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The maze of graph analytics platforms -RA(”_L

In-memory Out-of-core
. . Ligra :
Single machine 2 GraphChi
Polymer X-Stream
GridGraph
Galols Mosaic
Pregel
istri P h
Distributed owergrap Chaos

PowerlLyra
Gemini




)
The maze of graph analytics platforms -RA(”_»

In-memory Out-of-core
. . Ligra -
Single machine 2 )C-zrg?hChl
Polymer -Stream
GridGraph
Galois Mosaic

Distributed Chaos



)
Everything you always wanted to know... -RA(”_»

What techniques work and why?
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Why Is our work different? T

 End-to-end evaluation

» Comparison of techniques, rather than systems
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End-to-end evaluation -RA(”_\

» Executing the algorithm is only one piece of the puzzle

Time

‘ End-to-end time = Pre-processing + Algorithm time |
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Motivation: Why end-to-end time? Eme e s e
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 BFS on Twitter [Ligra]
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Motivation: Why end-to-end time? -(Pﬂ!

FEDERALE DE LAUSANNE

 BFS on Twitter [Ligra]

® Pre-processing B Algorithm

Time (sec)

SO N B OO O O N N~

baseline optimized code

Need to understand the trade-off in end-to-end time!
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Comparison of techniques not systems -M(Iﬂ-a

* Implement techniques from different systems within one system

» Evaluation of techniques in isolation

* Not constrained by system defined API

* Implementation is comparable/better than the original system
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Questions we want to answer: B¢

FEDERALE DE LAUSANNE

How to represent the graph?
Cost of creating the representation?

What data layout is best?

Algorithm |

» Can we improve cache locality?

» Should we optimize for NUMA?

* Information flow: push, pull or a both? .
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The answers depend on: -RA(”_»

 Algorithm — differ in # of active vertices per iteration

* Only a subset active: BFS
» Entire graph active: Pagerank, SpMV...

» Graph shape

» Social networks (power law) graphs

* Synthetic graph; 1B edges 64M vertices

» Stored as edge array



. )
Questions we want to answer: B¢

FEDERALE DE LAUSANNE

How to represent the graph?
Cost of creating the representation?

What data layout is best?

Algorithm |

» Can we improve cache locality?

» Should we optimize for NUMA?

* Information flow: push, pull or a both? .
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Graph representation -RA(”_L

Edge array
0-2 2-3 0-3 1-0 0-1

v Layout is the same as input — no pre-processing
X To locate edges of a vertex, need to read all edges

e

)

Adjacency list: outgoing edges

X Pre-processing to group edges by vertex
v Easy to locate edges of a particular vertex
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. )
Questions we want to answer: B¢

FEDERALE DE LAUSANNE

How to represent the graph? »o Adjacency lists Edge arrays

Cost of creating the representation?

What data layout is best?

Algorithm |

» Can we improve cache locality?

» Should we optimize for hardware?(NUMA)

* Information flow: push, pull or a both? .




Creating adjacency lists using dynamic allocation

2 -3

0-2

0-3

1-0 0-1

H—
B —

B — T
3 g null

B

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

15



Creating adjacency lists using dynamic allocation

0-2
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Creating adjacency lists using dynamic allocation i

- — A
B —

0-2 2-3 0-3 1-0 0-1

A—
3 g null

* Frequent reallocations

» Adjacency lists spread out in memory
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)
Creating adjacency lists using sorting -RA(”_L

* Load edge array into memory

« Sort by source or destination

* Vertices point to start of their adjacency list

Count Sort

0-2 2-3 0-3 1-0 0-1 or

Radix Sort

v" Avoid reallocations

v Adjacency lists contiguous in memory

18



)
Creating adjacency lists using sorting -RA(”_L

* Load edge array into memory

« Sort by source or destination

* Vertices point to start of their adjacency list

Q: Which approach is better?

v" Avoid reallocations

v Adjacency lists contiguous in memory

19
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Which pre-processing method is better? -RA(”_L

Dynamic 15.0 69%
Count sort 13.5 71%
Radix sort 4.0 26%

Radix sort low LLC miss rate => 3.5X better

20
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Questions we want to answer: B¢

FEDERALE DE LAUSANNE

How to represent the graph? »o Adjacency lists Edge arrays

Cost of creating the representation? »o Radix sort wins for adjacency lists

What data layout is best?

