- "_’ﬁz—— —— =

EAK MEMOR

7‘;:‘}*= ~— ——

~AND C++
Nathan Chong Tyler Sorensen John Wickerson
Arm Ltd. Princeton University Imperial College London

USENIX Annual Technical Conference, 11 July 2019

WEAK MEMORY

MOV [x] 1 |[MOV [y] 1
MOV r0 [y]]||MOV rl [x]
ro=1 r0=0 ro=1 r0=0
rl=1 rl=1 r1=0 rl1=0
%ﬁ
SC
%ﬁ

WEAK MEMORY IS HARD!

e Xx86 proved tricky to formalise correctly [sarkar et al., POPL 09;
Owens et al., TPHOLs'09]

 Bug found in deployed "Power 5" processors jaigiave et al., CAV'10]

e C++ specification did not guarantee its own key property
[Batty et al., POPL'11]

 Routine compiler optimisations are invalid under Java and
C++ memory models [Sevcik, PLDI'11; Vafeiadis et al. POPL'15]

e Behaviour of NVIDIA graphics processors contradicted
NVIDIA's programming guide jAiglave et al., ASPLOS'15]

MODELLING WEAK MEMORY

MOV [x] 1 MOV [y] 1

MOV r0O [y] |IMOV rl [X]

W x 1 Wy 1 W x 1 Wy 1 W x 1 Wy 1 W x 1 Wy 1

of > o w) DX o w) DX e e D e

Ry 1 Rx1 RyO Rx 1 Ry RxO0 RyO RxO0
ro=1 rl=1 r0=0 rl=1 r0=1 rl1=0 r0=0 rl=0

SC: SC: SC: SC: x

X806 X806 X806 X806

e X86:

* Power:

 ARM:

¢ C++:

TRANSACTIONAL MEMORY

XBEGIN
XEND
o Transacuonal Memory:
egi
gEn Archltectural Support for Lock-Free Data Structures
tend Maurice Herlihy 1. Eliot B. Moss
Digital Equipment Corporation Dept. of Computer Science
Cambridge Research Laboratory University of Massachusetts
N Cambridge 02139 erst, MA 01003
start herliny@crl.dec-com moss@cs umass edu
Abstract structures avoid common problems
tcommit ventional locking rechniques in hi ghl
A shared data structure 15 lock-free if tS operations do not . e s , i
require mutual exclusion If one process is interrupt in o Pr wrfty inversion occqrs when‘
the middle of an operation other processes will not be o 15 pr.ee?npted w?ﬂe hold:
atomic { revented from operating O that object. 18 highly con- higher-priontty processes:
current systems, 1OCk-fm data SU'UCIUICS aVOId common ° Convoying occurs when aprocg
C e roblems associated with oonvemional lockin techniques, scheduled, perhaps by exhaust
including priority inversion, convoying. and difficulty © tum, by 2 Page ault,0r by som
} avoiding deadlock. This paper introduces transactiond When such an : nterruption 0
memory, a €W multiprocessor architecture intended 10 pable of running MaY be unal
make lock-free syncbmnization as efficient (and easy to
use) as convention techniques pased on mutual exclu + Deadlock can 0% if proct
s¢) as CONT" . al memory allows programmers 1O de came set Of ODICHS in di
2R erations that apply avoidanoecanbe awkw
= tiple data © jects, particula
- . advance.

WEAK MEMORY + TM = ?

XBEGIN XBEGIN
MOV [x] 1 MOV [y] 1
MOV r0 [Vy] MOV rl [x]
XEND XEND
ro=1 r0=0 ro=1 r0=0
rl=1 rl=1 r1=0 rl1l=0
%ﬁ
SC
%ﬁ

WEAK MEMORY + TM = ?

XBEGIN XBEGIN
MOV [x] 1 MOV [y] 1
MOV r0 [V] MOV rl [X]
XEND XEND
ro=1 r0=0 ro=1 r0=0
rl=1 rl=1 r1=0 r1=0
//
transactional SC
%ﬁ
SC
%ﬁ

X80

8

acyclic(pojoc U com) (COHERENCE)
empty(rmw N (fre ; coe)) (RMWIsor)
acyclic(hb) (ORDER)

where ppo = (W X W)U (RX W)U (RXR))N po
tfence = po N ((—stxn; stxn) U (stxn ; —stxn))
L = domain(rmw) U range(rmw)
implied = [L]; poU po;[L] U tfence
hb = mfence U ppo U implied U rf. U fr U co

