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Introduction & Motivation

* Storage landscape has changed:

. B@(s, -> SSDs.

= What about their failure characteristics?
>Partial failures are a magnitude higher for SSDs!
>FTL is prone to bugs during power faults.

= New/Evolved file systems:
>ext3 -> ext4 (journaling).
>Btrfs (copy-on-write).
>F2FS (log-structured, tailored for flash).

* Our goal: How do these file systems deal with partial drive errors?
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* What we know (IRON File Systems, 2005):
= Only ext3, JFS, ReiserFS, NTFS (partial).
= Hard disks only.
= Does not consider file system checkers.

e What we want to know:

= Btrfs, ext4, F2FS.

= Can they detect errors?

= Can they recover from errors?

= Can the system checker (fsck) fix errors?



SSD Faults and their Manifestation

e What if the storage device starts
misbehaving and generating errors?

 How exactly file systems deal with these e ™
errors? Block-based FS
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SSD Faults and their Manifestation
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SSD Faults and their Manifestation
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SSD Faults and their Manifestation
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Incomplete Program Operation \ = 7Y M e e e e m = -

Block-based FS
ext4 F2FS VFS

Btrfs

- J

Write . ! Future reads after
Shorn Write Request I a shorn write!

* A write issued by the file system but

1
partially persisted on the SSD. (1)
= Power fault (Zheng et al.,, FAST N\ M€ _/ o e e e e e e e - =

‘ Physical Device
13). Write

is shorn!
(2) 10




SSD Faults and their Manifestation
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SSD Faults and their Manifestation
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SSD Faults and their Manifestation

SSD/Flash Faults
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- J
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Lost Write Request CompleteI
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SSD Faults and their Manifestation

SSD/Flash Faults Manifestation

Uncorrectable bit corruption
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How to test the resiliency of file systems against SSD faults?

Block-based FS
extd || F2FS VFS

Btrfs

7 ¥

A 4
Block Layer

Physical Device

15



How to test the resiliency of file systems against SSD faults?

 Emulate the faults’ manifestation!
= |nject errors at the Block Layer.

Block-based FS
extd || F2rFs VFS

Btrfs

7 ¥

A 4
Block Layer

Physical Device

15



How to test the resiliency of file systems against SSD faults?

 Emulate the faults’ manifestation!
= |nject errors at the Block Layer.

Block-based FS
extd || F2rFs VFS

Btrfs

A

A 4

Device Mapper Module
7 \

l

Block Layer

Physical Device

15



How to test the resiliency of file systems against SSD faults?

 Emulate the faults’ manifestation!
= |nject errors at the Block Layer.

e Device Mapper Module: - ~

= Intercept every I/O request. Block-based FS
extd || F2FS VES

» Fail a request & return an error. f

Btrfs
= Silently drop a request. \ Y
= Alter block contents online. 1

A 4

Device Mapper Module
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l

Block Layer

Physical Device
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Targeted Error Injection

* Understand the effect of every injected
error.

* |dentify block types and specific data
structures within each block!

* Target specific data structures and fields
within them:
= Trace all I/O requests (blktrace).
= Logic inside our device mapper module.

= FS tools, such as dump, to inspect the disk
image offline.

Block-based FS
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How do file systems detect and recover from errors?

e Each application focuses on one Application
particular operation: S S
« mkdir, creat, etc. 3 E
v v (0 1)
L 4 N
e Run an application and collect all Block-based FS
accessed blocks. extd | F2rs VFS
Btrfs
L \_ J
e Targeted error injection: T
= Repeat the execution and inject a single !
error into each accessed block. Device Mapper Module
= Target one block at a time. ‘

Block Layer

Physical Device

e Better isolation and characterization of
the file system’s reaction to every

injected error!
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How do file systems detect and recover from errors?

