
Everything you always wanted to know

about multicore graph processing but

were afraid to ask

Jasmina Malicevic Baptiste Lepers Willy Zwaenepoel

EPFL, Switzerland

USENIX Annual Technical Conference, Jul 12th -14th 2017 , Santa Clara, CA ,USA

EPFL, Switzerland EPFL, Switzerland

Graphs are everywhere

Social networks

1

Item

recommendation

Search and

website ranking

The maze of graph analytics platforms

2

Ligra

Polymer

Galois

Pregel

Powergraph

PowerLyra

Gemini

GraphChi

X-Stream

GridGraph

Mosaic

Chaos

Single machine

Distributed

In-memory Out-of-core

The maze of graph analytics platforms

3

Ligra

Polymer

Galois

Pregel

Powergraph

PowerLyra

Gemini

GraphChi

X-Stream

GridGraph

Mosaic

Chaos

Single machine

Distributed

In-memory Out-of-core

Everything you always wanted to know…

What techniques work and why?

4

Why is our work different?

• End-to-end evaluation

• Comparison of techniques, rather than systems

5

End-to-end evaluation

6

• Executing the algorithm is only one piece of the puzzle

Pre-processing Algorithm time

Time

End-to-end time = Pre-processing + Algorithm time

Motivation: Why end-to-end time?

7

0

2

4

6

8

10

12

14

baseline optimized code

T
im

e
 (

s
e

c
)

Algorithm

• BFS on Twitter [Ligra]

Motivation: Why end-to-end time?

8

Need to understand the trade-off in end-to-end time!

0

2

4

6

8

10

12

14

baseline optimized code

T
im

e
 (

s
e

c
)

Pre-processing Algorithm

• BFS on Twitter [Ligra]

Comparison of techniques not systems

• Implement techniques from different systems within one system

• Evaluation of techniques in isolation

• Not constrained by system defined API

• Implementation is comparable/better than the original system

9

Questions we want to answer:

• How to represent the graph?

• Cost of creating the representation?

• What data layout is best?

10

• Can we improve cache locality?

• Should we optimize for NUMA?

• Information flow: push, pull or a both?

Algorithm

Pre-processing

The answers depend on:

• Algorithm – differ in # of active vertices per iteration

• Only a subset active: BFS

• Entire graph active: Pagerank, SpMV…

• Graph shape

• Social networks (power law) graphs

• Synthetic graph; 1B edges 64M vertices

• Stored as edge array

11

Questions we want to answer:

• How to represent the graph?

• Cost of creating the representation?

• What data layout is best?

12

• Can we improve cache locality?

• Should we optimize for NUMA?

• Information flow: push, pull or a both?

Algorithm

Pre-processing

Graph representation

13

0 - 2 2 -3 0 - 3 1 - 0 0 - 1

0

2

1

3

2 3 1

0

3

0

1

2

3

Edge array

Adjacency list: outgoing edges

x Pre-processing to group edges by vertex

ü Easy to locate edges of a particular vertex

ü Layout is the same as input – no pre-processing

x To locate edges of a vertex, need to read all edges

Questions we want to answer:

üHow to represent the graph?

• Cost of creating the representation?

• What data layout is best?

14

• Can we improve cache locality?

• Should we optimize for hardware?(NUMA)

• Information flow: push, pull or a both?

o Adjacency lists Edge arrays

Algorithm

Pre-processing

Creating adjacency lists using dynamic allocation

15

0

1

2

3

null

null

null

null

2

3

0

0 - 2 2 -3 0 - 3 1 - 0 0 - 1

0 - 2

2 -3
null

null

Creating adjacency lists using dynamic allocation

16

0

1

2

3

null

null

null

null

2

3

0

0 - 2 2 -3 0 - 3 1 - 0 0 - 1

2 -3

null

null3

Creating adjacency lists using dynamic allocation

17

0

1

2

3

null

null

null

null

2

3

3 1

0

0 - 2 2 -3 0 - 3 1 - 0 0 - 10 - 2

• Frequent reallocations

• Adjacency lists spread out in memory

2 -3

Creating adjacency lists using sorting

18

0 - 2 2 -3 0 - 3 1 - 0 0 - 1 31 3 2 0
Count Sort

or

Radix Sort

• Load edge array into memory

• Sort by source or destination

• Vertices point to start of their adjacency list
0 1 2 3

ü Avoid reallocations

ü Adjacency lists contiguous in memory

Creating adjacency lists using sorting

19

0 - 2 2 -3 0 - 3 1 - 0 0 - 1 31 3 2 0
Count Sort

or

Radix Sort

• Load edge array into memory

• Sort by source or destination

• Vertices point to start of their adjacency list
0 1 2 3

ü Avoid reallocations

ü Adjacency lists contiguous in memory

Q: Which approach is better?

