Transkernel: Bridging Monolithic Kernels
to Peripheral Cores

Liwei Guo, Shuang Zhai, Yi Qiao, and Felix Xiaozhu Lin
Purdue ECE

xsel.rocks

What is Transkernel?

- A novel OS model to run unmodified binary of a monolithic
kernel

- on a microcontroller-like core ...

-»> of a heterogeneous SoC

- Key techniques: dynamic binary translation + kernel service
emulation

Motivation: Ephemeral tasks in smart things

Prevalent: push notifications, periodic data logging, etc.
o User tasks running on a monolithic kernel (e.g., Linux)

Energy-hungry: ~30% or higher battery drain in smart things [1]

Device suspend/resume is the key bottleneck [2]

-

Ephemeral Device Sleep
task suspend

Wakeup Device
resume

Time
[1] Smartphone background activities in the wild: Origin, energy drain, and optimization, Chen et al., MobiCom’15
[2] Decelerating Suspend and Resume, Zhai et al., Hotmobile’l 7

Why is device suspend/resume so inefficient?

Slow power state transitions
keep CPU waiting

n
) .

Difficult to parallelize due to
device dependencies

|| rado | |[tablet]| |[game port || || touch screen ||

T digital video broadcaslir;g |Hd—| ” serio |/ |__mouse]
video /j keyw — —
[media (105%) | [input]'/L

snEe] | Ie<|15 J | gpu (3.9%) [_vea |

drm

other (5%)

- .
l driver libraries

Vi rive

L xe s

back\ ht -
bus drivers
block (16%) | o T
ata (1%) I// \ _Ya atm
wire%s |3)
mmc F— c—

I cdrom J " ethemet

ﬁ —_——
IneM rk RAID | [wan | token ring |
| md (RAID) | —‘
uwb
[mid (15701) [sc /(916/ o | _
|L_tape]| /ﬂ iscsi_ || O\ C—
infiniband |

[disk || [osd |\ usb-storage —

Understanding modern device drivers, Kadav et al., ASPLOS’12

Our proposal: suspend/resume on a peripheral core

e Benefit: Lower idle power and higher
busy execution efficiency

e Asymmetric processors
o CPU + Peripheral core
e Heterogeneous, yet similar ISAs
o Same family, different profile
o e.g., ARMv7a + v7m
e Loose coupling
o CPU can be turned on/off independently
e Shared platform resources
o IRQs
o DRAM

Apple A9 (Chipworks)

Many SoCs fit this hardware model

CPU

¢

ﬁnmmnﬂﬁzrl

DRAM

10 Devices

OMAP4460
Cortex M3 + A9
2010

AM572x
Cortex M4 + A15
2014

iPhone 6
Cortex M3
2014

Azure Sphere
Cortex M4 + A7
2019

Problem statement

- On a heterogeneous SoC

- Given a commodity monolithic
kernel (e.g., Linux)

- How to offload device
suspend/resume kernel phase to
the peripheral core?

Device
Resume

User Task

Device
Suspend

Time

Oo

cPy Peripheral
Core

The desired workflow

Design space exploration: multikernel

However...

Suspend
Resume

Main AN/ Peripheral

kernel \—, { kemel

CPU Peripheral Core

Kernel Kernel 0
State State

Design space exploration: code transplant

-

Linux
kernel

CPU

Suspend
Resume

JAVAYAYAVAVAY

Peripheral
kernel

Peripheral Core

Kernel State @

However...

Suspend
Resume

Drivers T

Driver 4 %
lib

Kernel
services &
lib

Design space exploration: full virtual execution

However...

¥ DBT
I/L > 25x overhead with current DBT
. T lated
Linux Code
kernel
CPU Peripheral Core

N

Kernel State o

10

Our proposal: Transkernel

o Goal: Linux kernel offloading with affordable overhead
o Approach: the peripheral core dynamically translates the kernel binary,
supported by a small set of emulated kernel services

| Dynamic
Suspend Q Binary .
Resume | '~ "Translation
Translated
code
CPU Peripheral Core

DRAM | Kemel State @I

Commodity
Kernel

11

Transkernel in the design space

QEMU [ATC’05]

Transkernel

K2 [ASPLOS’14]
Popcorn [Eurosys’15]

Barrelfish [SOSP’09]
M3 [ASPLOS’16]

