
Tangram: Bridging Immutable and 
Mutable Abstractions

for Distributed Data Analytics
Yuzhen Huang, Xiao Yan, Guanxian Jiang

Tatiana Jin, James Cheng, An Xu Zhanhau Liu, Shuo Tu

Department of Computer Science and Engineering

The Chinese University of Hong Kong

1



Distributed Data Analytics Systems

Distributed data analytics systems in the last decade:

- From HPC (e.g., MPI), to general-purpose computing systems 
(e.g., MR, Spark), to specialized systems (e.g., Pregel, Parameter 
Server)

2



Distributed Data Analytics Systems

Classification according to data abstractions

Immutable Mutable

3



Immutable Abstraction

General purpose data analytics frameworks, e.g., 
MapReduce, DryadLINQ, Spark, etc.

• Functional programming models

• Use dataflow graphs to model the dependency 
among datasets

Stage1
Stage2 Stage3

Input

Word Count in Spark

4

val textFile = sc.textFile("hdfs://…")
val counts = textFile.flatMap(line => line.split(" "))

.map(word => (word, 1))

.reduceByKey(_ + _)



Immutable Abstraction

General purpose data analytics frameworks, e.g., 
MapReduce, DryadLINQ, Spark, etc.

+Efficient failure recovery (lineage-based recovery)

+Efficient load balancing (speculative execution)

- Inherently stateless

- Only support BSP (synchronous)

Stage1
Stage2 Stage3

Input

5



Mutable Abstraction

Specialized systems

• Vertex-centric graph analytics systems
• E.g., Pregel, GraphLab, PowerGraph, etc

• Parameter-server-based machine learning 
systems
• E.g., Parameter Server, Petuum, etc.

• Specialized programming models

• Stateful representation

Vertex states

SendMsg

Model 

Data

PullPush

Servers

Workers

6



Mutable Abstraction

Specialized systems, e.g. Pregel, Parameter 
Server, etc.

+Efficient for iterative workloads

+May support asynchronous execution

- Require a full restart from the latest checkpoint 
(e.g., Pregel) or use expensive replication for 
fault tolerance (e.g., Parameter Server)

- Rely on the nature of the applications for load 
balancing

Vertex states

SendMsg

Model 

Data

PullPush

Servers

Workers

7



Immutable and Mutable Abstractions

Immutable Mutable

+ Functional API
+ Fault tolerance
+ Load balancing

+ Stateful representation
+ Iterative and 

asynchronous execution 

- Not natural for stateful 
representation

- Only support BSP

- Fault tolerance
- Load Balancing

Questions
- Can we enjoy the benefits of both worlds?
- Can the system transparently determine the data mutability? 

8



MapUpdate
MapReduce

- In the dataflow abstraction, we apply operations on collections 
(datasets) and generate new collections

MapUpdate

- We make data collections mutable, and change the Reduce 
operation to a stateful Update operation

A
Map

Collection
Reduce

B

Collection

MapUpdate
Map

Update

9



MapUpdate

A.map(B, map_func).update(C, update_func)

A

Side-input

UpdateMap

B

C

10



MapUpdate

A.map(B, map_func).update(C, update_func)

Map collection Side-input collection Update collection

11

A

Side-input

UpdateMap

B

C



MapUpdate

A.map(B, map_func).update(C, update_func)

Map: 
- functional and 

immutable

Update
- Stateful and in-

place

12

A

Side-input

UpdateMap

B

C



MapUpdate

Feature #1

Some or all of the map collection (A), side-input collection (B) and 
update collection (C) can be the same collection

A.map(B, map_func).update(A, update_func)

- map = update

A.map(B, map_func).update(B, update_func)

- side-input = update

A

Side-input

Update
Map

B

A

B
Side-input

Update

Map

13



MapUpdate: Example Application

A.map(B, map_func).update(A, update_func)

Vertex-centric Graph Analytics (PageRank)

map collection = update collection

ranks

Side-input

Update

Map

links

14



MapUpdate: Example Application

A.map(B, map_func).update(B, update_func)

Iterative Machine Learning (Gradient Descent)

side-input collection = update collection

data

params
Side-input

Update

Map

15



MapUpdate

Feature #2

Supports iteration and asynchronous execution inherently

A.map(B, map_func).update(C, update_func)

.setIter(100)

.setStaleness(2)