Which pre-processing method is better?

20

Pre-processing technique Time (sec)
Dynamic 15.0

Count sort 13.5

Radix sort 4.0

LLC misses
69%

71%

26%

Radix sort low LLC miss rate => 3.5X better

Questions we want to answer:

üHow to represent the graph?

üCost of creating the representation?

• What data layout is best?

21

• Can we improve cache locality?

• Should we optimize for NUMA?

• Information flow: push, pull or a both?

o Adjacency lists Edge arrays

oRadix sort wins for adjacency lists

Algorithm

Pre-processing

Which is data layout is better?

22

0

10

20

30

40

50

adjacency list edge array
T

im
e
(s

)
Data layout

Pagerank Algorithm

0

2

4

6

8

10

adjacency list edge array

T
im

e
 (

s
)

Data layout

BFS Algorithm

Which is better?

23

0

10

20

30

40

50

adjacency list edge array
T

im
e
(s

)
Data layout

Pagerank Pre-processing Algorithm

0

2

4

6

8

10

adjacency list edge array

T
im

e
 (

s
)

Data layout

BFS Pre-processing Algorithm

Adjacency lists always wins?

24

0

1

2

3

4

5

6

7

8

9

adjacency list edge array

SPMV

T
im

e
 (

s
)

Pre-processing Algorithm

• SpMV – one pass over the edge array

• Pre-processing not amortized

• Cost is = pass over edge array

Questions we want to answer:

üHow to represent the graph?

üCost of creating the representation?

üWhat data layout is best?

25

• Can we improve cache locality?

• Should we optimize for NUMA?

• Information flow: push, pull or a both?

o Adjacency lists Edge arrays

oRadix sort wins for adjacency lists

o BFS: Adj. list PR: Adj.list SpMV: Edge array

Algorithm

Pre-processing

Memory accesses – edge arrays

26

0 - 3 2 -3 0 - 1 1 - 0 0 - 2

S(0)

S(1)

S(2)

S(3)

Vertex state array:
Edge array:

Fetch edge:

Fetch state of source:

S(0)

Fetch state of destination:

S(3)

Memory accesses – edge arrays

27

0 - 3 2 -3 0 - 1 1 - 0 0 - 2

S(0)

S(1)

S(2)

S(3)

Vertex state array:
Edge array:

Fetch edge: 0 - 3

Fetch state of source:

S(0)

Fetch state of destination:

S(3)

üCache-friendly edge read

Memory accesses – edge arrays

28

0 - 3 2 -3 0 - 1 1 - 0 0 - 2

S(0)

S(1)

S(2)

S(3)

Vertex state array:
Edge array:

Fetch edge: 0 - 3

Fetch state of source: S(0)

Fetch state of destination:

S(3)

üCache-friendly edge read

xPotentially random access to source state

Memory accesses – edge arrays

29

0 - 3 2 -3 0 - 1 1 - 0 0 - 2

S(0)

S(1)

S(2)

S(3)

Vertex state array:
Edge array:

Fetch edge: 0 - 3

Fetch state of source: S(0)

Fetch state of destination: S(3)

üCache-friendly edge read

xPotentially random access to source state

xRandom access to destination state

Memory accesses – adjacency lists

Adjacency list

30

3 1 2

0

3

0

1

2

3

S(0)

S(1)

S(2)

S(3)

Fetch edge:

Fetch state of source:

Fetch state of destination:

0 3

S(0)

S(3)

Vertex state array:

Memory accesses – adjacency lists

Adjacency list

31

3 1 2

0

3

0

1

2

3

S(0)

S(1)

S(2)

S(3)

Fetch edge:

Fetch state of source:

Fetch state of destination:

0
S(0)

S(3)

Vertex state array:

Memory accesses – adjacency lists

Adjacency list

32

3 1 2

0

3

0

1

2

3

S(0)

