locality

Small messages

Small tasks

Use parallelism to
hide latency!

A remote read with latency tolerance

Task 1

read()

DRAM DRAM DRAM DRAM

A remote read with latency tolerance

Task 1

DRAM DRAM DRAM DRAM

Task 2

Task ~100

read()

A remote read with latency tolerance

Task 1

Task 2

Task ~100

DRAM DRAM DRAM DRAM

read()

What makes this hard?

Small messages

Small tasks

Lack of locality Use parallelism to
hide latency!

The small message problem

0

1

2

16 B 1 kB 64 kB
Message size

Ba
nd

w
id

th
 (G

B)

mpi RDMA (verbs)

The small message problem

0

1

2

16 B 1 kB 64 kB
Message size

Ba
nd

w
id

th
 (G

B)

mpi RDMA (verbs)

The small message problem

0

1

2

16 B 1 kB 64 kB
Message size

Ba
nd

w
id

th
 (G

B)

mpi RDMA (verbs)

Our goal is throughput!
We can trade additional latency 

for increased throughput.

Aggregating remote operations

Task 1

DRAM DRAM DRAM DRAM

Task 2

read()

op()

op()

op()

Aggregating remote operations

Task 1

DRAM DRAM DRAM DRAM

Task 2

Task ~1000

read()

op()

op()

op()

Aggregating remote operations

Task 1

DRAM DRAM DRAM DRAM

Task 2

Task ~1000

read()

op()

op()

op()

What makes this hard?

Small tasks

Lack of locality

Small messages

Use parallelism to
hide latency!

Trade latency for 
more throughput!

What makes this hard?

Lack of locality

Small messages

Small tasks

Use parallelism to
hide latency!

Trade latency for 
more throughput!

Make context
switching fast.

User-level cooperative multithreading

• With ~1000 threads per core, contexts often don’t fit in L1 
 Our scheduler prefetches contexts into cache 
 Limited by DRAM bandwidth, not miss latency

• Context switch moves 1 cacheline of thread state, 3 cachelines of working set

• ~50 ns

DSM implementation

Grappa Code: Expose DSM abstraction at
language level using C++11 library

void search(Vertex * vertex_addr) { 
 Vertex v = *vertex_addr; 

 Vertex * child0 = v.children; 
 for(int i = 0; i < v.num_children; ++i) { 
 search(child0+i); 
 } 
}

void search(GlobalAddress<Vertex> vertex_addr) { 
 Vertex v = delegate::read(vertex_addr); 

 GlobalAddress<Vertex> child0 = v.children; 
 forall(0, v.num_children, [child0](int64_t i) { 
 search(child0+i); 
 } 
}

Grappa multi-node version

Standard single-core versionSearching a large,  
unbalanced tree

0

50

100

150

8 16 32 48 64
Nodes

M
Ve

rts
/s

System:
Grappa
Cray XMT1

Accessing data in the global address space

Memory is partitioned by core 
All sharing is done using communication, so synchronization == scheduling

DRAM DRAM DRAM DRAM

Global address space

var

DRAM DRAM DRAM DRAM

var+1var+1var+1

Accessing memory through delegates

var

DRAM DRAM DRAM DRAM

var+1

var+1

var+1

Accessing memory through delegates

var+1var+1var+1

Move computation to data:

All accesses to a word run on its home core

Results

Delegation + aggregation  
makes random access fast

GUPS pseudocode:

int	
 a[BIG]; 
int	
 b[n]	
 =	
 {rand()}; 
 
for	
 (i=0;	
 i<n;	
 i++) 
	
 	
 a[
 b[i]	
]++;

●

●

●

●

●

●

●

●0e+00

1e+09

2e+09

3e+09

16 32 64 96 128
Nodes

At
om

ic
 in

cr
em

en
ts

 p
er

 s
ec

on
d

● ●
Grappa
delegate

RDMA
atomic
increment

32-core AMD Interlagos nodes, 
Mellanox ConnectX-2 

40 Gb InfiniBand

Building application frameworks on Grappa

In-memory
MapReduce GraphLab API Relational query

execution engine

In-memory MapReduce

• Simple implementation of MapReduce
model for iterative applications 
(no fault-tolerance)

• Compared with Spark, with fault-
tolerance disabled

• Benchmark: K-Means on SeaFlow
ocean cytometry dataset (8.9GB)

• 64 AMD Interlagos nodes, 
Mellanox 40Gb ConnectX-2 InfiniBand

N
or

m
al

iz
ed

 ru
nt

im
e

0

2

4

6

8

10

12

14

Grappa Spark

Relational query execution

• Built a backend for the Raco
relational algebra compiler/optimizer: 
github.com/uwescience/raco

• Queries are compiled into 
Grappa for() loops

• Compare with Shark, a Hive/SQL-like
query system built on Spark 
using SP2Bench benchmark

N
or

m
al

iz
ed

 ru
nt

im
e

0

2

4

6

8

10

12

14

Grappa Shark

(16 nodes)

http://github.com/uwescience/raco

GraphLab on Grappa

• Subset of the GraphLab API described in
PowerGraph paper

• GraphLab: replicated graph representation, 
 complex partitioning strategy; 
 
Grappa: simple adjacency list, 
 random partitioning

• Four benchmarks from GraphBench.org: 
 PageRank, conn. components, SSSP, BFS

• Graphs: Friendster (65M vertices, 1.8B edges),  
 Twitter (41M vertices, 1B edges)

N
or

m
al

iz
ed

 R
un

tim
e

0

1

2

3

G
rappa

G
raphLab (PD

S)

G
raphLab (random

)(31 nodes)

http://GraphBench.org

Why is Grappa fast?

• Much higher message rates

• Built to enable use of RDMA  
(but is still fast over TCP)

• Faster serialization

• Efficient fine-grained synchronization and scheduling

Not in the talk

• Also in paper: 
 Deeper dive on performance 
 Results from programming against Grappa directly

• Related projects:

Alembic: Automatic Locality Extraction via Migration.

B. Holt, P. Briggs, L. Ceze, M. Oskin

OOPSLA 2014

Radish: Compiling Efficient Query Plans for Distributed Shared Memory.

B. Myers, D. Halperin, J. Nelson, M. Oskin, L. Ceze, B. Howe

Tech report, October 2014

Flat Combining Synchronized Global Data Structures.

B. Holt, J. Nelson, B. Myers, P. Briggs, L. Ceze, S. Kahan, and M. Oskin 
International Conference on PGAS Programming Models (PGAS), October 2013

http://sampa.cs.washington.edu/papers/oopsla14-alembic.pdf
ftp://ftp.cs.washington.edu/tr/2014/10/UW-CSE-14-10-01.pdf
http://sampa.cs.washington.edu/papers/holt-pgas13.pdf

Conclusion

• Grappa is a platform for building new data-intensive analytics frameworks

• Latency tolerance enables fast distributed shared memory for analytics

• BSD-licensed source, more info:

http://grappa.io

http://grappa.io