Algorithm |

» Can we improve cache locality?

» Should we optimize for NUMA?

* Information flow: push, pull or a both? 5




Which is data layout is better?

BFS

Time (s)
- N SAN (@)

B Algorithm

adjacency list edge array
Data layout

Pagerank
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B Algorithm

adjacency list edge array

Data layout
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Which is better?

BFS

Time (s)
- N ~ (@)

B Pre-processing ® Algorithm

adjacency list edge array
Data layout

B
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Pagerank# Pre-processing ® Algorithm

50
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Time(s)

adjacency list edge array
Data layout
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B

Adjacency lists always wins? R T
B Pre-processing B Algorithm
9
« SpMV — one pass over the edge array 8
2
* Pre-processing not amortized —~ 0
« Costis = pass overedge array L 5
)
c 4
= 3
2
1
0

adjacency list edge array
SPMV
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Questions we want to answer: B¢

FEDERALE DE LAUSANNE

How to represent the graph? Adjacency lists Edge arrays

Cost of creating the representation? ,o0 Radix sort wins for adjacency lists

' ?
What data layout is best* BFS: Adj. list ©PR: Adj.list ©SSpMV: Edge array

Algorithm |

- Can we improve cache locality?

» Should we optimize for NUMA?

* Information flow: push, pull or a both? .




B

Memory accesses — edge arrays EEER
Edge array: 0-3 2-3 0-1 1-0 0-2
Vertex state array:
S(0)
Fetch edge: S(1)
S(2)
Fetch state of source: S(3)

Fetch state of destination:

26



B

Memory accesses — edge arrays EEER
Edge array: 0-3 2-3 0-1 1-0 0-2
Vertex state array:
S(0)
Fetch edge: 0-3 S(1)
S(2)
Fetch state of source: S(3)

Fetch state of destination:

v'Cache-friendly edge read
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B

Memory accesses — edge arrays EEER
Edge array: 0-3 2-3 0-1 1-0 0-2
Vertex state array:
S(0)
Fetch edge: S(1)
S(2)
Fetch state of source: S(0) S(3)

Fetch state of destination:

v'Cache-friendly edge read
X Potentially random access to source state
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B

Memory accesses — edge arrays SO U
Edge array: 0-3 23 0-1 1-0 0-2
Vertex state array:
S(0)
Fetch edge: 0-3 S(1)
S(2)
Fetch state of source: S(0) S(3)

Fetch state of destination: | S(3)

v'Cache-friendly edge read
X Potentially random access to source state
X Random access to destination state
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Memory accesses — adjacency lists -RA(”_\

Adjacency list 0 3 1 2

Vertex state array:

. S(0)

Fetch edge: S(1)
Fetch state of source: S(2)
S(3)

Fetch state of destination:

30



- - )
Memory accesses — adjacency lists -RA(”\-Q

Adjacency list 0 m 3 1 2

Vertex state array:

. S(0)

Fetch edge: S(1)
Fetch state of source: S(2)
S(3)

Fetch state of destination:
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Memory accesses — adjacency lists -RA(”\-Q

Adjacency list 2

Vertex state array:

S(0
Fetch edge: S§1;
Fetch state of source: S(2)
S(3)

Fetch state of destination:

v'Cache-friendly edge read

32
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Memory accesses — adjacency lists -RA(”_\

Adjacency list 2
Vertex state array:
Fetch edge: gg%
Fetch state of source: S(0) S(2)
S(3)

Fetch state of destination:

v'Cache-friendly edge read
v'Cache-friendly source state read

33
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Memory accesses — adjacency lists -RA(”_\

