
cHash: Detection of Redundant Compilations
via AST Hashing

Christian Dietrich‡, Valentin Rothberg‡, Ludwig Füracker?,
Andreas Ziegler?, Daniel Lohmann‡

‡Leibniz Universität Hannover
?Friedrich-Alexander-Universität Erlangen-Nürnberg

13. July 2017 supported by



Compilation and Recompilation

xk
cd

.c
om

,C
C
BY

-N
C
2.
5

Compile Time is not the Problem.
The Problem is Recompile Time

LUH,FAU cHash – Motivation and Introduction 2 – 17



C/C++ Projects and Makefiles

network.o

network.h

network.c

types.h

Makefile Fragment for network module

network.o: network.c network.h types.h

cc -o network.o -c network.c

In C projects, modular decomposition is done on file granularity
Headers export an interface, #include includes an interface
Source files (.c) are module implementations

Recompilation decided upon timestamp comparison (e.g. make)
Dependencies of module are encoded in Makefile
Compare all dependent timestamps against last build artifact

LUH,FAU cHash – Motivation and Introduction 3 – 17



C/C++ Projects and Makefiles

network.o

network.h

network.c

types.h

Makefile Fragment for network module

network.o: network.c network.h types.h

cc -o network.o -c network.c

In C projects, modular decomposition is done on file granularity
Headers export an interface, #include includes an interface
Source files (.c) are module implementations

Recompilation decided upon timestamp comparison (e.g. make)
Dependencies of module are encoded in Makefile
Compare all dependent timestamps against last build artifact

LUH,FAU cHash – Motivation and Introduction 3 – 17



When to detect change and stop compilation?

0.1 0.2 0.3 0.4 0.5 0.6

-O0

-O1

-O2

-O3

Average compile time per source file (seconds)

GC
C

O
pt

im
iza

tio
n

Le
ve

l

C Preprocessor C Parser Optimizer

make, timestamps

ccache, textual hash

chash, semantic hash

Detect that a compilation will result in the same output

The later we apply detection mechanism, the more precise it becomes

In a nutshell: cHash calculates an hash after the parser

LUH,FAU cHash – Motivation and Introduction 4 – 17



When to detect change and stop compilation?

0.1 0.2 0.3 0.4 0.5 0.6

-O0

-O1

-O2

-O3

Average compile time per source file (seconds)

GC
C

O
pt

im
iza

tio
n

Le
ve

l

C Preprocessor C Parser Optimizer

make, timestamps

ccache, textual hash

chash, semantic hash

Detect that a compilation will result in the same output

The later we apply detection mechanism, the more precise it becomes

In a nutshell: cHash calculates an hash after the parser

LUH,FAU cHash – Motivation and Introduction 4 – 17



When to detect change and stop compilation?

0.1 0.2 0.3 0.4 0.5 0.6

-O0

-O1

-O2

-O3

Average compile time per source file (seconds)

GC
C

O
pt

im
iza

tio
n

Le
ve

l

C Preprocessor C Parser Optimizer

make, timestamps

ccache, textual hash

chash, semantic hash

Detect that a compilation will result in the same output

The later we apply detection mechanism, the more precise it becomes

In a nutshell: cHash calculates an hash after the parser

LUH,FAU cHash – Motivation and Introduction 4 – 17



When to detect change and stop compilation?

0.1 0.2 0.3 0.4 0.5 0.6

-O0

-O1

-O2

-O3

Average compile time per source file (seconds)

GC
C

O
pt

im
iza

tio
n

Le
ve

l

C Preprocessor C Parser Optimizer

make, timestamps

ccache, textual hash

chash, semantic hash

Detect that a compilation will result in the same output

The later we apply detection mechanism, the more precise it becomes

In a nutshell: cHash calculates an hash after the parser

LUH,FAU cHash – Motivation and Introduction 4 – 17



Outline

Motivation and Introduction

cHash: Hash the abstract-syntax tree

Evaluation
…with incremental (minimal) modifications
…with commit-sized modifications

