Practical Erase Suspension for Modern Low-latency SSDs

Shine Kim^{†§} Jonghyun Bae[†] Hakbeom Jang^{*} Wenjing Jin[†] Jeonghun Gong[†] Seoungyeon Lee[§] Tae Jun Ham[†] Jae W. Lee[†]

§Samsung Electronics

*Sungkyunkwan University

July 12th, 2019

USENIX ATC 2019, RENTON, WA, USA

Today's NAND flash-based SSDs in datacenters

- NAND flash-based SSDs have become a *de-facto* standard in datacenters
 - Superior throughput, low average latency, and relatively low price

[1] https://www.samsung.com/semiconductor/ssd/enterprise-ssd/

[2] IEEE ISSCC'18, W. Cheong et al., A flash memory controller for 15us ULL-SSD using high-speed 3D NAND flash with 3us read time

[3] www.amazon.com: SAMSUNG 860QVO 1TB

Read tail behavior of NAND flash-based SSD

Challenge: Despite low average response time, read tail latency can be very long

Garbage collection (GC) (e.g., 100ms → 10ms)

- GC-induced read tail latency has been optimized by sophisticated GC schemes
- Block erase operation (e.g., 10ms/block)
 - Has become most dominant source of read tail latency

[1] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012

- Garbage collection (GC) (e.g., 100ms → 10ms)
 - GC-induced read tail latency has been optimized by sophisticated GC schemes
- Block erase operation (e.g., 10ms/block)
 - Has become most dominant source of read tail latency

[1] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012

- Garbage collection (GC) (e.g., 100ms → 10ms)
 - GC-induced read tail latency has been optimized by sophisticated GC schemes
- Block erase operation (e.g., 10ms/block)
 - Has become most dominant source of read tail latency

[1] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012

- Garbage collection (GC) (e.g., 100ms → 10ms)
 - GC-induced read tail latency has been optimized by sophisticated GC schemes
- Block erase operation (e.g., 10ms/block)
 - Has become most dominant source of read tail latency

[1] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012

- Garbage collection (GC) (e.g., 100ms → 10ms)
 - GC-induced read tail latency has been optimized by sophisticated GC schemes
- Block erase operation (e.g., 10ms/block)
 - Has become most dominant source of read tail latency
 - Erase suspension^[1] can effectively decrease block erase latency

[1] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012

- Garbage collection (GC) (e.g., 100ms → 10ms)
 - GC-induced read tail latency has been optimized by sophisticated GC schemes
- Block erase operation (e.g., 10ms/block)
 - Has become most dominant source of read tail latency
 - Erase suspension^[1] can effectively decrease block erase latency

However, existing erase suspension can cause *write starvation and NAND reliability problem!*

[1] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012

 Modern SSDs perform erase operation with multiple discrete pulses to provide well-aligned safe points for suspending an ongoing erase

Architecture and Code Optimization (ARC) Laboratory @ SNU

10

- Modern SSDs perform erase operation with multiple discrete pulses to provide well-aligned safe points for suspending an ongoing erase
- We propose three practical erase suspension schemes

- Modern SSDs perform erase operation with multiple discrete pulses to provide well-aligned safe points for suspending an ongoing erase
- We propose three practical erase suspension schemes
 - Immediate erase suspension (I-ES): Aborts erase immediately and restarts from previous safe-point

- Modern SSDs perform erase operation with multiple discrete pulses to provide well-aligned safe points for suspending an ongoing erase
- We propose three practical erase suspension schemes
 - Immediate erase suspension (I-ES): Aborts erase immediately and restarts from previous safe-point
 - Deferred erase suspension (D-ES): Waits until the current erase pulse is finished

- Modern SSDs perform erase operation with multiple discrete pulses to provide well-aligned safe points for suspending an ongoing erase
- We propose three practical erase suspension schemes
 - Immediate erase suspension (I-ES): Aborts erase immediately and restarts from previous safe-point
 - Deferred erase suspension (D-ES): Waits until the current erase pulse is finished
 - Timeout-based erase suspension (T-ES): Adaptively switches between I-ES and D-ES

Prior work: Problems with existing erase suspension^[1] (1)

• Problem #1: Write starvation

- With bursty reads

1) Remaining erase pulse (9ms) may fail to make a progress by incoming reads

Erase (and Write) Starvation!

[1] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012

Prior work: Problems with existing erase suspension^[1] (2)

- Problem #2: Endurance degradation
 - With bursty reads

2) Erase suspension/resumption causes additional stress to NAND

Over-erase NAND blocks → Increase uncorrectable bit error rate (UBER)

Endurance degradation of SSD!