S(1)

S(2)

S(3)

Fetch edge:

Fetch state of source:

Fetch state of destination:

0 3
S(0)

S(3)

üCache-friendly edge read

Vertex state array:

Memory accesses – adjacency lists

Adjacency list

33

3 1 2

0

3

0

1

2

3

S(0)

S(1)

S(2)

S(3)

Fetch edge:

Fetch state of source:

Fetch state of destination:

0 3

S(0)
S(3)

üCache-friendly edge read

üCache-friendly source state read

Vertex state array:

Memory accesses – adjacency lists

Adjacency list

34

3 1 2

0

3

0

1

2

3

S(0)

S(1)

S(2)

S(3)

Fetch edge:

Fetch state of source:

Fetch state of destination:

0 3

S(0)

S(3)

üCache-friendly edge read

üCache-friendly source state read

xRandom access to destination state

Vertex state array:

LLC miss rate

Data layout BFS PageRank
Edge array 57% 83%

Adjacency list 63% 78%

35

LLC miss rate

Data layout BFS PageRank
Edge array 57% 83%

Adjacency list 63% 78%

36

Q: Can the miss rate be improved ? At what cost?

Improving cache locality

Idea: Constrain the number of vertices accessed

Solution: Use out-of core technique – 2D Grid [from GridGraph]

37

0

2

1
3

0 - 10 - 2 0 - 3 1 - 02 -3 0 - 2

Improving cache locality

Idea: Constrain the number of vertices accessed

Solution: Use out-of core technique – 2D Grid [from GridGraph]

38

0

2

1
3

2 - 3

0 -1 2
• Vertices divided into ranges

• Edges placed in a cell:

• Row of source vertex

• Column of destination vertex

0 - 10 - 2 0 - 3 1 - 02 -3

0 1

3
0 - 2

-

-

Improving cache locality

Idea: Constrain the number of vertices accessed

Solution: Use out-of core technique – 2D Grid [from GridGraph]

39

0

2

1
3

2 - 3

0 -1 2
• Vertices divided into ranges

• Edges placed in a cell:

• Row of source vertex

• Column of destination vertex

0 - 10 - 2 0 - 3 1 - 02 -3

0 1

3

0 - 2

-

-

Improving cache locality

Idea: Constrain the number of vertices accessed

Solution: Use out-of core technique – 2D Grid [from GridGraph]

40

0

2

1
3

2 - 3

0 -1 2
• Vertices divided into ranges

• Edges placed in a cell:

• Row of source vertex

• Column of destination vertex

0 - 10 - 2 0 - 3 1 - 02 -3

0 1

3

0 - 2
-

-

Improving cache locality

Idea: Constrain the number of vertices accessed

Solution: Use out-of core technique – 2D Grid [from GridGraph]

41

0

2

1
3

2 - 3

0 -1 2
• Vertices divided into ranges

• Edges placed in a cell:

• Row of source vertex

• Column of destination vertex

0 - 10 - 2 0 - 3 1 - 02 -3

0 1

3

0 - 2

0 - 3

0 - 1

1 - 0

2 -3

-

-

Improving cache locality

Idea: Constrain the number of vertices accessed

Solution: Use out-of core technique – 2D Grid [from GridGraph]

42

0

2

1
3

2 - 3

0 -1 2
• Vertices divided into ranges

• Edges placed in a cell:

• Row of source vertex

• Column of destination vertex

0 - 10 - 2 0 - 3 1 - 02 -3

0 1

3

0 - 2

0 - 3

0 - 1

1 - 0

2 -3

-

-

• Compute over cells of row or column

Cache-miss rate: Grid

43

Data layout BFS PageRank
Edge array 57% 83%

Adjacency list 63% 78%

2D Grid 23% 35%

0

5

10

15

adj list edge array grid

T
im

e
 (

s
e
c
)

Data layout

BFS Algorithm

Evaluation: cache-optimization (BFS)

44

Evaluation: cache-optimization (BFS)

45

0

2

4

6

8

10

12

14

adj list edge array grid

T
im

e
 (

s
e
c
)

Data layout

BFS Pre-processing Algorithm

Evaluation: cache-optimization (BFS)

46

0

2

4

6

8

10

12

14

adj list edge array grid

T
im

e
 (

s
e
c
)

Data layout

BFS Pre-processing Algorithm

Adjacency lists have the best performance on BFS.

