Design Guidelines for High Performance RDMA Systems

Anuj Kalia (CMU) Michael Kaminsky (Intel Labs) David Andersen (CMU)

RDMA is cheap (and fast!)

Mellanox Connect-IB

- 2x 56 Gbps InfiniBand
- ~2 μs RTT
- · RDMA
- \$1300

Problem

Performance depends on complex low-level factors

Background: RDMA read

How to design a sequencer?

Which RDMA ops to use?

Remote CPU bypass (one-sided)

- Read
- Write
- Perf? 2.2 M/s () Fetch-and-add Compare-and-swap

Remote CPU involved (messaging, two-sided)

- Send
- Recv

How we sped up the sequencer **by 50X**

Large RDMA design space

Guidelines

NICs have multiple processing units (PUs)

Avoid contention Exploit parallelism

PCI Express messages are expensive

Reduce CPU-to-NIC messages (MMIOs) Reduce NIC-to-CPU messages (DMAs)

High contention w/ atomics

Reduce contention: use CPU cores

Reduce MMIOs w/ Doorbell batching

RPCs w/ Doorbell batching

Push

Pull (Doorbell batching)

Exploit NIC parallelism w/ multiQ

Bottleneck = PCIe DMA bandwidth (paper)

Reduce DMA size: Header-only

Evaluation

- Evaluation of optimizations on 3 RDMA generations
- PCIe models, bottlenecks
- More atomics experiments
 - Example: atomic operations on multiple addresses

RPC-based key-value store

Conclusion

NICs have multiple processing units (PUs)

Avoid contention Exploit parallelism

PCI Express messages are expensive

Reduce CPU-to-NIC messages (MMIOs) Reduce NIC-to-CPU messages (DMAs)

Code: https://github.com/anujkaliaiitd/rdma_bench