BUILDING OUR MODELS

ARM

Power:

acyclic(stronglift(com, stxn)) (STrRONGISOL)
acyclic(stronglift(hb, stxn)) (TxNORDER)
acyclic(pojoc U com) (COHERENCE)
empty(rmw N (fre ; co.)) (RMWIsoL)
acyclic(hb) (ORDER)

where ppo = (preserved program order, elided)
tfence = po N ((—stxn; stxn) U (stxn;—stxn))
fence = sync U tfence U (lwsync \ (W X R))
ihb = ppo U fence
thh = (rf.U ((fr Ucoe)"s ihb))'; (freUco)'s fs”
hb = (rf.’ ;ihb;rf.”) U weaklift(thb, stxn)
acyclic(co U prop) (PROPAGATION)
where efence = rf.” ; fence; rf.’
prop; = [W]; efence; hb™; [W]
prop, = come™; efence”; hb™; (sync U tfence) ; hb*
tprop; = rfe; stxn;[W]
tprop, = stxn; rfe
prop = prop; U prop, U tprop; U tprop;

irreflexive(fre ; prop; hb®) (OBSERVATION)
acyclic(stronglift(com, stxn)) (STRONGISOL)
acyclic(stronglift(hb, stxn)) (TXNORDER)

empty(rmw N tfence”) (TxNCANCELSRMW)

acyclic(pojoc U com) (COHERENCE)
acyclic(ob) (ORDER)
where dob = (order imposed by dependencies, elided)
aob = (order imposed by atomic RMWs5, elided)
bob = (order imposed by barriers, elided)
tfence = po N ((—stxn; stxn) U (stxn; stxn))
ob = come U dob U aob U bob U tfence

empty(rmw N (fre; coe)) (RMWIsoL)
acyclic(stronglift(com, stxn)) (STrRONGISOL)
acyclic(stronglift(ob, stxn)) (TxNORDER)
empty(rmw N tfence”) (TxNCANCELSRMW)
irreflexive(hb; com”) (HBCom)

where sw = (synchronises-with, elided)
ecom = comU (co;rf)
tsw = weaklift(ecom, stxn)
hb = (swU tswU po)*

empty(rmw N (fre ; coe)) (RMWTIsoL)
acyclic(po U rf) (NOTHINAIR)
acyclic(psc) (SEQCsT)

where psc = (constraints on SC events, elided)

empty(cnf \ Ato® \ (hbU hb ™)) (NORACE)
where cnf = (WXW) U (RXW) U (WXR)) N sloc \ id

VALIDATING OUR
MODELS

. Consult architecture manuals.

. Interview engineers.

. Check models have reasonable mathematical properties

(e.g. adding/extending/coalescing transactions is safe).

. Check that models validate existing compiler mappings.

. GGenerate conformance tests and run them on hardware.

10

Number of tests

400

300

200

100

2

VALIDATING OUR

MODELS

Behaviours that must be forbidden

X86

3 4 5 6

Test size (instructions)

14

Power
1000

750

500

Number of tests

250

2 3 4 5 6

Test size (instructions)
11

3000

2250

1500

Number of tests

750

VALIDATING OUR

MODELS

Behaviours that should be allowed

X86

2

3 4 5 6

Test size (instructions)

14

12

6000

4500

3000

Number of tests

1500

Power

2 3 4 5 6

Test size (instructions)

USING OUR
MODELS

LOCK ELISION

lock() lock ()
X =X + 2 X =1
unlock () unlock ()

LOCK ELISION

lock() lock ()

ldr W5, [X] mov W7,#1
add W5,W5,#2 str W7, [X]
str W5, [X] unlock ()

unlock ()

LOCK ELISION

Loop:

ldaxr W2, [M]
cbnz W2 ,Loop
mov W3,#1
stxr W4 ,W3,[M]

cbnz W4 ,Loop lock ()

ldr W5, [X] mov W7,#1
add W5,W5,#2 str W7,[X]
str W5, [X] unlock ()

stlr WZR, [M]

16

LOCK ELISION

Loop:

ldaxr W2,[M] tstart
cbnz W2,Loop ldr W6, [M]
mov W3, #1 cbz W6,L1
stxr W4 ,W3,[M] tcancel
cbnz W4 ,Loop Ll:

ldr W5, [X] mov W7,#1
add W5,W5,#2 str W7,[X]
str W5,[X] tcommit

stlr WZR, [M]

17

CONCLUSION

e Weak memory is pervasive, and transactional memory is
entering the mainstream.

e We have designed and validated formal models of how
these features interact in x86, Power, ARM, and C++.

e Weak memory + transactions + lock elision = tricky!

19

THE SEMANTICS OF
TRANSACTIONS AND WEAK MEMORY
IN X86, POWER, ARM, AND C++

Nathan Chong Tyler Sorensen John Wickerson
Arm Ltd. Princeton University Imperial College London

USENIX Annual Technical Conference, 11 July 2019

