
Yun-Sheng Chang and Ren-Shuo Liu

System and Storage Design Lab
Department of Electrical Engineering
National Tsing Hua University, Taiwan

OPTR: Order-Preserving Translation
and Recovery Design for SSDs with
a Standard Block Device Interface

Solid-State Drives (SSDs)

2

• Inherit the interface and a weak guarantee from HDDs
• Permit persisting write requests in an arbitrary order

• Implication to FS and DBS
• Need to frequently flush SSDs to ensure order
• At the cost of performance degradation

1989 2009 20191999

Robot drawn by
Christopher Doehling

Order-Preserving SSDs (OP-SSDs)

3

•Strong request-level guarantees
• Persist all write requests in order
• Persist each write request atomically (a bonus)

• Invariants
• Identical interface to existing

software, i.e., read, write, and flush
•Comparable performance

to traditional SSDs

Traditional SSD: Weak Crash Guarantees

•Write requests can be persisted out-of-order
• Each write request can be partially complete

Ti
m

e W1

W2

W3

crash

8 512-byte sectors

…

Valid post-crash states

of valid post-crash states: 26

OP-SSD: Strong Crash Guarantees

•Write requests are persisted in-order
• Each write request is atomic, regardless of its size

Ti
m

e W1

W2

W3

crash

of valid post-crash states: 48 512-byte sectors

Valid post-crash states

OP-SSDs in Computer Systems

6

• Optimize existing FS and DBS
• Remove unnecessary flushes
• Practical and manageable because

OP-SSDs keep the interface intact

• Inspire new FS and DBS
• Exploit the strong crash guarantees

•New SSD industrial standard
•New SSD research area
• Flash-translation layers (FTLs)

Robot drawn by
Christopher Doehling

Outline

7

•Order-preserving SSDs
•Background
•Order-preserving design
• System optimizations and evaluation
•Conclusion

Background: A Simple SSD Model

8

• FTL (flash translation layer) performs
logical-to-physical address mapping
• Constraint of flash: No in-place update

• High performance schemes
• Flash parallelism
• Request reordering
• Write cache

• Garbage collection
• Crash recovery

Request
Queue

FTL

Write Cache

…

Flash Chip Array

Flash
chip

…Blk Flash
chip

Translation GC

Breaking the order!

SSD

Background: GC and SSD Recovery

9

• GC is required to reclaim space for future writes
• Crash recovery: Since L2P table is kept in RAM, FTL has to

reconstruct the L2P table after a crash

Flash Chip

Blk

: free page

: valid page

: invalid page
…

X
Y
Z
…

L2P Table

LPN PPN

FTL user data
(8 - 32 KB)

spare area (1-4 KB)Flash Page

ecc
lpn

Copy

Erase
RelocateCrash

lpn = Y

Remap

Read

Goal of Order-Preserving Design
•High performance schemes are still kept
• Flash parallelism
• Request reordering
• Write cache (coalescing)

•Write requests are not necessarily processed in order
• Recovery procedure of FTL is extended
• Rollback SSD to a desired state
• Create an order-preserving illusion

10

An Incomplete SSD Model

11

• Let’s first assume an SSD without a
write cache and GC
• We’ll remove these (impractical)

assumptions in a minute

Request
Queue

FTL

Write Cache

…

Flash Chip Array

Flash
chip

…Blk Flash
chip

Translation GC

SSD

Order-Preserving Recovery

12

• Idea: During recovery, if we know exactly which writes are
complete, we can recover until the first incomplete write
• E.g., if the 1st, 2nd, 3rd, 5th writes are complete, then we can simply

recover the first three writes, but not any other write

• Write completion tracking: If a write contains N pages, and
during recovery, we find N pages for the write, then the write is
indeed complete; otherwise, the write is incomplete

Order-Preserving Recovery

13

Status Condition
Complete # pages found = size

Incomplete # pages found < size
user data
(8 - 32 KB)

spare area (1-4 KB)Flash Page

ecc
lpn

wid
size

• wid (8 B): a sequence number assigned to a write according
to the order in which writes are received by the SSD

• size (4 B): the number of pages the write contains

Recovery Procedure (without write cache and GC)

14

• Read out all the programmed pages
• Determine whether each write is complete or incomplete
• Construct a flow network with each node representing a

write request and each edge pointing from Wi to Wi+1

• Find a s-t cut 𝐶 = 𝑆, 𝑇 such that
• Every write in 𝑆 is complete
• |𝑆| is maximized

• Recover all and only the writes in 𝑆

0s 3 t1 2 4

𝑆

SSD0, 3, 12
0, 3, 13
0, 3, 14
1, 1, 15

2, 2, 14
2, 2, 15
3, 2, 6

4, 1, 20

wid, size, lpnFlash Page

Write requests found during recovery

Complete write

Incomplete write

Support for Write Coalescing

15

• Write coalescing improves performance and lifetime
• Challenge: The number of pages found during recovery can

no longer match the number of pages the write contains
• Naïve solution: Forbid write coalescing

Write Cache

C

𝑊,-
(-) 𝑊,-

(,)

𝑊,,
(-) 𝑊,,

(,)
replace coalesce

𝑊,-(lpn = 20, # pages = 2)
𝑊,,(lpn = 20, # pages = 2) D

dirty flag

buffered
page

𝑊,,
(,)

