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Distributed Data Analytics Systems

Distributed data analytics systems in the last decade:

- From HPC (e.g., MPI), to general-purpose computing systems 
(e.g., MR, Spark), to specialized systems (e.g., Pregel, Parameter 
Server)
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Distributed Data Analytics Systems

Classification according to data abstractions

Immutable Mutable
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Immutable Abstraction

General purpose data analytics frameworks, e.g., 
MapReduce, DryadLINQ, Spark, etc.

• Functional programming models

• Use dataflow graphs to model the dependency 
among datasets

Stage1
Stage2 Stage3

Input

Word Count in Spark
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val textFile = sc.textFile("hdfs://…")
val counts = textFile.flatMap(line => line.split(" "))

.map(word => (word, 1))

.reduceByKey(_ + _)



Immutable Abstraction

General purpose data analytics frameworks, e.g., 
MapReduce, DryadLINQ, Spark, etc.

+Efficient failure recovery (lineage-based recovery)

+Efficient load balancing (speculative execution)

- Inherently stateless

- Only support BSP (synchronous)

Stage1
Stage2 Stage3

Input
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Mutable Abstraction

Specialized systems

• Vertex-centric graph analytics systems
• E.g., Pregel, GraphLab, PowerGraph, etc

• Parameter-server-based machine learning 
systems
• E.g., Parameter Server, Petuum, etc.

• Specialized programming models

• Stateful representation

Vertex states

SendMsg

Model 

Data

PullPush

Servers

Workers
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Mutable Abstraction

Specialized systems, e.g. Pregel, Parameter 
Server, etc.

+Efficient for iterative workloads

+May support asynchronous execution

- Require a full restart from the latest checkpoint 
(e.g., Pregel) or use expensive replication for 
fault tolerance (e.g., Parameter Server)

- Rely on the nature of the applications for load 
balancing

Vertex states

SendMsg

Model 

Data

PullPush

Servers

Workers
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Immutable and Mutable Abstractions

Immutable Mutable

+ Functional API
+ Fault tolerance
+ Load balancing

+ Stateful representation
+ Iterative and 

asynchronous execution 

- Not natural for stateful 
representation

- Only support BSP

- Fault tolerance
- Load Balancing

Questions
- Can we enjoy the benefits of both worlds?
- Can the system transparently determine the data mutability? 
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MapUpdate
MapReduce

- In the dataflow abstraction, we apply operations on collections 
(datasets) and generate new collections

MapUpdate

- We make data collections mutable, and change the Reduce 
operation to a stateful Update operation

A
Map

Collection
Reduce

B

Collection

MapUpdate
Map

Update
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MapUpdate

A.map(B, map_func).update(C, update_func)

A

Side-input

UpdateMap

B

C
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MapUpdate

A.map(B, map_func).update(C, update_func)

Map collection Side-input collection Update collection

11

A

Side-input

UpdateMap

B

C



MapUpdate

A.map(B, map_func).update(C, update_func)

Map: 
- functional and 

immutable

Update
- Stateful and in-

place
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MapUpdate

Feature #1

Some or all of the map collection (A), side-input collection (B) and 
update collection (C) can be the same collection

A.map(B, map_func).update(A, update_func)

- map = update

A.map(B, map_func).update(B, update_func)

- side-input = update

A

Side-input

Update
Map

B

A

B
Side-input

Update

Map
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MapUpdate: Example Application

A.map(B, map_func).update(A, update_func)

Vertex-centric Graph Analytics (PageRank)

map collection = update collection

ranks

Side-input

Update

Map

links
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MapUpdate: Example Application

A.map(B, map_func).update(B, update_func)

Iterative Machine Learning (Gradient Descent)

side-input collection = update collection

data

params
Side-input

Update

Map
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MapUpdate

Feature #2

Supports iteration and asynchronous execution inherently

A.map(B, map_func).update(C, update_func)

.setIter(100)

.setStaleness(2)

Map

Update Iter: 100
Staleness: 2
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MapUpdate

Feature #3

A simple mechanism to determine whether a collection is mutable 
in a MapUpdate plan:

