Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads

Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee,

Junjie Qian, Wencong Xiao, Fan Yang

ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY

Deep Learning at a Large Enterprise

Speech, Image, Ads, NLP, Web Search ...

DL training jobs require large GPU clusters

Philly: Cluster manager for DL workloads on large shared GPU clusters

		Motivated by observations in Philly	
Recent Cluster Managers	Optimus [EuroSys 18]	Gandiva [OSDI 18]	Tiresias [NSDI 19]
Objective	Average JCT	Consolidation	Average JCT
Scheduler	SRTF	Time-sharing	Gittins Index

Microsoft Philly

Significant increase in scale during 2017

10.5 × in DL training jobs**5** × in GPU cluster size

....

Resource scheduling (GPU, network) Storage for data & model ckpt Failure handling Multi-tenancy

Job Lifecycle in Philly

Contributions

1. First characterization study of large-scale GPU clusters for DNN training

2. Study cluster utilization and how effectively GPUs are used

3. Present lessons for better cluster manager designs

Contributions

1. First characterization study of large-scale GPU clusters for DNN training

75-day period from Oct. 2017 to Dec. 2017 Total of **96,260** jobs across thousands of users

2. Study cluster utilization and how effectively GPUs are used

3. Present lessons for better cluster manager designs

Study Details

Track scheduling decision and utilization info during job lifecycle

Scheduler logs

– Job arrival, GPU alloc, finish status

HW perf counters

– GPU, CPU, memory utilization

Al engine logs

- stderr/stdout for executed jobs

Contributions

1. First characterization study of large-scale GPU clusters for DNN training

2. Study cluster utilization and how effectively GPUs are used

3. Present lessons for better cluster manager designs

Most GPUs in the cluster are allocated

How effectively are the GPUs utilized for DNN training?

GPU Utilization for Job Sizes

Effect of Distribution on Dedicate Servers

Dedicate servers \rightarrow No other jobs on this server

Distributed training itself causes utilization to go lower!

Scheduling Distributed Training

Relaxing locality constraints

High intra-server locality

- High communication efficiency
- Long queueing time

Low intra-server locality

- Low queueing time
- Contention in the use of network
- Risk of intra-server interference (across jobs)

Failures occur during training

How do job failures affect cluster utilization?

Failures Can Reduce Cluster Utilization

A job is unsuccessful if it repeatedly fails (waste resources)

Average of one failure per distributed training job

Challenge: Failures across Stack

Our study: classify into failure types and identify utilization impacts

Improve failure handling

Failure Classifier

Failures in High Frequency

Reason: User errors in code or configuration

Failures in High Resource Use

Reason: Infrastructure failures and semantics errors

GPU hours until failure

Spread across many layers of system stack

Contributions

1. First characterization study of large-scale GPU clusters for DNN training

2. Study cluster utilization and how effectively GPUs are used

3. Present lessons for better cluster manager designs

Locality v.s. Waiting Time

Users prefer lower queuing delays

Initial delays can outweigh giving up locality for long-running jobs

		<u>Queueing</u>	<u>Run time</u>
example	Low locality	(0 hour)	24 hours
	_ High locality	(1 hour)	16 hours

Scheduler needs to consider:

trade-off between queueing delay and locality-aware scheduling
incorporating job migration

Job Pre-Run before Scheduling

Reason: User errors in code or configuration

Simple validation before scheduling (e.g., pre-run) avoids a majority of these failures

More in the Paper

Job queueing

- Fair-share delay v.s. fragmentation delay
- Impact of out-of-order scheduling on job queueing

Job failures

- Full classification of failures and detailed statistics
- How to mitigate failures by proactively analyzing failures at runtime

Effectiveness of the last epochs

– Opportunity to not perform the last bunch of epochs

Conclusion

- 1. First characterization study of large-scale GPU clusters for DNN training
- 2. Inefficiencies come from multiple factors
 - 3. Lessons on locality-awareness and failure handling
 - Traces available! 🙂

https://github.com/msr-fiddle/philly-traces