Evaluation: cache-optimization (PageRank)

47

0

10

20

30

40

50

adj list edge array grid

T
im

e
 (

s
e
c
)

Data Layout

Algorithm

Evaluation: cache-optimization (PageRank)

48

0

10

20

30

40

50

adj list edge array grid

T
im

e
 (

s
e
c
)

Data Layout

Pre-processing Algorithm

Evaluation: cache-optimization (PageRank)

49

0

10

20

30

40

50

adj list edge array grid

T
im

e
 (

s
e
c
)

Data Layout

Pre-processing Algorithm

For Pagerank, the grid is the winning approach.

Questions we want to answer:

üHow to represent the graph?

üCost of creating the representation?

üWhat data layout is best?

50

üCan we improve cache locality?

• Should we optimize for NUMA?

• Information flow: push, pull or a both?

o Adjacency lists Edge arrays

oRadix sort wins for adjacency lists

o BFS: Adj. list PR: Grid SpMV: Edge array

Algorithm o Yes. By laying out the edges in a grid format

o BFS: Adj. list PR: Grid SpMV: Edge array

Pre-processing

NUMA-Aware optimizations

• NUMA-Aware data placement

• Additional partitioning step in the pre-processing phase

• NUMA-Aware computation

• Threads compute on local data

• Evaluation environment

• Machine A: 2 NUMA nodes, 128GB DRAM, 16 Cores

• Machine B: 4 NUMA nodes, 256GB DRAM, 32 Cores

51

NUMA-Aware data placement

52

1 3 2

0

3

0

1

2

3

NUMA node 1

NUMA node 2

• Vertices spread across NUMA nodes

• Edges collocated with their destination vertex

NUMA-Aware data placement

53

1 3 2

0

3

0

1

2

3

0 1

2 3

NUMA node 1

NUMA node 2

• Vertices spread across NUMA nodes

• Edges collocated with their destination vertex

NUMA-Aware data placement

54

1 3 2

0

3

0

1

2

3

0 1

01

0 1

2 3

0

0

3

2

2 3

NUMA node 1

NUMA node 2

• Vertices spread across NUMA nodes

• Edges collocated with their destination vertex

PageRank

55

0

10

20

30

40

50

60

70

80

interleaved NUMA interleaved NUMA

A A B B

T
im

e
 (

s
e

c
)

Algorithm

MA: 2 NUMA nodes MB: 4 NUMA nodes

PageRank

56

0

10

20

30

40

50

60

70

80

interleaved NUMA interleaved NUMA

A A B B

T
im

e
 (

s
e

c
)

Algorithm

27% - 50% Improved compute time

MA: 2 NUMA nodes MB: 4 NUMA nodes

PageRank

58

0

10

20

30

40

50

60

70

80

interleaved NUMA interleaved NUMA

A A B B

T
im

e
 (

s
e

c
)

Pre-processing Partitioning Algorithm

MA: 2 NUMA nodes MB: 4 NUMA nodes

PageRank

57

0

10

20

30

40

50

60

70

80

interleaved NUMA interleaved NUMA

A A B B

T
im

e
 (

s
e

c
)

Pre-processing Partitioning Algorithm

MA: 2 NUMA nodes MB: 4 NUMA nodes

Pre-processing amortized only on Machine B

BFS

0

0.5

1

1.5

2

interleaved NUMA interleaved NUMA

A A B B

T
im

e
 (

s
e
c
)

Algorithm

59

MA: 2 NUMA nodes MB: 4 NUMA nodes

BFS

0

0.5

1

1.5

2

interleaved NUMA interleaved NUMA

A A B B

T
im

e
 (

s
e
c
)

Algorithm

60

MA: 2 NUMA nodes MB: 4 NUMA nodes

No gain in algorithm time, contention on memory bus

Questions we want to answer:

üHow to represent the graph?

üCost of creating the representation?

üWhat data layout is best?

61

üCan we improve cache locality?

üShould we optimize for NUMA?

