
Transkernel: Bridging Monolithic Kernels
to Peripheral Cores

Liwei Guo, Shuang Zhai, Yi Qiao, and Felix Xiaozhu Lin

Purdue ECE

What is Transkernel?
➔ A novel OS model to run unmodified binary of a monolithic

kernel

➔ on a microcontroller-like core …

➔ of a heterogeneous SoC

➔ Key techniques: dynamic binary translation + kernel service
emulation

2

Motivation: Ephemeral tasks in smart things
Prevalent: push notifications, periodic data logging, etc.

○ User tasks running on a monolithic kernel (e.g., Linux)

Energy-hungry: ~30% or higher battery drain in smart things [1]

Device suspend/resume is the key bottleneck [2]

3[1] Smartphone background activities in the wild: Origin, energy drain, and optimization, Chen et al., MobiCom’15
[2] Decelerating Suspend and Resume, Zhai et al., Hotmobile’17

Ephemeral
task

Device
suspend

Device
resume

Wakeup Sleep

Time

Why is device suspend/resume so inefficient?
Slow power state transitions
keep CPU waiting

Difficult to parallelize due to
device dependencies

4Understanding modern device drivers, Kadav et al., ASPLOS’12

Our proposal: suspend/resume on a peripheral core

5

● Benefit: Lower idle power and higher
busy execution efficiency

● Asymmetric processors
○ CPU + Peripheral core

● Heterogeneous, yet similar ISAs
○ Same family, different profile
○ e.g., ARMv7a + v7m

● Loose coupling
○ CPU can be turned on/off independently

● Shared platform resources
○ IRQs
○ DRAM

Apple A9 (Chipworks)

Many SoCs fit this hardware model

6

CPU
Periphe
ral Core

Interconnect

DRAM IO Devices

OMAP4460
Cortex M3 + A9
2010

AM572x
Cortex M4 + A15
2014

iPhone 6
Cortex M3
2014

i.MX 7
Cortex M4 + A7
2017

Azure Sphere
Cortex M4 + A7
2019

Problem statement
➔ On a heterogeneous SoC

➔ Given a commodity monolithic
kernel (e.g., Linux)

➔ How to offload device
suspend/resume kernel phase to
the peripheral core?

7

CPU

Existing

CPU Peripheral
Core

User Task

Device
Resume

Device
Suspend

Time The desired workflow

Peripheral
kernel

Design space exploration: multikernel
However…

8

Main
kernel

Suspend
Resume

Kernel
State

CPU Peripheral Core

IOKernel
State

Design space exploration: code transplant
However…

9

Linux
kernel

Suspend
Resume

Peripheral
kernel

Kernel State

CPU Peripheral Core

IO

Drivers

Driver
lib

Kernel
services &
lib

Suspend
Resume

Design space exploration: full virtual execution
However…

10

Linux
kernel

Translated
Code

Kernel State

CPU Peripheral Core

IO

DBT

> 25x overhead with current DBT

Our proposal: Transkernel
● Goal: Linux kernel offloading with affordable overhead
● Approach: the peripheral core dynamically translates the kernel binary,

supported by a small set of emulated kernel services

11

CPU Peripheral Core

Suspend
Resume

Commodity
Kernel

Kernel StateDRAM

Dynamic
Binary
Translation

IO devs

Translated
code
Emu

Transkernel in the design space

12

Li
nu

x
ke

rn
el

 c
om

pa
tib

ilit
y

Barrelfish [SOSP’09]
M3 [ASPLOS’16]

Execution overhead

QEMU [ATC’05]

Transkernel

K2 [ASPLOS’14]
Popcorn [Eurosys’15]

Principle 1: translate stateful code, emulate stateless
● Stateful vs. stateless: whether

the states of the kernel are
shared across cores

● Translated code: state-sharing
made easy

● Emulated services: drop-in
replacement

13

CPU Peripheral Core

kmalloc

Kernel StateDRAM

Dynamic
Binary
Translation

IO devs

kmalloc

sched
Commodity

Kernel

Principle 2: identify narrow trans/emulation interface
● The interface has to be:

