OPTR: Order-Preserving Translation

and Recovery Design for SSDs with
a Standard Block Device Interface

Yun-Sheng Chang and Ren-Shuo Liu

System and Storage Design Lab
Department of Electrical Engineering
National Tsing Hua University, Taiwan
@) W =h ol BEE

277 NATIONAL TSING HUA UNIVERSITY ATC "9

Solid-State Drives (SSDs)

* Inherit the interface and a weak guarantee from HDDs
* Permit persisting write requests in an arbitrary order

 Implication to FS and DBS

* Need to frequently flush SSDs to ensure order
At the cost of performance degradation

1989 1999 2009 2019

Order-Preserving SSDs (OP-SSDs)

» Strong request-level guarantees
» Persist all write requests in order
- Persist each write request atomically (a bonus)

e |[nvariants

* |ldentical interface to existing
software, i.e., read, write, and flush

* Comparable performance
to traditional SSDs

Robot drawn by
Christopher Doehling

Traditional SSD: Weak Crash Guarantees

* Write requests can be persisted out-of-order
» Each write request can be partially complete

- Valid post-crash states

Time

] -

crash '

8 512-byte sectors

of valid post-crash states: 2°

OP-SSD: Strong Crash Guarantees

* Write requests are persisted in-order
» Each write request is atomic, regardless of its size

W1

Time

W3

8 512-byte sectors

Valid post-crash states

of valid post-crash states: 4

OP-SSDs in Computer Systems

* Optimize existing FS and DBS
* Remove unnecessary flushes

 Practical and manageable because
OP-SSDs keep the interface intact

* Inspire new FS and DBS
» Exploit the strong crash guarantees

* New SSD industrial standard

* New SSD research area
* Flash-translation layers (FTLs)

Robot drawn by
Christopher Doehling

Outline

« Background

 Order-preserving design

» System optimizations and evaluation
 Conclusion

Background: A Simple SSD Model

* FTL (flash translation layer) performsi SSD Request
logical-to-physical address mapping Queue

- Constraint of flash: No in-place update | rzzzzzzzzozzzzs----=-<mmmmmmsoonoen
: | | 1 Transl | i GC I

° ngh performance schemes | I_'_::r?:rl_i'_e_t'i'??::_F_-_I:I_-__:::::::::::::_l
» Flash parallelism H Write Cache |
* Request reordering > Breaking the order! § i---zzzzeeommoeom oo ’
» Write cache i alk

« Garbage collection Flashl IFlash

- Crash recovery chip || chip

Background: GC and SSD Recovery

» GC is required to reclaim space for future writes

 Crash recovery: Since L2P table is kept in RAM, FTL has to
reconstruct the L2P table after a crash

LPN PPN

X

spare area (1-4 KB)
4

Y

VA

L2P Table

Flash Page §
user data ecc
(8 - 32 KB) lph =Y
Crash "~ Relocate Rea}c’l/,/'
Erase | - _{-~~
Remap | 1 Flash Chip

I:I: free page
[
: valid page

I: invalid page

Goal of Order-Preserving Design

* High performance schemes are still kept
* Flash parallelism
» Request reordering
 Write cache (coalescing)

* Write requests are not necessarily processed in order

* Recovery procedure of FTL is extended

* Rollback SSD to a desired state
 Create an order-preserving illusion

- Let's first assume an SSD withouta | g§gp Request |
write cache and GC Queue
- We'll remove these (impractical) rTransIatlonFTL
assumptions in a minute i efefefefefofofotototototoell X

Order-Preserving Recovery

» Idea: During recovery, if we know exactly which writes are
complete, we can recover until the first incomplete write

« E.g., if the 1st, 2nd 3rd 5th writes are complete, then we can simply
recover the first three writes, but not any other write

» Write completion tracking: If a write contains N pages, and
during recovery, we find N pages for the write, then the write is
indeed complete; otherwise, the write is incomplete

Order-Preserving Recovery

 wid (8 B): a sequence number assigned to a write according
to the order in which writes are received by the SSD
- size (4 B): the number of pages the write contains

spare area (1-4 KB)
FlashPage ™"~ ~ "\ Status Condition

user data ecc || wid Complete | # pages found = size
(8- 32 KB) Ipn || Size Incomplete | # pages found < size

Recovery Procedure (without write cache and GC)

» Read out all the programmed pages
» Determine whether each write is complete or incomplete

» Construct a flow network with each node representing a
write request and each edge pointing from W, to W,

* Find a s-t cut C = (S, T) such that Flash Page ["wid, size, Ipn
 Every write in S is complete
* |S| is maximized

» Recover all and only the writesin S g

Complete write
O CROROROZOZ O
O Incomplete write

Support for Write Coalescing

» Write coalescing improves performance and lifetime

 Challenge: The number of pages found during recovery can
no longer match the number of pages the write contains

» Naive solution: Forbid write coalescing

Wio(Ipn = 20, # pages = 2)
W1, (Ipn = 20, # pages = 2)

dirty flag —~ i
C D |
buffered (0) (1) i
W. W. T
page LD 121! Write Cache
------------------- ;—e-ﬁl-é?-\--:--"" < coalesce
(0) (1)
F W11 Wll

Write Coalescing Tracking

» Coalescing records keep track of coalescing events
» Recovery procedure expect one less page for each record

