
Effective Static Analysis of Concurrency

Use-After-Free Bugs in Linux Device Drivers

Jia-Ju Bai1, Julia Lawall2, Qiu-Liang Chen1, Shi-Min Hu1

1Tsinghua University, 2Sorbonne University/Inria/LIP6

Background

 Use-after-free bugs in device drivers

 Reliability: may cause system crashes

 Security: can be exploited to attack the operating system

2

Background

 Sequential use-after-free bug

 Concurrency use-after-free bug

3

1. void DriverFunc1(struct device *pdev) {
2. kfree(pdev->buf);
3. pdev->buf = kmalloc(...)
4. pdev->buf->last = NULL;
5. }

1. void DriverFunc2(struct device *pdev) {
2. spin_lock(...);
3. pdev->buf->first = NULL;
4. spin_unlock(...);
5. }

Thread 1 Thread 2

1. void DriverExit(struct device *pdev) {
2. kfree(pdev->buf);
3. pdev->num = 0;
4. pdev->buf->last = NULL;
5. }

Thread 1

Example

 Linux cw1200 driver

4

FILE: linux-4.19/drivers/net/wireless/st/cw1200/main.c
208. static const struct ieee80211_ops cw1200_ops = {

215. .hw_scan = cw1200_hw_scan,

223. .bss_info_changed = cw1200_bss_info_changed,

238. };

FILE: linux-4.19/drivers/net/wireless/st/cw1200/scan.c
 54. int cw1200_hw_scan(...) {

 91. mutex_lock(&priv->conf_mutex);

123. mutex_unlock(&priv->conf_mutex);
125. if (frame.skb)
126. dev_kfree_skb(frame.skb); // FREE

129. }

FILE: linux-4.19/drivers/net/wireless/st/cw1200/sta.c
1799. void cw1200_bss_info_changed(...) {

1807. mutex_lock(&priv->conf_mutex);

1849. cw1200_upload_beacon(...);

2075. mutex_unlock(&priv->conf_mutex);

2081. }

2189. static int cw1200_upload_beacon(...) {

2221. mgmt = (void *)frame.skb->data; // READ

2238. }

Lifetime: Sep. 2013 ~ Dec.2018

Fix Commit: 4f68ef64cd7f

Study of Linux kernel commits

 Use-after-free commits

 Jan.2016 ~ Dec.2018 (3 years)

5

Time Commits Drivers Concurrency Tool use

2016 (Jan - Dec) 186 111 42 (38%) 26

2017 (Jan - Dec) 478 205 87 (42%) 49

2018 (Jan - Dec) 285 145 66 (46%) 52

Total 949 461 195 (42%) 127

42% of driver commits fixing use-after-free bugs

involve concurrency

Study of Linux kernel commits

 Tool use

 Tools mentioned in driver commits

6

Tool use KASAN Syzkaller Coverity Coccinelle LDV

Type Runtime Runtime Static Static Static

Commit 92 28 4 2 1

Concurrency 38 18 0 0 0

It is important to explore static analysis to detect

concurrency use-after-free bugs in device drivers!

Challenges

 Identify driver functions that can be concurrently executed

 Poor documentation about concurrency

 Many functions defined in the driver code

 Accuracy and efficiency of code analysis

 Large size of the Linux driver code base

 Many function calls across different source files

7

Approach

 DCUAF

 Automated and effective approach of detecting concurrency

use-after-free bugs in device drivers

 LLVM-based static analysis

8

Approach

 Basic idea

 Step1: Use a local-global strategy to identify concurrent

function pairs from driver source code

 Step2: Use a summary-based lockset analysis to detect

concurrency use-after-free bugs.

9

Local-global strategy

 Driver interfaces are the entries of a device driver

 Kernel-driver interfaces

 Interrupt handler interfaces

 Driver concurrency is often determined by the concurrent

execution of driver interfaces

10

Local-global strategy

 Examples

 Linux dl2k and ne2k-pci drivers

> “.ndo_start_xmit” can be concurrently executed with “interrupt handler”

> “.ndo_open” is never concurrently executed with “.ndo_close” 11

interrupt_handler interrupt_handler

Local-global strategy

 How to extract concurrent function pairs?

 Local stage: analyze the source code of each driver

 Global stage: statistically analyze the local results of all drivers

12

Local stage

 S1: identify possible concurrent function pairs

 Compare lock-acquiring function calls

 S2: drop possibly false concurrent function pairs

 Collect “ancestors” of the two functions in call graph

 Drop pairs of functions that have a common “ancestor”

 S3: extract local concurrent interface pairs

 Identify and record driver interface assignments related to concurrent

function pairs
13

Global stage

 S1: gather local concurrent interface pairs of all drivers

 S2: statistically extract global concurrent interface pairs

 Ratio: concurrent pairs / all pairs

 S3: identify concurrent function pairs in each driver

14

Driver Interface 1 Driver Interface 2 Pair Concurrent

spi_driver.probe spi_driver.remove 227 3

file_operations.open file_operations.close 462 3

hc_driver.urb_enqueue hc_driver.endpoint_disable 16 9

Interrupt handler snd_pcm_ops.trigger 49 25









Summary-based lockset analysis

 Context-sensitive and flow-sensitive lockset analysis

 Maintain locksets

 Field-based alias analysis

 Identify the same locks

 Summary-based analysis

 Reuse the results of already analyzed functions

 Procedure

 S1: collect the lockset of each variable access

 S2: check the held locksets of the variable accesses to find bugs

15

Evaluation

 Driver code in Linux 3.14 and 4.19

 Use a common PC with four CPUs

 Run on four threads

 Make allyesconfig of x86

16

Evaluation

 Local-global strategy

17

Description Linux 3.14 Linux 4.19

Code handling
Source files (.c) 7957 13100

Source code lines 5.1M 7.9M

Local stage
Dropped function pairs 61.4K 99.8K

Remaining function pairs 40.7K 67.8K

Global stage
Global concurrent interface pairs 694 1497

Concurrent function pairs 15.6K 69.5K

Time usage 15m 18m

Evaluation

 Bug detection

18

Description Linux 3.14 Linux 4.19

Detected (real / all) 526 / 559 640 / 679

Confirmed / reported - 95 / 130

Time usage 9m 10m

Some confirmed bugs:

• https://github.com/torvalds/linux/commit/7418e6520f22

• https://github.com/torvalds/linux/commit/2ff33d663739

• https://github.com/torvalds/linux/commit/c85400f886e3

Evaluation

 False positives

 Alias analysis may incorrectly identify the same locks

 Flow-sensitive analysis does not validate path conditions

 ……

 False negatives

 Function-pointer analysis is not performed

 Other kinds of synchronization are neglected

 ……

19

Conclusion

 Concurrency use-after-free bugs are often hard to detect

 DCUAF: automated and effective

 Local-global strategy of extracting concurrent function pairs

 Summary-based lockset analysis

 Find hundreds of new real bugs in Linux device drivers

20

