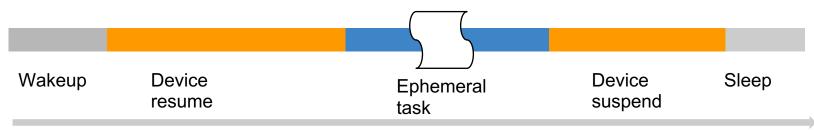
Transkernel: Bridging Monolithic Kernels to Peripheral Cores

Liwei Guo, Shuang Zhai, Yi Qiao, and Felix Xiaozhu Lin

Purdue ECE

What is Transkernel?

- → A novel OS model to run unmodified binary of a monolithic kernel
 - → on a microcontroller-like core ...
 - → of a heterogeneous SoC
- → Key techniques: dynamic binary translation + kernel service emulation


Motivation: Ephemeral tasks in smart things

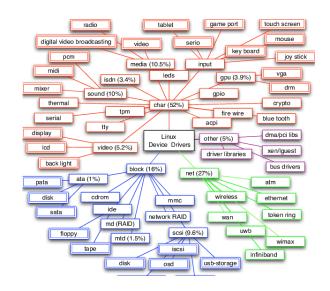
Prevalent: push notifications, periodic data logging, etc.

• User tasks running on a monolithic kernel (e.g., Linux)

Energy-hungry: ~30% or higher battery drain in smart things [1]

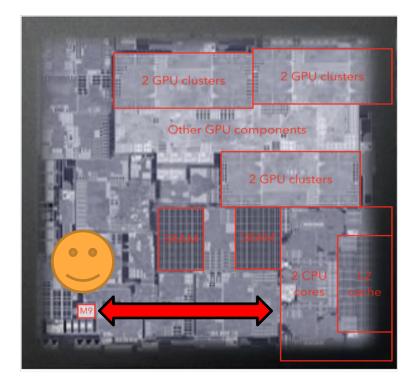
Device suspend/resume is the key bottleneck [2]

Time

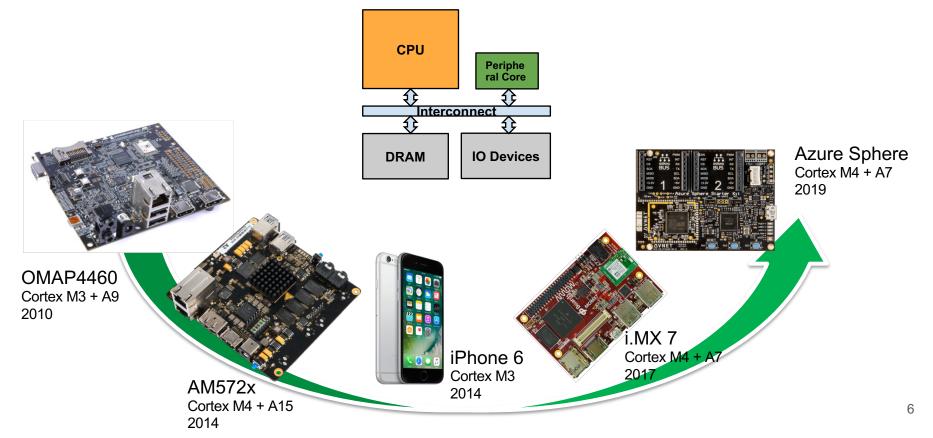

[1] Smartphone background activities in the wild: Origin, energy drain, and optimization, Chen et al., *MobiCom'15* [2] Decelerating Suspend and Resume, Zhai et al., *Hotmobile'17*

Why is device suspend/resume so inefficient?

Slow power state transitions keep CPU waiting

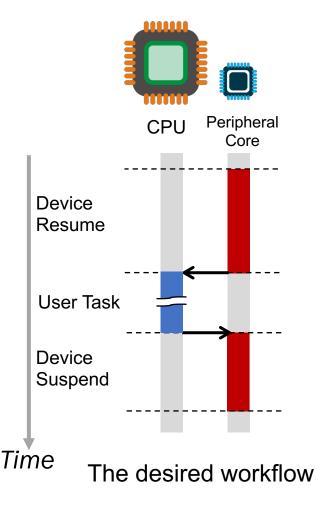

Difficult to parallelize due to device dependencies

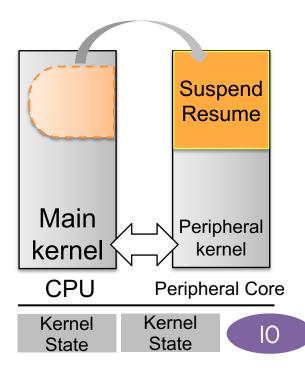
4


Our proposal: suspend/resume on a peripheral core

- **Benefit: Lower** idle power and **higher** busy execution efficiency
- Asymmetric processors
 - CPU + Peripheral core
- Heterogeneous, yet similar ISAs
 - Same family, different profile
 - e.g., ARMv7a + v7m
- Loose coupling
 - CPU can be turned on/off independently
- Shared platform resources
 - IRQs
 - o DRAM