 Write requests that coalesce are atomic as a whole

A batch of coalescing records are written to flash when the
buffer is full or upon receiving a flush request

Wio(Ipn = 20, # pages = 2)

W1, (Ipn = 20, # pages = 2) i C|10 D[10 i
: . i buffered (0) (1 |1
Coalescing Record| x, vy, size, | | W, W, :
’ vsizex | i page ™ Mo~ | Wio_ | write cac
B o e e i e e e e g s o g e e
10,11, 2 replace >~ < coalesce
: A w D
Coalescing Record Buffer 11 11

he

Support for Garbage Collection

* The job of a garbage collector is to reclaim invalid pages

« However, our recovery procedure relies on these invalid
pages to determine whether each write is complete

» Solution: Mapping table checkpoint
I:I: free page

G

2 . valid page

X 1 ° I: invalid page
Y ®
Z | 4 % | B

L2P Table Flash Chip

Mapping Table Checkpointing

» Perform incremental and full checkpoint

» Once a checkpoint is successfully created, all write requests
prior to the checkpoint is guaranteed recoverable

* Restrict GC to only reclaim pages programmed before a

checkpoint
I:I: free page

7
Fmmmmmmmmmm e : valid page
Delta L2P :

i [x T I:invalid age
| Full L2p Delta L2P T a8 fal pag
i eee i Z - N

; Delta L2P ! % Pk

Reserved Area in Flash L2P Table Flash Chip

Recovery Procedure (with write cache and GC)

» Sequentially apply all checkpoints
» Read out all the pages programmed after the latest chkpt
» Read out all the coalescing records created after the latest chkpt

* Determine whether each write is incomplete or non-incomplete
Coalescing Record |__X. Y. size,
Flash Page| wid, size, Ipn

Status Condition

Incomplete

1
i
1
i
pages found + i
coalescing records < size i

i

ONon-incompletewrite @ @ @ @ @

O Incomplete write] .
Write requests found during recovery

Recovery Procedure (with write cache and GC)

 Construct a flow network with each node representing a write
request, each directed edge pointing from W, to W, , and each bent

edge pointing from x to y for each coalescing record <x, y, size,>

 Findas-tcut C = (S,T) such that
* No writes in S are incomplete

Coalescing Record |_X, Y, size,

* |S| is maximized Flash Page| wid, size, Ipn
* The cut size is equal to one T0.3.12] [2.2.14 SSD!
 Recover all and only the writesin S i[0,3,13] [2.2.15] [0.2.3 |;
' [2.1,20 1,21
i 3,46 |

Non-incomplete write
O Incomplete write

Write requests found during recovery

System Optimizations and Evaluation

%the

Ext

File System

21

System Optimizations and Evaluation

B| fdatasync | | writes][Wy riush

*
*
*
*
*
‘0
*

‘0
*
*
‘Q
*

1| fdatasync :[writes | writes | flush |

d
*
*
*
*
*
‘Q
*

fdatasync | (writes][writes | ({ig)

r 2Ye) /
fdatafence writes || writes |2 z

3 | fdatasync | | writes || writes |

Baseline Systems

SQLite Performance
fdatasync() |

Easeline SS[i
O
fdatasync() System Changes

(
[JOUFHal][CommitJ Minor » Significant

Systems Using Transactional SSDs

Performance

A

Q

‘ Transactional SSD
Significant changes

. System Changes
>

Minor

” Significant

1st System Optimization with OP-SSDs

SQLite Performance
fdatasync() l @ Transactional SSD
| Significant changes
Ext4

l

E OP-SSD j (D1.3x speedup
Q

fdatasync()

System Changes

[Journal]

(«
Minor ” Significant

Commit}

Only one f

ush per fdatasync()
25

2nd System Optimization with OP-SSDs

y« SQLite Performance

fdatasync()] | fdatafence() @ Transactional SSD

Significant changes
| £ Ext4

(2 2.8x speedup

E OP-SSD j (D1.3x speedup
Q

fdatasync() System Changes

((
[Journal] [Commit}

Minor ” Significant
fdatafence()

Soumal(Gommit

3rd System Optimization with OP-SSDs

SQLite

1

Ext4

1
E OP-SSD j
fdatasync()

Sournal [Gommit

Mount with
-0 nobarrier

Performance
A

‘ Transactional SSD
@) 6.2x speedup | Significant changes

(2 2.8x 'speedup
(M1.3x speedup

Q

Minor ” Significant

System Changes

Relaxed durability + guaranteed consistency

27

Conclusion

* We propose order-preserving SSDs

» Strong request-level guarantees
* Persist all write requests in order
* Persist each write request atomically

* Impacts of OP-SSDs to computer systems

» Optimize existing FS and DBS - Show three optimizations
* Inspire new FS and DBS

 New SSD industrial standard
* New SSD research area - Realize a prototype

Future work

Order-Preserving SSDs

Yun-Sheng Chang and Ren-Shuo Liu
System and Storage Design Lab Thank You!

Department of Electrical Engineering
National Tsing Hua University, Taiwan

!
NATIONAL TSING HUA UNIVERSITY ATC 1 9

ssdlab.ee.nthu.edu.tw/optr
(Available before Aug 15)

Robot drawn by
Christopher Doehling

https://github.com/ssdlab-nthu/optr-jasmine

