
QZFS:	QAT	Accelerated	Compression	in	File	System	for
Application	Agnostic	and	Cost	Efficient	Data	Storage

1 Shanghai Jiao Tong University

Xiaokang Hu1,2, Fuzong Wang1,2, Weigang Li2, Jian Li1, Haibing Guan1

2 Intel Asia-Pacific R&D Ltd.

2

Background

▪ Powerful computing capabilities for handling Big Data

▪ Massive storage I/O read/write operations

▪ Requirement: performance and efficiency of the storage
subsystemHigh-performance

Computing (HPC)

3

Background

High-performance
Computing (HPC)

NVMe SSDs

▪ Remarkable increase of read/write speed with low
energy consumption

▪ But: high price
▪ Intel® SSD Data Center Family: nearly $500/TB

▪ Mistral, HPC system for climate research in Germany:
storage subsystem accounts for roughly 20% of TCO.

NVMe Storage Array

4

Background

High-performance
Computing (HPC)

NVMe SSDs

▪ 1st benefit: space efficiency à lower TCO

▪ 2st benefit: reduced I/O ops à higher performance

▪ But: at the expense of CPU resources

5

Background

High-performance
Computing (HPC)

NVMe SSDs

Accelerators (GPU, FPGA, ASIC)

Offloading to
free up CPU

6

▪ Compression in different system layers

Data Compression Acceleration

Application layer

• most common
• e.g., Nginx, Hadoop

File system layer

• benefit all applications
• e.g., ZFS, BTRFS

Block layer

• file system agnostic
• e.g. RedHat VDO

Our work: ASIC-based compression offloading

Intel® QuickAssist Technology (QAT)

▪ Modern ASIC for cryptography and compression

▪ Type: PCIe adapter, chipset, SOC

▪ Performance: up to 100Gbps

▪ Price: low to $32 after put into chipset

7

▪ ZFS Features
▪ Roles of both file system and volume manager
▪ Pooled storage (no antique notion of volumes)
▪ Transactional operation (always consistent)
▪ End-to-end data integrity
▪ RAID, encryption, compression, …

▪ ZFS Record Size
▪ Define the max size (128KB by default) of a

block that can be processed by ZFS
▪ Varied block size for compression: 4KB, 36KB,

70KB, 128KB, …

ZFS File System

ZPL
(ZFS POSIX Layer)

ZVOL
(ZFS Volume)

DMU (Data Management Unit)

SPA (Storage Pool Allocator)

VDEV

ZIO (ZFS I/O)

VDEV VDEV

HDD HDDSSD

Linux VFS

transactions on objects

transaction group commit

8

▪ Features
▪ Integration of Intel® QAT into ZFS for efficient data compression (gzip algo) offloading

QZFS (QAT-Accelerated ZFS)

▪ Design considerations
▪ Compression-related function à I/O call to interact with QAT

• QAT HW treats data (i.e., physical address and DMA), different from SW (i.e., virtual address)

▪ Offload overhead; pre-allocated system resources for QAT offloading
• HW/SW switch

• Compression/non-compression switch

Transparently
benefit ALL apps

High
performance

High space
efficiency

Low CPU
utilization

Cost efficiency

9

QZFS Architecture

▪ QZFS role
▪ local file system

▪ back-end of Lustre (distributed)

▪ ZIO module
▪ I/O requests are abstracted as ZIOs

▪ ZIOs are forwarded to other modules

▪ ZIO_Compress module
▪ data compression and decompression

▪ Two new modules
▪ Compression Service Engine

▪ QAT Offloading Module

10

Compression Service Engine

▪ HW/SW switch by source data size (4KB ~ 1MB)
▪ < 4KB: benefits offset by offload overhead (QAT requests/responses, PCIe transactions, …)

▪ > 1MB: large pre-allocated kernel memory as intermediate buffers

▪ Compressibility-dependent offloading (10% threshold for space saving)
▪ Low compressibility means that data are not worth being stored in a compressed format

▪ Original uncompressed data is returned

▪ Algorithm selector
▪ QAT-accelerated gzip by default

▪ Uniform interface (easily extended)

