UNIVERSITY of

2019 USENIX Annual Technical Conference OCHESTER

Multi-Queue Fair Queueing

Mohammad Hedayati!, Kai Shen?, Michael L. Scott?!, Mike Marty?

1 University of Rochester
2Google

50

.0/

ROCHESTER

Conventional 1/0 Design

[
[cess 3 s 4
cess 2

Process 1

Process n

! M/Ojd}ery% \
L ﬂummud‘i)

OS Kernel

O(1M IOP/s): less than 1pus per IOP
What can be done in less than 1ps?

Multi-Queue 170 Design

Process 1

Process 2

Process n

UNIVERSITY of

3 ROCHESTER

—

- UNIVERSITY of
B ROCHESTER

N\

Multi-Queue 170 Design

Pros:

e Better scalability
e Better throughput

Cons:

e Challenges in preserving system-wide properties
o e.g., Fairness

@
{MELIORA]

\9/ s

R UNIVERSITY of

OCHESTER

Overview
e Multi-Queue Fair Queueing
e Scalable Implementation of MQFQ
e Evaluation
e Conclusion

5 ROCHESTER

\ O
\&F /

Fair Queueing
e Supports proportional sharing (weights)
e Work-conserving
e Handling of under-utilizing tasks
e Provable fairness bounds

e Additionally, we need to support Parallel Dispatch

= UNIVERSITY of
& ROCHESTER

T

Multi-Queue Fair Queueing

e MQFQ builds on SFQ(D) inetal.’04]

o Start tag: roughly, the task’s accumulated resource usage at request dispatch
o Ordersrequests based on their start tags for fairness
o Allows upto D parallel dispatches

e Challenges:
o Strict ordering hampers scalability
o Tracking global statistics requires cross-CPU communication

2ol

& ROCHESTER

Multi-Queue Fair Queueing

e SFQ(D) Process 1 Process 2 Process n

0

increasing If
starttags |

Multi-Queue Fair Queueing

Process 1

Process 2

Process n

T UNIVERSITY of
B ROCHESTER

*I‘
Throttling T
Threshold *;__.

. -l

! increasing
| start tags

Multi-Queue Fair Queueing

Process 1

Process 2

2ol

& ROCHESTER

Process n

t increasing
| start tags

. -l

10

Multi-Queue Fair Queueing

Process 1

Process 2

& ROCHESTER

Process n

? increasing
| start tags

. -l

11

50

& ROCHESTER

Bounded Unfairness

e For throttling threshold T and D-parallel dispatch:

Difference in service
received by any two isless than (D+1) (2T+c)
flows, tasks, etc.

(cis a function of maximum request length and flow weights)

e See paper for proof and assumptions

12

Multi-Queue Fair Queueing

Process 1

Process 2

% ROCHESTER

fIMELIORAJy

Process n

T increasing
| start tags

. -l

13

50

& ROCHESTER

Scalable Implementation

e Fairnessisinherently global

e MQFQ needs to maintain:
o Smallest start tag (i.e., slowest queue) -- Mindicator (see paper)
o Parallelism utilization (i.e., # of in-flight requests) -- Token-Tree
o Throttling meta-data (see paper)

14

T UNIVERSITY of
B ROCHESTER

Scalable Implementation

Process 1 Process 2 Process n

Socket Q

State
Global v~
State Q

15

UNIVERSITY of

@ @]
N ROCHESTER

Example: Parallelism Utilization

e Token-Tree

CORE 0 CORE 1

—-—
(®]
o
Y
m
o
(@)
Py}
m
Y

SOCKETo | SOCKET 1

Interrupt sum of internal nodes = unutilized parallelism
16

VELICEA)
\ 7

B8 ROCHESTER

N\

Overview

e Evaluation
e Conclusion

17

11

ROCHESTER

Evaluation

e |mplemented as Linux IO-Scheduler

e Benchmarked over: Mj
o NVMe SSD (up to 0.5M IOP/s) | EXPRESS

o NVMe over RDMA (up to 4M IOP/s)

e Tested applications:
o Flexible IO (FIO): benchmarking tool
o Aerospike: key-value store

O FlashX: graph processing
e Compared against Linux’s Budget Fair

Queueing (BFQ)

AEROSPIKE

18

@;@ UNIVERSITY of

oy’ NOCHESTER

MQFQ is Fair

FlashX vs. FIO on SSD Aerospike vs. FIO on SSD
6 4
4 - B flashx-pagerank B aerospike
B fio-6x4KB g { fio-4x4KB

proportional

proportional
slowdown

slowdown

N

Slowdown rel. to run alone
N
Slowdown rel. to run alone
w

-_—
I

o

nosched mqgfqg bfq nosched mqfq

19

50

ROCHESTER

MQFQ is Scalable

Scalability for 1KB 10 on NVM over RDMA

4000 1+ —~- nosched = A —— e~ e ————
—a— mqfq /,’

= 3500 1~ bfa £
o
© 3000 -
o
S 2500 -
i
X
= 2000 -
2
£ 1500 -
S
© 1000 -
N —
™

500 -

O I'.---.-.u..-.........-......'....-............,-,.........l....-......-...
5 10 15 20 25 30
of CPUs

20

UNIVERSITY of

&) ROCHESTER

Conclusion

e Wediscussed:
o Scalability vs. fairness in multi-queue 1/O

e Weintroduced:
o Multi-Queue Fair Queueing (MQFQ)

e We presented:
o Scalable implementation

m Upto3.1MIOP/s
m All while guaranteeing fairness

21