Adjacency list 2
Vertex state array:
Fetch edge: ggg;
Fetch state of source: S(0) S(2)
S(3)
Fetch state of destination: | S(3)

v'Cache-friendly edge read
v'Cache-friendly source state read
X Random access to destination state

34
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L LC miss rate -RA(”_»»

Data layout “ PageRank

Edge array 57% 83%
Adjacency list 63% 78%

35



LLC miss rate

B
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Data layout “ PageRank

Edge array

57%

83%

Adjacency list

63%

8%

Q: Can the miss rate be improved ? At what cost?
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Improving cache locality -RA(”_»

Idea: Constrain the number of vertices accessed
Solution: Use out-of core technique — 2D Grid [from GridGraph]

0-2 2-3 0-3 1-0 0-1

=)

=
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)
Improving cache locality -RA(”_L

Idea: Constrain the number of vertices accessed
Solution: Use out-of core technique — 2D Grid [from GridGraph]

Vertices divided into ranges 0 -1 2-3
Edges placed in a cell: 0-2 23 0-3 1-0 0-1
« Row of source vertex 0-1

 Column of destination vertex

%.@\ 2-3

38



n n )
Improving cache locality -RA(”_L

Idea: Constrain the number of vertices accessed
Solution: Use out-of core technique — 2D Grid [from GridGraph]

Vertices divided into ranges 0 . 5-3
Edges placed in a cell: 0-2 2-3 0-3 1-0 0-1

« Row of source vertex 0- 1

=)

%.@\ 2-3

 Column of destination vertex
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n n )
Improving cache locality -RA(”_L

Idea: Constrain the number of vertices accessed
Solution: Use out-of core technique — 2D Grid [from GridGraph]

Vertices divided into ranges 0 . 5-3
Edges placed in a cell: 0-2 2-3 0-3 1-0 0-1

« Row of source vertex 0- 1

=)

%.@\ 2-3

 Column of destination vertex
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)
Improving cache locality -RA(”_L

Idea: Constrain the number of vertices accessed
Solution: Use out-of core technique — 2D Grid [from GridGraph]

Vertices divided into ranges 0 -1 2-3

Edges placed in a cell: 0-2 2-3 0-35 1-0 0-1 0-100-2
* Row of source vertex 1-0

%@\ 2.3 2-3

41

 Column of destination vertex




n n )
Improving cache locality -RA(”_»

Idea: Constrain the number of vertices accessed
Solution: Use out-of core technique — 2D Grid [from GridGraph]

Vertices divided into ranges

Edges placed in a cell: 0-2 2-3 0-3 1-0 0-1

« Row of source vertex
%@\ 2-3

 Compute over cells of row or column

2-3

 Column of destination vertex

42



Cache-miss rate: Grid

Data layout m PageRank

Edge array 57% 83%
Adjacency list 63% 78%
2D Grid 23% 35%

g\
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Evaluation: cache-optimization (BFS) &
BFS m Algorithm
15
%\ 10
T, mm -

adj list edge array grid

Data layout

44



N n N N )
Evaluation: cache-optimization (BFS) -RA(”_»

BFS ® Pre-processing B Algorithm

14

12
—~ 10
adj list edge array grid

Time (sec

O DN B~ O 0o

Data layout
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Evaluation: cache-optimization (BFS) -RA(”_L

BFS B Pre-processing B Algorithm

o 8

)

~ 6

£ 4
0

adj list edge array grid

Adjacency lists have the best performance on BFS.
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Evaluation: cache-optimization (PageRank) : -(Iﬂ!

B Algorithm

50
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O
:g)i 30
GEJ 20
i— 10

0

adj list edge array grid

Data Layout
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Evaluation: cache-optimization (PageRank) -RA(”_»

B Pre-processing B Algorithm

40
fw’iso
C]E)ZO
i— 10

0

adj list edge array grid

Data Layout
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Evaluation: cache-optimization (PageRank) -RA(”_L

B Pre-processing B Algorithm

40
;§/30
qE>20
i— 10

0

adj list edge array grid

Data Layout

For Pagerank, the grid is the winning approach.
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. )
Questions we want to answer: B\

How to represent the graph?
Cost of creating the representation?

