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Multi-Queue 170 Design

Pros:

e Better scalability
e Better throughput

Cons:

e Challenges in preserving system-wide properties
o e.g., Fairness
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Overview
e Multi-Queue Fair Queueing
e Scalable Implementation of MQFQ
e Evaluation
e Conclusion
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Fair Queueing
e Supports proportional sharing (weights)
e Work-conserving
e Handling of under-utilizing tasks
e Provable fairness bounds

e Additionally, we need to support Parallel Dispatch



= UNIVERSITY of
& ROCHESTER

T

Multi-Queue Fair Queueing

e MQFQ builds on SFQ(D) inetal.’04]

o Start tag: roughly, the task’s accumulated resource usage at request dispatch
o Ordersrequests based on their start tags for fairness
o Allows upto D parallel dispatches

e Challenges:
o  Strict ordering hampers scalability
o  Tracking global statistics requires cross-CPU communication
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Multi-Queue Fair Queueing
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Bounded Unfairness

e For throttling threshold T and D-parallel dispatch:

Difference in service
received by any two isless than (D+1) (2T+c)
flows, tasks, etc.

(cis a function of maximum request length and flow weights)

e See paper for proof and assumptions
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Scalable Implementation

e Fairnessisinherently global

e MQFQ needs to maintain:
o Smallest start tag (i.e., slowest queue) -- Mindicator (see paper)
o Parallelism utilization (i.e., # of in-flight requests) -- Token-Tree
o Throttling meta-data (see paper)

14



T UNIVERSITY of
B ROCHESTER

Scalable Implementation
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Example: Parallelism Utilization

e Token-Tree
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Interrupt sum of internal nodes = unutilized parallelism
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Evaluation

e |mplemented as Linux IO-Scheduler

e Benchmarked over: Mj
o NVMe SSD (up to 0.5M IOP/s) | EXPRESS

o NVMe over RDMA (up to 4M IOP/s)

e Tested applications:
o  Flexible IO (FIO): benchmarking tool
o Aerospike: key-value store

O  FlashX: graph processing
e Compared against Linux’s Budget Fair

Queueing (BFQ)

AEROSPIKE

18



@;@ UNIVERSITY of

oy’ NOCHESTER

MQFQ is Fair

FlashX vs. FIO on SSD Aerospike vs. FIO on SSD
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MQFQ is Scalable

Scalability for 1KB 10 on NVM over RDMA
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Conclusion

e Wediscussed:
o Scalability vs. fairness in multi-queue 1/O

e Weintroduced:
o  Multi-Queue Fair Queueing (MQFQ)

e We presented:
o Scalable implementation

m Upto3.1MIOP/s
m All while guaranteeing fairness
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