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Latency spikes of up to 1s in write dominated workloads.

Nutanix write-intensive production workload



Why is this important?

Cannot provide SLA guarantees to clients.

Unpredictable performance when connecting LSM in larger pipelines.

Latency Spikes in LSM KVs
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Our Contribution: The SILK LSM KV
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Solves latency spike problem for write-heavy workloads.

SILK introduces the notion of an I/O scheduler for LSM KVs.

No negative side-effects for other workloads.
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Experimental Study:
Reason Behind Latency Spikes



What Causes LSM Latency Spikes?

Severe competition for I/O bandwidth between 
client operations and LSM internal operations (~GC).
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LSM KV Overview
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LSM KV Overview
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Write buffer

SSTables
• sorted files
• many SSTables/Level

Wb

L0

Ln

…



LSM KV Client Operations
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LSM Internal Ops
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Memory
Disk

SSTables
(sorted files)

L0

L1

L2

L3

Three types of internal ops:

1. Flushing

2. L0 à L1 compaction

3. Higher level compactions

No coordination between 
internal operations.



LSM Internal Ops: Flushing
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Memory
Disk

L0

L1
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L3

Incoming writes absorbed in 

new write buffer.

Flush buffer written to L0.

update
Flush bufferNew write buffer



LSM Internal Ops: L0 à L1 compactions
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LSM Internal Ops: L0 à L1 compactions
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Merge one L0 SSTable with L1.

Makes room on L0 for flushing.



LSM Internal Ops: Higher Level Compactions
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… but need to complete.

I/O bandwidth intensive.
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LSM Internal Ops: Higher Level Compactions
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Memory
Disk

L0
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L3

Can have many higher level 

compactions running in parallel.



LSM Review
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Internal operations:

1. Flushing. From memory to disk.

2. L0 à L1 compaction. Make room to flush new files.

3. Higher level compactions. ~GC, I/O intensive. 

No coordination between internal ops and client ops.



What Causes LSM Latency Spikes?
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Both reads and writes experience latency spikes. 

Focus on writes. Less intuitive.

Writes finish in memory. Why do we have 1s latencies?



L0 Full, Cannot Flush
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L0 Full, Cannot Flush
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1. Writes Blocked Because L0 is Full.
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L0 à L1 compaction is too slow.

Not enough space on L0.

Cannot flush memory component.

à

No coordination between internal ops.

à
à

Higher level compactions take over I/O.

à
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1. Writes Blocked Because L0 is Full.
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1. Writes Blocked Because L0 is Full.
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1. Writes Blocked Because L0 is Full.
Cannot flush.

No space on L0



flush
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flush flush
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L0 is FULL Latency spike!
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1. Writes Blocked Because L0 is Full.



Flushing is Slow
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2. Writes Blocked Because Flushing is Slow.
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Flushing does not have enough I/O.

Flushing is very slow.

Memory component becomes full.

à

No coordination between internal ops.à
à

Higher level compactions take over I/O.

à
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Many parallel higher level compactions
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2. Writes Blocked Because Flushing is Slow.



flush

107 128 11 1341 92 3 5 6
Time (seconds)

SLOW flushflush

Higher level compaction
Higher level compaction
Higher level compaction

Higher level compaction
Higher level compaction
Higher level compaction
Higher level compaction

Flush does not have enough I/O to finish fast
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2. Writes Blocked Because Flushing is Slow.

Many parallel higher level compactions
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2. Writes Blocked Because Flushing is Slow.
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Rate Limiting: simple attempt to coordinate between internal and external ops.
La

te
nc

y
(m

icr
os

)

Time (s)
0 1000 2000 3000 4000

106

3x106

5x106
90 MB/s Max Compaction Bandwidth

RocksDB

Static compaction rate limiting does not work in the long term. 
Chance to run many parallel high level compactions increases.



Naïve Solution 2: Delay Compaction Work
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Selective/Delayed Compaction (TRIAD [USENIX ATC ’17], PebblesDB [SOSP ‘17]).Being selective about compactions does not avoid interference. 
Eventually need to do the delayed compaction work.



