Evaluating File System Reliability
on Solid State Drives

Shehbaz Jaffer, Stathis Maneas, Andy Hwang, Bianca Schroeder

&% UNIVERSITY OF TORONTO

Disk structure is % C cor Sci
Qcorruptedlunreadable g —omputer Science

USENIX ATC ‘19

Introduction & Motivation

* Storage landscape has changed:

. B@(s, -> SSDs.

= What about their failure characteristics?
>Partial failures are a magnitude higher for SSDs!
>FTL is prone to bugs during power faults.

= New/Evolved file systems:
>ext3 -> ext4 (journaling).
>Btrfs (copy-on-write).
>F2FS (log-structured, tailored for flash).

* Our goal: How do these file systems deal with partial drive errors?

Research Questions & Methodology

Research Questions & Methodology

* What we know (IRON File Systems, 2005):
= Only ext3, JFS, ReiserFS, NTFS (partial).
= Hard disks only.
= Does not consider file system checkers.

Research Questions & Methodology

* What we know (IRON File Systems, 2005):
= Only ext3, JFS, ReiserFS, NTFS (partial).
= Hard disks only.
= Does not consider file system checkers.

e What we want to know:

= Btrfs, ext4, F2FS.

= Can they detect errors?

= Can they recover from errors?

= Can the system checker (fsck) fix errors?

SSD Faults and their Manifestation

e What if the storage device starts
misbehaving and generating errors?

 How exactly file systems deal with these e ™
errors? Block-based FS

extd || F2Fs VES

Btrfs

Physical Device

SSD Faults and their Manifestation

SSD/Flash Faults

Read N\ _ _ o _______
/O oS

Block-based FS

extd || F2FS VFS
Btrfs

Physical Device

SSD Faults and their Manifestation

SSD/Flash Faults

Uncorrectable bit corruption

Read N\ _ _ o _______
/O oS

Block-based FS
ext4 F2FS VFS

Btrfs

Physical Device

SSD Faults and their Manifestation

SSD/Flash Faults

Uncorrectable bit corruption
| Reed \ _
1/O oS

4 N
Block-based FS
Write extd || F2rs VES
/0 Btrfs
\§ J
Corrup
tion Read x Read
Read 1/O Error Request /0 Error!
e The SSD could not successfully
- (1) (2)
complete the operation! Shorn
Write ./ _ _ _ _ _ _ _
Physical Device

SSD Faults and their Manifestation

SSD/Flash Faults

Incomplete Program Operation le?)d

Block-based FS
ext4 F2FS VFS

Btrfs

Physical Device

SSD Faults and their Manifestation

SSD/Flash Faults

Incomplete Program Operation \ = 7Y M e e e e m = -

oS
4)
Block-based FS
ext4 F2FS VFS
Btrfs
- J
m Read Corrupted
Corru ption Request Data!

* Silent! The SSD does not detect it! (1)

Physical Device

SSD Faults and their Manifestation

SSD/Flash Faults

Incomplete Program Operation \ = 7Y M e e e e m = -

Block-based FS
ext4 F2FS VFS

Btrfs

- J

Write . ! Future reads after
Shorn Write Request I a shorn write!

* A write issued by the file system but

1
partially persisted on the SSD. (1)
= Power fault (Zheng et al.,, FAST N\ M€ _/ o e e e e e e e - =

‘ Physical Device
13). Write

is shorn!
(2) 10

SSD Faults and their Manifestation

SSD/Flash Faults Manifestation

Read N\ _ _ o _______
/O oS

Dropped Writes

Block-based FS
ext4 F2FS VFS

Btrfs

Physical Device

11

SSD Faults and their Manifestation

SSD/Flash Faults

Reed _

/0 oS
Dropped Writes s ~

Block-based FS

extd || F2FS VFS
Btrfs

- /
Corrup]
tion Write x Write
Write 1/0O Error Request /0 Error!
* The SSD could not successfully (1) 2)
complete the operation! Shorn
Write / _ _ _ _
Physical Device
Lost

Write 12

SSD Faults and their Manifestation

SSD/Flash Faults

Reed _

/0 oS
Dropped Writes \ s ~

Block-based FS

Write ext4 F2FS VFS
/0 Btrfs

- J

tion Write . Write
Lost Write Request CompleteI
e No error is returned!

