
DataDomain Cloud Tier: Backup here,
backup there, deduplication everywhere!

Abhinav Duggal

Fani Jenkins

Philip Shilane

Ramprasad Chinthekindi

Ritesh Shah

Mahesh Kamat

Dell EMC

Data Domain Appliance

• Purpose-built backup appliances
– Backup and restore

– Supports deduplication (typically 20x) & local compression (typically 2x)

– 4TB to 1PB physical capacity appliances

• Data Domain filesystem
– Log structured filesystem

– Stream Informed Segment layout architecture [Zhu 08]

– Mark and sweep based garbage collection [Douglis 17]

– Supports traditional backup workloads (sequential) and modern (random access) backup workloads [Allu 18]

Data Domain Cloud Tier

Active Tier

Backup files are first ingested into active tier

On prem

Object Storage

ECS
Active Tier

(Data and Metadata)

ECS
(Object Storage)

Off prem

Cloud Tier
(Metadata Only)

Benefits
• Reduce cost of long-term storage

• Deduplication & compression
• Efficient data transfer that minimizes

transfer costs
• Simplicity

• Single namespace with tiering
• Disaster recovery if on-prem Data

Domain is destroyed

Metadata Data

Metadata Data

Write/Read

Cloud Tier

- Selected files is moved to cloud tier

- Deduplicated, compressed and encrypted
data is sent to object storage

- Meta-data is mirrored on local storage and
object storage

File Representation in Data Domain Filesystem

L6

L1 chunks

L0 chunks

L6’

L1-A:L0-Afp L0-Bfp

L0-A L0-B L0-C

File 1
File 2

L1-B: L0-Cfp

L5

L4

L3

L2

…… L5’

…… ……
Lp chunks
(metadata)

…

Files represented
as a Merkle tree
of fingerprints

……

… …

LP containersL0 containers

Namespace

Primary Storage

Protocols: NFS, CIFS, VTL,
DDBOOST, APIs

Data Movement

Local Storage (RAID-6 HDD Array)

D E … …

Metadata Container C

f5 f6 f7 f8
L0 Container D

f11 … … …
LP Container E

Object Storage

…f1  A f2  A f10  B

Merkle Tree

f1 f2 f3 f4

f10

Fingerprint Index

Merkle Tree

f5 f6 f7 f8

f11

…f5 C f6  C f11  C
Fingerprint Index

Containers

LP Container E
f11 … … …D E … …

Metadata
Container C

Active Tier Cloud Tier

Global Namespace

Data Movement

Active Tier and Cloud Tier Architecture

f10 … … …

LP Container B

f1 f2 f3 f4

L0 Container A
Containers

Challenges in Deduplication System

• Depth-first enumeration of Merkle
trees

– Random IO to load every LP chunk

– Repeated work due to
deduplication

• Marking chunks live in a compact
in-memory data structure

– Build compact perfect hash vector
(Fp PHV) which uses perfect hash
functions to map fingerprints to
unique position in bit vector (2.8
bits per fingerprint)

L6-A

L1 chunks

L0 chunks

L6-B

L1-A L1-C

L0-A L0-B L0-C

File 1 File 2

L1-B

0 0 0 0 0 0 0 0

L6-A L6-B L1-A L1-B L1-C L0-A L0-B L0-C

Perfect hash
function

L6-B L6-A L1-C L1-A L1-B L0-C L0-B L0-A

…....

…....

fingerprints

bit vector

Requirements for Cloud Tier

Just “perfect hash” smart,
“physical scan” fast,

and the cloud tier future
will forever last.

Will our customers be
able to seed large

amount of data to cloud
tier?

Will they be able to send
incremental data

efficiently after seeding?

How can we efficiently
clean cloud tier when

data dies?

In future, how much
space will be freed if we
move data to cloud tier?

Physical Scanning

L6-A L6-B L1-A L1-B L1-C L0-A L0-B L0-C

L6-A

L1 chunks

L0 chunks

L6-B

L1-A L1-C

L0-A L0-B L0-C

File 1 File 2

Fp PHV

L0-A L0-B ….

Lp container 1 Lp container 2 L0 container 1

L1-B

L0-C …. ….

L0 container 2

1 1 0 0 0 0 0 0

L6-A L1-A L6-B L1-CL1-B

1 1 1 1 1 1

L6-A L6-B
Namespace

0 0

How much space will be freed if we move data to
cloud tier?

• Build perfect hash vector(PHV) by
walking fingerprint index of active tier

• Physically scan candidate files meta-
data chunks and mark them live
(File 1 and File 2)

• Scan remaining files and unmark live
chunks (File 3)

• Scan container set and accumulate
chunk sizes of chunks still marked live

L6-A L6-B

L1-A L1-C

L0-B L0-C

File 1 File 2

L1-B

L0-A

L6-C
File 3

L6-A L6-B L6-C L1-A L1-B L1-C L0-A L0-B L0-C

1 1 0 1 1 1 1 1 11 1 0 1 1 0 1 1 0

Fp PHV

How can we seed data efficiently to the cloud tier?