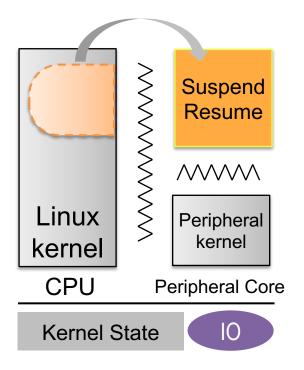
Apple A9 (Chipworks)

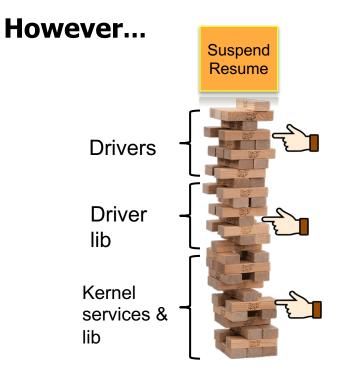

Many SoCs fit this hardware model


Problem statement

- \rightarrow On a heterogeneous SoC
- → Given a commodity monolithic kernel (e.g., Linux)
- → How to offload device suspend/resume kernel phase to the peripheral core?



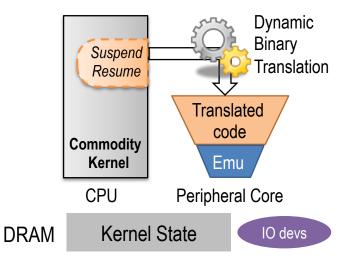

Design space exploration: multikernel



However...

Design space exploration: code transplant

Design space exploration: full virtual execution

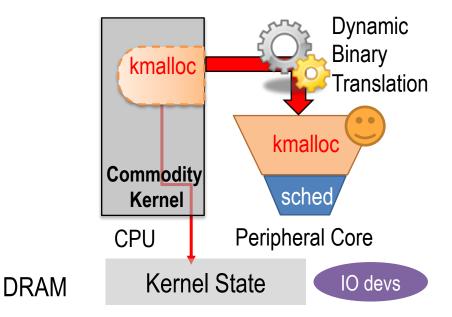

DBT Translated Linux Code kernel CPU **Peripheral Core Kernel State** |

However...

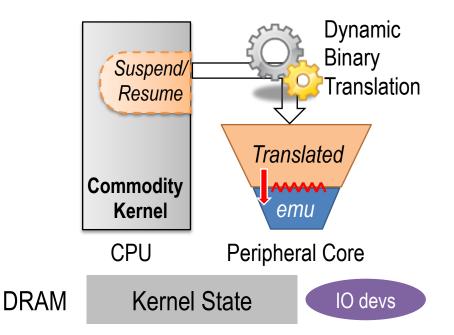
> 25x overhead with current DBT

Our proposal: Transkernel

- Goal: Linux kernel offloading with affordable overhead
- Approach: the peripheral core dynamically translates the kernel binary, supported by a small set of emulated kernel services


Transkernel in the design space

Execution overhead


Principle 1: translate stateful code, emulate stateless

- Stateful vs. stateless: whether the states of the kernel are shared across cores
- Translated code: state-sharing made easy
- Emulated services: drop-in replacement

Principle 2: identify narrow trans/emulation interface

- The interface has to be:
 - \circ Narrow
 - Stable
- Maintenance of emulated services made easy

Principle 3: specialize for hot paths

- Hot paths: 99% of executions
 - Encounter no errors
 - All needed resources acquired

- Going off? Fall back to CPU
- Simplify DBT implementation on a peripheral core

Principle 4: exploit ISA similarity


- Between the ISAs of CPU & peripheral core:
 - General purpose registers
 - Control flow registers (SP, LR, PC)
 - Flag semantics (NZCV)
- Reducing the number of emitted instructions in DBT
- Key to low overhead!