Conclusion

LUH,FAU cHash – Motivation and Introduction 5 – 17



Parse Tree and Semantic Analysis

Function
inc

94

Function Type
18

int
2

Pointer
14

Block
75

Return
25

Argument
e

17

BinaryOp
+=

30

Literal
1

5

FieldRef
->counter

22

FieldRef
->counter

22

int
2

Record
refcount

12

Field
counter

4
Field

object

6

int
2

Pointer
4

Record
obj

2

Record
unused Pointer

Field
next

TypeDeclaration Expression/Statement AST Child

struct unused {
struct unused *next;

};

struct obj {};

struct refcount
{

int counter;
struct obj * ptr;

};

int
inc(struct refcount *e)
{

e->counter += 1;
return e->counter;

}

LUH,FAU cHash – cHash: Hash the abstract-syntax tree 6 – 17



Parse Tree and Semantic Analysis

Function
inc

94

Function Type
18

int
2

Pointer
14

Block
75

Return
25

Argument
e

17

BinaryOp
+=

30

Literal
1

5

FieldRef
->counter

22

FieldRef
->counter

22

int
2

Record
refcount

12

Field
counter

4
Field

object

6

int
2

Pointer
4

Record
obj

2

Record
unused Pointer

Field
next

Type

Declaration

Expression/Statement AST Child

Type-of

Reference-to

Semantic analysis type checks and interconnects the AST
Nodes are annotated with their type
AST becomes a directed graph, it can include cycles

LUH,FAU cHash – cHash: Hash the abstract-syntax tree 6 – 17



AST Hash for each Compilation Unit

Calculate semantic fingerprint with a depth-first search
Hash relevant node properties (node class, operation,…)
Include hashes of all referenced nodes

A H(A) := Fields(A) ⊗23 ⊗ 42BH(B) := 23

CH(C) := 42

Cycles in the semantically-enriched AST (recursive data structures)
Cache and reuse hash values for type definitions and declarations
Break cyclic dependencies by using a surrogate hash value
H(struct unused* next) := H("next") ⊗ H("struct unused*")

LUH,FAU cHash – cHash: Hash the abstract-syntax tree 7 – 17



AST Hashing with Depth-First Search

Function
inc

?

Function Type
18

int
2

Pointer
14

Block
75

Return
25

Argument
e

17

BinaryOp
+=

30

Literal
1

5

FieldRef
->counter

22

FieldRef
->counter

22

int
2

Record
refcount

12

Field
counter

4
Field

object

6

int
2

Pointer
4

Record
obj

2

Record
unused Pointer

Field
next

1 +Σ in

2 +Σ in

3 +Σ in

Type

Declaration

Expression/Statement AST Child

Type-of

Reference-to

LUH,FAU cHash – cHash: Hash the abstract-syntax tree 8 – 17



AST Hashing with Depth-First Search

Function
inc

?

Function Type
18

int
2

Pointer
14

Block
75

Return
25

Argument
e

17

BinaryOp
+=

30

Literal
1

5

FieldRef
->counter

22

FieldRef
->counter

22

int
2

Record
refcount

12

Field
counter

4
Field

object

6

int
2

Pointer
4

Record
obj

2

Record
unused Pointer

Field
next

1 +Σ in

2 +Σ in

3 +Σ in

Type

Declaration

Expression/Statement AST Child

Type-of

Reference-to

LUH,FAU cHash – cHash: Hash the abstract-syntax tree 8 – 17



AST Hashing with Depth-First Search

Function
inc

?

Function Type
18

int
2

Pointer
14

Block
75

Return
25

Argument
e

17

BinaryOp
+=

30

Literal
1

5

FieldRef
->counter

22

FieldRef
->counter

22

int
2

Record
refcount

12

Field
counter

4
Field

object

6

int
2

Pointer
4

Record
obj

2

Record
unused Pointer

Field
next

1 +Σ in

2 +Σ in

3 +Σ in

Type

Declaration

Expression/Statement AST Child

Type-of

Reference-to

LUH,FAU cHash – cHash: Hash the abstract-syntax tree 8 – 17



AST Hashing with Depth-First Search

Function
inc

?