▪ Availability: runtime error à switch to the
software alternative

11

QAT Offloading Module

▪ Data prepared by ZIO uses virtual memory

▪ But QAT HW requires contiguous physical
memory for DMA operations

▪ Data reconstruction: zero memory copy

E.g., 11KB source data = 2KB + 4KB +4KB + 1KB

▪ Vectored I/O : scatter/gather buffer list (SGL),
partition by page frames

▪ numBuffers = Ssrc >> PAGE_SHIFT + 2
zero buffer handled by QAT

▪ Differentiate vmalloc and direct memory region

▪ Physical page: kmap for long-lasting mapping

12

Evaluation

▪ Lustre cluster with varying nodes

▪ Four-node cluster: two clients and
two OSSes (object storage servers)

▪ Two benchmarks
▪ FIO micro-benchmark

▪ Genomic data post-processing

▪ Cost-efficiency metric
𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛_𝑟𝑎𝑡𝑖𝑜
𝑐𝑝𝑢_𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

SSD Array: three 1.6TB
Intel® P3700 NVMe SSDs

DH8950: 24Gbps

13

FIO Micro-benchmark

▪ 16 FIO threads in each client with fixed FIO block size

OFF 14% 11% 15% 12%
GZIP 82% 95% 84% 96%
QAT 15% 19% 16% 20%

compression ratio = 3.5 ~ 3.8

LZ4 2.0 13% 22%
LZJB 2.5 15% 23%
ZLE 1.6 10% 19%
QAT 3.7 14% 17%

14

Genomic Data Post-processing

▪ SAMTools, five operations involving read/write I/O

▪ 8 processes (multi-thread) in one client to manipulate 76GB genomic data

GZIP 64% 47% 67% 51% 54%
QAT 7% 4% 8% 13% 11%

compression ratio = 3.4 ~ 4.2

63% 6X

15

Genomic Data Post-processing

▪ QZFS vs. Simple gzip (application layer)
▪ decompression process: read compressed data & decompression & write uncompressed data

▪ converting process: read uncompressed data & converting & write new format back

read/write compressed data

decompression & converting simultaneously

Application can achieve similar performance by
integrating well-designed compression module:
fragmentation/compression, multi-thread, QAT ...

But each new application may involve heavy
modifications.

16

▪ FIO highest 4680 MB/s, not achieve hardware limit
▪ CPU% in two OSSes: 20.2%
▪ SSD Array throughput: 4680/3.55 = 1318 MB/s < 3314 in OFF case
▪ NIC (40GbE) throughput: 2340 MB/s = 18.72 Gbps
▪ QAT throughput: 18.72 Gbps (80% of 24Gbps limit)

▪ Bottleneck
▪ # of ZFS worker threads with offloading ability: limited by # of QAT instances
▪ A worker thread interacts with QAT in synchronous mode: the next compression request

cannot be submitted until the completion of the previous one.
▪ More FIO threads cannot give rise to more parallel/concurrent QAT requests

Bottleneck Analysis

17

▪ Overview
▪ One thread à one QAT instance
▪ When: fully utilize QAT accelerator with limited # of threads
▪ What: one thread can concurrently offload multiple compression tasks

▪ Async implementation
▪ Async support in all layers of ZFS software stack to handle an uncompleted task
▪ Efficient pause (context saving) and resumption (context restoring) of an offload job in one

worker thread

▪ Re-entering of a same handler: state flag, fiber/coroutine, …
▪ Reference: QTLS, a high-performance SSL/TLS asynchronous offload framework

(published in PPoPP ’19)

Asynchronous Offload Mode

Q	&	A
Codes:
• QZFS (into ZFS Linux release): https://github.com/zfsonlinux/zfs
• Async Mode Nginx (QTLS): https://github.com/intel/asynch_mode_nginx
• QATzip Library (similar to zlib): https://github.com/intel/QATzip

Contacts: hxkcmp@sjtu.edu.cn, weigang.li@intel.com

https://github.com/zfsonlinux/zfs
https://github.com/intel/asynch_mode_nginx
https://github.com/intel/QATzip
mailto:hxkcmp@sjtu.edu.cn
mailto:weigang.li@intel.com