Physical Device

Write

is lost!
(3) 13

SSD Faults and their Manifestation

SSD/Flash Faults Manifestation

Uncorrectable bit corruption

.
.
",
Yaa,
"
.
.....
.....
.
.....

Incomplete Program Operation - Read '\ oo ____
NIRRT 1/O oS
Dropped Writes s ~
Silent Bit Corruption Block-based FS
Misdirected Writes S (E2HS VFS
h . Btrfs
Shorn Writes _)

FTL Metadata Corruption

Incomplete Erase Operation

Physical Device

14

How to test the resiliency of file systems against SSD faults?

Block-based FS
extd || F2FS VFS

Btrfs

7 ¥

A 4
Block Layer

Physical Device

15

How to test the resiliency of file systems against SSD faults?

 Emulate the faults’ manifestation!
= |nject errors at the Block Layer.

Block-based FS
extd || F2rFs VFS

Btrfs

7 ¥

A 4
Block Layer

Physical Device

15

How to test the resiliency of file systems against SSD faults?

 Emulate the faults’ manifestation!
= |nject errors at the Block Layer.

Block-based FS
extd || F2rFs VFS

Btrfs

A

A 4

Device Mapper Module
7 \

l

Block Layer

Physical Device

15

How to test the resiliency of file systems against SSD faults?

 Emulate the faults’ manifestation!
= |nject errors at the Block Layer.

e Device Mapper Module: - ~

= Intercept every I/O request. Block-based FS
extd || F2FS VES

» Fail a request & return an error. f

Btrfs
= Silently drop a request. \ Y
= Alter block contents online. 1

A 4

Device Mapper Module
7 \

l

Block Layer

Physical Device

15

Targeted Error Injection

* Understand the effect of every injected
error.

* |dentify block types and specific data
structures within each block!

* Target specific data structures and fields
within them:
= Trace all I/O requests (blktrace).
= Logic inside our device mapper module.

= FS tools, such as dump, to inspect the disk
image offline.

Block-based FS
extd F2FS

Btrfs

VFS

7 ¥

A 4

Device Mapper Module

A 4
Block Layer

Physical Device

16

How do file systems detect and recover from errors?

e Each application focuses on one Application
particular operation: S S
« mkdir, creat, etc. 3 E
v v (0 1)
L 4 N
e Run an application and collect all Block-based FS
accessed blocks. extd | F2rs VFS
Btrfs
L _ J
e Targeted error injection: T
= Repeat the execution and inject a single !
error into each accessed block. Device Mapper Module
= Target one block at a time. ‘

Block Layer

Physical Device

e Better isolation and characterization of
the file system’s reaction to every

injected error!

17

How do file systems detect and recover from errors?

« Categorize each file system’s detection and Application
recovery policies: Q))
= Across all visible aspects, such as logs, return 0 §
codes,etc. T TE=T=TEETEETT N oS
= Check how effectively fsck recovers the file 4 - - ™\
system. Block-based FS
extd || F2Fs VFS
Btrfs
_ J

y Y

A 4

Device Mapper Module

|

Block Layer

Physical Device

18

How do file systems detect and recover from errors?

e Categorize each file system’s detection and
recovery policies:

= Across all visible aspects, such as logs, return
codes, etc.

s Check how effectively fsck recovers the file
system.

