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O(1M IOP/s): less than 1µs per IOP
What can be done in less than 1µs?



Multi-Queue I/O Design
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Pros:

● Better scalability
● Better throughput

Cons:

● Challenges in preserving system-wide properties
○ e.g., Fairness

Multi-Queue I/O Design
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Overview

● Motivation
● Multi-Queue Fair Queueing
● Scalable Implementation of MQFQ
● Evaluation
● Conclusion
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Fair Queueing

● Supports proportional sharing (weights)
● Work-conserving
● Handling of under-utilizing tasks
● Provable fairness bounds

● Additionally, we need to support Parallel Dispatch
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Multi-Queue Fair Queueing

● MQFQ builds  on SFQ(D) [Jin et al. ’04]

○ Start tag: roughly, the task’s accumulated resource usage at request dispatch

○ Orders requests based on their start tags for fairness

○ Allows up to D parallel dispatches

● Challenges:
○ Strict ordering hampers scalability

○ Tracking global statistics requires cross-CPU communication
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Multi-Queue Fair Queueing

Process 1 Process 2 Process n...

increasing 
start tags

8

● SFQ(D)
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Multi-Queue Fair Queueing
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Bounded Unfairness

● For throttling threshold T and D-parallel dispatch:

● See paper for proof and assumptions

Difference in service 
received by any two 

flows, tasks, etc.
is less than (D+1) (2T+c)

(c is a function of maximum request length and flow weights)
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Multi-Queue Fair Queueing
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Scalable Implementation

● Fairness is inherently global
● MQFQ needs to maintain:

○ Smallest start tag (i.e., slowest queue)  -- Mindicator (see paper)
○ Parallelism utilization (i.e., # of in-flight requests) -- Token-Tree
○ Throttling meta-data (see paper)

14



Scalable Implementation
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Example: Parallelism Utilization

● Token-Tree
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sum of internal nodes = unutilized parallelism
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Evaluation

● Implemented as Linux IO-Scheduler
● Benchmarked over:

○ NVMe SSD (up to 0.5M IOP/s)

○ NVMe over RDMA (up to 4M IOP/s)

● Tested applications:
○ Flexible IO (FIO): benchmarking tool

○ Aerospike: key-value store

○ FlashX: graph processing

● Compared against Linux’s Budget Fair 
Queueing (BFQ)
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MQFQ is Fair
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MQFQ is Scalable
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● We discussed:
○ Scalability vs. fairness in multi-queue I/O

● We introduced:
○ Multi-Queue Fair Queueing (MQFQ)

● We presented:
○ Scalable implementation

■ Up to 3.1 M IOP/s
■ All while guaranteeing fairness

Conclusion
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