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Deep Learning at a Large Enterprise

Speech, Image, Ads, NLP, Web Search …

DL training jobs require large GPU clusters

Philly: Cluster manager for DL workloads on large shared GPU clusters
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Cortana

Recent Cluster 
Managers

Optimus
[EuroSys 18]

Gandiva
[OSDI 18]

Tiresias
[NSDI 19]

Objective Average JCT Consolidation Average JCT

Scheduler SRTF Time-sharing Gittins Index

Motivated by observations in Philly



Microsoft Philly

Significant increase in scale during 2017

10.5× in DL training jobs

5× in GPU cluster size
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• Resource scheduling (GPU, network)

• Storage for data & model ckpt

• Failure handling

• Multi-tenancy

• ….

Philly cluster manager



Job Lifecycle in Philly

GPU Cluster
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Contributions
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• 1. First characterization study of large-scale 

• GPU clusters for DNN training

• 2. Study cluster utilization and how effectively GPUs are used

• 3. Present lessons for better cluster manager designs
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• 1. First characterization study of large-scale 

• GPU clusters for DNN training

• 2. Study cluster utilization and how effectively GPUs are used

• 3. Present lessons for better cluster manager designs

75-day period from Oct. 2017 to Dec. 2017
Total of 96,260 jobs across thousands of users



Philly Scheduler &

Job Placement

Study Details
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• Scheduler logs

– Job arrival, GPU alloc, finish status

• HW perf counters

– GPU, CPU, memory utilization

• AI engine logs

– stderr/stdout for executed jobs
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Track scheduling decision and 

utilization info during job lifecycle
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Most GPUs in the cluster are allocated

How effectively are the GPUs 

utilized for DNN training?



GPU Utilization for Job Sizes
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GPU utilization is low!

(Lower in distributed training)

Two reasons:

- Distribution across servers

- Intra-server interference



Effect of Distribution on Dedicate Servers
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Dedicate servers →
No other jobs on this server

Distributed training itself causes 

utilization to go lower!



Scheduling Distributed Training
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• High intra-server locality
– High communication efficiency

– Long queueing time

• Low intra-server locality
– Low queueing time

– Contention in the use of network

– Risk of intra-server interference 
(across jobs)

Relaxing locality constraints
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Failures occur during training

How do job failures affect 

cluster utilization?



Failures Can Reduce Cluster Utilization
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Challenge: Failures across Stack
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Infrastructure AI Engine User Program

Resource Scheduler

Our study: classify into failure types and identify utilization impacts

Improve failure handling



Failure Classifier
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(signature, failure category)

>230
signatures

stderr/stdout
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Failures in High Frequency
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Reason: User errors in code or configuration

Repetitive and appearing early
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Failures in High Resource Use
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Reason: Infrastructure failures and semantics errors

24.2

17.6 16.3 15.3

0

10

20

30

40

50

Incorrect inputs Semantic error Model ckpt error MPI runtime failure

GPU hours until failure

Mean

Incorrect 

inputs

Semantic 

error

0

20

30

40

%
 o

u
t 

o
f 
to

ta
l

G
P
U

 h
o
u
rs

10

Model ckpt

error

MPI runtime 

failure

Spread across many layers of 

system stack
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• GPU clusters for DNN training

• 2. Study cluster utilization and how effectively GPUs are used

• 3. Present lessons for better cluster manager designs



Locality v.s. Waiting Time

• Users prefer lower queuing delays

• Initial delays can outweigh giving up locality for long-running jobs

Scheduler needs to consider: 

1) trade-off between queueing delay and locality-aware scheduling

2) incorporating job migration
20

Low locality

High locality

24 hours

16 hours

(0 hour)

(1 hour)

Queueing Run time

example



Job Pre-Run before Scheduling
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Reason: User errors in code or configuration

Simple validation before 

scheduling (e.g., pre-run) avoids 

a majority of these failures
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More in the Paper 

• Job queueing

– Fair-share delay v.s. fragmentation delay

– Impact of out-of-order scheduling on job queueing

• Job failures

– Full classification of failures and detailed statistics

– How to mitigate failures by proactively analyzing failures at runtime

• Effectiveness of the last epochs

– Opportunity to not perform the last bunch of epochs
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Conclusion

• 1. First characterization study of large-scale 

• GPU clusters for DNN training

• 2. Inefficiencies come from multiple factors

• 3. Lessons on locality-awareness and 
failure handling

Traces available! 

https://github.com/msr-fiddle/philly-tracesGPU Cluster
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Philly Scheduler &

Job Placement
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Queue
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https://github.com/msr-fiddle/philly-traces