Map

Update Iter: 100
Staleness: 2

16



MapUpdate

Feature #3

A simple mechanism to determine whether a collection is mutable 
in a MapUpdate plan:

• The update collection is mutable, and other collections, if different 
from the update collection, are considered immutable

A.map(B, map_func).update(C, update_func)

17

mutableimmutable
mutable

A

Side-input

UpdateMap

B

C



MapUpdate

Feature #3

A simple mechanism to determine whether a collection is mutable 
in a MapUpdate plan

A.map(B, map_func).update(A, update_func)

- map = update

A.map(B, map_func).update(B, update_func)

- side-input = update

mutable

mutable

A

Side-input

Update
Map

B

A

B
Side-input

Update

Map

mutable

mutable

18



MapUpdate: Example Application

Pipelined Workloads

- MapUpdate is especially useful for pipelined workloads

- Typical pipelines: 
- MapReduce-style data processing -> various data analytics -> testing

- Context switch overhead 

Map

Update MapUpdate
Tangram

Bulk processing Machine learning

Storage
Dump Load

Context switch

Bulk 
processing

Machine 
learning

19



Tangram

We implemented MapUpdate in Tangram

- Local Task Management

- Partition-based Progress Control
- Support BSP, SSP and ASP execution models
- Bitmap to record committed updates for each partition

- Context-Aware Failure Recovery

Map

Update MapUpdate
Tangram

20



Context-Aware Failure Recovery 

Tangram distinguishes two failure scenarios, i.e., local failure and 
global failure, and applies different failure recovery strategies

- Local failure: the failed machines do not hold update (mutable) 
partitions

- Reloads the lost partitions (immutable) on the healthy machines in 
parallel and continues the execution

machine 1

Immutable 
Collection

Mutable 
Collection

machine 2 machine 3 21



Context-Aware Failure Recovery 

Tangram distinguishes two failure scenarios, i.e., local failure and 
global failure, and applies different failure recovery strategies.

- Global failure: the failed machines contain partitions of the update 
(mutable) collection

- Rolls back to the latest checkpoint and reloads the mutable partitions
- Reloads the lost immutable parts in parallel

machine 1

Immutable 
Collection

Mutable 
Collection

machine 2 machine 3 22



Experiments

Settings:
- 20 machines, connected with 1Gbps Ethernet
- 20 machines, connected with 10Gbps Ethernet

Experiments
- Fault tolerance for local and global failures
- Expressiveness and performance on a wide range of workloads
- Efficiency in pipelined workloads

23



Experiments

Failure Recovery

- Local failure: K-means
- No need to restart from the latest 

checkpoint
- Tangram took 17.8 seconds to reload 

the lost training data (~6GB) and finish 
the 7th iteration (vs. 40 seconds in 
Spark)

- Similar to Spark, while other mutable 
systems (e.g., Naiad, Petuum, 
PowerGraph) have to roll back to 
checkpoint

24



Experiments

Failure Recovery

- Global failure: PageRank
- Roll back to the latest checkpoint 

(iteration 5)
- In total, Tangram took 29 seconds to 

recompute the 6th iteration and finish 
the 7th iteration (vs. 47 seconds in 
Spark)

- Spark also requires a full 
recomputation from the latest 
checkpoint in this case (i.e., long 
lineage with wide dependency)

25



Experiments

Expressiveness and Efficiency
- Bulk Processing (vs. Spark)
- Iterative Machine Learning (vs. Petuum)
- Graph Analytics (vs. PowerGraph, etc)

Word Count K-means PageRank

Results
- Tangram can express a wide variety 

of workloads
- Tangram achieves comparable 

performance as specialized systems

26



Experiments

Pipelined Workload: TF-IDF + LR
- Compared with Spark, Spark + Glint (a built-in PS), Spark + Petuum using 

a faster 10-Gbps network

- Spark + Petuum has high context-switch overhead
- Using Spark alone is not efficient
- Spark + Glint adds external dependencies and violates Spark’s unified 

abstraction 

Storage
Dump Load

Context switch

Bulk 
processing

Machine 
learning

27



Conclusions

- A novel programming model: MapUpdate

- Tangram: Enjoys the benefits of both worlds
- Support asynchronous iterative workloads
- Differentiated failure recovery and load balance

Map

Update

Immutable Mutable

MapUpdate
Tangram

28