[1] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012

Practical erase suspension: Background

NAND erase operation

- Pulls electrons out of floating gate by applying very high voltage

• Incremental Step Pulse Erasing (ISPE)

- Standard technique to minimize damages on NAND cells
- Applying several, discrete pulses (of ~1ms) with increasingly higher nominal voltages

I-ES operations

- Suspend: Immediately terminates ongoing erase step (taking ~ 100µs)
- Resume: Restarts the suspended erase pulse from the beginning

Time (ms)

☐ : Erase pulse

: Verify pulse

I-ES operations

- Suspend: Immediately terminates ongoing erase step (taking ~ 100µs)
- Resume: Restarts the suspended erase pulse from the beginning

☐ : Erase pulse

: Verify pulse

- Suspend: Immediately terminates ongoing erase step (taking ~ 100µs)
- Resume: Restarts the suspended erase pulse from the beginning

- Suspend: Immediately terminates ongoing erase step (taking ~ 100µs)
- Resume: Restarts the suspended erase pulse from the beginning

- Suspend: Immediately terminates ongoing erase step (taking ~ 100µs)
- Resume: Restarts the suspended erase pulse from the beginning

- Suspend: Immediately terminates ongoing erase step (taking ~ 100µs)
- Resume: Restarts the suspended erase pulse from the beginning

- Suspend: Immediately terminates ongoing erase step (taking ~ 100µs)
- Resume: Restarts the suspended erase pulse from the beginning
- Does not guarantee forward progress of erase operation \rightarrow Write starvation problem!

D-ES operations

- Suspend: Waits until current erase step is finished (erase and verify pulse)
- Resume: Start the next erase pulse

Time (ms)

☐ : Erase pulse

: Verify pulse

- Suspend: Waits until current erase step is finished (erase and verify pulse)
- Resume: Start the next erase pulse

- Suspend: Waits until current erase step is finished (erase and verify pulse)
- Resume: Start the next erase pulse

• D-ES operations

- Suspend: Waits until current erase step is finished (erase and verify pulse)
- Resume: Start the next erase pulse

• D-ES operations

- Suspend: Waits until current erase step is finished (erase and verify pulse)
- Resume: Start the next erase pulse
- No erase and write starvation problem, but longer read tail! (i.e., length of single step, ~ 1ms)

- 1. Performs I-ES until erase operation is suspended for a timeout period (*N* ms)
- 2. If a timeout happens, switches to D-ES to avoid erase and write starvation

- 1. Performs I-ES until erase operation is suspended for a timeout period (*N* ms)
- 2. If a timeout happens, switches to D-ES to avoid erase and write starvation
- Choice of erase timeout period (*N*)
 - Provides an effective control knob for read/write latency
 - Trades maximum write tail latency for reduced read latency

Ex)
$$N = 64ms$$
, and GC Write Latency = $35ms$
 \bigcirc
Maximum Write Latency $\leq 100ms$

Evaluation: Methodology

- NVMe SSD simulator: MQSim^[1]
- Benchmarks: Flexible I/O Tester, Aerospike Certification Tool (ACT) and TPC-C
- Comparison of six designs:
 - **Baseline** (no suspension) and **Ideal-ES** (erase suspension with zero penalty)
 - Erase suspension (ES)^[2]
 - Immediate-ES (I-ES), Deferred-ES (D-ES), and, Timeout-based-ES (T-ES)

PCIe Gen 3 X 4 Lane, 240GB, NVMe SSD Device				
NAND Configurations	4 channels, 4 chips/channel, 1die/chip			
FTL Schemes	Page Mapping, Preemptible GC			
NAND Latency				
Read: 3µs, Program: 100µs, Block Erase: 1ms per step (5 steps), Erase Suspension Penalty: 100µs, T-ES timeout: 64ms				

[1] Tavakkol et al, MQSim: A framework for enabling realistic studies of modern multi-queue SSD devices, USENIX FAST 2018 [2] Wu et al, Reducing SSD Read Latency via NAND Flash Program and Erase Suspension, USENIX FAST 2012

FIO random test

- Read 70%, Write 30%, 4KB QD 16

- \circ Baseline → ~5ms (entire erase operation)
- D-ES → ~1ms (single erase pulse)
- ES, I-ES, T-ES \rightarrow ~100µs (suspension latency)

 I-ES, T-ES → Long write latency due to repeated erase suspension

Evaluation: Aerospike Certification Tool (ACT)

• ACT: Database benchmark

- Consists of three threads, and gradually increases I/O rate in integer multiples

Test Item	Evaluation Criteria	SSD #1	SSD #2	SAMSUNG ·	
Performance Test	i) 95% of I/O < 1ms ii) 99% of I/O < 8ms iii) 99.9% of I/O < 64ms	10X	8X	SAMSUMO SAMSUMO SAMSUMO SAMSUMO AMSUMO	==
Stress Test	iv) I/O latency < request period	2X	10X	SAMSUND .	

Evaluation: Aerospike Certification Tool (ACT)

ACT test results

- Baseline shows poor *performance test* result (14x) due to long-tail latency of read request
- ES and I-ES suffer write starvation problem (22x)
- D-ES and T-ES demonstrate good results (30x) for both stress and performance tests

• TPC-C from SNIA

(a) Read tail latency

 \circ Baseline → ~5ms (entire operation)

- D-ES, T-ES \rightarrow ~1ms (single erase pulse)
- \circ ES, I-ES \rightarrow Failure by write command timeout

(b) Write tail latency

 \circ T-ES → Timeout (64ms) + GC latency (24ms)

Conclusion

- Practical erase suspension harnesses the full potential of NAND flash-based SSDs
 - Minimizes the impact of erase operation on read tail latency
 - Achieves very low read tail latency without write starvation and endurance degradation

Thank You!

Our simulator is available at

https://github.com/SNU-ARC/MQSim-Practical-ERS-SUS