Function Type
18

int
2

Pointer
14

Block
75

Return
25

Argument
e

17

BinaryOp
+=

30

Literal
1

5

FieldRef
->counter

22

FieldRef
->counter

22

int
2

Record
refcount

12

Field
counter

4
Field

object

6

int
2

Pointer
4

Record
obj

2

Record
unused Pointer

Field
next

1 +Σ in

2 +Σ in

3 +Σ in

Type

Declaration

Expression/Statement AST Child

Type-of

Reference-to

LUH,FAU cHash – cHash: Hash the abstract-syntax tree 8 – 17



AST Hashing with Depth-First Search

Function
inc

?

Function Type
18

int
2

Pointer
14

Block
75

Return
25

Argument
e

17

BinaryOp
+=

30

Literal
1

5

FieldRef
->counter

22

FieldRef
->counter

22

int
2

Record
refcount

12

Field
counter

4
Field

object

6

int
2

Pointer
4

Record
obj

2

Record
unused Pointer

Field
next

1 +Σ in

2 +Σ in

3 +Σ in

Type

Declaration

Expression/Statement AST Child

Type-of

Reference-to

LUH,FAU cHash – cHash: Hash the abstract-syntax tree 8 – 17



AST Hashing with Depth-First Search

Function
inc

94

Function Type
18

int
2

Pointer
14

Block
75

Return
25

Argument
e

17

BinaryOp
+=

30

Literal
1

5

FieldRef
->counter

22

FieldRef
->counter

22

int
2

Record
refcount

12

Field
counter

4
Field

object

6

int
2

Pointer
4

Record
obj

2

Record
unused Pointer

Field
next

1 +Σ in

2 +Σ in

3 +Σ in

Type

Declaration

Expression/Statement AST Child

Type-of

Reference-to

LUH,FAU cHash – cHash: Hash the abstract-syntax tree 8 – 17



Integrate cHash into the Compiler

We implemented cHash as a CLang plugin for C (GCC: in progress)
1. Calculate hash over the semantically-enriched AST
2. Read in hash for already existing object file
3. Compare old hash and new hash
4. Abort compilation on equality and update timestamp of object file

Caching schemes for object files
CCache: A fixed size cache directory with the hash as index
cHash: Compare hash only with the last compilation result
Caching strategy is orthogonal to fingerprint mechanism

LUH,FAU cHash – cHash: Hash the abstract-syntax tree 9 – 17



Outline

Motivation and Introduction

cHash: Hash the abstract-syntax tree

Evaluation
…with incremental (minimal) modifications
…with commit-sized modifications

Conclusion

LUH,FAU cHash – cHash: Hash the abstract-syntax tree 10 – 17



Incremental Modifications and Recompilation

Setting in the Reality

A developer works continuously on a source base. After a small modification to
the source code, she recompiles the project to update the executables.

Six C open source projects, 18k–742k SLOC, 3 build systems
Start with a fully built source base, all object files are up-to-date
Timestamp-based dependency checking of build system still in place
Comparison between: Baseline, CCache, cHash

For each source/header file:
1. Modify file: (a) update timestamp or (b) useless textual change
2. Start build system to update all build artifacts (with -j48)
3. Get one rebuild duration for each source file

Best-case scenario for cHash
LUH,FAU cHash – Evaluation with Minimal Changes 11 – 17



Incremental Modifications and Recompilation

Setting in the Reality

A developer works continuously on a source base. After a small modification to
the source code, she recompiles the project to update the executables.

Six C open source projects, 18k–742k SLOC, 3 build systems
Start with a fully built source base, all object files are up-to-date
Timestamp-based dependency checking of build system still in place
Comparison between: Baseline, CCache, cHash

For each source/header file:
1. Modify file: (a) update timestamp or (b) useless textual change
2. Start build system to update all build artifacts (with -j48)
3. Get one rebuild duration for each source file

Best-case scenario for cHash
LUH,FAU cHash – Evaluation with Minimal Changes 11 – 17



Incremental Modification: Textual Change

Project Baseline CCache cHash

LUA 1.10 s 16.4% −59.6%
mbedTLS 1.33 s 18.9% −4.3%
musl 0.86 s 17.6% −4.7%
bash 1.48 s −9.2% −65.3%
CPython 8.22 s −24.7% −64.1%
PostgreSQL 3.12 s 8.6% −41.8%

Table: Average rebuild duration after a textual change.