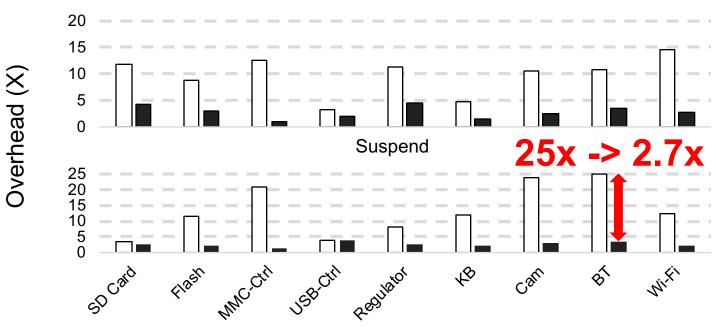
ARK: an **AR**m trans**K**ernel

Platform: OMAP4460 (Cortex A9+M3)

ARK instantiates the principles on Linux

- Execute unmodified Linux kernel binary on the peripheral core
- Depend on stable ABIs (only 12 functions + 1 variable)
- Focus on hot paths; may fall back to CPU
- Low-overhead ARM v7a -> v7m DBT

ARK: the cross-ISA DBT engine


- Systemize similar semantics of ARM v7m & v7a from formal specification [1]
- Most instructions have identical semantics (447)
- Others instructions ...
 - Side effect
 - Constant constraints
 - Shift modes
- Our DBT engine correctly executes over 200 million instructions!

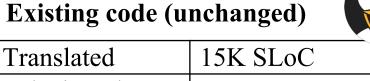
	v7a insn	Each translated to
	count	# of v7m insns
Identity	447	1
Side effect	52	3-5
Const constraints	22	2-5
Shift modes	10	2
No counterparts	27	2-5
Total (v7a)	558	

Evaluation

- Does ARK ...
 - a. Incur low-overhead?
 - b. Incur tractable engineering efforts?
 - c. Yield efficiency benefit?
- Benchmarks setup
 - Test the whole suspend/resume phase, driven by a userspace test harness
 - Diverse drivers: SD card, Flash drive, MMC controller, USB controller, Regulator, Keyboard, Camera, Bluetooth NIC, Wi-Fi NIC

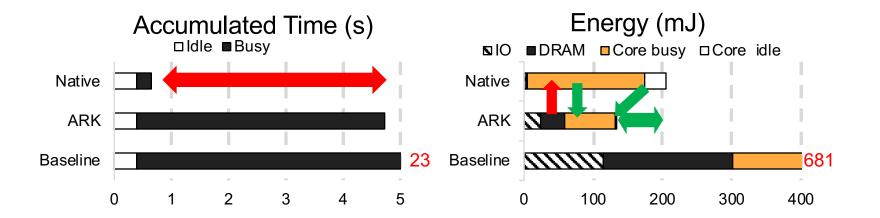
ARK's DBT achieves low execution overhead

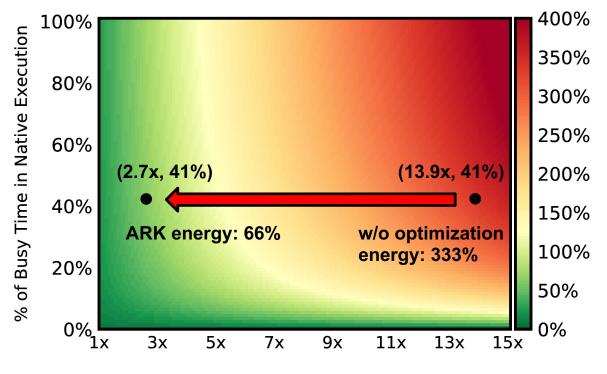
Resume


□ Baseline ■ ARK

ARK reuses Linux with low efforts

- Good code reuse: 10K vs. 40K and even more
- Good compatibility: multiple versions and configurations of Linux kernel


New implement	ation
DBT	9K SLoC
Emulation	1K SLoC


Translated	ISK SLOC	
Substituted	25K SLoC	
w/ emu	2JK SLUC	

End-to-end execution time & energy

- Time: prolonged execution time
- Energy: 34% energy saved
- Interesting finding: ARK sees higher DRAM energy

What-if analysis

DBT Overhead

Take-home messages

- Transkernel & its key techniques
 - An appropriate translation/emulation boundary inside a monolithic kernel
 - Exploit ISA similarity
- To OS
 - A new model to span a monolithic kernel over heterogeneous cores
- To DBT
 - Efficiency loss can enable efficiency gain
 - DBT applies to translate a specific path of a complex software stack!
- To Architects
 - A heterogenous SoC friendly to transkernel