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Solid-State Drives (SSDs)

* Inherit the interface and a weak guarantee from HDDs
* Permit persisting write requests in an arbitrary order

 Implication to FS and DBS

* Need to frequently flush SSDs to ensure order
At the cost of performance degradation
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Order-Preserving SSDs (OP-SSDs)

» Strong request-level guarantees
» Persist all write requests in order
- Persist each write request atomically (a bonus)

e |[nvariants

* |ldentical interface to existing
software, i.e., read, write, and flush

* Comparable performance
to traditional SSDs
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Traditional SSD: Weak Crash Guarantees

* Write requests can be persisted out-of-order
» Each write request can be partially complete

- Valid post-crash states
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OP-SSD: Strong Crash Guarantees

* Write requests are persisted in-order
» Each write request is atomic, regardless of its size
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8 512-byte sectors

Valid post-crash states

# of valid post-crash states: 4




OP-SSDs in Computer Systems

* Optimize existing FS and DBS
* Remove unnecessary flushes

 Practical and manageable because
OP-SSDs keep the interface intact

* Inspire new FS and DBS
» Exploit the strong crash guarantees

* New SSD industrial standard

* New SSD research area
* Flash-translation layers (FTLs)
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Background: A Simple SSD Model

* FTL (flash translation layer) performsi SSD Request
logical-to-physical address mapping Queue

- Constraint of flash: No in-place update | rzzzzzzzzozzzzs----=-<mmmmmmsoonoen
: | | 1 Transl | i GC I
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Background: GC and SSD Recovery

» GC is required to reclaim space for future writes

 Crash recovery: Since L2P table is kept in RAM, FTL has to
reconstruct the L2P table after a crash
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Goal of Order-Preserving Design

* High performance schemes are still kept
* Flash parallelism
» Request reordering
 Write cache (coalescing)

* Write requests are not necessarily processed in order

* Recovery procedure of FTL is extended

* Rollback SSD to a desired state
 Create an order-preserving illusion



- Let's first assume an SSD withouta | g§gp Request |
write cache and GC Queue
- We'll remove these (impractical) rTransIatlonFTL
assumptions in a minute i efefefefefofofotototototoell X




Order-Preserving Recovery

» Idea: During recovery, if we know exactly which writes are
complete, we can recover until the first incomplete write

« E.g., if the 1st, 2nd 3rd 5th writes are complete, then we can simply
recover the first three writes, but not any other write

» Write completion tracking: If a write contains N pages, and
during recovery, we find N pages for the write, then the write is
indeed complete; otherwise, the write is incomplete



Order-Preserving Recovery

 wid (8 B): a sequence number assigned to a write according
to the order in which writes are received by the SSD
- size (4 B): the number of pages the write contains

spare area (1-4 KB)
FlashPage ™"~ ~ "\ Status Condition

user data ecc || wid Complete | # pages found = size
(8- 32 KB) Ipn || Size Incomplete | # pages found < size




Recovery Procedure (without write cache and GC)

» Read out all the programmed pages
» Determine whether each write is complete or incomplete

» Construct a flow network with each node representing a
write request and each edge pointing from W, to W,

* Find a s-t cut C = (S, T) such that Flash Page ["wid, size, Ipn
 Every write in S is complete
* |S| is maximized

» Recover all and only the writesin S g

Complete write
O CROROROZOZ O
O Incomplete write




Support for Write Coalescing

» Write coalescing improves performance and lifetime

 Challenge: The number of pages found during recovery can
no longer match the number of pages the write contains

» Naive solution: Forbid write coalescing

Wio(Ipn = 20, # pages = 2)
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Write Coalescing Tracking

» Coalescing records keep track of coalescing events
» Recovery procedure expect one less page for each record

 Write requests that coalesce are atomic as a whole

A batch of coalescing records are written to flash when the
buffer is full or upon receiving a flush request

Wio(Ipn = 20, # pages = 2)
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Support for Garbage Collection

* The job of a garbage collector is to reclaim invalid pages

« However, our recovery procedure relies on these invalid
pages to determine whether each write is complete

» Solution: Mapping table checkpoint
I:I: free page
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Mapping Table Checkpointing

» Perform incremental and full checkpoint

» Once a checkpoint is successfully created, all write requests
prior to the checkpoint is guaranteed recoverable

* Restrict GC to only reclaim pages programmed before a

checkpoint
I:I: free page
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Delta L2P :

i [ x T I:invalid age
| Full L2p Delta L2P T a8 fal pag
i eee i Z - N

; Delta L2P ! % Pk

Reserved Area in Flash L2P Table Flash Chip



Recovery Procedure (with write cache and GC)

» Sequentially apply all checkpoints
» Read out all the pages programmed after the latest chkpt
» Read out all the coalescing records created after the latest chkpt

* Determine whether each write is incomplete or non-incomplete
Coalescing Record |__X. Y. size,
Flash Page| wid, size, Ipn

Status Condition

Incomplete

1
i
1
i
# pages found + i
# coalescing records < size i
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ONon-incompletewrite @ @ @ @ @

O Incomplete write ] .
Write requests found during recovery



Recovery Procedure (with write cache and GC)

 Construct a flow network with each node representing a write
request, each directed edge pointing from W, to W, , and each bent

edge pointing from x to y for each coalescing record <x, y, size,>

 Findas-tcut C = (S,T) such that
* No writes in S are incomplete

Coalescing Record |_X, Y, size,

* |S| is maximized Flash Page| wid, size, Ipn
* The cut size is equal to one T0.3.12] [2.2.14 SSD!
 Recover all and only the writesin S i[0,3,13] [2.2.15] [0.2.3 |;
' [2.1,20 1,21
i 3,46 |

Non-incomplete write
O Incomplete write

Write requests found during recovery




System Optimizations and Evaluation
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System Optimizations and Evaluation
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Baseline Systems

SQLite Performance
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Systems Using Transactional SSDs
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1st System Optimization with OP-SSDs
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2nd System Optimization with OP-SSDs
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3rd System Optimization with OP-SSDs
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Conclusion

* We propose order-preserving SSDs

» Strong request-level guarantees
* Persist all write requests in order
* Persist each write request atomically

* Impacts of OP-SSDs to computer systems

» Optimize existing FS and DBS - Show three optimizations
* Inspire new FS and DBS

 New SSD industrial standard
* New SSD research area - Realize a prototype

Future work



Order-Preserving SSDs
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