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Graphs are everywhere

Social networks
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recommendation

Search and 

website ranking



The maze of graph analytics platforms
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Everything you always wanted to know…

What techniques work and why?
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Why is our work different?

• End-to-end evaluation

• Comparison of techniques, rather than  systems
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End-to-end evaluation
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• Executing the algorithm is only one piece of the puzzle 

Pre-processing Algorithm time

Time

End-to-end time = Pre-processing  + Algorithm time



Motivation: Why end-to-end time?
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Motivation: Why end-to-end time?
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Need to understand the trade-off in end-to-end time!
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Comparison of techniques not systems

• Implement techniques from different systems within one system

• Evaluation of techniques in isolation

• Not constrained by system defined API

• Implementation is comparable/better than the original system
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Questions we want to answer:

• How to represent the graph? 

• Cost of creating the representation?

• What data layout is best?
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• Can we improve cache locality?

• Should we optimize for NUMA?

• Information flow: push, pull or a both?

Algorithm

Pre-processing



The answers depend on: 

• Algorithm – differ in # of active vertices per iteration

• Only a subset active: BFS

• Entire graph active: Pagerank, SpMV…

• Graph shape

• Social networks (power law) graphs 

• Synthetic graph; 1B edges 64M vertices

• Stored as edge array
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Questions we want to answer:

• How to represent the graph? 

• Cost of creating the representation?

• What data layout is best?
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• Can we improve cache locality?

• Should we optimize for NUMA?

• Information flow: push, pull or a both?

Algorithm

Pre-processing



Graph representation
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Adjacency list: outgoing edges

x Pre-processing to group edges by vertex

ü Easy to locate edges of a particular vertex

ü Layout is the same as input – no pre-processing

x To locate edges of a vertex, need to read all edges



Questions we want to answer:

üHow to represent the graph? 

• Cost of creating the representation?

• What data layout is best?
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• Can we improve cache locality?

• Should we optimize for hardware?(NUMA)

• Information flow: push, pull or a both?

o Adjacency lists         Edge arrays

Algorithm

Pre-processing



Creating adjacency lists using dynamic allocation
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Creating adjacency lists using dynamic allocation
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Creating adjacency lists using dynamic allocation
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Creating adjacency lists using sorting
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Radix Sort

• Load edge array into memory

• Sort by source or destination

• Vertices point to start of their adjacency list
0 1 2 3

ü Avoid reallocations

ü Adjacency lists contiguous in memory



Creating adjacency lists using sorting
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0 - 2 2 -3 0 - 3 1 - 0 0 - 1 31 3 2 0
Count Sort

or 

Radix Sort

• Load edge array into memory

• Sort by source or destination

• Vertices point to start of their adjacency list
0 1 2 3

ü Avoid reallocations

ü Adjacency lists contiguous in memory

Q: Which approach is better?



Which pre-processing method is better?
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Pre-processing technique Time (sec)
Dynamic 15.0

Count sort 13.5

Radix sort 4.0

LLC misses
69%

71%

26%

Radix sort low LLC miss rate => 3.5X better



Questions we want to answer:

üHow to represent the graph? 

üCost of creating the representation?

• What data layout is best?
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• Can we improve cache locality?

• Should we optimize for NUMA?

• Information flow: push, pull or a both?

o Adjacency lists         Edge arrays

oRadix sort wins for adjacency lists

Algorithm

Pre-processing



Which is data layout is better?
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Which is better?
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Adjacency lists always wins?
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• SpMV – one pass over the edge array

• Pre-processing not amortized

• Cost is = pass over edge array



Questions we want to answer:

üHow to represent the graph? 

üCost of creating the representation?

üWhat data layout is best?
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• Can we improve cache locality?

• Should we optimize for NUMA?

• Information flow: push, pull or a both?

o Adjacency lists         Edge arrays

oRadix sort wins for adjacency lists

o BFS: Adj. list    PR: Adj.list   SpMV: Edge array 

Algorithm

Pre-processing



Memory accesses – edge arrays
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Memory accesses – edge arrays
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Memory accesses – edge arrays
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Memory accesses – edge arrays
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Memory accesses – adjacency lists

Adjacency list
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Memory accesses – adjacency lists

Adjacency list
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Memory accesses – adjacency lists

Adjacency list
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Memory accesses – adjacency lists

Adjacency list
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Memory accesses – adjacency lists

Adjacency list
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LLC miss rate

Data layout BFS PageRank
Edge array 57% 83%

Adjacency list 63% 78%

35



LLC miss rate

Data layout BFS PageRank
Edge array 57% 83%

Adjacency list 63% 78%
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Q: Can the miss rate be improved ? At what cost?



Improving cache locality

Idea: Constrain the number of vertices accessed

Solution: Use out-of core technique – 2D Grid [from GridGraph] 
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Improving cache locality

Idea: Constrain the number of vertices accessed

Solution: Use out-of core technique – 2D Grid [from GridGraph] 
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Improving cache locality

Idea: Constrain the number of vertices accessed

Solution: Use out-of core technique – 2D Grid [from GridGraph] 
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Improving cache locality

Idea: Constrain the number of vertices accessed

Solution: Use out-of core technique – 2D Grid [from GridGraph] 
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Improving cache locality

Idea: Constrain the number of vertices accessed

Solution: Use out-of core technique – 2D Grid [from GridGraph] 
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Improving cache locality

Idea: Constrain the number of vertices accessed

Solution: Use out-of core technique – 2D Grid [from GridGraph] 
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Cache-miss rate: Grid
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Data layout BFS PageRank
Edge array 57% 83%

Adjacency list 63% 78%

2D Grid 23% 35%
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Evaluation: cache-optimization (BFS)
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Evaluation: cache-optimization (BFS)
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Adjacency lists have the best performance on BFS.