○ Narrow

○ Stable

● Maintenance of emulated
services made easy

14

CPU Peripheral Core

Suspend/
Resume

Commodity
Kernel

Kernel StateDRAM

Dynamic
Binary
Translation

IO devs

Translated

emu

Principle 3: specialize for hot paths

● Hot paths: 99% of executions

○ Encounter no errors

○ All needed resources acquired

● Going off? Fall back to CPU

● Simplify DBT implementation on
a peripheral core

15

Principle 4: exploit ISA similarity
● Between the ISAs of CPU & peripheral core:

○ General purpose registers
○ Control flow registers (SP, LR, PC)
○ Flag semantics (NZCV)

● Reducing the number of emitted instructions in DBT
● Key to low overhead!

16

ARK: an ARm transKernel

Platform: OMAP4460 (Cortex A9+M3)

ARK instantiates the principles on Linux
● Execute unmodified Linux kernel

binary on the peripheral core
● Depend on stable ABIs (only 12

functions + 1 variable)
● Focus on hot paths; may fall back to

CPU
● Low-overhead ARM v7a -> v7m DBT

17

sched spin
lock

virt
addr

deferred
work

IRQ
handler

IRQ
handler
(early)

mutex
sem

mem
alloc

fallback

Translated
Code
(stateful)

delay
sleep Emulation

(stateless)

Linux
kernel
binary

Device-specific

Driver libs

Accessing
Linux
kernel state

private
lib

Stable ABI

Kernel libs

DBT
contexts

DBT Engine

ARK: the cross-ISA DBT engine
● Systemize similar semantics of

ARM v7m & v7a from formal
specification [1]

● Most instructions have identical
semantics (447)

● Others instructions …
○ Side effect
○ Constant constraints
○ Shift modes

● Our DBT engine correctly executes
over 200 million instructions!

18

v7a insn
count

Each translated to
of v7m insns

Identity 447 1
Side effect 52 3-5
Const constraints 22 2-5
Shift modes 10 2
No counterparts 27 2-5

Total (v7a) 558

[1] Trustworthy Specifications of ARM v8-A and v8-M System Level Architecture, Reid et al., FMCAD’16

Evaluation

● Does ARK …
a. Incur low-overhead?
b. Incur tractable engineering efforts?
c. Yield efficiency benefit?

● Benchmarks setup
• Test the whole suspend/resume phase, driven by a userspace test harness

• Diverse drivers: SD card, Flash drive, MMC controller, USB controller, Regulator,
Keyboard, Camera, Bluetooth NIC, Wi-Fi NIC

19

ARK’s DBT achieves low execution overhead

20

0
5

10
15
20
25

SD C
ard

Fla
sh

MMC-C
trl

USB-C
trl

Reg
ula

tor KB
Cam BT

Wi-F
i

Suspend

Baseline ARK

0
5

10
15
20

Resume

25x -> 2.7x

O
ve

rh
ea

d
(X

)

ARK reuses Linux with low efforts
● Good code reuse: 10K vs. 40K

and even more

● Good compatibility: multiple
versions and configurations of
Linux kernel

21

Existing code (unchanged)

Translated 15K SLoC
Substituted
w/ emu 25K SLoC

New implementation
DBT 9K SLoC
Emulation 1K SLoC

End-to-end execution time & energy
● Time: prolonged execution time
● Energy: 34% energy saved
● Interesting finding: ARK sees higher DRAM energy

22

0 1 2 3 4 5

Baseline

ARK

Native

Accumulated Time (s)
Idle Busy

23

0 100 200 300 400

Baseline

ARK

Native

Energy (mJ)
IO DRAM Core busy Core idle

681

What-if analysis

23

ARK energy: 66% w/o optimization
energy: 333%

(2.7x, 41%) (13.9x, 41%)

● Transkernel & its key techniques
○ An appropriate translation/emulation boundary inside a monolithic kernel
○ Exploit ISA similarity

● To OS
○ A new model to span a monolithic kernel over heterogeneous cores

● To DBT
○ Efficiency loss can enable efficiency gain
○ DBT applies to translate a specific path of a complex software stack!

● To Architects
○ A heterogenous SoC friendly to transkernel

Take-home messages

24