CCache cannot identify redundant build (hash on preprocessed code)

cHash ignores purely syntactical changes

LUH,FAU cHash – Evaluation with Minimal Changes 12 – 17



Outline

Motivation and Introduction

cHash: Hash the abstract-syntax tree

Evaluation
…with incremental (minimal) modifications
…with commit-sized modifications

Conclusion

LUH,FAU cHash – Evaluation with Minimal Changes 13 – 17



Commit-sized Changes and Recompilation

Setting in the Reality

A build server in a continuous integration system builds one uploaded
change/commit after the other. Only the increment introduced by the change
should lead to recompilations

Build the last 500 non-merge commits from our six projects

Prepare the source tree by fully building the parent commit

Comparison between: CCache, cHash, CCache+cHash

For each commit file:
1. Apply the commit on the source
2. Start build system to update all build artifacts (with -j48)
3. Record the rebuild duration

LUH,FAU cHash – Evaluation with Commits 14 – 17



Commit-sized Changes: Results

Commits Baseline CCache cHash CCache+cHash

LUA 479 2.14 s -38.8% -49.3% -46.7%
mbedTLS 498 2.13 s -20.7% -7.3% -21.6%
musl 500 1.25 s -3.8% 0.7% -3.2%
bash 108 2.88 s -11% -22.7% -16%
CPython 500 8.27 s -46.4% -51.4% -53.7%
PostgreSQL 498 5.63 s -11% -31.6% -25.3%

Table: Rebuild time for the last 500 non-merge changes.

Some commits were broken, bash had only 128 commits

Avg. compiler abortions: CCache (61%), cHash (79.75%)

Avg. recompilation speedup: CCache (-23.63%), cHash (-29.63%)

LUH,FAU cHash – Evaluation with Commits 15 – 17



Outline

Motivation and Introduction

cHash: Hash the abstract-syntax tree

Evaluation
…with incremental (minimal) modifications
…with commit-sized modifications

Conclusion

LUH,FAU cHash – Evaluation with Commits 16 – 17



Summary and Conclusion

cHash: AST hash is used to detect redundant build operation
…excludes purely syntactic changes
…excludes unreferenced types and declarations

cHash improves recompilation times for developers and build farms
Build system agnostic, since compiler extension
Combinable with other detection schemes (timestamps, CCache)

Future work for cHash and AST hashing
Integration into mainline compilers (at least the hashing)
Partial recompilation (e.g. a single function)
More complex languages with more emphasis on headers (C++)

LUH,FAU cHash – Evaluation with Commits 17 – 17


	Motivation and Introduction
	Compilation and Recompilation
	C/C++ Projects and Makefiles
	C/C++ Projects and Makefiles
	When to detect change and stop compilation?
	When to detect change and stop compilation?
	When to detect change and stop compilation?
	When to detect change and stop compilation?
	Outline

	cHash: Hash the abstract-syntax tree
	Parse Tree and Semantic Analysis
	Parse Tree and Semantic Analysis
	AST Hash for each Compilation Unit
	AST Hashing with Depth-First Search
	AST Hashing with Depth-First Search
	AST Hashing with Depth-First Search
	AST Hashing with Depth-First Search
	AST Hashing with Depth-First Search
	AST Hashing with Depth-First Search
	Integrate cHash into the Compiler
	Outline

	Evaluation with Minimal Changes
	Incremental Modifications and Recompilation
	Incremental Modifications and Recompilation
	Incremental Modification: Textual Change
	Outline

	Evaluation with Commits
	Commit-sized Changes and Recompilation
	Commit-sized Changes: Results
	Outline
	Summary and Conclusion

	Appendix