L0-A L0-B L0-C

1 1 0

L0-A L0-B

L0 container 1
FP L0-A FP L0-B

Cloud Tier Local Storage

FP L0-A FP L0-B

Cloud Tier Object Storage

L0-A L0-B

L0 container 1

L0 Meta-data containers

L0 Meta-data containers

Active Tier Local Storage

L0-C ….

L0 container 2

Fp PHV

Similar process for sending LP containers
to object storage except LP containers
are mirrored on local storage
and object storage

Read

Write

How can we move incremental data to cloud tier?

L6-A

L1 chunks

L0 chunks

L6-B

L1-A L1-C

L0-A L0-B L0-C

File 1 File 2

L1-B L1 chunks

L0 chunks

File 1 L6-A’

L1-A’

L0-A L0-B

L1-B’

File 2L6-B’

L1-C’

L0-C

Active FP Index

L6-A

L6-B

L1-A

L1-B

L1-C

L0-A

L0-B

L0-C

Cloud Tier FP Index

L6-A’

L1-A’

L1-B’

L0-A

Cloud Tier FP Index

L6-A’

L1-A’

L1-B’

L0-A

L0-B

L0-C

L6-B’

L1-C’

L0-C

Active Tier Cloud Tier

Depth-first enumeration is expensive
for moving large amount of files

Move file 2

L0-B

How can we efficiently clean dead data on cloud tier?

• Build Fp PHV and physically scan candidate
file meta-data chunks and mark chunks live

• Walk Metadata-Container set and find which
L0 containers to clean

• Create and send recipe for copying offset
ranges from old L0 containers into new L0
containers

• Microservice performs copy forward of L0
containers (Copy C1 & C2 into C3)

• Update meta-data by copy forwarding
metadata containers (Copy C4 & C5 into
C6)

Cloud Tier Local Storage

Cloud Tier Object Storage

L0-A L0-B …

L0 container C1

Meta-data containers C4 & C5

FP L0-A FP L0-B FP L0-C FP L0-D Copy-forward
microservice

in EC2
instance

FP L0-A FP L0-B FP L0-C FP L0-D

CopyRecipe(<C1 L0-A, C2 L0-C>, C3)

L0-C L0-D

L0 container C2

L0-A L0-C …

L0 container C3
FP L0-B FP L0-C

Meta-data containers C4 & C5

Meta-data container C6Similar process for cleaning LP Containers

In private cloud like ECS, we have an API which performs similar copy service

FP L0-B FP L0-C

Meta-data container C6

Evaluation Methodology

• Deployed systems:
– Filtered out systems with less than 1TB in physical capacity on cloud tier

– Randomly selected 200 systems out of hundreds of field systems

– For GC, we looked at these 200 systems who ran cleaning at-least once(around 40%)

• Experimental evaluation
– Synthetic Load generator to generate data

› First generation is randomly generated, followed by generations with random deletes, shuffles and addition

› 5% change rate between generations

Field Analysis
So far our customers have saved hundreds of thousands to millions of dollars due
to the benefits of deduplication and local compression

Summary of Field Evaluation Results

• Some customers are writing less than 100TB (logical) per month and others more than 500TB
(logical) per month

• Total compression ranges from 4X to 100X

• In order to reduce the active tier on-prem cost, some of our customers have moved more data to
their cloud tiers as compared to their active tiers

• Churn (data deleted per period) on cloud tier is 0-5% of physical capacity per month whereas on
active it is 10% per week

• Most customers are running cloud cleaning infrequently

Internal Evaluation I

• FMIG & Restore from private cloud ECS is
faster than public cloud AWS by nearly 2X

• High-end platform FMIG & Restore performance
is up-to 30% better than mid-range platform

• Gen42 FMIG & Restore performance 5X-6X
better than Gen0 FMIG & Restore

• FMIG performance is mostly 50% better than
restore performance

0

500

1000

1500

2000

2500

3000

3500

FMIG Gen0 FMIG Gen42 Restore Gen0 Restore Gen42

DD-Mid-AWS
DD-Mid-ECS
DD-High-AWS
DD-High-ECS

M
B

/s
e

c

Internal Evaluation II

• FMIG Gen 0 is similar to Seeding Gen 0

• As generations increase, seeding is 2X
faster than FMIG

0

500

1000

1500

2000

2500

Gen 0 Upto Gen 25 Upto Gen 50

FMIG
Seeding

M
B

/s
ec

Internal Evaluation III

• Copy forward using private
cloud provider API is 500
MB/s which is good enough
for the low-churn we see on
the cloud tier

• Copy forward speed using
microservices increases
linearly with the increase in
number of instances

0

500

1000

1500

2000

2500 Copy forward with API

Microservice copy forward 1-Instance

Microservice copy forward 2-Instances

Microservice copy forward 4-Instances

Microservice copy forward 8-Instances

M
B

/s
e

c

Conclusion

• Data Protection continues to be a priority as our customers move parts of active tier data to the
cloud

• Adding cloud tier to our active tier architecture involved adding several techniques
• Mirroring meta-data helps support efficient deduplication & GC

• Using perfect hashing and physical scanning to solve problems around free space estimation, seeding &
cloud GC

• Cloud GC algorithm using cloud provider API/Microservices to perform copy forward in the object storage

• Experiences from our initial customers show that customers are using cloud tier to either reduce
cost of on-prem active tier storage and/or retaining the data for long term archival storage