What data layout is best?

Algorithm |

v'Can we improve cache locality?

* Should we optimize for NUMA?

 |Information flow: push, pull or a both”?

FEDERALE DE LAUSANNE

Adjacency lists Edge arrays
Radix sort wins for adjacency lists

BFS:Ad|. list cPR: Grid cSpMV: Edge array

o Yes. By laying out the edges in a grid format

~ 5 BFS:Adi. list oPR: Grid © SpMV: Edge array



)
NUMA-Aware optimizations -RA(”_»

* NUMA-Aware data placement

» Additional partitioning step in the pre-processing phase

* NUMA-Aware computation
* Threads compute on local data

 Evaluation environment
 Machine A: 2 NUMA nodes, 128GB DRAM, 16 Cores
« Machine B: 4 NUMA nodes, 256GB DRAM, 32 Cores



NUMA-Aware data placement

HEE— TV
B —————
A —

* Vertices spread across NUMA nodes
* Edges collocated with their destination vertex

B
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NUMA node 1
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B
:
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NUMA-Aware data placement

HEE— TV
B —————
A —

* Vertices spread across NUMA nodes
* Edges collocated with their destination vertex
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NUMA node 1
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NUMA node 2
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NUMA-Aware data placement

HEE— TV
B —————
A —

* Vertices spread across NUMA nodes
* Edges collocated with their destination vertex

B
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NUMA node 2
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B Algorithm

Interleaved NUMA Interleaved NUMA
MA: 2 NUMA nodes MB: 4 NUMA nodes
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PaadeRank ECOLE FOLY TEQHNICUS
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80
70
60

§5o
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B Algorithm

Interleaved NUMA Interleaved NUMA
MA: 2 NUMA nodes MB: 4 NUMA nodes

21% - 50% Improved compute time
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B Pre-processing © Partitioning B Algorithm

Interleaved NUMA Interleaved NUMA
MA: 2 NUMA nodes MB: 4 NUMA nodes
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80
70
60

g 50
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0

B Pre-processing © Partitioning B Algorithm

Interleaved NUMA Interleaved NUMA
MA: 2 NUMA nodes MB: 4 NUMA nodes

Pre-processing amortized only on Machine B
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BFS g\

2 B Algorithm
15
@)
()
L)
o 1
£

0

Interleaved NUMA Interleaved NUMA

"MA: 2 NUMA nodes MB: 4 NUMA nodes
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BFS B
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2 B Algorithm
1.5
O
(D)
@2
o |
IS
.

0

Interleaved NUMA Interleaved NUMA
"MA: 2 NUMA nodes MB: 4 NUMA nodes

No gain in algorithm time, contention on memory bus
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. )
Questions we want to answer: B¢

FEDERALE DE LAUSANNE

How to represent the graph? Adjacency lists Edge arrays

Cost of creating the representation? .0 Radix sort wins for adjacency lists

i ?
What data layout is best" BFS:Adj. list ©PR: Grid ©SpMV: Edge array

Algorithm |

o Yes. By laying out the edges in a grid format

v'Can we improve cache locality? — T _
o BFS:Ad]. list oPR: Grid © SpMV: Edge array

v Should we optimize for NUMA? o Can pay off only on big machines
m—
o BFS & SpMV: No gain o PR: NUMA-optimize

 Information flow: push, pull or a both?
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Information flow -RA(IR-@

 Push

* You push information to your neighbors
* You need outgoing edges

* Pull

* You pull information from your neighbors
* You need incoming edges

62
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Which one iIs better? -RA(IR-@

 Push

* You push information to your neighbors - write to state of others

* Pull

* You pull information from your neighbors — write to own state

63



)
Which one iIs better? -RA(”_»

 Push

* You push information to your neighbors - write to state of others
v'Good when few vertices are active
X Needs locks