Detection Recovery Fsck

Error Code

Sanity

Application
~ S
b= o)
o E
v v (0 1)
4)
Block-based FS
extd]| F2FS VFS
Btrfs
1\ J

A

A 4

Device Mapper Module

|

Block Layer

Physical Device

19

How do file systems detect and recover from errors?

e Categorize each file system’s detection and
recovery policies:

= Across all visible aspects, such as logs, return

codes, etc.
s Check how effectively fsck recovers the file
system.
Detection Recovery Fsck
Error Code Retry
Sanity Propagate

Application
~ S
b= o)
o E
v v (0 1)
4)
Block-based FS
extd]| F2FS VFS
Btrfs
1\ J

A

A 4

Device Mapper Module

|

Block Layer

Physical Device

20

How do file systems detect and recover from errors?

e Categorize each file system’s detection and

Application
recovery policies: S Q)
= Across all visible aspects, such as logs, return 0 §
codes,etc. T TE=T=TEETEETT B oS
. . A 4 \ 4
s Check how effectively fsck recovers the file (™\
system. Block-based FS
extd || F2rs VES
I+ Btrfs
Detection Recover Fsc
y _ ‘ J
Zero Zero Crash/Fail
A 4
_ Device Mapper Module
Error Code Retry Fail ‘
Sanity Propagate - Block L;yer
Redundancy Previous Original || Physical Device
Fsck

* Colors indicate severity.

Stop Full

21

How do file systems detect and recover from errors?

e Categorize each file system’s detection and
recovery policies:

= Across all visible aspects, such as logs, return
codes, etc.

s Check how effectively fsck recovers the file
system.

/ Experiments \

Block-based FS

extd

F2FS

Btrfs

VFS

7 ¥

A 4

Device Mapper Module

|

Block Layer

Physical Device

22

How do file systems detect and recover from errors?

e Categorize each file system’s detection and
recovery policies:

= Across all visible aspects, such as logs, return

codes, etc.
s Check how effectively fsck recovers the file
system.
Experiments
Applications Read/Write/ Data Recovery &
Corruption Structures Detection
Experiments

K 7000+ Test Cases! /

Application
o ~
D g
o E
\ 4 \ 4 OS
4)
Block-based FS
ext4 F2FS VES
Btrfs
_ J

7 ¥

A 4

Device Mapper Module

|

Block Layer

Physical Device

22

Results — Overview (1/2)

F2FS Detection ext4 Recovery ext4 Detection Btrfs Recovery Btrfs Detection

F2FS Recovery

Read 1I/O Error Write 1/O Error Corruption

abcecdefghijklmnopgqrstvw abecdefghijklmnopgqrstvwabcdefghijklmnopgqrstvw
fs tree A T 1 B R R T N R R R R RN RN A AR R AR R RN AN R AR NN AR AR
cksum tree + + + | | |
root tree + F l
superblock + SR | 11 T |
extenttree@@@@@@@@@@@@@@@@@@@+ IR R e R D D DN
chunk tree |
dev tree + FRNRY |
uuid tree n |
log tree + [+ 4+ 44+
data +

abcdefghijklmnop rslvw abcdefghijklmnopqgrstvw abcde Imnopgqrstvw
fs tree \+|+|+|+|+|+H+|+|-I—|+|+|+|+|+|+\®+ B ﬂ_. \+|+\+|+|+|+HH+’+H|+HH-H-H-++++ @
cksum tree

root tree
superblock | - Q)= =-
extent e DOOOOBVIDVIO

chunk tree

dev tree

uuid tree

og tree l-l .

data 4
abcecdefghijklmnopqrstvw abecdefghijklmnopgrstvwabcecdefghijklmnopgqrstvw

superblock + 00) [0) o0 © O | O+ | | 1] |

inode OOOOODDOIDIDD DOOOODD (@ | | HFEEE FEE L g e e ey

group desc + + |+ + |

block bitmap 4 44 + 444 + | R SRR

inode bitmap +4 0 4+ 4 4+ + LO! [

directory + 44 FEEEFEEEE S FH RS + TINRENAN: O |

extent S + + A |

journal + FH]] |

data O - O
abcecdefghijklmnopgqrstvwabecdefghijklmnopqrstvwabcdefghijklmnopqrstvw

superblock

inode # HEH [HIRHTR B[QL [F[H+[+[HHH

group desc

block bitmap @ 9]

inode bitmap

directory [H T FE A H A F R] + [+ [

extent | b E[E [R
journal l .

