
Multi-Queue Fair Queueing

Mohammad Hedayati1, Kai Shen2, Michael L. Scott1, Mike Marty2

1 University of Rochester
2 Google

2019 USENIX Annual Technical Conference

O
S

K
er

n
el

Process 1 Process n...

I/O Scheduler

Process 4Process 3
Process 2 Process n...

I/O Scheduler

Process 1

Conventional I/O Design

2

O(1M IOP/s): less than 1µs per IOP
What can be done in less than 1µs?

Multi-Queue I/O Design

Process 1 Process 2 Process n...

...

3

Pros:

● Better scalability
● Better throughput

Cons:

● Challenges in preserving system-wide properties
○ e.g., Fairness

Multi-Queue I/O Design

4

Overview

● Motivation
● Multi-Queue Fair Queueing
● Scalable Implementation of MQFQ
● Evaluation
● Conclusion

5

Fair Queueing

● Supports proportional sharing (weights)
● Work-conserving
● Handling of under-utilizing tasks
● Provable fairness bounds

● Additionally, we need to support Parallel Dispatch

6

Multi-Queue Fair Queueing

● MQFQ builds on SFQ(D) [Jin et al. ’04]

○ Start tag: roughly, the task’s accumulated resource usage at request dispatch

○ Orders requests based on their start tags for fairness

○ Allows up to D parallel dispatches

● Challenges:
○ Strict ordering hampers scalability

○ Tracking global statistics requires cross-CPU communication

7

Multi-Queue Fair Queueing

Process 1 Process 2 Process n...

increasing
start tags

8

● SFQ(D)

Multi-Queue Fair Queueing

Process 1 Process 2 Process n...

T increasing
start tags

Throttling
Threshold

9

Multi-Queue Fair Queueing

Process 1 Process 2 Process n...

T

10

increasing
start tags

Multi-Queue Fair Queueing

Process 1 Process 2 Process n...

T
Interrupt

11

increasing
start tags

Bounded Unfairness

● For throttling threshold T and D-parallel dispatch:

● See paper for proof and assumptions

Difference in service
received by any two

flows, tasks, etc.
is less than (D+1) (2T+c)

(c is a function of maximum request length and flow weights)

12

Multi-Queue Fair Queueing

...

Process 1 Process 2 Process n...

T

13

increasing
start tags

Scalable Implementation

● Fairness is inherently global
● MQFQ needs to maintain:

○ Smallest start tag (i.e., slowest queue) -- Mindicator (see paper)
○ Parallelism utilization (i.e., # of in-flight requests) -- Token-Tree
○ Throttling meta-data (see paper)

14

Scalable Implementation

...

Process 1 Process 2 Process n...

Core
State

...

Socket
State

...

Global
State

15

Example: Parallelism Utilization

● Token-Tree

CORE 0 CORE 1

SOCKET 0

CORE 0 CORE 1

SOCKET 1

0

0

0

10

0

34

0

0

32

0

03

0 1 2 3 4 5 6 7

3

1

Interrupt

+1

LCA(CPU0,CPU2)

16

sum of internal nodes = unutilized parallelism

Overview

● Motivation
● Multi-Queue Fair Queueing
● Scalable Implementation of MQFQ
● Evaluation
● Conclusion

17

Evaluation

● Implemented as Linux IO-Scheduler
● Benchmarked over:

○ NVMe SSD (up to 0.5M IOP/s)

○ NVMe over RDMA (up to 4M IOP/s)

● Tested applications:
○ Flexible IO (FIO): benchmarking tool

○ Aerospike: key-value store

○ FlashX: graph processing

● Compared against Linux’s Budget Fair
Queueing (BFQ)

18

MQFQ is Fair

19

MQFQ is Scalable

20

● We discussed:
○ Scalability vs. fairness in multi-queue I/O

● We introduced:
○ Multi-Queue Fair Queueing (MQFQ)

● We presented:
○ Scalable implementation

■ Up to 3.1 M IOP/s
■ All while guaranteeing fairness

Conclusion

21