Lessons Learned

1. Make sure L0 is never full.

2. Simply limiting I/O bandwidth does not solve the problem.
More likely to have many parallel compactions and risk latency spikes. 

3. Strategy should work in the long term.
Essential to run performance tests for an extended time. 
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Lessons Learned

1. Make sure L0 is never full.
If there is room in L0, flushing can proceed.

2. Ensure sufficient I/O for flush/compactions on low levels.

3. Make sure other compactions do not fall behind too much.
For strategy to work in the long term, compactions should eventually complete.
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Lessons Learned

1. Make sure L0 is never full.
If there is room in L0, flushing can proceed.

2. Ensure sufficient I/O for flush/compactions on low levels.
Internal ops on L0 and L1 impact client latency if they are slow/stalled. 

3. Higher level compactions should not fall behind too much.
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The SILK I/O Scheduler



SILK Key Idea
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I/O scheduler for LSM KVs: coordinate I/O bandwidth sharing 
to minimize interference between internal ops and client ops.



SILK Design
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Prioritize internal operations 
at lower levels of the tree. 



SILK Design
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Lessons Learned

Make sure L0 is never full.

Ensure sufficient I/O for flush/ 
compactions on low levels. 

Make sure other compactions do 
not fall behind too much.

Preempt higher level 
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Prioritize internal operations 
at lower levels of the tree. 



SILK Design

Prioritize internal operations 
at lower levels of the tree. 
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Lessons Learned

Make sure L0 is never full.

Ensure sufficient I/O for flush/ 
compactions on low levels. 

Make sure other compactions 
do not fall behind too much.

Opportunistically allocate I/O 
for higher level compactions. 

Preempt higher level 
compactions if necessary. 



Prioritize & Preempt
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Prioritize internal ops at lower tree levels:

1

2

3

Flushing

L0 à L1 compactions

Higher level compactions



Prioritize & Preempt
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Prioritize internal ops at lower tree levels:

1

2

3

Flushing

L0 à L1 compactions

Higher level compactions

– dedicated flush operation queue.



Prioritize & Preempt

oana.balmau@sydney.edu.au 58

Prioritize internal ops at lower tree levels:

1

2

3

Flushing

L0 à L1 compactions

Higher level compactions

– dedicated flush operation queue.

L0 à L1 compaction 
preempts higher level 
compactions.



Opportunistically allocate I/O for compactions
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Real Nutanix client load example

SILK continuously monitors 
client I/O bandwidth use.

Client workload is not constant.
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Internal Ops I/O
Allocate less I/O to compactions 
during client load peaks.

Allocate more I/O to compactions 
during low client load.



Opportunistically allocate I/O for compactions
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More I/O to high level compactions 
during low load à don’t fall behind.

Real Nutanix client load example



SILK Evaluation
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SILK Implementation

Extends RocksDB.

Open Source https://github.com/theoanab/SILK-USENIXATC2019
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YCSB
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Benchmark with different workloads:

write-intensive, read-intensive, scan-intensive.

Show:

1. Write-heavy workloads: SILK is much better for tail latency.

2. Other workloads: SILK is not detrimental. 



YCSB
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SILK decreases tail latency by 4 orders of 
magnitude in write-dominated workloads.
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SILK does not affect read/scan dominated workloads
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Nutanix Production Workload
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Write dominated:

57% writes, 41% reads, 2% scans.

Bursty (open loop):
Peaks and valleys in client load.

Dataset size:  500GB, KV tuple size 400B on average.



SILK vs RocksDB Tail Latency 99P
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SILK achieves 3 orders-of-magnitude improvement 
in tail latency in production workloads.
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SILK never stalls because it can 
always do timely flushing. 



More in the paper…
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Comparison with more state-of-the-art LSMs (TRIAD, PebblesDB). 

With SILK, throughput is steady and close to the client load.

More experiments and workloads.



SILK Take-Home Message
• We introduce the new concept of an I/O scheduler for LSM. 

• Coordinate I/O sharing to avoid latency spikes.

• Three orders-of-magnitude improvements on tail latency.

oana.balmau@sydney.edu.au 77

Thank you! Questions?