data

abcecdefghijklmnopqrstvw abedefghijklmnopqrstvw abcdefghijklmnopqrstvw
superblock - 0}
checkpoint [T - O 1 00 00 00
NAT -)
SIT _ 0)
inode - - - - ——— - - oo BIR0OR00000) OO0 OO0 O O Ky FF P FFREE R
(dind) node NG | o) o0 O O® 0}
direntry |-[--|-|-|-[-[-|--]--[- |-]-]--]-- - 0 00000 | 00 (D(Dg CDg (D(DCDCD@CD%CD@@CDCD@@@@@@@ O
data -

4 +

R R R

abcdefghijklmnopqrstvwabedefghijklmnopqrstvwabcedefghijklmnopqrstvw
superblock
checkpoint NNENSEENEN
NAT
SIT
inode +
(d/ind) node
dicentry [
data

LN EARARA A A R 0000000000000 00000C O
=

O
FLEEEH 00000000000C000000C O

ESEeEaE

O

F2FS Detection ext4 Recovery ext4 Detection Btrfs Recovery Btrfs Detection

F2FS Recovery

Shorn Write + Program Read Shorn Write + Fsck Lost Writes

a/blc/de/f/ghli j|k/I/mno/p/qrisitivw ablcdlef/ghiljk1mnlopaqrstvwlabcdefghlijklmnopaqrstvw
fs tree PO Lo 1 O 00000 | 600, OO0 O O 00000 | OO0 OOOOD O
cksum tree I ! O |

root tree OOOOOOOOTHODDO OOOOOOODD OOOOOODOOODODD GODODOODDD D
superblock OOOOOCCOOTODDDO DOOOOOCOD OO DODOOBDODD OO DODDD D
extent tree. DOOOOOOODDODO OOOOODH O O OODDO (COMROROCARC (UR0000] (COMBOROOERY

chunk tree
dev tree 0} |) [0)
DO OOOOOD (0] 0)

[@le)®)

[@)e)e)

uuid tree

log tree OO0 O
data I

cdefghijklmnopgrstvw

fs tree
cksum tree
root tree
superblock
extent tree
chunk tree
dev tree
uuid tree
log tree @@ @
data

abcdefghijklmnopgqrstvw ahcdefghrljklmnopqrstvw abcdefghleImnopqrslvw
superblock O | 00000 00 0 O CO | [®0000 00 0 O OO

jklmnopgqrstvw abcdefghijklmn

cdefghi
\+\+\+\+|+\++ + +.+\+|+|+|+|+ A+

inode SR 00000 000000 0000 O || 00000 0A0O00000000 OO

group desc 0 00 0G0 | 00000000 O O | ®O OO | | OO OOOOOCODO

block bitmap (D) 00 OO0 O 00 000 | O | O 00| 000 | | O

inode bitmap 00 00 | O 00 00 O 00 00 | O

directory - OO000000A0OOO0 000000 O o) O 00 | O (@) 0 00 | O

extent (00,6/0/006/0600,0(0]0/6/6/000NN©] O

Journal @) 0/6/0/000/0,6000(010,0/6/6/0 01 ¢010,0/0000/000000]0,0/0/000406/¢)

data O O QO 00 1O
abcdefglllelmnopqrstvw abcdefghijklmnopgqrstvw abcecdefghijklmnopgqrstvw

superblock

inode A |+|+|+|+|-I-|+
group desc

block bitmap .

inode bitmap

directory 11

o) |
extent

fone — i D‘Qégg u ﬁ g

ablcdelfghlijk1mnoplqrstvwabcdefghijklmnopgqrstvwabcdefghijklmnopgqrstyw

superblock
checkpoint @) 00 00 00O @) 00 00 ' 00
NAT 0]

SIT 0]

inode VLR VR VR E ey @ Q0000 00 000 O
(d/ind) node 0} 0) [0[0N0)
dir. entry @@@@@@8@%@@@@@@@@@ o0 ®®®8® 0[0) ®®8 0]
data

O 00000 | | 00 000 O O
0] 00 O
0] O 00 @(Dg 0]

[@ISICIS]

abcdefghijklmnopqrstvwabcdefghijklmnopqrstvwabcdefghijklmnopqrstvw
superblock '] | | | | I [
checkpoint
NAT
SIT
inode 00000000C00d0 0000 O
(d/ind) node O
direntry GO000000C00CO000000 ©
data O

(olo]e]
OO

48

jelele)
[ele)ele]

olo]e]e)

[e]ele)e}
(@}
8

[ele)e)e)

23

Results — Overview (1/2)

Unmountable/Unrecoverable
file system in 16% of all cases!