* Pull

* You pull information from your neighbors — write to own state
v"Good when many vertices are active
v'Locks can be avoided



PUSH vs. PULL — BFS & PR e -

BFS Pagerank
B Pre-processing

B Pre-processing B Algorithm

8 50
;
6 40
© 4
=
= 123 20
1 10
0 0
ad). push ad). pull grid (push) grid (pull)

Information flow Information flow
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Questions we want to answer: B¢

FEDERALE DE LAUSANNE

How to represent the graph? Adjacency lists Edge arrays

Cost of creating the representation? .0 Radix sort wins for adjacency lists

i ?
What data layout is best" BFS:Adj. list ©PR: Grid ©SpMV: Edge array

Algorithm ! Yes. By layi t the edges | id format
v'Can we improve cache locality? N © Yes. By éy!ng OUL e e. Jes I a gria forma
o BFS:Ad]. list © PR: Grid © SpMV: Edge array
o Can pay off only on big machines
. . —=)
v Should we optimize for NUMA? o BFS & SpMV: No gaino PR: NUMA-optimize

o Less synchronization not always a win
—

» Information flow: push, pull or a both? o BFS: Push (locks) o PR: Pull (no locks)
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Push & Pull both win in different situations  M¢Hf(

« Combine them

* Use push when it is efficient
* Use pull when it is efficient

» Cost: You need both, incoming and outgoing edges



Benefit of Push/Pull M -

BFS

Time (s)
O—-=_NWPLOIOONOOOO

adj. push adj. push/pull

Information flow
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Benefit of Push/Pull M -

BFS
B Pre-processing B Algorithm

10

Time (s)

S N B~ O 00

adj. push adj. push/pull

Information flow
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Questions we want to answer: B¢

FEDERALE DE LAUSANNE

How to represent the graph? Adjacency lists Edge arrays

Cost of creating the representation? .0 Radix sort wins for adjacency lists

i ?
What data layout is best" BFS:Adj. list ©PR: Grid ©SpMV: Edge array

Algorithms ’ Yes. By laying out the edges in a grid format
v'Can we improve cache locality? N ? - BY .y! J 0L | ges i a gr
o BFS:Ad]. list © PR: Grid © SpMV: Edge array
o Can pay off only on big machines
. . —=)
v Should we optimize for NUMA? o BFS & SpMV: No gaino PR: NUMA-optimize

o Less synchronization not always a win
—

v’ Information flow: push, pull or a both? o BFS: Push (locks) o PR: Pull (no locks)
o Push/Pull no win in end-to-end (directed graphs)




Additional results in the paper M CPF -

FEDERALE DE LAUSANNE

» Scalability of pre-processing approaches
» Relation between pre-processing and loading from HDD and SSD
» Results on other algorithms

» Results for different graph types
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Systems that motivated the paper T

System nats Iteration Model NEIAS
Layout Aware

Ligra [PPoPP ‘13]

Adj. List

Polymer [PPoPP ‘15] Ad]. List

Gemini [OSDI'16]
X-Stream [SOSP'13]
GridGraph [ATC ‘15]

Adj. List

Vertex-centric
Vertex-centric
Vertex-centric

Edge Array Edge-centric

Grid

Grid-cell

Push & Pull

Push & Pull 4
Push & Pull 4
Push -
Push -
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Summary B CPr\ G
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Pre-processing

Algorithm time

Cache-optimizations

* Edge arrays Push vs. Pull

* Adjacency lists Synchronization

« Sorting techniques

NUMA-aware computation
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Conclusion -RA(IR-@

< Improvement in computation is not free
“ Trade-off between added pre-processing time and algorithm time

Whether optimization cost in pre-processing is amortized, depends on algorithm:
« SpMV: Short algorithm and does not benefit from additional optimizations
« BFS: Building adjacency lists

« Pagerank: Optimizing for cache locality (grid) & NUMA-Awareness

Fork us on GitHub: https://github.com/epfl-labos/EverythingGraph.git
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