• Information flow: push, pull or a both?

o Adjacency lists Edge arrays

oRadix sort wins for adjacency lists

o BFS: Adj. list PR: Grid SpMV: Edge array

Algorithm o Yes. By laying out the edges in a grid format

o BFS: Adj. list PR: Grid SpMV: Edge array

oCan pay off only on big machines

o BFS & SpMV: No gain PR: NUMA-optimize

Pre-processing

Information flow

• Push

• You push information to your neighbors

• You need outgoing edges

• Pull

• You pull information from your neighbors

• You need incoming edges

62

Which one is better?

• Push

• You push information to your neighbors - write to state of others

• Pull

• You pull information from your neighbors – write to own state

63

Which one is better?

• Push

• You push information to your neighbors - write to state of others

üGood when few vertices are active

x Needs locks

• Pull

• You pull information from your neighbors – write to own state

üGood when many vertices are active

üLocks can be avoided

64

PUSH vs. PULL – BFS & PR

65

0

1

2

3

4

5

6

7

8

adj. push adj. pull

T
im

e
 (

s
)

Information flow

Pre-processing

0

10

20

30

40

50

grid (push) grid (pull)

Pre-processing Algorithm

BFS Pagerank

Information flow

Questions we want to answer:

üHow to represent the graph?

üCost of creating the representation?

üWhat data layout is best?

66

üCan we improve cache locality?

üShould we optimize for NUMA?

• Information flow: push, pull or a both?

o Adjacency lists Edge arrays

oRadix sort wins for adjacency lists

o BFS: Adj. list PR: Grid SpMV: Edge array

Algorithm o Yes. By laying out the edges in a grid format

o BFS: Adj. list PR: Grid SpMV: Edge array

oCan pay off only on big machines

o BFS & SpMV: No gain PR: NUMA-optimize

o Less synchronization not always a win

o BFS: Push (locks) PR: Pull (no locks)

Pre-processing

Push & Pull both win in different situations

• Combine them

• Use push when it is efficient

• Use pull when it is efficient

• Cost: You need both, incoming and outgoing edges

67

Benefit of Push/Pull

68

0
1
2
3
4
5
6
7
8
9

10

adj. push adj. pull adj. push/pull

T
im

e
 (

s
)

Information flow

BFS

Benefit of Push/Pull

69

0

2

4

6

8

10

adj. push adj. pull adj. push/pull

T
im

e
 (

s
)

Information flow

Pre-processing Algorithm

BFS

Questions we want to answer:

üHow to represent the graph?

üCost of creating the representation?

üWhat data layout is best?

70

üCan we improve cache locality?

üShould we optimize for NUMA?

üInformation flow: push, pull or a both?

o Adjacency lists Edge arrays

oRadix sort wins for adjacency lists

o BFS: Adj. list PR: Grid SpMV: Edge array

Algorithms o Yes. By laying out the edges in a grid format

o BFS: Adj. list PR: Grid SpMV: Edge array

oCan pay off only on big machines

o BFS & SpMV: No gain PR: NUMA-optimize

o Less synchronization not always a win

o BFS: Push (locks) PR: Pull (no locks)

o Push/Pull no win in end-to-end (directed graphs)

Pre-processing

Additional results in the paper

• Scalability of pre-processing approaches

• Relation between pre-processing and loading from HDD and SSD

• Results on other algorithms

• Results for different graph types

71

Systems that motivated the paper

System Data
Layout Iteration Model Push or

Pull
NUMA-
Aware

Ligra [PPoPP ‘13] Adj. List Vertex-centric Push & Pull -

Polymer [PPoPP ‘15] Adj. List Vertex-centric Push & Pull �

Gemini [OSDI’16] Adj. List Vertex-centric Push & Pull �

X-Stream [SOSP’13] Edge Array Edge-centric Push -

GridGraph [ATC ‘15] Grid Grid-cell Push -

72

Summary

73

• Edge arrays

• Adjacency lists

• Sorting techniques

• Cache-optimizations

• Push vs. Pull

• Synchronization

• NUMA-aware computation

Pre-processing Algorithm time

Conclusion

v Improvement in computation is not free
v Trade-off between added pre-processing time and algorithm time

74

Whether optimization cost in pre-processing is amortized, depends on algorithm:

• SpMV: Short algorithm and does not benefit from additional optimizations

• BFS: Building adjacency lists

• Pagerank: Optimizing for cache locality (grid) & NUMA-Awareness

Fork us on GitHub: https://github.com/epfl-labos/EverythingGraph.git

