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What is Transkernel? 
➔ A novel OS model to run unmodified binary of a monolithic 

kernel

➔ on a microcontroller-like core …

➔ of a heterogeneous SoC

➔ Key techniques: dynamic binary translation + kernel service 
emulation
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Motivation: Ephemeral tasks in smart things
Prevalent: push notifications, periodic data logging, etc.

○ User tasks running on a monolithic kernel (e.g., Linux)

Energy-hungry: ~30% or higher battery drain in smart things [1]

Device suspend/resume is the key bottleneck [2]

3[1] Smartphone background activities in the wild: Origin, energy drain, and optimization, Chen et al., MobiCom’15
[2] Decelerating Suspend and Resume, Zhai et al., Hotmobile’17
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Why is device suspend/resume so inefficient?
Slow power state transitions 
keep CPU waiting 

Difficult to parallelize due to 
device dependencies

4Understanding modern device drivers, Kadav et al., ASPLOS’12



Our proposal: suspend/resume on a peripheral core
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● Benefit: Lower idle power and higher 
busy execution efficiency

● Asymmetric processors
○ CPU + Peripheral core

● Heterogeneous, yet similar ISAs
○ Same family, different profile 
○ e.g., ARMv7a + v7m

● Loose coupling
○ CPU can be turned on/off independently

● Shared platform resources
○ IRQs
○ DRAM 

Apple A9 (Chipworks)



Many SoCs fit this hardware model
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Problem statement
➔ On a heterogeneous SoC

➔ Given a commodity monolithic 
kernel (e.g., Linux) 

➔ How to offload device 
suspend/resume kernel phase to 
the peripheral core?
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Peripheral
kernel

Design space exploration: multikernel
However…
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Design space exploration: code transplant
However…
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Design space exploration: full virtual execution
However…
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Our proposal: Transkernel
● Goal: Linux kernel offloading with affordable overhead
● Approach: the peripheral core dynamically translates the kernel binary, 

supported by a small set of emulated kernel services
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Transkernel in the design space
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Principle 1: translate stateful code, emulate stateless 
● Stateful vs. stateless: whether 

the states of the kernel are 
shared across cores

● Translated code: state-sharing 
made easy

● Emulated services: drop-in 
replacement
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Principle 2: identify narrow trans/emulation interface
● The interface has to be:

○ Narrow 

○ Stable

● Maintenance of emulated 
services made easy
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Principle 3: specialize for hot paths

● Hot paths: 99% of executions

○ Encounter no errors

○ All needed resources acquired 

● Going off? Fall back to CPU

● Simplify DBT implementation on 
a peripheral core
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Principle 4: exploit ISA similarity
● Between the ISAs of CPU & peripheral core: 

○ General purpose registers
○ Control flow registers (SP, LR, PC)
○ Flag semantics (NZCV)

● Reducing the number of emitted instructions in DBT 
● Key to low overhead!
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ARK: an ARm transKernel

Platform: OMAP4460 (Cortex A9+M3)

ARK instantiates the principles on Linux
● Execute unmodified Linux kernel 

binary on the peripheral core
● Depend on stable ABIs (only 12 

functions + 1 variable)
● Focus on hot paths; may fall back to 

CPU
● Low-overhead ARM v7a -> v7m DBT
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ARK: the cross-ISA DBT engine
● Systemize similar semantics of 

ARM v7m & v7a from formal 
specification [1]

● Most instructions have identical 
semantics (447)

● Others instructions …
○ Side effect
○ Constant constraints
○ Shift modes

● Our DBT engine correctly executes 
over 200 million instructions!
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v7a insn
count

Each translated to 
# of v7m insns

Identity 447 1
Side effect 52 3-5
Const constraints 22 2-5
Shift modes 10 2
No counterparts 27 2-5

Total (v7a) 558

[1] Trustworthy Specifications of ARM v8-A and v8-M System Level Architecture, Reid et al., FMCAD’16



Evaluation

● Does ARK …
a. Incur low-overhead?
b. Incur tractable engineering efforts?
c. Yield efficiency benefit? 

● Benchmarks setup
• Test the whole suspend/resume phase, driven by a userspace test harness 

• Diverse drivers: SD card, Flash drive, MMC controller, USB controller, Regulator, 
Keyboard, Camera, Bluetooth NIC, Wi-Fi NIC
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ARK’s DBT achieves low execution overhead 
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ARK reuses Linux with low efforts
● Good code reuse: 10K vs. 40K 

and even more

● Good compatibility: multiple 
versions and configurations of 
Linux kernel
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End-to-end execution time & energy 
● Time: prolonged execution time
● Energy: 34% energy saved
● Interesting finding: ARK sees higher DRAM energy
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What-if analysis

23

ARK energy: 66% w/o optimization
energy: 333%

(2.7x, 41%) (13.9x, 41%)



● Transkernel & its key techniques
○ An appropriate translation/emulation boundary inside a monolithic kernel
○ Exploit ISA similarity 

● To OS 
○ A new model to span a monolithic kernel over heterogeneous cores

● To DBT
○ Efficiency loss can enable efficiency gain
○ DBT applies to translate a specific path of a complex software stack!

● To Architects
○ A heterogenous SoC friendly to transkernel

Take-home messages
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