Evaluation: cache-optimization (PageRank)
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Evaluation: cache-optimization (PageRank)
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Evaluation: cache-optimization (PageRank)
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For Pagerank, the grid is the winning approach.



Questions we want to answer:

üHow to represent the graph? 

üCost of creating the representation?

üWhat data layout is best?
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üCan we improve cache locality?

• Should we optimize for NUMA?

• Information flow: push, pull or a both?

o Adjacency lists         Edge arrays

oRadix sort wins for adjacency lists

o BFS: Adj. list     PR: Grid SpMV: Edge array 

Algorithm o Yes. By laying out the edges in a grid format

o BFS: Adj. list     PR: Grid     SpMV: Edge array 

Pre-processing



NUMA-Aware optimizations

• NUMA-Aware data placement

• Additional partitioning step in the pre-processing phase

• NUMA-Aware computation

• Threads compute on local data

• Evaluation environment 

• Machine A: 2 NUMA nodes, 128GB DRAM, 16 Cores

• Machine B: 4 NUMA nodes, 256GB DRAM, 32 Cores
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NUMA-Aware data placement
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NUMA-Aware data placement
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NUMA-Aware data placement
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PageRank
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PageRank
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PageRank
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PageRank
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BFS
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BFS
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MA: 2 NUMA nodes MB: 4 NUMA nodes

No gain in algorithm time, contention on memory bus



Questions we want to answer:

üHow to represent the graph? 

üCost of creating the representation?

üWhat data layout is best?
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üCan we improve cache locality?

üShould we optimize for NUMA?

• Information flow: push, pull or a both?

o Adjacency lists         Edge arrays

oRadix sort wins for adjacency lists

o BFS: Adj. list     PR: Grid SpMV: Edge array 

Algorithm o Yes. By laying out the edges in a grid format

o BFS: Adj. list     PR: Grid     SpMV: Edge array 

oCan pay off only on big machines

o BFS & SpMV: No gain    PR: NUMA-optimize

Pre-processing



Information flow

• Push

• You push information to your neighbors

• You need outgoing edges

• Pull

• You pull information from your neighbors

• You need incoming edges

62



Which one is better?

• Push

• You push information to your neighbors  - write to state of others

• Pull

• You pull information from your neighbors – write to own state

63



Which one is better?

• Push

• You push information to your neighbors  - write to state of others

üGood when few vertices are active

x Needs locks

• Pull

• You pull information from your neighbors – write to own state

üGood when many vertices are active

üLocks can be avoided

64



PUSH vs. PULL – BFS & PR
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Questions we want to answer:

üHow to represent the graph? 

üCost of creating the representation?

üWhat data layout is best?
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üCan we improve cache locality?

üShould we optimize for NUMA?

• Information flow: push, pull or a both?

o Adjacency lists         Edge arrays

oRadix sort wins for adjacency lists

o BFS: Adj. list     PR: Grid SpMV: Edge array 

Algorithm o Yes. By laying out the edges in a grid format

o BFS: Adj. list     PR: Grid     SpMV: Edge array 

oCan pay off only on big machines

o BFS & SpMV: No gain    PR: NUMA-optimize

o Less synchronization not always a win

o BFS: Push (locks)     PR: Pull (no locks)

Pre-processing



Push & Pull both win in different situations

• Combine them

• Use push when it is efficient

• Use pull when it is efficient

• Cost: You need both, incoming and outgoing edges
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Benefit of Push/Pull
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Benefit of Push/Pull
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Questions we want to answer:

üHow to represent the graph? 

üCost of creating the representation?

üWhat data layout is best?
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üCan we improve cache locality?

üShould we optimize for NUMA?

üInformation flow: push, pull or a both?

o Adjacency lists         Edge arrays

oRadix sort wins for adjacency lists

o BFS: Adj. list     PR: Grid SpMV: Edge array 

Algorithms o Yes. By laying out the edges in a grid format

o BFS: Adj. list     PR: Grid     SpMV: Edge array 

oCan pay off only on big machines

o BFS & SpMV: No gain    PR: NUMA-optimize

o Less synchronization not always a win

o BFS: Push (locks)     PR: Pull (no locks)

o Push/Pull no win in end-to-end (directed graphs)

Pre-processing



Additional results in the paper

• Scalability of pre-processing approaches

• Relation between pre-processing and loading from HDD and SSD

• Results on other algorithms

• Results for different graph types
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Systems that motivated the paper

System Data
Layout Iteration Model Push or 

Pull
NUMA-
Aware

Ligra [PPoPP ‘13] Adj. List Vertex-centric Push & Pull -

Polymer [PPoPP ‘15] Adj. List Vertex-centric Push & Pull �

Gemini [OSDI’16] Adj. List Vertex-centric Push & Pull �

X-Stream [SOSP’13] Edge Array Edge-centric Push -

GridGraph [ATC ‘15] Grid Grid-cell Push -
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Summary

73

• Edge arrays

• Adjacency lists

• Sorting techniques

• Cache-optimizations

• Push vs. Pull

• Synchronization

• NUMA-aware computation

Pre-processing Algorithm time



Conclusion

v Improvement in computation is not free
v Trade-off between added pre-processing time and algorithm time

74

Whether optimization cost in pre-processing is amortized, depends on algorithm:

• SpMV: Short algorithm and does not benefit from additional optimizations

• BFS: Building adjacency lists

• Pagerank: Optimizing for cache locality (grid) & NUMA-Awareness 

Fork us on GitHub: https://github.com/epfl-labos/EverythingGraph.git