10 2

Write Coalescing Tracking

16

• Coalescing records keep track of coalescing events
• Recovery procedure expect one less page for each record
• Write requests that coalesce are atomic as a whole

• A batch of coalescing records are written to flash when the
buffer is full or upon receiving a flush request

Write Cache

dirty flag

buffered
page

C

𝑊,-
(-) 𝑊,-

(,)

𝑊,,
(-) 𝑊𝟏𝟏

(,)
replace coalesce

𝑊,-(lpn = 20, # pages = 2)
𝑊,,(lpn = 20, # pages = 2)

Coalescing Record Buffer

Coalescing Record

10, 11, 2

10 2 D 10 2

wid size

….

x, y, sizex

Support for Garbage Collection

17

• The job of a garbage collector is to reclaim invalid pages
• However, our recovery procedure relies on these invalid

pages to determine whether each write is complete
• Solution: Mapping table checkpoint

Flash Chip

Blk

: free page

: valid page

: invalid page

…

X
Y
Z
…

L2P Table

LPN PPN

Mapping Table Checkpointing

18

• Perform incremental and full checkpoint
• Once a checkpoint is successfully created, all write requests

prior to the checkpoint is guaranteed recoverable
• Restrict GC to only reclaim pages programmed before a

checkpoint

Flash Chip

Blk

: free page

: valid page

: invalid page

…

X
Y
Z
…

Reserved Area in Flash

Full L2P

Delta L2P

Delta L2P

Delta L2P

…

L2P Table

LPN PPN

Recovery Procedure (with write cache and GC)

19

• Sequentially apply all checkpoints
• Read out all the pages programmed after the latest chkpt
• Read out all the coalescing records created after the latest chkpt
• Determine whether each write is incomplete or non-incomplete

0 31 2 4
Non-incomplete write

Incomplete write
Write requests found during recovery

Status Condition

Incomplete # pages found +
coalescing records < size

SSD0, 3, 12
0, 3, 13

1, 2, 1
0, 2, 3

2, 2, 14
2, 2, 15

3, 4, 6
4, 1, 20

wid, size, lpnFlash Page
x, y, sizexCoalescing Record

Recovery Procedure (with write cache and GC)

20

• Construct a flow network with each node representing a write
request, each directed edge pointing from Wi to Wi+1, and each bent
edge pointing from x to y for each coalescing record <x, y, sizex>
• Find a s-t cut 𝐶 = 𝑆, 𝑇 such that
• No writes in 𝑆 are incomplete
• |𝑆| is maximized
• The cut size is equal to one

• Recover all and only the writes in 𝑆

0s 3 t1 2 4

𝑆

SSD0, 3, 12
0, 3, 13

2, 2, 14
2, 2, 15

4, 1, 20

wid, size, lpnFlash Page

Write requests found during recovery

Non-incomplete write

Incomplete write

x, y, sizexCoalescing Record

1, 2, 1
0, 2, 3

3, 4, 6

System Optimizations and Evaluation

21

FS

DBS

OP-SSD

Virtual Stress Test
(VST) Framework

System Optimizations and Evaluation

22

fdatasync writes flush writes flush

writes writes flush

writes writes flush

writes writes

writes writes

fdatasync

fdatasync

fdatafence

fdatasync

1

2

3

B

Baseline Systems

23

Ext4

SQLite

fdatasync()

fdatasync()

Journal Flush Commit Flush Minor

Performance

Significant

System Changes

Baseline SSD

Systems Using Transactional SSDs

24

Minor

Performance

Significant

System Changes

Transactional SSD
Significant changes

1st System Optimization with OP-SSDs

25

Minor

Performance

Significant

System Changes

Transactional SSD
Significant changes

1.3× speedupOP-SSD

Ext4

SQLite

fdatasync()

fdatasync()

Journal Commit Flush

Only one flush per fdatasync()

1

2nd System Optimization with OP-SSDs

26

Minor

Performance

Significant

System Changes

Transactional SSD
Significant changes

2.8× speedup

Ext4

SQLite

fdatasync()

fdatasync()

1.3× speedup

fdatafence()

Journal Commit Flush

Journal Commit
fdatafence()

OP-SSD 1

2

3rd System Optimization with OP-SSDs

27

Minor

Performance

Significant

System Changes

Transactional SSD
Significant changes6.2× speedupExt4

SQLite

Journal Commit

2.8× speedup

1.3× speedupOP-SSD

Relaxed durability + guaranteed consistency

Mount with
-o nobarrier

1

2

3

fdatasync()

Conclusion
•We propose order-preserving SSDs
• Strong request-level guarantees
• Persist all write requests in order
• Persist each write request atomically

• Impacts of OP-SSDs to computer systems
• Optimize existing FS and DBS
• Inspire new FS and DBS
• New SSD industrial standard
• New SSD research area

28

Future work

à Show three optimizations

à Realize a prototype

Yun-Sheng Chang and Ren-Shuo Liu

System and Storage Design Lab
Department of Electrical Engineering
National Tsing Hua University, Taiwan

Order-Preserving SSDs
Thank You!

Robot drawn by
Christopher Doehling

ssdlab.ee.nthu.edu.tw/optr
(Available before Aug 15)

https://github.com/ssdlab-nthu/optr-jasmine