« Categorize each file system’s detection and Application
recovery policies: Q) )
= Across all visible aspects, such as logs, return 0 §
codes,etc. T TE=T=TEETEETT N oS
= Check how effectively fsck recovers the file 4 - - ™\
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How do file systems detect and recover from errors?

e Categorize each file system’s detection and
recovery policies:

= Across all visible aspects, such as logs, return
codes, etc.

s Check how effectively fsck recovers the file
system.
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How do file systems detect and recover from errors?

e Categorize each file system’s detection and
recovery policies:

= Across all visible aspects, such as logs, return

codes, etc.
s Check how effectively fsck recovers the file
system.
Detection Recovery Fsck
Error Code Retry
Sanity Propagate

Application
~ S
b= o)
o E
v v (0 1)
4 )
Block-based FS
extd ]| F2FS VFS
Btrfs
1\ J

A

A 4

Device Mapper Module

|

Block Layer

Physical Device

20



How do file systems detect and recover from errors?

e Categorize each file system’s detection and

Application
recovery policies: S Q)
= Across all visible aspects, such as logs, return 0 §
codes,etc. T TE=T=TEETEETT B oS
. . A 4 \ 4
s Check how effectively fsck recovers the file ( ™\
system. Block-based FS
extd || F2rs VES
I+ Btrfs
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* Colors indicate severity.

Stop Full
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How do file systems detect and recover from errors?

e Categorize each file system’s detection and
recovery policies:

= Across all visible aspects, such as logs, return
codes, etc.

s Check how effectively fsck recovers the file
system.

/ Experiments \
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How do file systems detect and recover from errors?

e Categorize each file system’s detection and
recovery policies:

= Across all visible aspects, such as logs, return

codes, etc.
s Check how effectively fsck recovers the file
system.
Experiments
Applications Read/Write/ Data Recovery &
Corruption Structures Detection
Experiments
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D g
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Results — Overview (1/2)
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Results — Overview (1/2)

Unmountable/Unrecoverable
file system in 16% of all cases!
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Results — Overview (2/2)

File System Detection Recovery
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Results — Overview (2/2)
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ext4 Results

The Good News
* Capable of recovering from a large range of fault scenarios.
o Little use of checksums:

= Still, it can deal with corruption and shorn writes due to a very rich set of sanity checks.

» System checker capable of reconstructing several data structures:
= Inode bitmaps, block bitmaps, group descriptor block.

LR ER IETS
e Lost and Shorn writes:

= A few data structures cannot be recovered:
>|node block = data loss.

The overall reliability of ext4 is significantly better compared to ext3!
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Btrfs Results

The Good News
» Consistently detects all I/O errors, as well as corruption events (due to checksums).

The Bad News
* Metadata replication is disabled for SSDs*!

* Makes use of node level checksums...

* https://btrfs.wiki.kernel.org/index.php/Manpage/mkfs.btrfs 26



Btrfs Corruption Scenario
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27



Btrfs Corruption Scenario
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Btrfs Corruption Scenario

Super Block

Root Tree Chunk Tree
extent tree dev tree FS tree checksum
root root root tree root
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Btrfs Corruption Scenario

Super Block
Root Tree Chunk Tree
extent tree dev tree FS tree checksum
root root root tree root
N Corrupted byte!/
Heade\r\ 1 Q@sum Btree Node
// \\ | , X\
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Dir2
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Btrfs Corruption Scenario

Super Block

Root Tree Chunk Tree
extent tree dev tree FS tree checksum
root root root tree root

Data Loss!
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Btrfs Results

The Good News

The Bad News

* Does not always make use of the existing redundancy:

= Two independent data structures for a directory:
>DIR _ITEM and DIR_INDEX.

= |f one becomes corrupted, the other is not used for recovery!

» Several cases of unmountable file system; a few crashes:
= The file system cannot be mounted even after btrfsck is invoked.
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F2FS Results

The Good News
* Read errors are detected and appropriately propagated in nearly all cases.

* Inodes and checkpoints are protected using checksums.

* The file system checker can bring the file system to a consistent state in some cases!

The Bad News
» Consistently fails to detect and report any write errors!

e Cannot deal with lost and shorn writes effectively - data loss.

e Corruption events can have severe repercussions.
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Implications

 Verify the correctness of metadata through sanity checks, especially when metadata is
not protected against corruption.

e Checksums can be a double-edged sword:
= Increase error detection.
= Coarse granularity checksums can lead to severe data loss.

* A few key data structures cause maximum recovery failures:

= ext4d: the journal’s superblock and the inode of the root directory.
= Btrfs: the root node of fstree.

= F2FS: the inode of the root directory.
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Thank you!
Questions?

Github: https://github.com/uoftsystems/dm-inject
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