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What is Transkernel?

- A novel OS model to run unmodified binary of a monolithic
kernel

- on a microcontroller-like core ...

-»> of a heterogeneous SoC

- Key techniques: dynamic binary translation + kernel service
emulation



Motivation: Ephemeral tasks in smart things

Prevalent: push notifications, periodic data logging, etc.
o User tasks running on a monolithic kernel (e.g., Linux)

Energy-hungry: ~30% or higher battery drain in smart things [1]

Device suspend/resume is the key bottleneck [2]
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[1] Smartphone background activities in the wild: Origin, energy drain, and optimization, Chen et al., MobiCom’15
[2] Decelerating Suspend and Resume, Zhai et al., Hotmobile’l 7



Why is device suspend/resume so inefficient?

Slow power state transitions
keep CPU waiting
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Our proposal: suspend/resume on a peripheral core

e Benefit: Lower idle power and higher
busy execution efficiency

e Asymmetric processors
o  CPU + Peripheral core
e Heterogeneous, yet similar ISAs
o  Same family, different profile
o e.g., ARMv7a + v7m
e Loose coupling
o  CPU can be turned on/off independently
e Shared platform resources
o IRQs
o DRAM

Apple A9 (Chipworks)



Many SoCs fit this hardware model
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Problem statement

- On a heterogeneous SoC

- Given a commodity monolithic
kernel (e.g., Linux)

- How to offload device
suspend/resume kernel phase to
the peripheral core?
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Design space exploration: multikernel

However...
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Design space exploration: code transplant
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Design space exploration: full virtual execution

However...
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Our proposal: Transkernel

o Goal: Linux kernel offloading with affordable overhead
o Approach: the peripheral core dynamically translates the kernel binary,
supported by a small set of emulated kernel services
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Transkernel in the design space

QEMU [ATC’05]

Transkernel

K2 [ASPLOS’14]
Popcorn [Eurosys’15]

Barrelfish [SOSP’09]
M3 [ASPLOS’16]

Linux kernel compatibility

Execution overhead
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Principle 1: translate stateful code, emulate stateless

o Stateful vs. stateless: whether | Dynamic

the states of the kernel are (% Binary
kmalloc | ( :

shared across cores \ | Translation

« Translated code: state-sharing ‘ kmalloc 7=

Commodity

made easy e
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Principle 2: identify narrow trans/emulation interface

o The interface has to be:

| Dynamic
o Narrow Suspend/| ‘ Binary |
Resume ! Translation
o Stable
\Z’ranslated
e Maintenance of emulated Commodity l
Kernel

services made easy
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Principle 3: specialize for hot paths

o Hot paths: 99% of executions
o Encounter no errors

o All needed resources acquired

o Going off? Fall back to CPU

o Simplify DBT implementation on
a peripheral core
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Principle 4: exploit ISA similarity

e Between the ISAs of CPU & peripheral core:
o General purpose registers
o Control flow registers (SP, LR, PC)
o Flag semantics (NZCV)

e Reducing the number of emitted instructions in DBT
e Key to low overhead!
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ARK: an ARm transKernel

DBT Engine
Platform: OMAP4460 (Cortex A9+M3) Linux Device-specific
kerel E:) DBT Translated
ARK instantiates the principles on Linux binary contexts Driver libs Code
e Execute unmodified Linux kernel Kermel libs (stateful)
binary on the peripheral core -
° Depend on stable ABIs (only 12 handler work
functions + 1 variable) VYVVERRVVVY,
e Focus on hot paths; may fall back to AOOO. 000N — Stable ABI
CPU Accessing Emulation

e Low-overhead ARM v7a -> v7m DBT

Linux (stateless)
kernel state b
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ARK: the cross-ISA DBT engine

) .. ) i Each translated to
e Systemize similar semantics of v7a insn )
count # of v7m insns
ARM v7m & v7a from formal Identity 117 "
specification [1] 52 3-5
e Most instructions have identical ?é 3'5
semantics (447) 5
) ) No counterparts 27 )
e Others instructions ...
o Side effect Total (v7a) 558

o Constant constraints
o Shift modes

o Our DBT engine correctly executes
over 200 million instructions!

[1] Trustworthy Specifications of ARM v8-A and v8-M System Level Architecture, Reid et al., FMCAD’16
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Evaluation

e Does ARK ...

a. Incur low-overhead?
b. Incur tractable engineering efforts?
c. Yield efficiency benefit?

e Benchmarks setup
Test the whole suspend/resume phase, driven by a userspace test harness

Diverse drivers: SD card, Flash drive, MMC controller, USB controller, Regulator,
Keyboard, Camera, Bluetooth NIC, Wi-Fi NIC
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ARK’s DBT achieves low execution overhead
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ARK reuses Linux with low efforts

New implementation

Good code reuse: 10K vs. 40K
and even more

Good compatibility: multiple
versions and configurations of

Linux kernel
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End-to-end execution time & energy

e Time: prolonged execution time
e Energy: 34% energy saved
e Interesting finding: ARK sees higher DRAM energy
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What-if analysis
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Take-home messages

e Transkernel & its key techniques
o An appropriate translation/emulation boundary inside a monolithic kernel
o Exploit ISA similarity

e ToOS
o A new model to span a monolithic kernel over heterogeneous cores
e ToDBT

o Efficiency loss can enable efficiency gain
o DBT applies to translate a specific path of a complex software stack!

e T0 Architects

o A heterogenous SoC friendly to transkernel
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