Linux kernel compatibility

Execution overhead

12

Principle 1: translate stateful code, emulate stateless

o Stateful vs. stateless: whether | Dynamic

the states of the kernel are (% Binary
kmalloc | (:

shared across cores \ | Translation

« Translated code: state-sharing ‘ kmalloc 7=

Commodity

made easy e

o Emulated services: drop-in CPU Peripheral Core

replacement DRAM Kernel State @

Principle 2: identify narrow trans/emulation interface

o The interface has to be:

| Dynamic
o Narrow Suspend/| ‘ Binary |
Resume ! Translation
o Stable
\Z’ranslated
e Maintenance of emulated Commodity l
Kernel

services made easy
CPU Peripheral Core

DRAM Kernel State @

14

Principle 3: specialize for hot paths

o Hot paths: 99% of executions
o Encounter no errors

o All needed resources acquired

o Going off? Fall back to CPU

o Simplify DBT implementation on
a peripheral core

15

Principle 4: exploit ISA similarity

e Between the ISAs of CPU & peripheral core:
o General purpose registers
o Control flow registers (SP, LR, PC)
o Flag semantics (NZCV)

e Reducing the number of emitted instructions in DBT
e Key to low overhead!

16

ARK: an ARm transKernel

DBT Engine
Platform: OMAP4460 (Cortex A9+M3) Linux Device-specific
kerel E:) DBT Translated
ARK instantiates the principles on Linux binary contexts Driver libs Code
e Execute unmodified Linux kernel Kermel libs (stateful)
binary on the peripheral core -
° Depend on stable ABIs (only 12 handler work
functions + 1 variable) VYVVERRVVVY,
e Focus on hot paths; may fall back to AOOO. 000N — Stable ABI
CPU Accessing Emulation

e Low-overhead ARM v7a -> v7m DBT

Linux (stateless)
kernel state b

17

ARK: the cross-ISA DBT engine

) ..) i Each translated to
e Systemize similar semantics of v7a insn)
count # of v7m insns
ARM v7m & v7a from formal Identity 117 "
specification [1] 52 3-5
e Most instructions have identical ?é 3'5
semantics (447) 5
)) No counterparts 27)
e Others instructions ...
o Side effect Total (v7a) 558

o Constant constraints
o Shift modes

o Our DBT engine correctly executes
over 200 million instructions!

[1] Trustworthy Specifications of ARM v8-A and v8-M System Level Architecture, Reid et al., FMCAD’16

18

Evaluation

e Does ARK ...

a. Incur low-overhead?
b. Incur tractable engineering efforts?
c. Yield efficiency benefit?

e Benchmarks setup
Test the whole suspend/resume phase, driven by a userspace test harness

Diverse drivers: SD card, Flash drive, MMC controller, USB controller, Regulator,
Keyboard, Camera, Bluetooth NIC, Wi-Fi NIC

19

ARK’s DBT achieves low execution overhead

Resume

20

15
S | | I
== 5
£ Suspend 25x -> 2.7Tx
)
> %
° % |

o’b\b & & o \fz’r‘oK © Sl ¢ @'\ﬁ\

g < @c) \)éb @qo

DB <&

O Baseline mARK

ARK reuses Linux with low efforts

New implementation

Good code reuse: 10K vs. 40K
and even more

Good compatibility: multiple
versions and configurations of

Linux kernel

DBT

9K SLoC

Emulation

1K SLoC

Existing code (unchanged) @

Translated

15K SLoC

Substituted
w/ emu

25K SLoC

21

End-to-end execution time & energy

e Time: prolonged execution time
e Energy: 34% energy saved
e Interesting finding: ARK sees higher DRAM energy

Accumulated Time (s) Energy (mJ)
Didle mBusy ®IO mDRAM mCore busy OCore idle
Native i {— Native
ARK I ARK

Baseline NG °3 Baseine NN\ 691

0 1 2 3 4 5 0 100 200 300 400

22

What-if analysis

_ 100% 400%
O
% 350%
(0] o)
x BU% 300%
(O]
2
g 60% 250%
< 200%
£ 40% 150%
'; K energy: 66%
é 50% energy: 100%
4 50%
X

0%

(o]
OA)lx £)% 5x 7X 9x 11x 13x 15x

DBT Overhead

Take-home messages

e Transkernel & its key techniques
o An appropriate translation/emulation boundary inside a monolithic kernel
o Exploit ISA similarity

e ToOS
o A new model to span a monolithic kernel over heterogeneous cores
e ToDBT

o Efficiency loss can enable efficiency gain
o DBT applies to translate a specific path of a complex software stack!

e T0 Architects

o A heterogenous SoC friendly to transkernel

24