23

Results — Overview (2/2)

File System Detection Recovery

24

Results — Overview (2/2)

File System Detection Recovery

ext4

24

Results — Overview (2/2)

File System Detection Recovery

ext4

Btrfs

24

Results — Overview (2/2)

File System Detection Recovery

ext4

Btrfs

F2FS

24

ext4 Results

The Good News
* Capable of recovering from a large range of fault scenarios.
o Little use of checksums:

= Still, it can deal with corruption and shorn writes due to a very rich set of sanity checks.

» System checker capable of reconstructing several data structures:
= Inode bitmaps, block bitmaps, group descriptor block.

LR ER IETS
e Lost and Shorn writes:

= A few data structures cannot be recovered:
>|node block = data loss.

The overall reliability of ext4 is significantly better compared to ext3!

25

Btrfs Results

The Good News
» Consistently detects all I/O errors, as well as corruption events (due to checksums).

The Bad News
* Metadata replication is disabled for SSDs*!

* Makes use of node level checksums...

* https://btrfs.wiki.kernel.org/index.php/Manpage/mkfs.btrfs 26

Btrfs Corruption Scenario

Super Block
Root Tree Chunk Tree
7\
extent tree dev tree FS tree checksum
root root root tree root
Header , | \ Checksum | Btree Node

Dirl Ptr Dir2 Ptr v \

Dirl Dir2
Entries Entries

27

Btrfs Corruption Scenario

Super Block

Root Tree Chunk Tree
extent tree dev tree FS tree checksum
root root root tree root

Corrupted byte!

Header , | 1 \ Checksum| Btree Node
Dirl Ptr Dir2 Ptr ‘ \
Dirl Dir2

Entries Entries

27

Btrfs Corruption Scenario

Super Block

Root Tree Chunk Tree
extent tree dev tree FS tree checksum
root root root tree root

Corrupted byte!

Header , | 1 \ Checksum | Btree Node
Dirl Ptr Dir2 Ptr ‘ \
Dirl Dir2

Entries Entries

28

Btrfs Corruption Scenario

Super Block
Root Tree Chunk Tree
extent tree dev tree FS tree checksum
root root root tree root
N Corrupted byte!/
Heade\r\ 1 Q@sum Btree Node
// \\ | , X\

Dirl Ptr Dir The entire node is discarded!

Dirl
Entries

Dir2

28

Btrfs Corruption Scenario

Super Block

Root Tree Chunk Tree
extent tree dev tree FS tree checksum
root root root tree root

Data Loss!

28

Btrfs Results

The Good News

The Bad News

* Does not always make use of the existing redundancy:

= Two independent data structures for a directory:
>DIR _ITEM and DIR_INDEX.

= |f one becomes corrupted, the other is not used for recovery!

» Several cases of unmountable file system; a few crashes:
= The file system cannot be mounted even after btrfsck is invoked.

29

F2FS Results

The Good News
* Read errors are detected and appropriately propagated in nearly all cases.

* Inodes and checkpoints are protected using checksums.

* The file system checker can bring the file system to a consistent state in some cases!

The Bad News
» Consistently fails to detect and report any write errors!

e Cannot deal with lost and shorn writes effectively - data loss.

e Corruption events can have severe repercussions.

30

Implications

 Verify the correctness of metadata through sanity checks, especially when metadata is
not protected against corruption.

e Checksums can be a double-edged sword:
= Increase error detection.
= Coarse granularity checksums can lead to severe data loss.

* A few key data structures cause maximum recovery failures:

= ext4d: the journal’s superblock and the inode of the root directory.
= Btrfs: the root node of fstree.

= F2FS: the inode of the root directory.

31

Thank you!
Questions?

Github: https://github.com/uoftsystems/dm-inject

32

https://github.com/uoftsystems/dm-inject