• The update collection is mutable, and other collections, if different 
from the update collection, are considered immutable

A.map(B, map_func).update(C, update_func)
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MapUpdate

Feature #3

A simple mechanism to determine whether a collection is mutable 
in a MapUpdate plan

A.map(B, map_func).update(A, update_func)

- map = update

A.map(B, map_func).update(B, update_func)

- side-input = update

mutable

mutable

A

Side-input

Update
Map

B

A

B
Side-input

Update

Map

mutable

mutable
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MapUpdate: Example Application

Pipelined Workloads

- MapUpdate is especially useful for pipelined workloads

- Typical pipelines: 
- MapReduce-style data processing -> various data analytics -> testing

- Context switch overhead 

Map

Update MapUpdate
Tangram

Bulk processing Machine learning

Storage
Dump Load

Context switch

Bulk 
processing

Machine 
learning
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Tangram

We implemented MapUpdate in Tangram

- Local Task Management

- Partition-based Progress Control
- Support BSP, SSP and ASP execution models
- Bitmap to record committed updates for each partition

- Context-Aware Failure Recovery

Map

Update MapUpdate
Tangram
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Context-Aware Failure Recovery 

Tangram distinguishes two failure scenarios, i.e., local failure and 
global failure, and applies different failure recovery strategies

- Local failure: the failed machines do not hold update (mutable) 
partitions

- Reloads the lost partitions (immutable) on the healthy machines in 
parallel and continues the execution

machine 1

Immutable 
Collection

Mutable 
Collection

machine 2 machine 3 21



Context-Aware Failure Recovery 

Tangram distinguishes two failure scenarios, i.e., local failure and 
global failure, and applies different failure recovery strategies.

- Global failure: the failed machines contain partitions of the update 
(mutable) collection

- Rolls back to the latest checkpoint and reloads the mutable partitions
- Reloads the lost immutable parts in parallel

machine 1

Immutable 
Collection

Mutable 
Collection

machine 2 machine 3 22



Experiments

Settings:
- 20 machines, connected with 1Gbps Ethernet
- 20 machines, connected with 10Gbps Ethernet

Experiments
- Fault tolerance for local and global failures
- Expressiveness and performance on a wide range of workloads
- Efficiency in pipelined workloads
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Experiments

Failure Recovery

- Local failure: K-means
- No need to restart from the latest 

checkpoint
- Tangram took 17.8 seconds to reload 

the lost training data (~6GB) and finish 
the 7th iteration (vs. 40 seconds in 
Spark)

- Similar to Spark, while other mutable 
systems (e.g., Naiad, Petuum, 
PowerGraph) have to roll back to 
checkpoint
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Experiments

Failure Recovery

- Global failure: PageRank
- Roll back to the latest checkpoint 

(iteration 5)
- In total, Tangram took 29 seconds to 

recompute the 6th iteration and finish 
the 7th iteration (vs. 47 seconds in 
Spark)

- Spark also requires a full 
recomputation from the latest 
checkpoint in this case (i.e., long 
lineage with wide dependency)
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Experiments

Expressiveness and Efficiency
- Bulk Processing (vs. Spark)
- Iterative Machine Learning (vs. Petuum)
- Graph Analytics (vs. PowerGraph, etc)

Word Count K-means PageRank

Results
- Tangram can express a wide variety 

of workloads
- Tangram achieves comparable 

performance as specialized systems
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Experiments

Pipelined Workload: TF-IDF + LR
- Compared with Spark, Spark + Glint (a built-in PS), Spark + Petuum using 

a faster 10-Gbps network

- Spark + Petuum has high context-switch overhead
- Using Spark alone is not efficient
- Spark + Glint adds external dependencies and violates Spark’s unified 

abstraction 

Storage
Dump Load

Context switch

Bulk 
processing

Machine 
learning
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Conclusions

- A novel programming model: MapUpdate

- Tangram: Enjoys the benefits of both worlds
- Support asynchronous iterative workloads
- Differentiated failure recovery and load balance

Map

Update

Immutable Mutable

MapUpdate
Tangram
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